1
|
Kwon Y, Yoon H, Ha J, Lee HS, Pahk K, Kwon H, Kim S, Park S. Changes in pancreatic levodopa uptake in patients with obesity and new-onset type 2 diabetes: an 18F-FDOPA PET-CT study. Front Endocrinol (Lausanne) 2025; 16:1460253. [PMID: 40099262 PMCID: PMC11911206 DOI: 10.3389/fendo.2025.1460253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Levodopa (L-3,4-dihydroxyphenylalanine)g, a dopamine precursor that circulates in the peripheral region, is involved in pancreatic glycemic control. Although previous animal studies have shown that peripheral levodopa is correlated with insulin secretion in pancreatic beta cells, the mechanism by which the pancreas uses levodopa differently in humans with obesity and type 2 diabetes remains unknown. Our study aimed to observe how the pancreas uptakes and utilizes levodopa differently under obese and diabetic conditions. Materials and method 18F-fluoro-L-dopa positron emission tomography-computed tomography (18F-FDOPA PET-CT) was used to visualize how the human body uses levodopa under obese and diabetic conditions and presented its clinical implications. 10 patients were divided into 3 groups: 1) Group A, normal weight without type 2 diabetes; 2) Group B, obese without type 2 diabetes; and 3) Group C, obese with new-onset type 2 diabetes. All patients' lifestyle modification was conducted prior to 18F-FDOPA PET-CT, and plasma samples were collected to confirm changes in amino acid metabolites. Results Pancreatic levodopa uptake increased in obese patients with insulin resistance, whereas it decreased in obese patients with new-onset type 2 diabetes [standardized uptake value (SUV) mean in participants with normal weight, 2.6 ± 0.7; SUVmean in patients with obesity, 3.6 ± 0.1; SUVmean in patients with obesity and new-onset type 2 diabetes, 2.6 ± 0.1, P = 0.02]. Conclusions This suggested that the alterations in the functional capacity of pancreatic beta cells to take up circulating levodopa are potentially linked to the insulin resistance and the pathogenesis of type 2 diabetes. The differences in the uptake values between the groups implied that pancreatic levodopa uptake could be an early indicator of type 2 diabetes.
Collapse
Affiliation(s)
- Yeongkeun Kwon
- Center for Obesity and Metabolic Diseases, Korea University Anam Hospital, Seoul, Republic of Korea
- Gut & Metabolism Laboratory, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Foregut Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hanseok Yoon
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jane Ha
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Hyeon-Seong Lee
- Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Kisoo Pahk
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sungeun Kim
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sungsoo Park
- Center for Obesity and Metabolic Diseases, Korea University Anam Hospital, Seoul, Republic of Korea
- Gut & Metabolism Laboratory, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Foregut Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Li Z, Zheng L, Wang J, Wang L, Qi Y, Amin B, Zhu J, Zhang N. Dopamine in the regulation of glucose and lipid metabolism: a narrative review. Obesity (Silver Spring) 2024; 32:1632-1645. [PMID: 39081007 DOI: 10.1002/oby.24068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Owing to the global obesity epidemic, understanding the regulatory mechanisms of glucose and lipid metabolism has become increasingly important. The dopaminergic system, including dopamine, dopamine receptors, dopamine transporters, and other components, is involved in numerous physiological and pathological processes. However, the mechanism of action of the dopaminergic system in glucose and lipid metabolism is poorly understood. In this review, we examine the role of the dopaminergic system in glucose and lipid metabolism. RESULTS The dopaminergic system regulates glucose and lipid metabolism through several mechanisms. It regulates various activities at the central level, including appetite control and decision-making, which contribute to regulating body weight and energy metabolism. In the pituitary gland, dopamine inhibits prolactin production and promotes insulin secretion through dopamine receptor 2. Furthermore, it can influence various physiological components in the peripheral system, such as pancreatic β cells, glucagon-like peptide-1, adipocytes, hepatocytes, and muscle, by regulating insulin and glucagon secretion, glucose uptake and use, and fatty acid metabolism. CONCLUSIONS The role of dopamine in regulating glucose and lipid metabolism has significant implications for the physiology and pathogenesis of disease. The potential therapeutic value of dopamine lies in its effects on metabolic disorders.
Collapse
Affiliation(s)
- Zhehong Li
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Chien HY, Chen SM, Li WC. Dopamine receptor agonists mechanism of actions on glucose lowering and their connections with prolactin actions. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:935872. [PMID: 36993818 PMCID: PMC10012161 DOI: 10.3389/fcdhc.2023.935872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/20/2023] [Indexed: 03/12/2023]
Abstract
Robust experiment evidence suggests that prolactin can enhance beta-cell proliferation and increase insulin secretion and sensitivity. Apart from acting as an endocrine hormone, it also function as an adipokine and act on adipocytes to modulate adipogenesis, lipid metabolism and inflammation. Several cross-sectional epidemiologic studies consistently showed that circulating prolactin levels positive correlated with increased insulin sensitivity, lower glucose and lipid levels, and lower prevalence of T2D and metabolic syndrome. Bromocriptine, a dopamine receptor agonist used to treat prolactinoma, is approved by Food and Drug Administration for treatment in type 2 diabetes mellitus since 2009. Prolactin lowering suppress insulin secretion and decrease insulin sensitivity, therefore dopamine receptor agonists which act at the pituitary to lower serum prolactin levels are expected to impair glucose tolerance. Making it more complicating, studies exploring the glucose-lowering mechanism of bromocriptine and cabergoline have resulted in contradictory results; while some demonstrated actions independently on prolactin status, others showed glucose lowering partly explained by prolactin level. Previous studies showed that a moderate increase in central intraventricular prolactin levels stimulates hypothalamic dopamine with a decreased serum prolactin level and improved glucose metabolism. Additionally, sharp wave-ripples from the hippocampus modulates peripheral glucose level within 10 minutes, providing evidence for a mechanistic link between hypothalamus and blood glucose control. Central insulin in the mesolimbic system have been shown to suppress dopamine levels thus comprising a feedback control loop. Central dopamine and prolactin levels plays a key role in the glucose homeostasis control, and their dysregulation could lead to the pathognomonic central insulin resistance depicted in the “ominous octet”. This review aims to provide an in-depth discussion on the glucose-lowering mechanism of dopamine receptor agonists and on the diverse prolactin and dopamine actions on metabolism targets.
Collapse
Affiliation(s)
- Hung-Yu Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Su-Mei Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
- Division of Nuclear Medicine, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Wan-Chun Li,
| |
Collapse
|
4
|
Freyberg Z, Gittes GK. Roles of Pancreatic Islet Catecholamine Neurotransmitters in Glycemic Control and in Antipsychotic Drug-Induced Dysglycemia. Diabetes 2023; 72:3-15. [PMID: 36538602 PMCID: PMC9797319 DOI: 10.2337/db22-0522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Catecholamine neurotransmitters dopamine (DA) and norepinephrine (NE) are essential for a myriad of functions throughout the central nervous system, including metabolic regulation. These molecules are also present in the pancreas, and their study may shed light on the effects of peripheral neurotransmission on glycemic control. Though sympathetic innervation to islets provides NE that signals at local α-cell and β-cell adrenergic receptors to modify hormone secretion, α-cells and β-cells also synthesize catecholamines locally. We propose a model where α-cells and β-cells take up catecholamine precursors in response to postprandial availability, preferentially synthesizing DA. The newly synthesized DA signals in an autocrine/paracrine manner to regulate insulin and glucagon secretion and maintain glycemic control. This enables islets to couple local catecholamine signaling to changes in nutritional state. We also contend that the DA receptors expressed by α-cells and β-cells are targeted by antipsychotic drugs (APDs)-some of the most widely prescribed medications today. Blockade of local DA signaling contributes significantly to APD-induced dysglycemia, a major contributor to treatment discontinuation and development of diabetes. Thus, elucidating the peripheral actions of catecholamines will provide new insights into the regulation of metabolic pathways and may lead to novel, more effective strategies to tune metabolism and treat diabetes.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - George K. Gittes
- Division of Pediatric Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
5
|
Faizan M, Sarkar A, Singh MP. Type 2 diabetes mellitus augments Parkinson's disease risk or the other way around: Facts, challenges and future possibilities. Ageing Res Rev 2022; 81:101727. [PMID: 36038113 DOI: 10.1016/j.arr.2022.101727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
About 10% of the adult population is living with type 2 diabetes mellitus (T2DM) and 1% of the population over 60 years of age is suffering from Parkinson's disease (PD). A school of thought firmly believes that T2DM, an age-related disease, augments PD risk. Such relationship is reflected from the severity of PD symptoms in drug naive subjects possessing T2DM. Onset of Parkinsonian feature in case controls possessing T2DM corroborates the role of hyperglycemia in PD. A few cohort, meta-analysis and animal studies have shown an increased PD risk owing to insulin resistance. High fat diet and role of insulin signaling in the regulation of sugar metabolism, oxidative stress, α-synuclein aggregation and accumulation, inflammatory response and mitochondrial function in PD models and sporadic PD further connect the two. Although little is reported about the implication of PD in hyperglycemia and T2DM, a few studies have also contradicted. Ameliorative effect of anti-diabetic drugs on Parkinsonian symptoms and vague outcome of anti-PD medications in T2DM patients also suggest a link. The article reviews the literature supporting augmented risk of one by the other, analysis of proof of the concept, facts, challenges, future possibilities and standpoint on the subject.
Collapse
Affiliation(s)
- Mohd Faizan
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Alika Sarkar
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Pirchio R, Graziadio C, Colao A, Pivonello R, Auriemma RS. Metabolic effects of prolactin. Front Endocrinol (Lausanne) 2022; 13:1015520. [PMID: 36237192 PMCID: PMC9552666 DOI: 10.3389/fendo.2022.1015520] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Over the last years, the metabolic role of PRL has emerged. PRL excess is known to promote weight gain, obesity, metabolic syndrome, and impairment in gluco-insulinemic and lipid profiles, likely due to the suppression of physiologic dopaminergic tone. Prolactin receptors and dopamine receptors type 2 have been demonstrated to be expressed on both human pancreatic β- cell and adipocytes, supporting a key role of prolactin and dopamine in peripheral metabolic regulation. Medical treatment with the dopamine agonists bromocriptine and cabergoline has been demonstrated to decrease the prevalence of metabolic syndrome and obesity, and significantly improve gluco-insulinemic and lipid profiles. In hyperprolactinemic men with concomitant hypogonadism, correction of hyperprolactinaemia and testosterone replacement has been proven to restore metabolic impairment. In turn, low prolactin levels have also been demonstrated to exert a detrimental effect on weight gain, glucose and lipid metabolism, thus leading to an increased prevalence of metabolic syndrome. Therefore, PRL values ranging from 25 to 100 mg/L, in absence of other recognizable pathological causes, have been proposed to represent a physiological response to the request for an increase in metabolic activity, and nowadays classify the so-called HomeoFIT- PRL as a promoter of metabolic homeostasis. The current review focuses mainly on the effects of hyperprolactinemia and its control by medical treatment with DAs on the modulation of food intake, body weight, gluco-insulinemic and lipid profile. Furthermore, it provides the latest knowledge about the metabolic impact of hypoprolactinemia.
Collapse
Affiliation(s)
- Rosa Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples Federico II, Naples, Italy
| | - Chiara Graziadio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples Federico II, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples Federico II, Naples, Italy
- Unesco Chair for Health Education and Sustainable Development, “Federico II” University, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples Federico II, Naples, Italy
- Unesco Chair for Health Education and Sustainable Development, “Federico II” University, Naples, Italy
| | - Renata S. Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples Federico II, Naples, Italy
- *Correspondence: Renata S. Auriemma,
| |
Collapse
|
7
|
Diabetes, insulin and new therapeutic strategies for Parkinson's disease: Focus on glucagon-like peptide-1 receptor agonists. Front Neuroendocrinol 2021; 62:100914. [PMID: 33845041 DOI: 10.1016/j.yfrne.2021.100914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease and diabetes mellitus are two chronic disorders associated with aging that are becoming increasingly prevalent worldwide. Parkinson is a multifactorial progressive condition with no available disease modifying treatments at the moment. Over the last few years there is growing interest in the relationship between diabetes (and impaired insulin signaling) and neurodegenerative diseases, as well as the possible benefit of antidiabetic treatments as neuroprotectors, even in non-diabetic patients. Insulin regulates essential functions in the brain such as neuronal survival, autophagy of toxic proteins, synaptic plasticity, neurogenesis, oxidative stress and neuroinflammation. We review the existing epidemiological, experimental and clinical evidence that supports the interplay between insulin and neurodegeneration in Parkinson's disease, as well as the role of antidiabetic treatments in this disease.
Collapse
|
8
|
Aslanoglou D, Bertera S, Sánchez-Soto M, Benjamin Free R, Lee J, Zong W, Xue X, Shrestha S, Brissova M, Logan RW, Wollheim CB, Trucco M, Yechoor VK, Sibley DR, Bottino R, Freyberg Z. Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Transl Psychiatry 2021; 11:59. [PMID: 33589583 PMCID: PMC7884786 DOI: 10.1038/s41398-020-01171-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Dopamine (DA) and norepinephrine (NE) are catecholamines primarily studied in the central nervous system that also act in the pancreas as peripheral regulators of metabolism. Pancreatic catecholamine signaling has also been increasingly implicated as a mechanism responsible for the metabolic disturbances produced by antipsychotic drugs (APDs). Critically, however, the mechanisms by which catecholamines modulate pancreatic hormone release are not completely understood. We show that human and mouse pancreatic α- and β-cells express the catecholamine biosynthetic and signaling machinery, and that α-cells synthesize DA de novo. This locally-produced pancreatic DA signals via both α- and β-cell adrenergic and dopaminergic receptors with different affinities to regulate glucagon and insulin release. Significantly, we show DA functions as a biased agonist at α2A-adrenergic receptors, preferentially signaling via the canonical G protein-mediated pathway. Our findings highlight the interplay between DA and NE signaling as a novel form of regulation to modulate pancreatic hormone release. Lastly, pharmacological blockade of DA D2-like receptors in human islets with APDs significantly raises insulin and glucagon release. This offers a new mechanism where APDs act directly on islet α- and β-cell targets to produce metabolic disturbances.
Collapse
Affiliation(s)
- Despoina Aslanoglou
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Bertera
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA USA
| | - Marta Sánchez-Soto
- grid.94365.3d0000 0001 2297 5165Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - R. Benjamin Free
- grid.94365.3d0000 0001 2297 5165Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Jeongkyung Lee
- grid.21925.3d0000 0004 1936 9000Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Diabetes and Beta Cell Biology Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Wei Zong
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA USA
| | - Xiangning Xue
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA USA
| | - Shristi Shrestha
- grid.412807.80000 0004 1936 9916Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Marcela Brissova
- grid.412807.80000 0004 1936 9916Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Ryan W. Logan
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,grid.249880.f0000 0004 0374 0039Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME USA
| | - Claes B. Wollheim
- grid.8591.50000 0001 2322 4988Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Massimo Trucco
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA USA ,grid.147455.60000 0001 2097 0344Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA USA ,grid.166341.70000 0001 2181 3113College of Medicine, Drexel University, Philadelphia, PA USA
| | - Vijay K. Yechoor
- grid.21925.3d0000 0004 1936 9000Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Diabetes and Beta Cell Biology Center, University of Pittsburgh, Pittsburgh, PA USA
| | - David R. Sibley
- grid.94365.3d0000 0001 2297 5165Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Rita Bottino
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA USA ,grid.147455.60000 0001 2097 0344Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA USA ,grid.166341.70000 0001 2181 3113College of Medicine, Drexel University, Philadelphia, PA USA
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Farino ZJ, Morgenstern TJ, Maffei A, Quick M, De Solis AJ, Wiriyasermkul P, Freyberg RJ, Aslanoglou D, Sorisio D, Inbar BP, Free RB, Donthamsetti P, Mosharov EV, Kellendonk C, Schwartz GJ, Sibley DR, Schmauss C, Zeltser LM, Moore H, Harris PE, Javitch JA, Freyberg Z. New roles for dopamine D 2 and D 3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry 2020; 25:2070-2085. [PMID: 30626912 PMCID: PMC6616020 DOI: 10.1038/s41380-018-0344-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
Although long-studied in the central nervous system, there is increasing evidence that dopamine (DA) has important roles in the periphery including in metabolic regulation. Insulin-secreting pancreatic β-cells express the machinery for DA synthesis and catabolism, as well as all five DA receptors. In these cells, DA functions as a negative regulator of glucose-stimulated insulin secretion (GSIS), which is mediated by DA D2-like receptors including D2 (D2R) and D3 (D3R) receptors. However, the fundamental mechanisms of DA synthesis, storage, release, and signaling in pancreatic β-cells and their functional relevance in vivo remain poorly understood. Here, we assessed the roles of the DA precursor L-DOPA in β-cell DA synthesis and release in conjunction with the signaling mechanisms underlying DA's inhibition of GSIS. Our results show that the uptake of L-DOPA is essential for establishing intracellular DA stores in β-cells. Glucose stimulation significantly enhances L-DOPA uptake, leading to increased DA release and GSIS reduction in an autocrine/paracrine manner. Furthermore, D2R and D3R act in combination to mediate dopaminergic inhibition of GSIS. Transgenic knockout mice in which β-cell D2R or D3R expression is eliminated exhibit diminished DA secretion during glucose stimulation, suggesting a new mechanism where D2-like receptors modify DA release to modulate GSIS. Lastly, β-cell-selective D2R knockout mice exhibit marked postprandial hyperinsulinemia in vivo. These results reveal that peripheral D2R and D3R receptors play important roles in metabolism through their inhibitory effects on GSIS. This opens the possibility that blockade of peripheral D2-like receptors by drugs including antipsychotic medications may significantly contribute to the metabolic disturbances observed clinically.
Collapse
Affiliation(s)
- Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis J. Morgenstern
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Antonella Maffei
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Matthias Quick
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Alain J. De Solis
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Pattama Wiriyasermkul
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Collaborative Research, Nara Medical University, Kashihara, Nara, Japan
| | - Robin J. Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Denise Sorisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin P. Inbar
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Prashant Donthamsetti
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Eugene V. Mosharov
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Gary J. Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Schmauss
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Lori M. Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Holly Moore
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Paul E. Harris
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Analysis of the Relationship between Type II Diabetes Mellitus and Parkinson's Disease: A Systematic Review. PARKINSONS DISEASE 2019; 2019:4951379. [PMID: 31871617 PMCID: PMC6906831 DOI: 10.1155/2019/4951379] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
In the early sixties, a discussion started regarding the association between Parkinson's disease (PD) and type II diabetes mellitus (T2DM). Today, this potential relationship is still a matter of debate. This review aims to analyze both diseases concerning causal relationships and treatments. A total of 104 articles were found, and studies on animal and “in vitro” models showed that T2DM causes neurological alterations that may be associated with PD, such as deregulation of the dopaminergic system, a decrease in the expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), an increase in the expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes 15 (PED/PEA-15), and neuroinflammation, as well as acceleration of the formation of alpha-synuclein amyloid fibrils. In addition, clinical studies described that Parkinson's symptoms were notably worse after the onset of T2DM, and seven deregulated genes were identified in the DNA of T2DM and PD patients. Regarding treatment, the action of antidiabetic drugs, especially incretin mimetic agents, seems to confer certain degree of neuroprotection to PD patients. In conclusion, the available evidence on the interaction between T2DM and PD justifies more robust clinical trials exploring this interaction especially the clinical management of patients with both conditions.
Collapse
|
11
|
Leite F, Ribeiro L. Dopaminergic Pathways in Obesity-Associated Inflammation. J Neuroimmune Pharmacol 2019; 15:93-113. [PMID: 31317376 DOI: 10.1007/s11481-019-09863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
|
12
|
Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther 2019; 203:107392. [PMID: 31299315 DOI: 10.1016/j.pharmthera.2019.07.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/05/2019] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and DA receptors (DR) have been extensively studied in the central nervous system (CNS), but their role in the periphery is still poorly understood. Here we summarize data on DA and DRs in the eye, cardiovascular system and endocrine pancreas, three districts where DA and DA-related drugs have been studied and the expression of DR documented. In the eye, DA modulates ciliary blood flow and aqueous production, which impacts on intraocular pressure and glaucoma. In the cardiovascular system, DA increases blood pressure and heart activity, mostly through a stimulation of adrenoceptors, and induces vasodilatation in the renal circulation, possibly through D1R stimulation. In pancreatic islets, beta cells store DA and co-release it with insulin. D1R is mainly expressed in beta cells, where it stimulates insulin release, while D2R is expressed in both beta and delta cells (in the latter at higher level), where it inhibits, respectively, insulin and somatostatin release. The formation of D2R-somatostatin receptor 5 heteromers (documented in the CNS), might add complexity to the system. DA may exert both direct autocrine effects on beta cells, and indirect paracrine effects through delta cells and somatostatin. Bromocriptine, an FDA approved drug for diabetes, endowed with both D1R (antagonistic) and D2R (agonistic) actions, may exert complex effects, resulting from the integration of direct effects on beta cells and paracrine effects from delta cells. A full comprehension of peripheral DA signaling deserves further studies that may generate innovative therapeutic drugs to manage conditions such as glaucoma, cardiovascular diseases and diabetes.
Collapse
|
13
|
Auriemma RS, De Alcubierre D, Pirchio R, Pivonello R, Colao A. Glucose Abnormalities Associated to Prolactin Secreting Pituitary Adenomas. Front Endocrinol (Lausanne) 2019; 10:327. [PMID: 31191454 PMCID: PMC6540784 DOI: 10.3389/fendo.2019.00327] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of obesity and alterations in glucose profile have been linked to PRL excess, as it is reportedly associated with metabolic syndrome in thereabout one third of patients. In vitro exposure of pancreatic islet to PRL is known to stimulate insulin secretion and β-cell proliferation, and in turn overexpression of PRL in β-cells increases insulin release and β-cell replication. PRL excess has been found to worsen glucose profile because it reduces glucose tolerance and induces insulin resistance either in obese and non-obese patients. To note, pancreatic β-cells and adipocytes widely express dopamine receptors type 2, and dopamine has been hypothesized to play a key role as modulator of insulin and adipose functions. The dopamine agonists bromocriptine and cabergoline significantly improve abnormalities in glucose profile and reduce the prevalence of metabolic syndrome in a remarkable proportion of patients, regardless of whether body weight and PRL status may change. However, in men with hyperprolactinemia complicated by hypogonadism, testosterone replacement can ameliorate insulin resistance and abnormalities in glucose metabolism. Therefore, in patients with PRL-secreting pituitary adenomas control of PRL excess by dopamine agonists is mandatory to improve glucose and insulin abnormalities.
Collapse
|
14
|
Auriemma RS, De Alcubierre D, Pirchio R, Pivonello R, Colao A. The effects of hyperprolactinemia and its control on metabolic diseases. Expert Rev Endocrinol Metab 2018; 13:99-106. [PMID: 30058862 DOI: 10.1080/17446651.2018.1434412] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Hyperprolactinaemia has been implicated in the pathogenesis of obesity and glucose intolerance and is reportedly associated with impaired metabolic profile and metabolic syndrome in approximately one third of patients. AREAS COVERED Suppression of dopaminergic tone has been proposed as a potential mechanism responsible for weight gain and metabolic abnormalities in such patients. Dopamine receptor type 2 (D2R) is abundantly expressed on human pancreatic β-cell and adipocytes, suggesting a regulatory role for peripheral dopamine in insulin and adipose functions. Medical treatment with the dopamine-agonists bromocriptine and cabergoline has been shown to significantly improve gluco-insulinemic and lipid profile, also reducing the prevalence of metabolic syndrome. In patients with concomitant hypogonadism, simultaneous correction of both PRL excess and testosterone deficiency is mandatory to improve insulin resistance and metabolic abnormalities. EXPERT COMMENTARY Hyperprolactinemia promotes metabolic alterations. Control of PRL excess by dopamine agonists is mandatory to induce weight loss and to improve metabolic profile, and replacement treatment for concomitant hypogonadism effectively ameliorates insulin resistance and metabolic syndrome.
Collapse
Affiliation(s)
- Renata S Auriemma
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| | - Dario De Alcubierre
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| | - Rosa Pirchio
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| | - Rosario Pivonello
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| | - Annamaria Colao
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| |
Collapse
|
15
|
Nash AI. Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs. J Chem Neuroanat 2017; 83-84:59-68. [DOI: 10.1016/j.jchemneu.2016.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
|
16
|
Dopaminergic drugs in type 2 diabetes and glucose homeostasis. Pharmacol Res 2016; 109:74-80. [DOI: 10.1016/j.phrs.2015.12.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023]
|
17
|
Lawford BR, Barnes M, Morris CP, Noble EP, Nyst P, Heslop K, Young RM, Voisey J, Connor JP. Dopamine 2 Receptor Genes Are Associated with Raised Blood Glucose in Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:291-7. [PMID: 27254804 PMCID: PMC4841287 DOI: 10.1177/0706743716644765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Type 2 diabetes is commonly found in schizophrenia and is an important contributor to mortality and morbidity in this condition. Dopamine has been implicated in the aetiology of both diabetes and schizophrenia. It is possible that both disorders share a common genetic susceptibility. METHODS In a cross-sectional study, we examined 2 dopamine D2 receptor (DRD2) single-nucleotide polymorphisms (SNPs) previously associated with schizophrenia (C939 T, rs6275 and C957 T, rs6277) along with fasting blood glucose and body mass index (BMI) in 207 antipsychotic-treated patients with schizophrenia. All participants met DSM-IV criteria for schizophrenia, and those with other psychiatric disorders were excluded. Analysis of covariance was used to compare fasting glucose results by DRD2 genotypes, after controlling for known confounds. For significant associations, follow-up Bonferroni post hoc tests examined differences in fasting glucose levels between genotypes. Specific comparisons were also made using analysis of variance and chi-square (Fisher's exact test). RESULTS The 2 DRD2 risk genotypes were associated with significant increases in blood glucose, after controlling for BMI, age, sex, dosage and type of antipsychotic medication, number of hospitalisations, and negative symptoms (rs6275, F(2, 182) = 5.901, P = 0.003; rs6277 SNP, F(2, 178) = 3.483, P = 0.033). CONCLUSIONS These findings support the involvement of DRD2 not only in schizophrenia but also in elevated levels of blood glucose commonly found in antipsychotic-treated patients with schizophrenia. Our data support the notion that diabetes may not merely be a comorbid condition but could be fundamentally associated with the pathogenesis of schizophrenia itself.
Collapse
Affiliation(s)
- Bruce R Lawford
- Division of Mental Health, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia
| | - Mark Barnes
- Division of Mental Health, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - C Phillip Morris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia
| | - Ernest P Noble
- Alcohol Research Center, Neuropsychiatric Institute, University of California, Los Angeles, CA, USA
| | - Phillip Nyst
- Division of Mental Health, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Karen Heslop
- Faculty of Health Sciences, Curtain University, Perth, Western Australia, Australia
| | - Ross McD Young
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia
| | - Joanne Voisey
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, Australia
| | - Jason P Connor
- Department of Psychiatry and Centre for Youth Substance Abuse Research, The University of Queensland, Herston, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Garcia Barrado MJ, Iglesias Osma MC, Blanco EJ, Carretero Hernández M, Sánchez Robledo V, Catalano Iniesta L, Carrero S, Carretero J. Dopamine modulates insulin release and is involved in the survival of rat pancreatic beta cells. PLoS One 2015; 10:e0123197. [PMID: 25886074 PMCID: PMC4401745 DOI: 10.1371/journal.pone.0123197] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/18/2015] [Indexed: 12/30/2022] Open
Abstract
The local synthesis of dopamine and its effects on insulin release have been described in isolated islets. Thus, it may be accepted that dopamine exerts an auto-paracrine regulation of insulin secretion from pancreatic beta cells. The aim of the present study is to analyze whether dopamine is a regulator of the proliferation and apoptosis of rat pancreatic beta cells after glucose-stimulated insulin secretion. Glucose stimulated pancreatic islets obtained from male Wistar rats were cultured with 1 or 10 μM dopamine from 1 to 12 h. Insulin secretion was analyzed by RIA. The cellular proliferation rate of pancreatic islets and beta cells was studied with immunocytochemical double labelling for both insulin and PCNA (proliferating cell nuclear antigen), and active caspase-3 was detected to evaluate apoptosis. The secretion of insulin from isolated islets was significantly inhibited (p<0.01), by treatment with 1 and 10 μM dopamine, with no differences between either dose as early as 1 h after treatment. The percentage of insulin-positive cells in the islets decreased significantly (p<0.01) after 1 h of treatment up to 12 h. The proliferation rate of insulin-positive cells in the islets decreased significantly (p<0.01) following treatment with dopamine. Apoptosis in pancreatic islets and beta cells was increased by treatment with 1 and 10 μM dopamine along 12 h. In conclusion, these results suggest that dopamine could modulate the proliferation and apoptosis of pancreatic beta cells and that dopamine may be involved in the maintenance of pancreatic islets.
Collapse
Affiliation(s)
- Maria Jose Garcia Barrado
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
| | - Maria Carmen Iglesias Osma
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
| | - Enrique J. Blanco
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
| | - Marta Carretero Hernández
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Virginia Sánchez Robledo
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Leonardo Catalano Iniesta
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Sixto Carrero
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
| | - Jose Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, and Laboratory of Neuroendocrinology and Obesity of IBSAL, University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
19
|
Maffei A, Segal AM, Alvarez-Perez JC, Garcia-Ocaña A, Harris PE. Anti-incretin, Anti-proliferative Action of Dopamine on β-Cells. Mol Endocrinol 2015; 29:542-57. [PMID: 25751312 DOI: 10.1210/me.2014-1273] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human islet β-cells exploit an autocrine dopamine (DA)-mediated inhibitory circuit to regulate insulin secretion. β-Cells also express the DA active transporter and the large neutral amino acid transporter heterodimer enabling them to import circulating DA or its biosynthetic precursor, L-3,4-dihydroxyphenylalanine (L-DOPA). The capacity to import DA or L-DOPA from the extracellular space possibly indicates that DA may be an endocrine signal as well. In humans, a mixed meal stimulus is accompanied by contemporary serum excursions of incretins, DA and L-DOPA, suggesting that DA may act as an anti-incretin as postulated by the foregut hypothesis proposed to explain the early effects of bariatric surgery on type 2 diabetes. In this report, we take a translational step backwards and characterize the kinetics of plasma DA and incretin production after a mixed meal challenge in a rat model and study the integration of incretin and DA signaling at the biochemical level in a rodent β-cell line and islets. We found that there are similar excursions of incretins and DA in rats, as those reported in humans, after a mixed meal challenge and that DA counters incretin enhanced glucose-stimulated insulin secretion and intracellular signaling at multiple points from dampening calcium fluxes to inhibiting proliferation as well as apoptosis. Our data suggest that DA is an important regulator of insulin secretion and may represent 1 axis of a gut level circuit of glucose and β-cell mass homeostasis.
Collapse
Affiliation(s)
- Antonella Maffei
- Division of Endocrinology (A.M., P.H.), Department of Medicine, and Department of Surgery (A.M.S.), Columbia University Medical College, New York, New York 10032; Institute of Genetics and Biophysics (A.M.), Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; and Division of Endocrinology, Diabetes and Bone Diseases (J.C.A.-P., A.G.-O.), Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai and The Mindich Child Health and Development Institute, New York, New York 10029
| | | | | | | | | |
Collapse
|
20
|
Auriemma RS, Granieri L, Galdiero M, Simeoli C, Perone Y, Vitale P, Pivonello C, Negri M, Mannarino T, Giordano C, Gasperi M, Colao A, Pivonello R. Effect of cabergoline on metabolism in prolactinomas. Neuroendocrinology 2013; 98:299-310. [PMID: 24355865 DOI: 10.1159/000357810] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/07/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hyperprolactinemia has been implicated in the pathogenesis of obesity and glucose intolerance and is reportedly associated with an impaired metabolic profile. The current study aimed at investigating the effects of 12- and 60-month treatment with cabergoline (CAB) on metabolic syndrome (MetS) in patients with prolactinomas. PATIENTS AND METHODS 61 patients with prolactinomas (13 men, 48 women, 41 with microadenoma, 20 with macroadenoma), aged 34.4 ± 10.3 years, entered the study. In all patients, prolactin (PRL) and metabolic parameters were assessed at diagnosis and after 12 and 60 months of continuous CAB treatment. MetS was diagnosed according to NCEP-ATP III criteria. RESULTS Compared to baseline, CAB induced a significant decrease in PRL with complete normalization in 93% of patients after the 60-month treatment. At baseline, MetS prevalence was significantly higher in patients with PRL above (34.5%) than in those with PRL lower (12.5%) than the median (129 μg/l, p = 0.03). MetS prevalence significantly decreased after 12 (11.5%, p = 0.039) and 60 (5.0%, p = 0.001) months compared to baseline (28.0%). At both evaluations the lipid profile significantly improved compared to baseline. Fasting insulin and homeostatic model assessment of insulin resistance significantly decreased after 1 year of CAB (p = 0.012 and p = 0.002, respectively) and further improved after 60 months (p = 0.000). The visceral adiposity index significantly decreased after the 60-month treatment (p = 0.000) compared to baseline. At the 5-year evaluation CAB dose was the best predictor of percent decrease in fasting insulin (t = 2.35, p = 0.022). CONCLUSIONS CAB significantly reduces MetS prevalence and improves the adipose tissue dysfunction index. The improvement in PRL, insulin sensitivity and other metabolic parameters might reflect the direct effect of CAB.
Collapse
Affiliation(s)
- Renata S Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, 'Federico II' University, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pellecchia MT, Pivonello R, Longo K, Manfredi M, Tessitore A, Amboni M, Pivonello C, Rocco M, Cozzolino A, Colao A, Barone P. Multiple system atrophy is associated with changes in peripheral insulin-like growth factor system. Mov Disord 2010; 25:2621-6. [DOI: 10.1002/mds.23320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
García-Tornadú I, Ornstein AM, Chamson-Reig A, Wheeler MB, Hill DJ, Arany E, Rubinstein M, Becu-Villalobos D. Disruption of the dopamine d2 receptor impairs insulin secretion and causes glucose intolerance. Endocrinology 2010; 151:1441-50. [PMID: 20147524 DOI: 10.1210/en.2009-0996] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The relationship between antidopaminergic drugs and glucose has not been extensively studied, even though chronic neuroleptic treatment causes hyperinsulinemia in normal subjects or is associated with diabetes in psychiatric patients. We sought to evaluate dopamine D2 receptor (D2R) participation in pancreatic function. Glucose homeostasis was studied in D2R knockout mice (Drd2(-/-)) mice and in isolated islets from wild-type and Drd2(-/-) mice, using different pharmacological tools. Pancreas immunohistochemistry was performed. Drd2(-/-) male mice exhibited an impairment of insulin response to glucose and high fasting glucose levels and were glucose intolerant. Glucose intolerance resulted from a blunted insulin secretory response, rather than insulin resistance, as shown by glucose-stimulated insulin secretion tests (GSIS) in vivo and in vitro and by a conserved insulin tolerance test in vivo. On the other hand, short-term treatment with cabergoline, a dopamine agonist, resulted in glucose intolerance and decreased insulin response to glucose in wild-type but not in Drd2(-/-) mice; this effect was partially prevented by haloperidol, a D2R antagonist. In vitro results indicated that GSIS was impaired in islets from Drd2(-/-) mice and that only in wild-type islets did dopamine inhibit GSIS, an effect that was blocked by a D2R but not a D1R antagonist. Finally, immunohistochemistry showed a diminished pancreatic beta-cell mass in Drd2(-/-) mice and decreased beta-cell replication in 2-month-old Drd2(-/-) mice. Pancreatic D2Rs inhibit glucose-stimulated insulin release. Lack of dopaminergic inhibition throughout development may exert a gradual deteriorating effect on insulin homeostasis, so that eventually glucose intolerance develops.
Collapse
Affiliation(s)
- Isabel García-Tornadú
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Raffo A, Hancock K, Polito T, Andan G, Witkowski P, Hardy M, Barba P, Ferrara C, Maffei A, Freeby M, Goland R, Leibel RL, Sweet I, Harris PE. Role of vesicular monoamine transporter type 2 in rodent insulin secretion and glucose metabolism revealed by its specific antagonist tetrabenazine. J Endocrinol 2008; 198:41-9. [PMID: 18577569 PMCID: PMC2712213 DOI: 10.1677/joe-07-0632] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite different embryological origins, islet beta-cells and neurons share the expression of many genes and display multiple functional similarities. One shared gene product, vesicular monoamine transporter type 2 (VMAT2, also known as SLC18A2), is highly expressed in human beta-cells relative to other cells in the endocrine and exocrine pancreas. Recent reports suggest that the monoamine dopamine is an important paracrine and/or autocrine regulator of insulin release by beta-cells. Given the important role of VMAT2 in the economy of monoamines such as dopamine, we investigated the possible role of VMAT2 in insulin secretion and glucose metabolism. Using a VMAT2-specific antagonist, tetrabenazine (TBZ), we studied glucose homeostasis, insulin secretion both in vivo and ex vivo in cultures of purified rodent islets. During intraperitoneal glucose tolerance tests, control rats showed increased serum insulin concentrations and smaller glucose excursions relative to controls after a single intravenous dose of TBZ. One hour following TBZ administration we observed a significant depletion of total pancreas dopamine. Correspondingly, exogenous L-3,4-dihydroxyphenylalanine reversed the effects of TBZ on glucose clearance in vivo. In in vitro studies of rat islets, a significantly enhanced glucose-dependent insulin secretion was observed in the presence of dihydrotetrabenazine, the active metabolite of TBZ. Together, these data suggest that VMAT2 regulates in vivo glucose homeostasis and insulin production, most likely via its role in vesicular transport and storage of monoamines in beta-cells.
Collapse
Affiliation(s)
- Anthony Raffo
- Department of Medicine of Columbia University Medical Center, New York, NY, 10032, USA
| | - Kolbe Hancock
- Barnard College, Columbia University, New York, NY 10027, USA
| | - Teresa Polito
- Department of Medicine of Columbia University Medical Center, New York, NY, 10032, USA
| | - Gordon Andan
- Department of Surgery of Columbia University Medical Center, New York, NY, 10032, USA
| | - Piotr Witkowski
- Department of Surgery of Columbia University Medical Center, New York, NY, 10032, USA
- Dept of Surgery, Medical University of Gdansk, Poland
| | - Mark Hardy
- Department of Surgery of Columbia University Medical Center, New York, NY, 10032, USA
| | - Pasquale Barba
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, 80131, Italy
| | - Caterina Ferrara
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, 80131, Italy
| | - Antonella Maffei
- Department of Medicine of Columbia University Medical Center, New York, NY, 10032, USA
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Naples, 80131, Italy
| | - Matthew Freeby
- Department of Medicine of Columbia University Medical Center, New York, NY, 10032, USA
| | - Robin Goland
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Ian Sweet
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Paul E. Harris
- Department of Medicine of Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
24
|
Abstract
Weight loss is frequent in patients with Parkinson's disease (PD). Reduced energy intake and/or increased energy expenditure have been postulated as the cause. Dysphagia, anorexia, and gastrointestinal dysfunction may be possible causes of reduced energy intake; whereas, rigidity, tremor, and levodopa-induced dyskinesia may increase energy expenditure. Levodopa may enhance glucose metabolism resulting in enhanced energy expenditure. Depression, anti-parkinsonian drugs, and medical complications such as pneumonia and malignancies also may facilitate weight loss in PD. Combinations of various degrees of these factors, especially in advanced PD, may produce weight loss. Such weight loss is associated with malnutrition which may precipitate infection and decubitis; accelerate motor, behavioral, and autonomic impairment; consequently spoiling one's quality of life. Attention must be paid as well to motor symptoms to prevent or reverse weight loss in PD patients.
Collapse
|
25
|
Obesity, dopamine and the metabolic syndrome: potential of dopaminergic agents in the control of metabolism. ACTA ACUST UNITED AC 2006. [DOI: 10.1097/01.med.0000216967.74622.9c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Rubí B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P. Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J Biol Chem 2005; 280:36824-32. [PMID: 16129680 DOI: 10.1074/jbc.m505560200] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dopamine signaling is mediated by five cloned receptors, grouped into D1-like (D1 and D5) and D2-like (D2, D3 and D4) families. We identified by reverse transcription-PCR the presence of dopamine receptors from both families in INS-1E insulin-secreting cells as well as in rodent and human isolated islets. D2 receptor expression was confirmed by immunodetection revealing localization on insulin secretory granules of INS-1E and primary rodent and human beta cells. We then tested potential effects mediated by the identified receptors on beta cell function. Dopamine (10 microM) and the D2-like receptor agonist quinpirole (5 microM) inhibited glucose-stimulated insulin secretion tested in several models, i.e. INS-1E beta cells, fluorescence-activated cell-sorted primary rat beta cells, and pancreatic islets of rat, mouse, and human origin. Insulin exocytosis is controlled by metabolism coupled to cytosolic calcium changes. Measurements of glucose-induced mitochondrial hyperpolarization and ATP generation showed that dopamine and D2-like agonists did not inhibit glucose metabolism. On the other hand, dopamine decreased cell membrane depolarization as well as cytosolic calcium increases evoked by glucose stimulation in INS-1E beta cells. These results show for the first time that dopamine receptors are expressed in pancreatic beta cells. Dopamine inhibited glucose-stimulated insulin secretion, an effect that could be ascribed to D2-like receptors. Regarding the molecular mechanisms implicated in dopamine-mediated inhibition of insulin release, our results point to distal steps in metabolism-secretion coupling. Thus, the role played by dopamine in glucose homeostasis might involve dopamine receptors, expressed in pancreatic beta cells, modulating insulin release.
Collapse
Affiliation(s)
- Blanca Rubí
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|