1
|
Rosbrook P, Margolis LM, Pryor JL. Nutritional Considerations in Exercise-Based Heat Acclimation: A Narrative Review. Sports Med 2024; 54:3005-3017. [PMID: 39217233 DOI: 10.1007/s40279-024-02109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
In addition to its established thermoregulatory and cardiovascular effects, heat stress provokes alterations in macronutrient metabolism, gastrointestinal integrity, and appetite. Inadequate energy, carbohydrate, and protein intake have been implicated in reduced exercise and heat tolerance. Classic exercise heat acclimation (HA) protocols employ low-to-moderate-intensity exercise for 5-14 days, while recent studies have evolved the practice by implementing high-intensity and task-specific exercise during HA, which potentially results in impaired post-HA physical performance despite adequate heat adaptations. While there is robust literature demonstrating the performance benefit of various nutritional interventions during intensive training and competition, most HA studies implement few nutritional controls. This review summarizes the relationships between heat stress, HA, and intense exercise in connection with substrate metabolism, gastrointestinal function, and the potential consequences of reduced energy availability. We discuss the potential influence of macronutrient manipulations on HA study outcomes and suggest best practices to implement nutritional controls.
Collapse
Affiliation(s)
- Paul Rosbrook
- Center for Research & Education in Special Environments, Department of Exercise & Nutrition Sciences, State University of New York University at Buffalo, Buffalo, NY, USA.
| | - Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute for Environmental Medicine, Natick, MA, USA
| | - J Luke Pryor
- Center for Research & Education in Special Environments, Department of Exercise & Nutrition Sciences, State University of New York University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Rezende RM, Coimbra RS, Kohlhoff M, Favarato LSC, Martino HSD, Leite LB, Soares LL, Encarnação S, Forte P, de Barros Monteiro AM, Peluzio MDCG, José Natali A. Effects of Tryptophan and Physical Exercise on the Modulation of Mechanical Hypersensitivity in a Fibromyalgia-like Model in Female Rats. Cells 2024; 13:1647. [PMID: 39404410 PMCID: PMC11475953 DOI: 10.3390/cells13191647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Though the mechanisms are not fully understood, tryptophan (Trp) and physical exercise seem to regulate mechanical hypersensitivity in fibromyalgia. Here, we tested the impact of Trp supplementation and continuous low-intensity aerobic exercise on the modulation of mechanical hypersensitivity in a fibromyalgia-like model induced by acid saline in female rats. Twelve-month-old female Wistar rats were randomly divided into groups: [control (n = 6); acid saline (n = 6); acid saline + exercise (n = 6); acid saline + Trp (n = 6); and acid saline + exercise + Trp (n = 6)]. Hypersensitivity was caused using two intramuscular jabs of acid saline (20 μL; pH 4.0; right gastrocnemius), 3 days apart. The tryptophan-supplemented diet contained 7.6 g/hg of Trp. The three-week exercise consisted of progressive (30-45 min) treadmill running at 50 to 60% intensity, five times (Monday to Friday) per week. We found that acid saline induced contralateral mechanical hypersensitivity without changing the levels of Trp, serotonin (5-HT), and kynurenine (KYN) in the brain. Hypersensitivity was reduced by exercise (~150%), Trp (~67%), and its combination (~160%). The Trp supplementation increased the levels of Trp and KYN in the brain, and the activity of indoleamine 2,3-dioxygenase (IDO), and decreased the ratio 5-HT:KYN. Exercise did not impact the assessed metabolites. Combining the treatments reduced neither hypersensitivity nor the levels of serotonin and Trp in the brain. In conclusion, mechanical hypersensitivity induced by acid saline in a fibromyalgia-like model in female rats is modulated by Trp supplementation, which increases IDO activity and leads to improved Trp metabolism via the KYN pathway. In contrast, physical exercise does not affect mechanical hypersensitivity through brain Trp metabolism via either the KYN or serotonin pathways. Because this is a short study, generalizing its findings warrants caution.
Collapse
Affiliation(s)
- Rafael Marins Rezende
- Department of Physiotherapy, Universidade Federal de Juiz de Fora, Governador Valadares 35020-360, MG, Brazil;
| | - Roney Santos Coimbra
- Instituto Rene Rachou–Fiocurz Minas, Belo Horizonte 30190-009, MG, Brazil; (R.S.C.); (M.K.)
| | - Markus Kohlhoff
- Instituto Rene Rachou–Fiocurz Minas, Belo Horizonte 30190-009, MG, Brazil; (R.S.C.); (M.K.)
| | | | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (M.d.C.G.P.)
| | - Luciano Bernardes Leite
- Exercise Biology Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (L.B.L.); (L.L.S.)
- Department of Sports Sciences, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.F.); (A.M.d.B.M.)
| | - Leoncio Lopes Soares
- Exercise Biology Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (L.B.L.); (L.L.S.)
| | - Samuel Encarnação
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre for Active Living and Wellbeing (Livewell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Pedro Forte
- Department of Sports Sciences, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.F.); (A.M.d.B.M.)
- Research Centre for Active Living and Wellbeing (Livewell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- CI-ISCE, Instituto Superior de Ciências Educativas do Douro (ISCE Douro), 4560-547 Penafiel, Portugal
- Research Centre in Sports Sciences, Health Sciences and Human Development, 5001-801 Vila Real, Portugal
| | - António Miguel de Barros Monteiro
- Department of Sports Sciences, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.F.); (A.M.d.B.M.)
- Research Centre for Active Living and Wellbeing (Livewell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (M.d.C.G.P.)
| | - Antônio José Natali
- Exercise Biology Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (L.B.L.); (L.L.S.)
| |
Collapse
|
3
|
de Koning JJ, Foster C. Standing on the Shoulders of Giants: Essential Papers in Sports and Exercise Physiology. Int J Sports Physiol Perform 2024; 19:841-845. [PMID: 38950887 DOI: 10.1123/ijspp.2023-0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE The purpose of this survey was to create a list of essential historical and contemporary readings for undergraduate and graduate students in the field of exercise physiology. METHODS Fifty-two exercise physiologists/sport scientists served as referees, and each nominated ∼25 papers for inclusion in the list. In total, 396 papers were nominated by the referees. This list was then sent back to the referees, with the instructions to nominate the "100 essential papers in sports and exercise physiology." RESULTS The referees cast 4722 votes. The 100 papers with the highest number of votes received 51% (2406) of the total number of votes. A total of 37 papers in the list of "100 essential papers" were published >50 years ago, and 63 papers were published since 1973. CONCLUSIONS This list of essential studies will provide a perspective on contemporary studies, the "giant's shoulders" to enable young scholars to "see further" or to understand where they have "come from." This compilation is also meant to impress on students that, given the (lack of) technology available in the past, some of the early science required enormous intuitive leaps on the part of historical scientists.
Collapse
Affiliation(s)
- Jos J de Koning
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Carl Foster
- Department of Exercise and Sports Science, University of Wisconsin-La Crosse, La Crosse, WI, USA
| |
Collapse
|
4
|
Larocque JC, Gardy S, Sammut M, McBey DP, Melling CWJ. Sexual dimorphism in response to repetitive bouts of acute aerobic exercise in rodents with type 1 diabetes mellitus. PLoS One 2022; 17:e0273701. [PMID: 36083870 PMCID: PMC9462568 DOI: 10.1371/journal.pone.0273701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to examine sex-specific differences in the blood glucose (BG) response to recurrent aerobic exercise in type 1 diabetes rats. Specifically, we examined the role of peak estrogen (E2) concentrations during proestrus on BG response to prolonged repetitive aerobic exercise. To do so, nineteen Sprague-Dawley rats were assigned to four exercised groups: control female (CXF; n = 5), control male (CXM; n = 5), diabetic female (DXF, n = 5) and diabetic male (DXM, n = 4). Diabetes was induced in DX groups via subcutaneous multiple injections of low dose streptozotocin (20mg/day for 7 days). After four days of exercise, muscle and liver glycogen content, liver gluconeogenic enzyme content, muscle Beta oxidation activity and BG responses to exercise were compared. The final bout of exercise took place during proestrus when E2 concentrations were at their highest in the female rats. During days 1–3 DXM had significantly lower BG concentrations during exercise than DXF. While both T1DM and non-T1DM females demonstrated higher hepatic G6Pase expression and muscle beta oxidation activity levels on day 4 exercise, no differences in BG response between the male and female T1DM rats were evident. Further, no differences in liver and muscle glycogen content following day 4 of exercise were seen between the sexes. These results would suggest that heightened E2 levels during proestrus may not be an important factor governing glucose counter regulatory response to exercise in female T1DM rats. Rather, the pre-exercise blood glucose levels are likely to be a large determinant of the blood glucose response to exercise in both male and female rats.
Collapse
Affiliation(s)
| | - Silar Gardy
- School of Kinesiology, Western University, London, ON, Canada
| | - Mitchell Sammut
- School of Kinesiology, Western University, London, ON, Canada
| | - David P. McBey
- School of Kinesiology, Western University, London, ON, Canada
| | - C. W. James Melling
- School of Kinesiology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada
- * E-mail:
| |
Collapse
|
5
|
Rauch CE, McCubbin AJ, Gaskell SK, Costa RJS. Feeding Tolerance, Glucose Availability, and Whole-Body Total Carbohydrate and Fat Oxidation in Male Endurance and Ultra-Endurance Runners in Response to Prolonged Exercise, Consuming a Habitual Mixed Macronutrient Diet and Carbohydrate Feeding During Exercise. Front Physiol 2022; 12:773054. [PMID: 35058795 PMCID: PMC8764139 DOI: 10.3389/fphys.2021.773054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Using metadata from previously published research, this investigation sought to explore: (1) whole-body total carbohydrate and fat oxidation rates of endurance (e.g., half and full marathon) and ultra-endurance runners during an incremental exercise test to volitional exhaustion and steady-state exercise while consuming a mixed macronutrient diet and consuming carbohydrate during steady-state running and (2) feeding tolerance and glucose availability while consuming different carbohydrate regimes during steady-state running. Competitively trained male endurance and ultra-endurance runners (n = 28) consuming a balanced macronutrient diet (57 ± 6% carbohydrate, 21 ± 16% protein, and 22 ± 9% fat) performed an incremental exercise test to exhaustion and one of three 3 h steady-state running protocols involving a carbohydrate feeding regime (76-90 g/h). Indirect calorimetry was used to determine maximum fat oxidation (MFO) in the incremental exercise and carbohydrate and fat oxidation rates during steady-state running. Gastrointestinal symptoms (GIS), breath hydrogen (H2), and blood glucose responses were measured throughout the steady-state running protocols. Despite high variability between participants, high rates of MFO [mean (range): 0.66 (0.22-1.89) g/min], Fatmax [63 (40-94) % V̇O2max], and Fatmin [94 (77-100) % V̇O2max] were observed in the majority of participants in response to the incremental exercise test to volitional exhaustion. Whole-body total fat oxidation rate was 0.8 ± 0.3 g/min at the end of steady-state exercise, with 43% of participants presenting rates of ≥1.0 g/min, despite the state of hyperglycemia above resting homeostatic range [mean (95%CI): 6.9 (6.7-7.2) mmol/L]. In response to the carbohydrate feeding interventions of 90 g/h 2:1 glucose-fructose formulation, 38% of participants showed breath H2 responses indicative of carbohydrate malabsorption. Greater gastrointestinal symptom severity and feeding intolerance was observed with higher carbohydrate intakes (90 vs. 76 g/h) during steady-state exercise and was greatest when high exercise intensity was performed (i.e., performance test). Endurance and ultra-endurance runners can attain relatively high rates of whole-body fat oxidation during exercise in a post-prandial state and with carbohydrate provisions during exercise, despite consuming a mixed macronutrient diet. Higher carbohydrate intake during exercise may lead to greater gastrointestinal symptom severity and feeding intolerance.
Collapse
Affiliation(s)
| | | | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Abstract
Since ancient times, the health benefits of regular physical activity/exercise have been recognized and the classic studies of Morris and Paffenbarger provided the epidemiological evidence in support of such an association. Cardiorespiratory fitness, often measured by maximal oxygen uptake, and habitual physical activity levels are inversely related to mortality. Thus, studies exploring the biological bases of the health benefits of exercise have largely focused on the cardiovascular system and skeletal muscle (mass and metabolism), although there is increasing evidence that multiple tissues and organ systems are influenced by regular exercise. Communication between contracting skeletal muscle and multiple organs has been implicated in exercise benefits, as indeed has other interorgan "cross-talk." The application of molecular biology techniques and "omics" approaches to questions in exercise biology has opened new lines of investigation to better understand the beneficial effects of exercise and, in so doing, inform the optimization of exercise regimens and the identification of novel therapeutic strategies to enhance health and well-being.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
25 Years of Session Rating of Perceived Exertion: Historical Perspective and Development. Int J Sports Physiol Perform 2021; 16:612-621. [PMID: 33508782 DOI: 10.1123/ijspp.2020-0599] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/18/2022]
Abstract
The session rating of perceived exertion (sRPE) method was developed 25 years ago as a modification of the Borg concept of rating of perceived exertion (RPE), designed to estimate the intensity of an entire training session. It appears to be well accepted as a marker of the internal training load. Early studies demonstrated that sRPE correlated well with objective measures of internal training load, such as the percentage of heart rate reserve and blood lactate concentration. It has been shown to be useful in a wide variety of exercise activities ranging from aerobic to resistance to games. It has also been shown to be useful in populations ranging from patients to elite athletes. The sRPE is a reasonable measure of the average RPE acquired across an exercise session. Originally designed to be acquired ∼30 minutes after a training bout to prevent the terminal elements of an exercise session from unduly influencing the rating, sRPE has been shown to be temporally robust across periods ranging from 1 minute to 14 days following an exercise session. Within the training impulse concept, sRPE, or other indices derived from sRPE, has been shown to be able to account for both positive and negative training outcomes and has contributed to our understanding of how training is periodized to optimize training outcomes and to understand maladaptations such as overtraining syndrome. The sRPE as a method of monitoring training has the advantage of extreme simplicity. While it is not ideal for the precise recording of the details of the external training load, it has large advantages relative to evaluating the internal training load.
Collapse
|
8
|
Margolis LM, O'Fallon KS. Utility of Ketone Supplementation to Enhance Physical Performance: A Systematic Review. Adv Nutr 2020; 11:412-419. [PMID: 31586177 PMCID: PMC7442417 DOI: 10.1093/advances/nmz104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 11/14/2022] Open
Abstract
Ingesting exogenous ketone bodies has been touted as producing ergogenic effects by altering substrate metabolism; however, research findings from recent studies appear inconsistent. This systematic review aimed to aggregate data from the current literature to examine the impact of consuming ketone supplements on enhancing physical performance. A systematic search was performed for randomized controlled trials that measured physical performance outcomes in response to ingesting exogenous ketone supplements compared with a control (nutritive or non-nutritive) in humans. A total of 161 articles were screened. Data were extracted from 10 eligible studies (112 participants; 109 men, 3 women ) containing 16 performance outcomes [lower-body power (n = 8) and endurance performance (n = 8)]. Ketone supplements were grouped as ketone esters (n = 8) or ketone salts/precursors (n = 8). Of the 16 performance outcomes identified by the systematic review, 3 reported positive, 10 reported null, and 3 reported negative effects of ketone supplementation on physical performance compared with controls. Heterogeneity was detected for lower-body power ( Q = 40, I2 = 83%, P < 0.01) and endurance performance (Q = 95, I2 = 93%, P < 0.01) between studies. Similarly high levels of heterogeneity were detected in studies providing ketone esters (Q = 111, I2 = 93%, P < 0.01), and to a lesser extent studies with ketone salts/precursors (Q = 25, I2 = 72%, P < 0.01). Heterogeneity across studies makes it difficult to conclude any benefit or detriment to consuming ketone supplements on physical performance. This systematic review discusses factors within individual studies that may contribute to discordant outcomes across investigations to elucidate if there is sufficient evidence to warrant recommendation of consuming exogenous ketone supplements to enhance physical performance.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA,Address correspondence to LMM (e-mail: )
| | - Kevin S O'Fallon
- Soldier Performance Optimization Directorate, Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| |
Collapse
|
9
|
Effect of Progressive Fatigue on Session RPE. J Funct Morphol Kinesiol 2020; 5:jfmk5010015. [PMID: 33467231 PMCID: PMC7739316 DOI: 10.3390/jfmk5010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
Rating of perceived exertion (RPE) and session RPE (sRPE) are reliable tools for predicting exercise intensity and are alternatives to more technological and physiological measurements, such as blood lactate (HLa) concentration, oxygen consumption and heart rate (HR). As sRPE may also convey some insights into accumulated fatigue, the purpose of this study was to examine the effects of progressive fatigue in response to heavier-than-normal training on sRPE, with absolute training intensity held constant, and determine its validity as marker of fatigue. Twelve young adults performed eight interval workouts over a two-week period. The percentage of maximal HR (%HRmax), HLa, RPE and sRPE were measured for each session. The HLa/RPE ratio was calculated as an index of fatigue. Multilevel regression analysis showed significant differences for %HRmax (p = 0.004), HLa concentration (p = 0.0001), RPE (p < 0.0001), HLa/RPE ratio (p = 0.0002) and sRPE (p < 0.0001) across sessions. Non-linear regression analysis revealed a very large negative relationship between HLa/RPE ratio and sRPE (r = -0.70, p < 0.0001). These results support the hypothesis that sRPE is a sensitive tool that provides information on accumulated fatigue, in addition to training intensity. Exercise scientists without access to HLa measurements may now be able to gain insights into accumulated fatigue during periods of increased training by using sRPE.
Collapse
|
10
|
Abstract
Exercise is a well-known non-pharmacologic agent used to prevent and treat a wide range of pathologic conditions such as metabolic and cardiovascular disease. In this sense, the classic field of exercise physiology has determined the main theoretical and practical bases of physiologic adaptations in response to exercise. However, the last decades were marked by significant advances in analytical laboratory techniques, where the field of biochemistry, genetics and molecular biology promoted exercise science to enter a new era. Regardless of its application, whether in the field of disease prevention or performance, the association of molecular biology with exercise physiology has been fundamental for unveiling knowledge of the molecular mechanisms related to the adaptation to exercise. This chapter will address the natural evolution of exercise physiology toward genetics and molecular biology, emphasizing the collection of integrated analytical approaches that composes the OMICS and their contribution to the field of molecular exercise physiology.
Collapse
|
11
|
Takahashi Y, Matsunaga Y, Banjo M, Takahashi K, Sato Y, Seike K, Nakano S, Hatta H. Effects of Nutrient Intake Timing on Post-Exercise Glycogen Accumulation and its Related Signaling Pathways in Mouse Skeletal Muscle. Nutrients 2019; 11:nu11112555. [PMID: 31652791 PMCID: PMC6893707 DOI: 10.3390/nu11112555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
We investigated the effects of nutrient intake timing on glycogen accumulation and its related signals in skeletal muscle after an exercise that did not induce large glycogen depletion. Male ICR mice ran on a treadmill at 25 m/min for 60 min under a fed condition. Mice were orally administered a solution containing 1.2 mg/g carbohydrate and 0.4 mg/g protein or water either immediately (early nutrient, EN) or 180 min (late nutrient, LN) after the exercise. Tissues were harvested at 30 min after the oral administration. No significant difference in blood glucose or plasma insulin concentrations was found between the EN and LN groups. The plantaris muscle glycogen concentration was significantly (p < 0.05) higher in the EN group—but not in the LN group—compared to the respective time-matched control group. Akt Ser473 phosphorylation was significantly higher in the EN group than in the time-matched control group (p < 0.01), while LN had no effect. Positive main effects of time were found for the phosphorylations in Akt substrate of 160 kDa (AS160) Thr642 (p < 0.05), 5′-AMP-activated protein kinase (AMPK) Thr172 (p < 0.01), and acetyl-CoA carboxylase Ser79 (p < 0.01); however, no effect of nutrient intake was found for these. We showed that delayed nutrient intake could not increase muscle glycogen after endurance exercise which did not induce large glycogen depletion. The results also suggest that post-exercise muscle glycogen accumulation after nutrient intake might be partly influenced by Akt activation. Meanwhile, increased AS160 and AMPK activation by post-exercise fasting might not lead to glycogen accumulation.
Collapse
Affiliation(s)
- Yumiko Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Mai Banjo
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yosuke Sato
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Kohei Seike
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Suguru Nakano
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
12
|
Poffé C, Ramaekers M, Van Thienen R, Hespel P. Ketone ester supplementation blunts overreaching symptoms during endurance training overload. J Physiol 2019; 597:3009-3027. [PMID: 31039280 PMCID: PMC6851819 DOI: 10.1113/jp277831] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Overload training is required for sustained performance gain in athletes (functional overreaching). However, excess overload may result in a catabolic state which causes performance decrements for weeks (non-functional overreaching) up to months (overtraining). Blood ketone bodies can attenuate training- or fasting-induced catabolic events. Therefore, we investigated whether increasing blood ketone levels by oral ketone ester (KE) intake can protect against endurance training-induced overreaching. We show for the first time that KE intake following exercise markedly blunts the development of physiological symptoms indicating overreaching, and at the same time significantly enhances endurance exercise performance. We provide preliminary data to indicate that growth differentiation factor 15 (GDF15) may be a relevant hormonal marker to diagnose the development of overtraining. Collectively, our data indicate that ketone ester intake is a potent nutritional strategy to prevent the development of non-functional overreaching and to stimulate endurance exercise performance. ABSTRACT It is well known that elevated blood ketones attenuate net muscle protein breakdown, as well as negate catabolic events, during energy deficit. Therefore, we hypothesized that oral ketones can blunt endurance training-induced overreaching. Fit male subjects participated in two daily training sessions (3 weeks, 6 days/week) while receiving either a ketone ester (KE, n = 9) or a control drink (CON, n = 9) following each session. Sustainable training load in week 3 as well as power output in the final 30 min of a 2-h standardized endurance session were 15% higher in KE than in CON (both P < 0.05). KE inhibited the training-induced increase in nocturnal adrenaline (P < 0.01) and noradrenaline (P < 0.01) excretion, as well as blunted the decrease in resting (CON: -6 ± 2 bpm; KE: +2 ± 3 bpm, P < 0.05), submaximal (CON: -15 ± 3 bpm; KE: -7 ± 2 bpm, P < 0.05) and maximal (CON: -17 ± 2 bpm; KE: -10 ± 2 bpm, P < 0.01) heart rate. Energy balance during the training period spontaneously turned negative in CON (-2135 kJ/day), but not in KE (+198 kJ/day). The training consistently increased growth differentiation factor 15 (GDF15), but ∼2-fold more in CON than in KE (P < 0.05). In addition, delta GDF15 correlated with the training-induced drop in maximal heart rate (r = 0.60, P < 0.001) and decrease in osteocalcin (r = 0.61, P < 0.01). Other measurements such as blood ACTH, cortisol, IL-6, leptin, ghrelin and lymphocyte count, and muscle glycogen content did not differentiate KE from CON. In conclusion, KE during strenuous endurance training attenuates the development of overreaching. We also identify GDF15 as a possible marker of overtraining.
Collapse
Affiliation(s)
- Chiel Poffé
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Monique Ramaekers
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Ruud Van Thienen
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Peter Hespel
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
- Bakala Academy‐Athletic Performance CenterKU LeuvenLeuvenBelgium
| |
Collapse
|
13
|
Energy Deficiency During Cold Weather Mountain Training in NSW SEAL Qualification Students. Int J Sport Nutr Exerc Metab 2019; 29:315-321. [DOI: 10.1123/ijsnem.2018-0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Rezende RM, Gouveia Pelúzio MDC, de Jesus Silva F, Della Lucia EM, Silva Campos Favarato L, Stampini Duarte Martino H, Natali AJ. Does aerobic exercise associated with tryptophan supplementation attenuates hyperalgesia and inflammation in female rats with experimental fibromyalgia? PLoS One 2019; 14:e0211824. [PMID: 30785911 PMCID: PMC6382124 DOI: 10.1371/journal.pone.0211824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to verify the effects of aerobic exercise associated with tryptophan (TRP) supplementation on hyperalgesia, as well as on cortisol, IL-6 and TNF concentrations in female rats with experimental fibromyalgia (FM). Female Wistar rats (initial body weight: ~ 350 g; age: 12 months) were randomly divided into 5 groups: CON (Control); F (Fibromyalgia induced); FE (Fibromyalgia induced plus exercise); FES (Fibromyalgia induced plus exercise and TRP supplementation) and FS (Fibromyalgia induced plus TRP supplementation). Fibromyalgia was induced with two injections (20 μL) of acidic saline (pH 4.0) into the right gastrocnemius muscle with a 3-day interval. Control animals received the same doses of neutral saline (pH 7.4). The exercised animals underwent progressive low-intensity aerobic exercise (LIAE) on a treadmill (10–12 m/min, 30–45 min/day, 5 days/week) for three weeks. During this period, the supplemented animals received a TRP supplemented diet (210 g/week), while the others received a control diet. Mechanical hyperalgesia was evaluated weekly and serum cortisol and muscle IL-6 and TNF concentrations were assessed after three weeks of interventions. Experimental FM caused bilateral hind paw hyperalgesia and augmented serum cortisol and muscle IL-6 concentrations. After 3 weeks of interventions, LIAE alone reduced hyperalgesia (151%) and reduced serum cortisol concentrations (72%). Tryptophan supplementation itself diminished hyperalgesia (57%) and reduced serum cortisol concentrations (67%). Adding TRP supplementation to LIAE did not further reduce hyperalgesia significantly (11%), which was followed by an important decrease in muscle IL-6 concentrations (68%), though reduction in serum cortisol pulled back to 45%. Muscle TNF concentrations were not affected. In conclusion, the association of TRP supplementation to LIAE does not potentiate significantly the reduction of bilateral mechanical hyperalgesia promoted by LIAE in female rats with experimental FM, however an important decrease in IL-6 is evident.
Collapse
Affiliation(s)
- Rafael Marins Rezende
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG-Brazil
- * E-mail:
| | | | | | | | | | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, MG-Brazil
| |
Collapse
|
15
|
|
16
|
Abstract
The ability of athletes to train day after day depends in large part on adequate restoration of muscle glycogen stores, a process that requires the consumption of sufficient dietary carbohydrates and ample time. Providing effective guidance to athletes and others wishing to enhance training adaptations and improve performance requires an understanding of the normal variations in muscle glycogen content in response to training and diet; the time required for adequate restoration of glycogen stores; the influence of the amount, type, and timing of carbohydrate intake on glycogen resynthesis; and the impact of other nutrients on glycogenesis. This review highlights the practical implications of the latest research related to glycogen metabolism in physically active individuals to help sports dietitians, coaches, personal trainers, and other sports health professionals gain a fundamental understanding of glycogen metabolism, as well as related practical applications for enhancing training adaptations and preparing for competition.
Collapse
Affiliation(s)
- Bob Murray
- Sports Science Insights, LLC, Crystal Lake, Illinois, USA
| | | |
Collapse
|
17
|
Price TB, Sanders K. Muscle and liver glycogen utilization during prolonged lift and carry exercise: male and female responses. Physiol Rep 2017; 5:e13113. [PMID: 28242815 PMCID: PMC5328765 DOI: 10.14814/phy2.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022] Open
Abstract
This study examined the use of carbohydrates by men and women during lift/carry exercise. Effects of menstrual cycle variation were examined in women. Twenty-five subjects (15 M, 10 F) were studied; age 25 ± 2y M, 26 ± 3y F, weight 85 ± 3 kg* M, 63 ± 3 kg F, and height 181 ± 2 cm* M, 161 ± 2 cm F (* P < 0.0001). During exercise subjects squatted to floor level and lifted a 30 kg box, carried it 3 m, and placed it on a shelf 132 cm high 3X/min over a 3-hour period (540 lifts) or until they could not continue. Males were studied in a single session, females were studied on separate occasions (during the luteal (L) and follicular (F) menstrual phases). The protocol was identical for both sexes and on both occasions in the female group. Glycogen utilization was tracked with natural abundance C-13 NMR of quadriceps femoris and biceps brachialis muscles, and in the liver at rest and throughout the exercise period. Males completed more of the 180 min protocol than females [166 ± 9 min M, 112 ± 16 min* F (L), 88 ± 16 min** F (F) (*P = 0.0036, **P < 0.0001)]. Quadriceps glycogen depletion was similar between sexes and within females in L/F phases [4.7 ± 0.8 mmol/L-h M, 4.5 ± 2.4 mmol/L-h F (L), 10.3 ± 3.5 mmol/L-h F (F)]. Biceps glycogen depletion was greater in females [2.7 ± 0.9 mmol/L-h M, 10.3 ± 1.3 mmol/L-h* F (L), 16.8 ± 4.8 mmol/L-h** F (F) (* P = 0.0004, ** P = 0.0122)]. Resting glycogen levels were higher in females during the follicular phase (P = 0.0077). Liver glycogen depletion increased during exercise, but was not significant. We conclude that with non-normalized lift/carry exercise: (1) Based on their smaller size, women are less capable of completing and work their upper body harder than men. (2) Women and men work their lower body at similar levels. (3) Women store more quadriceps carbohydrate during the follicular phase. (4) The liver is not significantly challenged by this protocol.
Collapse
Affiliation(s)
- Thomas B Price
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
- School of Arts and Sciences, University of Bridgeport, Bridgeport, Connecticut
| | - Kimberly Sanders
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
- School of Naturopathic Medicine, University of Bridgeport, Bridgeport, Connecticut
| |
Collapse
|
18
|
Burnley M, Jones AM. Power-duration relationship: Physiology, fatigue, and the limits of human performance. Eur J Sport Sci 2016; 18:1-12. [PMID: 27806677 DOI: 10.1080/17461391.2016.1249524] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The duration that exercise can be maintained decreases as the power requirements increase. In this review, we describe the power-duration (PD) relationship across the full range of attainable power outputs in humans. We show that a remarkably small range of power outputs is sustainable (power outputs below the critical power, CP). We also show that the origin of neuromuscular fatigue differs considerably depending on the exercise intensity domain in which exercise is performed. In the moderate domain (below the lactate threshold, LT), fatigue develops slowly and is predominantly of central origin (residing in the central nervous system). In the heavy domain (above LT but below CP), both central and peripheral (muscle) fatigue are observed. In this domain, fatigue is frequently correlated with the depletion of muscle glycogen. Severe-intensity exercise (above the CP) is associated with progressive derangements of muscle metabolic homeostasis and consequent peripheral fatigue. To counter these effects, muscle activity increases progressively, as does pulmonary oxygen uptake ([Formula: see text]), with task failure being associated with the attainment of [Formula: see text] max. Although the loss of homeostasis and thus fatigue develop more rapidly the higher the power output is above CP, the metabolic disturbance and the degree of peripheral fatigue reach similar values at task failure. We provide evidence that the failure to continue severe-intensity exercise is a physiological phenomenon involving multiple interacting mechanisms which indicate a mismatch between neuromuscular power demand and instantaneous power supply. Valid integrative models of fatigue must account for the PD relationship and its physiological basis.
Collapse
Affiliation(s)
- Mark Burnley
- a Endurance Research Group, School of Sport and Exercise Sciences , University of Kent , Chatham , Kent , UK
| | - Andrew M Jones
- b Sport and Health Sciences, College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| |
Collapse
|
19
|
Rustad PI, Sailer M, Cumming KT, Jeppesen PB, Kolnes KJ, Sollie O, Franch J, Ivy JL, Daniel H, Jensen J. Intake of Protein Plus Carbohydrate during the First Two Hours after Exhaustive Cycling Improves Performance the following Day. PLoS One 2016; 11:e0153229. [PMID: 27078151 PMCID: PMC4831776 DOI: 10.1371/journal.pone.0153229] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/27/2016] [Indexed: 11/18/2022] Open
Abstract
Intake of protein immediately after exercise stimulates protein synthesis but improved recovery of performance is not consistently observed. The primary aim of the present study was to compare performance 18 h after exhaustive cycling in a randomized diet-controlled study (175 kJ·kg-1 during 18 h) when subjects were supplemented with protein plus carbohydrate or carbohydrate only in a 2-h window starting immediately after exhaustive cycling. The second aim was to investigate the effect of no nutrition during the first 2 h and low total energy intake (113 kJ·kg-1 during 18 h) on performance when protein intake was similar. Eight endurance-trained subjects cycled at 237±6 Watt (~72% VO2max) until exhaustion (TTE) on three occasions, and supplemented with 1.2 g carbohydrate·kg-1·h-1 (CHO), 0.8 g carbohydrate + 0.4 g protein·kg-1·h-1 (CHO+PRO) or placebo without energy (PLA). Intake of CHO+PROT increased plasma glucose, insulin, and branch chained amino acids, whereas CHO only increased glucose and insulin. Eighteen hours later, subjects performed another TTE at 237±6 Watt. TTE was increased after intake of CHO+PROT compared to CHO (63.5±4.4 vs 49.8±5.4 min; p<0.05). PLA reduced TTE to 42.8±5.1 min (p<0.05 vs CHO). Nitrogen balance was positive in CHO+PROT, and negative in CHO and PLA. In conclusion, performance was higher 18 h after exhaustive cycling with intake of CHO+PROT compared to an isocaloric amount of carbohydrate during the first 2 h post exercise. Intake of a similar amount of protein but less carbohydrate during the 18 h recovery period reduced performance.
Collapse
Affiliation(s)
- Per I. Rustad
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014 Ullevål Stadion, N-0806 Oslo, Norway
| | - Manuela Sailer
- ZIEL Institute for Food and Health, Technische Universiät München, Munich, Germany
| | - Kristoffer T. Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014 Ullevål Stadion, N-0806 Oslo, Norway
| | - Per B. Jeppesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Kristoffer J. Kolnes
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014 Ullevål Stadion, N-0806 Oslo, Norway
| | - Ove Sollie
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014 Ullevål Stadion, N-0806 Oslo, Norway
| | - Jesper Franch
- Department of Health Science and Technology, Aalborg University, Ålborg, Denmark
| | - John L. Ivy
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, United States of America
| | - Hannelore Daniel
- ZIEL Institute for Food and Health, Technische Universiät München, Munich, Germany
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014 Ullevål Stadion, N-0806 Oslo, Norway
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
20
|
Antunes HKM, Santos-Galduroz RF, Miranda REEPC, Cassilhas RC, Bueno OFA, Mello MTD. O baixo consumo de oxigênio tem reflexos nos escores de depressão em idosos. REVISTA BRASILEIRA DE GERIATRIA E GERONTOLOGIA 2014. [DOI: 10.1590/1809-9823.2014.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O objetivo do estudo foi investigar os efeitos de diferentes tipos de exercício físico nos escores indicativos de depressão em idosos. Participaram 168 voluntários idosos, de ambos os sexos, com idades de 60 a 75 anos (65,66±4,28 anos), sendo 40 mulheres e 128 homens. Os voluntários foram alocados em sete grupos distintos: a) Controle sedentário (n=40); b) Controle resistido (n=23); c) Caminhada (n=23); d) Lazer (n= 20); e) Cicloergômetro (n=23); f) Resistido 50% de 1RM (n=19); e g) Resistido 80% de 1RM (n=20), sendo submetidos a um protocolo de seis meses de treinamento físico, três vezes por semana. O grupo "a" permaneceu sem alterar suas atividades de rotina durante o período de estudo e não se engajou em nenhum programa de exercício físico, já o grupo "b" compareceu no laboratório, mas realizou os exercícios sem carga. Antes e imediatamente após o período de estudo, os voluntários foram submetidos a um protocolo de avaliação para determinação do consumo de oxigênio e responderam à Escala Geriátrica de Depressão. Os resultados revelaram que os grupos "c" e "e", que se exercitaram em intensidades com predomínio do metabolismo aeróbio, apresentaram redução nos escores de depressão, sendo que as demais intervenções não foram suficientes para promover redução nessa variável. Os dados sugerem que exercícios com predominância no metabolismo aeróbio são mais efetivos em promover reduções em escores de depressão de idosos.
Collapse
|
21
|
Rosenkilde M, Reichkendler MH, Auerbach P, Bonne TC, Sjödin A, Ploug T, Stallknecht BM. Changes in peak fat oxidation in response to different doses of endurance training. Scand J Med Sci Sports 2013; 25:41-52. [PMID: 24350597 DOI: 10.1111/sms.12151] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
The effect of different doses of endurance training on the capacity to oxidize fat during exercise in sedentary, overweight men and assessment of variables associated with changes in peak fat oxidation (PFO) were evaluated. Young, sedentary, overweight men were randomized to either the high-dose (HIGH, 600 kcal/day, n = 17) or moderate-dose (MOD, 300 kcal/day, n = 18) endurance training groups or controls (CON, n = 15). PFO and peak oxygen uptake (VO2 peak) were measured using indirect calorimetry, body composition using dual-energy x-ray absorptiometry, and protein levels of mitochondrial enzymes determined by Western blotting. PFO increased in both MOD [1.2 mg/kg fat-free mass (FFM)/min, 95% confidence interval (CI): 0.08:2.3, P = 0.03] and HIGH (1.8 mg/kg FFM/min, CI: 0.6:2.9, P < 0.001) compared with CON. Skeletal muscle expression of citrate synthase, β-hydroxyacyl-CoA dehydrogenase, and mitochondrial oxphos complexes II-V increased similarly in MOD and HIGH. Stepwise multiple linear regression analysis with backward elimination of individual variables correlated with changes in PFO revealed increases in cycling efficiency, FFM, and VO2 peak as the remaining associated variables. In conclusion, PFO during exercise increased with both moderate- and high-dose endurance training. Increases in PFO were mainly predicted by changes in VO2 peak, FFM, and cycling efficiency, and less with skeletal muscle mitochondrial enzymes.
Collapse
Affiliation(s)
- M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
22
|
Time to exhaustion at continuous and intermittent maximal lactate steady state during running exercise. Int J Sports Physiol Perform 2013; 9:772-6. [PMID: 24235775 DOI: 10.1123/ijspp.2013-0403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to determine and compare the time to exhaustion (TE) and the physiological responses at continuous and intermittent (ratio 5:1) maximal lactate steady state (MLSS) in well-trained runners. Ten athletes (32.7 ± 6.9 y, VO2max 61.7 ± 3.9 mL · kg-1 · min-1) performed an incremental treadmill test, three to five 30-min constant-speed tests to determine the MLSS continuous and intermittent (5 min of running, interspaced by 1 min of passive rest), and 2 randomized TE tests at such intensities. Two-way ANOVA with repeated measures was used to compare the changes in physiological variables during the TE tests and between continuous and intermittent exercise. The intermittent MLSS velocity (MLSSint = 15.26 ± 0.97 km/h) was higher than in the continuous model (MLSScon = 14.53 ± 0.93 km/h), while the TE at MLSScon was longer than MLSSint (68 ± 11 min and 58 ± 15 min, P < .05). Regarding the cardiorespiratory responses, VO2 and respiratory-exchange ratio remained stable during both TE tests while heart rate, ventilation, and rating of perceived exertion presented a significant increase in the last portion of the tests. The results showed a higher tolerance to exercising during MLSScon than during MLSSint in trained runners. Thus, the training volume of an extensive interval session (ratio 5:1) designed at MLSS intensity should take into consideration this higher speed at MLSS and also the lower TE than with continuous exercise.
Collapse
|
23
|
Recovery from cycling exercise: effects of carbohydrate and protein beverages. Nutrients 2012; 4:568-84. [PMID: 22852050 PMCID: PMC3407981 DOI: 10.3390/nu4070568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 11/17/2022] Open
Abstract
The effects of different carbohydrate-protein (CHO + Pro) beverages were compared during recovery from cycling exercise. Twelve male cyclists (VO(2peak): 65 ± 7 mL/kg/min) completed ~1 h of high-intensity intervals (EX1). Immediately and 120 min following EX1, subjects consumed one of three calorically-similar beverages (285-300 kcal) in a cross-over design: carbohydrate-only (CHO; 75 g per beverage), high-carbohydrate/low-protein (HCLP; 45 g CHO, 25 g Pro, 0.5 g fat), or low-carbohydrate/high-protein (LCHP; 8 g CHO, 55 g Pro, 4 g fat). After 4 h of recovery, subjects performed subsequent exercise (EX2; 20 min at 70% VO(2peak) + 20 km time-trial). Beverages were also consumed following EX2. Blood glucose levels (30 min after beverage ingestion) differed across all treatments (CHO > HCLP > LCHP; p < 0.05), and serum insulin was higher following CHO and HCLP ingestion versus LCHP. Peak quadriceps force, serum creatine kinase, muscle soreness, and fatigue/energy ratings measured pre- and post-exercise were not different between treatments. EX2 performance was not significantly different between CHO (48.5 ± 1.5 min), HCLP (48.8 ± 2.1 min) and LCHP (50.3 ± 2.7 min). Beverages containing similar caloric content but different proportions of carbohydrate/protein provided similar effects on muscle recovery and subsequent exercise performance in well-trained cyclists.
Collapse
|
24
|
de Glanville KM, Hamlin MJ. Positive Effect of Lower Body Compression Garments on Subsequent 40-kM Cycling Time Trial Performance. J Strength Cond Res 2012; 26:480-6. [DOI: 10.1519/jsc.0b013e318225ff61] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Kang OD, Ryu YC, Yun YM, Kang MS. Effects of cooldown methods and durations on equine physiological traits following high-intensity exercise. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
García-Pallarés J, Izquierdo M. Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med 2011; 41:329-43. [PMID: 21425890 DOI: 10.2165/11539690-000000000-00000] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the last several decades many researchers have reported an interference effect on muscle strength development when strength and endurance were trained concurrently. The majority of these studies found that the magnitude of increase in maximum strength was higher in the group that performed only strength training compared with the concurrent training group, commonly referred to as the 'interference phenomenon'. Currently, concurrent strength and endurance training has become essential to optimizing athletic performance in middle- and long-distance events. Rowing and canoeing, especially in the case of Olympic events, with exercise efforts between 30 seconds and 8 minutes, require high amounts of maximal aerobic and anaerobic capacities as well as high levels of maximum strength and muscle power. Thus, strength training, in events such as rowing and canoeing, is integrated into the training plan. However, several studies indicate that the degree of interference is affected by the training protocols and there may be ways in which the interference effect can be minimized or avoided. Therefore, the aim of this review is to recommend strategies, based on research, to avoid or minimize any interference effect when training to optimize performance in endurance sports such as rowing and canoeing.
Collapse
Affiliation(s)
- Jesús García-Pallarés
- Exercise Physiology Laboratory at Toledo, University of Castilla-La Mancha, Toledo, Spain.
| | | |
Collapse
|
27
|
Duke J, Lane A, Behr M, Ondrak K, Hackney A. Exercise training biomarkers: Influence of short-term diet modification on the blood lactate to rating of perceived exertion (La:RPE) ratio. ACTA ACUST UNITED AC 2011; 98:128-36. [DOI: 10.1556/aphysiol.98.2011.2.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Thompson PD, Venero CV. A history of medical reports on the Boston Marathon: 112 years and still running. Med Sci Sports Exerc 2010; 41:1341-8. [PMID: 19461529 DOI: 10.1249/01.mss.0000350977.65985.cf] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION/METHODS We performed a systematic search for medical reports on the Boston Marathon, run annually since April 19, 1897 and studied medically since 1899. RESULTS We identified 66 articles: 25 were related to cardiology; 10, exercise physiology; 8, metabolism; 5, neurology; 4, gastroenterology; 3, hematology; 3, several disciplines; and 8, nephrology, orthopedics, and general topics. The predominance of cardiology articles reflects concerns about the cardiac risks of exercise present in the early 20th century and persistent to this day. The authors and contributors included luminaries from the medical and exercise community including Drs. Paul Dudley White, Samuel Levine, Kenneth Cooper, Paul Zoll, Ellsworth Buskirk, and David Costill. The articles identified or confirmed many of the presently accepted principles of marathon medicine. CONCLUSIONS Medical studies on the Boston Marathon not only provide lessons applicable to managing modern athletes but also demonstrate the interests and concerns of researchers who have used the event to study the physiology of prolonged exercise for more than a century.
Collapse
Affiliation(s)
- Paul D Thompson
- Henry Low Heart Center, Hartford Hospital, Hartford, CT 06102, USA.
| | | |
Collapse
|
29
|
THOMPSON PAULD, VENERO CARMELOV. A History of Medical Reports on the Boston Marathon. Med Sci Sports Exerc 2009; 41:257-64. [DOI: 10.1249/mss.0b013e3181878067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Millard-Stafford M, Childers WL, Conger SA, Kampfer AJ, Rahnert JA. Recovery nutrition: timing and composition after endurance exercise. Curr Sports Med Rep 2008; 7:193-201. [PMID: 18607220 DOI: 10.1249/jsr.0b013e31817fc0fd] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumption of macronutrients, particularly carbohydrate (CHO) and possibly a small amount of protein, in the early recovery phase after endurance exercise can enhance muscle glycogen resynthesis rates. A target of at least 1.2 g x kg body weight(-1) x h(-1) CHO (over several hours) is suggested. This rate of CHO intake could be sustained with liquid, gel, or solid food rich in CHO for maximizing muscle glycogen. Whether the coingestion of protein with CHO compared with isocaloric CHO results in meaningful differences in glycogen replenishment that translate into subsequent performance enhancement is equivocal. Advantages of added protein with CHO in reducing true muscle damage from endurance exercise remain to be verified. There are, however, no apparent contraindications for using milk or specialty CHO/protein/amino acid products either. Future investigations that examine signaling mechanisms within muscle should be conducted in parallel with translational evidence in humans.
Collapse
|
31
|
McKenzie EC, Hinchcliff KW, Valberg SJ, Williamson KK, Payton ME, Davis MS. Assessment of alterations in triglyceride and glycogen concentrations in muscle tissue of Alaskan sled dogs during repetitive prolonged exercise. Am J Vet Res 2008; 69:1097-103. [DOI: 10.2460/ajvr.69.8.1097] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Maximal oxygen consumption and energy cost of running after a long-lasting running race: the 100 km of Sahara. SPORT SCIENCES FOR HEALTH 2008. [DOI: 10.1007/s11332-008-0046-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Stellingwerff T, Boit MK, Res PT. Nutritional strategies to optimize training and racing in middle-distance athletes. J Sports Sci 2007; 25 Suppl 1:S17-28. [DOI: 10.1080/02640410701607213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Lima-Silva AE, Fernandes TC, De-Oliveira FR, Nakamura FY, Gevaerd MDS. Metabolismo do glicogênio muscular durante o exercício físico: mecanismos de regulação. REV NUTR 2007. [DOI: 10.1590/s1415-52732007000400009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uma série de estudos tem sido realizada para compreensão do metabolismo de glicogênio muscular durante o exercício. Estudos clássicos apontaram uma associação entre as reservas iniciais de glicogênio muscular e o tempo de sustentação do esforço. O glicogênio muscular diminui de forma semi-logarítmica em função do tempo, mas a concentração desse substrato não chega a zero, o que sugere a participação de outros mecanismos de fadiga na interrupção do exercício prolongado. Nesse tipo de atividade, a depleção de glicogênio, primeiro, ocorre nas fibras de contração lenta, seguida pela depleção nas de contração rápida. A diminuição na taxa de utilização de glicogênio muscular está sincronicamente ligada ao aumento no metabolismo de gordura, mas o mecanismo fisiológico é pouco compreendido. Estudos recentes sugerem que uma diminuição da insulina durante o exercício limitaria o transporte de glicose pela membrana plasmática, causando um aumento no consumo de ácidos graxos. Alguns estudos têm demonstrado, também, que a própria estrutura do glicogênio muscular pode controlar a entrada de ácidos graxos livres na célula, via proteína quinase. Fisicamente, a molécula de glicogênio se apresenta de duas formas, uma com estrutura molecular menor (aproximadamente, 4,10(5) Da, Proglicogênio) e outra maior (aproximadamente, 10(7) Da, Macroglicogênio). Aparentemente, a forma Proglicogênio é metabolicamente mais ativa no exercício e a Macroglicogênio mais suscetível a aumentar com dietas de supercompensação. Maior concentração de hipoxantinas e amônia no exercício com depleção de glicogênio muscular também foi relatada, mas estudos com melhor controle da intensidade do esforço podem ajudar a elucidar essa questão.
Collapse
Affiliation(s)
- Adriano Eduardo Lima-Silva
- Instituto Superior e Centro Educacional Luterano Bom Jesus, Brasil; Universidade do Estado de Santa Catarina, Brasil
| | | | | | | | | |
Collapse
|
35
|
The Influence of the Low-Carbohydrate Trend on Collegiate Athletes' Knowledge, Attitudes, and Dietary Intake of Carbohydrates. TOP CLIN NUTR 2007. [DOI: 10.1097/01.tin.0000270136.22969.d7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Abstract
Strength and endurance training produce widely diversified adaptations, with little overlap between them. Strength training typically results in increases in muscle mass and muscle strength. In contrast, endurance training induces increases in maximal oxygen uptake and metabolic adaptations that lead to an increased exercise capacity. In many sports, a combination of strength and endurance training is required to improve performance, but in some situations when strength and endurance training are performed simultaneously, a potential interference in strength development takes place, making such a combination seemingly incompatible. The phenomenon of concurrent training, or simultaneously training for strength and endurance, was first described in the scientific literature in 1980 by Robert C. Hickson, and although work that followed provided evidence for and against it, the interference effect seems to hold true in specific situations. At the molecular level, there seems to be an explanation for the interference of strength development during concurrent training; it is now clear that different forms of exercise induce antagonistic intracellular signaling mechanisms that, in turn, could have a negative impact on the muscle's adaptive response to this particular form of training. That is, activation of AMPK by endurance exercise may inhibit signaling to the protein-synthesis machinery by inhibiting the activity of mTOR and its downstream targets. The purpose of this review is to briefly describe the problem of concurrent strength and endurance training and to examine new data highlighting potential molecular mechanisms that may help explain the inhibition of strength development when strength and endurance training are performed simultaneously.
Collapse
Affiliation(s)
- Gustavo A Nader
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
37
|
McInerney P, Lessard SJ, Burke LM, Coffey VG, Lo Giudice SL, Southgate RJ, Hawley JA. Failure to Repeatedly Supercompensate Muscle Glycogen Stores in Highly Trained Men. Med Sci Sports Exerc 2005; 37:404-11. [PMID: 15741838 DOI: 10.1249/01.mss.0000155699.51360.2f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE It is not known whether it is possible to repeatedly supercompensate muscle glycogen stores after exhaustive exercise bouts undertaken within several days. METHODS We evaluated the effect of repeated exercise-diet manipulation on muscle glycogen and triacylglycerol (IMTG) metabolism and exercise capacity in six well-trained subjects who completed an intermittent, exhaustive cycling protocol (EX) on three occasions separated by 48 h (i.e., days 1, 3, and 5) in a 5-d period. Twenty-four hours before day 1, subjects consumed a moderate (6 g.kg)-carbohydrate (CHO) diet, followed by 5 d of a high (12 g.kg.d)-CHO diet. Muscle biopsies were taken at rest, immediately post-EX on days 1, 3, and 5, and after 3 h of recovery on days 1 and 3. RESULTS Compared with day 1, resting muscle [glycogen] was elevated on day 3 but not day 5 (435+/-57 vs 713+/-60 vs 409+/-40 mmol.kg, P<0.001). [IMTG] was reduced by 28% (P<0.05) after EX on day 1, but post-EX levels on days 3 and 5 were similar to rest. EX was enhanced on days 3 and 5 compared with day 1 (31.9+/-2.5 and 35.4+/-3.8 vs 24.1+/-1.4 kJ.kg, P<0.05). Glycogen synthase activity at rest and immediately post-EX was similar between trials. Additionally, the rates of muscle glycogen accumulation were similar during the 3-h recovery period on days 1 and 3. CONCLUSION We show that well-trained men cannot repeatedly supercompensate muscle [glycogen] after glycogen-depleting exercise and 2 d of a high-CHO diet, suggesting that the mechanisms responsible for glycogen accumulation are attenuated as a consequence of successive days of glycogen-depleting exercise.
Collapse
Affiliation(s)
- Patrick McInerney
- Exercise Metabolism Group, School of Medical Sciences, RMIT University, Victoria, AUSTRALIA
| | | | | | | | | | | | | |
Collapse
|
38
|
Halson SL, Lancaster GI, Achten J, Gleeson M, Jeukendrup AE. Effects of carbohydrate supplementation on performance and carbohydrate oxidation after intensified cycling training. J Appl Physiol (1985) 2004; 97:1245-53. [PMID: 15155717 DOI: 10.1152/japplphysiol.01368.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study the effects of carbohydrate (CHO) supplementation on performance changes and symptoms of overreaching, six male endurance cyclists completed 1 wk of normal (N), 8 days of intensified (ITP), and 2 wk of recovery training (R) on two occasions in a randomized crossover design. Subjects completed one trial with a 6% CHO solution provided before and during training and a 20% solution in the 1 h postexercise (H-CHO trial). On the other occasion, subjects consumed a 2% CHO solution at the same time points (L-CHO). A significant decline in time to fatigue at ∼63% maximal power output (H-CHO: 17 ± 3%; L-CHO: 26 ± 7%) and a significant increase in mood disturbance occurred in both trials after ITP. The decline in performance was significantly greater in the L-CHO trial. After ITP, a significant decrease in estimated muscle glycogen oxidation (H-CHO: N 49.3 ± 2.9 kcal/30 min, ITP 32.6 ± 3.4 kcal/30 min; L-CHO: N 49.1 ± 30 kcal/30 min, ITP 39.0 ± 5.6 kcal/30 min) and increase in fat oxidation (H-CHO: N 16.3 ± 2.4 kcal/30 min, ITP 27.8 ± 2.3 kcal/30 min; L-CHO: N 16.9 ± 2.6 kcal/30 min, ITP: 25.4 ± 3.5 kcal/30 min) occurred alongside significant increases in glycerol and free fatty acids and decreases in free triglycerides in both trials. An interaction effect was observed for submaximal plasma concentrations of cortisol and epinephrine, with significantly greater reductions in these stress hormones in L-CHO compared with H-CHO after ITP. These findings suggest that CHO supplementation can reduce the symptoms of overreaching but cannot prevent its development. Decreased endocrine responsiveness to exercise may be implicated in the decreased performance and increased mood disturbance characteristic of overreaching.
Collapse
Affiliation(s)
- Shona L Halson
- Dept. of Physiology, Australian Institute of Sport, PO Box 176, Belconnen ACT, Australia 2616.
| | | | | | | | | |
Collapse
|
39
|
Armstrong DW, Rue JPH, Wilckens JH, Frassica FJ. Stress fracture injury in young military men and women. Bone 2004; 35:806-16. [PMID: 15336620 DOI: 10.1016/j.bone.2004.05.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 05/13/2004] [Accepted: 05/14/2004] [Indexed: 11/18/2022]
Abstract
Approximately 5% of all military recruits incur stress fracture injuries during intense physical training, predominately in the lower extremity. We compared young men and women with stress fracture injury (subjects) to a matched group of uninjured volunteers (controls) during a summer training program at the United States Naval Academy to identify possible risk factors for stress fracture injury. The subject group was composed of 13 female and 18 male plebes with training-induced stress fracture injury verified by plain radiographs and/or nuclear bone scan. The control group was composed of 13 female and 18 male plebes who remained without injury during plebe summer training but who were matched with the 31 injured plebes for the Initial Strength Test (1-mi run time, means: women, 7.9 min; men, 6.4 min) and body mass index (means: women, 23.4; men, 23.8). We found that the subjects lost significant body weight (mean, 2.63 +/- 0.54 kg) between Day 1 and the date of their diagnosis of a stress fracture (mean, Day 35) and that they continued to lose weight until the date of their DEXA scan (mean, Day 49). Among female plebes, there was no evidence of the female athlete triad (eating disorders, menstrual dysfunction, or low bone density). Thigh girth was significantly smaller in female subjects than in female controls and trended to be lower in male subjects than in male controls. Total body bone mineral content was significantly lower in the male subjects than in male controls. Bone mineral density of the distal tibia and femoral neck were not significantly different between the groups. DEXA-derived structural geometric properties were not different between subjects and controls. Because, on average, tibias were significantly longer in male subjects than in male controls, the mean bone strength index in male subjects was significantly lower than that of male controls. We conclude that significant, acute weight loss combined with regular daily physical training among young military recruits may be a significant contributing risk factor for stress fracture injuries in young military men and women.
Collapse
|
40
|
Rønsen O, Børsheim E, Bahr R, Klarlund Pedersen B, Haug E, Kjeldsen-Kragh J, Høstmark AT. Immuno-endocrine and metabolic responses to long distance ski racing in world-class male and female cross-country skiers. Scand J Med Sci Sports 2004; 14:39-48. [PMID: 14723787 DOI: 10.1111/j.1600-0838.2003.00333.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to characterize the extent of immune, endocrine, substrate and metabolic changes during a long-distance cross-country ski race in extremely well-trained athletes and evaluate if the blood perturbations would indicate signs of health risk. Ten male (M) and six female (F) national team skiers were investigated as they followed their usual routines of race preparations. Blood samples were drawn before and immediately after a World Cup 50-km M and 30-km F ski race with a mean finish time of 142 and 104 min, respectively. Hemoglobin, electrolytes, and C-reactive protein remained unchanged for both M and F. Serum testosterone remained unchanged in M, but doubled in F. Significant increases were observed in concentrations of granulocytes (F: 5 x, M: 5 x), natural killer cells (F: 2 x, M: 1.5 x), adrenaline (F: 12 x, M:10 x), noradrenaline (F: 7 x, M:5 x), growth hormone (F: 30 x, M: 2 x), cortisol (F: 1.5 x, M:2 x), glucose (F: 2 x, M:1.5 x), creatine kinase (F: 2 x, M:2 x), uric acid (F: 1.5 x, M: 1.5 x) and non-organic phosphate (F:2 x, M:2 x), while insulin concentration decreased (F: 0.5x, M: 0.8 x). Free fatty acid (FFA) concentration increased (F:2 x, M: 3 x). In conclusion, we observed substantial changes in several immuno-endocrine, substrate and metabolic measurements after long distance cross-country ski racing and suggest that some of these marked changes may reflect the large amount of muscle mass involved during skiing.
Collapse
Affiliation(s)
- Ola Rønsen
- Norwegian Olympic Sports Center, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
41
|
Achten J, Halson SL, Moseley L, Rayson MP, Casey A, Jeukendrup AE. Higher dietary carbohydrate content during intensified running training results in better maintenance of performance and mood state. J Appl Physiol (1985) 2003; 96:1331-40. [PMID: 14660506 DOI: 10.1152/japplphysiol.00973.2003] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine whether consumption of a diet containing 8.5 g carbohydrate (CHO) x kg(-1) x day(-1) (high CHO; HCHO) compared with 5.4 g CHO x kg(-1) x day(-1) (control; Con) during a period of intensified training (IT) would result in better maintenance of physical performance and mood state. In a randomized cross-over design, seven trained runners [maximal O(2) uptake (Vo(2 max)) 64.7 +/- 2.6 ml x kg(-1) x min(-1)] performed two 11-day trials consuming either the Con or the HCHO diet. The last week of both trials consisted of IT. Performance was measured with a preloaded 8-km all-out run on the treadmill and 16-km all-out runs outdoors. Substrate utilization was measured using indirect calorimetry and continuous [U-(13)C]glucose infusion during 30 min of running at 58 and 77% Vo(2 max). Time to complete 8 km was negatively affected by the IT: time significantly increased by 61 +/- 23 and 155 +/- 38 s in the HCHO and Con trials, respectively. The 16-km times were significantly increased (by 8.2 +/- 2.1%) during the Con trial only. The Daily Analysis of Life Demands of Athletes questionnaire showed significant deterioration in mood states in both trials, whereas deterioration in global mood scores, as assessed with the Profile of Mood States, was more pronounced in the Con trial. Scores for fatigue were significantly higher in the Con compared with the HCHO trial. CHO oxidation decreased significantly from 1.7 +/- 0.2 to 1.2 +/- 0.2 g/min over the course of the Con trial, which was completely accounted for by a decrease in muscle glycogen oxidation. These findings indicate that an increase in dietary CHO content from 5.4 to 8.5 g CHO x kg(-1)x day(-1) (41 vs. 65% total energy intake, respectively) allowed better maintenance of physical performance and mood state over the course of training, thereby reducing the symptoms of overreaching.
Collapse
Affiliation(s)
- J Achten
- Human Perfromance Laboratory, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Petibois C, Cazorla G, Poortmans JR, Déléris G. Biochemical aspects of overtraining in endurance sports: a review. Sports Med 2003; 32:867-78. [PMID: 12392446 DOI: 10.2165/00007256-200232130-00005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Top-level performances in endurance sports require several years of hard training loads. A major objective of this endurance training is to reach the most elevated metabolic adaptations the athlete will be able to support. As a consequence, overtraining is a recurrent problem that highly-trained athletes may experience during their career. Many studies have revealed that overtraining could be highlighted by various biochemical markers but a principal discrepancy in the diagnosis of overtraining stems from the fact that none of these markers may be considered as universal. In endurance sports, the metabolic aspects of training fatigue appear to be the most relevant parameters that may characterise overtraining when recovery is not sufficient, or when dietary habits do not allow an optimal replenishment of substrate stores. From the skeletal muscle functions to the overall energetic substrate availability during exercise, six metabolic schemes have been studied in relation to overtraining, each one related to a central parameter, i.e. carbohydrates, branched-chain amino acids, glutamine, polyunsaturated fatty acids, leptin, and proteins. We summarise the current knowledge on these metabolic hypotheses regarding the occurrence of overtraining in endurance sports.
Collapse
Affiliation(s)
- Cyril Petibois
- University Victor Segalen Bordeaux 2, Faculté des Sciences du Sport et de l'Education Physique, Pessac, Bordeaux, France.
| | | | | | | |
Collapse
|
43
|
Cox GR, Broad EM, Riley MD, Burke LM. Body mass changes and voluntary fluid intakes of elite level water polo players and swimmers. J Sci Med Sport 2002; 5:183-93. [PMID: 12413035 DOI: 10.1016/s1440-2440(02)80003-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calculated sweat rates (measured by body mass changes) and voluntary fluid intakes were monitored in elite level water polo players and swimmers during normal exercise sessions to determine fluid requirements to maintain fluid balance, and the degree of fluid replacement of these athletes. Data were collected from training and competition sessions for male water polo players (n = 23) and training sessions only for swimmers (n = 20 females; n = 21 males). The calculated average sweat rate and fluid intake rate during training sessions for male water polo players was 287 ml/h and 142 ml/h, respectively, with a rate of 786 ml/h and 380 ml/h during matches. During training sessions for male swimmers, the calculated average sweat rate and fluid intake rate per kilometre was 138 ml/km and 155 ml/km, respectively; and for female swimmers, 107 ml/km and 95 ml/km. There was a wide individual variation in fluid intake and sweat loss of both water polo players and swimmers. Dehydration experienced by athletes in this study was less than typically reported for "land-based" athletes. Errors inherent in the technique used in this study are acknowledged and may be significant in the calculation of reported sweat losses and levels of fluid balance in aquatic athletes.
Collapse
Affiliation(s)
- G R Cox
- Australian Institute of Sport, Belconnen
| | | | | | | |
Collapse
|
44
|
Brown MD, Dengel DR, Hogikyan RV, Supiano MA. Sympathetic activity and the heterogenous blood pressure response to exercise training in hypertensives. J Appl Physiol (1985) 2002; 92:1434-42. [PMID: 11896007 DOI: 10.1152/japplphysiol.00477.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To test whether changes in sympathetic nervous system (SNS) activity or insulin sensitivity contribute to the heterogeneous blood pressure response to aerobic exercise training, we used compartmental analysis of [3H]norepinephrine kinetics to determine the extravascular norepinephrine release rate (NE2) as an index of systemic SNS activity and determined the insulin sensitivity index (S(I)) by an intravenous glucose tolerance test, before and after 6 mo of aerobic exercise training, in 30 (63 +/- 7 yr) hypertensive subjects. Maximal O2 consumption increased from 18.4 +/- 0.7 to 20.8 +/- 0.7 ml x kg(-1) x min(-1) (P = 0.02). The average mean arterial blood pressure (MABP) did not change (114 +/- 2 vs. 114 +/- 2 mmHg); however, there was a wide range of responses (-19 to +17 mmHg). The average NE2 did not change significantly (2.11 +/- 0.15 vs. 1.99 +/- 0.13 microg x min(-1) x m(-2)), but there was a significant positive linear relationship between the change in NE2 and the change in MABP (r = 0.38, P = 0.04). S(I) increased from 2.81 +/- 0.37 to 3.71 +/- 0.42 microU x 10(-4) x min(-1) x ml(-1) (P = 0.004). The relationship between the change in S(I) and the change in MABP was not statistically significant (r = -0.03, P = 0.89). When the changes in maximal O2 consumption, percent body fat, NE2, and S(I) were considered as predictors of the change in MABP, only NE2 was a significant independent predictor. Thus suppression of SNS activity may play a role in the reduction in MABP and account for a portion of the heterogeneity of the MABP response to aerobic exercise training in older hypertensive subjects.
Collapse
Affiliation(s)
- Michael D Brown
- Department of Internal Medicine, Division of Geriatric Medicine, University of Michigan Health System and Geriatric Research, Education, and Clinical Center, Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan 48105, USA.
| | | | | | | |
Collapse
|
45
|
McCarthy JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc 2002; 34:511-9. [PMID: 11880817 DOI: 10.1097/00005768-200203000-00019] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to examine muscle morphological and neural activation adaptations resulting from the interaction between concurrent strength and endurance training. METHODS Thirty sedentary healthy male subjects were randomly assigned to one of three training groups that performed 10 wk of 3-d x wk(-1) high-intensity strength training (S), cycle endurance training (E), or concurrent strength and endurance training (CC). Strength, quadriceps-muscle biopsies, computed tomography scans at mid-thigh, and surface electromyogram (EMG) assessments were made before and after training. RESULTS S and CC groups demonstrated similar increases (P < 0.0001) in both thigh extensor (12 and 14%) and flexor/adductor (7 and 6%) muscle areas. Type II myofiber areas similarly increased (P < 0.002) in both S (24%) and CC (28%) groups, whereas the increase (P < 0.004) in Type I area with S training (19%) was also similar to the nonsignificant (P = 0.041) increase with CC training (13%). Significant increases (P < 0.005) in maximal isometric knee-extension torque were accompanied by nonsignificant (P <or= 0.07) increases in root mean squared EMG amplitude of the quadriceps musculature for both S and C groups. No changes (P > 0.38) in the EMG/torque relation across 20 to 100% maximal voluntary contractions occurred in any group. A small 3% increase (P < 0.01) in thigh extensor area was the only change in any of the above variables with E training. CONCLUSIONS Findings indicate 3-d x wk(-1) concurrent performance of both strength and endurance training does not impair adaptations in strength, muscle hypertrophy, and neural activation induced by strength training alone. Results provide a physiological basis to support several performance studies that consistently indicate 3-d x wk(-1) concurrent training does not impair strength development over the short term.
Collapse
Affiliation(s)
- John P McCarthy
- Department of Orthopedics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
46
|
Petibois C, Cazorla G, Déléris G, Gin H. [Clinical diagnosis of overtraining using blood tests: current knowledge]. Rev Med Interne 2001; 22:723-36. [PMID: 11534358 DOI: 10.1016/s0248-8663(01)00418-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Overtraining results from an imbalance between training load-induced fatigue and organism's recovery abilities. Its etiology is complex and to date there is no useful clinical diagnostic tool. The purpose of this review is to discuss the blood chemistry parameters potentially useful for diagnosing overtraining in athletes. CURRENT KNOWLEDGE AND KEY POINTS Chronic alterations of the myocyte structure may cause high plasma concentration increases of myoglobin, troponin I and creatine kinase enzyme, resulting in chemical and/or mechanical aggression. Monitoring reactive oxygen species' activity appears to be a good tool for evaluation of the metabolic stress level experienced by skeletal muscles. In energetic metabolism, a succession of chronic glycogen depletions might change the use of amino acids and lipids, inducing transient but severe hypoglycemia during exercise. A higher oxidation of circulating glutamine might cause immunosuppression (lower reactivity to inflammations and cellular traumatisms), inhibiting alarm signals during acute training. A higher branched-chain amino acid oxidation might favor free tryptophan's entry into the cerebral area, enhancing serotonin synthesis. As a consequence, asthenia and a loss of sensitivity to muscular and tendon traumatism might appear. Exercise anemia might also be a worsening factor of the physiological situation of the tired athlete, inducing predisposition to overtraining by the lower inflammation reactivity of depleted hepatic and muscular proteins. FUTURE PROSPECTS AND PROJECTS Early diagnosis of overtraining diagnosis may be established only from a battery of analyses, which should include the whole of the potential parameters. These remain unpredictable and do not allow systematic determination of new cases. Only a longitudinal study of the physiological situation appears to allow the necessary conditions for detecting overtraining in the early stages of its process for each subject.
Collapse
Affiliation(s)
- C Petibois
- Inserm U443, équipe de chimie bio-organique, université Victor-Segalen Bordeaux 2, 146, rue Léo-Saignat, 33076 Bordeaux, France
| | | | | | | |
Collapse
|
47
|
Abstract
Carbohydrate is an essential fuel for prolonged, strenuous exercise, although the carbohydrate stores of the body are limited. Research studies have provided evidence that carbohydrate depletion is associated with fatigue, decrease in exercise intensity, and even exercise cessation. With the appropriate diet and exercise protocol, however, the carbohydrate stores of the body can be substantially increased and exercise performance improved by carbohydrate supplementation before and during exercise. In this article, the role of carbohydrate supplementation for increasing carbohydrate stores before exercise, maintaining blood glucose during exercise, and the rapid replenishment of the carbohydrate stores after exercise are discussed. Considered in the discussion are the types, amounts and forms of carbohydrate supplements that are most effective, and the most appropriate times for their ingestion.
Collapse
Affiliation(s)
- J L Ivy
- Department of Kinesiology and Health Education, University of Texas at Austin, USA.
| |
Collapse
|
48
|
Abstract
Estudou-se 27 atletas nadadores (14 mulheres e 13 homens) com idade entre 13 e 21 anos, com o objetivo de conhecer seus hábitos alimentares e consumo alimentar, aplicando-se questionários de registro e freqüência alimentar. O percentual de adequação foi determinado comparando-se as necessidades de cada indivíduo (calculadas teoricamente) com as quantidades consumidas. Os resultados indicaram que o consumo energético foi maior para os homens (média de 3 125Kcal contra 1 865Kcal das mulheres). O consumo dos demais nutrientes também apresentou-se superior para o sexo masculino, exceto para a vitamina C. A contribuição percentual de macronutrientes apresentou-se desequilibrada tanto para os homens quanto para as mulheres. Os homens apresentaram uma adequação baixa (70-80%) para os carboidratos e vitamina A, uma adequação excedente (> 110%) para proteínas, gordura, vitamina C e ferro, e uma adequação normal para os demais nutrientes. As mulheres apresentaram uma adequação marginal (< 70%) para os carboidratos, energia e cálcio; excedente para a vitamina C e normal para os demais nutrientes.
Collapse
|
49
|
Abstract
Low muscle glycogen levels due to consecutive days of extensive exercise have been shown to cause fatigue and thus decrements in performance. Low muscle glycogen levels could also lead to oxidation of the branched chain amino acids and central fatigue. Therefore, the questions become, can low muscle glycogen not only lead to peripheral and central fatigue but also to overtraining, and if so can overtraining be avoided by consuming sufficient quantities of carbohydrates? Research on swimmers has shown that those who were nonresponsive to an increase in their training load had low levels of muscle glycogen and consumed insufficient energy and carbohydrates. However, cyclists who increased their training load for 2 wk but also increased carbohydrate intake to maintain muscle glycogen levels still met the criteria of over-reaching (short-term overtraining) and might have met the criteria for overtraining had the subjects been followed for a longer period of time. Thus, some other mechanism than reduced muscle glycogen levels must be responsible for the development and occurrence of overtraining.
Collapse
Affiliation(s)
- A C Snyder
- Department of Human Kinetics, University of Wisconsin-Milwaukee 53201, USA.
| |
Collapse
|
50
|
Abstract
The purpose of this review was to give an answer to the question whether there are convincing data to support the hypothesis of an amino acid imbalance as one possible mechanism to explain overtraining syndrome. Animal studies point to an enhanced synthesis of the neurotransmitter 5-hydroxytryptamine through an amino acid imbalance at the blood-brain barrier with a preferable tryptophan uptake into the brain, resulting in premature fatigue. Human studies, however, show contradictory results, mainly because of nonstandardized methodology, so that a final conclusion cannot be made at present. BCAA supplementation in addition to standard carbohydrate ingestion during sustained exercise seems to be of no eminent advantage to delay fatigue. The overall results concerning the BCAA hypothesis to explain overtraining are inconclusive and require more controlled experimental research.
Collapse
Affiliation(s)
- U A Gastmann
- Department of Sports and Rehabilitation Medicine, Ulm University Medical Center, Germany
| | | |
Collapse
|