1
|
Flores-Méndez LC, Gómez-Gil B, Guerrero A, Hernández C. Effects of Dietary Agavin on the Gut Microbiota of the Nile Tilapia (Oreochromis niloticus) Reared at High Densities. Curr Microbiol 2024; 81:386. [PMID: 39358608 DOI: 10.1007/s00284-024-03919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
High-density stress can lead to dysbiotic microbiota, affecting the organism's metabolic, and protective functions. Agavin is a fructan with prebiotic properties that regulate the gut microbiota by promoting the growth of beneficial bacteria. This study evaluated the effect of agavin on the gut microbiota using Next-Generation Sequencing (NGS) and its correlation with the growth parameters. Four groups of fish were fed different diets: a control diet (negative and positive control), without agavin supplementation, and two experimental diets supplemented with agavin at 20 g kg-1 and 40 g kg-1. Nile tilapias (1.04 g ± 0.01 g) were fed for 110 days. After 90 days of feeding, fish were subjected to high-density stress (63 kg m-3) for 20 days, except for the negative control. NGS detected 1579 different operational taxonomic units in the samples. In the correlation analysis of growth parameters, the families Vibrionaceae and Methyloligillaceae showed a positive correlation with fish growth parameters, these results may serve to know the relation of agavin and microbiota on the growth performance, as well as the metabolic activities of families in tilapia. Furthermore, high-density stress and agavin supplementation modify the gut microbiota in tilapia. At a low-density, supplementation with 20 g kg-1 agavin promoted the growth of the potentially beneficial families Sphingomonadaceae, Oxalobacteriaceae, and Chitinophagaceae; at high densities, reduced the abundance of pathogenic families (Vibrionaceae and Aeromonadaceae). These results suggest that, under stress conditions, agavin can stimulate the growth of potentially beneficial bacteria and reduce the growth of potentially pathogenic bacteria, suggesting its potential use as a prebiotic in aquaculture.
Collapse
Affiliation(s)
- Lizeth C Flores-Méndez
- Centro de Investigación en Alimentación y Desarrollo A.C., Av. Sábalo Cerritos S/N., 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo A.C., Av. Sábalo Cerritos S/N., 82112, Mazatlán, Sinaloa, Mexico
| | - Abraham Guerrero
- Centro de Investigación en Alimentación y Desarrollo A.C., Av. Sábalo Cerritos S/N., 82112, Mazatlán, Sinaloa, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| | - Crisantema Hernández
- Centro de Investigación en Alimentación y Desarrollo A.C., Av. Sábalo Cerritos S/N., 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
2
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
3
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10326-z. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
4
|
Franco-Robles E, Hernández-Granados MJ. Effects of dietary supplementation of cobiotic based on Agave fructans on growth performance, blood parameters, oxidative damage and immune status of broiler. Trop Anim Health Prod 2024; 56:215. [PMID: 39004693 DOI: 10.1007/s11250-024-04059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
This study evaluated the effect of cobiotic (CO) composed of organic fructans powder of Agave tequilana and turmeric powder of Curcuma longa L. as an alternative of antibiotic growth promoters (AGPs) on growth performance, blood parameters, intestinal pH, oxidative stress, and cytokines serum levels of broiler chickens. A total of 135 one-day-old Ross 308 broilers distributed to five experimental groups, which included starter or finisher standard diets without AGPs (CON), CON + 0.25 COLI-ZIN g/kg feed (AGP), CON + 0.1 g Agave fructans/kg feed (AF), CON + 0.5 g turmeric powder/kg feed (TP) and CON + 0.1 g AF + 0.5 g TP /kg feed (CO), for 49 days. AF followed by TP, decreased feed intake, obtaining the best FCR. AGP increased the heterophil-lymphocyte ratio compared to other groups. CO significantly decreased the pH of the cecal content. AF increased IL-10 levels, while TP decreased it. AF decreased the IL-1β levels. The present study showed that including a cobiotic based on AF and TP or components separately in a broilers diet improved growth performance, modified intestinal and cecum pH, and stimulated the immune system, which suggests CO as a safe alternative to AGP.
Collapse
Affiliation(s)
- Elena Franco-Robles
- Department of Veterinary and Animal Science, Division of Life Sciences, Campus Irapuato-Salamanca, University of Guanajuato, Ex Hacienda el Copal km 9, Carretera Irapuato-Silao ap 311, Irapuato, Guanajuato, 36500, Mexico.
| | - María José Hernández-Granados
- Interinstitutional Master's Degree in Livestock Production, Division of Life Sciences, Campus Irapuato-Salamanca, University of Guanajuato, Guanajuato, México
| |
Collapse
|
5
|
Ghali ENHK, Pranav, Chauhan SC, Yallapu MM. Inulin-based formulations as an emerging therapeutic strategy for cancer: A comprehensive review. Int J Biol Macromol 2024; 259:129216. [PMID: 38185294 PMCID: PMC10922702 DOI: 10.1016/j.ijbiomac.2024.129216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cancer stands as the second leading cause of death in the United States (US). Most chemotherapeutic agents exhibit severe adverse effects that are attributed to exposure of drugs to off-target tissues, posing a significant challenge in cancer therapy management. In recent years, inulin, a naturally occurring prebiotic fiber has gained substantial attention for its potential in cancer treatment owing to its multitudinous health values. Its distinctive structure, stability, and nutritional properties position it as an effective adjuvant and carrier for drug delivery in cancer therapy. To address some of the above unmet clinical issues, this review summarizes the recent efforts towards the development of inulin-based nanomaterials and nanocomposites for healthcare applications with special emphasis on the multifunctional role of inulin in cancer therapy as a synergist, signaling molecule, immunomodulatory and anticarcinogenic molecule. Furthermore, the review provides a concise overview of ongoing clinical trials and observational studies associated with inulin-based therapy. In conclusion, the current review offers insights on the significant role of inulin interventions in exploring its potential as a therapeutic agent to treat cancer.
Collapse
Affiliation(s)
- Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Pranav
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
6
|
Vasfilova ES. Fructose-Containing Plant Carbohydrates: Biological Activities and Medical Applications. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 512:343-353. [PMID: 38087025 DOI: 10.1134/s0012496623700655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 12/18/2023]
Abstract
The review considers the chemical structure specifics and distribution in plants for fructose-containing carbohydrates (fructans). Various biological activities were observed in fructans and associated with their physicochemical features. Fructans affect many physiological and biochemical processes in the human body, improving health and reducing the risk of various disorders. Prebiotic activity is the most important physiological function of fructans. Fructans improve the microflora composition in the colon and intestinal mucosa by increasing the content of useful bacteria and decreasing the content of potentially harmful microorganisms, stimulate the physiological functions of the microflora, and provide for a better state of the intestine and a better health status. By modifying the intestinal microbiota and utilizing certain additional mechanisms, fructans can favorably affect the immune function, decrease the risk of various inflammatory processes, and to reduce the likelihood of tumorigenesis due to exposure to carcinogens. Fructans improve carbohydrate and lipid metabolism by reducing the blood levels of glucose, total cholesterol, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) and increasing the blood content of high-density lipoprotein (HLD). Fructans are low in calories, and their use in foods reduces the risk of obesity. Fructans facilitate higher calcium absorption and increase the bone density, thus reducing the risk of osteoporosis. Fructants protect the body from oxidative stress, intestinal infections, and parasitic invasions.
Collapse
Affiliation(s)
- E S Vasfilova
- Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia.
| |
Collapse
|
7
|
Jaswal AS, Elangovan R, Mishra S. Synthesis and molecular characterization of levan produced by immobilized Microbacterium paraoxydans. J Biotechnol 2023; 373:63-72. [PMID: 37451319 DOI: 10.1016/j.jbiotec.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
In this study, we report high molecular weight (HMW) levan production by whole cells of Microbacterium paraoxydans, previously reported to be a good producer of fructooligosaccharides. Structural analysis of the extracellularly produced fructan indicated the glycosidic bonds between the adjacent fructose to be of β-(2, 6) linkage with over 90% of the fructan to have molecular weight around 2 × 108 Da and 10% with a molecular weight of ∼20 kDa. Immobilization of the cells in Ca-alginate led to the production of 44.6 g/L levan with a yield of 0.29 g/g sucrose consumed. Factors affecting the conversion rate were identified by One-Factor-At-a-Time (OFAT) analysis and the combination of these (initial sucrose concentration of 400 g/L, 100 mM buffer pH 7, the temperature of 37 °C and 20 mM CaCl2) led to the production of ∼129 g/L of levan with a yield of ∼0.41 g/g sucrose consumed and volumetric productivity of 1.8 g/L/h.
Collapse
Affiliation(s)
- Avijeet Singh Jaswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India.
| |
Collapse
|
8
|
Pitirollo O, Grimaldi M, Corradini C, Pironi S, Cavazza A. HPAEC-PAD Analytical Evaluation of Carbohydrates Pattern for the Study of Technological Parameters Effects in Low-FODMAP Food Production. Molecules 2023; 28:molecules28083564. [PMID: 37110798 PMCID: PMC10143781 DOI: 10.3390/molecules28083564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND "FODMAPs" (fermentable-oligo-, di-, monosaccharides, and polyols) are a group of fermentable carbohydrates and polyols largely diffused in food products. Despite their beneficial effects as prebiotics, people affected by irritable bowel syndrome manifest symptoms when eating these carbohydrates. A low-FODMAP diet seems to be the only possible therapy proposed for symptom management. Bakery products are a common source of FODMAPs, whose pattern and total amount can be affected by their processing. This work aims at studying some of the technological parameters that can influence the FODMAPs pattern in bakery products during the production process. METHODS high-performance anion exchange chromatography coupled to a pulsed amperometric detector (HPAEC-PAD) was used as a highly selective system for carbohydrates evaluation analyses on flours, doughs, and crackers. These analyses were performed using two different columns, the CarboPac PA200 and CarboPac PA1, which are selective for oligosaccharide and simple sugar separation, respectively. RESULTS emmer and hemp flours were selected to prepare doughs as they contained low oligosaccharide content. Two different mixes of ferments were used at different times of fermentation to evaluate the best conditions to achieve low-FODMAP crackers. CONCLUSION the proposed approach allows carbohydrate evaluation during crackers processing and permits the selection of opportune conditions to obtain low-FODMAP products.
Collapse
Affiliation(s)
- Olimpia Pitirollo
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Maria Grimaldi
- Dipartimento di Ingegneria e Architettura, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Claudio Corradini
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Serena Pironi
- BRU.PI srl, Via Berlino, 91, 47822 Santarcangelo di Romagna, Italy
| | - Antonella Cavazza
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
9
|
García-Villalba WG, Rodríguez-Herrera R, Ochoa-Martínez LA, Rutiaga-Quiñones OM, Gallegos-Infante JA, González-Herrera SM. Agave fructans: a review of their technological functionality and extraction processes. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1265-1273. [PMID: 36936110 PMCID: PMC10020391 DOI: 10.1007/s13197-022-05375-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/12/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
Fructans are a polydisperse mixture of fructose polymers generally bound to a glucose molecule, in recent years, interest in their use has grown, either as a potential ingredient in functional foods or for their technological properties. The diversity of its applications lies in its structure and origin. Until now, the scientific approach has been more focused on inulin-type fructans and not so much on the effect of those of mixed branched structure as agave fructans. These have a complex structure with the presence of β (2 - 1) and β (2 - 6) bonds that give it prebiotic properties. In this context, a review is made of the general processes of extraction of agave fructans, as well as their technological functionality in the obtaining of base structures for the development of food products.
Collapse
Affiliation(s)
- Wendy Guadalupe García-Villalba
- Departamentos de Ingenierías Química y Bioquímica, Tecnológico Nacional De México/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango, Dgo, México
| | - Raúl Rodríguez-Herrera
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza e Ing. José Cárdenas S/N Col. Republica Saltillo Coahuila, Saltillo, Mexico
| | - Luz Araceli Ochoa-Martínez
- Departamentos de Ingenierías Química y Bioquímica, Tecnológico Nacional De México/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango, Dgo, México
| | - Olga Miriam Rutiaga-Quiñones
- Departamentos de Ingenierías Química y Bioquímica, Tecnológico Nacional De México/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango, Dgo, México
| | - José Alberto Gallegos-Infante
- Departamentos de Ingenierías Química y Bioquímica, Tecnológico Nacional De México/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango, Dgo, México
| | - Silvia Marina González-Herrera
- Departamentos de Ingenierías Química y Bioquímica, Tecnológico Nacional De México/Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango, Dgo, México
| |
Collapse
|
10
|
Moroșan E, Secareanu AA, Musuc AM, Mititelu M, Ioniță AC, Ozon EA, Raducan ID, Rusu AI, Dărăban AM, Karampelas O. Comparative Quality Assessment of Five Bread Wheat and Five Barley Cultivars Grown in Romania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11114. [PMID: 36078830 PMCID: PMC9517766 DOI: 10.3390/ijerph191711114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Cereals whole grains contain vitamins, phytochemicals, antioxidants, resistant starch, and minerals with potential benefits to human health. The consumption of whole grains is correlated with a lowered risk of the most important chronic diseases, including type II diabetes, cardiovascular diseases, and some cancers. This study aimed to characterize and evaluate the content of five cultivars of wheat (Triticum aestivum L.) and five cultivars of barley (Hordeum vulgare L.) obtained by conventional plant breeding using crossing and selection methods. The novelty and the purpose of this research was to quantitatively and qualitatively analyze these ten cultivars from Romania and to show the importance of, and the changes produced by, crossing and selection methods when these are aimed at the physiological or morphological development of the cultivars. Studies based on gluten dosing; spectrophotometry using Bradford, fructan and protein dosing; Kjeldahl protein dosing; GC-MS/MS-protein and amino acid dosing; and identification of protein fractions using polyacrylamide gel electrophoretic method were conducted. This study demonstrates the possibility of developing future cultivars using conventional methods of improvement to modify the content and composition of nutrients to increase their health benefits.
Collapse
Affiliation(s)
- Elena Moroșan
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Ana Andreea Secareanu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Ana Corina Ioniță
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Ionuț Daniel Raducan
- Faculty of Pharmacy, “Vasile Goldiș” Western University of Arad, 86 Liviu Rebreanu Street, 310045 Arad, Romania
| | - Andreea Ioana Rusu
- Faculty of Pharmacy, “Vasile Goldiș” Western University of Arad, 86 Liviu Rebreanu Street, 310045 Arad, Romania
| | - Adriana Maria Dărăban
- Faculty of Pharmacy, “Vasile Goldiș” Western University of Arad, 86 Liviu Rebreanu Street, 310045 Arad, Romania
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| |
Collapse
|
11
|
Major N, Perković J, Palčić I, Bažon I, Horvat I, Ban D, Goreta Ban S. The Phytochemical and Nutritional Composition of Shallot Species (Allium × cornutum, Allium × proliferum and A. cepa Aggregatum) Is Genetically and Environmentally Dependent. Antioxidants (Basel) 2022; 11:antiox11081547. [PMID: 36009266 PMCID: PMC9405304 DOI: 10.3390/antiox11081547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Shallots are a perennial plant from the Alliaceae family, classified with the common onion under the name of the Allium cepa Aggregatum group. The term shallot is also used for diploid and triploid viviparous onions, known as Allium × proliferum (Moench) Schrad and Allium × cornutum Clementi ex Vis., respectively. In this study, we compared the dry matter, pyruvic acid content, sugar content, flavonoid content, antioxidant capacity and mineral composition of 34 shallot accessions falling into three shallot species (Allium × cornutum, Allium × proliferum and A. cepa Aggregatum). Shallot accessions belonging to the A.× cornutum and A. × proliferum groups are characterized by high dry matter content (around 25%), of which a little less than 50% is formed of inulin-type sugars, polysaccharides, considered an excellent prebiotic with beneficial effects on human health. On the other hand, accessions belonging to the A. cepa Aggregatum group have lower dry matter content and, as a result, lower pungency (measured as pyruvic acid content), making them more suitable for fresh consumption by a broader range of consumers, but, at the same time, abundant in phenolic compounds, especially quercetin and isorhamnetin glycosides. We also observed a greater biodiversity among accessions within the A. cepa Aggregatum group in all the analyzed physico-chemical parameters compared to the other shallot groups. The investigated shallot accessions have an excellent in vitro antioxidant capacity, as well as excellent nutritional properties.
Collapse
Affiliation(s)
- Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
- Correspondence: (N.M.); (S.G.B.)
| | - Josipa Perković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
| | - Igor Palčić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Iva Bažon
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Ivana Horvat
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
| | - Dean Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52210 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
- Correspondence: (N.M.); (S.G.B.)
| |
Collapse
|
12
|
Qiu Z, Qiao Y, Zhang B, Sun-Waterhouse D, Zheng Z. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships. Compr Rev Food Sci Food Saf 2022; 21:3033-3095. [PMID: 35765769 DOI: 10.1111/1541-4337.12972] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
Garlic is a common food, and many of its biological functions are attributed to its components including functional carbohydrates. Garlic polysaccharides and oligosaccharides as main components are understudied but have future value due to the growing demand for bioactive polysaccharides/oligosaccharides from natural sources. Garlic polysaccharides have molecular weights of 1 × 103 to 2 × 106 Da, containing small amounts of pectins and fructooligosaccharides and large amounts of inulin-type fructans ((2→1)-linked β-d-Fruf backbones alone or with attached (2→6)-linked β-d-Fruf branched chains). This article provides a detailed review of research progress and identifies knowledge gaps in extraction, production, composition, molecular characteristics, structural features, physicochemical properties, bioactivities, and structure-function relationships of garlic polysaccharides/oligosaccharides. Whether the extraction processes, synthesis approaches, and modification methods established for other non-garlic polysaccharides are also effective for garlic polysaccharides/oligosaccharides (to preserve their desired molecular structures and bioactivities) requires verification. The metabolic processes of ingested garlic polysaccharides/oligosaccharides (as food ingredients/dietary supplements), their modes of action in healthy humans or populations with chronic conditions, and molecular/chain organization-bioactivity relationships remain unclear. Future research directions related to garlic polysaccharides/oligosaccharides are discussed.
Collapse
Affiliation(s)
- Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yiteng Qiao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
13
|
Kang JW, Tang X, Walton CJ, Brown MJ, Brewer RA, Maddela RL, Zheng JJ, Agus JK, Zivkovic AM. Multi-Omic Analyses Reveal Bifidogenic Effect and Metabolomic Shifts in Healthy Human Cohort Supplemented With a Prebiotic Dietary Fiber Blend. Front Nutr 2022; 9:908534. [PMID: 35782954 PMCID: PMC9248813 DOI: 10.3389/fnut.2022.908534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Dietary fiber, a nutrient derived mainly from whole grains, vegetables, fruits, and legumes, is known to confer a number of health benefits, yet most Americans consume less than half of the daily recommended amount. Convenience and affordability are key factors determining the ability of individuals to incorporate fiber-rich foods into their diet, and many Americans struggle to access, afford, and prepare foods rich in fiber. The objective of this clinical study was to test the changes in microbial community composition, human metabolomics, and general health markers of a convenient, easy to use prebiotic supplement in generally healthy young participants consuming a diet low in fiber. Twenty healthy adults participated in this randomized, placebo-controlled, double-blind, crossover study which was registered at clinicaltrials.gov as NCT03785860. During the study participants consumed 12 g of a prebiotic fiber supplement and 12 g of placebo daily as a powder mixed with water as part of their habitual diet in randomized order for 4 weeks, with a 4-week washout between treatment arms. Fecal microbial DNA was extracted and sequenced by shallow shotgun sequencing on an Illumina NovaSeq. Plasma metabolites were detected using liquid chromatography–mass spectrometry with untargeted analysis. The phylum Actinobacteria, genus Bifidobacterium, and several Bifidobacterium species (B. bifidum, B. adolescentis, B. breve, B. catenulatum, and B. longum) significantly increased after prebiotic supplementation when compared to the placebo. The abundance of genes associated with the utilization of the prebiotic fiber ingredients (sacA, xfp, xpk) and the production of acetate (poxB, ackA) significantly changed with prebiotic supplementation. Additionally, the abundance of genes associated with the prebiotic utilization (xfp, xpk), acetate production (ackA), and choline to betaine oxidation (gbsB) were significantly correlated with changes in the abundance of the genus Bifidobacterium in the prebiotic group. Plasma concentrations of the bacterially produced metabolite indolepropionate significantly increased. The results of this study demonstrate that an easy to consume, low dose (12 g) of a prebiotic powder taken daily increases the abundance of beneficial bifidobacteria and the production of health-promoting bacteria-derived metabolites in healthy individuals with a habitual low-fiber diet.
Collapse
Affiliation(s)
- Jea Woo Kang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | | | - Mark J. Brown
- USANA Health Sciences, Inc., Salt Lake City, UT, United States
| | | | | | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joanne K. Agus
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Angela M. Zivkovic
| |
Collapse
|
14
|
Structural Characterization and In-Vitro Antioxidant and Immunomodulatory Activities of Polysaccharide Fractions Isolated from Artemisia annua L. Molecules 2022; 27:molecules27113643. [PMID: 35684579 PMCID: PMC9182033 DOI: 10.3390/molecules27113643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Arimisia annua L. is an important anticancer herb used in traditional Chinese medicine. The molecular basis underpinning the anticancer activity is complex and not fully understood, but the herbal polysaccharides, broadly recognised as having immunomodulatory, antioxidant and anticancer activities, are potential key active agents. To examine the functions of polysaccharides from A. annua, their immunomodulatory and antioxidant potentials were evaluated, as well as their structural characterization. The water-soluble polysaccharides (AAPs) were fractionated using size-exclusion chromatography to obtain three dominant fractions, AAP-1, AAP-2 and AAP-3, having molecular masses centered around 1684, 455 and 5.8kDa, respectively. The antioxidant potentials of the isolated polysaccharides were evaluated by measuring radical scavenging activities against DPPH● (2,2-diphenyl-1-picrylhydrazyl radical), ABTS●+ (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical ion), and the OH● (hydroxyl radical). AAP-1 displayed high antioxidant activities against these radicals, which were 68%, 73% and 78%, respectively. AAP-2 displayed lower scavenging activities than the other two fractions. Immunostimulatory activities of AAPs were measured using mouse macrophages. The three polysaccharide fractions displayed significant antioxidant activities and stimulated the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). AAP-1 showed significant immunostimulatory activity (16-fold increase in the production of IL-6 compared to the control and 13-fold increase in the production of TNF-α) with low toxicity (>60% cell viability at 125 μg/mL concentration). Preliminary structural characterization of the AAPs was carried out using gas chromatography (GC) and FTIR techniques. The results indicate that AAP-1 and AAP-2 are pyranose-containing polysaccharides with β-linkages, and AAP-3 is a β-fructofuranoside. The results suggest that these polysaccharides are potential candidates for immunotherapy and cancer treatment.
Collapse
|
15
|
Tian S, Wang J, Gao R, Wang J, Zhu W. Early-life galacto-oligosaccharides supplementation alleviates the small intestinal oxidative stress and dysfunction of lipopolysaccharide-challenged suckling piglets. J Anim Sci Biotechnol 2022; 13:70. [PMID: 35655292 PMCID: PMC9164537 DOI: 10.1186/s40104-022-00711-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Galacto-oligosaccharides (GOS) are non-digestible food ingredients that promote the growth of beneficial bacteria in the gut. This study investigated the protective effect of the early-life GOS supplement on the piglets' gut function against the oxidative stress induced by lipopolysaccharide (LPS)-challenge. METHODS Eighteen neonatal piglets were assigned to three groups including CON, LPS and LPS + GOS groups. The piglets in CON group and LPS group received physiological saline, while those in LPS + GOS group received GOS solution for 13 d after birth. On d 14, the piglets in LPS group and LPS + GOS group were injected with LPS solutions, while the piglets in CON group were injected with the same volume of physiological saline. RESULTS The results showed that the early-life GOS supplement blocked the LPS-induced reactive oxygen species (ROS) secretion, malondialdehyde (MDA) production and the increase of pro-apoptotic factor expression. Meanwhile, the early-life GOS supplement improved the activities of antioxidant enzymes, disaccharidase enzymes activities, and digestive enzymes activities, and increased the mRNA abundance of the gene related to nutrient digestion and absorption and the relative protein expression of tight junction. The study also showed that the early-life GOS supplement improved the expression of Hemeoxygenase-1 (HO-1) and NAD(P)H/quinone acceptor oxidoreductase-1 (NQO-1), and activated the AMP-activated protein kinase (AMPK). CONCLUSIONS These results suggested that GOS enhanced the gut function, reduced the ROS production and pro-apoptotic factors gene expression, and activated the AMPK signaling pathway in LPS-challenged piglets.
Collapse
Affiliation(s)
- Shiyi Tian
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jue Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Gao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
16
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
17
|
Tian S, Wang J, Gao R, Wang J, Zhu W. Galacto-oligosaccharides directly attenuate lipopolysaccharides-induced inflammatory response, oxidative stress and barrier impairment in intestinal epithelium. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Lemieszek MK, Komaniecka I, Chojnacki M, Choma A, Rzeski W. Immunomodulatory Properties of Polysaccharide-Rich Young Green Barley ( Hordeum vulgare) Extract and Its Structural Characterization. Molecules 2022; 27:1742. [PMID: 35268844 PMCID: PMC8911554 DOI: 10.3390/molecules27051742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells' ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention.
Collapse
Affiliation(s)
- Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
19
|
The Influence of Gut Microbiota on Neurogenesis: Evidence and Hopes. Cells 2022; 11:cells11030382. [PMID: 35159192 PMCID: PMC8834402 DOI: 10.3390/cells11030382] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Adult neurogenesis (i.e., the life-long generation of new neurons from undifferentiated neuronal precursors in the adult brain) may contribute to brain repair after damage, and participates in plasticity-related processes including memory, cognition, mood and sensory functions. Among the many intrinsic (oxidative stress, inflammation, and ageing), and extrinsic (environmental pollution, lifestyle, and diet) factors deemed to impact neurogenesis, significant attention has been recently attracted by the myriad of saprophytic microorganismal communities inhabiting the intestinal ecosystem and collectively referred to as the gut microbiota. A growing body of evidence, mainly from animal studies, reveal the influence of microbiota and its disease-associated imbalances on neural stem cell proliferative and differentiative activities in brain neurogenic niches. On the other hand, the long-claimed pro-neurogenic activity of natural dietary compounds endowed with antioxidants and anti-inflammatory properties (such as polyphenols, polyunsaturated fatty acids, or pro/prebiotics) may be mediated, at least in part, by their action on the intestinal microflora. The purpose of this review is to summarise the available information regarding the influence of the gut microbiota on neurogenesis, analyse the possible underlying mechanisms, and discuss the potential implications of this emerging knowledge for the fight against neurodegeneration and brain ageing.
Collapse
|
20
|
Liu C, Yang SY, Wang L, Zhou F. The gut microbiome: implications for neurogenesis and neurological diseases. Neural Regen Res 2022; 17:53-58. [PMID: 34100427 PMCID: PMC8451566 DOI: 10.4103/1673-5374.315227] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is an increasing recognition of the strong links between the gut microbiome and the brain, and there is persuasive evidence that the gut microbiome plays a role in a variety of physiological processes in the central nervous system. This review summarizes findings that gut microbial composition alterations are linked to hippocampal neurogenesis, as well as the possible mechanisms of action; the existing literature suggests that microbiota influence neurogenic processes, which can result in neurological disorders. We consider this evidence from the perspectives of neuroinflammation, microbial-derived metabolites, neurotrophins, and neurotransmitters. Based on the existing research, we propose that the administration of probiotics can normalize the gut microbiome. This could therefore also represent a promising treatment strategy to counteract neurological impairment.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan, China
| | - Shang-Yu Yang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan, China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fang Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Bermúdez‐Quiñones G, Ochoa‐Martínez LA, Gallegos‐Infante JA, Rutiaga‐Quiñones OM, Lara‐Ceniceros TE, Delgado‐Licon E, González‐Herrera SM. Synbiotic microcapsules using agavins and inulin as wall materials for
Lactobacillus casei
and
Bifidobacterium breve
: Viability, physicochemical properties, and resistance to in vitro oro‐gastrointestinal transit. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gabriela Bermúdez‐Quiñones
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Luz Araceli Ochoa‐Martínez
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - José Alberto Gallegos‐Infante
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Olga Miriam Rutiaga‐Quiñones
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Tania Ernestina Lara‐Ceniceros
- Advanced Functional Materials and Nanotechnology Group Centro de Investigación en Materiales Avanzados S. C. (CIMAV – Unidad Monterrey) PIIT Apodaca México
| | - Efrén Delgado‐Licon
- Department of Family and Consumer Sciences New Mexico State University Las Cruces New Mexico USA
| | - Silvia Marina González‐Herrera
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| |
Collapse
|
22
|
Alagiakrishnan K, Halverson T. Microbial Therapeutics in Neurocognitive and Psychiatric Disorders. J Clin Med Res 2021; 13:439-459. [PMID: 34691318 PMCID: PMC8510649 DOI: 10.14740/jocmr4575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial therapeutics, which include gut biotics and fecal transplantation, are interventions designed to improve the gut microbiome. Gut biotics can be considered as the administration of direct microbial populations. The delivery of this can be done through live microbial flora, certain food like fiber, microbial products (metabolites and elements) obtained through the fermentation of food products, or as genetically engineered substances, that may have therapeutic benefit on different health disorders. Dietary intervention and pharmacological supplements with gut biotics aim at correcting disruption of the gut microbiota by repopulating with beneficial microorganism leading to decrease in gut permeability, inflammation, and alteration in metabolic activities, through a variety of mechanisms of action. Our understanding of the pharmacokinetics of microbial therapeutics has improved with in vitro models, sampling techniques in the gut, and tools for the reliable identification of gut biotics. Evidence from human studies points out that prebiotics, probiotics and synbiotics have the potential for treating and preventing mental health disorders, whereas with paraprobiotics, proteobiotics and postbiotics, the research is limited at this point. Some animal studies point out that gut biotics can be used with conventional treatments for a synergistic effect on mental health disorders. If future research shows that there is a possibility of synergistic effect of psychotropic medications with gut biotics, then a gut biotic or nutritional prescription can be given along with psychotropics. Even though the overall safety of gut biotics seems to be good, caution is needed to watch for any known and unknown side effects as well as the need for risk benefit analysis with certain vulnerable populations. Future research is needed before wide spread use of natural and genetically engineered gut biotics. Regulatory framework for gut biotics needs to be optimized. Holistic understanding of gut dysbiosis, along with life style factors, by health care providers is necessary for the better management of these conditions. In conclusion, microbial therapeutics are a new psychotherapeutic approach which offer some hope in certain conditions like dementia and depression. Future of microbial therapeutics will be driven by well-done randomized controlled trials and longitudinal research, as well as by replication studies in human subjects.
Collapse
Affiliation(s)
- Kannayiram Alagiakrishnan
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tyler Halverson
- Division of Psychiatry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Trejo Rodríguez IS, Alcántara Quintana LE, Algara Suarez P, Ruiz Cabrera MA, Grajales Lagunes A. Physicochemical Properties, Antioxidant Capacity, Prebiotic Activity and Anticancer Potential in Human Cells of Jackfruit ( Artocarpus heterophyllus) Seed Flour. Molecules 2021; 26:4854. [PMID: 34443442 PMCID: PMC8398192 DOI: 10.3390/molecules26164854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
The general aim of this study was to evaluate physicochemical properties, prebiotic activity and anticancer potential of jackfruit (Artocarpus heterophyllus) seed flour. The drying processes of jackfruit seeds were performed at 50, 60 and 70 °C in order to choose the optimal temperature for obtaining the flour based on drying time, polyphenol content and antioxidant capacity. The experimental values of the moisture ratio during jackfruit seed drying at different temperatures were obtained using Page's equation to establish the drying time for the required moisture between 5 and 7% in the flour. The temperature of 60 °C was considered adequate for obtaining good flour and for performing its characterization. The chemical composition, total dietary fiber, functional properties and antioxidant capacity were then examined in the flour. The seed flour contains carbohydrates (73.87 g/100 g), dietary fiber (31 g/100 g), protein (14 g/100 g) and lipids (1 g/100 g). The lipid profile showed that the flour contained monounsaturated (4 g/100 g) and polyunsaturated (46 g/100 g) fatty acids. Sucrose, glucose, and fructose were found to be the predominant soluble sugars, and non-digestible oligosaccharides like 1-kestose were also found. The total polyphenol content was 2.42 mg of gallic acid/g of the sample; furthermore, the antioxidant capacity obtained by ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 901.45 µmol Trolox/100 g and 1607.87 µmol Trolox/100 g, respectively. The obtained flour exhibited good functional properties, such as water and oil absorption capacity, swelling power and emulsifier capacity. Additionally, this flour had a protective and preventive effect which is associated with the potential prebiotic activity in Lactobacillus casei and Bifidobacterium longum. These results demonstrate that jackfruit seed flour has good nutritional value and antioxidant and prebiotic activity, as well as potential protective effects and functional properties, making it an attractive food or ingredient in developing innovative functional products.
Collapse
Affiliation(s)
- Ibna Suli Trejo Rodríguez
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Universitaria, San Luis Potosí 78210, Mexico; (I.S.T.R.); (M.A.R.C.)
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí, San Luis Potosí 78240, Mexico; (L.E.A.Q.); (P.A.S.)
| | - Luz Eugenia Alcántara Quintana
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí, San Luis Potosí 78240, Mexico; (L.E.A.Q.); (P.A.S.)
| | - Paola Algara Suarez
- Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí, San Luis Potosí 78240, Mexico; (L.E.A.Q.); (P.A.S.)
| | - Miguel Angel Ruiz Cabrera
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Universitaria, San Luis Potosí 78210, Mexico; (I.S.T.R.); (M.A.R.C.)
| | - Alicia Grajales Lagunes
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Universitaria, San Luis Potosí 78210, Mexico; (I.S.T.R.); (M.A.R.C.)
| |
Collapse
|
24
|
Gao H, Qin Y, Zeng J, Yang Q, Jia T. Dietary intervention with sialylated lactulose affects the immunomodulatory activities of mice. J Dairy Sci 2021; 104:9494-9504. [PMID: 34176623 DOI: 10.3168/jds.2021-20327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
Four sialylated lactuloses [N-acetylneuraminic acid-α2,3-lactulose (Neu5Acα2,3lactulose), N-acetylneuraminic acid-α2,6-lactulose (Neu5Acα2,6lactulose), deaminoneuraminc acid-α2,3-lactulose (Kdnα2,3lactulose), and deaminoneuraminc acid-α-2,6-lactulose (Kdnα2,6lactulose)] were reported to modulate the immunity of mice. The influences of cytokine expression, cell immunity, humoral immunity, and nonspecific immunity were investigated in our study using several techniques. Analysis via ELISA showed that cytokine expression was induced by sialylated lactulose treatment consistently in the serum and spleen. Among the 4 tested sialylated lactuloses, Neu5Acα2,6lactulose performed the best, simultaneously and appropriately promoting the expression of proinflammatory and anti-inflammatory factors in the serum and spleen. Kdnα2,3lactulose showed the best antioxidant activity according to detection of the activity of superoxide dismutase, myeloperoxidase, peroxidase, and alkaline phosphatase. Flow cytometry revealed that only Kdnα2,3lactulose significantly boosted the CD3+ T lymphocyte ratio similarly to that of lactulose. Analysis of the hemolysin content to characterize humoral immunity revealed that Kdnα2,3lactulose notably increased hemolysin content compared with that in the control group. To evaluate the nonspecific immune effects of the 4 sialylated lactuloses, a fluorescence microsphere phagocytosis assay was used to analyze the phagocytosis of macrophages. Kdnα2,3lactulose still performed the best in enhancing the phagocytosis of macrophages, showing markedly increased phagocytic percentage and phagocytic index values compared with those in the control and lactulose groups. Comparing the differences of these 4 sialylated lactuloses in affecting immunity in mice revealed that Kdnα2,3lactulose had the best overall performance in influencing cytokine expression, cell immunity, humoral immunity, and nonspecific immunity. This study provides critical support for use of sialylated lactuloses as potential immunomodulators in foods.
Collapse
Affiliation(s)
- Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Yueqi Qin
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tian Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
25
|
Verma DK, Patel AR, Thakur M, Singh S, Tripathy S, Srivastav PP, Chávez-González ML, Gupta AK, Aguilar CN. A review of the composition and toxicology of fructans, and their applications in foods and health. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Gluten and FODMAPs Relationship with Mental Disorders: Systematic Review. Nutrients 2021; 13:nu13061894. [PMID: 34072914 PMCID: PMC8228761 DOI: 10.3390/nu13061894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Nowadays, gluten and FODMAP food components (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) are increasingly studied due to their possible relation with extraintestinal-associated conditions. In recent years, gluten-free diets (GFD) and low-FODMAP diets (LFD) are becoming more popular not only in order to avoid the food components that cause intolerances or allergies in some people, but also due to the direct influence of marketing movements or diet trends on feeding habits. Likewise, neurological and psychiatric diseases are currently of increasing importance in developed countries. For this reason, a bibliographic systematic review has been carried out to analyse whether there is a pathophysiological relationship between the dietary intake of gluten or FODMAPs with mental disorders. This review collects 13 clinical and randomized controlled trials, based on the PRISMA statement, which have been published in the last ten years. Based on these results, limiting or ruling out gluten or FODMAPs in the diet might be beneficial for symptoms such as depression, anxiety (7 out of 7 articles found any positive effect), or cognition deficiency (improvements in several cognition test measurements in one trial), and to a lesser extent for schizophrenia and the autism spectrum. Nevertheless, further studies are needed to obtain completely reliable conclusions.
Collapse
|
27
|
Nurrahma BA, Tsao SP, Wu CH, Yeh TH, Hsieh PS, Panunggal B, Huang HY. Probiotic Supplementation Facilitates Recovery of 6-OHDA-Induced Motor Deficit via Improving Mitochondrial Function and Energy Metabolism. Front Aging Neurosci 2021; 13:668775. [PMID: 34025392 PMCID: PMC8137830 DOI: 10.3389/fnagi.2021.668775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease associated with progressive impairment of motor and non-motor functions in aging people. Overwhelming evidence indicate that mitochondrial dysfunction is a central factor in PD pathophysiology, which impairs energy metabolism. While, several other studies have shown probiotic supplementations to improve host energy metabolism, alleviate the disease progression, prevent gut microbiota dysbiosis and alter commensal bacterial metabolites. But, whether probiotic and/or prebiotic supplementation can affect energy metabolism and cause the impediment of PD progression remains poorly characterized. Therefore, we investigated 8-weeks supplementation effects of probiotic [Lactobacillus salivarius subsp. salicinius AP-32 (AP-32)], residual medium (RM) obtained from the AP-32 culture medium, and combination of AP-32 and RM (A-RM) on unilateral 6-hydroxydopamine (6-OHDA)-induced PD rats. We found that AP-32, RM and A-RM supplementation induced neuroprotective effects on dopaminergic neurons along with improved motor functions in PD rats. These effects were accompanied by significant increases in mitochondrial activities in the brain and muscle, antioxidative enzymes level in serum, and altered SCFAs profile in fecal samples. Importantly, the AP-32 supplement restored muscle mass along with improved motor function in PD rats, and produced the best results among the supplements. Our results demonstrate that probiotic AP-32 and A-RM supplementations can recover energy metabolism via increasing SCFAs producing and mitochondria function. This restoring of mitochondrial function in the brain and muscles with improved energy metabolism might additionally be potentiated by ROS suppression by the elevated generation of antioxidants, and which finally leads to facilitated recovery of 6-OHDA-induced motor deficit. Taken together, this work demonstrates that probiotic AP-32 supplementation could be a potential candidate for alternate treatment strategy to avert PD progression.
Collapse
Affiliation(s)
- Bira Arumndari Nurrahma
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei City, Taiwan
| | - Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan
| | - Chieh-Hsi Wu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei City, Taiwan.,Department of Neurology, College of Medicine and Taipei Neuroscience Institute, Taipei Medical University, Taipei City, Taiwan
| | | | - Binar Panunggal
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City, Taiwan.,Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Central Java, Indonesia
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
28
|
The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review. Nutrients 2021; 13:nu13041309. [PMID: 33921025 PMCID: PMC8071392 DOI: 10.3390/nu13041309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of β-2,6 fructans including in gut health.
Collapse
|
29
|
Oxidative Stress-Induced Alteration of Plant Central Metabolism. Life (Basel) 2021; 11:life11040304. [PMID: 33915958 PMCID: PMC8066879 DOI: 10.3390/life11040304] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.
Collapse
|
30
|
Madia VN, De Vita D, Messore A, Toniolo C, Tudino V, De Leo A, Pindinello I, Ialongo D, Saccoliti F, D’Ursi AM, Grimaldi M, Ceccobelli P, Scipione L, Di Santo R, Costi R. Analytical Characterization of an Inulin-Type Fructooligosaccharide from Root-Tubers of Asphodelusramosus L. Pharmaceuticals (Basel) 2021; 14:ph14030278. [PMID: 33808608 PMCID: PMC8003451 DOI: 10.3390/ph14030278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Plant-based systems continue to play a pivotal role in healthcare, and their use has been extensively documented. Asphodelus L. is a genus comprising various herbaceous species, known by the trivial name Asphodelus. These plants have been known since antiquity for both food and therapeutic uses, especially for treating several diseases associated with inflammatory and infectious skin disorders. Phytochemical studies revealed the presence of different constituents, mainly anthraquinones, triterpenoids, phenolic acids, and flavonoids. Although extensive literature has been published on these constituents, a paucity of information has been reported regarding the carbohydrate composition, such as fructans and fructan-like derivatives. The extraction of water-soluble neutral polysaccharides is commonly performed using water extraction, at times assisted by microwaves and ultrasounds. Herein, we reported the investigation of the alkaline extraction of root-tubers of Asphodelus ramosus L., analyzing the water-soluble polysaccharides obtained by precipitation from the alkaline extract and its subsequent purification by chromatography. A polysaccharide was isolated by alkaline extraction; the HPTLC study to determine its composition showed fructose as the main monosaccharide. FT-IR analysis showed the presence of an inulin-type structure, and NMR analyses allowed us to conclude that A. ramosus roots contain polysaccharide with an inulin-type fructooligosaccharide with a degree of polymerization of 7–8.
Collapse
Affiliation(s)
- Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Daniela De Vita
- Department of Environmental Biology, “Sapienza” University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (C.T.)
| | - Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
- Correspondence: ; Tel.: +39-06-4991-3965
| | - Chiara Toniolo
- Department of Environmental Biology, “Sapienza” University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy; (D.D.V.); (C.T.)
| | - Valeria Tudino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Alessandro De Leo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Ivano Pindinello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Davide Ialongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Francesco Saccoliti
- D3 PharmaChemistry, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy;
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (A.M.D.); (M.G.)
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (A.M.D.); (M.G.)
| | | | - Luigi Scipione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (V.N.M.); (V.T.); (A.D.L.); (I.P.); (D.I.); (L.S.); (R.D.S.); (R.C.)
| |
Collapse
|
31
|
Kaur AP, Bhardwaj S, Dhanjal DS, Nepovimova E, Cruz-Martins N, Kuča K, Chopra C, Singh R, Kumar H, Șen F, Kumar V, Verma R, Kumar D. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules 2021; 11:440. [PMID: 33809763 PMCID: PMC8002343 DOI: 10.3390/biom11030440] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.
Collapse
Affiliation(s)
- Amrit Pal Kaur
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Fatih Șen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, EvliyaÇelebi Campus, Dumlupınar University, Kütahya 43100, Turkey;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| |
Collapse
|
32
|
Salami M. Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Front Neurosci 2021; 15:613120. [PMID: 33642976 PMCID: PMC7904897 DOI: 10.3389/fnins.2021.613120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract hosts trillions of microorganisms that is called “gut microbiota.” The gut microbiota is involved in a wide variety of physiological features and functions of the body. Thus, it is not surprising that any damage to the gut microbiota is associated with disorders in different body systems. Probiotics, defined as living microorganisms with health benefits for the host, can support or restore the composition of the gut microbiota. Numerous investigations have proved a relationship between the gut microbiota with normal brain function as well as many brain diseases, in which cognitive dysfunction is a common clinical problem. On the other hand, increasing evidence suggests that the existence of a healthy gut microbiota is crucial for normal cognitive processing. In this regard, interplay of the gut microbiota and cognition has been under focus of recent researches. In the present paper, I review findings of the studies considering beneficial effects of either gut microbiota or probiotic bacteria on the brain cognitive function in the healthy and disease statuses.
Collapse
Affiliation(s)
- Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Carvalho PLA, Andrade MER, Trindade LM, Leocádio PCL, Alvarez-Leite JI, Dos Reis DC, Cassali GD, Souza E Melo ÉLDS, Dos Santos Martins F, Fernandes SOA, Gouveia Peluzio MDC, Generoso SDV, Cardoso VN. Prophylactic and therapeutic supplementation using fructo-oligosaccharide improves the intestinal homeostasis after mucositis induced by 5- fluorouracil. Biomed Pharmacother 2021; 133:111012. [PMID: 33254017 DOI: 10.1016/j.biopha.2020.111012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of prebiotic, such as fructo-oligosaccharides (FOS), in intestinal inflammation have been demonstrated in several studies. Herein, we evaluate whether joint treatment with FOS, both before and during mucositis, had additional beneficial effects and investigated the mechanisms underlying in the action of FOS on the intestinal barrier. BALB/c mice were randomly divided into five groups: CTR (without mucositis + saline solution), FOS (without mucositis + 6 % FOS), MUC (mucositis + saline solution), PT (mucositis + 6 % FOS supplementation before disease induction), and TT (mucositis + 6 % FOS supplementation before and during disease induction). Mucositis was induced by intraperitoneal injection (300 mg/kg) of 5-fluorouracil (5-FU). After 72 h, the animals were euthanized and intestinal permeability (IP), tight junction, bacterial translocation (BT), histology and morphometry, and immunoglobulin A secretory (sIgA), inflammatory infiltrate, and production of short-chain fatty acids (acetate, butyrate and propionate) were evaluated. The MUC group showed an increase in the IP, BT, and inflammatory infiltrate but a decrease in the tight junction expression and butyrate and propionate levels (P < 0.05). In the PT and TT groups, FOS supplementation maintained the IP, tight junction expression, and propionate concentration within physiologic levels, increased butyrate levels, and reduced BT and inflammatory infiltrate (P < 0.05). Total treatment with FOS (TT group) was more effective in maintaining histological score, morphometric parameters, and sIgA production. Thus, total treatment (prophylactic and therapeutic supplementation) with FOS was more effective than pretreatment alone, in reducing 5-FU-induced damage to the intestinal barrier.
Collapse
Affiliation(s)
- Paula Lopes Armond Carvalho
- Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Emília Rabelo Andrade
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luísa Martins Trindade
- Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paola Caroline Lacerda Leocádio
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Isaura Alvarez-Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Flaviano Dos Santos Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
34
|
Bodede O, Prinsloo G. Ethnobotany, phytochemistry and pharmacological significance of the genus Bulbine (Asphodelaceae). JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112986. [PMID: 32492493 DOI: 10.1016/j.jep.2020.112986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Bulbine (Asphodelaceae) is spread across Southern Africa and Australia and has been traditionally used for various medicinal applications such as treating skin diseases, burns, diarrhoea, and sexually transmitted diseases. AIM OF THIS REVIEW The aim is to present a critical review of the ethnomedicinally important species of the genus Bulbine with a comprehensive overview of their chemical constituents and biological activities. MATERIALS AND METHODS This paper is an overview of literature published on the genus Bulbine in the last six decades with regards to phytochemical composition and their respective pharmacological potentials with the aid of data obtained from the search engine Google Scholar with string searches performed using keywords to obtain relevant publications from scientific databases including ACS Journals, PubMed, Science Direct, SciELO, Sci Finder, Springer, Tailor & Francis, The Plant List Database, Web of Science and Wiley. RESULTS The literature survey reveals that only 12 species in the genus Bulbine have been reported to be used traditionally with scientific records of ethnomedicinal usage Anthraquinones appeared as the most abundant phytochemicals in the genus. Other isolated/detected metabolites include isofuranonaphthoquinones, flavonoids, and triterpenoids. Promising pharmacological activities have been reported by members of the genus with antiplasmodial, antitrypanosomal, antiviral, antioxidant, anticancer, anti-inflammatory and anti-microbial activity, potent wound healing properties as well as improved reproduction. CONCLUSIONS This review showed the traditional uses of this genus and its preventative and curative properties in the management of the listed diseases providing support from bioassays of the tested compounds and extracts. State-of-the-art analytical techniques are required for the characterisation and quantification of the compounds within the genus. The efficacy of the therapeutic potential of the Bulbine species need to be further confirmed with pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Olusola Bodede
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa.
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa.
| |
Collapse
|
35
|
Ribeiro TS, Sampaio KB, Menezes FNDD, de Assis POA, Dos Santos Lima M, de Oliveira MEG, de Souza EL, do Egypto Queiroga RDCR. In vitro evaluation of potential prebiotic effects of a freeze-dried juice from Pilosocereus gounellei (A. Weber ex K. Schum. Bly. Ex Rowl) cladodes, an unconventional edible plant from Caatinga biome. 3 Biotech 2020; 10:448. [PMID: 33062577 DOI: 10.1007/s13205-020-02442-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated in vitro the potential prebiotic effects of a freeze-dried juice extracted from cladodes of Pilosocereus gounellei (A. Weber ex K. Schum.) Bly. Ex Rowl, an unconventional edible plant from Brazilian Caatinga biome and popularly known as xique-xique. Prebiotic effects of freeze-dried xique-xique cladode juice (XCJ, 20 g/L) were evaluated by measurements of prebiotic activity scores and stimulatory effects on growth and metabolic activities of probiotic Lactobacillus acidophilus LA-05, L. casei L-26 and L. paracasei L-10, which are beneficial species found as part of human gut microbiota. XCJ showed positive prebiotic activity scores on all examined probiotics, indicating a selective stimulatory effect on these microorganisms in detriment to enteric pathogens. Examined probiotics had high viable counts (> 8 log CFU/mL) after 48 h of cultivation in media with XCJ (20 g/L), representing an increase of > 2 log CFU/mL when compared to viable counts found on time zero. Cultivation of probiotics in media with XCJ resulted in decreased pH during the 48 h-incubation. Contents of fructose and glucose decreased in media with XCJ inoculated with L. acidophilus LA-05, L. casei L-26 or L. paracasei L-10 during the 48 h-cultivation, in parallel with an increase in contents of acetic and lactic acids. Measured effects of XCJ on probiotics were overall similar to those exerted by fructoligosaccharides (20 g/L), a proven prebiotic ingredient. These results showed that XCJ could exert selective stimulatory effects on different Lactobacillus species, which are indicative of potential prebiotic properties.
Collapse
Affiliation(s)
- Thais Santana Ribeiro
- Laboratory of Bromatology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | | | - Paloma Oliveira Antonino de Assis
- Laboratory of Bromatology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Petrolina, Brazil
| | - Maria Elieidy Gomes de Oliveira
- Laboratory of Bromatology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba Brazil
- Laboratório de Microbiologia de Alimentos, Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa, Paraíba 58051-900 Brazil
| | | |
Collapse
|
36
|
Janse van Rensburg HC, Takács Z, Freynschlag F, Toksoy Öner E, Jonak C, Van den Ende W. Fructans Prime ROS Dynamics and Botrytis cinerea Resistance in Arabidopsis. Antioxidants (Basel) 2020; 9:E805. [PMID: 32882794 PMCID: PMC7555011 DOI: 10.3390/antiox9090805] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Naturally derived molecules can be used as priming or defense stimulatory agents to protect against biotic stress. Fructans have gained strong interest due to their ability to induce resistance in a number of crop species. In this study, we set out to establish the role of fructan-induced immunity against the fungal pathogen Botrytis cinerea in Arabidopsis thaliana. We show that both inulin- and levan-type fructans from different sources can enhance Arabidopsis resistance against B. cinerea. We found that inulin from chicory roots and levan oligosaccharides from the exopolysaccharide-producing bacterium Halomonas smyrnensis primed the NADPH-oxidase-mediated reactive oxygen species (ROS) burst in response to the elicitors flg22, derived from the bacterial flagellum, and oligogalacturonides (OGs), derived from the host cell wall. Neither induced a direct ROS burst typical of elicitors. We also found a primed response after infection with B. cinerea for H2O2 accumulation and the activities of ascorbate peroxidase and catalase. Sucrose accumulated as a consequence of fructan priming, and glucose and sucrose levels increased in fructan-treated plants after infection with B. cinerea. This study shows that levan-type fructans, specifically from bacterial origin, can prime plant defenses and that both inulin and levan oligosaccharide-mediated priming is associated with changes in ROS dynamics and sugar metabolism. Establishing fructan-induced immunity in Arabidopsis is an important step to further study the underlying mechanisms since a broad range of biological resources are available for Arabidopsis.
Collapse
Affiliation(s)
| | - Zoltan Takács
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria; (Z.T.); (F.F.); (C.J.)
| | - Florentina Freynschlag
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria; (Z.T.); (F.F.); (C.J.)
| | - Ebru Toksoy Öner
- IBSB, Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, 34722 Istanbul, Turkey;
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria; (Z.T.); (F.F.); (C.J.)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
37
|
Farag MM, Moghannem SA, Shehabeldine AM, Azab MS. Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microb Pathog 2020; 140:103947. [DOI: 10.1016/j.micpath.2019.103947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022]
|
38
|
Arteaga-Henríquez G, Rosales-Ortiz SK, Arias-Vásquez A, Bitter I, Ginsberg Y, Ibañez-Jimenez P, Kilencz T, Lavebratt C, Matura S, Reif A, Rethelyi J, Richarte V, Rommelse N, Siegl A, Ramos-Quiroga JA. Treating impulsivity with probiotics in adults (PROBIA): study protocol of a multicenter, double-blind, randomized, placebo-controlled trial. Trials 2020; 21:161. [PMID: 32046750 PMCID: PMC7014653 DOI: 10.1186/s13063-019-4040-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Impulsivity and compulsivity are related to emotional and social maladjustment and often underlie psychiatric disorders. Recently, alterations in microbiota composition have been shown to have implications for brain development and social behavior via the microbiota-gut-brain axis. However, the exact mechanisms are not fully identified. Recent evidence suggests the modulatory effect of synbiotics on gut microbiota and the contribution of these agents in ameliorating symptoms of many psychiatric diseases. To date, no randomized controlled trial has been performed to establish the feasibility and efficacy of this intervention targeting the reduction of impulsivity and compulsivity. We hypothesize that supplementation with synbiotics may be an effective treatment in adults with high levels of impulsivity and/or compulsivity. METHODS/DESIGN This is a prospective, multicenter, double-blind, randomized controlled trial with two arms: treatment with a synbiotic formula versus placebo treatment. The primary outcome is the response rate at the end of the placebo-controlled phase (response defined as a Clinical Global Impression-Improvement Scale score of 1 or 2 = very much improved or much improved, plus a reduction in the Affective Reactivity Index total score of at least 30% compared with baseline). A total of 180 participants with highly impulsive behavior and a diagnosis of attention deficit/hyperactivity disorder (ADHD) and/or borderline personality disorder, aged 18-65 years old, will be screened at three study centers. Secondary outcome measures, including changes in general psychopathology, ADHD symptoms, neurocognitive function, somatic parameters, physical activity, nutritional intake, and health-related quality of life, will be explored at assessments before, during, and at the end of the intervention. The effect of the intervention on genetics, microbiota, and several blood biomarkers will also be assessed. Gastrointestinal symptoms and somatic complaints will additionally be explored at 1-week follow-up. DISCUSSION This is the first randomized controlled trial to determine the effects of supplementation with synbiotics on reducing impulsive and compulsive behavior. This clinical trial can contribute to explaining the mechanisms involved in the crosstalk between the intestinal microbiome and the brain. If effects can be established by reducing impulsive and compulsive behavior, new cost-effective treatments might become available to these patients. TRIAL REGISTRATION ClinicalTrials.gov, NCT03495375. Registered on 26 February 2018.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | | | - Alejandro Arias-Vásquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Istvan Bitter
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Ylva Ginsberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute, Stockholm, Sweden
| | - Pol Ibañez-Jimenez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Tünde Kilencz
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Janos Rethelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain.,Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Nanda Rommelse
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Anne Siegl
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain. .,Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain. .,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain. .,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
39
|
Konkol D, Szmigiel I, Domżał-Kędzia M, Kułażyński M, Krasowska A, Opaliński S, Korczyński M, Łukaszewicz M. Biotransformation of rapeseed meal leading to production of polymers, biosurfactants, and fodder. Bioorg Chem 2019; 93:102865. [DOI: 10.1016/j.bioorg.2019.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
|
40
|
Romo-Araiza A, Ibarra A. Prebiotics and probiotics as potential therapy for cognitive impairment. Med Hypotheses 2019; 134:109410. [PMID: 31627123 DOI: 10.1016/j.mehy.2019.109410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
Cognitive functions, such as learning and memory, may be impaired during aging. Age-related cognitive impairment is associated with selective neuronal loss, oxidative changes that lead to microglia activation and neuroinflammation. In addition, it is associated to alteration reduction in trophic factors affecting neurogenesis and synaptic plasticity. In recent years, attention has been paid to the relationship between gut microbiota and brain. In aging, there is an alteration in microbiota, gut microbiota diversity is perturbed with an increase in pathogenic bacteria at the expense of beneficial ones. Dysbiosis may lead to chronic inflammation, and a decrease in bacteria metabolites such as short-chain fatty acids which have been related to an upregulation of neurotrophic factors. Supplementation with prebiotics and probiotics can modulate gut microbiota, returning it to a more physiological state; thus, they may be considered as a possible treatment for age-related cognitive impairment.
Collapse
Affiliation(s)
- Alejandra Romo-Araiza
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México C.P. 52786, Mexico
| | - Antonio Ibarra
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Estado de México C.P. 52786, Mexico.
| |
Collapse
|
41
|
Andrade AC, Bautista CR, Cabrera MR, Guerra RS, Chávez EG, Ahumada CF, Lagunes AG. Agave salmiana fructans as gut health promoters: Prebiotic activity and inflammatory response in Wistar healthy rats. Int J Biol Macromol 2019; 136:785-795. [DOI: 10.1016/j.ijbiomac.2019.06.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/16/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
|
42
|
Engineered thermostable β–fructosidase from Thermotoga maritima with enhanced fructooligosaccharides synthesis. Enzyme Microb Technol 2019; 125:53-62. [DOI: 10.1016/j.enzmictec.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/13/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022]
|
43
|
Chen K, Xie K, Liu Z, Nakasone Y, Sakao K, Hossain A, Hou DX. Preventive Effects and Mechanisms of Garlic on Dyslipidemia and Gut Microbiome Dysbiosis. Nutrients 2019; 11:nu11061225. [PMID: 31146458 PMCID: PMC6627858 DOI: 10.3390/nu11061225] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/12/2023] Open
Abstract
Garlic (Allium sativum L.) contains prebiotic components, fructans, antibacterial compounds, and organosulfur compounds. The complex ingredients of garlic seem to impart a paradoxical result on the gut microbiome. In this study, we used a mouse model to clarify the effects of whole garlic on the gut microbiome. C57BL/6N male mice were fed with or without whole garlic in normal diet (ND) or in high-fat diet (HFD) for 12 weeks. Supplementation with whole garlic attenuated HFD-enhanced ratio of serum GPT/GOT (glutamic-pyruvic transaminase/glutamic-oxaloacetic transaminase), levels of T-Cho (total cholesterol) and LDLs (low-density lipoproteins), and index of homeostatic model assessment for insulin resistance (HOMA-IR), but had no significant effect in the levels of serum HDL-c (high density lipoprotein cholesterol), TG (total triacylglycerol), and glucose. Moreover, garlic supplementation meliorated the HFD-reduced ratio of villus height/crypt depth, cecum weight, and the concentration of cecal organic acids. Finally, gut microbiota characterization by high throughput 16S rRNA gene sequencing revealed that whole garlic supplementation increased the α-diversity of the gut microbiome, especially increasing the relative abundance of f_Lachnospiraceae and reducing the relative abundance of g_Prevotella. Taken together, our data demonstrated that whole garlic supplementation could meliorate the HFD-induced dyslipidemia and disturbance of gut microbiome.
Collapse
Affiliation(s)
- Keyu Chen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Kun Xie
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Zhuying Liu
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | | | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Kenkoukazoku Co., Kagoshima 892-0848, Japan.
| | - Amzad Hossain
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
44
|
González‐Herrera SM, Rocha‐Guzmán NE, Simental‐Mendía LE, Rodríguez‐Herrera R, Aguilar CN, Rutiaga-Quiñones OM, López MG, Gamboa‐Gómez CI. Dehydrated apple‐based snack supplemented with Agave fructans exerts prebiotic effect regulating the production of short‐chain fatty acid in mice. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Silvia Marina González‐Herrera
- Tecnológico Nacional de México, Instituto/ Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica. Blvd. Felipe Pescador 1830 ote. Colonia Nueva Vizcaya. Durango, Dgo. Mexico
| | - Nuria E. Rocha‐Guzmán
- Tecnológico Nacional de México, Instituto/ Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica. Blvd. Felipe Pescador 1830 ote. Colonia Nueva Vizcaya. Durango, Dgo. Mexico
| | - Luis E. Simental‐Mendía
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social Durango, Dgo. Mexico
| | - Raúl Rodríguez‐Herrera
- Food Research Department, School of Chemistry Universidad Autónoma de Coahuila Saltillo Mexico
| | - Cristóbal Noé Aguilar
- Food Research Department, School of Chemistry Universidad Autónoma de Coahuila Saltillo Mexico
| | - Olga Miriam Rutiaga-Quiñones
- Tecnológico Nacional de México, Instituto/ Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica. Blvd. Felipe Pescador 1830 ote. Colonia Nueva Vizcaya. Durango, Dgo. Mexico
| | - Mercedes G. López
- Departamento de Biotecnología y Bioquímica Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Apartado Postal 629, C.P. 36821 Irapuato, Gto. Mexico
| | - Claudia I. Gamboa‐Gómez
- Unidad de Investigación Biomédica del Instituto Mexicano del Seguro Social Durango, Dgo. Mexico
| |
Collapse
|
45
|
Liu T, Burritt DJ, Oey I. Understanding the effect of Pulsed Electric Fields on multilayered solid plant foods: Bunching onions (Allium fistulosum) as a model system. Food Res Int 2019; 120:560-567. [PMID: 31000272 DOI: 10.1016/j.foodres.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/28/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
Abstract
While it is well known that the nature of the applied electric field and the heterogeneity of the tissue can influence the impact of PEF treatment on the plant tissues found in plant-based foods, few studies have investigated the influence of PEF on plant structures that are made up of multiple structurally similar organs. The aim of this study was to understand the effect of pulsed electric fields (PEF), at different electric field strengths (0, 0.3, 0.7 and 1.2 kV/cm) and specific energy (7, 21 and 52 kJ/kg), on a multilayered plant material, with bunching onion bulb tissues being used as a model system. The present study found that carbohydrates leakage was an appropriate index to assess PEF induced damage and that plasmolysis of epidermal cells was a good indicator of plasma membrane integrity after PEF. In addition, electric field strength had a greater impact on the cell integrity than specific energy applied. While other studies have shown that different cell types have different sensitivities to PEF, using plasmolysis as an indicator of cell damage, this study clearly showed that the same PEF treatment conditions had a greater effect on the epidermal cells of the outer scales compared to the inner scales. Hence, while different plant cell types vary in their sensitivities to PEF the spatial location of the same cell type within a complex plant material made up of multiple similar organs, i.e. an onion bulb, can also influence how cells respond to the PEF treatment. Despite PEF induced disruption at the cellular level being detected by carbohydrate leakage, the epidermal cell plasmolysis test and by cryo-scanning electromicroscopy (cryo-SEM), no gross structural changes at the organ level were observed using cryo-SEM or fluorescence microscopy. This study also reports for the first time that PEF treatment can enhance fructan leakage from onion bulbs, which means that PEF treatments have the potential to manipulate the fructan contents of some plant-based foods.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Botany, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - David John Burritt
- Department of Botany, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
46
|
Tarkowski ŁP, Van de Poel B, Höfte M, Van den Ende W. Sweet Immunity: Inulin Boosts Resistance of Lettuce ( Lactuca sativa) against Grey Mold ( Botrytis cinerea) in an Ethylene-Dependent Manner. Int J Mol Sci 2019; 20:E1052. [PMID: 30823420 PMCID: PMC6429215 DOI: 10.3390/ijms20051052] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/17/2022] Open
Abstract
The concept of "Sweet Immunity" postulates that sugar metabolism and signaling influence plant immune networks. In this study, we tested the potential of commercially available inulin-type fructans to limit disease symptoms caused by Botrytis cinerea in lettuce. Spraying mature lettuce leaves, with inulin-type fructans derived from burdock or chicory was as effective in reducing grey mold disease symptoms caused by Botrytis cinerea as spraying with oligogalacturonides (OGs). OGs are well-known defense elicitors in several plant species. Spraying with inulin and OGs induced accumulation of hydrogen peroxide and levels further increased upon pathogen infection. Inulin and OGs were no longer able to limit Botrytis infection when plants were treated with the ethylene signaling inhibitor 1-methylcyclopropene (1-MCP), indicating that a functional ethylene signaling pathway is needed for the enhanced defense response. Soluble sugars accumulated in leaves primed with OGs, while 1-MCP treatment had an overall negative effect on the sucrose pool. Accumulation of γ-aminobutyric acid (GABA), a stress-associated non-proteinogenic amino acid and possible signaling compound, was observed in inulin-treated samples after infection and negatively affected by the 1-MCP treatment. We have demonstrated for the first time that commercially available inulin-type fructans and OGs can improve the defensive capacity of lettuce, an economically important species. We discuss our results in the context of a possible recognition of fructans as Damage or Microbe Associated Molecular Patterns.
Collapse
Affiliation(s)
- Łukasz Paweł Tarkowski
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| | - Bram Van de Poel
- Laboratory of Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, UGhent, 9000 Ghent, Belgium.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| |
Collapse
|
47
|
Martínez-Ortega EA, López-Briones JS, Rodríguez-Hernández G, Ramírez-Orozco RE, Franco-Robles E. Antibacterial activity of agave fructans against salmonella typhimurium. Nat Prod Res 2018; 34:2639-2641. [PMID: 30584773 DOI: 10.1080/14786419.2018.1548446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this study was to evaluate the antimicrobial effect of Agave fructans against the Salmonella Typhimurium in "in vitro" experiments. The result of the antimicrobial activity was 263.89 ± 0, 414.95 ± 12.83, 494.54 ± 13.88, 522.29 ± 0, 580.41 ± 14.92 AU for 10, 20, 30, 40 and 50% of Agave fructans (AF) respectively. In addition, there is a significant effect on the growth of the bacteria with all the percentages of AF evaluated (p < 0.001, R2 = 0.859) with respect to the control. The growth rate of Salmonella with 25% AF was statistically significant compared to the control (-0.7353 ± 0.586, 0.0079 ± 0.002 D.O./h, respectively; p > 0.01). Agave fructans could be an alternative to prevent the infections caused by Salmonella.
Collapse
Affiliation(s)
- Erika Alejandra Martínez-Ortega
- Departamento de Veterinaria y Zootecnia, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, México
| | - José Sergio López-Briones
- Departamento de Medicina y Nutrición, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, Irapuato, México
| | - Gabriela Rodríguez-Hernández
- Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, México
| | | | - Elena Franco-Robles
- Departamento de Veterinaria y Zootecnia, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, México
| |
Collapse
|
48
|
Romo-Araiza A, Gutiérrez-Salmeán G, Galván EJ, Hernández-Frausto M, Herrera-López G, Romo-Parra H, García-Contreras V, Fernández-Presas AM, Jasso-Chávez R, Borlongan CV, Ibarra A. Probiotics and Prebiotics as a Therapeutic Strategy to Improve Memory in a Model of Middle-Aged Rats. Front Aging Neurosci 2018; 10:416. [PMID: 30618722 PMCID: PMC6305305 DOI: 10.3389/fnagi.2018.00416] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with morphological, physiological and metabolic changes, leading to multiorgan degenerative pathologies, such as cognitive function decline. It has been suggested that memory loss also involves a decrease in neurotrophic factors, including brain-derived neurotrophic factor (BDNF). In recent years, microbiota has been proposed as an essential player in brain development, as it is believed to activate BDNF secretion through butyrate production. Thus, microbiota modulation by supplementation with probiotics and prebiotics may impact cognitive decline. This study aimed to evaluate the effects of probiotics and prebiotics supplementation on the memory of middle-aged rats. Sprague-Dawley male rats were randomized in four groups (n = 13 per group): control (water), probiotic (E. faecium), prebiotic (agave inulin), symbiotic (E. faecium + inulin), which were administered for 5 weeks by oral gavage. Spatial and associative memory was analyzed using the Morris Water Maze (MWM) and Pavlovian autoshaping tests, respectively. Hippocampus was obtained to analyze cytokines [interleukin (IL-1β) and tumor necrosis factor (TNF-α)], BDNF and γ-aminobutyric acid (GABA) by enzyme-linked immunosorbent assay (ELISA). Butyrate concentrations were also evaluated in feces. The symbiotic group showed a significantly better performance in MWM (p < 0.01), but not in Pavlovian autoshaping test. It also showed significantly lower concentrations of pro-inflammatory cytokines (p < 0.01) and the reduction in IL-1β correlated with a better performance of the symbiotic group in MWM (p < 0.05). Symbiotic group also showed the highest BDNF and butyrate levels (p < 0.0001). Finally, we compared the electrophysiological responses of control (n = 8) and symbiotic (n = 8) groups. Passive properties of CA1 pyramidal cells (PCs) exhibited changes in response to the symbiotic treatment. Likewise, this group showed an increase in the N-methyl-D-aspartate receptor (NMDA)/AMPA ratio and exhibited robust long-term potentiation (LTP; p < 0.01). Integrated results suggest that symbiotics could improve age-related impaired memory.
Collapse
Affiliation(s)
- Alejandra Romo-Araiza
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | - Gabriela Gutiérrez-Salmeán
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, CINVESTAV Sede Sur, Mexico City, Mexico
| | | | | | - Hector Romo-Parra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | - Valentina García-Contreras
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| |
Collapse
|
49
|
Vray M, Hedible BG, Adam P, Tondeur L, Manirazika A, Randremanana R, Mainassara H, Briend A, Artaud C, von Platen C, Altmann M, Jambou R. A multicenter, randomized controlled comparison of three renutrition strategies for the management of moderate acute malnutrition among children aged from 6 to 24 months (the MALINEA project). Trials 2018; 19:666. [PMID: 30514364 PMCID: PMC6278112 DOI: 10.1186/s13063-018-3027-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this open-label, randomized controlled trial conducted in four African countries (Madagascar, Niger, Central African Republic, and Senegal) is to compare three strategies of renutrition for moderate acute malnutrition (MAM) in children based on modulation of the gut microbiota with enriched flours alone, enriched flours with prebiotics or enriched flours coupled with antibiotic treatment. METHODS To be included, children aged between 6 months and 2 years are preselected based on mid-upper-arm circumference (MUAC) and are included based on a weight-for-height Z-score (WHZ) between - 3 and - 2 standard deviations (SD). As per current protocols, children receive renutrition treatment for 12 weeks and are assessed weekly to determine improvement. The primary endpoint is recovery, defined by a WHZ ≥ - 1.5 SD after 12 weeks of treatment. Data collected include clinical and socioeconomic characteristics, side effects, compliance and tolerance to interventions. Metagenomic analysis of gut microbiota is conducted at inclusion, 3 months, and 6 months. The cognitive development of children is evaluated in Senegal using only the Developmental Milestones Checklist II (DMC II) questionnaire at inclusion and at 3, 6, and 9 months. The data will be correlated with renutrition efficacy and metagenomic data. DISCUSSION This study will provide new insights for the treatment of MAM, as well as original data on the modulation of gut microbiota during the renutrition process to support (or not) the microbiota hypothesis of malnutrition. TRIAL REGISTRATION ClinicalTrials.gov, ID: NCT03474276 Last update 28 May 2018.
Collapse
Affiliation(s)
- Muriel Vray
- Unité d’Epidémiologie des Maladies Infectieuses, Institut Pasteur Dakar, Dakar, Senegal
- Unité des Epidémies et des Maladies Emergentes, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Boris G. Hedible
- Unité d’Epidémiologie des Maladies Infectieuses, Institut Pasteur Dakar, Dakar, Senegal
| | - Pierrick Adam
- Unité des Epidémies et des Maladies Emergentes, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Laura Tondeur
- Unité des Epidémies et des Maladies Emergentes, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Alexandre Manirazika
- Unité d’Epidémiologie Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Rindra Randremanana
- Unité d’Epidémiologie, Institut Pasteur de Madagascar, BP1274, 101 Antananarivo, Madagascar
| | | | - André Briend
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
- Tampere Centre for Child Health Research, University of Tampere, Lääkärinkatu 1, 33014 Tampere, Finland
| | - Cecile Artaud
- Centre de recherche Transactionnel, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Cassandre von Platen
- Centre de recherche Transactionnel, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Mathias Altmann
- Action Contre la Faim, 14/16 Boulevard Douaumont – CS 80060, PARIS CEDEX 17, 75854 Paris, France
| | - Ronan Jambou
- Department of Parasites and Vector Insects, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
50
|
Myhill LJ, Stolzenbach S, Hansen TVA, Skovgaard K, Stensvold CR, Andersen LO, Nejsum P, Mejer H, Thamsborg SM, Williams AR. Mucosal Barrier and Th2 Immune Responses Are Enhanced by Dietary Inulin in Pigs Infected With Trichuris suis. Front Immunol 2018; 9:2557. [PMID: 30473696 PMCID: PMC6237860 DOI: 10.3389/fimmu.2018.02557] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Diet composition may play a crucial role in shaping host immune responses and commensal gut microbiota populations. Bioactive dietary components, such as inulin, have been extensively studied for their bioactive properties, particularly in modulating gut immune function and reducing inflammation. It has been shown that colonization with gastrointestinal parasitic worms (helminths) may alleviate chronic inflammation through promotion of T-helper cell type (Th) 2 and T-regulatory immune responses and alterations in the gut microbiome. In this study, we investigated if dietary inulin could modulate mucosal immune function in pigs during colonization with the porcine whipworm Trichuris suis. T. suis infection induced a typical Th2-biased immune response characterized by transcriptional changes in Th2- and barrier function-related genes, accompanied by intestinal remodeling through increased epithelial goblet and tuft cell proliferation. We observed that inulin also up-regulated Th2-related immune genes (IL13, IL5), and suppressed Th1-related pro-inflammatory genes (IFNG, IL1A, IL8) in the colon. Notably, inulin augmented the T. suis-induced responses with increased transcription of key Th2 and mucosal barrier genes (e.g., IL13, TFF3), and synergistically suppressed pro-inflammatory genes, such as IFNG and CXCL9. 16S rRNA sequencing of proximal colon digesta samples revealed that inulin supplementation reduced the abundance of bacterial phyla linked to inflammation, such as Proteobacteria and Firmicutes, and simultaneously increased Actinobacteria and Bacteroidetes. Interestingly, pigs treated with both inulin and T. suis displayed the highest Bacteroidetes: Firmicutes ratio and the lowest gut pH, suggesting an interaction of diet and helminth infection that stimulates the growth of beneficial bacterial species. Overall, our data demonstrate that T. suis infection and inulin co-operatively enhance anti-inflammatory immune responses, which is potentially mediated by changes in microbiota composition. Our results highlight the intricate interactions between diet, immune function and microbiota composition in a porcine helminth infection model. This porcine model should facilitate further investigations into the use of bioactive diets as immunomodulatory mediators against inflammatory conditions, and how diet and parasites may influence gut health.
Collapse
Affiliation(s)
- Laura J Myhill
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina V A Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lee O'Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|