1
|
Shao X, He L, Liu Y. The effects of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents: a meta-analysis. Neural Regen Res 2025; 20:1513-1520. [PMID: 39075917 DOI: 10.4103/nrr.nrr-d-23-01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/27/2024] [Indexed: 07/31/2024] Open
Abstract
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the PubMed, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using ReviewManager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference (MD; before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants (60 children and 471 adolescents, 10.9-16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I2 test provided by ReviewManager software. The meta-analysis showed that there was no heterogeneity among the studies (P = 0.67, I2 = 0.00%). The combined effect of the interventions was significant (MD = 2.88, 95% CI: 1.53-4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This meta-analysis was registered at PROSPERO (registration ID: CRD42023439408).
Collapse
Affiliation(s)
- Xueyun Shao
- Physical Education School, Shenzhen University, Shenzhen, Guangdong Province, China
- Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
| | - Longfei He
- Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
| | - Yangyang Liu
- Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Spero V, Scherma M, D'Amelio S, Collu R, Dedoni S, Camoglio C, Siddi C, Fratta W, Molteni R, Fadda P. Activity-based anorexia (ABA) model: Effects on brain neuroinflammation, redox balance and neuroplasticity during the acute phase. Neurochem Int 2024; 180:105842. [PMID: 39244038 DOI: 10.1016/j.neuint.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Several evidences suggest that immuno-inflammatory responses are involved in the pathogenesis of anorexia nervosa (AN). Herein we investigate the possible alteration of key mediators of inflammation, redox balance, and neuroplasticity in the brain of rats showing an anorexic-like phenotype. We modeled AN in adolescent female rats using the activity-based anorexia (ABA) paradigm and measured gene expression levels of targets of interest in the prefrontal cortex (PFC) and dorsal hippocampus (DH). We observed reduced mRNA levels of pro-inflammatory cytokines IL-1β and TNF-α, the inflammasome NLRP3, and the microglial marker CD11b in both PFC and DH of ABA animals. Conversely, the mRNA of IL-6, which acts as both a pro-inflammatory and anti-inflammatory cytokine, was increased. Moreover, we observed an overall upregulation of different antioxidant enzymes in PFC, while their profile was not affected or opposite in the DH, with the exception of MT1α. Interestingly, ABA animals showed elevated levels of the neuroplasticity marker BDNF in both PFC and DH. Our data indicate that ABA induction is associated with anatomical-specific cerebral alteration of mediators of neuroinflammation, oxidative balance and neuroplasticity. Although more research should be conducted, these results add important information about the role of these systems in the complex AN etiopathogenesis.
Collapse
Affiliation(s)
- Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Sabrina D'Amelio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Collu
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Chiara Camoglio
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Carlotta Siddi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy.
| |
Collapse
|
3
|
Ma Y, Qiao Y, Gao X. Potential role of hippocampal neurogenesis in spinal cord injury induced post-trauma depression. Neural Regen Res 2024; 19:2144-2156. [PMID: 38488549 PMCID: PMC11034606 DOI: 10.4103/1673-5374.392855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 04/24/2024] Open
Abstract
It has been reported both in clinic and rodent models that beyond spinal cord injury directly induced symptoms, such as paralysis, neuropathic pain, bladder/bowel dysfunction, and loss of sexual function, there are a variety of secondary complications, including memory loss, cognitive decline, depression, and Alzheimer's disease. The large-scale longitudinal population-based studies indicate that post-trauma depression is highly prevalent in spinal cord injury patients. Yet, few basic studies have been conducted to address the potential molecular mechanisms. One of possible factors underlying the depression is the reduction of adult hippocampal neurogenesis which may come from less physical activity, social isolation, chronic pain, and elevated neuroinflammation after spinal cord injury. However, there is no clear consensus yet. In this review, we will first summarize the alteration of hippocampal neurogenesis post-spinal cord injury. Then, we will discuss possible mechanisms underlie this important spinal cord injury consequence. Finally, we will outline the potential therapeutic options aimed at enhancing hippocampal neurogenesis to ameliorate depression.
Collapse
Affiliation(s)
- Ying Ma
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Qiao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Mauro MC, Fasano A, Germanotta M, Cortellini L, Insalaco S, Pavan A, Comanducci A, Guglielmelli E, Aprile IG. Restoring of Interhemispheric Symmetry in Patients With Stroke Following Bilateral or Unilateral Robot-Assisted Upper-Limb Rehabilitation: A Pilot Randomized Controlled Trial. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3590-3602. [PMID: 39269794 DOI: 10.1109/tnsre.2024.3460485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Bilateral robotic rehabilitation has proven helpful in the recovery of upper limb motor function in patients with stroke, but its effects on the cortical reorganization mechanisms underlying recovery are still unclear. This pilot Randomized Controlled Trial (RCT) aimed to evaluate the effects on the interhemispheric balance of unilateral or bilateral robotic treatments in patients with subacute stroke, using Quantitative Electroencephalography (qEEG). 19 patients with ischemic stroke underwent a 30-session upper limb neurorehabilitation intervention using a bilateral upper limb exoskeleton. Each patient was randomly assigned to the bilateral (BG, n=10) or unilateral treatment group (UG, n=9). EEG evaluations were performed before (T0) and right after (T [Formula: see text] the first treatment session, after 30 treatment sessions (T1), and at 1-week follow-up (T2), in both eyes open and eyes closed conditions. From the acquired EEG data, the pairwise-derived Brain Symmetry Index (pdBSI) was computed. In addition, clinical evaluation was performed at T0 and T1 with validated clinical scales. After the treatment, a significant improvement in clinical and EEG evaluations was observed for both groups, but only the BG showed reduced pdBSI in delta and theta bands. In the cluster of sensorimotor channels, there was no significant difference between groups. The observed changes were not maintained at follow-up. No significant changes were observed in the pdBSI after a single rehabilitation session. Results suggest that balancing of interhemispheric symmetry comes along with a clinical improvement in the upper extremity and that the pdBSI can be used to investigate the mechanisms of neuronal plasticity involved in robotic rehabilitation after stroke.
Collapse
|
5
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Streckmann F, Elter T, Lehmann HC, Baurecht H, Nazarenus T, Oschwald V, Koliamitra C, Otten S, Draube A, Heinen P, Steinmetz T, Hallek M, Leitzmann M, Bloch W, Balke M. Preventive Effect of Neuromuscular Training on Chemotherapy-Induced Neuropathy: A Randomized Clinical Trial. JAMA Intern Med 2024; 184:1046-1053. [PMID: 38949824 PMCID: PMC11217888 DOI: 10.1001/jamainternmed.2024.2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/04/2024] [Indexed: 07/02/2024]
Abstract
Importance Chemotherapy-induced peripheral neuropathy (CIPN) is a highly prevalent and clinically relevant adverse effect of chemotherapy, negatively impacting patient quality of life. The lack of effective preventive or therapeutic options regarding CIPN often requires changes in cancer therapy, potentially resulting in reduced survival. Objective To determine whether sensorimotor training (SMT) and whole-body vibration (WBV) training reduce symptoms and decrease the onset of CIPN. Design, Setting, and Participants This prospective multicenter randomized clinical trial (STOP) followed up patients over 5 years at 4 centers in or near Cologne, Germany. Patients undergoing treatment with oxaliplatin or vinca alkaloids were recruited. Participants were recruited from May 2014 to November 2020. Data were last analyzed in June 2021. Interventions Participants in the intervention groups performed supervised SMT or WBV training sessions twice a week, each lasting approximately 15 to 30 minutes, concomitant to medical therapy. Main Outcomes and Measures The primary end point was the incidence of CIPN. Secondary end points included subjective neuropathy symptoms, balance control, physical activity levels, quality of life, and clinical outcome. For cross-stratum evaluations, the Mantel-Haenszel test (MH) was used, and within individual strata, Fisher exact test was used for analysis. Results A total of 1605 patients were screened, and 1196 patients did not meet all inclusion criteria, with 251 further excluded or declining participation. A total of 158 patients (mean [SD] age, 49.1 [18.0-82.0] years; 93 [58.9%] male) were randomized into 1 of 3 groups: 55 (34.8%) in SMT, 53 (33.5%) in WBV, and 50 (31.6%) in treatment as usual (TAU). The incidence of CIPN in participants was significantly lower in both intervention groups compared to the control group (TAU): (SMT, 12 of 40 [30.0%; 95% CI, 17.9%-42.1%] and WBV, 14 of 34 [41.2%; 95% CI, 27.9%-54.5%] vs TAU, 24 of 34 [70.6%; 95% CI, 58.0%-83.2%]; P = .002 for intention to treat-MH). Patients receiving vinca alkaloids and performing SMT benefited the most. Results were more pronounced in a per-protocol analysis (>75% participation in the intervention) (SMT, 8 of 28 [28.6%; 95% CI, 16.6%-40.5%] and WBV, 9 of 24 [37.5%; 95% CI, 24.4%-50.5%] vs TAU, 22 of 30 [73.3%; 95% CI, 61.6%-85.6%]). Improvements in favor of SMT compared to TAU were found for balance control bipedal with eyes open; bipedal with eyes closed; monopedal, vibration sensitivity, sense of touch, lower leg strength, pain reduction, burning sensation, chemotherapy dose reductions, and mortality. Conclusion and Relevance This randomized clinical trial provides initial evidence that neuromuscular training decreases the onset of CIPN. Trial Registration German Clinical Trials Register: DRKS00006088.
Collapse
Affiliation(s)
- Fiona Streckmann
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Department of Oncology, University Hospital Basel, Basel, Switzerland
- Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Thomas Elter
- Department 1 of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Cologne, Germany
| | - Helmar C. Lehmann
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Tatjana Nazarenus
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Vanessa Oschwald
- Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Christina Koliamitra
- Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sarah Otten
- Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Andreas Draube
- Praxis Internistischer Onkologie und Haematologie (PIOH), Cologne, Germany
| | - Petra Heinen
- Department of Oncology, Saint Antonius Hospital, Eschweiler, Germany
| | | | - Michael Hallek
- Department 1 of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Cologne, Germany
| | - Michael Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Maryam Balke
- Department of Neurological and Early Rehabilitation, Saint Mary Hospital Cologne, Cologne, Germany
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
7
|
Hayashi K, Lesnak JB, Plumb AN, Janowski AJ, Smith AF, Hill JK, Sluka KA. Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice. Brain Behav Immun 2024; 120:471-487. [PMID: 38925417 DOI: 10.1016/j.bbi.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Activity-induced muscle pain increases interleukin-1β (IL-1β) release from muscle macrophages and the development of hyperalgesia is prevented by blockade of IL-1β in muscle. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesize that in activity-induced pain, fatigue metabolites combined with IL-1β activate sensory neurons to increase BDNF release, peripherally in muscle and centrally in the spinal dorsal horn, to produce hyperalgesia. We tested the effect of intrathecal or intramuscular injection of BDNF-Tropomyosin receptor kinase B (TrkB) inhibitors, ANA-12 or TrkB-Fc, on development of activity-induced pain. Both inhibitors prevented the hyperalgesia when given before or 24hr after induction of the model in male but not female mice. BDNF messenger ribonucleic acid (mRNA) and protein were significantly increased in dorsal root ganglion (DRG) 24hr after induction of the model in both male and female mice. Blockade of IL-1β in muscle had no effect on the increased BNDF mRNA observed in the activity-induced pain model, while IL-1β applied to cultured DRG significantly induced BDNF expression, suggesting IL-1β is sufficient but not necessary to induce BNDF. Thus, fatigue metabolites, combined with IL-1β, upregulate BDNF in primary DRG neurons in both male and female mice, but contribute to activity-induced pain only in males.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA; Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joseph B Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Adam J Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Angela F Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joslyn K Hill
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
Martins LA, Schiavo A, Paz LV, Xavier LL, Mestriner RG. Neural underpinnings of fine motor skills under stress and anxiety: A review. Physiol Behav 2024; 282:114593. [PMID: 38782244 DOI: 10.1016/j.physbeh.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
This review offers a comprehensive examination of how stress and anxiety affect motor behavior, particularly focusing on fine motor skills and gait adaptability. We explore the role of several neurochemicals, including brain-derived neurotrophic factor (BDNF) and dopamine, in modulating neural plasticity and motor control under these affective states. The review highlights the importance of developing therapeutic strategies that enhance motor performance by leveraging the interactions between key neurochemicals. Additionally, we investigate the complex interplay between emotional-cognitive states and sensorimotor behaviors, showing how stress and anxiety disrupt neural integration, leading to impairments in skilled movements and negatively impacting quality of life. Synthesizing evidence from human and rodent studies, we provide a detailed understanding of the relationships among stress, anxiety, and motor behavior. Our findings reveal neurophysiological pathways, behavioral outcomes, and potential therapeutic targets, emphasizing the intricate connections between neurobiological mechanisms, environmental factors, and motor performance.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Lisiê Valéria Paz
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Léder Leal Xavier
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Ricotti L, Minuti T. Effects of padel activity and proprioception training on soccer players in an off-season period. J Sports Med Phys Fitness 2024; 64:737-748. [PMID: 38470014 DOI: 10.23736/s0022-4707.23.15430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND Off-season periods imply considerable changes in the fitness status of soccer players. So far, no studies evaluated the effects of proprioception-focused training during soccer off-season periods. In this work, we assessed how much some players' abilities (static and dynamic balance, reaction times, quickness, strength, and technical skills) were affected by proprioception training and padel activity during an off-season period of 12 weeks. METHODS Twenty-eight non-professional adult male soccer players were organized into three groups: a group carried out regular padel activity, ~2 h once a week. Another group underwent a regular proprioception training program, ~ 20 min, twice a week. The third group did not perform any specific activity (control). Static and dynamic balance, reaction times, quickness, strength, and technical skills were evaluated at three time-points: before starting, after 6 weeks, and after 12 weeks. RESULTS Both padel activity and specific proprioception training carried out for 12 weeks significantly improved players' monopodalic static balance with eyes open and dynamic balance. No significant effects of these training regimens were found on monopodalic static balance with eyes closed, visual and acoustic reaction times, acyclic quickness, and strength. Furthermore, proprioception training considerably improved technical skills. CONCLUSIONS Coaches may use padel activity and proprioception exercises for off-season programs featured by ease of execution, low training volume, and high compliance.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy -
- Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy -
- Biostimulation and Function Recovery Lab, Fondazione Volterra Ricerche Onlus, Volterra, Pisa, Italy -
| | - Tommaso Minuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
11
|
Gordon T. Physiology of Nerve Regeneration: Key Factors Affecting Clinical Outcomes. Hand Clin 2024; 40:337-345. [PMID: 38972678 DOI: 10.1016/j.hcl.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Functional recovery after peripheral nerve injuries is disappointing despite surgical advances in nerve repair. This review summarizes the relatively short window of opportunity for successful nerve regeneration due to the decline in the expression of growth-associated genes and in turn, the decline in regenerative capacity of the injured neurons and the support provided by the denervated Schwann cells, and the atrophy of denervated muscles. Brief, low-frequency electrical stimulation and post-injury exercise regimes ameliorate these deficits in animal models and patients, but the misdirection of regenerating nerve fibers compromises functional recovery and remains an important area of future research.
Collapse
Affiliation(s)
- Tessa Gordon
- Department of Surgery, University of Toronto, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
12
|
Miron VV, Assmann CE, Mostardeiro VB, da Silveira MV, Copetti PM, Bissacotti BF, Schirmann AA, Castro MFV, Gutierres JM, da Cruz Fernandes M, Viero FT, Morsch VM, Schetinger MRC, Cardoso AM. Neuroprotective effect of long-term resistance physical exercise against memory damage elicited by a lipopolysaccharide-induced neuroinflammation model in male rats. J Neurosci Res 2024; 102:e25370. [PMID: 39158105 DOI: 10.1002/jnr.25370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/20/2024]
Abstract
Resistance exercise training (RET) is considered an excellent tool for preventing diseases with an inflammatory background. Its neuroprotective, antioxidant, and anti-inflammatory properties are responsible for positively modulating cholinergic and oxidative systems, promoting neurogenesis, and improving memory. However, the mechanisms behind these actions are largely unknown. In order to investigate the pathways related to these effects of exercise, we conducted a 12-week long-term exercise training protocol and used lipopolysaccharide (LPS) to induce damage to the cortex and hippocampus of male Wistar rats. The cholinergic system, oxidative stress, and histochemical parameters were analyzed in the cerebral cortex and hippocampus, and memory tests were also performed. It was observed that LPS: (1) caused memory loss in the novel object recognition (NOR) test; (2) increased the activity of acetylcholinesterase (AChE) and Iba1 protein density; (3) reduced the protein density of brain-derived neurotrophic factor (BDNF) and muscarinic acetylcholine receptor M1 (CHRM1); (4) elevated the levels of lipid peroxidation (TBARS) and reactive species (RS); and (5) caused inflammatory damage to the dentate gyrus. RET, on the other hand, was able to prevent all alterations induced by LPS, as well as increase per se the protein density of the alpha-7 nicotinic acetylcholine receptor (nAChRα7) and Nestin, and the levels of protein thiols (T-SH). Overall, our study elucidates some mechanisms that support resistance physical exercise as a valuable approach against LPS-induced neuroinflammation and memory loss.
Collapse
Affiliation(s)
- Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Vitor Bastianello Mostardeiro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marcylene Vieira da Silveira
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Priscila Marquezan Copetti
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bianca Fagan Bissacotti
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Adriel Antonio Schirmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Milagros Fanny Vera Castro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jessié Martins Gutierres
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marilda da Cruz Fernandes
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Tibolla Viero
- Department of Pharmacology and Physiology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Vera Maria Morsch
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences, Medical School, Federal University of the South Border, Chapecó, Brazil
| |
Collapse
|
13
|
Kump DS. Mechanisms Underlying the Rarity of Skeletal Muscle Cancers. Int J Mol Sci 2024; 25:6480. [PMID: 38928185 PMCID: PMC11204341 DOI: 10.3390/ijms25126480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle (SKM), despite comprising ~40% of body mass, rarely manifests cancer. This review explores the mechanisms that help to explain this rarity, including unique SKM architecture and function, which prohibits the development of new cancer as well as negates potential metastasis to SKM. SKM also presents a unique immune environment that may magnify the anti-tumorigenic effect. Moreover, the SKM microenvironment manifests characteristics such as decreased extracellular matrix stiffness and altered lactic acid, pH, and oxygen levels that may interfere with tumor development. SKM also secretes anti-tumorigenic myokines and other molecules. Collectively, these mechanisms help account for the rarity of SKM cancer.
Collapse
Affiliation(s)
- David S Kump
- Department of Biological Sciences, Winston-Salem State University, 601 Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| |
Collapse
|
14
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
15
|
Shafiee A, Arabzadeh Bahri R, Rafiei MA, Esmaeilpur Abianeh F, Razmara P, Jafarabady K, Amini MJ. The effect of psychedelics on the level of brain-derived neurotrophic factor: A systematic review and meta-analysis. J Psychopharmacol 2024; 38:425-431. [PMID: 38385351 DOI: 10.1177/02698811241234247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Recent interest in the potential therapeutic effects of psychedelics has led to investigations into their influence on molecular signaling pathways within the brain. AIMS Integrated review and analysis of different studies in this field. METHODS A systematic search was conducted across international databases including Embase, Scopus, Web of Science, and PubMed from inception to 9 July 2023. Eligibility criteria encompassed published and peer-reviewed studies evaluating changes in brain-derived neurotrophic factor (BDNF) levels after psychedelic consumption. OUTCOMES A total of nine studies were included in our study. The meta-analysis demonstrated significantly higher BDNF levels in psychedelic consumers compared to healthy controls, with a pooled standardized mean difference of 0.26 (95% CI: 0.10-0.42, I2 = 38.51%, p < 0.001). Leave-one-out analysis indicated robustness in results upon removal of individual psychedelics. No significant publication bias was observed. The results highlight the potential influence of psychedelics on neuroplasticity by altering BDNF levels. CONCLUSIONS More precisely, the documented rise in BDNF levels indicates a neurobiological mechanism by which psychedelics could enhance synaptic plasticity and foster the growth of neurons. Given the limited data available on this topic, the conclusions remain uncertain. Consequently, we highly recommend additional research with more extensive sample sizes to yield more reliable evidence in this field.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Department of Psychiatry and Mental Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Razman Arabzadeh Bahri
- Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Rafiei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Parsa Razmara
- University of Southern California, Los Angeles, CA, USA
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Javad Amini
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
16
|
Armstrong M, Castellanos J, Christie D. Chronic pain as an emergent property of a complex system and the potential roles of psychedelic therapies. FRONTIERS IN PAIN RESEARCH 2024; 5:1346053. [PMID: 38706873 PMCID: PMC11066302 DOI: 10.3389/fpain.2024.1346053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Despite research advances and urgent calls by national and global health organizations, clinical outcomes for millions of people suffering with chronic pain remain poor. We suggest bringing the lens of complexity science to this problem, conceptualizing chronic pain as an emergent property of a complex biopsychosocial system. We frame pain-related physiology, neuroscience, developmental psychology, learning, and epigenetics as components and mini-systems that interact together and with changing socioenvironmental conditions, as an overarching complex system that gives rise to the emergent phenomenon of chronic pain. We postulate that the behavior of complex systems may help to explain persistence of chronic pain despite current treatments. From this perspective, chronic pain may benefit from therapies that can be both disruptive and adaptive at higher orders within the complex system. We explore psychedelic-assisted therapies and how these may overlap with and complement mindfulness-based approaches to this end. Both mindfulness and psychedelic therapies have been shown to have transdiagnostic value, due in part to disruptive effects on rigid cognitive, emotional, and behavioral patterns as well their ability to promote neuroplasticity. Psychedelic therapies may hold unique promise for the management of chronic pain.
Collapse
Affiliation(s)
- Maya Armstrong
- Department of Family & Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joel Castellanos
- Division of Pain Medicine, Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Devon Christie
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Tosta A, Fonseca AS, Messeder D, Ferreira ST, Lourenco MV, Pandolfo P. Effects of Gestational Exercise on Nociception, BDNF, and Irisin Levels in an Animal Model of ADHD. Neuroscience 2024; 543:37-48. [PMID: 38401710 DOI: 10.1016/j.neuroscience.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Abnormal cognitive and sensorial properties have been reported in patients with psychiatric and neurodevelopmental conditions, such as attention deficit hyperactivity disorder (ADHD). ADHD patients exhibit impaired dopaminergic signaling and plasticity in brain areas related to cognitive and sensory processing. The spontaneous hypertensive rat (SHR), in comparison to the Wistar Kyoto rat (WKY), is the most used genetic animal model to study ADHD. Brain neurotrophic factor (BDNF), critical for midbrain and hippocampal dopaminergic neuron survival and differentiation, is reduced in both ADHD subjects and SHR. Physical exercise (e.g. swimming) promotes neuroplasticity and improves cognition by increasing BDNF and irisin. Here we investigate the effects of gestational swimming on sensorial and behavioral phenotypes, striatal dopaminergic parameters, and hippocampal FNDC5/irisin and BDNF levels observed in WKY and SHR. Gestational swimming improved nociception in SHR rats (p = 0.006) and increased hippocampal BDNF levels (p = 0.02) in a sex-dependent manner in adolescent offspring. Sex differences were observed in hippocampal FNDC5/irisin levels (p = 0.002), with females presenting lower levels than males. Our results contribute to the notion that swimming during pregnancy is a promising alternative to improve ADHD phenotypes in the offspring.
Collapse
Affiliation(s)
- Andréa Tosta
- Program of Neurosciences, Federal Fluminense University, Niterói, Brazil
| | - Ariene S Fonseca
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Messeder
- Program of Neurosciences, Federal Fluminense University, Niterói, Brazil
| | - Sérgio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo Pandolfo
- Program of Neurosciences, Federal Fluminense University, Niterói, Brazil; Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niterói, Brazil.
| |
Collapse
|
18
|
Chan WS, Ng CF, Pang BPS, Hang M, Tse MCL, Iu ECY, Ooi XC, Yang X, Kim JK, Lee CW, Chan CB. Exercise-induced BDNF promotes PPARδ-dependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery. Sci Signal 2024; 17:eadh2783. [PMID: 38502732 PMCID: PMC11022078 DOI: 10.1126/scisignal.adh2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Post-exercise recovery is essential to resolve metabolic perturbations and promote long-term cellular remodeling in response to exercise. Here, we report that muscle-generated brain-derived neurotrophic factor (BDNF) elicits post-exercise recovery and metabolic reprogramming in skeletal muscle. BDNF increased the post-exercise expression of the gene encoding PPARδ (peroxisome proliferator-activated receptor δ), a transcription factor that is a master regulator of lipid metabolism. After exercise, mice with muscle-specific Bdnf knockout (MBKO) exhibited impairments in PPARδ-regulated metabolic gene expression, decreased intramuscular lipid content, reduced β-oxidation, and dysregulated mitochondrial dynamics. Moreover, MBKO mice required a longer period to recover from a bout of exercise and did not show increases in exercise-induced endurance capacity. Feeding naïve mice with the bioavailable BDNF mimetic 7,8-dihydroxyflavone resulted in effects that mimicked exercise-induced adaptations, including improved exercise capacity. Together, our findings reveal that BDNF is an essential myokine for exercise-induced metabolic recovery and remodeling in skeletal muscle.
Collapse
Affiliation(s)
- Wing Suen Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Chun Fai Ng
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Brian Pak Shing Pang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Miaojia Hang
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Margaret Chui Ling Tse
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Elsie Chit Yu Iu
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xin Ci Ooi
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Xiuying Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing 101399, China
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Chi Wai Lee
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, the University of Hong Kong, 5N10 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Gordon T. Brief Electrical Stimulation Promotes Recovery after Surgical Repair of Injured Peripheral Nerves. Int J Mol Sci 2024; 25:665. [PMID: 38203836 PMCID: PMC10779324 DOI: 10.3390/ijms25010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Injured peripheral nerves regenerate their axons in contrast to those in the central nervous system. Yet, functional recovery after surgical repair is often disappointing. The basis for poor recovery is progressive deterioration with time and distance of the growth capacity of the neurons that lose their contact with targets (chronic axotomy) and the growth support of the chronically denervated Schwann cells (SC) in the distal nerve stumps. Nonetheless, chronically denervated atrophic muscle retains the capacity for reinnervation. Declining electrical activity of motoneurons accompanies the progressive fall in axotomized neuronal and denervated SC expression of regeneration-associated-genes and declining regenerative success. Reduced motoneuronal activity is due to the withdrawal of synaptic contacts from the soma. Exogenous neurotrophic factors that promote nerve regeneration can replace the endogenous factors whose expression declines with time. But the profuse axonal outgrowth they provoke and the difficulties in their delivery hinder their efficacy. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) proximal to the injury site promotes the expression of endogenous growth factors and, in turn, dramatically accelerates axon outgrowth and target reinnervation. The latter ES effect has been demonstrated in both rats and humans. A conditioning ES of intact nerve days prior to nerve injury increases axonal outgrowth and regeneration rate. Thereby, this form of ES is amenable for nerve transfer surgeries and end-to-side neurorrhaphies. However, additional surgery for applying the required electrodes may be a hurdle. ES is applicable in all surgeries with excellent outcomes.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON M4G 1X8, Canada
| |
Collapse
|
20
|
Carson Smith J, Callow DD, Pena GS, Kommula Y, Arnold-Nedimala N, Won J, Nielson KA. Exercise and Protection from Age-Related Cognitive Decline. Curr Top Behav Neurosci 2024; 67:263-280. [PMID: 39080244 DOI: 10.1007/7854_2024_501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
In this chapter, we review the cross-sectional evidence in healthy human subjects for physical activity and cardiorespiratory fitness to offer neuroprotection and moderate cognitive decline in older age. The role of exercise training on cognition in healthy older adults and those diagnosed with mild cognitive impairment (MCI) is also discussed, including the evidence from neuroimaging studies that document changes to brain structure and function after a period of exercise training and improved fitness. Finally, in reference to animal models, the potential neurophysiological mechanisms for physical activity and exercise to impact human brain health are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Junyeon Won
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | | |
Collapse
|
21
|
Tamaki T, Muramatsu K, Ikutomo M, Komagata J. Effects of low-intensity exercise on contractile property of skeletal muscle and the number of motor neurons in diabetic rats. Anat Sci Int 2024; 99:106-117. [PMID: 37768514 DOI: 10.1007/s12565-023-00741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
The mode of diabetes-induced muscle and motor neuron damage depends on the type of muscle and motor neuron. One of the purposes of exercise therapy for diabetes is to improve blood glucose levels; however, information on the effects of low-intensity exercise on muscle and motor neuron disorders remain unknown. Therefore, this study aimed to examine the effects of low-intensity exercise on diabetes-induced muscle and motor neuron damage in a rat model of type 1 diabetes mellitus. We subjected adult male Wistar rats treated with streptozotocin to develop type 1 diabetes and age-matched rats to low-intensity treadmill exercise for 12 weeks. We recorded electrically evoked maximum twitch tension in leg muscles, and examined the number of motor neurons and cell body sizes. Low-intensity exercise ameliorated the prolonged half-relaxation time and the decreased numbers of the retrograde-labeled motor neurons observed in the soleus muscle of type 1 diabetic rats. However, no effect was observed in the diabetic group, as atrophy was not improved and the twitch force in the medial gastrocnemius muscle was decreased in the diabetic group. In addition, there was no improvement in the blood glucose levels after exercise. These data indicate that low-intensity exercise may relieve the onset of muscle and motor neuron damage in the soleus muscle of type 1 diabetic rats.
Collapse
Affiliation(s)
- Toru Tamaki
- Department of Physical Therapy, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan.
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-Town, Yamanashi, 401-0380, Japan.
| | - Ken Muramatsu
- Department of Physical Therapy, Kyorin University, 5-4-1 Simorenzyaku, Mitaka-City, Tokyo, 181-8612, Japan
| | - Masako Ikutomo
- Department of Physical Therapy, University of Tokyo Health Sciences, 4-11 Ochiai, Tama-City, Tokyo, 206-0003, Japan
| | - Junya Komagata
- Department of Physical Therapy, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan
| |
Collapse
|
22
|
Park SS, Kim SH, Kim BK, Shin MS, Jeong HT, Park JS, Kim TW. Treadmill exercise ameliorates chemotherapy-induced memory impairment through Wnt/β-catenin signaling pathway. J Exerc Rehabil 2023; 19:314-319. [PMID: 38188132 PMCID: PMC10766450 DOI: 10.12965/jer.2346594.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Doxorubicin (DOX) is a widely used chemotherapy drug for various cancers and it is known to induce cognitive impairment. The aim of this study was to investigate the effect of treadmill exercise on chemotherapy-induced memory impairment. We assessed whether DOX affects inflammation, mitochondrial Ca2+ retention capacity, and Wnt/β-catenin signaling. Male Sprague-Dawley rats were divided into control group, exercise group, DOX-injection group, and DOX-injection and exercise group. To create a DOX-induced memory impairment model, animals were injected intraperitoneally with DOX (2 mg/kg) dissolved in saline solution once a week for 4 weeks. Treadmill exercise was performed once a day, 5 days a week, for 8 consecutive weeks. Short-term memory was determined using the step-down avoidance test. Western blot was performed for the proinflammatory cytokines, Wnt/β-catenin signaling, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB) in the hippocampus. Mitochondrial Ca2+ retention capacity in the hippocampus was also measured. DOX-injection rats showed deterioration of short-term memory along with decreased expression of BDNF and TrkB in the hippocampus. Levels of the proinflammatory cytokines, tumor necrosis factor-α and interleukin-6, were increased in the DOX-injection rats. Wnt/β-catenin signaling was activated and mitochondrial Ca2+ retention capacity was decreased in the DOX-injection rats. However, treadmill exercise alleviated short-term memory impairment, decreased proinflammatory cytokines, increased BDNF and TrkB expression, and enhanced mitochondrial Ca2+ retention capacity. Treadmill exercise restorated Wnt/β-catenin signaling pathway. This study demonstrated that treadmill exercise can be used for patients undergoing chemotherapy with DOX.
Collapse
Affiliation(s)
- Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Sang-Hoon Kim
- Department of Sport and Health Sciences, College of Art and Culture, Sangmyung University, Seoul,
Korea
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ,
USA
| | - Bo-Kyun Kim
- Department of Emergency Technology, College of Health Science, Gachon University, Incheon,
Korea
| | - Mal-Soon Shin
- Division of Global Sport Studies, College of Culture and Sports, Korea University, Sejong,
Korea
| | - Hyun-Tae Jeong
- Division of Global Sport Studies, College of Culture and Sports, Korea University, Sejong,
Korea
| | - Jong-Suk Park
- Division of Global Sport Studies, College of Culture and Sports, Korea University, Sejong,
Korea
| | - Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju,
Korea
| |
Collapse
|
23
|
Aldridge CM, Braun R, Keene KL, Hsu FC, Worrall BB. Single Nucleotide Polymorphisms Associated With Motor Recovery in Patients With Nondisabling Stroke: GWAS Study. Neurology 2023; 101:e2114-e2125. [PMID: 37813584 PMCID: PMC10663021 DOI: 10.1212/wnl.0000000000207716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Despite notable advances in genetic understanding of stroke recovery, most studies focus only on candidate genes. To date, only 2 genome-wide association studies (GWAS) have focused on stroke outcomes, but they were limited to the modified Rankin Scale (mRS). The mRS maps poorly to biological processes. Therefore, we performed a GWAS to discover single nucleotide polymorphisms (SNPs) associated with motor recovery poststroke. METHODS We used the Vitamin Intervention for Stroke Prevention (VISP) data set of 2,100 genotyped participants with nondisabling stroke. We included only participants who had motor impairment at randomization. Participants with a recurrent stroke during the trial were excluded. Genotyped data underwent strict quality control and imputation. The GWAS used logistic regression models with generalized estimating equations to leverage the repeated NIH Stroke Scale motor score measurements spanning 6 time points over 24 months. The primary outcome was a decrease in the motor drift score of ≥1 vs <1 at each time point. Our model estimated the odds ratio (OR) of motor improvement for each SNP after adjusting for age, sex, race, days from stroke to visit, initial motor score, VISP treatment arm, and principal components. RESULTS A total of 488 (64%) participants with a mean (SD) age of 66 ± 11 years were included in the GWAS. Although no associations reached genome-wide significance (p < 5 × 10-8), our analysis detected 115 suggestive associations (p < 5 × 10-6). Notably, we found multiple SNP clusters near genes with plausible neuronal repair biology mechanisms. The CLDN23 gene had the most convincing association with rs1268196-T as its most significant SNP (OR 0.32; 95% CI 0.21-0.48; p value 6.19 × 10-7). CLDN23 affects blood-brain barrier integrity, neurodevelopment, and immune cell transmigration. DISCUSSION We identified novel suggestive genetic associations with the first-ever motor-specific poststroke recovery GWAS. The results seem to describe a distinct stroke recovery phenotype compared with prior genetic stroke outcome studies that use outcome measures, such as the mRS. Replication and further mechanistic investigation are warranted. In addition, this study demonstrated a proof-of-principle approach to optimize statistical efficiency with longitudinal data sets for genetic discovery.
Collapse
Affiliation(s)
- Chad M Aldridge
- From the Department of Neurology (C.M.A., B.B.W.) and Center for Public Health Genomics (K.L.K., B.B.W.), University of Virginia, Charlottesville; Department of Neurology (R.B.), University of Maryland, Baltimore; Department of Biology (K.L.K.) and Center for Health Disparities, Brody School of Medicine (K.L.K.), East Carolina University, Greenville, NC; and Department of Biostatistics and Data Science (F.-C.H.), Wake Forest University School of Medicine, Winston-Salem, NC.
| | - Robynne Braun
- From the Department of Neurology (C.M.A., B.B.W.) and Center for Public Health Genomics (K.L.K., B.B.W.), University of Virginia, Charlottesville; Department of Neurology (R.B.), University of Maryland, Baltimore; Department of Biology (K.L.K.) and Center for Health Disparities, Brody School of Medicine (K.L.K.), East Carolina University, Greenville, NC; and Department of Biostatistics and Data Science (F.-C.H.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Keith L Keene
- From the Department of Neurology (C.M.A., B.B.W.) and Center for Public Health Genomics (K.L.K., B.B.W.), University of Virginia, Charlottesville; Department of Neurology (R.B.), University of Maryland, Baltimore; Department of Biology (K.L.K.) and Center for Health Disparities, Brody School of Medicine (K.L.K.), East Carolina University, Greenville, NC; and Department of Biostatistics and Data Science (F.-C.H.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Fang-Chi Hsu
- From the Department of Neurology (C.M.A., B.B.W.) and Center for Public Health Genomics (K.L.K., B.B.W.), University of Virginia, Charlottesville; Department of Neurology (R.B.), University of Maryland, Baltimore; Department of Biology (K.L.K.) and Center for Health Disparities, Brody School of Medicine (K.L.K.), East Carolina University, Greenville, NC; and Department of Biostatistics and Data Science (F.-C.H.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Bradford B Worrall
- From the Department of Neurology (C.M.A., B.B.W.) and Center for Public Health Genomics (K.L.K., B.B.W.), University of Virginia, Charlottesville; Department of Neurology (R.B.), University of Maryland, Baltimore; Department of Biology (K.L.K.) and Center for Health Disparities, Brody School of Medicine (K.L.K.), East Carolina University, Greenville, NC; and Department of Biostatistics and Data Science (F.-C.H.), Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
24
|
Hayashi K, Lesnak JB, Plumb AN, Janowski AJ, Smith AF, Hill JK, Sluka KA. Brain-derived neurotrophic factor contributes to activity-induced muscle pain in male but not female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565022. [PMID: 37961342 PMCID: PMC10635076 DOI: 10.1101/2023.10.31.565022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Activity-induced muscle pain increases release of interleukin-1β (IL-1β) in muscle macrophages and the development of pain is prevented by blockade of IL-1β. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1β and mediates both inflammatory and neuropathic pain. Thus, we hypothesized that metabolites released during fatiguing muscle contractions activate macrophages to release IL-1β, which subsequently activate sensory neurons to secrete BDNF. To test this hypothesis, we used an animal model of activity-induced pain induced by repeated intramuscular acidic saline injections combined with fatiguing muscle contractions. Intrathecal or intramuscular injection of inhibitors of BDNF-Tropomyosin receptor kinase B (TrkB) signaling, ANA-12 or TrkB-Fc, reduced the decrease in muscle withdrawal thresholds in male, but not in female, mice when given before or 24hr after, but not 1 week after induction of the model. BDNF messenger ribonucleic acid (mRNA) was significantly increased in L4-L6 dorsal root ganglion (DRG), but not the spinal dorsal horn or gastrocnemius muscle, 24hr after induction of the model in either male or female mice. No changes in TrkB mRNA or p75 neurotrophin receptor mRNA were observed. BDNF protein expression via immunohistochemistry was significantly increased in L4-L6 spinal dorsal horn and retrogradely labelled muscle afferent DRG neurons, at 24hr after induction of the model in both sexes. In cultured DRG, fatigue metabolites combined with IL-1β significantly increased BDNF expression in both sexes. In summary, fatigue metabolites release, combined with IL-1β, BDNF from primary DRG neurons and contribute to activity-induced muscle pain only in males, while there were no sex differences in the changes in expression observed in BDNF.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N. Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Adam J. Janowski
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Angela F. Smith
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joslyn K. Hill
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
Li Y, Patel M, Baroudi J, Wu M, Gatti S, Liang M, Wipf P, Badawi Y, Meriney SD. A cross-sectional study of ageing at the mouse neuromuscular junction and effects of an experimental therapeutic approach for dynapenia. J Physiol 2023; 601:4135-4150. [PMID: 37606613 DOI: 10.1113/jp284749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Despite prior efforts to understand and target dynapenia (age-induced loss of muscle strength), this condition remains a major challenge that reduces the quality of life in the aged population. We have focused on the neuromuscular junction (NMJ) where changes in structure and function have rarely been systematically studied as a dynamic and progressive process. Our cross-sectional study found neurotransmission at the male mouse NMJ to be biphasic, displaying an early increase followed by a later decrease, and this phenotype was associated with structural changes to the NMJ. A cross-sectional characterization showed that age-induced alterations fell into four age groups: young adult (3-6 months), adult (7-18 months), early aged (19-24 months), and later aged (25-30 months). We then utilized a small molecule therapeutic candidate, GV-58, applied acutely during the later aged stage to combat age-induced reductions in transmitter release by increasing calcium influx during an action potential, which resulted in a significant increase in transmitter release. This comprehensive study of neuromuscular ageing at the NMJ will enable future research to target critical time points for therapeutic intervention. KEY POINTS: Age-induced frailty and falls are the leading causes of injury-related death and are caused by an age-induced loss of muscle strength due to a combination of neurological and muscular changes. A cross-sectional approach was used to study age-induced changes to the neuromuscular junction in a mouse model, and physiological changes that were biphasic over the ageing time course were found. Changes in physiology at the neuromuscular junction were correlated with alterations in neuromuscular junction morphology. An acutely applied positive allosteric gating modifier of presynaptic voltage-gated calcium channels was tested as a candidate therapeutic strategy that could increase transmitter release at aged neuromuscular junctions. These results provide a detailed time course of age-induced changes at the neuromuscular junction in a mouse model and test a candidate therapeutic strategy for weakness.
Collapse
Affiliation(s)
- Y Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Patel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Baroudi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Wu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Gatti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Liang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - P Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Badawi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen D Meriney
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Evancho A, Tyler WJ, McGregor K. A review of combined neuromodulation and physical therapy interventions for enhanced neurorehabilitation. Front Hum Neurosci 2023; 17:1151218. [PMID: 37545593 PMCID: PMC10400781 DOI: 10.3389/fnhum.2023.1151218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Rehabilitation approaches for individuals with neurologic conditions have increasingly shifted toward promoting neuroplasticity for enhanced recovery and restoration of function. This review focuses on exercise strategies and non-invasive neuromodulation techniques that target neuroplasticity, including transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS), and peripheral nerve stimulation (PNS). We have chosen to focus on non-invasive neuromodulation techniques due to their greater potential for integration into routine clinical practice. We explore and discuss the application of these interventional strategies in four neurological conditions that are frequently encountered in rehabilitation settings: Parkinson's Disease (PD), Traumatic Brain Injury (TBI), stroke, and Spinal Cord Injury (SCI). Additionally, we discuss the potential benefits of combining non-invasive neuromodulation with rehabilitation, which has shown promise in accelerating recovery. Our review identifies studies that demonstrate enhanced recovery through combined exercise and non-invasive neuromodulation in the selected patient populations. We primarily focus on the motor aspects of rehabilitation, but also briefly address non-motor impacts of these conditions. Additionally, we identify the gaps in current literature and barriers to implementation of combined approaches into clinical practice. We highlight areas needing further research and suggest avenues for future investigation, aiming to enhance the personalization of the unique neuroplastic responses associated with each condition. This review serves as a resource for rehabilitation professionals and researchers seeking a comprehensive understanding of neuroplastic exercise interventions and non-invasive neuromodulation techniques tailored for specific diseases and diagnoses.
Collapse
Affiliation(s)
- Alexandra Evancho
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William J. Tyler
- Department of Biomedical Engineering, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Physical Medicine and Rehabilitation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Keith McGregor
- Department of Clinical and Diagnostic Studies, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
27
|
Goltash S, Stevens SJ, Topcu E, Bui TV. Changes in synaptic inputs to dI3 INs and MNs after complete transection in adult mice. Front Neural Circuits 2023; 17:1176310. [PMID: 37476398 PMCID: PMC10354275 DOI: 10.3389/fncir.2023.1176310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is a debilitating condition that disrupts the communication between the brain and the spinal cord. Several studies have sought to determine how to revive dormant spinal circuits caudal to the lesion to restore movements in paralyzed patients. So far, recovery levels in human patients have been modest at best. In contrast, animal models of SCI exhibit more recovery of lost function. Previous work from our lab has identified dI3 interneurons as a spinal neuron population central to the recovery of locomotor function in spinalized mice. We seek to determine the changes in the circuitry of dI3 interneurons and motoneurons following SCI in adult mice. Methods After a complete transection of the spinal cord at T9-T11 level in transgenic Isl1:YFP mice and subsequent treadmill training at various time points of recovery following surgery, we examined changes in three key circuits involving dI3 interneurons and motoneurons: (1) Sensory inputs from proprioceptive and cutaneous afferents, (2) Presynaptic inhibition of sensory inputs, and (3) Central excitatory glutamatergic synapses from spinal neurons onto dI3 INs and motoneurons. Furthermore, we examined the possible role of treadmill training on changes in synaptic connectivity to dI3 interneurons and motoneurons. Results Our data suggests that VGLUT1+ inputs to dI3 interneurons decrease transiently or only at later stages after injury, whereas levels of VGLUT1+ remain the same for motoneurons after injury. Levels of VGLUT2+ inputs to dI3 INs and MNs may show transient increases but fall below levels seen in sham-operated mice after a period of time. Levels of presynaptic inhibition to VGLUT1+ inputs to dI3 INs and MNs can rise shortly after SCI, but those increases do not persist. However, levels of presynaptic inhibition to VGLUT1+ inputs never fell below levels observed in sham-operated mice. For some synaptic inputs studied, levels were higher in spinal cord-injured animals that received treadmill training, but these increases were observed only at some time points. Discussion These results suggest remodeling of spinal circuits involving spinal interneurons that have previously been implicated in the recovery of locomotor function after spinal cord injury in mice.
Collapse
|
28
|
Park SY, Hwang BO, Song NY. The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 2023; 56:365-373. [PMID: 37291054 PMCID: PMC10390289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscleto-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer. [BMB Reports 2023; 56(7): 365-373].
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
29
|
Keikhaei R, Abdi E, Darvishi M, Ghotbeddin Z, Hamidabadi HG. Combined treatment of high-intensity interval training with neural stem cell generation on contusive model of spinal cord injury in rats. Brain Behav 2023; 13:e3043. [PMID: 37165750 PMCID: PMC10338768 DOI: 10.1002/brb3.3043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) leads to inflammation, axonal degeneration, and gliosis. A combined treatment of exercise and neural stem cells (NSC) has been proposed to improve neural repair. This study evaluated a combined treatment of high-intensity interval training (HIIT) with NSC generation from adipose-derived stem cells (ADSCs) on a contusive model of SCI in rats. MATERIALS AND METHODS In vitro, rat ADSCs were isolated from the perinephric regions of Sprague-Dawley rats using enzymatic digestion. The ADSCs were transdifferentiated into neurospheres using B27, EGF, and bFGF. After production of NSC, they were labeled using green fluorescent protein (GFP). For the in vivo study, rats were divided into eight groups: control group, sham operation group, sham operation + HIIT group, sham operation + NSC group, SCI group, SCI + HIIT group, SCI + NSC group, and SCI/HIIT/NSC group. Laminectomy was carried out at the T12 level using the impactor system. HIIT was performed three times per week. To assess behavioral function, the Basso-Beattie-Bresnahan (BBB) locomotor test and H-reflex was carried out once a week for 12 weeks. We examined glial fibrillary acidic protein (GFAP), S100β, and NF200 expression. RESULTS NSC transplantation, HIIT and combined therapy with NSC transplantation, and the HIIT protocol improved locomotor function with decreased maximum H to maximum M reflexes (H/M ratio) and increased the Basso-Beattie-Bresnahan score. CONCLUSION Combined therapy in contused rats using the HIIT protocol and neurosphere-derived NSC transplantation improves functional and histological outcomes.
Collapse
Affiliation(s)
- Reza Keikhaei
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Elahe Abdi
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Marzieh Darvishi
- Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
- Department of Anatomy, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Zohreh Ghotbeddin
- Department of Physiology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
- Stem Cell and Transgenic Technology Research CenterShahid Chamran University of AhvazAhvazIran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Immunogenetic Research CenterDepartment of Anatomy & Cell Biology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| |
Collapse
|
30
|
Park SY, Hwang BO, Song NY. The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 2023; 56:365-373. [PMID: 37291054 PMCID: PMC10390289 DOI: 10.5483/bmbrep.2023-0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 09/22/2023] Open
Abstract
Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscleto-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer. [BMB Reports 2023; 56(7): 365-373].
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
31
|
Sleijser-Koehorst MLS, Koop MA, Coppieters MW, Lutke Schipholt IJ, Radisic N, Hooijmans CR, Scholten-Peeters GGM. The effects of aerobic exercise on neuroimmune responses in animals with traumatic peripheral nerve injury: a systematic review with meta-analyses. J Neuroinflammation 2023; 20:104. [PMID: 37138291 PMCID: PMC10155410 DOI: 10.1186/s12974-023-02777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Increasing pre-clinical evidence suggests that aerobic exercise positively modulates neuroimmune responses following traumatic nerve injury. However, meta-analyses on neuroimmune outcomes are currently still lacking. This study aimed to synthesize the pre-clinical literature on the effects of aerobic exercise on neuroimmune responses following peripheral nerve injury. METHODS MEDLINE (via Pubmed), EMBASE and Web of Science were searched. Controlled experimental studies on the effect of aerobic exercise on neuroimmune responses in animals with a traumatically induced peripheral neuropathy were considered. Study selection, risk of bias assessment and data extraction were performed independently by two reviewers. Results were analyzed using random effects models and reported as standardized mean differences. Outcome measures were reported per anatomical location and per class of neuro-immune substance. RESULTS The literature search resulted in 14,590 records. Forty studies were included, reporting 139 comparisons of neuroimmune responses at various anatomical locations. All studies had an unclear risk of bias. Compared to non-exercised animals, meta-analyses showed the following main differences in exercised animals: (1) in the affected nerve, tumor necrosis factor-α (TNF-α) levels were lower (p = 0.003), while insulin-like growth factor-1 (IGF-1) (p < 0.001) and Growth Associated Protein 43 (GAP43) (p = 0.01) levels were higher; (2) At the dorsal root ganglia, brain-derived neurotrophic factor (BDNF)/BDNF mRNA levels (p = 0.004) and nerve growth factor (NGF)/NGF mRNA (p < 0.05) levels were lower; (3) in the spinal cord, BDNF levels (p = 0.006) were lower; at the dorsal horn, microglia (p < 0.001) and astrocyte (p = 0.005) marker levels were lower; at the ventral horn, astrocyte marker levels (p < 0.001) were higher, and several outcomes related to synaptic stripping were favorably altered; (4) brainstem 5-HT2A receptor levels were higher (p = 0.001); (5) in muscles, BDNF levels (p < 0.001) were higher and TNF-α levels lower (p < 0.05); (6) no significant differences were found for systemic neuroimmune responses in blood or serum. CONCLUSION This review revealed widespread positive modulatory effects of aerobic exercise on neuroimmune responses following traumatic peripheral nerve injury. These changes are in line with a beneficial influence on pro-inflammatory processes and increased anti-inflammatory responses. Given the small sample sizes and the unclear risk of bias of the studies, results should be interpreted with caution.
Collapse
Affiliation(s)
- Marije L S Sleijser-Koehorst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| | - Meghan A Koop
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Michel W Coppieters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
- Menzies Health Institute Queensland, Griffith University, Brisbane and Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Brisbane and Gold Coast, Australia
| | - Ivo J Lutke Schipholt
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam University Medical Centre, Location VUmc, Amsterdam, The Netherlands
| | - Nemanja Radisic
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gwendolyne G M Scholten-Peeters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Legrand FD, Chaouloff F, Ginoux C, Ninot G, Polidori G, Beaumont F, Murer S, Jeandet P, Pelissolo A. [Exercise for the promotion of mental health II: Putative mechanisms, recommendations, and scientific challenges]. L'ENCEPHALE 2023; 49:296-303. [PMID: 37105781 DOI: 10.1016/j.encep.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 04/29/2023]
Abstract
The idea of applying various forms of physical activity for the betterment of physical health and the reduction of chronic medical conditions is ubiquitous. Despite evidence of successful applications of physical activity for improvement of mental health dating back to antiquity, it has until recent years remained unconventional to consider exercise as an intervention strategy for various mental health conditions. The past two decades, however, have seen a relative explosion of interest in understanding and applying various programs and forms of exercise to improve mental health. Here, our purpose is to provide a comprehensive and updated overview of the application of exercise as a strategy for improving mental health. In the present paper we first summarize contemporary research regarding short- and long-term impacts of exercise on mental health. Then an overview of the putative mechanisms and neurobiological bases underpinning the beneficial effects of exercise is provided. Finally, we suggest directions for future research as well as a series of concrete recommendations for clinicians who wish to prescribe physical activity as part of patient mental health management.
Collapse
Affiliation(s)
- Fabien D Legrand
- Université de Reims Champagne Ardenne, laboratoire cognition santé société (EA 6291), Reims, France.
| | | | - Clément Ginoux
- Université de Grenoble-Alpes, laboratoire sport en environnement social (SENS), Grenoble-Alpes, France
| | - Gregory Ninot
- Université de Montpellier, institut Debrest d'épidémiologie et de santé publique - Inserm, Montpellier, France
| | | | - Fabien Beaumont
- Université de Reims Champagne Ardenne, laboratoire MATIM, Reims, France
| | - Sébastien Murer
- Université de Reims Champagne Ardenne, laboratoire MATIM, Reims, France
| | - Philippe Jeandet
- Université de Reims Champagne Ardenne, laboratoire résistance induite et bio-protection des plantes (USC INRAE 1488), Reims, France
| | - Antoine Pelissolo
- Service de psychiatrie sectorisée, Assistance Publique-Hôpitaux de Paris, GHU Mondor, université Paris Est Créteil, Créteil, France
| |
Collapse
|
33
|
Grzelak N, Krutki P, Bączyk M, Kaczmarek D, Mrówczyński W. Influence of altered serum and muscle concentrations of BDNF on electrophysiological properties of spinal motoneurons in wild-type and BDNF-knockout rats. Sci Rep 2023; 13:4571. [PMID: 36941445 PMCID: PMC10027728 DOI: 10.1038/s41598-023-31703-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
The purpose of this study was to determine whether altered serum and/or muscle concentrations of brain-derived neurotrophic factor (BDNF) can modify the electrophysiological properties of spinal motoneurons (MNs). This study was conducted in wild-type and Bdnf heterozygous knockout rats (HET, SD-BDNF). Rats were divided into four groups: control, knockout, control trained, and knockout trained. The latter two groups underwent moderate-intensity endurance training to increase BDNF levels in serum and/or hindlimb muscles. BDNF and other neurotrophic factors (NFs), including glial cell-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), nerve growth factor (NGF), and neurotrophin-4 (NT-4) were assessed in serum and three hindlimb muscles: the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (Sol). The concentrations of tropomyosin kinase receptor B (Trk-B), interleukin-15 (IL-15), and myoglobin (MYO/MB) were also evaluated in these muscles. The electrophysiological properties of lumbar MNs were studied in vivo using whole-cell current-clamp recordings. Bdnf knockout rats had reduced levels of all studied NFs in serum but not in hindlimb muscles. Interestingly, decreased serum NF levels did not influence the electrophysiological properties of spinal MNs. Additionally, endurance training did not change the serum concentrations of any of the NFs tested but significantly increased BDNF and GDNF levels in the TA and MG muscles in both trained groups. Furthermore, the excitability of fast MNs was reduced in both groups of trained rats. Thus, changes in muscle (but not serum) concentrations of BDNF and GDNF may be critical factors that modify the excitability of spinal MNs after intense physical activity.
Collapse
Affiliation(s)
- Norbert Grzelak
- Department of Neurobiology, Poznań University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland
| | - Piotr Krutki
- Department of Neurobiology, Poznań University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland
| | - Dominik Kaczmarek
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - Włodzimierz Mrówczyński
- Department of Neurobiology, Poznań University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland.
| |
Collapse
|
34
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
35
|
Chiba S, Asano H, Moriya S, Hatakeyama T, Kobayashi S, Ohta R, Kawaguchi M. Bidirectional effects of voluntary exercise on the expression of Bdnf isoforms in the hippocampus of Hatano rat strains displaying different activity levels. Neuropsychopharmacol Rep 2023; 43:126-131. [PMID: 36649932 PMCID: PMC10009423 DOI: 10.1002/npr2.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Brain-derived neurotrophic factor has functional mRNA isoforms, whose expression is assumed to mediate the beneficial effects of exercise in neuropsychiatric disorders. This study aims to reveal the mechanism of intensity-dependent effects of voluntary exercise, focusing on the expression of Bdnf mRNA isoforms in Hatano rats. Animals with different voluntary activity were housed in cages with a locked or unlocked wheel for 5 weeks. The expression levels of Bdnf isoforms and the corresponding coding sequences (CDS) were measured in the hippocampus using real-time polymerase chain reaction (PCR). We found that exercise increased the expression of Bdnf isoform containing exon 1 in the high-intensity-running strain and decreased the expressions of Bdnf exon 1, 3, 6, 7, 8, and 9a in mild-intensity-running animal. The expression of Bdnf CDS was increased by exercise in both strains. These results suggest that expressions of Bdnf isoforms depend on the intensities of voluntary exercise, but the involvement of subjects' genetic background could not be excluded. Our finding also implies that the bidirectional effects of exercise may not be mediated via the final product of Bdnf.
Collapse
Affiliation(s)
- Shuichi Chiba
- Laboratory of Physiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari City, Japan
| | - Hikaru Asano
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Taichi Hatakeyama
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture, Meiji University, Kawasaki, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki, Japan
| | - Shohei Kobayashi
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture, Meiji University, Kawasaki, Japan.,Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki, Japan
| | - Ryo Ohta
- Hatano Research Institute, Food and Drug Safety Center, Hadano, Japan
| | - Maiko Kawaguchi
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
36
|
Ranjan R, Jha S, Prajjwal P, Chaudhary A, Dudeja P, Vora N, Mateen MA, Yousuf MA, Chaudhary B. Neurological, Psychiatric, and Multisystemic Involvement of Fragile X Syndrome Along With Its Pathophysiology, Methods of Screening, and Current Treatment Modalities. Cureus 2023; 15:e35505. [PMID: 37007359 PMCID: PMC10050793 DOI: 10.7759/cureus.35505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 03/01/2023] Open
Abstract
Fragile X syndrome (FXS) is a hereditary disease that predominantly leads to intellectual disability (ID) in boys. It is the second prominent cause of ID, which manifests as a result of the atypical development of the cytosine-guanine-guanine (CGG) region. This irregular extension of the CGG region gives rise to methylation and silencing of the fragile X mental retardation 1 (FMR1) gene, causing a loss of the fragile X mental retardation 1 protein (FMRP). This reduction or loss of FMRP is the main cause of ID. It has a multisystemic involvement showing neuropsychiatric features such as ID, speech and language delay, autism spectrum disorder, sensory hyperarousal, social anxiety, abnormal eye contact, shyness, and aggressive behaviour. It is also known to cause musculoskeletal symptoms, ocular symptoms, cardiac abnormalities, and gastrointestinal symptoms. The management is challenging, and there is no known cure for the disease; hence an early diagnosis of the condition is needed through prenatal screening offered to couples with familial history of ID before conception. The management rests on non-pharmacological modalities, including applied behaviour analysis, physical therapy, occupational therapy, speech-language therapy, and pharmacologic management through symptomatic treatment of comorbid behaviours and psychiatric problems and some forms of targeted therapy.
Collapse
|
37
|
Carpenter RE, Sabirzhanov B, Summers TR, Clark TG, Keifer J, Summers CH. Anxiolytic reversal of classically conditioned / chronic stress-induced gene expression and learning in the Stress Alternatives Model. Behav Brain Res 2023; 440:114258. [PMID: 36521572 PMCID: PMC9872777 DOI: 10.1016/j.bbr.2022.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Social decision-making is critically influenced by neurocircuitries that regulate stress responsiveness. Adaptive choices, therefore, are altered by stress-related neuromodulatory peptide systems, such as corticotropin releasing factor (CRF). Experimental designs that take advantage of ecologically salient fear-inducing stimuli allow for revelation of neural mechanisms that regulate the balance between pro- and anti-stress responsiveness. To accomplish this, we developed a social stress and conditioning protocol, the Stress Alternatives Model (SAM), that utilizes a simple dichotomous choice, and produces distinctive behavioral phenotypes (Escape or Stay). The experiments involve repeated social aggression, a potent unconditioned stimulus (US), from a novel larger conspecific (a 3X larger Rainbow trout). Prior to the social interaction, the smaller test fish is presented with an auditory conditioning stimulus (water off = CS). During the social aggression, an escape route is available, but is only large enough for the smaller test animal. Surprisingly, although the new aggressor provides vigorous attacks each day, only 50% of the test fish choose Escape. Stay fish, treated with the CRF1 antagonist antalarmin, a potent anxiolytic drug, on day 4, promotes Escape behavior for the last 4 days of the SAM protocol. The results suggest that the decision to Escape, required a reduction in stress reactivity. The Stay fish that chose Escape following anxiolytic treatment, learned how to use the escape route prior to stress reduction, as the Escape latency in these fish was significantly faster than first time escapers. In Escape fish, the use of the escape route is learned over several days, reducing the Escape latency over time in the SAM. Fear conditioning (water off + aggression) resulted in elevated hippocampal (DL) Bdnf mRNA levels, with coincident reduction in the AMPA receptor subunit Glua1 expression, a result that is reversed following a one-time treatment (during SAM aggression on day 4) with the anxiolytic CRF1 receptor antagonist antalarmin.
Collapse
Affiliation(s)
- Russ E Carpenter
- University Writing Program, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Boris Sabirzhanov
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Timothy G Clark
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA.
| |
Collapse
|
38
|
Aldridge CM, Robynne B, Keene KL, Hsu FC, Sale MM, Worrall BB. Post Stroke Motor Recovery Genome Wide Association Study: A Domain-Specific Approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.16.23286040. [PMID: 36824973 PMCID: PMC9949212 DOI: 10.1101/2023.02.16.23286040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND In this genome wide association study (GWAS) we aimed to discover single nucleotide polymorphisms (SNPs) associated with motor recovery post-stroke. METHODS We used the Vitamin Intervention for Stroke Prevention (VISP) dataset of 2,100 genotyped patients with non-disabling stroke. Of these, 488 patients had motor impairment at enrollment. Genotyped data underwent strict quality control and imputation. The GWAS utilized logistic regression models with generalized estimating equations (GEE) to leverage the repeated NIH Stroke Scale (NIHSS) motor score measurements spanning 6 time points over 24 months. The primary outcome was a decrease in the motor drift score of ≥ 1 vs. < 1 at each timepoint. Our model estimated the odds ratio of motor improvement for each SNP after adjusting for age, sex, race, days from stroke to visit, initial motor score, VISP treatment arm, and principal components. RESULTS Although no associations reached genome-wide significance (p < 5 × 10 -8 ), our analysis detected 115 suggestive associations (p < 5 × 10 -6 ). Notably, we found multiple SNP clusters near genes with plausible neuronal repair biology mechanisms. The CLDN23 gene had the most convincing association which affects blood-brain barrier integrity, neurodevelopment, and immune cell transmigration. CONCLUSION We identified novel suggestive genetic associations with the first ever motor-specific post stroke recovery GWAS. The results seem to describe a distinct stroke recovery phenotype compared to prior genetic stroke outcome studies that use outcome measures, like the mRS. Replication and further mechanistic investigation are warranted. Additionally, this study demonstrated a proof-of-principle approach to optimize statistical efficiency with longitudinal datasets for genetic discovery.
Collapse
|
39
|
The Role of Physical Exercise and Rehabilitative Implications in the Process of Nerve Repair in Peripheral Neuropathies: A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13030364. [PMID: 36766469 PMCID: PMC9914426 DOI: 10.3390/diagnostics13030364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The various mechanisms involved in peripheral nerve regeneration, induced by exercise and electrical nerve stimulation, are still unclear. OBJECTIVE The aim of this review was to summarize the influence of physical exercise and/or electrical stimulation on peripheral nerve repair and regeneration and the variation of impact of intervention depending on timing, as well as kind and dosage of the intervention. A literature survey was conducted on PubMed, Scopus, and Web of Science, between February 2021 to July 2021, with an update in September 2022. METHODOLOGY The literature search identified 101,386 articles with the keywords: "peripheral nerve" OR "neuropathy" AND "sprouting" OR "neuroapraxia" OR "axonotmesis" OR "neurotmesis" OR "muscle denervation" OR "denervated muscle" AND "rehabilitation" OR "physical activity" OR "physical exercise" OR "activity" OR "electrical stimulation". A total of 60 publications were included. Eligible studies were focused on evaluating the process of nerve repair (biopsy, electromyographic parameters or biomarker outcomes) after electrical stimulation or physical exercise interventions on humans or animals with peripheral sensory or motor nerve injury. SYNTHESIS This study shows that the literature, especially regarding preclinical research, is mainly in agreement that an early physical program with active exercise and/or electrical stimulation promotes axonal regenerative responses and prevents maladaptive response. This was evaluated by means of changes in electrophysiological recordings of CMAPs for latency amplitude, and the sciatic functional index (SFI). Furthermore, this type of activity can cause an increase in weight and in muscle fiber diameter. Nevertheless, some detrimental effects of exercising and electrical stimulation too early after nerve repair were recorded. CONCLUSION In most preclinical studies, peripheral neuropathy function was associated with improvements after physical exercise and electrical stimulation. For humans, too little research has been conducted on this topic to reach a complete conclusion. This research supports the need for future studies to test the validity of a possible rehabilitation treatment in humans in cases of peripheral neuropathy to help nerve sprouting.
Collapse
|
40
|
BDNF Spinal Overexpression after Spinal Cord Injury Partially Protects Soleus Neuromuscular Junction from Disintegration, Increasing VAChT and AChE Transcripts in Soleus but Not Tibialis Anterior Motoneurons. Biomedicines 2022; 10:biomedicines10112851. [DOI: 10.3390/biomedicines10112851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
After spinal cord transection (SCT) the interaction between motoneurons (MNs) and muscle is impaired, due to reorganization of the spinal network after a loss of supraspinal inputs. Rats subjected to SCT, treated with intraspinal injection of a AAV-BDNF (brain-derived neurotrophic factor) construct, partially regained the ability to walk. The central effects of this treatment have been identified, but its impact at the neuromuscular junction (NMJ) has not been characterized. Here, we compared the ability of NMJ pre- and postsynaptic machinery in the ankle extensor (Sol) and flexor (TA) muscles to respond to intraspinal AAV-BDNF after SCT. The gene expression of cholinergic molecules (VAChT, ChAT, AChE, nAChR, mAChR) was investigated in tracer-identified, microdissected MN perikarya, and in muscle fibers with the use of qPCR. In the NMJs, a distribution of VAChT, nAChR and Schwann cells was studied by immunofluorescence, and of synaptic vesicles and membrane active zones by electron microscopy. We showed partial protection of the Sol NMJs from disintegration, and upregulation of the VAChT and AChE transcripts in the Sol, but not the TA MNs after spinal enrichment with BDNF. We propose that the observed discrepancy in response to BDNF treatment is an effect of difference in the TrkB expression setting BDNF responsiveness, and of BDNF demands in Sol and TA muscles.
Collapse
|
41
|
Pérez-Martinez IO, Cifuentes-Mendiola SE, Solis-Suarez DL, García-Hernández AL. Moderate intensity aerobic training reduces the signs of peripheral sensitization in a mouse model of type 2 diabetes mellitus. Exp Brain Res 2022; 240:2747-2756. [PMID: 36063191 DOI: 10.1007/s00221-022-06453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/27/2022] [Indexed: 11/27/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health problem for many reasons including the comorbidities, such as diabetic neuropathy (DPN), which is the most common. It has been suggested that aerobic training can improve metabolic health in individuals with T2DM. Still, the effect of aerobic training on DPN signs and its relationship with serum levels of tumor necrosis tumor alpha (TNF-α), an essential molecule in T2DM development, is unknown. We evaluated the effect of two intensities of aerobic training in adult male C57BL/6 mice divided into six groups: sedentary control (CTRL), control with low-intensity training (CTRL-LI), control with moderate-intensity training (CTRL-MI), T2DM sedentary (T2DM), T2DM with low-intensity training (T2DM-LI), and T2DM with moderate-intensity training (T2DM-MI). We induced the T2DM model by combining a hypercaloric diet and low doses of streptozotocin. We measured serum TNF-α levels and correlated them with peripheral sensitization and the cardinal signs of T2DM in mice. Moderate intensity aerobic training decreased the symptoms of DPN and improved metabolic health in T2DM. Interestingly, decreased TNF-α serum levels correlated with reduced peripheral thermal sensitivity and mechanical sensitivity by aerobic training. Moderate intensity aerobic training counteracts the development and symptoms of DPN and improve metabolic health in T2DM. Decreased TNF-α correlates with reduced peripheral thermal sensitivity and mechanical sensitivity by aerobic training.
Collapse
Affiliation(s)
- Isaac O Pérez-Martinez
- Sección de neurobiología de las Sensaciones y Movimientos orales, Laboratorio de Investigación Odontologica, Clínica Universitaria de Salud Integral Almaraz FES Iztacala, UNAM. Av. Jiménez Gallardo SN, San Sebastián Xhala, CP 54714, Cuautitlán Izcalli, Estado de México, México
| | - Saul E Cifuentes-Mendiola
- Sección de osteoinmunología e inmunidad oral, Laboratorio de investigación Odontológica, Clínica Universitaria de Salud Integral Almaraz FES Iztacala, UNAM. Av. Jiménez Gallardo SN, San Sebastián Xhala, CP 54714, Cuautitlán Izcalli, Estado de México, México
| | - Diana L Solis-Suarez
- Sección de osteoinmunología e inmunidad oral, Laboratorio de investigación Odontológica, Clínica Universitaria de Salud Integral Almaraz FES Iztacala, UNAM. Av. Jiménez Gallardo SN, San Sebastián Xhala, CP 54714, Cuautitlán Izcalli, Estado de México, México
| | - Ana L García-Hernández
- Sección de osteoinmunología e inmunidad oral, Laboratorio de investigación Odontológica, Clínica Universitaria de Salud Integral Almaraz FES Iztacala, UNAM. Av. Jiménez Gallardo SN, San Sebastián Xhala, CP 54714, Cuautitlán Izcalli, Estado de México, México.
| |
Collapse
|
42
|
Rentería I, García-Suárez PC, Fry AC, Moncada-Jiménez J, Machado-Parra JP, Antunes BM, Jiménez-Maldonado A. The Molecular Effects of BDNF Synthesis on Skeletal Muscle: A Mini-Review. Front Physiol 2022; 13:934714. [PMID: 35874524 PMCID: PMC9306488 DOI: 10.3389/fphys.2022.934714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family which is generated mainly by the brain. Its main role involve synaptic modulation, neurogenesis, neuron survival, immune regulation, myocardial contraction, and angiogenesis in the brain. Together with the encephalon, some peripheral tissues synthesize BDNF like skeletal muscle. On this tissue, this neurotrophin participates on cellular mechanisms related to muscle function maintenance and plasticity as reported on recent scientific works. Moreover, during exercise stimuli the BDNF contributes directly to strengthening neuromuscular junctions, muscle regeneration, insulin-regulated glucose uptake and β-oxidation processes in muscle tissue. Given its vital relevance on many physiological mechanisms, the current mini-review focuses on discussing up-to-date knowledge about BDNF production in skeletal muscle and how this neurotrophin impacts skeletal muscle biology.
Collapse
Affiliation(s)
- I Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - P C García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico.,Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - A C Fry
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - J Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | - J P Machado-Parra
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - B M Antunes
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - A Jiménez-Maldonado
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| |
Collapse
|
43
|
Samejima S, Henderson R, Pradarelli J, Mondello SE, Moritz CT. Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury. Exp Neurol 2022; 357:114178. [PMID: 35878817 DOI: 10.1016/j.expneurol.2022.114178] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023]
Abstract
Spinal cord injuries lead to permanent physical impairment despite most often being anatomically incomplete disruptions of the spinal cord. Remaining connections between the brain and spinal cord create the potential for inducing neural plasticity to improve sensorimotor function, even many years after injury. This narrative review provides an overview of the current evidence for spontaneous motor recovery, activity-dependent plasticity, and interventions for restoring motor control to residual brain and spinal cord networks via spinal cord stimulation. In addition to open-loop spinal cord stimulation to promote long-term neuroplasticity, we also review a more targeted approach: closed-loop stimulation. Lastly, we review mechanisms of spinal cord neuromodulation to promote sensorimotor recovery, with the goal of advancing the field of rehabilitation for physical impairments following spinal cord injury.
Collapse
Affiliation(s)
- Soshi Samejima
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Richard Henderson
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jared Pradarelli
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Chet T Moritz
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Center for Neurotechnology, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Arabzadeh E, Reza Rahimi A, Zargani M, Feyz Simorghi Z, Emami S, Sheikhi S, Zaeri Amirani Z, Yousefi P, Sarshin A, Aghaei F, Feizollahi F. Resistance exercise promotes functional test via sciatic nerve regeneration, and muscle atrophy improvement through GAP-43 regulation in animal model of traumatic nerve injuries. Neurosci Lett 2022; 787:136812. [PMID: 35872241 DOI: 10.1016/j.neulet.2022.136812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Resistance training improves muscle strength through a combination of neural plasticity and muscle hypertrophy. This study aimed to evaluate the effects of resistance exercise on sciatic nerve regeneration and histology, growth-associated protein 43 (GAP-43) expressions, and soleus muscle atrophy following traumatic nerve injuries in Wistar rats. In the present study, 40 male Wistar rats were randomly assigned into four groups: healthy control (HC) as a sham group was exposed to the surgical procedures without any sciatic nerve compression, lesioned control (LC), resistance training (RT,non-lesioned), and lesioned rats+RT (LRT) (n=10 in each). The RT group performed a resistance-training program 5 days/week for 4 weeks. Sciatic functional index (SFI) score, beam score and Basso, Beattie, and Bresnahan (BBB) score decreased and the hot plate time increased significantly in the LC group compared to the HC (p<0.05) group. However, the LRT group showed a significant increase in the SFI score (p=0.001) and a significant decrease in hot plate time (p=0.0232) compared to the LC group. The LC group also showed neurological morphological damage and muscle atrophy and a decrease in GAP-43 in nerve tissue. In comparison to the LC group, a significant increase in sciatic nerve caliber, diameter, number of muscle fibers, and the expression of GAP-43 (p<0.05) was observed in the LRT group. Doing resistance training even for four weeks seems to affect sciatic nerve lesions and injuries. It can also repair and regenerate nerve tissue by upregulating GAP-43 expression, improving motor behavioral tests, and controlling muscle atrophy.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Reza Rahimi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Feyz Simorghi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Shaghayegh Emami
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Sahar Sheikhi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Zaeri Amirani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Parisa Yousefi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Fariba Aghaei
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Foad Feizollahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
45
|
Rodocker HI, Bordbar A, Larson MJE, Biltz RG, Wangler L, Fadda P, Godbout JP, Tedeschi A. Breaking Mental Barriers Promotes Recovery After Spinal Cord Injury. Front Mol Neurosci 2022; 15:868563. [PMID: 35875670 PMCID: PMC9301320 DOI: 10.3389/fnmol.2022.868563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Functional recovery after spinal cord injury (SCI) often proves difficult as physical and mental barriers bar survivors from enacting their designated rehabilitation programs. We recently demonstrated that adult mice administered gabapentinoids, clinically approved drugs prescribed to mitigate chronic neuropathic pain, recovered upper extremity function following cervical SCI. Given that rehabilitative training enhances neuronal plasticity and promotes motor recovery, we hypothesized that the combination of an aerobic-based rehabilitation regimen like treadmill training with gabapentin (GBP) administration will maximize recovery in SCI mice by strengthening synaptic connections along the sensorimotor axis. Whereas mice administered GBP recovered forelimb functions over the course of weeks and months following SCI, no additive forelimb recovery as the result of voluntary treadmill training was noted in these mice. To our surprise, we also failed to find an additive effect in mice administered vehicle. As motivation is crucial in rehabilitation interventions, we scored active engagement toward the rehabilitation protocol and found that mice administered GBP were consistently participating in the rehabilitation program. In contrast, mice administered vehicle exhibited a steep decline in participation, especially at chronic time points. Whereas neuroinflammatory gene expression profiles were comparable between experimental conditions, we discovered that mice administered GBP had increased hippocampal neurogenesis and exhibited less anxiety-like behavior after SCI. We also found that an external, social motivator effectively rescues participation in mice administered vehicle and promotes forelimb recovery after chronic SCI. Thus, not only does a clinically relevant treatment strategy preclude the deterioration of mental health after chronic SCI, but group intervention strategies may prove to be physically and emotionally beneficial for SCI individuals.
Collapse
Affiliation(s)
- Haven I. Rodocker
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Arman Bordbar
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Molly J. E. Larson
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Rebecca G. Biltz
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Lynde Wangler
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Paolo Fadda
- Department of Cancer Biology, The Ohio State University, Columbus, OH, United States
| | - Jonathan P. Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, United States
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
46
|
Effect of combined locomotor training and aerobic exercise on increasing handgrip strength in elderly with locomotive syndrome: A randomised controlled trial. Ann Med Surg (Lond) 2022; 78:103800. [PMID: 35734655 PMCID: PMC9207023 DOI: 10.1016/j.amsu.2022.103800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
Background Elderly with the locomotive syndrome is at high risk for fall and fractures. Thus multimodal therapy is needed to minimize the risk. Objective Analyzing the effect of combined locomotor training and aerobic exercise on muscle strength in elderly with locomotive syndrome stage 1. Methods This study used a pre-test and post-test design with 20 participants (treatment group = 10 participants and control group = 10 participants). The treatment group was given combined locomotor training and aerobic exercise, while the control group was only given aerobic exercise for eight weeks. Locomotor training was provided three times/week with progressive increase of set and repetition at each activity. Meanwhile, aerobic exercise was given seven times/week for 30 min per session. Participants were examined for muscle strength (handgrip strength) before and after the intervention. The analysis included paired t-test and an independent t-test with a p-value <0.05. Results The participants' mean age was 73.85 ± 4.75 years, with treatment group = 75.4 ± 4.88 years and control group = 72.3 ± 4.30 years (t = 1.508; 95% CI = −1.220 – 7420; p = 0.149). The HGS values in the treatment group were 13.89 ± 5.27 (pre-test) and 19.06 ± 4.54 (post-test; t = 11.765; 95% CI = −6.164 to −4.176; p < 0.001). Meanwhile, the HGS values in the control group at pre-test and post-test were 11.27 ± 2.17 and 13.03 ± 2.54, respectively (t = 2.057; 95% CI = −1.600 – 0.076; p = 0.070). The ΔHGS values of treatment and control group were 5.17 ± 1.39 and 1.76 ± 2.07, respectively (t = 4.329; 95% CI = 1.755–5.065; p < 0.001). Conclusion Combined locomotor training and aerobic exercise have increased muscle strength, as proven by increased handgrip strength. Combined locomotor training and aerobic exercise minimize fall risk and fracture in the elderly. Combined locomotor training and aerobic exercise are effective for the management of locomotive syndrome stage 1. Combined locomotor training and aerobic exercise reduce the GLFS-25 score.
Collapse
|
47
|
Claes M, De Groef L, Moons L. The DREADDful Hurdles and Opportunities of the Chronic Chemogenetic Toolbox. Cells 2022; 11:1110. [PMID: 35406674 PMCID: PMC8998042 DOI: 10.3390/cells11071110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
The chronic character of chemogenetics has been put forward as one of the assets of the technique, particularly in comparison to optogenetics. Yet, the vast majority of chemogenetic studies have focused on acute applications, while repeated, long-term neuromodulation has only been booming in the past few years. Unfortunately, together with the rising number of studies, various hurdles have also been uncovered, especially in relation to its chronic application. It becomes increasingly clear that chronic neuromodulation warrants caution and that the effects of acute neuromodulation cannot be extrapolated towards chronic experiments. Deciphering the underlying cellular and molecular causes of these discrepancies could truly unlock the chronic chemogenetic toolbox and possibly even pave the way for chemogenetics towards clinical application. Indeed, we are only scratching the surface of what is possible with chemogenetic research. For example, most investigations are concentrated on behavioral read-outs, whereas dissecting the underlying molecular signature after (chronic) neuromodulation could reveal novel insights in terms of basic neuroscience and deregulated neural circuits. In this review, we highlight the hurdles associated with the use of chemogenetic experiments, as well as the unexplored research questions for which chemogenetics offers the ideal research platform, with a particular focus on its long-term application.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| | - Lies De Groef
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
- Laboratory of Cellular Communication and Neurodegeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
48
|
Power KE, Lockyer EJ, Botter A, Vieira T, Button DC. Endurance-exercise training adaptations in spinal motoneurones: potential functional relevance to locomotor output and assessment in humans. Eur J Appl Physiol 2022; 122:1367-1381. [PMID: 35226169 DOI: 10.1007/s00421-022-04918-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
It is clear from non-human animal work that spinal motoneurones undergo endurance training (chronic) and locomotor (acute) related changes in their electrical properties and thus their ability to fire action potentials in response to synaptic input. The functional implications of these changes, however, are speculative. In humans, data suggests that similar chronic and acute changes in motoneurone excitability may occur, though the work is limited due to technical constraints. To examine the potential influence of chronic changes in human motoneurone excitability on the acute changes that occur during locomotor output, we must develop more sophisticated recording techniques or adapt our current methods. In this review, we briefly discuss chronic and acute changes in motoneurone excitability arising from non-human and human work. We then discuss the potential interaction effects of chronic and acute changes in motoneurone excitability and the potential impact on locomotor output. Finally, we discuss the use of high-density surface electromyogram recordings to examine human motor unit firing patterns and thus, indirectly, motoneurone excitability. The assessment of single motor units from high-density recording is mainly limited to tonic motor outputs and minimally dynamic motor output such as postural sway. Adapting this technology for use during locomotor outputs would allow us to gain a better understanding of the potential functional implications of endurance training-induced changes in human motoneurone excitability on motor output.
Collapse
Affiliation(s)
- Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada. .,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.,PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Taian Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.,PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
49
|
Park SS, Park HS, Kim CJ, Baek SS, Park SY, Anderson CP, Kim MK, Park IR, Kim TW. Combined effects of Aerobic exercise and 40Hz light flicker exposure on early cognitive impairments in Alzheimer's disease of 3xTg mice. J Appl Physiol (1985) 2022; 132:1054-1068. [PMID: 35201933 DOI: 10.1152/japplphysiol.00751.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative brain disease and the primary cause of dementia. At an early stage, AD is generally characterized by short-term memory impairment, owing to dysfunctions of the cortex and hippocampus. We previously reported that a combination of exercise and 40 Hz light flickering can protect against AD-related neuroinflammation, gamma oscillations, reduction in Aβ, and cognitive decline. Therefore, we sought to extend our previous findings to the 5-month-old 3xTg-AD mouse model to examine whether the same favorable effects occur in earlier stages of cognitive dysfunction. We investigated the effects of 12 weeks of exercise combined with 40-Hz light flickering on cognitive function by analyzing neuroinflammation, mitochondrial function, and neuroplasticity in the hippocampus in a 3xTg-AD mouse model. 5-month-old 3xTg-AD mice performed 12 weeks of exercise with 40-Hz light flickering administered independently and in combination. Spatial learning and memory, long-term memory, hippocampal Aβ, tau, neuroinflammation, pro-inflammatory cytokine expression, mitochondrial function, and neuroplasticity, were analyzed. Aβ and tau proteins levels were significantly reduced in the early stage of AD, resulting in protection against cognitive decline by reducing neuroinflammation and pro-inflammatory cytokines. Furthermore, mitochondrial function improved, apoptosis was reduced, and synapse-related protein expression increased. Overall, exercise with 40-Hz light flickering was significantly more effective than exercise or 40-Hz light flickering alone, and the improvement was comparable to the levels in the non-transgenic aged-match control group. Our results indicate a synergistic effect of exercise and 40-Hz light flickering on pathological improvements in the hippocampus during early AD associated cognitive impairment.
Collapse
Affiliation(s)
- Sang-Seo Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Hye-Sang Park
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Seung-Soo Baek
- Department of Exercise and Health Science, Sangmyung University, Seoul, Republic of Korea
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Cody Philip Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Myung-Ki Kim
- Division of Global Sport Studies, Korea University, Sejong, Republic of Korea
| | - Ik-Ryeul Park
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Woon Kim
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
50
|
Effects of photoperiod and diet on BDNF daily rhythms in diurnal sand rats. Behav Brain Res 2022; 418:113666. [PMID: 34808195 DOI: 10.1016/j.bbr.2021.113666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), its receptors and epigenetic modulators, are implicated in the pathophysiology of affective disorders, T2DM and the circadian system function. We used diurnal sand rats, which develop type 2 diabetes (T2DM), anxiety and depressive-like behavior under laboratory conditions. The development of these disorders is accelerated when animals are maintained under short photoperiod (5:19L:D, SP) compared to neutral photoperiod (12:12L:D, NP). We compared rhythms in plasma BDNF as well as BDNF and PER2 expression in the frontal cortex and suprachiasmatic nucleus (SCN) of sand rats acclimated to SP and NP. Acclimation to SP resulted in higher insulin levels, significantly higher glucose levels in the glucose tolerance test, and significantly higher anxiety- and depression-like behaviors compared with animals acclimated to NP. NP Animals exhibited a significant daily rhythm in plasma BDNF levels with higher levels during the night, and in BDNF expression levels in the frontal cortex and SCN. No significant BDNF rhythm was found in the plasma, frontal cortex or SCN of SP acclimated animals. We propose that in sand rats, BDNF may, at least in part, mediate the effects of circadian disruption on the development of anxiety and depressive-like behavior and T2DM.
Collapse
|