1
|
Wu W, Alexander JS, Booth JL, Miller CA, Metcalf JP, Drevets DA. Influenza virus infection exacerbates gene expression related to neurocognitive dysfunction in brains of old mice. Immun Ageing 2024; 21:39. [PMID: 38907247 PMCID: PMC11191167 DOI: 10.1186/s12979-024-00447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Age > 65 years is a key risk factor for poor outcomes after human influenza infection. Specifically, in addition to respiratory disease, non-neurotropic influenza A virus (IAV) causes neuro-cognitive complications, e.g. new onset depression and increases the risk of dementia after hospitalization. This study aimed to identify potential mechanisms of these effects by determining differences between young and old mice in brain gene expression in a mouse model of non-neurotropic IAV infection. METHODS Young (12 weeks) and old (70 weeks) C57Bl/6J mice were inoculated intranasally with 200 PFU H1N1 A/PR/34/8 (PR8) or sterile PBS (mock). Gene expression in lung and brain was measured by qRT-PCR and normalized to β-actin. Findings were confirmed using the nCounter Mouse Neuroinflammation Array (NanoString) and analyzed with nSolver 4.0 and Ingenuity Pathway Analysis (IPA, Qiagen). RESULTS IAV PR8 did not invade the central nervous system. Young and old mice differed significantly in brain gene expression at baseline and during non-neurotropic IAV infection. Expression of brain Ifnl, Irf7, and Tnf mRNAs was upregulated over baseline control at 3 days post-infection (p.i.) only in young mice, but old mice expressed more Ifnl than young mice 7 days p.i. Gene arrays showed down-regulation of the Epigenetic Regulation, Insulin Signaling, and Neurons and Neurotransmission pathways in old mice 3 days p.i. while young mice demonstrated no change or induction of these pathways at the same time point. IPA revealed marked baseline differences between old and young mice. Gene expression related to Cognitive Impairment, Memory Deficits and Learning worsened in old mice relative to young mice during IAV infection. Aged mice demonstrate more severe changes in gene expression related to memory loss and cognitive dysfunction by IPA. CONCLUSIONS These data suggest the genes and pathways related to learning and cognitive performance that were worse at baseline in old mice were further worsened by IAV infection, similar to old patients. Early events in the brain triggered by IAV infection portend downstream neurocognitive pathology in old adults.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA
| | - Jeremy S Alexander
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA
| | - J Leland Booth
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Oklahoma State University, Stillwater, OK, USA
| | - Jordan P Metcalf
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Douglas A Drevets
- Infectious Diseases, Department of Medicine, University of Oklahoma Health Sciences Center, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
2
|
Gurung P, Lim J, Thapa Magar TB, Shrestha R, Kim YW. Euonymus alatus Leaf Extract Attenuates Effects of Aging on Oxidative Stress, Neuroinflammation, and Cognitive Impairment. Antioxidants (Basel) 2024; 13:433. [PMID: 38671881 PMCID: PMC11047375 DOI: 10.3390/antiox13040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Our study aimed to explore the impact and mechanism of Euonymus alatus leaf extract on age-dependent oxidative stress, neuroinflammation, and progressive memory impairments in aged mice. Twenty-four-month-old mice received EA-L3 (300 mg/kg/day) or the reference drug, donepezil (DPZ, 5 mg/kg/day), for 6 weeks, and learning and memory functions were detected using the Passive Avoidance Test (PAT). As expected, cognitive function deficits were detected in aged mice compared with young mice, and these deficits were significantly mitigated by dietary treatments with EA-L3. In parallel, it upregulated the brain-derived neurotrophic factor (BDNF) and subsequently activated the extracellular-signal-regulated kinase (ERK)/cAMP response element-binding (CREB) signaling in the mouse hippocampus and scopolamine-induced B35 and SH-SY5Y neuroblastoma cells. EA-L3 showed strong anti-inflammatory effects with decreased NF-κBp65, cyclooxygenase 2 (COX-2), and tumor necrosis factor alpha (TNF-α), increased interleukin (IL)-10, and doublecortin (DCX) protein expression in the hippocampus of aged mice. Similar results were also confirmed in LPS-induced BV-2 microglia and neuroblastoma cells upon treatment with EA-L3 extract. In addition, EA-L3 notably dose-dependently decreased ROS in BV2 cells after exposure to LPS. Taken together, EA-L3 might be used as a dietary supplement to alleviate oxidative stress, the deterioration of hippocampal-based memory tasks, and neuroinflammation in elderly people.
Collapse
Affiliation(s)
| | | | | | | | - Yong-Wan Kim
- Dongsung Cancer Center, Dongsung Pharmaceuticals Corporation, Daegu 41061, Republic of Korea; (P.G.); (J.L.); (T.B.T.M.); (R.S.)
| |
Collapse
|
3
|
Weber FB, Santos CL, da Silva A, Schmitz I, Rezena E, Gonçalves CA, Quincozes-Santos A, Bobermin LD. Differences between cultured astrocytes from neonatal and adult Wistar rats: focus on in vitro aging experimental models. In Vitro Cell Dev Biol Anim 2024; 60:420-431. [PMID: 38546817 DOI: 10.1007/s11626-024-00896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Astrocytes play key roles regulating brain homeostasis and accumulating evidence has suggested that glia are the first cells that undergo functional changes with aging, which can lead to a decline in brain function. In this context, in vitro models are relevant tools for studying aged astrocytes and, here, we investigated functional and molecular changes in cultured astrocytes obtained from neonatal or adult animals submitted to an in vitro model of aging by an additional period of cultivation of cells after confluence. In vitro aging induced different metabolic effects regarding glucose and glutamate uptake, as well as glutamine synthetase activity, in astrocytes obtained from adult animals compared to those obtained from neonatal animals. In vitro aging also modulated glutathione-related antioxidant defenses and increased reactive oxygen species and cytokine release especially in astrocytes from adult animals. Interestingly, in vitro aged astrocytes from adult animals exposed to pro-oxidant, inflammatory, and antioxidant stimuli showed enhanced oxidative and inflammatory responses. Moreover, these functional changes were correlated with the expression of the senescence marker p21, cytoskeleton markers, glutamate transporters, inflammatory mediators, and signaling pathways such as nuclear factor κB (NFκB)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1). Alterations in these genes are remarkably associated with a potential neurotoxic astrocyte phenotype. Therefore, considering the experimental limitations due to the need for long-term maintenance of the animals for studying aging, astrocyte cultures obtained from adult animals further aged in vitro can provide an improved experimental model for understanding the mechanisms associated with aging-related astrocyte dysfunction.
Collapse
Affiliation(s)
- Fernanda Becker Weber
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
4
|
Wee IC, Arulsamy A, Corrigan F, Collins-Praino L. Long-Term Impact of Diffuse Traumatic Brain Injury on Neuroinflammation and Catecholaminergic Signaling: Potential Relevance for Parkinson's Disease Risk. Molecules 2024; 29:1470. [PMID: 38611750 PMCID: PMC11013319 DOI: 10.3390/molecules29071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson's disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, remains uncertain. In this study, male Sprague-Dawley rats underwent sham surgery or Marmarou's impact acceleration model to induce varying TBI severities: single mild TBI (mTBI), repetitive mild TBI (rmTBI), or moderate-severe TBI (msTBI). At 12 months post-injury, astrocyte reactivity (GFAP) and microglial levels (IBA1) were assessed in the striatum (STR), substantia nigra (SN), and prefrontal cortex (PFC) using immunohistochemistry. Key enzymes and receptors involved in catecholaminergic transmission were measured via Western blot within the same regions. Minimal changes in these markers were observed, regardless of initial injury severity. Following mTBI, elevated protein levels of dopamine D1 receptors (DRD1) were noted in the PFC, while msTBI resulted in increased alpha-2A adrenoceptors (ADRA2A) in the STR and decreased dopamine beta-hydroxylase (DβH) in the SN. Neuroinflammatory changes were subtle, with a reduced number of GFAP+ cells in the SN following msTBI. However, considering the potential for neurodegenerative outcomes to manifest decades after injury, longer post-injury intervals may be necessary to observe PD-relevant alterations within these systems.
Collapse
Affiliation(s)
- Ing Chee Wee
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| | - Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lyndsey Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
5
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Brusaferri L, Alshelh Z, Schnieders JH, Sandström A, Mohammadian M, Morrissey EJ, Kim M, Chane CA, Grmek GC, Murphy JP, Bialobrzewski J, DiPietro A, Klinke J, Zhang Y, Torrado-Carvajal A, Mercaldo N, Akeju O, Wu O, Rosen BR, Napadow V, Hadjikhani N, Loggia ML. Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset. Brain Behav Immun 2024; 116:259-266. [PMID: 38081435 PMCID: PMC10872439 DOI: 10.1016/j.bbi.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023] Open
Abstract
The COVID-19 pandemic has exerted a global impact on both physical and mental health, and clinical populations have been disproportionally affected. To date, however, the mechanisms underlying the deleterious effects of the pandemic on pre-existing clinical conditions remain unclear. Here we investigated whether the onset of the pandemic was associated with an increase in brain/blood levels of inflammatory markers and MRI-estimated brain age in patients with chronic low back pain (cLBP), irrespective of their infection history. A retrospective cohort study was conducted on 56 adult participants with cLBP (28 'Pre-Pandemic', 28 'Pandemic') using integrated Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI) and the radioligand [11C]PBR28, which binds to the neuroinflammatory marker 18 kDa Translocator Protein (TSPO). Image data were collected between November 2017 and January 2020 ('Pre-Pandemic' cLBP) or between August 2020 and May 2022 ('Pandemic' cLBP). Compared to the Pre-Pandemic group, the Pandemic patients demonstrated widespread and statistically significant elevations in brain TSPO levels (P =.05, cluster corrected). PET signal elevations in the Pandemic group were also observed when 1) excluding 3 Pandemic subjects with a known history of COVID infection, or 2) using secondary outcome measures (volume of distribution -VT- and VT ratio - DVR) in a smaller subset of participants. Pandemic subjects also exhibited elevated serum levels of inflammatory markers (IL-16; P <.05) and estimated BA (P <.0001), which were positively correlated with [11C]PBR28 SUVR (r's ≥ 0.35; P's < 0.05). The pain interference scores, which were elevated in the Pandemic group (P <.05), were negatively correlated with [11C]PBR28 SUVR in the amygdala (r = -0.46; P<.05). This work suggests that the pandemic outbreak may have been accompanied by neuroinflammation and increased brain age in cLBP patients, as measured by multimodal imaging and serum testing. This study underscores the broad impact of the pandemic on human health, which extends beyond the morbidity solely mediated by the virus itself.
Collapse
Affiliation(s)
- Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Informatics, School of Engineering, London South Bank University, London, UK
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jack H Schnieders
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelica Sandström
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehrbod Mohammadian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin J Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney A Chane
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace C Grmek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer P Murphy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Bialobrzewski
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexa DiPietro
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie Klinke
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Zhang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Nathaniel Mercaldo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ona Wu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nouchine Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gillberg Neuropsychiatry Centre, University of Gothenburg, Sweden
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Nasab MG, Heidari A, Sedighi M, Shakerian N, Mirbeyk M, Saghazadeh A, Rezaei N. Dietary inflammatory index and neuropsychiatric disorders. Rev Neurosci 2024; 35:21-33. [PMID: 37459114 DOI: 10.1515/revneuro-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/24/2023] [Indexed: 01/10/2024]
Abstract
Neuropsychiatric disorders (NPDs) are considered a potential threat to mental health. Inflammation predominantly plays a role in the pathophysiology of NPDs. Dietary patterns are widely postulated to be involved in the physiological response to inflammation. This review aims to discuss the literature on how dietary inflammatory index (DII) is related to inflammation and, consequently, NPDs. After comprehensive scrutiny in different databases, the articles that investigated the relation of DII score and various NPDs and psychological circumstances were included. The association between dietary patterns and mental disorders comprising depression, anxiety, and stress proved the role of a proinflammatory diet in these conditions' exacerbation. Aging is another condition closely associated with DII. The impact of proinflammatory and anti-inflammatory diet on sleep quality indicated related disorders like sleep latency and day dysfunctions among the different populations are in relation with the high DII score. The potential effects of genetic backgrounds, dietary patterns, and the gut microbiome on DII are discussed as well. To plan preventive or therapeutic interventions considering the DII, these factors, especially genetic variations, should be considered as there is a growing body of literature indicating the role of personalized medicine in different NPDs. To the best of our knowledge, there is a limited number of RCTs on this subject, so future research should evaluate the causality via RCTs and look for therapeutic interventions with an eye on personalized medicine using information about DII in NPDs.
Collapse
Affiliation(s)
- Mahsa Golshani Nasab
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Sedighi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Shakerian
- Student Research Committee, School of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Ahvaz, Iran
| | - Mona Mirbeyk
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Meta Cognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
8
|
Wu Y, Zhang Y, Xie B, Zhang X, Wang G, Yuan S. Esketamine mitigates cognitive impairment following exposure to LPS by modulating the intestinal flora/subdiaphragmatic vagus nerve/spleen axis. Int Immunopharmacol 2024; 126:111284. [PMID: 38016344 DOI: 10.1016/j.intimp.2023.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Susceptibility to secondary infection often increases after primary infection. Secondary infections can lead to more severe inflammatory injuries; however, the underlying mechanisms are not yet fully elucidated. OBJECTIVE To investigate whether esketamine treatment immediately after primary lipopolysaccharide (LPS) exposure could alleviate cognitive impairment caused by secondary infection. METHODS Mice were injected intraperitoneally (IP) with LPS (5 mg/kg) 10 days apart. Esketamine (10, 15, or 30 mg/kg) was administered IP immediately after the primary LPS injection. Splenectomy or subdiaphragmatic vagotomy (SDV) was performed 7 days before secondary LPS exposure or broad-spectrum antibiotic administration. RESULTS Splenomegaly was observed after the primary LPS injection on Days 3 and 10. Splenomegaly was attenuated by treatment with 30 mg/kg esketamine. Esketamine treatment prevented increased plasma proinflammatory cytokines levels and cognitive dysfunction induced by secondary LPS exposure. Mice that underwent splenectomy or SDV had lower proinflammatory cytokines levels, higher hippocampal brain-derived neurotrophic factor (BDNF) levels, and improved cognitive function 1 day after secondary infection, which was not further improved by esketamine. Fecal microbiota transplantation (FMT) from endotoxic mice treated with esketamine attenuated hippocampal BDNF downregulation and cognitive dysfunction only in pseudo germ-free (PGF) mice without splenectomy. FMT with fecal suspensions from esketamine-treated endotoxic mice abrogated splenomegaly only in PGF mice without SDV. Blocking BDNF signaling blocked esketamine's ameliorating effects on secondary LPS exposure-induced cognitive dysfunction. CONCLUSION The intestinal flora/subdiaphragmatic vagus nerve/spleen axis-mediated hippocampal BDNF downregulation significantly affected secondary LPS-induced systemic inflammation and cognitive dysfunction. Esketamine preserves cognitive function via this mechanism.
Collapse
Affiliation(s)
- Yuming Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xinyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Guangzhi Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, PR China.
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
9
|
von Bernhardi R, Eugenín J. Aging Microglia and Their Impact in the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 37:379-395. [PMID: 39207703 DOI: 10.1007/978-3-031-55529-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor β1 (TGFβ1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFβ1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastian, Santiago, Chile.
| | - Jaime Eugenín
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
10
|
Anderson C, Bucholc M, McClean PL, Zhang SD. The Potential of a Stratified Approach to Drug Repurposing in Alzheimer's Disease. Biomolecules 2023; 14:11. [PMID: 38275752 PMCID: PMC10813465 DOI: 10.3390/biom14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that is characterized by the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown. Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD have been identified. To date, only eight AD drugs have ever gained regulatory approval, including six symptomatic and two disease-modifying drugs. However, not all are available in all countries and high costs associated with new disease-modifying biologics prevent large proportions of the patient population from accessing them. With the current patient population expected to triple by 2050, it is imperative that new, effective, and affordable drugs become available to patients. Traditional drug development strategies have a 99% failure rate in AD, which is far higher than in other disease areas. Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug repurposing approach may address some of the limitations and barriers that traditional strategies face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies may expedite the discovery of alternative, effective, and more affordable treatment options for a rapidly expanding patient population in comparison with traditional drug development methods.
Collapse
Affiliation(s)
- Chloe Anderson
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Magda Bucholc
- School of Computing, Engineering and Intelligent Systems, Magee Campus, Ulster University, Northland Road, Derry/Londonderry BT48 7JL, UK
| | - Paula L. McClean
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| |
Collapse
|
11
|
Keřková B, Knížková K, Večeřová M, Šustová P, Fürstová P, Hrubý A, Španiel F, Rodriguez M. Inflammation and cognitive performance in first-episode schizophrenia spectrum disorders: The moderating effects of childhood trauma. Schizophr Res 2023; 261:185-193. [PMID: 37783016 DOI: 10.1016/j.schres.2023.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/28/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
In this study, we aimed to determine whether childhood trauma moderated the relationship between inflammation and cognitive functioning in persons with first-episode schizophrenia spectrum disorders (SSDs). We included data from 92 individuals who participated in the nationwide Early-Stage Schizophrenia Outcome study. These individuals completed the Childhood Trauma Questionnaire, provided a fasting blood sample for high-sensitivity C-reactive protein analysis, and underwent extensive neuropsychological testing. The intervening effects of age, sex, education, smoking status, and body mass index were controlled. Results indicated that childhood trauma levels significantly moderated the relationship between inflammation and four cognitive domains: speed of processing, working memory, visual memory, and verbal memory. Inflammation also predicted verbal memory scores irrespective of childhood trauma levels or the covariates. Upon further exploration, the significant moderation effects appeared to be primarily driven by males. In conclusion, a history of childhood trauma may be an important determinant in evaluating how inflammation relates to the cognitive performance of people with first-episode SSDs, particularly in speed of processing, working memory, visual memory, and verbal memory. We recommend that future researchers examining the effect of inflammation on cognitive functioning in SSDs include trauma as a moderating variable in their models and further examine additional moderating effects of sex.
Collapse
Affiliation(s)
- Barbora Keřková
- National Institute of Mental Health, Klecany, Czech Republic.
| | - Karolína Knížková
- National Institute of Mental Health, Klecany, Czech Republic; Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Monika Večeřová
- National Institute of Mental Health, Klecany, Czech Republic
| | - Petra Šustová
- National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology, Faculty of Arts, Charles University in Prague, Czech Republic
| | - Petra Fürstová
- National Institute of Mental Health, Klecany, Czech Republic
| | - Aleš Hrubý
- National Institute of Mental Health, Klecany, Czech Republic
| | - Filip Španiel
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Mabel Rodriguez
- National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology, Faculty of Arts, Charles University in Prague, Czech Republic
| |
Collapse
|
12
|
Karkala A, Tzinas A, Kotoulas S, Zacharias A, Sourla E, Pataka A. Neuropsychiatric Outcomes and Sleep Dysfunction in COVID-19 Patients: Risk Factors and Mechanisms. Neuroimmunomodulation 2023; 30:237-249. [PMID: 37757765 DOI: 10.1159/000533722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The ongoing global health crisis due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted all aspects of life. While the majority of early research following the coronavirus disease caused by SARS-CoV-2 (COVID-19) has focused on the physiological effects of the virus, a substantial body of subsequent studies has shown that the psychological burden of the infection is also considerable. Patients, even without mental illness history, were at increased susceptibility to developing mental health and sleep disturbances during or after the COVID-19 infection. Viral neurotropism and inflammatory storm damaging the blood-brain barrier have been proposed as possible mechanisms for mental health manifestations, along with stressful psychological factors and indirect consequences such as thrombosis and hypoxia. The virus has been found to infect peripheral olfactory neurons and exploit axonal migration pathways, exhibiting metabolic changes in astrocytes that are detrimental to fueling neurons and building neurotransmitters. Patients with COVID-19 present dysregulated and overactive immune responses, resulting in impaired neuronal function and viability, adversely affecting sleep and emotion regulation. Additionally, several risk factors have been associated with the neuropsychiatric sequelae of the infection, such as female sex, age, preexisting neuropathologies, severity of initial disease and sociological status. This review aimed to provide an overview of mental health symptoms and sleep disturbances developed during COVID-19 and to analyze the underlying mechanisms and risk factors of psychological distress and sleep dysfunction.
Collapse
Affiliation(s)
- Aliki Karkala
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asterios Tzinas
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Athanasios Zacharias
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Sourla
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia Pataka
- Respiratory Failure Unit, G. Papanikolaou Hospital, Thessaloniki and Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Yan F, Meng X, Cheng X, Pei W, Chen Y, Chen L, Zheng M, Shi L, Zhu C, Zhang X. Potential role between inflammatory cytokines and Tie-2 receptor levels and clinical symptoms in patients with first-episode schizophrenia. BMC Psychiatry 2023; 23:538. [PMID: 37491201 PMCID: PMC10367336 DOI: 10.1186/s12888-023-04913-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/29/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is associated with chronic low-grade inflammation, which may be involved in the underlying pathological mechanism of the disease and may influence patient prognosis. We evaluated the differences in serum cytokine and Tie-2 receptor levels between patients with first-episode SCZ and healthy controls and explored the correlation thereof with clinical symptoms. METHODS Seventy-six participants were recruited for the present study, including 40 patients with first-episode SCZ and 36 healthy controls. Positive and Negative Syndrome Scale (PANSS) and Brief Psychiatric Rating Scale (BPRS) scores, demographic data, and blood samples were collected at baseline. A hypersensitive Meso Scale Discovery (MSD) electrochemiluminescence assay system was used to measure cytokine and Tie-2 receptor levels. Spearman's correlation and stepwise linear regression were used to analyze the data. RESULTS Serum interleukin-1β and -4 levels were significantly increased, and Tie-2 levels were significantly decreased, in first-episode SCZ patients as compared to healthy controls. IL-1β levels were positively correlated with total BPRS scores, resistance subscores, and PANSS positive subscores. Furthermore, IL-1β levels were negatively correlated with Tie-2 receptor expression levels. Stepwise linear regression analysis demonstrated that IL-1β levels correlated positively with PANSS positive subscores and BPRS total scores. PANSS negative subscores, general psychopathology subscores, and PANSS total scores had positive effects on the Tie-2 receptor. Receiver operating characteristic (ROC) curve analysis showed that IL-1β and Tie-2 were highly sensitive and specific for predicting first-episode SCZ symptoms and achieving an area under the ROC curve of 0.8361 and 0.6462, respectively. CONCLUSION Our results showed that patients with first-episode SCZ have low-grade inflammation. IL-1β and Tie-2 receptors may be important mediators between inflammation and vascular dysfunction in patients with SCZ and may underlie the increased cardiovascular disease in this population. TRIAL REGISTRATION The clinical trial registration date was 06/11/2018, registration number was chiCTR1800019343.
Collapse
Affiliation(s)
- Fanfan Yan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
- Anhui Mental Health Center, Hefei, 230022, China
| | - Xiaojing Meng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
- Anhui Mental Health Center, Hefei, 230022, China
| | - Xialong Cheng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
- Anhui Mental Health Center, Hefei, 230022, China
| | - Wenzhi Pei
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
- Anhui Mental Health Center, Hefei, 230022, China
| | - Yuanyuan Chen
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
| | - Long Chen
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
- Anhui Mental Health Center, Hefei, 230022, China
| | - Mingming Zheng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei, 230022, China
- Hefei Fourth People's Hospital, Hefei, 230022, China
- Anhui Mental Health Center, Hefei, 230022, China
| | - Li Shi
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cuizhen Zhu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China.
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei, 230022, China.
- Hefei Fourth People's Hospital, Hefei, 230022, China.
- Anhui Mental Health Center, Hefei, 230022, China.
| | - Xulai Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230022, China.
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei, 230022, China.
- Hefei Fourth People's Hospital, Hefei, 230022, China.
- Anhui Mental Health Center, Hefei, 230022, China.
| |
Collapse
|
14
|
Warman DJ, Jia H, Kato H. Effects of Thyme ( Thymus vulgaris L.) Essential Oil on Aging-Induced Brain Inflammation and Blood Telomere Attrition in Chronologically Aged C57BL/6J Mice. Antioxidants (Basel) 2023; 12:1178. [PMID: 37371908 DOI: 10.3390/antiox12061178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chronological aging is commonly accompanied by chronic low-grade inflammation (or "inflammaging"), a contributor to the development of age-related chronic diseases. Aging increases oxidative stress that accelerates telomere shortening, leading to cell senescence and the generation of senescence-associated secretory phenotype (SASP) that exacerbates inflammation. Dietary antioxidants may help protect telomeres and attenuate inflammation. Thyme essential oil (TEO), reported for its potency against neuroinflammation, was fed to chronologically aged C57BL/6J mice for 24 weeks. The TEO diet showed notable impacts on the hippocampus, indicated by lower expression of the aging-related gene p16INK4A (p = 0.0783) and significantly lower expression of cyclin D kinase Cdk4 and Cdk6 (p < 0.05) compared to the age-matched control mice. The TEO group also showed significantly lower gene expression of the pro-inflammatory cytokine Il6 (p < 0.05) in the hippocampus and lower Il1b expression in the liver and cerebellum (p < 0.05). In vitro experiments conducted on NIH-3T3 cells expressing SASP revealed the dose-dependent anti-inflammatory activity of TEO. Remarkably, TEO diet-fed mice showed higher survival rates and significantly longer blood telomere lengths than the control mice. Monoterpene antioxidants in TEO, particularly thymol and p-cymene, may primarily contribute to the anti-inflammatory and telomere-protecting activities of TEO.
Collapse
Affiliation(s)
- Dwina Juliana Warman
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Nutrition, School of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado-shi 350-0288, Japan
| |
Collapse
|
15
|
Cai W, Wei XF, Zhang JR, Hu C, Shen WD. Does acupuncture treatment have satisfactory clinical efficacy for late-life depression? A systematic review and meta-analysis. Geriatr Nurs 2023; 51:215-221. [PMID: 37015141 DOI: 10.1016/j.gerinurse.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE This systematic review and meta-analysis aimed to assess the clinical efficacy of acupuncture in late-life depression (LLD). METHODS A comprehensive search of seven electronic databases was conducted from inception to November 2022, including the Cochrane Library, PubMed, Embase, CNKI, VIP, CBM and the Wan Fang database. All data analysis were conducted by Revman 5.3. RESULTS A total of nine RCTs involving 603 participants were included. The meta-analysis results showed that acupuncture combined with antidepressants significantly reduced HAMD scores (MD, -3.69 [95% CI, -5.11 to -2.27], I2 =74%) and a significantly higher cure rate (RR, 1.11 [95% CI, 1.01 to 1.22], I2 = 0%) compared with antidepressants alone. However, no significant difference was found between acupuncture and antidepressants in reducing HAMD scores and improving clinical outcomes. CONCLUSIONS Acupuncture combined or not combined with antidepressants is an effective and safe treatment for LLD.
Collapse
Affiliation(s)
- Wa Cai
- Department of acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Fang Wei
- Department of acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Ruo Zhang
- Department of acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Hu
- Department of acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Dong Shen
- Department of acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
16
|
Heylen A, Vermeiren Y, Kema IP, van Faassen M, van der Ley C, Van Dam D, De Deyn PP. Brain Kynurenine Pathway Metabolite Levels May Reflect Extent of Neuroinflammation in ALS, FTD and Early Onset AD. Pharmaceuticals (Basel) 2023; 16:ph16040615. [PMID: 37111372 PMCID: PMC10143579 DOI: 10.3390/ph16040615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES Despite distinct clinical profiles, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients share a remarkable portion of pathological features, with a substantial percentage of patients displaying a mixed disease phenotype. Kynurenine metabolism seems to play a role in dementia-associated neuroinflammation and has been linked to both diseases. We aimed to explore dissimilarities in kynurenine pathway metabolites in these early onset neurodegenerative disorders in a brain-region-specific manner. METHODS Using liquid chromatography mass spectrometry (LC-MS/MS), kynurenine metabolite levels were determined in the brain samples of 98 healthy control subjects (n = 20) and patients with early onset Alzheimer's disease (EOAD) (n = 23), ALS (n = 20), FTD (n = 24) or a mixed FTD-ALS (n = 11) disease profile. RESULTS Overall, the kynurenine pathway metabolite levels were significantly lower in patients with ALS compared to FTD, EOAD and control subjects in the frontal cortex, substantia nigra, hippocampus and neostriatum. Anthranilic acid levels and kynurenine-to-tryptophan ratios were consistently lower in all investigated brain regions in ALS compared to the other diagnostic groups. CONCLUSIONS These results suggest that the contribution of kynurenine metabolism in neuroinflammation is lower in ALS than in FTD or EOAD and may also be traced back to differences in the age of onset between these disorders. Further research is necessary to confirm the potential of the kynurenine system as a therapeutic target in these early onset neurodegenerative disorders.
Collapse
Affiliation(s)
- Annelies Heylen
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Antwerp, Belgium
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University and Research, 6708 Wageningen, The Netherlands
- Faculty of Medicine & Health Sciences, Translational Neurosciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Claude van der Ley
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology and Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology and Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| |
Collapse
|
17
|
Müller L, Di Benedetto S. Aged brain and neuroimmune responses to COVID-19: post-acute sequelae and modulatory effects of behavioral and nutritional interventions. Immun Ageing 2023; 20:17. [PMID: 37046272 PMCID: PMC10090758 DOI: 10.1186/s12979-023-00341-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Advanced age is one of the significant risk determinants for coronavirus disease 2019 (COVID-19)-related mortality and for long COVID complications. The contributing factors may include the age-related dynamical remodeling of the immune system, known as immunosenescence and chronic low-grade systemic inflammation. Both of these factors may induce an inflammatory milieu in the aged brain and drive the changes in the microenvironment of neurons and microglia, which are characterized by a general condition of chronic inflammation, so-called neuroinflammation. Emerging evidence reveals that the immune privilege in the aging brain may be compromised. Resident brain cells, such as astrocytes, neurons, oligodendrocytes and microglia, but also infiltrating immune cells, such as monocytes, T cells and macrophages participate in the complex intercellular networks and multiple reciprocal interactions. Especially changes in microglia playing a regulatory role in inflammation, contribute to disturbing of the brain homeostasis and to impairments of the neuroimmune responses. Neuroinflammation may trigger structural damage, diminish regeneration, induce neuronal cell death, modulate synaptic remodeling and in this manner negatively interfere with the brain functions.In this review article, we give insights into neuroimmune interactions in the aged brain and highlight the impact of COVID-19 on the functional systems already modulated by immunosenescence and neuroinflammation. We discuss the potential ways of these interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and review proposed neuroimmune mechanisms and biological factors that may contribute to the development of persisting long COVID conditions. We summarize the potential mechanisms responsible for long COVID, including inflammation, autoimmunity, direct virus-mediated cytotoxicity, hypercoagulation, mitochondrial failure, dysbiosis, and the reactivation of other persisting viruses, such as the Cytomegalovirus (CMV). Finally, we discuss the effects of various interventional options that can decrease the propagation of biological, physiological, and psychosocial stressors that are responsible for neuroimmune activation and which may inhibit the triggering of unbalanced inflammatory responses. We highlight the modulatory effects of bioactive nutritional compounds along with the multimodal benefits of behavioral interventions and moderate exercise, which can be applied as postinfectious interventions in order to improve brain health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Svetlana Di Benedetto
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
18
|
He K, Nie L, Ali T, Liu Z, Li W, Gao R, Zhang Z, Liu J, Dai Z, Xie Y, Zhang Z, Liu G, Dong M, Yu ZJ, Li S, Yang X. Adiponectin deficiency accelerates brain aging via mitochondria-associated neuroinflammation. Immun Ageing 2023; 20:15. [PMID: 37005686 PMCID: PMC10067304 DOI: 10.1186/s12979-023-00339-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/10/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND A wide spectrum of changes occurs in the brain with age, from molecular to morphological aspects, and inflammation accompanied by mitochondria dysfunction is one of the significant factors associated with age. Adiponectin (APN), an essential adipokine in glucose and lipid metabolism, is involved in the aging; however, its role in brain aging has not been adequately explored. Here, we aimed to explore the relationship between APN deficiency and brain aging using multiple biochemical and pharmacological methods to probe APN in humans, KO mice, primary microglia, and BV2 cells. RESULTS We found that declining APN levels in aged human subjects correlated with dysregulated cytokine levels, while APN KO mice exhibited accelerated aging accompanied by learning and memory deficits, anxiety-like behaviors, neuroinflammation, and immunosenescence. APN-deficient mice displayed aggravated mitochondrial dysfunction and HDAC1 upregulation. In BV2 cells, the APN receptor agonist AdipoRon alleviated the mitochondrial deficits and aging markers induced by rotenone or antimycin A. HDAC1 antagonism by Compound 60 (Cpd 60) improved mitochondrial dysfunction and age-related inflammation, as validated in D-galactose-treated APN KO mice. CONCLUSION These findings indicate that APN is a critical regulator of brain aging by preventing neuroinflammation associated with mitochondrial impairment via HDAC1 signaling.
Collapse
Affiliation(s)
- Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Lulin Nie
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruyan Gao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zena Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zaijun Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Dong
- Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6Th Affiliated Hospital of Shenzhen University Health Science, Center. No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Lee RL, Funk KE. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front Aging Neurosci 2023; 15:1144036. [PMID: 37009464 PMCID: PMC10063921 DOI: 10.3389/fnagi.2023.1144036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The blood–brain barrier (BBB) is the neurovascular structure that regulates the passage of cells and molecules to and from the central nervous system (CNS). Alzheimer’s disease (AD) is a neurodegenerative disorder that is associated with gradual breakdown of the BBB, permitting entry of plasma-derived neurotoxins, inflammatory cells, and microbial pathogens into the CNS. BBB permeability can be visualized directly in AD patients using imaging technologies including dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging, and recent studies employing these techniques have shown that subtle changes in BBB stability occur prior to deposition of the pathological hallmarks of AD, senile plaques, and neurofibrillary tangles. These studies suggest that BBB disruption may be useful as an early diagnostic marker; however, AD is also accompanied by neuroinflammation, which can complicate these analyses. This review will outline the structural and functional changes to the BBB that occur during AD pathogenesis and highlight current imaging technologies that can detect these subtle changes. Advancing these technologies will improve both the diagnosis and treatment of AD and other neurodegenerative diseases.
Collapse
|
20
|
Rios LE, Lokugamage N, Garg NJ. Effects of Acute and Chronic Trypanosoma cruzi Infection on Pregnancy Outcomes in Mice: Parasite Transmission, Mortality, Delayed Growth, and Organ Damage in Pups. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:313-331. [PMID: 36565805 PMCID: PMC10013038 DOI: 10.1016/j.ajpath.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/22/2022]
Abstract
Chagas disease is caused by Trypanosoma cruzi. This study aimed to determine the effects of T. cruzi infection on fertility rate and health of the newborn pups in pregnant mice. Female mice were challenged with T. cruzi and mated at 21 days (acute parasitemic phase) or 90 days (chronic parasite persistence phase) after infection. Pups were examined for growth up to 20 days after birth; and parasite burden in brain, heart, skeletal muscle, and intestine was measured by real-time quantitative PCR. The inflammatory infiltrate, necrosis, and fibrosis in pups' heart and brain tissues were evaluated by histology. T. cruzi infection in dams delayed the onset of pregnancy, decreased the fertility rate, and led to vertical transmission of parasite to the pups. Furthermore, infected dams delivered pups that exhibited decreased survival rate, decreased birth weight, and decreased growth rate. Significantly increased inflammation, necrosis, and fibrosis of cardiac and brain tissues were noted in pups born to infected dams. Initial challenge with higher parasite dose had more detrimental effects on fertility rate and pups' health in both acutely and chronically infected dams. In conclusion, mice offer a promising model to evaluate the efficacy of new vaccines and therapeutic drugs in controlling the acute and chronic maternal T. cruzi infection and congenital transmission to newborns, and in improving the fertility rate and pups' health outcomes.
Collapse
Affiliation(s)
- Lizette E Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Department of Biochemistry, Cellular and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
21
|
Chen Y, Dai J, Tang L, Mikhailova T, Liang Q, Li M, Zhou J, Kopp RF, Weickert C, Chen C, Liu C. Neuroimmune transcriptome changes in patient brains of psychiatric and neurological disorders. Mol Psychiatry 2023; 28:710-721. [PMID: 36424395 PMCID: PMC9911365 DOI: 10.1038/s41380-022-01854-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
Neuroinflammation has been implicated in multiple brain disorders but the extent and the magnitude of change in immune-related genes (IRGs) across distinct brain disorders has not been directly compared. In this study, 1275 IRGs were curated and their expression changes investigated in 2467 postmortem brains of controls and patients with six major brain disorders, including schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD). There were 865 IRGs present across all microarray and RNA-seq datasets. More than 60% of the IRGs had significantly altered expression in at least one of the six disorders. The differentially expressed immune-related genes (dIRGs) shared across disorders were mainly related to innate immunity. Moreover, sex, tissue, and putative cell type were systematically evaluated for immune alterations in different neuropsychiatric disorders. Co-expression networks revealed that transcripts of the neuroimmune systems interacted with neuronal-systems, both of which contribute to the pathology of brain disorders. However, only a few genes with expression changes were also identified as containing risk variants in genome-wide association studies. The transcriptome alterations at gene and network levels may clarify the immune-related pathophysiology and help to better define neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiacheng Dai
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Longfei Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tatiana Mikhailova
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Qiuman Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Richard F Kopp
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Cynthia Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
- School of Psychiatry, UNSW, Sydney, NSW, Australia
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
22
|
Lee C, Min SH, Niitsu K. C-Reactive Protein and Specific Depression Symptoms Among Older Adults: An Exploratory Investigation of Multi-Plane Networks Using Cross-Sectional Data From NHANES (2017-2020). Biol Res Nurs 2023; 25:14-23. [PMID: 35732288 DOI: 10.1177/10998004221110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Studies investigating the association between C-reactive protein (CRP) and depression among older adults have yielded inconsistent results. We suspect that this may be due to varying associations between CRP and particular depression symptom criteria, and we addressed this challenge using network analysis. METHODS We used cross-sectional data from prepandemic National Health and Nutrition Examination Survey questionnaires (2017-2020) and included a sample of 1698 adults aged 65 years or older. Depression symptoms were assessed using the Patient Health Questionnaire-9. Unregularized Mixed Graphical Models were estimated using the R package mgm before and after adjusting for relevant sociodemographic, clinical, and lifestyle covariates. RESULTS In the model with no covariates, the only symptom criterion associated with CRP was "appetite problems." This association remained robust after controlling for all covariates. Although not associated with CRP, other criteria such as "fatigue" and "concentration difficulty" showed associations with important covariates for older adults such as white blood cell count or hemoglobin, respectively. DISCUSSION The CRP-related variability in the depression symptom network that we have demonstrated may help explain the reported inconsistencies. The present study stands as exploratory, and future research should focus on applying longitudinal designs and including several other inflammatory proteins and covariates that were not measured in the current network model.
Collapse
Affiliation(s)
- Chiyoung Lee
- School of Nursing and Health Studies, 52576University of Washington Bothell, Bothell, WA, USA
| | - Se Hee Min
- 15776Duke University School of Nursing, Durham, NC, USA
| | - Kosuke Niitsu
- School of Nursing and Health Studies, 52576University of Washington Bothell, Bothell, WA, USA
| |
Collapse
|
23
|
Bhatt S, Dhar AK, Samanta MK, Suttee A. Effects of Current Psychotropic Drugs on Inflammation and Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:407-434. [PMID: 36949320 DOI: 10.1007/978-981-19-7376-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The immune system and inflammation are involved in the pathological progression of various psychiatric disorders such as depression or major depressive disorder (MDD), generalized anxiety disorder (GAD) or anxiety, schizophrenia, Alzheimer's disease (AD), and Huntington's disease. It is observed that levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and other markers are highly increased in the abovementioned disorders. The inflammation and immune component also lead to enhance the oxidative stress. The oxidative stress and increased production of reactive oxygen species (ROS) are considered as important factors that are involved in pathological progression of psychiatric disorders. Increase production of ROS is associated with excessive inflammation followed by cell necrosis and death. The psychotropic drugs are mainly work through modulations of neurotransmitter system. However, it is evident that inflammation and immune modulation are also having important role in the progression of psychiatric disorders. Rationale of the use of current psychotropic drugs is modulation of immune system by them. However, the effects of psychotropic drugs on the immune system and how these might contribute to their efficacy remain largely unclear. The drugs may act through modification of inflammation and related markers. The main purpose of this book chapter is to address the role of current psychotropic drugs on inflammation and immune system. Moreover, it will also address the role of inflammation in the progression of psychiatric disorders.
Collapse
Affiliation(s)
- Shvetank Bhatt
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| | | | | | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
24
|
Sharma M, Sharma N, Khairnar A. Intranasal Rotenone Induces Alpha-Synuclein Accumulation, Neuroinflammation and Dopaminergic Neurodegeneration in Middle-Aged Mice. Neurochem Res 2022; 48:1543-1560. [PMID: 36571663 DOI: 10.1007/s11064-022-03847-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
Accumulation of alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson's disease (PD). Previous studies suggest that α-syn pathology may originate from the olfactory bulb (OB) or gut in response to an unknown pathogen and later progress to the different brain regions. Aging is viewed as the utmost threat to PD development. Therefore, studies depicting the role of age in α-syn accumulation and its progression in PD are important. In the present study, we gave intranasal rotenone microemulsion for 6 weeks in 12-month-old female BALB/c mice and found olfactory dysfunction after 4 and 6 weeks of rotenone administration. Interestingly, motor impairment was observed only after 6 weeks. The animals were sacrificed after 6 weeks to perform western blotting and immunohistochemical studies to detect α-syn pathology, neuroinflammation and neurodegeneration. We found α-syn accumulation in OB, striatum, substantia nigra (SN) and cortex. Importantly, we found significant glial cell activation and neurodegeneration in all the analysed regions which were absent in our previous published studies with 3 months old mice even after they were exposed to rotenone for 9 weeks indicating age is a crucial factor for α-syn induced neuroinflammation and neurodegeneration. We also observed increased iron accumulation in SN of rotenone-exposed aged mice. Moreover, inflammaging was observed in OB and striatum of 12-month-old BALB/c mice as compared to 3-month-old BALB/c mice. In conclusion, there is a difference in sensitivity between adult and aged mice in the development and progression of α-syn pathology and subsequent neurodegeneration, for which inflammaging might be the crucial probable mechanism.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Ahmedabad, Gandhinagar, 382355, Gujarat, India. .,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic, ICRC, FNUSA, Brno, Czech Republic.
| |
Collapse
|
25
|
Norouzkhani N, Karimi AG, Badami N, Jalalifar E, Mahmoudvand B, Ansari A, Pakrou Sariyarighan N, Alijanzadeh D, Aghakhani S, Shayestehmehr R, Arzaghi M, Sheikh Z, Salami Y, Marabi MH, Abdi A, Deravi N. From kitchen to clinic: Pharmacotherapeutic potential of common spices in Indian cooking in age-related neurological disorders. Front Pharmacol 2022; 13:960037. [PMID: 36438833 PMCID: PMC9685814 DOI: 10.3389/fphar.2022.960037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is described as an advanced time-related collection of changes that may negatively affect with the risk of several diseases or death. Aging is a main factor of several age-related neurological disorders, including neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, and dementia), stroke, neuroinflammation, neurotoxicity, brain tumors, oxidative stress, and reactive oxygen species (ROS). Currently available medications for age-related neurological disorders may lead to several side effects, such as headache, diarrhea, nausea, gastrointestinal (GI) diseases, dyskinesia, and hallucinosis. These days, studies on plant efficacy in traditional medicine are being conducted because herbal medicine is affordable, safe, and culturally acceptable and easily accessible. The Indian traditional medicine system called Ayurveda uses several herbs and medicinal plants to treat various disorders including neurological disorders. This review aims to summarize the data on the neuroprotective potential of the following common Indian spices widely used in Ayurveda: cumin (Cuminum cyminum (L.), Apiaceae), black cumin (Nigella sativa (L.), Ranunculaceae), black pepper (Piper nigrum (L.), Piperaceae), curry leaf tree (Murraya koenigii (L.), Spreng Rutaceae), fenugreek (Trigonella foenum-graecum (L.), Fabaceae), fennel (Foeniculum vulgare Mill, Apiaceae), cardamom (Elettaria cardamomum (L.) Maton, Zingiberaceae), cloves (Syzygium aromaticum (L.) Merr. & L.M.Perry, Myrtaceae), and coriander (Coriandrum sativum (L.), Apiaceae) in age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arian Ghannadi Karimi
- Preclinical, Cardiovascular Imaging Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Badami
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Erfan Jalalifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mahmoudvand
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Dorsa Alijanzadeh
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Aghakhani
- Student Research Committee, Esfahan University of Medical Sciences, Esfahan, Iran
| | - Reza Shayestehmehr
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Zahra Sheikh
- Babol University of Medical Sciences, Babol, Iran
| | - Yasaman Salami
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hesam Marabi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Niloofar Deravi, ,
| |
Collapse
|
26
|
Walrath T, McMahan RH, Idrovo JP, Quillinan N, Kovacs EJ. Cutaneous burn injury induces neuroinflammation and reactive astrocyte activation in the hippocampus of aged mice. Exp Gerontol 2022; 169:111975. [PMID: 36208823 DOI: 10.1016/j.exger.2022.111975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND By 2050, one in six people globally will be 65 or older. Confusion and delirium are significant complications after burn injury, especially in the elderly population. The etiology is still unknown, however complications may be driven by pro-inflammatory activation of astrocytes within the hippocampus (HPC) after burn injury. Reduced levels of phosphorylated cyclic-AMP response binding element (pCREB), caused by elevated systemic pro-inflammatory cytokines, could lead to cognitive decline and memory impairment. METHODS To examine the effects of remote injury on neuroinflammation in advanced age, young and aged mice were subjected to a 15 % total body surface area scald burn or sham injury, and euthanized after 24 h. Expression of ccl2 and tnfa were measured by qPCR in the whole brain and HPC. Astrocyte activation was measured by immunofluorescence within the HPC. pCREB was measured by immunohistochemistry in the dentate gyrus. RESULTS We saw an 80-fold increase in ccl2 and a 30-fold elevation in tnfa after injury in the whole brain of aged mice compared to young groups and aged sham mice (p < 0.05 and p < 0.05, respectively). Additionally, there was a 30-fold increase in ccl2 within isolated HPC of aged injured mice when compared to sham injured animals (p < 0.05). When investigating specific HPC regions, immunofluorescence staining showed a >20 % rise in glial fibrillary acidic protein (GFAP) positive astrocytes within the cornu ammonis 3 (CA3) of aged injured mice when compared to all other groups (p < 0.05). Lastly, we observed a >20 % decrease in pCREB staining by immunohistochemistry in the dentate gyrus of aged mice compared to young regardless of injury (p < 0.05). CONCLUSIONS These novel data suggest that remote injury in aged, but not young, mice is associated with neuroinflammation and astrocyte activation within the HPC. These factors, paired with an age related reduction in pCREB, could help explain the increased cognitive decline seen in burn patients of advanced age. To our knowledge, we are the first group to examine the impact of advanced age combined with burn injury on inflammation and astrocyte activation within the brain.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Nidia Quillinan
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
27
|
Denaro CA, Haloush YI, Hsiao SY, Orgera JJ, Osorio T, Riggs LM, Sassaman JW, Williams SA, Monte Carlo A, Da Costa RT, Grigoriev A, Solesio ME. COVID-19 and neurodegeneration: The mitochondrial connection. Aging Cell 2022; 21:e13727. [PMID: 36219531 PMCID: PMC9649608 DOI: 10.1111/acel.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 01/25/2023] Open
Abstract
There is still a significant lack of knowledge regarding many aspects of the etiopathology and consequences of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. For example, the variety of molecular mechanisms mediating this infection, and the long-term consequences of the disease remain poorly understood. It first seemed like the SARS-CoV-2 infection primarily caused a serious respiratory syndrome. However, over the last years, an increasing number of studies also pointed towards the damaging effects of this infection has on the central nervous system (CNS). In fact, evidence suggests a possible disruption of the blood-brain barrier and deleterious effects on the CNS, especially in patients who already suffer from other pathologies, such as neurodegenerative disorders. The molecular mechanisms behind these effects on the CNS could involve the dysregulation of mitochondrial physiology, a well-known early marker of neurodegeneration and a hallmark of aging. Moreover, mitochondria are involved in the activation of the inflammatory response, which has also been broadly described in the CNS in COVID-19. Here, we critically review the current bibliography regarding the presence of neurodegenerative symptoms in COVID-19 patients, with a special emphasis on the mitochondrial mechanisms of these disorders.
Collapse
Affiliation(s)
- Christopher A. Denaro
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Yara I. Haloush
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Samuel Y. Hsiao
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - John J. Orgera
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Teresa Osorio
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Lindsey M. Riggs
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Joshua W. Sassaman
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Sarah A. Williams
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Anthony R. Monte Carlo
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Renata T. Da Costa
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Andrey Grigoriev
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Maria E. Solesio
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| |
Collapse
|
28
|
Kong X, Liang H, Zhou K, Wang H, Li D, Zhang S, Sun N, Gong M, Zhou Y, Zhang Q. Deciphering the Heterogeneity of the Internal Environment of Hippocampal Neurons during Maturation by Raman Spectroscopy. ACS OMEGA 2022; 7:30571-30581. [PMID: 36061692 PMCID: PMC9435027 DOI: 10.1021/acsomega.2c04188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Hippocampal neurons are sensitive to changes in the internal environment and play a significant role in controlling learning, memory, and emotions. A remarkable characteristic of the aging brain is its ability to shift from a state of normal inflammation to excessive inflammation. Various cognitive abilities of the elderly may suffer from serious harm due to the change in the neural environment. Hippocampal neurons may have various subsets involved in controlling their internal environment at different stages of development. Developmental differences may eventually result from complex changes in the dynamic neuronal system brought on by metabolic changes. In this study, we used an in vitro hippocampal neuron model cultured in C57BL/6J mice in conjugation with Raman spectroscopy to examine the relative alterations in potential biomarkers, such as levels of metabolites in the internal environment of hippocampal neurons at various developmental stages. The various differentially expressed genes (DEGs) of hippocampal neurons at various developmental stages were simultaneously screened using bioinformatics, and the biological functions as well as the various regulatory pathways of DEGs were preliminarily analyzed, providing an essential reference for investigating novel therapeutic approaches for diseases that cause cognitive impairment, such as Alzheimer's disease. A stable hippocampal neuron model was established using the GIBCO C57BL/6J hippocampal neuron cell line as a donor and in vitro hippocampal neuron culture technology. The Raman peak intensities of culture supernatants from the experimental groups incubated for 0, 7, and 14 days in vitro(DIV) were examined. The GEO database was used to screen for different DEGs associated with various developmental stages. The data was then analyzed using a statistical method called orthogonal partial least squares discriminant analysis (OPLS-DA). The levels of ketogenic and glycogenic amino acids (such as tryptophan, phenylalanine, and tyrosine), lipid intake rate, glucose utilization rate, and nucleic acid expression in the internal environment of hippocampal neurons were significantly different in the 14 DIV group compared to the 0 DIV and 7 DIV groups (P < 0.01). The top 10 DEGs with neuronal maturation were screened, and the results were compared to the OPLS-DA model's analysis of the differential peaks. It was found that different genes involved in maturation can directly relate to changes in the body's levels of ketogenic and glycogenic amino acids (P < 0.01). The altered expression of the maturation-related genes epidermal growth factor receptor, protein tyrosine kinase 2-beta, discs large MAGUK scaffold protein 2, and Ras protein-specific guanine nucleotide releasing factor 1 may be connected to the altered uptake of ketogenic and glycogenic amino acids and nucleic acids in the internal environment of neurons at different developmental stages. The levels of ketogenic, glycogenic amino acids, and lipid intake increased while glucose utilization decreased, which may be related to mature neurons' metabolism and energy use. The decline in nucleic acid consumption could be connected to synaptic failure. The Raman spectroscopy fingerprint results of relevant biomarkers in conjugation with multivariable analysis and biological action targets suggested by differential genes interpret the heterogeneity of the internal environment of mature hippocampal neurons in the process of maturation, open a new idea for exploring the dynamic mechanism of the exchange energy metabolism of information molecules in the internal environment of hippocampal neurons, and provide a new method for studying this process.
Collapse
Affiliation(s)
- Xiaodong Kong
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Haoyue Liang
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Kexuan Zhou
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Haoyu Wang
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Dai Li
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Shishuang Zhang
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Ning Sun
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Min Gong
- Department
of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Zhou
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qiang Zhang
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| |
Collapse
|
29
|
Micheli L, Toti A, Lucarini E, Ferrara V, Ciampi C, Olivero G, Pittaluga A, Mattoli L, Pelucchini C, Burico M, Lucci J, Carrino D, Pacini A, Pallanti S, Di Cesare Mannelli L, Ghelardini C. Efficacy of a vegetal mixture composed of Zingiber officinale, Echinacea purpurea, and Centella asiatica in a mouse model of neuroinflammation: In vivo and ex vivo analysis. Front Nutr 2022; 9:887378. [PMID: 36118773 PMCID: PMC9472218 DOI: 10.3389/fnut.2022.887378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Experimental evidence suggests that neuroinflammation is a key pathological event of many diseases affecting the nervous system. It has been well recognized that these devastating illnesses (e.g., Alzheimer’s, Parkinson’s, depression, and chronic pain) are multifactorial, involving many pathogenic mechanisms, reason why pharmacological treatments are unsatisfactory. The purpose of this study was to evaluate the efficacy of a vegetal mixture capable of offering a multiple approach required to manage the multifactoriality of neuroinflammation. A mixture composed of Zingiber officinale (150 mg kg−1), Echinacea purpurea (20 mg kg−1), and Centella asiatica (200 mg kg−1) was tested in a mouse model of systemic neuroinflammation induced by lipopolysaccharide (LPS, 1 mg kg−1). Repeated treatment with the vegetal mixture was able to completely counteract thermal and mechanical allodynia as reported by the Cold plate and von Frey tests, respectively, and to reduce the motor impairments as demonstrated by the Rota rod test. Moreover, the mixture was capable of neutralizing the memory loss in the Passive avoidance test and reducing depressive-like behavior in the Porsolt test, while no efficacy was shown in decreasing anhedonia as demonstrated by the Sucrose preference test. Finally, LPS stimulation caused a significant increase in the activation of glial cells, of the central complement proteins and of inflammatory cytokines in selected regions of the central nervous system (CNS), which were rebalanced in animals treated with the vegetal mixture. In conclusion, the vegetal mixture tested thwarted the plethora of symptoms evoked by LPS, thus being a potential candidate for future investigations in the context of neuroinflammation.
Collapse
Affiliation(s)
- Laura Micheli
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- *Correspondence: Laura Micheli,
| | - Alessandra Toti
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elena Lucarini
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Valentina Ferrara
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Clara Ciampi
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Guendalina Olivero
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Luisa Mattoli
- Innovation and Medical Science Division, Aboca SpA Società Agricola, Sansepolcro, Italy
| | - Caroline Pelucchini
- Innovation and Medical Science Division, Aboca SpA Società Agricola, Sansepolcro, Italy
| | - Michela Burico
- Innovation and Medical Science Division, Aboca SpA Società Agricola, Sansepolcro, Italy
| | - Jacopo Lucci
- Innovation and Medical Science Division, Aboca SpA Società Agricola, Sansepolcro, Italy
| | - Donatello Carrino
- Anatomy and Histology Section, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Anatomy and Histology Section, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefano Pallanti
- Psychiatry Section, Department of Neurofarba, University of Florence, Florence, Italy
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, United States
- Institute of Neuroscience, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Neurofarba—Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Saez-Calveras N, Stuve O. The role of the complement system in Multiple Sclerosis: A review. Front Immunol 2022; 13:970486. [PMID: 36032156 PMCID: PMC9399629 DOI: 10.3389/fimmu.2022.970486] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system has been involved in the pathogenesis of multiple neuroinflammatory and neurodegenerative conditions. In this review, we evaluated the possible role of complement activation in multiple sclerosis (MS) with a focus in progressive MS, where the disease pathogenesis remains to be fully elucidated and treatment options are limited. The evidence for the involvement of the complement system in the white matter plaques and gray matter lesions of MS stems from immunohistochemical analysis of post-mortem MS brains, in vivo serum and cerebrospinal fluid biomarker studies, and animal models of Experimental Autoimmune Encephalomyelitis (EAE). Complement knock-out studies in these animal models have revealed that this system may have a “double-edge sword” effect in MS. On the one hand, complement proteins may aid in promoting the clearance of myelin degradation products and other debris through myeloid cell-mediated phagocytosis. On the other, its aberrant activation may lead to demyelination at the rim of progressive MS white matter lesions as well as synapse loss in the gray matter. The complement system may also interact with known risk factors of MS, including as Epstein Barr Virus (EBV) infection, and perpetuate the activation of CNS self-reactive B cell populations. With the mounting evidence for the involvement of complement in MS, the development of complement modulating therapies for this condition is appealing. Herein, we also reviewed the pharmacological complement inhibitors that have been tested in MS animal models as well as in clinical trials for other neurologic diseases. The potential use of these agents, such as the C5-binding antibody eculizumab in MS will require a detailed understanding of the role of the different complement effectors in this disease and the development of better CNS delivery strategies for these compounds.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
31
|
Guida F, Iannotta M, Misso G, Ricciardi F, Boccella S, Tirino V, Falco M, Desiderio V, Infantino R, Pieretti G, de Novellis V, Papaccio G, Luongo L, Caraglia M, Maione S. Long-term neuropathic pain behaviors correlate with synaptic plasticity and limbic circuit alteration: a comparative observational study in mice. Pain 2022; 163:1590-1602. [PMID: 34862336 PMCID: PMC9341227 DOI: 10.1097/j.pain.0000000000002549] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Neuropathic pain has long-term consequences in affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. In this study, we used the spared nerve injury (SNI) model to characterize the development of sensory and aversive components of neuropathic pain and to determine their electrophysiological impact across prefrontal cortex and limbic regions. Moreover, we evaluated the regulation of several genes involved in immune response and inflammation triggered by SNI. We showed that SNI led to sensorial hypersensitivity (cold and mechanical stimuli) and depressive-like behavior lasting 12 months after nerve injury. Of interest, changes in nonemotional cognitive tasks (novel object recognition and Y maze) showed in 1-month SNI mice were not evident normal in the 12-month SNI animals. In vivo electrophysiology revealed an impaired long-term potentiation at prefrontal cortex-nucleus accumbens core pathway in both the 1-month and 12-month SNI mice. On the other hand, a reduced neural activity was recorded in the lateral entorhinal cortex-dentate gyrus pathway in the 1-month SNI mice, but not in the 12-month SNI mice. Finally, we observed the upregulation of specific genes involved in immune response in the hippocampus of 1-month SNI mice, but not in the 12-month SNI mice, suggesting a neuroinflammatory response that may contribute to the SNI phenotype. These data suggest that distinct brain circuits may drive the psychiatric components of neuropathic pain and pave the way for better investigation of the long-term consequences of peripheral nerve injury for which most of the available drugs are to date unsatisfactory.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gorizio Pieretti
- Plastic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | | | - Livio Luongo
- Departments of Experimental Medicine
- IRCSS, Neuromed, Neuropharmacology Division, Pozzilli, Italy
| | | | - Sabatino Maione
- Departments of Experimental Medicine
- IRCSS, Neuromed, Neuropharmacology Division, Pozzilli, Italy
| |
Collapse
|
32
|
Rengasamy M, Da Costa E Silva SA, Spada M, Price RB. Does the moderator matter? Identification of multiple moderators of the association between peripheral inflammatory markers and depression severity in a large racially diverse community cohort. Neuropsychopharmacology 2022; 47:1693-1701. [PMID: 35595844 PMCID: PMC9283451 DOI: 10.1038/s41386-022-01341-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/08/2023]
Abstract
Depressive symptomology has been linked to low-grade peripheral inflammatory markers (PIMs), specifically C-reactive protein (CRP) and white blood cell count (WBC). However, such associations may be affected by multiple moderators (including race/ethnicity), though few well-powered and racially diverse studies have examined this. We examined 31 moderators of PIM-depression relationships in a large racially diverse cohort (n = 21,570). We also examined if associations between PIM and depression severity were dependent on clinical cutpoints for moderate depressive symptoms and elevated CRP. We found several positive moderators of PIM-depression relationships for both WBC and CRP: ongoing medication use (antidepressant, statin, or any prescription drug), presence of sleep concerns, and poor health status (β's = 0.06-0.21, p's < 0.05). For both WBC and CRP, individuals of non-Hispanic White race/ethnicity were found to have stronger PIM-depression associations overall relative to minoritized groups (B's = 0.14 to 1.01, p's < 0.05). For CRP, stronger PIM-depression relationships existed for individuals with moderate (or greater) depression severity or elevated CRP (B's = 0.27 to 0.49, p's < 0.05). Thus, a wide range of moderators appears to affect PIM-depression associations. These results could help identify participants with strong coupling of PIM-depression severity, to guide future research and personalized treatments for depression and to indicate gaps in the applicability of widely referenced theoretical models among racial/ethnic minoritized groups.
Collapse
Affiliation(s)
- Manivel Rengasamy
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Meredith Spada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca B Price
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Cassidy BR, Sonntag WE, Leenen PJM, Drevets DA. Systemic Listeria monocytogenes infection in aged mice induces long-term neuroinflammation: the role of miR-155. Immun Ageing 2022; 19:25. [PMID: 35614490 PMCID: PMC9130456 DOI: 10.1186/s12979-022-00281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Understanding mechanisms of pathologic neuroinflammation is essential for improving outcomes after central nervous system infections. Brain tissue-resident memory T cells (bTRM) are recruited during central nervous system infection and promote pathogen control as well as noxious inflammation. Our prior studies in young mice showed optimal recruitment of CD8+ bTRM during neuroinvasive Listeria monocytogenes (Lm) infection required miR-155, and was significantly inhibited by anti-miR-155 oligonucleotides. Since Lm is an important pathogen in the elderly, we hypothesized anti-miR-155 would also inhibit accumulation of CD8+ bTRM in aged mice infected with Lm. METHODS Young (2 mo) and aged (> 18 mo) male C57BL/6 mice were infected intra-peritoneally with wild-type Lm, or avirulent Lm mutants lacking the genes required for intracellular motility (ΔactA) or phagosomal escape (Δhly), then were given antibiotics. Brain leukocytes and their intracellular cytokine production were quantified by flow cytometry >28d post-infection (p.i.). The role of miR-155 was tested by injecting mice with anti-miR-155 or control oligonucleotides along with antibiotics. RESULTS Aged mice had significantly more homeostatic CD8+ bTRM than did young mice, which did not increase after infection with wild-type Lm despite 50% mortality, whereas young mice suffered no mortality after a larger inoculum. For direct comparison of post-infectious neuroinflammation after the same inoculum, young and aged mice were infected with 107 CFU ΔactA Lm. This mutant caused no mortality and significantly increased CD8+ bTRM 28d p.i. in both groups, whereas bone marrow-derived myeloid cells, particularly neutrophils, increased only in aged mice. Notably, anti-miR-155 reduced accumulation of brain myeloid cells in aged mice after infection, whereas CD8+ bTRM were unaffected. CONCLUSIONS Systemic infection with Lm ΔactA is a novel model for studying infection-induced brain inflammation in aged mice without excessive mortality. CD8+ bTRM increase in both young and aged mice after infection, whereas only in aged mice bone marrow-derived myeloid cells increase long-term. In aged mice, anti-miR-155 inhibits brain accumulation of myeloid cells, but not CD8+ bTRM. These results suggest young and aged mice differ in manifestations and mechanisms of infection-induced neuroinflammation and give insight for developing therapies to ameliorate brain inflammation following severe infection in the elderly.
Collapse
Affiliation(s)
- Benjamin R. Cassidy
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| | - William E. Sonntag
- grid.266902.90000 0001 2179 3618Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Pieter J. M. Leenen
- grid.5645.2000000040459992XDepartment of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Douglas A. Drevets
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| |
Collapse
|
34
|
Burzynski H, Macht V, Woodruff J, Crawford J, Erichsen J, Piroli G, Grillo C, Fadel J, Reagan L. Pyridostigmine bromide elicits progressive and chronic impairments in the cholinergic anti-inflammatory pathway in the prefrontal cortex and hippocampus of male rats. Neurobiol Stress 2022; 18:100446. [PMID: 35573808 PMCID: PMC9095881 DOI: 10.1016/j.ynstr.2022.100446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Gulf War Illness (GWI) is a multi-symptom illness that continues to affect over 250,000 American Gulf War veterans. The causes of GWI remain equivocal; however, prophylactic use of the acetylcholinesterase inhibitor pyridostigmine bromide (PB), and the stress of combat have been identified as two potential causative factors. Both PB and stress alter acetylcholine (ACh), which mediates both cognition and anti-inflammatory responses. As inflammation has been proposed to contribute to the cognitive deficits and immune dysregulation in GWI, the goal of this study was to determine the long-term effects of PB and stress on the cholinergic anti-inflammatory pathway in the central nervous system and periphery. We used our previously established rat model of GWI and in vivo microdialysis to assess cholinergic neurochemistry in the prefrontal cortex (PFC) and hippocampus following a mild immune challenge (lipopolysaccharide; LPS). We then examined LPS-induced changes in inflammatory markers in PFC and hippocampal homogenates. We found that PB treatment produces a long-lasting potentiation of the cholinergic response to LPS in both the PFC and hippocampus. Interestingly, this prolonged effect of PB treatment enhancing cholinergic responses to LPS was accompanied by paradoxical increases in the release of pro-inflammatory cytokines in these brain regions. Collectively, these findings provide evidence that neuroinflammation resulting from dysregulation of the cholinergic anti-inflammatory pathway is a mechanistic mediator in the progression of the neurochemical and neurocognitive deficits in GWI and more broadly suggest that dysregulation of this pathway may contribute to neuroinflammatory processes in stress-related neurological disorders. Inflammation is thought to contribute to the progressive nature of GWI pathology. PB potentiates the central cholinergic response to LPS over time in model of GWI. PB progressively exacerbates the neuroinflammatory response to LPS. GWI may result from the dysregulation of the cholinergic anti-inflammatory pathway.
Collapse
|
35
|
Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J 2022; 39:443-471. [PMID: 35334027 DOI: 10.1007/s10719-022-10055-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023]
Abstract
The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
36
|
Chaudhari PR, Singla A, Vaidya VA. Early Adversity and Accelerated Brain Aging: A Mini-Review. Front Mol Neurosci 2022; 15:822917. [PMID: 35392273 PMCID: PMC8980717 DOI: 10.3389/fnmol.2022.822917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an “allostatic load” via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.
Collapse
|
37
|
Bakhtogarimov IR, Kudryavtseva AV, Krasnov GS, Gladysh NS, Volodin VV, Kudryavtsev AA, Bulavkina EV, Goncharova MA, Ledyaeva VS, Pastukhov IS, Vershinina YS, Starkova AM, Snezhkina AV, Shuvalova AI, Pavlov VS, Nikiforov-Nikishin DL, Moskalev AA, Guvatova ZG. The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. Int J Mol Sci 2022; 23:ijms23052491. [PMID: 35269638 PMCID: PMC8910246 DOI: 10.3390/ijms23052491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Annual fish of the genus Nothobranchius are promising models for aging research. Nothobranchius reproduces typical aspects of vertebrate aging, including hallmarks of brain aging. Meclofenoxate (MF) is a well-known compound that can enhance cognitive performance. The drug is prescribed for asthenic conditions, trauma, and vascular diseases of the brain. It is believed that MF is able to delay age-dependent changes in the human brain. However, until now, there has been no study of the MF effect on the brain transcriptome. In the present work, we performed an RNA-Seq study of brain tissues from aged Nothobranchius guentheri, which were almost lifetime administered with MF, as well as young and aged control fish. As expected, in response to MF, we revealed significant overexpression of neuron-specific genes including genes involved in synaptic activity and plasticity, neurotransmitter secretion, and neuron projection. The effect was more pronounced in female fish. In this aspect, MF alleviated age-dependent decreased expression of genes involved in neuronal activity. In both treated and untreated animals, we observed strong aging-associated overexpression of immune and inflammatory response genes. MF treatment did not prevent this effect, and moreover, some of these genes tended to be slightly upregulated under MF treatment. Additionally, we noticed upregulation of some genes associated with aging and cellular senescence, including isoforms of putative vascular cell adhesion molecule 1 (VCAM1), protein O-GlcNAcase (OGA), protein kinase C alpha type (KPCA), prolow-density lipoprotein receptor-related protein 1 (LRP1). Noteworthy, MF treatment was also associated with the elevated transcription of transposons, which are highly abundant in the N. guentheri genome. In conclusion, MF compensates for the age-dependent downregulation of neuronal activity genes, but its effect on aging brain transcriptome still cannot be considered unambiguously positive.
Collapse
Affiliation(s)
- Ildar R. Bakhtogarimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Anna V. Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
- Correspondence: (A.V.K.); (Z.G.G.); Tel.: +7-(499)-135-23-91 (A.V.K. & Z.G.G.)
| | - George S. Krasnov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Natalya S. Gladysh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Vsevolod V. Volodin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Alexander A. Kudryavtsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Elizaveta V. Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Margarita A. Goncharova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Veronika S. Ledyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Ivan S. Pastukhov
- Institute of Biotechnology and Fisheries, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia; (I.S.P.); (D.L.N.-N.)
| | - Yulia S. Vershinina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anna M. Starkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Vladislav S. Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Dmitry L. Nikiforov-Nikishin
- Institute of Biotechnology and Fisheries, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia; (I.S.P.); (D.L.N.-N.)
| | - Alexey A. Moskalev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Zulfiya G. Guvatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
- Correspondence: (A.V.K.); (Z.G.G.); Tel.: +7-(499)-135-23-91 (A.V.K. & Z.G.G.)
| |
Collapse
|
38
|
Morales-Prieto DM, Murrieta-Coxca JM, Stojiljkovic M, Diezel C, Streicher PE, Henao-Restrepo JA, Röstel F, Lindner J, Witte OW, Weis S, Schmeer C, Marz M. Small Extracellular Vesicles from Peripheral Blood of Aged Mice Pass the Blood-Brain Barrier and Induce Glial Cell Activation. Cells 2022; 11:cells11040625. [PMID: 35203276 PMCID: PMC8870085 DOI: 10.3390/cells11040625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 01/15/2023] Open
Abstract
Extracellular vesicles (EVs), including small EVs (sEVs), are involved in neuroinflammation and neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Yet, increased neuroinflammation can also be detected in the aging brain, and it is associated with increased glial activation. Changes in EV concentration are reported in aging tissues and senescence cells, suggesting a role of EVs in the process of aging. Here, we investigated the effect of peripheral sEVs from aged animals on neuroinflammation, specifically on glial activation. sEVs were isolated from the peripheral blood of young (3 months) and aged (24 months) C57BL/6J wildtype mice and injected into the peripheral blood from young animals via vein tail injections. The localization of EVs and the expression of selected genes involved in glial cell activation, including Gfap, Tgf-β, Cd68, and Iba1, were assessed in brain tissue 30 min, 4 h, and 24 h after injection. We found that sEVs from peripheral blood of aged mice but not from young mice altered gene expression in the brains of young animals. In particular, the expression of the specific astrocyte marker, Gfap, was significantly increased, indicating a strong response of this glial cell type. Our study shows that sEVs from aged mice can pass the blood-brain barrier (BBB) and induce glial cell activation.
Collapse
Affiliation(s)
- Diana M. Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Correspondence: (D.M.M.-P.); (M.M.); Tel.: +49-364-1939-0859 (D.M.M.-P.)
| | - José M. Murrieta-Coxca
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Milan Stojiljkovic
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Celia Diezel
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| | - Priska E. Streicher
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
| | - Julian A. Henao-Restrepo
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
| | - Franziska Röstel
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
| | - Julia Lindner
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Sebastian Weis
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany;
- Institute for Infectious Disease and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
- Correspondence: (D.M.M.-P.); (M.M.); Tel.: +49-364-1939-0859 (D.M.M.-P.)
| |
Collapse
|
39
|
Acute peri‐operative neurocognitive disorders: a narrative review. Anaesthesia 2022; 77 Suppl 1:34-42. [DOI: 10.1111/anae.15613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
|
40
|
Cianciulli A, Calvello R, Ruggiero M, Panaro MA. Inflammaging and Brain: Curcumin and Its Beneficial Potential as Regulator of Microglia Activation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020341. [PMID: 35056657 PMCID: PMC8780663 DOI: 10.3390/molecules27020341] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Inflammaging is a term used to describe the tight relationship between low-grade chronic inflammation and aging that occurs during physiological aging in the absence of evident infection. This condition has been linked to a broad spectrum of age-related disorders in various organs including the brain. Inflammaging represents a highly significant risk factor for the development and progression of age-related conditions, including neurodegenerative diseases which are characterized by the progressive dysfunction and degeneration of neurons in the brain and peripheral nervous system. Curcumin is a widely studied polyphenol isolated from Curcuma longa with a variety of pharmacologic properties. It is well-known for its healing properties and has been extensively used in Asian medicine to treat a variety of illness conditions. The number of studies that suggest beneficial effects of curcumin on brain pathologies and age-related diseases is increasing. Curcumin is able to inhibit the formation of reactive-oxygen species and other pro-inflammatory mediators that are believed to play a pivotal role in many age-related diseases. Curcumin has been recently proposed as a potential useful remedy against neurodegenerative disorders and brain ageing. In light of this, our current review aims to discuss the potential positive effects of Curcumin on the possibility to control inflammaging emphasizing the possible modulation of inflammaging processes in neurodegenerative diseases.
Collapse
|
41
|
Repova K, Aziriova S, Krajcirovicova K, Simko F. Cardiovascular therapeutics: A new potential for anxiety treatment? Med Res Rev 2022; 42:1202-1245. [PMID: 34993995 PMCID: PMC9304130 DOI: 10.1002/med.21875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Besides the well‐recognized risk factors, novel conditions increasing cardiovascular morbidity and mortality are emerging. Undesirable emotions and behavior such as anxiety and depression, appear to participate in worsening cardiovascular pathologies. On the other hand, deteriorating conditions of the heart and vasculature result in disturbed mental and emotional health. The pathophysiological background of this bidirectional interplay could reside in an inappropriate activation of vegetative neurohormonal and other humoral systems in both cardiovascular and psychological disturbances. This results in circulus vitiosus potentiating mental and circulatory disorders. Thus, it appears to be of utmost importance to examine the alteration of emotions, cognition, and behavior in cardiovascular patients. In terms of this consideration, recognizing the potential of principal cardiovascular drugs to interact with the mental state in patients with heart or vasculature disturbances is unavoidable, to optimize their therapeutic benefit. In general, beta‐blockers, central sympatholytics, ACE inhibitors, ARBs, aldosterone receptor blockers, sacubitril/valsartan, and fibrates are considered to exert anxiolytic effect in animal experiments and clinical settings. Statins and some beta‐blockers appear to have an equivocal impact on mood and anxiety and ivabradine expressed neutral psychological impact. It seems reasonable to suppose that the knowledge of a patient's mood, cognition, and behavior, along with applying careful consideration of the choice of the particular cardiovascular drug and respecting its potential psychological benefit or harm might improve the individualized approach to the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
42
|
The Effects of Modified Curcumin Preparations on Glial Morphology in Aging and Neuroinflammation. Neurochem Res 2022; 47:813-824. [PMID: 34988899 DOI: 10.1007/s11064-021-03499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is characterized by reactive microglia and astrocytes (collectively called gliosis) in the central nervous system and is considered as one of the main pathological hallmarks in different neurodegenerative diseases such as Alzheimer's disease, age-related dementia, and multiple sclerosis. Upon activation, glia undergoes structural and morphological changes such as the microglial cells swell in size and astrocytes become bushy, which play both beneficial and detrimental roles. Hence, they are unable to perform the normal physiological role in brain immunity. Curcumin, a cytokine suppressive anti-inflammatory drug, has a high proven pre-clinical potency and efficacy to reverse chronic neuroinflammation by attenuating the activation and morphological changes that occur in the microglia and astrocytes. This review will highlight the recent findings on the tree structure changes of microglia and astrocytes in neuroinflammation and the effects of curcumin against the activation and morphology of glial cells.
Collapse
|
43
|
Sebastián-Serrano Á, Merchán-Rubira J, Di-Lauro C, Bianchi C, Soria-Tobar L, Narisawa S, Millán JL, Ávila J, Hernández F, Díaz-Hernández M. TNAP upregulation is a critical factor in Tauopathies and its blockade ameliorates neurotoxicity and increases life-expectancy. Neurobiol Dis 2022; 165:105632. [DOI: 10.1016/j.nbd.2022.105632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
|
44
|
NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Mol Psychiatry 2022; 27:4974-4983. [PMID: 34866134 PMCID: PMC9763107 DOI: 10.1038/s41380-021-01392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Encephalitis has an estimated prevalence of ≤0.01%. Even with extensive diagnostic work-up, an infectious etiology is identified or suspected in <50% of cases, suggesting a role for etiologically unclear, noninfectious processes. Mild encephalitis runs frequently unnoticed, despite slight neuroinflammation detectable postmortem in many neuropsychiatric illnesses. A widely unexplored field in humans, though clearly documented in rodents, is genetic brain inflammation, particularly that associated with myelin abnormalities, inducing primary white matter encephalitis. We hypothesized that "autoimmune encephalitides" may result from any brain inflammation concurring with the presence of brain antigen-directed autoantibodies, e.g., against N-methyl-D-aspartate-receptor NR1 (NMDAR1-AB), which are not causal of, but may considerably shape the encephalitis phenotype. We therefore immunized young female Cnp-/- mice lacking the structural myelin protein 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) with a "cocktail" of NMDAR1 peptides. Cnp-/- mice exhibit early low-grade inflammation of white matter tracts and blood-brain barrier disruption. Our novel mental-time-travel test disclosed that Cnp-/- mice are compromised in what-where-when orientation, but this episodic memory readout was not further deteriorated by NMDAR1-AB. In contrast, comparing wild-type and Cnp-/- mice without/with NMDAR1-AB regarding hippocampal learning/memory and motor balance/coordination revealed distinct stair patterns of behavioral pathology. To elucidate a potential contribution of oligodendroglial NMDAR downregulation to NMDAR1-AB effects, we generated conditional NR1 knockout mice. These mice displayed normal Morris water maze and mental-time-travel, but beam balance performance was similar to immunized Cnp-/-. Immunohistochemistry confirmed neuroinflammation/neurodegeneration in Cnp-/- mice, yet without add-on effect of NMDAR1-AB. To conclude, genetic brain inflammation may explain an encephalitic component underlying autoimmune conditions.
Collapse
|
45
|
Influences of dopaminergic system dysfunction on late-life depression. Mol Psychiatry 2022; 27:180-191. [PMID: 34404915 PMCID: PMC8850529 DOI: 10.1038/s41380-021-01265-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Deficits in cognition, reward processing, and motor function are clinical features relevant to both aging and depression. Individuals with late-life depression often show impairment across these domains, all of which are moderated by the functioning of dopaminergic circuits. As dopaminergic function declines with normal aging and increased inflammatory burden, the role of dopamine may be particularly salient for late-life depression. We review the literature examining the role of dopamine in the pathogenesis of depression, as well as how dopamine function changes with aging and is influenced by inflammation. Applying a Research Domain Criteria (RDoC) Initiative perspective, we then review work examining how dopaminergic signaling affects these domains, specifically focusing on Cognitive, Positive Valence, and Sensorimotor Systems. We propose a unified model incorporating the effects of aging and low-grade inflammation on dopaminergic functioning, with a resulting negative effect on cognition, reward processing, and motor function. Interplay between these systems may influence development of a depressive phenotype, with an initial deficit in one domain reinforcing decline in others. This model extends RDoC concepts into late-life depression while also providing opportunities for novel and personalized interventions.
Collapse
|
46
|
Blaylock RL, Faria M. New concepts in the development of schizophrenia, autism spectrum disorders, and degenerative brain diseases based on chronic inflammation: A working hypothesis from continued advances in neuroscience research. Surg Neurol Int 2021; 12:556. [PMID: 34877042 PMCID: PMC8645502 DOI: 10.25259/sni_1007_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
This paper was written prompted by a poignant film about adolescent girl with schizophrenia who babysits for a younger girl in an isolated cabin. Schizophrenia is an illness that both authors are fascinated with and that they continue to study and investigate. There is now compelling evidence that schizophrenia is a very complex syndrome that involves numerous neural pathways in the brain, far more than just dopaminergic and serotonergic systems. One of the more popular theories in recent literature is that it represents a hypo glutaminergic deficiency of certain pathways, including thalamic ones. After much review of research and study in this area, we have concluded that most such theories contain a number of shortcomings. Most are based on clinical responses to certain drugs, particularly antipsychotic drugs affecting the dopaminergic neurotransmitters; thus, assuming dopamine release was the central cause of the psychotic symptoms of schizophrenia. The theory was limited in that dopamine excess could only explain the positive symptoms of the disorder. Antipsychotic medications have minimal effectiveness for the negative and cognitive symptoms associated with schizophrenia. It has been estimated that 20–30% of patients show either a partial or no response to antipsychotic medications. In addition, the dopamine hypothesis does not explain the neuroanatomic findings in schizophrenia.
Collapse
Affiliation(s)
| | - Miguel Faria
- Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States
| |
Collapse
|
47
|
Tennakoon A, Katharesan V, Musgrave IF, Koblar SA, Faull RLM, Curtis MA, Johnson IP. Normal aging, motor neurone disease, and Alzheimer's disease are characterized by cortical changes in inflammatory cytokines. J Neurosci Res 2021; 100:653-669. [PMID: 34882833 DOI: 10.1002/jnr.24996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
The role of increased brain inflammation in the development of neurodegenerative diseases is unclear. Here, we have compared cytokine changes in normal aging, motor neurone disease (MND), and Alzheimer's disease (AD). After an initial analysis, six candidate cytokines, interleukin (IL)- 4, 5, 6, 10, macrophage inhibitory protein (MIP)-1α, and fibroblast growth factor (FGF)-2, showing greatest changes were assayed in postmortem frozen human superior frontal gyri (n = 12) of AD patients, aging and young adult controls along with the precentral gyrus (n = 12) of MND patients. Healthy aging was associated with decreased anti-inflammatory IL-10 and FGF-2 levels. AD prefrontal cortex was associated with increased levels of IL-4, IL-5, and FGF-2, with the largest increase seen for FGF-2. Notwithstanding differences in the specific frontal lobe gyrus sampled, MND patients' primary motor cortex (precentral gyrus) was associated with increased levels of IL-5, IL-6, IL-10, and FGF-2 compared to the aging prefrontal cortex (superior frontal gyrus). Immunocytochemistry showed that FGF-2 is expressed in neurons, astrocytes, and microglia in normal aging prefrontal cortex, AD prefrontal cortex, and MND motor cortex. We report that healthy aging and age-related neurodegenerative diseases have different cortical inflammatory signatures that are characterized by increased levels of anti-inflammatory cytokines and call into question the view that increased inflammation underlies the development of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Anuradha Tennakoon
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Viythia Katharesan
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Simon Andrea Koblar
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Maurice Anthony Curtis
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Ian Paul Johnson
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
48
|
Caetano-Silva ME, Rund LA, Vailati-Riboni M, Pacheco MTB, Johnson RW. Copper-Binding Peptides Attenuate Microglia Inflammation through Suppression of NF-kB Pathway. Mol Nutr Food Res 2021; 65:e2100153. [PMID: 34532985 PMCID: PMC8612997 DOI: 10.1002/mnfr.202100153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/12/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Activation of microglia, the resident immune cells of the central nervous system, has been related to the etiology and progression of neurodegenerative diseases; thus, finding novel approaches to suppress the neuroinflammatory process is of utmost relevance. METHODS AND RESULTS The anti-inflammatory activity of whey Cu-, Fe-, and Zn-binding peptides and their possible underlying mechanism of action were evaluated in microglia. Whey metal-binding peptides decreased nitric oxide production and tumor necrosis factor α (TNF-α) at mRNA and protein levels by stimulated BV-2 microglia in comparison to the control with no peptide treatment. The hydrophobicity, specific sequences, and possible synergistic effects seem to play a role. Cu-binding peptides (Cu-bp) presented anti-inflammatory activity both in BV-2 and primary microglia cultures. These peptides exert their action by suppressing nuclear factor kappa B (NF-kB) pathway since nuclear translocation of NF-kB p65 is decreased by roughly 30% upon Cu-bp treatment. Specific sequences identified in Cu-bp showed high affinity to bind NF-kB p65 by molecular docking (up to -8.8 kcal mol-1 ), corroborating the immunofluorescence studies. CONCLUSION Cu-bp represent food-derived peptides that may be useful for neuroprotective purposes. Chelation of copper excess in the CNS and the bioavailability of such peptides, as well as their behavior in in vivo models, deserve further research for future applications.
Collapse
Affiliation(s)
- Maria Elisa Caetano-Silva
- Center of Food Science and Quality (CCQA), Institute of Food Technology (Ital), Campinas, SP 13070-178, Brazil
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
49
|
Guler EM, Kurtulmus A, Gul AZ, Kocyigit A, Kirpinar I. Oxidative stress and schizophrenia: A comparative cross-sectional study of multiple oxidative markers in patients and their first-degree relatives. Int J Clin Pract 2021; 75:e14711. [PMID: 34370389 DOI: 10.1111/ijcp.14711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Schizophrenia (SCZ) is a chronic, disruptive mental disorder with unknown pathogenic mechanisms. Several studies evidenced that oxidative stress (OS) may be one of the causal factors to play a role in the pathophysiology of the disease. Our study aims to contribute to the SCZ research by investigating a possible relationship between the severity of illness (scored with "The Positive and Negative Syndrome Scale [PANSS]") and OS biomarkers in patients. We additionally assess the "first-degree-relatives (FDRs)" oxidative status with multiple parameters to test the idea of oxidative imbalance leads to disease progression as a genetical susceptibility factor. METHODS This study included: 50 adult patients with SCZ, 50 unaffected FDRs, and 50 controls. OS biomarkers included myeloperoxidase (MPO), total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), native thiol (NT). Photometric methods were used to measure the parameters in the peripheral blood samples of participants. Disulphide (DS) and oxidative stress index (OSI) parameters were calculated. RESULTS TOS, DS, OSI levels were significantly higher, and TAS, TT, NT levels were significantly lower in both SCZ and FDRs than controls. In the SCZ group, MPO activity was significantly higher compared with other groups. Results in this study did not provide a strong correlation between the PANSS and selected biomarkers. There was a slightly negative correlation between TT and PANSS in the SCZ group (P = .041, r = -.297). CONCLUSION OS biomarkers increased significantly in the peripheral blood of SCZ patients compared with other groups indicates the presence of OS in the aetiology of the disease. Mid-levels of oxidative markers found in FDRs imply that unaffected first-degree relatives have an increased risk for turning up to the clinical presentation stage.
Collapse
Affiliation(s)
- Eray Metin Guler
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
- Department of Medical Biochemistry, Hamidiye School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey
- Department of Medical Biochemistry, Haydarpasa Numune Health Application and Research Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Ayse Kurtulmus
- Department of Psychiatry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
- Department of Psychiatry, Istanbul Medeniyet University Goztepe Education Research Hospital, Istanbul, Turkey
| | - Ayse Zehra Gul
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ismet Kirpinar
- Department of Psychiatry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
50
|
Yang S, Zhang S, Tang W, Fang S, Zhang H, Zheng J, Liu X, Zhang Y, Zhao L, Huang L, Li B. Enriched Environment Prevents Surgery-Induced Persistent Neural Inhibition and Cognitive Dysfunction. Front Aging Neurosci 2021; 13:744719. [PMID: 34658844 PMCID: PMC8517535 DOI: 10.3389/fnagi.2021.744719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) encompass short-term delirium and long-term cognitive dysfunction. Aging increases the susceptibility to PND, yet the neural mechanism is not known. In this study, we monitored the dynamic changes of neuronal activity in the prelimbic cortex before and after surgery. We found that anesthesia combined with surgery, but not anesthesia alone, induced a prolonged decrease in neuronal activity during the post-operation period in the aged mice, but not in the adult mice. The prolonged decrease in neuronal activity was accompanied by surgery-induced microglial activation and proinflammatory cytokines expression. Importantly, we found that the enriched environment (EE) completely prevented both the prolonged neural inhibition and neuroinflammation, and improved cognitive function in the aged mice. These results indicate that the prolonged neural inhibition correlated to PND and that EE before the surgery could effectively alleviate the surgery- induced cognitive dysfunction.
Collapse
Affiliation(s)
- Shana Yang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenting Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunchang Fang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyang Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieyan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Liu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhang
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Zhao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lianyan Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|