1
|
Phungula A, Zuffi S, Thongsom S, Di Gianvincenzo P, Reyes SG, Caribé Dos Santos Valle AB, Pittella F, Albericio F, de la Torre BG, Moya SE. Lauryl-NrTP6 lipopeptide self-assembled nanorods for nuclear-targeted delivery of doxorubicin. NANOSCALE 2025. [PMID: 39812415 DOI: 10.1039/d4nr04068f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Targeted delivery offers solutions for more efficient therapies with fewer side effects. Here, lipopeptides (LPs) prepared by conjugation of the nuclear-targeting peptide analogue H-YKQSHKKGGKKGSG-NH2 (NrTP6) and two lauric acid chains are used to encapsulate the chemotherapeutic agent doxorubicin (DX) through a solvent-exchange protocol. LPs spontaneously form nanosized rod-like assemblies in phosphate buffer. DX is trapped in the peptide regions of the assemblies. Confocal laser scanning microscopy shows that the peptide assemblies translocate into the nucleus. Cytotoxicity studies over 72 h in A549 and HeLa cancer cell lines show less toxicity for the LP encapsulated DX than for free DX. In contrast, subtoxic doses of encapsulated DX are more effective than free DX in avoiding colony formation over 14 days, with a complete absence of colonies for the LP-encapsulated DX. The results show a more efficient and slow delivery of DX to the nucleus through LP encapsulation, paving the way for the use of lower DX doses as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Amanda Phungula
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
| | - Sofia Zuffi
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
- Molecular Oncology Laboratory, IIS BioGipuzkoa, P° Dr Beguiristain s/n, 20014 San Sebastián, Gipuzkoa, Spain
| | - Sunisa Thongsom
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
| | - Paolo Di Gianvincenzo
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
| | - Santiago Gimenez Reyes
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
- Instituto de Fisica del Sur (IFISUR-CONICET), Av. Alem 1253, Bahia Blanca 8000, Argentina
| | - Ana Beatriz Caribé Dos Santos Valle
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
- Laboratório de Desenvolvimento de Sistemas Nanoestruturados, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, Juiz de Fora, MG, Brasil
| | - Frederico Pittella
- Laboratório de Desenvolvimento de Sistemas Nanoestruturados, Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, Juiz de Fora, MG, Brasil
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN and Department of Organic Chemistry, University of Barcelona, Barcelona 08001, Spain
| | - Beatriz G de la Torre
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| | - Sergio E Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
| |
Collapse
|
2
|
Shen Y, Cao X, Tang Z, Xiong J, Xiong Z, Zhang H. Simultaneous Production of MK-7 and Iturin A by Bacillus velezensis ND. Appl Biochem Biotechnol 2025; 197:268-287. [PMID: 39110330 DOI: 10.1007/s12010-024-05012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Bacillus velezensis can produce various secondary metabolites, such as the antibacterial compound iturin A and the coagulation-promoting menaquinone-7 (MK-7). To enhance the economic feasibility of the fermentation process, a co-production strategy, involving the simultaneous production of MK-7 and iturin A by Bacillus velezensis ND, was investigated in this study. Firstly, the effects of cultivation temperature and initial pH on the synthesis of MK-7 and iturin A were investigated. Considering the co-production of iturin A and MK-7, the optimal temperature and pH were determined as 32 °C and 7, respectively. Subsequently, important nutrients for the co-production process were investigated. It was observed that glycerol, soybean meal, yeast extract, and L-glutamate had a significant effect on the co-produce process. An optimal medium composed of glycerol (72.19 mL L-1), L-glutamate (1.4 g L-1), yeast extract (16.88 g L-1), and soybean meal (130.95 g L-1) was obtained by response surface methodology (RSM). This co-produce process was further scaled up in a biofilm reactor, and the maximum concentration of MK-7 and iturin A reached 46.88 mg L-1 and 5.58 g L-1, respectively. Finally, we established an effective method for separately extracting the two metabolites from the fermentation broth. The superiority of this co-production fermentation strategy demonstrates its significant potential for industrial production.
Collapse
Affiliation(s)
- Yeqiao Shen
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, PR China
| | - Xiaojie Cao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, PR China
| | - Zhongmin Tang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, PR China
| | - Jie Xiong
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, PR China
| | | | - Huili Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, PR China.
| |
Collapse
|
3
|
Yılmaz S, Idris AB, Ayvaz A, Temizgül R, Çetin A, Hassan MA. Genome mining of Bacillus thuringiensis strain SY49.1 reveals novel candidate pesticidal and bioactive compounds. PEST MANAGEMENT SCIENCE 2025; 81:298-307. [PMID: 39324581 PMCID: PMC11632210 DOI: 10.1002/ps.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Bacillus thuringiensis SY49.1 (Bt SY49.1) strain has promising insecticidal and fungicidal activity against phytopathogens and pests. Therefore, we selected this strain for whole-genome sequencing (WGS), annotation and analysis, with the aim of identifying genes responsible for producing putative pesticidal toxins, antimicrobial metabolites and plant growth-promoting features. RESULTS Our results showed that the SY49.1 genome is 6. 32 Mbp long with a GC content of 34.68%. Genome mining revealed the presence of multiple gene inventories for the biosynthesis of bioactive compounds such as insecticidal delta endotoxins, secondary metabolites, and several plant growth-promoting proteins. Multiple sequence alignment revealed residue variations in the toxic core of Cry1Ab when compared with known Cry1Ab sequences from Bt nomenclature databases. This suggests that the cry1Ab of SY49.1 is a new kind of its group. Among the predicted secondary metabolites, we found a kurstakin with a predicted peptide that differs from the known kurstakin peptide available in the NORINE database. In addition, lipopeptides extracted from SY49.1 suppressed the growth of Verticillium dahliae and Fusarium oxysporum. CONCLUSION We anticipate that the complete genome of Bt SY49.1 may provide a model for properly understanding and studying antimicrobial compound mining, genetic diversity among the B. cereus group, and pathogenicity against insects. This is the first report on the WGS and mining of the Bt strain isolated from Turkey. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
| | - Abeer Babiker Idris
- Department of Agricultural Sciences and Technologies, Graduate School of Natural and Applied SciencesErciyes UniversityKayseriTurkey
| | - Abdurrahman Ayvaz
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Rıdvan Temizgül
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Aysun Çetin
- Department of Medical Biochemistry, Faculty of MedicineErciyes UniversityKayseriTurkey
| | - Mohammed A Hassan
- Department of BioinformaticsAfrica City of TechnologyKhartoumSudan
- Sanimed international lab and management l.l.CAbu DhabiUAE
| |
Collapse
|
4
|
Malakar C, Ali M, Patowary R, Deka S. Production of Lipopeptide Biosurfactant Using Wastewater from Parboiled Paddy Rice and Evaluation of Antifungal Property of the Biosurfactant Against Two Dermatophyte Fungi. Appl Biochem Biotechnol 2024; 196:9010-9026. [PMID: 39088023 DOI: 10.1007/s12010-024-05000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
A previously isolated lipopeptide biosurfactant-producing bacterium Bacillus licheniformis SCV1 was investigated for the production of the biosurfactant using wastewater from parboiled paddy rice. The biosurfactant thus produced was evaluated for its antifungal property against dermatophyte fungi Trichophyton ajelloi and Microsporum fulvum. Results revealed that the bacterial strain reduced surface tension of the media from 56.16 ± 1 mN/m to 35 ± 0.9 mN/m within 12 h, which further shrank to 29.3 ± 1 mN/m in 24 h of incubation. The yield of the biosurfactant was 3.15 ± 0.25 g/L at 48 h of incubation. The obtained biosurfactant exhibited efficient emulsifying activity against a wide range of hydrophobic substrates such as crude oil, olive oil, engine oil, and kerosene oil used in the study. The critical micelle concentration of the biosurfactant was found to be 80 mg/L. Structural characterization using FT-IR and TLC revealed that the biosurfactant produced by the strain in the wastewater is a lipopeptide consisting of surfactin and iturin. LCMS analysis revealed that the surfactin homologs range from C12 to C17-surfactin while the iturin contains C13 to C17-iturin homologs. It also revealed an in vitro study that the biosurfactant has antifungal properties against dermatophyte fungi Trichophyton ajelloi and Microsporum fulvum. Microscopic observation of the hyphae of the treated dermatophyte revealed disruption and fissure of the mycelia. The chemical composition of the wastewater revealed that it contains adequate nutritional composition and micronutrients to support bacterial growth. This is the first report that the wastewater of parboiled paddy could be used as a low-cost substrate for the production of lipopeptide biosurfactant, and the biosurfactant could be used for preventing dermatophytes fungi.
Collapse
Affiliation(s)
- Chandana Malakar
- Environmental Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mehjabin Ali
- Environmental Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Rupshikha Patowary
- Department of Biotechnology, The Assam Royal Global University, Betkuchi, Guwahati, 781035, Assam, India
| | - Suresh Deka
- Environmental Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India.
- Faculty of Science, Assam Down Town University, Panikhaiti, Guwahati, 781026, Assam, India.
| |
Collapse
|
5
|
Khanal S, Imran M, Zhou XG, Antony-Babu S. Characterization of differences in seed endophytic microbiome in conventional and organic rice by amplicon-based sequencing and culturing methods. Microbiol Spectr 2024; 12:e0366223. [PMID: 39136439 PMCID: PMC11448069 DOI: 10.1128/spectrum.03662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/10/2024] [Indexed: 10/05/2024] Open
Abstract
The seed serves as the primary source for establishing microbial populations in plants across subsequent generations, influencing plant growth and overall health. Cropping conditions, especially farming practices, can influence the composition and functionality of the seed microbiome. Very little is known about the differences in seed microbiome between organic and conventional production systems. In this study, we characterized the endophytic microbial populations in seeds of rice grown under organic and conventional management practices through culture-dependent and -independent analyses. The V4 region of 16S rRNA was used for bacterial taxa identification, and the ITS1 region was used for the identification of fungal taxa. Our results revealed significantly higher Shannon and Simpson indices for bacterial diversity in the conventional farming system, whereas the fungal diversity was higher for observed, Shannon, and Simpson indices in the organic farming system. The cultivable endophytic bacteria were isolated and identified using the full-length 16S rRNA gene. There was no difference in culturable endophytic bacterial isolates in rice seeds grown under both conventional and organic farming systems. Among 33 unique isolates tested in vitro, three bacteria-Bacillus sp. ST24, Burkholderia sp. OR5, and Pantoea sp. ST25-showed antagonistic activities against Marasmius graminum, Rhizoctonia solani AG4, and R. solani AG11, the fungal pathogens causing seedling blight in rice. IMPORTANCE In this paper, we studied the differences in the endophytic microbial composition of rice seeds grown in conventional and organic farming systems. Our results demonstrate a greater bacterial diversity in conventional farming, while organic farming showcases a higher fungal diversity. Additionally, our research reveals the ability of seed bacterial endophytes to inhibit the growth of three fungal pathogens responsible for causing seedling blight in rice. This study provides valuable insights into the potential use of beneficial seed microbial endophytes for developing a novel microbiome-based strategy in the management of rice diseases. Such an approach has the potential to enhance overall plant health and improve crop productivity.
Collapse
Affiliation(s)
- Sabin Khanal
- Texas A&M AgriLife Research Center, Beaumont, Texas, USA
| | - Muhammad Imran
- Department of Plant Pathology, University of Faisalabad, Faisalabad, Pakistan
| | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, Texas, USA
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Lourenço M, Duarte N, Ribeiro IAC. Exploring Biosurfactants as Antimicrobial Approaches. Pharmaceuticals (Basel) 2024; 17:1239. [PMID: 39338401 PMCID: PMC11434949 DOI: 10.3390/ph17091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Antibacterial resistance is one of the most important global threats to human health. Several studies have been performed to overcome this problem and infection-preventive approaches appear as promising solutions. Novel antimicrobial preventive molecules are needed and microbial biosurfactants have been explored in that scope. Considering their structure, these biomolecules can be divided into different classes, glycolipids and lipopeptides being the most studied. Besides their antimicrobial activity, biosurfactants have the advantage of being biocompatible, biodegradable, and non-toxic, which favor their application in several areas, including the health sector. Often, the most difficult infections to fight are associated with biofilm formation, particularly in medical devices. Strategies to overcome micro-organism attachment are thus emergent, and it is possible to take advantage of the antimicrobial/antibiofilm properties of biosurfactants to produce surfaces that are more resistant to the deposition/attachment of bacteria. Approaches such as the covalent bond of biosurfactants to the medical device surface leading to repulsive physical-chemical interactions or contact killing can be selected. Simpler strategies such as the absorption of biosurfactants on surfaces are also possible, eliminating micro-organisms in the vicinity. This review will focus on the physical and chemical characteristics of biosurfactants, their antimicrobial activity, antimicrobial/antibiofilm approaches, and finally on their structure-activity relationship.
Collapse
Affiliation(s)
| | - Noélia Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Isabel A. C. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
7
|
Aphaiso P, Mahakhan P, Sawaengkaew J. Bacillus siamensis 3BS12-4 Extracellular Compounds as a Potential Biological Control Agent against Aspergillus flavus. J Microbiol Biotechnol 2024; 34:1671-1679. [PMID: 39081260 PMCID: PMC11380522 DOI: 10.4014/jmb.2402.02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 08/29/2024]
Abstract
Aspergillus flavus, the primary mold that causes food spoilage, poses significant health and economic problems worldwide. Eliminating A. flavus growth is essential to ensure the safety of agricultural products, and extracellular compounds (ECCs) produced by Bacillus spp. have been demonstrated to inhibit the growth of this pathogen. In this study, we aimed to identify microorganisms efficient at inhibiting A. flavus growth and degrading aflatoxin B1. We isolated microorganisms from soil samples using a culture medium containing coumarin (CM medium) as the sole carbon source. Of the 498 isolates grown on CM medium, only 132 bacterial strains were capable of inhibiting A. flavus growth. Isolate 3BS12-4, identified as Bacillus siamensis, exhibited the highest antifungal activity with an inhibition ratio of 43.10%, and was therefore selected for further studies. The inhibition of A. flavus by isolate 3BS12-4 was predominantly attributed to ECCs, with a minimum inhibitory concentration and minimum fungicidal concentration of 0.512 g/ml. SEM analysis revealed that the ECCs disrupted the mycelium of A. flavus. The hydrolytic enzyme activity of the ECCs was assessed by protease, β-1,3-glucanase, and chitinase activity. Our results demonstrate a remarkable 96.11% aflatoxin B1 degradation mediated by ECCs produced by isolate 3BS12-4. Furthermore, treatment with these compounds resulted in a significant 97.93% inhibition of A. flavus growth on peanut seeds. These findings collectively present B. siamensis 3BS12-4 as a promising tool for developing environmentally friendly products to manage aflatoxin-producing fungi and contribute to the enhancement of agricultural product safety and food security.
Collapse
Affiliation(s)
- Patapee Aphaiso
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Polson Mahakhan
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jutaporn Sawaengkaew
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Tao H, Li X, Huo H, Cai Y, Cai A. Bacillus velezensis Y6, a Potential and Efficient Biocontrol Agent in Control of Rice Sheath Blight Caused by Rhizoctonia solani. Microorganisms 2024; 12:1694. [PMID: 39203537 PMCID: PMC11357648 DOI: 10.3390/microorganisms12081694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Rice sheath blight is a serious disease caused by Rhizoctonia solani that reduces rice yield. Currently, there is a lack of efficient and environmentally friendly control methods. In this study, we found that Bacillus velezensis (B. velezensis) Y6 could significantly inhibit the growth of mycelium in Rhizoctonia solani, and its control efficiency against rice sheath blight was 58.67% (p < 0.01) in a pot experiment. Lipopeptides play an important role in the control of rice sheath blight by B. velezensis Y6, among which iturin and fengycin are essential, and iturin W, a novel lipopeptide in B. velezensis, plays a major role in lipopeptide antagonism to Rhizoctonia solani. In the field, we also found that inoculation with B. velezensis Y6 can increase rice yield (dry weight) by 11.75%. Furthermore, the transcriptome profiling results of the rice roots revealed that there were a total of 1227 differential genes (DEGs) regulated when treated with Y6, of which 468 genes were up-regulated and 971 genes were down-regulated in rice roots compared with the control. Among them, the DEGs were mainly distributed in biological processes (BP) and were mainly enriched in response to stimulus (GO:0050896), response to stress (GO:0006950), and response to abiotic stimulus (GO:0009628). According to the KEGG pathway analysis, there were 338 DEGs classified into 87 KEGG functional pathway categories. Compared with the control, a large number of enriched genes were distributed in phenylpropanoid biosynthesis (map00940), glutathione metabolism (map00480), glycolysis/gluconeogenesis (map00010), and amino sugar and nucleotide sugar metabolism (map00520). In summary, this investigation provides a new perspective for studying the molecular mechanism of B. velezensis in controlling rice sheath blight.
Collapse
Affiliation(s)
- Huan Tao
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (H.T.); (H.H.)
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510462, China;
| | - Xiaoyu Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510462, China;
| | - Huazhen Huo
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (H.T.); (H.H.)
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510462, China;
| | - Aihua Cai
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (H.T.); (H.H.)
| |
Collapse
|
9
|
Saikat TA, Sayem Khan MA, Islam MS, Tasnim Z, Ahmed S. Characterization and genome mining of Bacillus subtilis BDSA1 isolated from river water in Bangladesh: A promising bacterium with diverse biotechnological applications. Heliyon 2024; 10:e34369. [PMID: 39114027 PMCID: PMC11305188 DOI: 10.1016/j.heliyon.2024.e34369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.
Collapse
Affiliation(s)
| | - Md Abu Sayem Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zarin Tasnim
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
10
|
Bharathi D, Lee J. Recent Advances in Marine-Derived Compounds as Potent Antibacterial and Antifungal Agents: A Comprehensive Review. Mar Drugs 2024; 22:348. [PMID: 39195465 DOI: 10.3390/md22080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm formation. Marine environments, with their extensive biodiversity, provide a valuable source of natural products with a wide range of biological activities. Marine-derived antimicrobial compounds show significant potential against drug-resistant bacteria and fungi. This review discusses the current knowledge on marine natural products such as microorganisms, sponges, tunicates and mollusks with antibacterial and antifungal properties effective against drug-resistant microorganisms and their ecological roles. These natural products are classified based on their chemical structures, such as alkaloids, amino acids, peptides, polyketides, naphthoquinones, terpenoids, and polysaccharides. Although still in preclinical studies, these agents demonstrate promising in vivo efficacy, suggesting that marine sources could be pivotal in developing new drugs to combat AMR, thereby fulfilling an essential medical need. This review highlights the ongoing importance of marine biodiversity exploration for discovering potential antimicrobial agents.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Dini S, Oz F, Bekhit AEDA, Carne A, Agyei D. Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13394. [PMID: 38925624 DOI: 10.1111/1541-4337.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, Erzurum, Turkey
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Tang Z, Wang L, Xiong Z, Zhu Y, Zhang H. Process optimized for production of iturin A in biofilm reactor by Bacillus velezensis ND. Bioprocess Biosyst Eng 2024; 47:1095-1105. [PMID: 38847888 DOI: 10.1007/s00449-024-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
In this research, to provide an optimal growth medium for the production of iturin A, the concentrations of key amino acid precursors were optimized in shake flask cultures using the response surface method. The optimized medium were applied in a biofilm reactor for batch fermentation, resulting in enhanced production of iturin A. On this basis, a step-wise pH control strategy and a combined step-wise pH and temperature control strategy were introduced to further improve the production of iturin A. Finally, the fed-batch fermentation was performed based on combined step-wise pH and temperature control. The titer and productivity of iturin A reached 7.86 ± 0.23 g/L and 65.50 ± 1.92 mg/L/h, respectively, which were 37.65 and 65.20% higher than that before process optimization.
Collapse
Affiliation(s)
- Zhongmin Tang
- College of Life Sciences, Shihezi University, Xinjiang, People's Republic of China
| | - Leiming Wang
- College of Life Sciences, Shihezi University, Xinjiang, People's Republic of China
| | - Zhengjun Xiong
- Sel Biochem Xinjiang Co., Ltd, Xinjiang, People's Republic of China
| | - Yuxia Zhu
- Sel Biochem Xinjiang Co., Ltd, Xinjiang, People's Republic of China
| | - Huili Zhang
- College of Life Sciences, Shihezi University, Xinjiang, People's Republic of China.
| |
Collapse
|
13
|
Wang Z, Liu C, Shi Y, Huang M, Song Z, Simal-Gandara J, Li N, Shi J. Classification, application, multifarious activities and production improvement of lipopeptides produced by Bacillus. Crit Rev Food Sci Nutr 2024; 64:7451-7464. [PMID: 36876514 DOI: 10.1080/10408398.2023.2185588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Lipopeptides, a class of compounds consisting of a peptide ring and a fatty acid chain, are secondary metabolites produced by Bacillus spp. As their hydrophilic and oleophilic properties, lipopeptides are widely used in food, medicine, environment and other industrial or agricultural fields. Compared with artificial synthetic surfactants, microbial lipopeptides have the advantages of low toxicity, high efficiency and versatility, resulting in urgent market demand and broad development prospect of lipopeptides. However, due to the complex metabolic network and precursor requirements of synthesis, the specific and strict synthesis pathway, and the coexistence of multiple homologous substances, the production of lipopeptides by microorganisms has the problems of high cost and low production efficiency, limiting the mass production of lipopeptides and large-scale application in industry. This review summarizes the types of Bacillus-produced lipopeptides and their biosynthetic pathways, introduces the versatility of lipopeptides, and describes the methods to improve the production of lipopeptides, including genetic engineering and optimization of fermentation conditions.
Collapse
Affiliation(s)
- Zhimin Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Yingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
14
|
Dini S, Bekhit AEDA, Roohinejad S, Vale JM, Agyei D. The Physicochemical and Functional Properties of Biosurfactants: A Review. Molecules 2024; 29:2544. [PMID: 38893420 PMCID: PMC11173842 DOI: 10.3390/molecules29112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Surfactants, also known as surface-active agents, have emerged as an important class of compounds with a wide range of applications. However, the use of chemical-derived surfactants must be restricted due to their potential adverse impact on the ecosystem and the health of human and other living organisms. In the past few years, there has been a growing inclination towards natural-derived alternatives, particularly microbial surfactants, as substitutes for synthetic or chemical-based counterparts. Microbial biosurfactants are abundantly found in bacterial species, predominantly Bacillus spp. and Pseudomonas spp. The chemical structures of biosurfactants involve the complexation of lipids with carbohydrates (glycolipoproteins and glycolipids), peptides (lipopeptides), and phosphates (phospholipids). Lipopeptides, in particular, have been the subject of extensive research due to their versatile properties, including emulsifying, antimicrobial, anticancer, and anti-inflammatory properties. This review provides an update on research progress in the classification of surfactants. Furthermore, it explores various bacterial biosurfactants and their functionalities, along with their advantages over synthetic surfactants. Finally, the potential applications of these biosurfactants in many industries and insights into future research directions are discussed.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Shahin Roohinejad
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Jim M. Vale
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| |
Collapse
|
15
|
Sreelakshmi KP, Madhuri M, Swetha R, Rangarajan V, Roy U. Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward. World J Microbiol Biotechnol 2024; 40:135. [PMID: 38489053 DOI: 10.1007/s11274-024-03908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.
Collapse
Affiliation(s)
- K P Sreelakshmi
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - M Madhuri
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - R Swetha
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India.
| |
Collapse
|
16
|
Yan L, Li G, Liang Y, Tan M, Fang J, Peng J, Li K. Co-production of surfactin and fengycin by Bacillus subtilis BBW1542 isolated from marine sediment: a promising biocontrol agent against foodborne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:563-572. [PMID: 38327855 PMCID: PMC10844157 DOI: 10.1007/s13197-023-05864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 02/09/2024]
Abstract
Pathogenic bacteria contaminations and related diseases in food industries is an urgent issue to solve. The present study aimed to explore natural food biopreservatives from microorganisms. Using dilution-plate method, a strain BBW1542 with antimicrobial activities against various foodborne pathogenic bacteria was isolated from the seabed silt of Beibu Gulf, which was identified as Bacillus subtilis by the morphological observation and 16S rDNA sequences. The antimicrobial substances of B. subtilis BBW1542 exhibited an excellent stability under cool/heat treatment, UV irradiation, acid/alkali treatment, and protease hydrolysis. The genome sequencing analysis and antiSMASH prediction indicated that B. subtilis BBW1542 contained the gene cluster encoding lipopeptides and bacteriocin subtilosin A. MALDI-TOF-MS analysis showed that the lipopeptides from B. subtilis BBW1542 contained C14 and C15 surfactin homologues, together with fengycin homologues of C18 fengycin A/C16 fengycin B and C19 fengycin A/C17 fengycin B. In silico analysis showed that an eight-gene (sboA-albABCDEFG) operon was involved in the biosynthesis of subtilosin A in B. subtilis BBW1542, and the encoded subtilosin A presented an evident closed-loop structure containing 35 amino acids with a molecular weight of 3425.94 Da. Overall, the antagonistic B. subtilis BBW1542 displayed significant resource value and offered a promising alternative in development of food biopreservation. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05864-3.
Collapse
Affiliation(s)
- Luqi Yan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Ganghui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Yingyin Liang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 China
| | - Jianhao Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Jieying Peng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 China
| |
Collapse
|
17
|
Zhang Y, Fan Y, Dai Y, Jia Q, Guo Y, Wang P, Shen T, Wang Y, Liu F, Guo W, Wu A, Jiao Z, Wang C. Crude Lipopeptides Produced by Bacillus amyloliquefaciens Could Control the Growth of Alternaria alternata and Production of Alternaria Toxins in Processing Tomato. Toxins (Basel) 2024; 16:65. [PMID: 38393143 PMCID: PMC10892701 DOI: 10.3390/toxins16020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Alternaria spp. and its toxins are the main contaminants in processing tomato. Based on our earlier research, the current study looked into the anti-fungal capacity of crude lipopeptides from B. amyloliquefaciens XJ-BV2007 against A. alternata. We found that the crude lipopeptides significantly inhibited A. alternata growth and reduced tomato black spot disease incidence. SEM analysis found that the crude lipopeptides could change the morphology of mycelium and spores of A. alternata. Four main Alternaria toxins were detected using UPLC-MS/MS, and the findings demonstrated that the crude lipopeptides could lessen the accumulation of Alternaria toxins in vivo and in vitro. Meanwhile, under the stress of crude lipopeptides, the expression of critical biosynthetic genes responsible for TeA, AOH, and AME was substantially down-regulated. The inhibitory mechanism of the crude lipopeptides was demonstrated to be the disruption of the mycelial structure of A. alternata, as well as the integrity and permeability of the membrane of A. alternata sporocytes. Taken together, crude lipopeptides extracted from B. amyloliquefaciens XJ-BV2007 are an effective biological agent for controlling tomato black spot disease and Alternaria toxins contamination.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.G.)
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Yingying Fan
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Yingying Dai
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
- College of Life Science and Technology, Xinjiang University, Urumqi 830049, China
| | - Qinlan Jia
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Ying Guo
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.G.)
| | - Peicheng Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (P.W.); (T.S.)
| | - Tingting Shen
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (P.W.); (T.S.)
| | - Yan Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Fengjuan Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Wanhui Guo
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Aibo Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Ziwei Jiao
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.G.)
| | - Cheng Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| |
Collapse
|
18
|
Masmoudi F, Pothuvattil NS, Tounsi S, Saadaoui I, Trigui M. Synthesis of silver nanoparticles using Bacillus velezensis M3-7 lipopeptides: Enhanced antifungal activity and potential use as a biocontrol agent against Fusarium crown rot disease of wheat seedlings. Int J Food Microbiol 2023; 407:110420. [PMID: 37783113 DOI: 10.1016/j.ijfoodmicro.2023.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Bacillus velezensis M3-7 is a hyperactive mutant, 12-fold improved in its antifungal activity, obtained during a previous study from the wild strain BLB371 after a combination of random mutagenesis and medium component optimization. This study explores the use of this mutant in synthesizing silver nanoparticles (Ag-NPs) for the control of Fusarium crown rot disease (FCR) in wheat seedlings. LC-MS/MS analysis proved that both strains co-produced different families of lipopeptides and that mutagenesis caused the hyper-production of iturin A C14 and C15, the liberation of iturin A C10 and C12, and the inhibition of fengycin release. Our aim was a further improvement in the antifungal activity of the wild strain and the mutant M3-7 in order to control Fusarium crown rot disease (FCR) in wheat seedlings. Therefore, a nanotechnology approach was adopted, and different lipopeptide concentrations produced by the wild strain and the mutant M3-7 were used as capping agents to synthesize silver nanoparticles (Ag-NPs) with enhanced antifungal activity. Ag-NPs formed using 3 mg·mL-1 of the mutant lipopeptides were found to exhibit a good distribution, improved antifungal activity, a promising potential to be used as a biofortified agent for seed germination, and an effective compound to control FCR in wheat seedlings.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Biotechnology Program, Center of Sustainable Development, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | | | - Slim Tounsi
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | - Imen Saadaoui
- Biotechnology Program, Center of Sustainable Development, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohamed Trigui
- Laboratory of Environmental Sciences and Sustainable Development (LASED) Sfax Preparatory Engineering Institute, BP 1172-3018, University of Sfax, Tunisia
| |
Collapse
|
19
|
Ghanipour F, Nazari R, Aghaei SS, Jafari P. Effect of lipopeptide extracted from Bacillus licheniformis on the expression of bap and luxI genes in multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Amino Acids 2023; 55:1891-1907. [PMID: 37907777 DOI: 10.1007/s00726-023-03346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Recently, opportunistic pathogens like Acinetobacter baumannii and Pseudomonas aeruginosa have caused concern due to their ability to cause antibiotic resistance in weakened immune systems. As a result, researchers are always seeking efficient antimicrobial agents to tackle this issue. The hypothesis of the recent study was that probiotic products derived from bacteria would be effective in reducing drug resistance in other bacteria. This research aimed to investigate the antimicrobial properties of probiotic products from various bacterial strains, including Lactobacillus rhamnosus, Pediococcus acidilactisi, Bacillus coagulans, Bacillus subtilis, and Bacillus licheniformis. These were tested against multi-drug-resistant (MDR) standard strains A. baumannii and P. aeruginosa. B. licheniformis was found to be the most effective probiotic strain, possessing the LanA and LanM lantibiotic genes. The lipopeptide nature of the probiotic product was confirmed through high-performance liquid chromatography (HPLC) and Fourier-transform infrared spectroscopy (FTIR) techniques. The anti-biofilm and antimicrobial properties of this probiotic were measured using an SEM electron microscope and minimum inhibitory concentration (MIC) test. Real-time PCR (qPCR) was used to compare the expression of bap and luxI genes, which are considered virulence factors of drug-resistant bacteria, before and after treatment with antimicrobial agents. The MIC results showed that the probiotic product prevented the growth of bacteria at lower concentrations compared to antibiotics. In addition, the ΔΔCqs indicated that gene expression was significantly down-regulated following treatment with the obtained probiotic product. It was found that B. licheniformis probiotic products could reduce drug resistance in other bacteria, making it a potential solution to antibiotic resistance.
Collapse
Affiliation(s)
- Farangis Ghanipour
- Department of Microbiology, Faculty of Basic Sciences, Qom Branch, Islamic Azad University, 15 Khordad Boulevard, Qom, Iran
| | - Razieh Nazari
- Department of Microbiology, Faculty of Basic Sciences, Qom Branch, Islamic Azad University, 15 Khordad Boulevard, Qom, Iran.
| | - Seyed Soheil Aghaei
- Department of Microbiology, Faculty of Basic Sciences, Qom Branch, Islamic Azad University, 15 Khordad Boulevard, Qom, Iran
| | - Parvaneh Jafari
- Department of Microbiology, Faculty of Basic Sciences, Arak Branch, Islamic Azad University, Arak, 3749113191, Iran
| |
Collapse
|
20
|
Ye C, Liu D, Huang K, Li D, Ma X, Jin Y, Xiong H. Isolation of starch and protein degrading strain Bacillus subtilis FYZ1-3 from tobacco waste and genomic analysis of its tolerance to nicotine and inhibition of fungal growth. Front Microbiol 2023; 14:1260149. [PMID: 38033584 PMCID: PMC10687635 DOI: 10.3389/fmicb.2023.1260149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Aerobic fermentation is an effective technique for the large-scale processing of tobacco waste. However, the specificity of the structure and composition of tobacco-derived organic matter and the toxic alkaloids in the material make it currently difficult to directly use microbial agents. In this study, a functional strain FYZ1-3 was isolated and screened from thermophilic phase samples of tobacco waste composting. This strain could withstand temperatures as high as 80°C and grow normally at 0.6% nicotine content. Furthermore, it had a strong decomposition capacity of tobacco-derived starch and protein, with amylase activity of 122.3 U/mL and protease activity and 52.3 U/mL, respectively. To further understand the mechanism of the metabolic transformation of the target, whole genome sequencing was used and the secondary metabolite gene cluster was predicted. The inhibitory effect of the strain on common tobacco fungi was verified using the plate confrontation and agar column methods. The results showed that the strain FYZ1-3 was Bacillus subtilis, with a genome size of 4.17 Mb and GC content of 43.68%; 4,338 coding genes were predicted. The genome was annotated and analyzed using multiple databases to determine its ability to efficiently degrade starch proteins at the molecular level. Moreover, 14 functional genes related to nicotine metabolism were identified, primarily located on the distinct genomic island of FYZ1-3, giving a speculation for its nicotine tolerance capability on the molecular mechanism. By mining the secondary metabolite gene cluster prediction, we found potential synthetic bacteriocin, antimicrobial peptide, and other gene clusters on its chromosome, which may have certain antibacterial properties. Further experiments confirmed that the FYZ1-3 strain was a potent growth inhibitor of Penicillium chrysogenum, Aspergillus sydowii, A. fumigatus, and Talaromyces funiculosus. The creation and industrial use of the functional strains obtained in this study provide a theoretical basis for its industrial use, where it would be of great significance to improve the utilization rate of tobacco waste.
Collapse
Affiliation(s)
- Changwen Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Dandan Liu
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Kuo Huang
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Dong Li
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xinxin Ma
- School of Environment, Tsinghua University, Beijing, China
| | - Yiying Jin
- School of Environment, Tsinghua University, Beijing, China
| | - Hanguo Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Lagzian A, Riseh RS, Sarikhan S, Ghorbani A, Khodaygan P, Borriss R, Guzzi PH, Veltri P. Genome mining conformance to metabolite profile of Bacillus strains to control potato pathogens. Sci Rep 2023; 13:19095. [PMID: 37925555 PMCID: PMC10625545 DOI: 10.1038/s41598-023-46672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023] Open
Abstract
Biocontrol agents are safe and effective methods for controlling plant disease pathogens, such as Fusarium solani, which causes dry wilt, and Pectobacterium spp., responsible for potato soft rot disease. Discovering agents that can effectively control both fungal and bacterial pathogens in potatoes has always presented a challenge. Biological controls were investigated using 500 bacterial strains isolated from rhizospheric microbial communities, along with two promising biocontrol strains: Pseudomonas (T17-4 and VUPf5). Bacillus velezensis (Q12 and US1) and Pseudomonas chlororaphis VUPf5 exhibited the highest inhibition of fungal growth and pathogenicity in both laboratory (48%, 48%, 38%) and greenhouse (100%, 85%, 90%) settings. Q12 demonstrated better control against bacterial pathogens in vivo (approximately 50%). Whole-genome sequencing of Q12 and US1 revealed a genome size of approximately 4.1 Mb. Q12 had 4413 gene IDs and 4300 coding sequences, while US1 had 4369 gene IDs and 4255 coding sequences. Q12 exhibited a higher number of genes classified under functional subcategories related to stress response, cell wall, capsule, levansucrase synthesis, and polysaccharide metabolism. Both Q12 and US1 contained eleven secondary metabolite gene clusters as identified by the antiSMASH and RAST servers. Notably, Q12 possessed the antibacterial locillomycin and iturin A gene clusters, which were absent in US1. This genetic information suggests that Q12 may have a more pronounced control over bacterial pathogens compared to US1. Metabolic profiling of the superior strains, as determined by LC/MS/MS, validated our genetic findings. The investigated strains produced compounds such as iturin A, bacillomycin D, surfactin, fengycin, phenazine derivatives, etc. These compounds reduced spore production and caused deformation of the hyphae in F. solani. In contrast, B. velezensis UR1, which lacked the production of surfactin, fengycin, and iturin, did not affect these structures and failed to inhibit the growth of any pathogens. Our findings suggest that locillomycin and iturin A may contribute to the enhanced control of bacterial pectolytic rot by Q12.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Pejman Khodaygan
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rainer Borriss
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy.
| | - Pierangelo Veltri
- Department of Informatics Modeling Electronics and System Engineering, University of Calabria, Calabria, Italy
| |
Collapse
|
22
|
Etemadzadeh SS, Emtiazi G, Soltanian S. Production of biosurfactant by salt-resistant Bacillus in lead-supplemented media: application and toxicity. Int Microbiol 2023; 26:869-880. [PMID: 36810942 DOI: 10.1007/s10123-023-00334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
A group of biosurfactants are lipopeptides that are produced by some microorganisms, especially Bacillus strains. They are new bioactive agents with anticancer, antibacterial, antifungal, and antiviral activities. Also, they are used in sanitation industries. In this study, a lead-resistant strain of Bacillus halotolerans was isolated for lipopeptide production. This isolate exhibited metal resistance (lead, calcium, chromium, nickel, copper, manganese, and mercury), salt tolerance (12%), and antimicrobial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Saccharomyces cerevisiae. The production of lipopeptide was optimized, concentrated, and then extracted from the polyacrylamide gel in a simple way for the first time. The nature of the purified lipopeptide was determined by FTIR, GC/MS, and HPLC analyses. The purified lipopeptide indicated significant antioxidant properties (90.38% at a concentration of 0.8 mg ml-1). Also, it had anticancer activity by apoptosis (flow cytometry analysis) in MCF-7 cells, while it had no cytotoxicity on HEK-293 normal cells. Therefore, Bacillus halotolerans lipopeptide has the potential to be used as an antioxidant, antimicrobial, or anticancer agent in the medical and food industries.
Collapse
Affiliation(s)
- Shekoofeh Sadat Etemadzadeh
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Giti Emtiazi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Soltanian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
23
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
24
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
25
|
Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:2156. [PMID: 37631370 PMCID: PMC10457971 DOI: 10.3390/pharmaceutics15082156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Andrea Chiara Sansotera
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | | | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
26
|
Akintayo SO, Hosseini B, Vahidinasab M, Messmer M, Pfannstiel J, Bertsche U, Hubel P, Henkel M, Hausmann R, Voegele RT, Lilge L. Characterization ofantifungal properties of lipopeptide-producing Bacillus velezensis strains and their proteome-based response to the phytopathogens, Diaporthe spp. Front Bioeng Biotechnol 2023; 11:1228386. [PMID: 37609113 PMCID: PMC10440741 DOI: 10.3389/fbioe.2023.1228386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: B. velezensis strains are of interest in agricultural applications due to their beneficial interactions with plants, notable through their antimicrobial activity. The biocontrol ability of two new lipopeptides-producing B. velezensis strains ES1-02 and EFSO2-04, against fungal phytopathogens of Diaporthe spp., was evaluated and compared with reference strains QST713 and FZB42. All strains were found to be effective against the plant pathogens, with the new strains showing comparable antifungal activity to QST713 and slightly lower activity than FZB42. Methods: Lipopeptides and their isoforms were identified by high-performance thin-layer chromatography (HPTLC) and mass spectrometric measurements. The associated antifungal influences were determined in direct in vitro antagonistic dual culture assays, and the inhibitory growth effects on Diaporthe spp. as representatives of phytopathogenic fungi were determined. The effects on bacterial physiology of selected B. velezensis strains were analyzed by mass spectrometric proteomic analyses using nano-LC-MS/MS. Results and Discussion: Lipopeptide production analysis revealed that all strains produced surfactin, and one lipopeptide of the iturin family, including bacillomycin L by ES1-02 and EFSO2-04, while QST713 and FZB42 produced iturin A and bacillomycin D, respectively. Fengycin production was however only detected in the reference strains. As a result of co-incubation of strain ES1-02 with the antagonistic phytopathogen D. longicolla, an increase in surfactin production of up to 10-fold was observed, making stress induction due to competitors an attractive strategy for surfactin bioproduction. An associated global proteome analysis showed a more detailed overview about the adaptation and response mechanisms of B. velezensis, including an increased abundance of proteins associated with the biosynthesis of antimicrobial compounds. Furthermore, higher abundance was determined for proteins associated with oxidative, nitrosative, and general stress response. In contrast, proteins involved in phosphate uptake, amino acid transport, and translation were decreased in abundance. Altogether, this study provides new insights into the physiological adaptation of lipopeptide-producing B. velezensis strains, which show the potential for use as biocontrol agents with respect to phytopathogenic fungi.
Collapse
Affiliation(s)
- Stephen Olusanmi Akintayo
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Behnoush Hosseini
- Department of Phytopathology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Marc Messmer
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Ute Bertsche
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Philipp Hubel
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Ralf T. Voegele
- Department of Phytopathology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Dobrzyński J, Jakubowska Z, Kulkova I, Kowalczyk P, Kramkowski K. Biocontrol of fungal phytopathogens by Bacillus pumilus. Front Microbiol 2023; 14:1194606. [PMID: 37560520 PMCID: PMC10407110 DOI: 10.3389/fmicb.2023.1194606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Plant growth-promoting bacteria are one of the most interesting methods of controlling fungal phytopathogens. These bacteria can participate in biocontrol via a variety of mechanisms including lipopeptide production, hydrolytic enzymes (e.g., chitinase, cellulases, glucanase) production, microbial volatile organic compounds (mVOCs) production, and induced systemic resistance (ISR) triggering. Among the bacterial genera most frequently studied in this aspect are Bacillus spp. including Bacillus pumilus. Due to the range of biocontrol traits, B. pumilus is one of the most interesting members of Bacillus spp. that can be used in the biocontrol of fungal phytopathogens. So far, a number of B. pumilus strains that exhibit biocontrol properties against fungal phytopathogens have been described, e.g., B. pumilus HR10, PTB180, B. pumilus SS-10.7, B. pumilus MCB-7, B. pumilus INR7, B. pumilus SE52, SE34, SE49, B. pumilus RST25, B. pumilus JK-SX001, and B. pumilus KUDC1732. B. pumilus strains are capable of suppressing phytopathogens such as Arthrobotrys conoides, Fusarium solani, Fusarium oxysporum, Sclerotinia sclerotiorum, Rhizoctonia solani, and Fagopyrum esculentum. Importantly, B. pumilus can promote plant growth regardless of whether it alters the native microbiota or not. However, in order to increase its efficacy, research is still needed to clarify the relationship between the native microbiota and B. pumilus. Despite that, it can already be concluded that B. pumilus strains are good candidates to be environmentally friendly and commercially effective biocontrol agents.
Collapse
Affiliation(s)
- Jakub Dobrzyński
- Institute of Technology and Life Sciences—National Research Institute, Raszyn, Poland
| | - Zuzanna Jakubowska
- Institute of Technology and Life Sciences—National Research Institute, Raszyn, Poland
| | - Iryna Kulkova
- Institute of Technology and Life Sciences—National Research Institute, Raszyn, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
28
|
Yadav D, Gaurav H, Yadav R, Waris R, Afzal K, Chandra Shukla A. A comprehensive review on soft rot disease management in ginger ( Zingiber officinale) for enhancing its pharmaceutical and industrial values. Heliyon 2023; 9:e18337. [PMID: 37539157 PMCID: PMC10395546 DOI: 10.1016/j.heliyon.2023.e18337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Zingiber officinale L. Roscoe is a significant herb that possesses many medicinal and ethnomedicinal properties. Due to the presence of various bioactive compounds, it has immense healing capacity. However, ginger as a crop is susceptible to several fungal pathogens. Among all the fungal pathogens, Pythium and Fusarium spp. are of most concern, causing soft rot (rhizome rot) disease, majorly responsible for the downfall in its production by 50-90%. Pesticides and fungicides spray is generally recommended for the control of soft rot. Ample use of chemicals not only affects the quality of the crop but also disturbs ecological integrity. Therefore, biological methods of disease management involving suitable microbial agents such as Trichoderma harzianum, Pseudomonas spp., Bacillus subtilis, Streptomyces spp. and plant extracts are attracting and gaining importance as a part of integrated approaches (IPM) to manage the soft rot and sustainably enhance the production and improve the medicinal and pharmaceutical values of ginger. The present review is aimed to discuss various means of controlling soft rot disease by physical, chemical, biological, and nanotechnology-based methods. Moreover, various bioactive constituents of ginger and their pharmaceutical importance have been also discussed.
Collapse
Affiliation(s)
- Divyanshu Yadav
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Harshita Gaurav
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Ramanand Yadav
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Raza Waris
- Department of Botany, University of Lucknow, Lucknow, 226007, India
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kareena Afzal
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
29
|
Salazar B, Ortiz A, Keswani C, Minkina T, Mandzhieva S, Pratap Singh S, Rekadwad B, Borriss R, Jain A, Singh HB, Sansinenea E. Bacillus spp. as Bio-factories for Antifungal Secondary Metabolites: Innovation Beyond Whole Organism Formulations. MICROBIAL ECOLOGY 2023; 86:1-24. [PMID: 35604432 DOI: 10.1007/s00248-022-02044-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Several fungi act as parasites for crops causing huge annual crop losses at both pre- and post-harvest stages. For years, chemical fungicides were the solution; however, their wide use has caused environmental contamination and human health problems. For this reason, the use of biofungicides has been in practice as a green solution against fungal phytopathogens. In the context of a more sustainable agriculture, microbial biofungicides have the largest share among the commercial biocontrol products that are available in the market. Precisely, the genus Bacillus has been largely studied for the management of plant pathogenic fungi because they offer a chemically diverse arsenal of antifungal secondary metabolites, which have spawned a heightened industrial engrossment of it as a biopesticide. In this sense, it is indispensable to know the wide arsenal that Bacillus genus has to apply these products for sustainable agriculture. Having this idea in our minds, in this review, secondary metabolites from Bacillus having antifungal activity are chemically and structurally described giving details of their action against several phytopathogens. Knowing the current status of Bacillus secreted antifungals is the base for the goal to apply these in agriculture and it is addressed in depth in the second part of this review.
Collapse
Affiliation(s)
- Bruno Salazar
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, México
| | - Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, México
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Satyendra Pratap Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Bhagwan Rekadwad
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Rainer Borriss
- Institut Für Agrar- Und Gartenbauwissenschaften, Fachgebiet Phytomedizin, Humboldt-Universität Zu Berlin, Lentze-Allee 55-57, 14195, Berlin, Germany
| | - Akansha Jain
- Division of Plant Biology, Bose Institute, CIT Road, Kankurgachi, Kolkata, India
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura, 281406, India
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, México.
| |
Collapse
|
30
|
Di Giácomo AL, Azcurra LN, García GR, Dogi CA, González Pereyra ML. Safety assessment of surfactin-producing Bacillus strains and their lipopeptides extracts in vitro and in vivo. J Basic Microbiol 2023. [PMID: 37154196 DOI: 10.1002/jobm.202300008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Beneficial Bacillus strains can be administered to livestock as probiotics to improve animal health. Cyclic lipopeptides produced by Bacillus such as surfactins may be responsible for some of the beneficial effects due to their anti-inflammatory and immunomodulatory activity. The aim of the present study was to isolate and evaluate the biocompatibility of native Bacillus spp. strains and their surfactin-like lipopeptides in vitro and in vivo to determine their potential to be used on animals. Biocompatibility of endospore suspensions (108 UFC/mL), and different dilutions (1:10; 1:50; 1:100; 1:500, and 1:1000) of Bacillus lipopeptide extracts containing surfactin was tested on Caco-2 cells by microculture tetrazolium-based colorimetric assay. Genotoxicity was tested on BALB/c mice (n = 6) administered 0.2 mL of endospore suspensions by the bone marrow erythrocyte micronuclei assay. All the isolates tested produced between 26.96 and 239.97 µg mL- 1 of surfactin. The lipopeptide extract (LPE) from isolate MFF1.11 demonstrated significant cytotoxicity in vitro. In contrast, LPE from MFF 2.2; MFF 2.7, TL1.11, TL 2.5, and TC12 had no cytotoxic effect (V% > 70%) on Caco-2 cells, not affecting cell viability signifficantly in most treatments. Similarly, none of the endospore suspensions affected cell viability (V% > 80%). Likewise, endospores did not cause genotoxicity on BALB/c mice. This study was elementary as a first step for a new line of research, since it allowed us to choose the safest isolates to keep working on the search of new potentially probiotic strains destined to production animals to improve their performance and health.
Collapse
Affiliation(s)
- Ana L Di Giácomo
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| | - Lorena N Azcurra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Gisela R García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| | - Cecilia A Dogi
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| | - María L González Pereyra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
31
|
Ngo-Mback MNL, Zeuko’o Menkem E, Marco HG. Antifungal Compounds from Microbial Symbionts Associated with Aquatic Animals and Cellular Targets: A Review. Pathogens 2023; 12:617. [PMID: 37111503 PMCID: PMC10142389 DOI: 10.3390/pathogens12040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal infections continue to be a serious public health problem, leading to an estimated 1.6 million deaths annually. It remains a major cause of mortality for people with a weak or affected immune system, such as those suffering from cancer under aggressive chemotherapies. On the other hand, pathogenic fungi are counted among the most destructive factors affecting crops, causing a third of all food crop losses annually and critically affecting the worldwide economy and food security. However, the limited number currently available and the cytotoxicity of the conventional antifungal drugs, which are not yet properly diversified in terms of mode of action, in addition to resistance phenomena, make the search for new antifungals imperative to improve both human health and food protection. Symbiosis has been a crucial alternative for drug discovery, through which many antimicrobials have been discovered. This review highlights some antifungal models of a defensive symbiosis of microbial symbiont natural products derived from interacting with aquatic animals as one of the best opportunities. Some recorded compounds with supposed novel cell targets such as apoptosis could lead to the development of a multitherapy involving the mutual treatment of fungal infections and other metabolic diseases involving apoptosis in their pathogenesis pathways.
Collapse
Affiliation(s)
| | | | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
32
|
Nagtode V, Cardoza C, Yasin HKA, Mali SN, Tambe SM, Roy P, Singh K, Goel A, Amin PD, Thorat BR, Cruz JN, Pratap AP. Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability-Comparison, Applications, Market, and Future Prospects. ACS OMEGA 2023; 8:11674-11699. [PMID: 37033812 PMCID: PMC10077441 DOI: 10.1021/acsomega.3c00591] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Surfactants are a group of amphiphilic molecules (i.e., having both hydrophobic and hydrophilic domains) that are a vital part of nearly every contemporary industrial process such as in agriculture, medicine, personal care, food, and petroleum. In general surfactants can be derived from (i) petroleum-based sources or (ii) microbial/plant origins. Petroleum-based surfactants are obvious results from petroleum products, which lead to petroleum pollution and thus pose severe problems to the environment leading to various ecological damages. Thus, newer techniques have been suggested for deriving surfactant molecules and maintaining environmental sustainability. Biosurfactants are surfactants of microbial or plant origins and offer much added advantages such as high biodegradability, lesser toxicity, ease of raw material availability, and easy applicability. Thus, they are also termed "green surfactants". In this regard, this review focused on the advantages of biosurfactants over the synthetic surfactants produced from petroleum-based products along with their potential applications in different industries. We also provided their market aspects and future directions that can be considered with selections of biosurfactants. This would open up new avenues for surfactant research by overcoming the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Vaishnavi
S. Nagtode
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Clive Cardoza
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Haya Khader Ahmad Yasin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Suraj N. Mali
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India
| | - Srushti M. Tambe
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pritish Roy
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Kartikeya Singh
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Antriksh Goel
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Purnima D. Amin
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Bapu R. Thorat
- Department
of Chemistry, Government College of Arts
and Science, Aurangabad, Maharashtra 431001, India
| | - Jorddy N. Cruz
- Laboratory
of Modeling and Computational Chemistry, Department of Biological
and Health Sciences, Federal University
of Amapá, Macapá 68902-280, Amapá, Brazil
| | - Amit P. Pratap
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
33
|
Wang H, Zhou Y, Xu S, Zhang B, Cernava T, Ma Z, Chen Y. Enhancement of herbicolin A production by integrated fermentation optimization and strain engineering in Pantoea agglomerans ZJU23. Microb Cell Fact 2023; 22:50. [PMID: 36915090 PMCID: PMC10012537 DOI: 10.1186/s12934-023-02051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND The lipopeptide herbicolin A (HA) secreted by the biocontrol agent Pantoea agglomerans ZJU23 is a promising antifungal drug to combat fungal pathogens by targeting lipid rafts, both in agricultural and clinical settings. Improvement of HA production would be of great significance in promoting its commercialization. This study aims to enhance the HA production in ZJU23 by combining fermentation optimization and strain engineering. RESULTS Based on the results in the single-factor experiments, corn steep liquor, temperature and initial pH were identified as the significant affecting factors by the Plackett-Burman design. The fermentation medium and conditions were further optimized using the Box-Behnken response surface method, and the HA production of the wild type strain ZJU23 was improved from ~ 87 mg/mL in King's B medium to ~ 211 mg/mL in HA induction (HAI) medium. A transposon library was constructed in ZJU23 to screen for mutants with higher HA production, and two transcriptional repressors for HA biosynthesis, LrhA and PurR, were identified. Disruption of the LrhA gene led to increased mRNA expression of HA biosynthetic genes, and subsequently improved about twofold HA production. Finally, the HA production reached ~ 471 mg/mL in the ΔLrhA mutant under optimized fermentation conditions, which is about 5.4 times higher than before (~ 87 mg/mL). The bacterial suspension of the ΔLrhA mutant fermented in HAI medium significantly enhanced its biocontrol efficacy against gray mold disease and Fusarium crown rot of wheat, showing equivalent control efficacies as the chemical fungicides used in this study. Furthermore, HA was effective against fungicide resistant Botrytis cinerea. Increased HA production substantially improved the control efficacy against gray mold disease caused by a pyrimethanil resistant strain. CONCLUSIONS This study reveals that the transcriptional repressor LrhA negatively regulates HA biosynthesis and the defined HAI medium is suitable for HA production. These findings provide an extended basis for large-scale production of HA and promote biofungicide development based on ZJU23 and HA in the future.
Collapse
Affiliation(s)
- Hongkai Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Yaqi Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Sunde Xu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Boyan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Luo C, Chen M, Luo K, Yin X, Onchari MM, Wang X, Zhang J, Zhong H, Tian B. Genome Sequencing and Genetic Engineering Reveal the Contribution of Bacitracin Produced by Bacillus paralicheniformis CPL618 to Anti-Staphylococcus aureus Activity. Curr Microbiol 2023; 80:135. [PMID: 36913050 DOI: 10.1007/s00284-023-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023]
Abstract
Staphylococcus aureus is one of the important pathogens causing human diseases, especially its treatment has great challenges due to its resistance to methicillin and vancomycin. The Bacillus strains are known to be major sources of second metabolites that can function as drugs. Therefore, it is of great value to excavate metabolites with good inhibitory activity against S. aureus from Bacillus strains. In this study, a strain Bacillus paralicheniformis CPL618 with good antagonistic activity against S. aureus was isolated and genome analysis showed that the size was 4,447,938 bp and contained four gene clusters fen, bac, dhb, and lch which are potentially responsible for four cyclic peptides fengycin, bacitracin, bacillibactin, and lichenysin biosynthesis, respectively. These gene clusters were knockout by homologous recombination. The bacteriostatic experiment results showed that the antibacterial activity of ∆bac decreased 72.3% while Δfen, Δdhb, and ΔlchA did not significantly changed as that of wild type. Interestingly, the maximum bacitracin yield was up to 92 U/mL in the LB medium, which was extremely unusual in wild type strains. To further improve the production of bacitracin, transcription regulators abrB and lrp were knocked out, the bacitracin produced by ΔabrB, Δlrp, and ΔabrB + lrp was 124 U/mL, 112 U/mL, and 160 U/ml, respectively. Although no new anti-S. aureus compounds was found by using genome mining in this study, the molecular mechanisms of high yield of bacitracin and anti-S. aureus in B. paralicheniformis CPL618 were clarified. Moreover, B. paralicheniformis CPL618 was further genetically engineered for industrial production of bacitracin.
Collapse
Affiliation(s)
- Chuping Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China.
| | - Meilin Chen
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Kecheng Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Xiulian Yin
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Mary M Onchari
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Xiaohua Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Jinfeng Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Haijing Zhong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Baoxia Tian
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
35
|
Genome sequence analysis and characterization of Bacillus altitudinis B12, a polylactic acid- and keratin-degrading bacterium. Mol Genet Genomics 2023; 298:389-398. [PMID: 36585993 DOI: 10.1007/s00438-022-01989-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Keratin-rich wastes, mainly in the form of feathers, are recalcitrant residues generated in high amounts as by-products in chicken farms and food industry. Polylactic acid (PLA) is the second most common biodegradable polymer found in commercial plastics, which is not easily degraded by microbial activity. This work reports the 3.8-Mb genome of Bacillus altitudinis B12, a highly efficient PLA- and keratin-degrading bacterium, with potential for environmental friendly biotechnological applications in the feed, fertilizer, detergent, leather, and pharmaceutical industries. The whole genome sequence of B. altitudinis B12 revealed that this strain (which had been previously misclassified as Bacillus pumilus B12) is closely related to the B. altitudinis strains ER5, W3, and GR-8. A total of 4056 coding sequences were annotated using the RAST server, of which 2484 are core genes of the pan genome of B. altitudinis and 171 are unique to this strain. According to the sequence analysis, B. pumilus B12 has a predicted secretome of 353 proteins, among which a keratinase and a PLA depolymerase were identified by sequence analysis. The presence of these two enzymes could explain the characterized PLA and keratin biodegradation capability of the strain.
Collapse
|
36
|
Makowska M, Kosikowska-Adamus P, Zdrowowicz M, Wyrzykowski D, Prahl A, Sikorska E. Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design. Int J Mol Sci 2023; 24:ijms24043951. [PMID: 36835362 PMCID: PMC9959048 DOI: 10.3390/ijms24043951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In this paper, we describe the chemical synthesis, preliminary evaluation of antimicrobial properties and mechanisms of action of a novel group of lipidated derivatives of three naturally occurring α-helical antimicrobial peptides, LL-I (VNWKKVLGKIIKVAK-NH2), LK6 (IKKILSKILLKKL-NH2), ATRA-1 (KRFKKFFKKLK-NH2). The obtained results showed that biological properties of the final compounds were defined both by the length of the fatty acid and by the structural and physico-chemical properties of the initial peptide. We consider C8-C12 length of the hydrocarbon chain as the optimal for antimicrobial activity improvement. However, the most active analogues exerted relatively high cytotoxicity toward keratinocytes, with the exception of the ATRA-1 derivatives, which had a higher selectivity for microbial cells. The ATRA-1 derivatives had relatively low cytotoxicity against healthy human keratinocytes but high cytotoxicity against human breast cancer cells. Taking into account that ATRA-1 analogues carry the highest positive net charge, it can be assumed that this feature contributes to cell selectivity. As expected, the studied lipopeptides showed a strong tendency to self-assembly into fibrils and/or elongated and spherical micelles, with the least cytotoxic ATRA-1 derivatives forming apparently smaller assemblies. The results of the study also confirmed that the bacterial cell membrane is the target for the studied compounds.
Collapse
Affiliation(s)
- Marta Makowska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Correspondence: (M.M.); (E.S.)
| | - Paulina Kosikowska-Adamus
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Zdrowowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Correspondence: (M.M.); (E.S.)
| |
Collapse
|
37
|
Tang Z, Zhang H, Xiong J, Li Y, Luo W. Enhanced iturin a production in a two-compartment biofilm reactor by Bacillus velezensis ND. Front Bioeng Biotechnol 2023; 11:1102786. [PMID: 36741766 PMCID: PMC9893019 DOI: 10.3389/fbioe.2023.1102786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
In this study, a two-compartment biofilm reactor was designed for iturin A production. The biofilm reactor consists of a stirred-tank fermentor containing exclusively suspended cells and a packing column where the biofilm is attached. Polyester fiber with sphere shape and rough surfaces was chosen as the carrier of biofilm in packing column. Batch, fed-batch, and repeated-batch fermentation using Bacillus velezensis ND in the biofilm reactor were studied. Compared to conventional suspended cell fermentations, the productivity of iturin A in batch and fed-batch biofilm fermentation were increased by 66.7% and 63.3%, respectively. Maximum itutin A concentration of 6.8 ± 0.1 g/L and productivity of 46.9 ± 0.2 mg/L/h were obtained in fed-batch biofilm fermentation. Repeated-batch fermentation showed high stability, with almost same profile as batch fermentation. After a step-wise temperature control strategy was introduced in the biofilm reactor, productivity of iturin A was increased by 131.9% compared to suspended cell reactor. This superior performance of biofilm reactor confirms that it has great potential in industrial production of iturin A.
Collapse
Affiliation(s)
- Zhongmin Tang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Huili Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China,*Correspondence: Huili Zhang,
| | - Jie Xiong
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Wei Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Yadav M, Eswari JS. Opportunistic Challenges of Computer-aided Drug Discovery of Lipopeptides: New Insights for Large Molecule Therapeutics. Avicenna J Med Biotechnol 2023; 15:3-13. [PMID: 36789119 PMCID: PMC9895984 DOI: 10.18502/ajmb.v15i1.11419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/27/2022] [Indexed: 12/27/2022] Open
Abstract
Computer-aided drug designing is a promising approach to defeating the dry pipeline of drug discovery. It aims at reduced experimental efforts with cost-effectiveness. Naturally occurring large molecules with molecular weight higher than 500 Dalton such as cationic peptides, cyclic peptides, glycopeptides and lipopeptides are a few examples of large molecules which have successful applications as the broad spectrum antibacterial, anticancer, antiviral, antifungal and antithrombotic drugs. Utilization of microbial metabolites as potential drug candidates incur cost effectiveness through large scale production of such molecules rather than a synthetic approach. Computational studies on such compounds generate tremendous possibilities to develop novel leads with challenges to handle these complex molecules with available computational tools. The opportunities begin with the desired structural modifications in the parent drug molecule. Virtual modifications followed by molecular interaction studies at the target site through molecular modeling simulations and identification of structure-activity relationship models to develop more prominent and potential drug molecules. Lead optimization studies to develop novel compounds with increased specificity and reduced off targeting is a big challenge computationally for large molecules. Prediction of optimized pharmacokinetic properties facilitates development of a compound with lower toxicity as compared to the natural compounds. Generating the library of compounds and studies for target specificity and ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) for large molecules are laborious and incur huge cost and chemical wastage through in-vitro methods. Hence, computational methods need to be explored to develop novel compounds from natural large molecules with higher specificity. This review article is focusing on possible challenges and opportunities in the pathway of computer-aided drug discovery of large molecule therapeutics.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Biotechnology, National Institute of Technology Raipur, C.G., India
| | - J. Satya Eswari
- Department of Biotechnology, National Institute of Technology Raipur, C.G., India
| |
Collapse
|
39
|
Mohammed EH, Lohan S, Ghaffari T, Gupta S, Tiwari RK, Parang K. Membrane-Active Cyclic Amphiphilic Peptides: Broad-Spectrum Antibacterial Activity Alone and in Combination with Antibiotics. J Med Chem 2022; 65:15819-15839. [PMID: 36442155 PMCID: PMC9743092 DOI: 10.1021/acs.jmedchem.2c01469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We designed a library of 24 cyclic peptides containing arginine (R) and tryptophan (W) residues in a sequential manner [RnWn] (n = 2-7) to study the impact of the hydrophilic/hydrophobic ratio, charge, and ring size on the antibacterial activity against Gram-positive and Gram-negative strains. Among peptides, 5a and 6a demonstrated the highest antimicrobial activity. In combination with 11 commercially available antibiotics, 5a and 6a showed remarkable synergism against a large panel of resistant pathogens. Hemolysis (HC50 = 340 μg/mL) and cell viability against mammalian cells demonstrated the selective lethal action of 5a against bacteria over mammalian cells. Calcein dye leakage and scanning electron microscopy studies revealed the membranolytic effect of 5a. Moreover, the stability in human plasma (t1/2 = 3 h) and the negligible ability of pathogens to develop resistance further reflect the potential of 5a for further development as a peptide-based antibiotic.
Collapse
Affiliation(s)
- Eman H.
M. Mohammed
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States,Department
of Chemistry, Faculty of Science, Menoufia
University, Shebin
El-Koam51132, Egypt,AJK
Biopharmaceutical, Irvine, California92617, United States
| | - Sandeep Lohan
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States,AJK
Biopharmaceutical, Irvine, California92617, United States
| | - Tarra Ghaffari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Shilpi Gupta
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Rakesh K. Tiwari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States,. Fax: +1-714-516-548. Phone: +1-714-516-5483
| | - Keykavous Parang
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States,. Fax: +1-714-516-5481. Phone: +1-714-516-5489
| |
Collapse
|
40
|
Yu F, Shen Y, Qin Y, Pang Y, Fan H, Peng J, Pei X, Liu X. Isolation and purification of antibacterial lipopeptides from Bacillus velezensis YA215 isolated from sea mangroves. Front Nutr 2022; 9:1064764. [PMID: 36505249 PMCID: PMC9730517 DOI: 10.3389/fnut.2022.1064764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
The increasing burden and health risks of antimicrobial resistance (AMR) pose a great threat to society overall. Lipopeptides exhibit great potential as novel and safe alternatives to traditional antibiotics. In this study, the strain YA215, which was isolated from the mangrove area in Beibu Gulf, Guangxi, China, was identified as Bacillus velezensis. Then, YA215 lipopeptide extracts (YA215LE) from B. velezensis was found to exhibit a wide spectrum of antibacterial and antifungal activities. Additionally, YA215LE was identified and found to contain three groups of lipopeptides (surfactin, iturin, and fengycin). Furthermore, one separation fraction (BVYA1) with significant antibacterial activity was obtained. Additionally, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of BVYA1 showed three molecular ion peaks ([M + H]+: m/z 980.62; 994.66; 1008.66) corresponding to conventional surfactin homologs. By MS/MS analysis, BVYA1 was identified as sufactin with the precise amino acid sequence Glu-Leu/Ile-Leu-Val-Asp-Leu-Leu/Ile and hydroxyl fatty acids with 11-13 carbons. [M + H]+ at m/z 980.62 was detected for the first time in B. velezensis, which demonstrates that the strain corresponds to a new surfactin variant. In particular, BVYA1 showed antibacterial activity with the minimum inhibitory concentration (MIC) values of 7.5-15 μg/ml. Finally, the preliminary mechanism of inhibiting E. coli treated with BVYA1 showed that BVYA1 effectively permeabilized the cytoplasmic membrane and disrupted the morphology of targeted bacterial cells. In conclusion, this study suggests that the YA215LE from B. velezensis YA215 might be a potential candidate for a bactericide.
Collapse
|
41
|
Added Value of Biophysics to Study Lipid-Driven Biological Processes: The Case of Surfactins, a Class of Natural Amphiphile Molecules. Int J Mol Sci 2022; 23:ijms232213831. [PMID: 36430318 PMCID: PMC9693386 DOI: 10.3390/ijms232213831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The role of membrane lipids is increasingly claimed to explain biological activities of natural amphiphile molecules. To decipher this role, biophysical studies with biomimetic membrane models are often helpful to obtain insights at the molecular and atomic levels. In this review, the added value of biophysics to study lipid-driven biological processes is illustrated using the case of surfactins, a class of natural lipopeptides produced by Bacillus sp. showing a broad range of biological activities. The mechanism of interaction of surfactins with biomimetic models showed to be dependent on the surfactins-to-lipid ratio with action as membrane disturber without membrane lysis at low and intermediate ratios and a membrane permeabilizing effect at higher ratios. These two mechanisms are relevant to explain surfactins' biological activities occurring without membrane lysis, such as their antiviral and plant immunity-eliciting activities, and the one involving cell lysis, such as their antibacterial and hemolytic activities. In both biological and biophysical studies, influence of surfactin structure and membrane lipids on the mechanisms was observed with a similar trend. Hence, biomimetic models represent interesting tools to elucidate the biological mechanisms targeting membrane lipids and can contribute to the development of new molecules for pharmaceutical or agronomic applications.
Collapse
|
42
|
JASSIM NS, ATI MA. Efficacy of Bacillus subtilis (Ehrenberg1835) Cohn1872, in suppressing Fusarium oxysporum Schlecht. emend. Snyder & Hansen, the causal agent of root rot of date palm offshoots (Phoenix dactylifera L.) in Iraq. ACTA AGRICULTURAE SLOVENICA 2022; 118. [DOI: 10.14720/aas.2022.118.3.2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Date palm root rot disease is one of the most important diseases of date palms and offshoots. It is caused by many soil-borne pathogenic fungi. Pathogenicity assays of the isolated fungi showed that the major causative agents of root rot disease in date palm plantlets were Fusarium oxysporum Schlecht. emend. Snyder & Hansen, F. proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg S1, F. proliferatum S2, Gibberella fujikuroi (Sawada) Wollenw., and Rhizoctonia solani J.G. Kühn. The most virulent fungus was F. oxysporum with a severity index of 82.16 % of root rot, while R. solani was the least harmful with a disease severity rate of 12.42 %. In laboratory tests, Bacillus subtilis reduced the radial mycelial growth of F. oxysporum on PDA medium by 86.6 %. The application of B. subtilis in combination with F. oxysporum substantially inhibited the severity of root rot disease relative to plantlets treated with only F. oxysporum. In addition, B. subtilis application in the presence or absence of F. oxysporum improved the plant physiology of plantlets, including total chlorophyll, total carotenoid, antioxidant enzyme levels (catalase and peroxidase), and total proline content.
Collapse
|
43
|
Identification of Lipopeptide Iturin A Produced by Bacillus amyloliquefaciens NCPSJ7 and Its Antifungal Activities against Fusarium oxysporum f. sp. niveum. Foods 2022; 11:foods11192996. [PMID: 36230072 PMCID: PMC9563565 DOI: 10.3390/foods11192996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus amyloliquefaciens NCPSJ7 showed potential fungicidal activities for the effective control of fungal infection. From the PCR test, the key genes (srfAA, sfp, fenD, bmyB, ituD, and ituC) were detected in B. amyloliquefaciens NCPSJ7. These genes were closely related to the lipopeptides (LPs) synthesis. Next, three LPs families were identified with liquid chromatography–mass spectrometry (LC/MS), including iturin A, fengycin A, and surfactin. After purification with C18, the main active antifungal compound was proven to be C14-iturin A by ESI-HRMS, which has significant activities against fungi. These results proved that C14-iturin A played an important role in inhibiting the growth of fungi for B. amyloliquefaciens NCPSJ7. Furthermore, the isolated LP could inhibit mycelial growth and conidia germination at 30 μg/mL. SEM allowed us to observe that mycelial morphology and conidia germination were also affected. The mycelial ultrastructure TEM observations showed that the external electron-dense outer layer cell wall, which mainly consisted of glycoproteins, was affected. Furthermore, swollen mitochondria, enriched glycogen, and increased vacuoles were also found. LP also affected the intact wall and membranes, leading to their increased permeability, which was proved by propidium iodide (PI) staining and conductivity measurements. Meanwhile, the ergosterol, which has an affinity for iturin A, also increased. These results indicated that LP caused fungal dysfunction and membrane permeability increase, leading to fungal inhibition. Identifying and studying LPs is important in exploring the fungicidal activities of B. amyloliquefaciens, which promotes the use of B. amyloliquefaciens NCPSJ7 as a potential candidate for biocontrol.
Collapse
|
44
|
Chauhan V, Dhiman VK, Kanwar SS. Purification and characterization of a novel bacterial Lipopeptide(s) biosurfactant and determining its antimicrobial and cytotoxic properties. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Fioriti S, Cirioni O, Simonetti O, Franca L, Candelaresi B, Pallotta F, Neubauer D, Kamysz E, Kamysz W, Canovari B, Brescini L, Morroni G, Barchiesi F. In Vitro Activity of Novel Lipopeptides against Triazole-Resistant Aspergillus fumigatus. J Fungi (Basel) 2022; 8:jof8080872. [PMID: 36012859 PMCID: PMC9409728 DOI: 10.3390/jof8080872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
Aspergillosis, which is mainly sustained by Aspergillus fumigatus, includes a broad spectrum of diseases. They are usually severe in patients with co-morbidities. The first-line therapy includes triazoles, for which an increasing incidence of drug resistance has been lately described. As a consequence of this, the need for new and alternative antifungal molecules is absolutely necessary. As peptides represent promising antimicrobial molecules, two lipopeptides (C14-NleRR-NH2, C14-WRR-NH2) were tested to assess the antifungal activity against azole-resistant A. fumigatus. Antifungal activity was evaluated by determination of minimum inhibitory concentrations (MICs), time–kill curves, XTT assay, optical microscopy, and checkerboard combination with isavuconazole. Both lipopeptides showed antifungal activity, with MICs ranging from 8 mg/L to 16 mg/L, and a dose-dependent effect was confirmed by both time–kill curves and XTT assays. Microscopy showed that hyphae growth was hampered at concentrations equal to or higher than MICs. The rising antifungal resistance highlights the usefulness of novel compounds to treat severe fungal infections. Although further studies assessing the activity of lipopeptides are necessary, these molecules could be effective antifungal alternatives that overcome the current resistances.
Collapse
Affiliation(s)
- Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Lucia Franca
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61122 Pesaro, Italy
| | - Bianca Candelaresi
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Francesco Pallotta
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Elzbieta Kamysz
- Laboratory of Chemistry of Biological Macromolecules, Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Benedetta Canovari
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61122 Pesaro, Italy
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Correspondence: ; Tel.: +39-0712206298; Fax: +39-0712206297
| | - Francesco Barchiesi
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61122 Pesaro, Italy
| |
Collapse
|
46
|
Current advances in the classification, production, properties and applications of microbial biosurfactants – A critical review. Adv Colloid Interface Sci 2022; 306:102718. [DOI: 10.1016/j.cis.2022.102718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
|
47
|
Special Issue: Biofilm Composition and Applications. COATINGS 2022. [DOI: 10.3390/coatings12071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Biofilms can be formed on both biotic and abiotic surfaces, including on living tissues, indwelling medical devices, industrial or portable water system piping, and natural aquatic systems [...]
Collapse
|
48
|
Kim TY, Hwang SH, Noh JS, Cho JY, Maung CEH. Antifungal Potential of Bacillus velezensis CE 100 for the Control of Different Colletotrichum Species through Isolation of Active Dipeptide, Cyclo-(D-phenylalanyl-D-prolyl). Int J Mol Sci 2022; 23:ijms23147786. [PMID: 35887144 PMCID: PMC9318854 DOI: 10.3390/ijms23147786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum species are important fungal pathogens causing anthracnose of tropical and subtropical fruit and vegetable crops. Dual culture assay indicated that Bacillus velezensis CE 100 was a strong antagonist against C. acutatum, C. coccodes, C. dematium, and C. gloeosporioides. The volatile organic compounds produced by B. velezensis CE 100 affected mycelial growth of Colletotrichum species tested in our study and caused twisted hyphal structures of all these fungal species. Chloroform crude compounds of B. velezensis CE 100 inhibited four Colletotrichum species in a concentration-dependent manner and induced severe damage in hyphal morphology of these fungal pathogens, including swelling, bulging, and multiple branching. Moreover, the active cyclic dipeptide, cyclo-(D-phenylalanyl-D-prolyl), was isolated from chloroform crude extract and identified by nuclear magnetic resonance (NMR) and mass spectrometry. The inhibitory effect of cyclo-(D-phenylalanyl-D-prolyl) on conidial germination of C. gloeosporioides occurred in a concentration-dependent manner. The conidial germination rate was completely inhibited by a concentration of 3 mg/mL of cyclo-(D-phenylalanyl-D-prolyl). Scanning electron micrographs revealed that the exposure to cyclic dipeptide resulted in seriously deformed hyphae and conidia with shriveled surfaces in dipeptide-treated C. gloeosporioides. Therefore, active dipeptide-producing B. velezensis CE 100 is a promising biocontrol agent for Colletotrichum species causing anthracnose.
Collapse
Affiliation(s)
- Tae Yoon Kim
- Department of Plant Sciences, University of California, Davis, CA 95616, USA;
| | - Seo Hyun Hwang
- Department of Agricultural and Biological Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (S.H.H.); (J.S.N.)
| | - Jun Su Noh
- Department of Agricultural and Biological Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (S.H.H.); (J.S.N.)
| | - Jeong-Yong Cho
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (J.-Y.C.); (C.E.H.M.)
| | - Chaw Ei Htwe Maung
- Department of Agricultural and Biological Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (S.H.H.); (J.S.N.)
- Correspondence: (J.-Y.C.); (C.E.H.M.)
| |
Collapse
|
49
|
Brinkmann S, Kurz M, Patras MA, Hartwig C, Marner M, Leis B, Billion A, Kleiner Y, Bauer A, Toti L, Pöverlein C, Hammann PE, Vilcinskas A, Glaeser J, Spohn M, Schäberle TF. Genomic and Chemical Decryption of the Bacteroidetes Phylum for Its Potential to Biosynthesize Natural Products. Microbiol Spectr 2022; 10:e0247921. [PMID: 35442080 PMCID: PMC9248904 DOI: 10.1128/spectrum.02479-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
With progress in genome sequencing and data sharing, 1,000s of bacterial genomes are publicly available. Genome mining-using bioinformatics tools in terms of biosynthetic gene cluster (BGC) identification, analysis, and rating-has become a key technology to explore the capabilities for natural product (NP) biosynthesis. Comprehensively, analyzing the genetic potential of the phylum Bacteroidetes revealed Chitinophaga as the most talented genus in terms of BGC abundance and diversity. Guided by the computational predictions, we conducted a metabolomics and bioactivity driven NP discovery program on 25 Chitinophaga strains. High numbers of strain-specific metabolite buckets confirmed the upfront predicted biosynthetic potential and revealed a tremendous uncharted chemical space. Mining this data set, we isolated the new iron chelating nonribosomally synthesized cyclic tetradeca- and pentadecalipodepsipeptide antibiotics chitinopeptins with activity against Candida, produced by C. eiseniae DSM 22224 and C. flava KCTC 62435, respectively. IMPORTANCE The development of pipelines for anti-infectives to be applied in plant, animal, and human health management are dried up. However, the resistance development against compounds in use calls for new lead structures. To fill this gap and to enhance the probability of success for the discovery of new bioactive natural products, microbial taxa currently underinvestigated must be mined. This study investigates the potential within the bacterial phylum Bacteroidetes. A combination of omics-technologies revealed taxonomical hot spots for specialized metabolites. Genome- and metabolome-based analyses showed that the phylum covers a new chemical space compared with classic natural product producers. Members of the Bacteroidetes may thus present a promising bioresource for future screening and isolation campaigns.
Collapse
Affiliation(s)
- Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Maria A. Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Christoph Hartwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Benedikt Leis
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - André Billion
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Yolanda Kleiner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Luigi Toti
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jens Glaeser
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
- Evotec International GmbH, Göttingen, Germany
| | - Marius Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Till F. Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
50
|
Gene Expression and Characterization of Iturin A Lipopeptide Biosurfactant from Bacillus aryabhattai for Enhanced Oil Recovery. Gels 2022; 8:gels8070403. [PMID: 35877488 PMCID: PMC9319305 DOI: 10.3390/gels8070403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Biosurfactants are eco-friendly surface-active molecules recommended for enhanced oil recovery techniques. In the present study, a potential lipopeptide (biosurfactant) encoding the iturin A gene was synthesized from Bacillus aryabhattai. To improvise the yield of the lipopeptide for specific applications, current research tends toward engineering and expressing recombinant peptides. An iturin A gene sequence was codon-optimized, amplified with gene-specific primers, and ligated into the pET-32A expression vector to achieve high-level protein expression. The plasmid construct was transformed into an E. coli BL21 DE3 host to evaluate the expression. The highly expressed recombinant iturin A lipopeptide was purified on a nickel nitrilotriacetic acid (Ni-NTA) agarose column. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the purity and molecular mass of iturin A was 41 kDa. The yield of recombinant iturin A was found to be 60 g/L with a 6.7-fold increase in comparison with our previously published study on the wild strain. The approach of cloning a functional fragment of partial iturin A resulted in the increased production of the lipopeptide. When motor oil was used, recombinant protein iturin A revealed a biosurfactant property with a 74 ± 1.9% emulsification index (E24). Purified recombinant protein iturin A was characterized by mass spectrometry. MALDI-TOF spectra of trypsin digestion (protein/trypsin of 50:1 and 25:1) showed desired digested mass peaks for the protein, further confirming the identity of iturin A. The iturin A structure was elucidated based on distinctive spectral bands in Raman spectra, which revealed the presence of a peptide backbone and lipid. Recombinant iturin A was employed for enhanced oil recovery through a sand-packed column that yielded 61.18 ± 0.85% additional oil. Hence, the novel approach of the high-level expression of iturin A (lipopeptide) as a promising biosurfactant employed for oil recovery from Bacillus aryabhattai is not much reported. Thus, recombinant iturin A demonstrated its promising ability for efficient oil recovery, finding specific applications in petroleum industries.
Collapse
|