1
|
Sadekar N, Behrsing HP, Hansen T, Patel V, Paulo H, Rae A, Ritter D, Schwarz K, Api AM. A Proof-of-Concept for Safety Evaluation of Inhalation Exposure to Known Respiratory Irritants Using In Vitro and In Silico Methods. TOXICS 2025; 13:35. [PMID: 39853033 PMCID: PMC11769436 DOI: 10.3390/toxics13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025]
Abstract
There is increased interest in developing non-animal test systems for inhalation exposure safety assessments. However, defined methodologies are absent for predicting local respiratory effects from inhalation exposure to irritants. The current study introduces a concept for applying in vitro and in silico methods for inhalation exposure safety assessment. Three in vitro systems, representing the upper (MucilAir™-nasal epithelial tissue) and lower (A549 cells and human precision-cut lung slices) human respiratory regions, were exposed to six respiratory irritants. These irritant exposures were conducted as liquid droplets, aerosol, or vapors, and samples were collected over 24 h. Cytotoxicity, cytokine release, epithelial resistance, oxidative stress, and mitochondrial membrane potential were measured. To determine the human relevance of in vitro exposures, airway surface depositions were predicted by simulating airborne concentrations equivalent to the Cramer class III inhalation threshold of toxicological concern limit of 0.47 mg/person/day using an in silico model. A > 100-fold margin of exposure was calculated comparing lowest concentrations showing in vitro effects to in silico simulated values. While further studies are needed, this manuscript presents a basic requirement for employing non-animal methods to inform inhalation exposure safety assessments by combining in vitro and in silico assays.
Collapse
Affiliation(s)
- Nikaeta Sadekar
- Research Institute for Fragrance Materials, Inc., Mahwah, NJ 07420, USA;
| | - Holger Peter Behrsing
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA; (H.P.B.); (V.P.)
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (T.H.); (D.R.); (K.S.)
| | - Vivek Patel
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD 20878, USA; (H.P.B.); (V.P.)
| | - Hazel Paulo
- Charles River Laboratories Edinburgh Ltd., Elphinstone Research Centre, Tranent EH33 2NE, UK; (H.P.)
| | - Alex Rae
- Charles River Laboratories Edinburgh Ltd., Elphinstone Research Centre, Tranent EH33 2NE, UK; (H.P.)
| | - Detlef Ritter
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (T.H.); (D.R.); (K.S.)
| | - Katharina Schwarz
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (T.H.); (D.R.); (K.S.)
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., Mahwah, NJ 07420, USA;
| |
Collapse
|
2
|
Shen X, He L, Cai W. Role of Lipopolysaccharides in the Inflammation and Pyroptosis of Alveolar Epithelial Cells in Acute Lung Injury and Acute Respiratory Distress Syndrome. J Inflamm Res 2024; 17:5855-5869. [PMID: 39228678 PMCID: PMC11370780 DOI: 10.2147/jir.s479051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a spectrum of common critical respiratory conditions characterized by damage and death of alveolar epithelial cells (AECs). Pyroptosis is a form of programmed cell death with inflammatory characteristics, and activation of pyroptosis markers has been observed in AECs of patients with ALI/ARDS. Lipopolysaccharides (LPS) possess strong pro-inflammatory effects and are a crucial pathological factor leading to ALI in patients and animals. In LPS-induced ALI models, AECs undergo pyroptosis. However, physiologically and pathologically relevant concentrations of LPS lead to minor effects on AEC cell viability and minimal induction of cytokine release in vitro and do not induce classical pyroptosis. Nevertheless, LPS can enter the cytoplasm directly and induce non-classical pyroptosis in AECs when assisted by extracellular vesicles from bacteria, HMGB1, and pathogens. In this review, we have explored the effects of LPS on AECs concerning inflammation, cell viability, and pyroptosis, analyzing key factors that influence LPS actions. Notably, we highlight the intricate response of AECs to LPS within the framework of ALI and ARDS, emphasizing the variable induction of pyroptosis. Despite the minimal effects of LPS on AEC viability and cytokine release in vitro, LPS can induce non-classical pyroptosis under specific conditions, presenting potential pathways for therapeutic intervention. Collectively, understanding these mechanisms is crucial for the development of targeted treatments that mitigate the inflammatory responses in ALI/ARDS, thereby enhancing patient outcomes in these severe respiratory conditions.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Linglin He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wanru Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
3
|
Shen X, Ruan Y, Zhao Y, Ye Q, Huang W, He L, He Q, Cai W. Ophiopogonin D alleviates acute lung injury by regulating inflammation via the STAT3/A20/ASK1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155482. [PMID: 38824823 DOI: 10.1016/j.phymed.2024.155482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is characterized by acute pulmonary inflammatory infiltration. Alveolar epithelial cells (AECs) release numerous pro-inflammatory cytokines, which result in the pathological changes seen in ALI. Ophiopogonin D (OD), extracted from the roots of Ophiopogon japonicus (Thunb.) Ker Gawl. (Liliaceae), reduces inflammation; however, the efficacy of OD in ALI has not been reported and the underlying molecular mechanisms remain unclear. PURPOSE This study investigated the anti-inflammatory effects of OD, as well as the underlying mechanisms, in AECs and a mouse ALI model. METHODS Lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were used to stimulate macrophages and A549 cells, and a mouse ALI model was established by intratracheal LPS administration. The anti-inflammatory effects and mechanisms of OD in the TNF-α-induced in vitro inflammation model was evaluated using real-time quantitative polymerase chain reaction qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting, nuclear and cytoplasmic protein extraction, and immunofluorescence. The in vivo anti-inflammatory activity of OD was evaluated using hematoxylin and eosin staining, qPCR, ELISA, and western blotting. RESULTS The bronchoalveolar lavage fluid and lung tissue of LPS-induced ALI mice exhibited increased TNF-α expression. TNF-α induced a significantly greater pro-inflammatory effect in AECs than LPS. OD reduced inflammation and mitogen-activated protein kinase (MAPK) and transcription factor p65 phosphorylation in vivo and in vitro and promoted signal transducer and activator of transcription 3 (STAT3) phosphorylation and A20 expression, thereby inducing apoptosis signal-regulating kinase 1 (ASK1) proteasomal degradation. CONCLUSION OD exerts an anti-inflammatory effect by promoting STAT3-dependent A20 expression and ASK1 degradation. OD may therefore have therapeutic value in treating ALI and other TNF-α-related inflammatory diseases.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiqiu Ruan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuhui Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiang Ye
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wenhan Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linglin He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qianwen He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wanru Cai
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China.
| |
Collapse
|
4
|
Zhang S, Yang R, Ouyang Y, Shen Y, Hu L, Xu C. Cancer stem cells: a target for overcoming therapeutic resistance and relapse. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0333. [PMID: 38164743 PMCID: PMC10845928 DOI: 10.20892/j.issn.2095-3941.2023.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells in cancers that are thought to initiate tumorous transformation and promote metastasis, recurrence, and resistance to treatment. Growing evidence has revealed the existence of CSCs in various types of cancers and suggested that CSCs differentiate into diverse lineage cells that contribute to tumor progression. We may be able to overcome the limitations of cancer treatment with a comprehensive understanding of the biological features and mechanisms underlying therapeutic resistance in CSCs. This review provides an overview of the properties, biomarkers, and mechanisms of resistance shown by CSCs. Recent findings on metabolic features, especially fatty acid metabolism and ferroptosis in CSCs, are highlighted, along with promising targeting strategies. Targeting CSCs is a potential treatment plan to conquer cancer and prevent resistance and relapse in cancer treatment.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Rui Yang
- Department of Ultrasound in Medicine, Chengdu Wenjiang District People’s Hospital, Chengdu 611130, China
| | - Yujie Ouyang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Shen
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China
| | - Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
5
|
Shih LJ, Yang CC, Liao MT, Lu KC, Hu WC, Lin CP. An important call: Suggestion of using IL-10 as therapeutic agent for COVID-19 with ARDS and other complications. Virulence 2023; 14:2190650. [PMID: 36914565 PMCID: PMC10026935 DOI: 10.1080/21505594.2023.2190650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has a detrimental impact on public health. COVID-19 usually manifests as pneumonia, which can progress into acute respiratory distress syndrome (ARDS) related to uncontrolled TH17 immune reaction. Currently, there is no effective therapeutic agent to manage COVID-19 with complications. The currently available anti-viral drug remdesivir has an effectiveness of 30% in SARS-CoV-2-induced severe complications. Thus, there is a need to identify effective agents to treat COVID-19 and the associated acute lung injury and other complications. The host immunological pathway against this virus typically involves the THαβ immune response. THαβ immunity is triggered by type 1 interferon and interleukin-27 (IL-27), and the main effector cells of the THαβ immune response are IL10-CD4 T cells, CD8 T cells, NK cells, and IgG1-producing B cells. In particular, IL-10 exerts a potent immunomodulatory or anti-inflammatory effect and is an anti-fibrotic agent for pulmonary fibrosis. Concurrently, IL-10 can ameliorate acute lung injury or ARDS, especially those caused by viruses. Owing to its anti-viral activity and anti-pro-inflammatory effects, in this review, IL-10 is suggested as a possible treatment agent for COVID-19.
Collapse
Affiliation(s)
- Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan
| | - Chun-Chun Yang
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- National Defense Medical Center, Department of Pediatrics, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Pei Lin
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- h Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Bredeck G, Dobner J, Stahlmecke B, Fomba KW, Herrmann H, Rossi A, Schins RPF. Saharan dust induces NLRP3-dependent inflammatory cytokines in an alveolar air-liquid interface co-culture model. Part Fibre Toxicol 2023; 20:39. [PMID: 37864207 PMCID: PMC10588053 DOI: 10.1186/s12989-023-00550-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epidemiological studies have related desert dust events to increased respiratory morbidity and mortality. Although the Sahara is the largest source of desert dust, Saharan dust (SD) has been barely examined in toxicological studies. Here, we aimed to assess the NLRP3 inflammasome-caspase-1-pathway-dependent pro-inflammatory potency of SD in comparison to crystalline silica (DQ12 quartz) in an advanced air-liquid interface (ALI) co-culture model. Therefore, we exposed ALI co-cultures of alveolar epithelial A549 cells and macrophage-like differentiated THP-1 cells to 10, 21, and 31 µg/cm² SD and DQ12 for 24 h using a Vitrocell Cloud system. Additionally, we exposed ALI co-cultures containing caspase (CASP)1-/- and NLRP3-/- THP-1 cells to SD. RESULTS Characterization of nebulized DQ12 and SD revealed that over 90% of agglomerates of both dusts were smaller than 2.5 μm. Characterization of the ALI co-culture model revealed that it produced surfactant protein C and that THP-1 cells remained viable at the ALI. Moreover, wild type, CASP1-/-, and NLRP3-/- THP-1 cells had comparable levels of the surface receptors cluster of differentiation 14 (CD14), toll-like receptor 2 (TLR2), and TLR4. Exposing ALI co-cultures to non-cytotoxic doses of DQ12 and SD did not induce oxidative stress marker gene expression. SD but not DQ12 upregulated gene expressions of interleukin 1 Beta (IL1B), IL6, and IL8 as well as releases of IL-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα). Exposing wild type, CASP1-/-, and NLRP3-/- co-cultures to SD induced IL1B gene expression in all co-cultures whereas IL-1β release was only induced in wild type co-cultures. In CASP1-/- and NLRP3-/- co-cultures, IL-6, IL-8, and TNFα releases were also reduced. CONCLUSIONS Since surfactants can decrease the toxicity of poorly soluble particles, the higher potency of SD than DQ12 in this surfactant-producing ALI model emphasizes the importance of readily soluble SD components such as microbial compounds. The higher potency of SD than DQ12 also renders SD a potential alternative particulate positive control for studies addressing acute inflammatory effects. The high pro-inflammatory potency depending on NLRP3, CASP-1, and IL-1β suggests that SD causes acute lung injury which may explain desert dust event-related increased respiratory morbidity and mortality.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany.
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Burkhard Stahlmecke
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), 47229, Duisburg, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Mandal A, Biswas N, Alam MN. Implications of xenobiotic-response element(s) and aryl hydrocarbon receptor in health and diseases. Hum Cell 2023; 36:1638-1655. [PMID: 37329424 DOI: 10.1007/s13577-023-00931-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
The effect of air pollution on public health is severely detrimental. In humans; the physiological response against pollutants is mainly elicited via the activation of aryl hydrocarbon receptor (AhR). It acts as a prime sensor of xenobiotic chemicals, also functioning as a transcription factor regulating a variety of gene expressions. Along with AhR, another pivotal element of the pollution stress pathway is Xenobiotic Response Elements (XREs). XRE, as studied are some conserved sequences in the DNA, responsible for the physiological response against pollutants. XRE is present at the upstream of the inducible target genes of AhR and it regulates the function of the AhR. XRE(s) are highly conserved in species as it has only eight specific sequences found so far in humans, mice, and rats. Inhalation of toxicants like dioxins, gaseous industrial effluents, and smoke from burning fuel and tobacco leads to predominant damage to the lungs. However, scientists are exploring the involvement of AhR in chronic diseases for example chronic obstructive pulmonary disease (COPD) and also other lethal diseases like lung cancer. In this review, we summarise what is known at this time about the roles played by the XRE and AhR in our molecular systems that have a defined control in the normal maintenance of homeostasis as well as dysfunctions.
Collapse
Affiliation(s)
- Avijit Mandal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
8
|
Pandey S, Singh R, Habib N, Singh V, Kushwaha R, Tripathi AK, Mahdi AA. Expression of CXCL8 (IL-8) in the Pathogenesis of T-Cell Acute Lymphoblastic Leukemia Patients. Cureus 2023; 15:e45929. [PMID: 37885528 PMCID: PMC10599407 DOI: 10.7759/cureus.45929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Background Inflammation plays a very important role in the pathogenesis of a wide range of diseases, such as atherosclerosis myocardial infarction, sepsis, rheumatoid arthritis, and cancer. This study aimed to investigate the association of IL-8 in T-cell acute lymphoblastic leukemia (T-ALL) patients. Methodology IL-8 levels were estimated in 52 individuals. Of the study population, 26 were T-ALL patients (all phases of leukemia were included in the study) and 26 were disease-free healthy volunteers. In this study, we employed flow cytometry, enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction test, and western blot analysis. Results IL-8 was significantly higher in all T-ALL patients than in healthy volunteers. IL-8 levels showed a significant positive correlation in T-ALL patients at the genomic and proteomic levels. Conclusions Higher serum IL-8 levels were associated with the advanced disease stage of the clinicopathological parameters. Our results indicate that monitoring IL-8 has a role in modulating disease sensing in T-ALL and may represent a target for innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sandeep Pandey
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Ranjana Singh
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Nimra Habib
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Vivek Singh
- Biochemistry, King George's Medical University, Lucknow, IND
| | | | - Anil K Tripathi
- Clinical Hematology, King George's Medical University, Lucknow, IND
| | - Abbas A Mahdi
- Biochemistry, King George's Medical University, Lucknow, IND
| |
Collapse
|
9
|
Ohta K, Saka N, Fukasawa M, Nishio M. Hazara orthonairovirus nucleoprotein facilitates viral cell-to-cell spread by modulating tight junction protein, claudin-1. Front Microbiol 2023; 14:1192956. [PMID: 37287449 PMCID: PMC10243194 DOI: 10.3389/fmicb.2023.1192956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Background Tight junctions act as a barrier that prevents invasion of pathogens through epithelial cells. This study aims to elucidate the correlation between tight junctions and nairoviruses using Hazara orthonairovirus (HAZV) as a surrogate model for Crimean-Congo hemorrhagic fever virus. Methods mRNA, total protein, and cell surface protein levels of tight junction proteins were examined by quantitative real-time reverse transcription polymerase chain reaction, immunoblot and flow cytometry, respectively. HAZV growth was measured by plaque assay. Immunofluorescence assay was used to examine viral cell-to-cell spread. The interaction between HAZV nucleoprotein and claudin-1 was analyzed by immunoprecipitation. Results HAZV infection induced mRNA of several tight junction proteins, especially claudin-1. HAZV infection also induced cell surface expression of claudin-1 protein. Claudin-1 overexpression inhibited the growth of HAZV by blocking its cell-to-cell spread. In contrast, HAZV nucleoprotein completely inhibited HAZV-induced cell surface expression of claudin-1, and this inhibition required interaction between HAZV nucleoprotein and claudin-1. Conclusion HAZV nucleoprotein was shown to bind to claudin-1 to negatively regulate its cell surface expression, and so can promote cell-to-cell spread of HAZV. This is the first presentation of a possible mechanism behind how nairoviruses counteract tight junction barrier function.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naoki Saka
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
10
|
Milillo C, Falcone L, Di Carlo P, Aruffo E, Del Boccio P, Cufaro MC, Patruno A, Pesce M, Ballerini P. Ozone effect on the inflammatory and proteomic profile of human macrophages and airway epithelial cells. Respir Physiol Neurobiol 2023; 307:103979. [PMID: 36243292 DOI: 10.1016/j.resp.2022.103979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Ozone (O3) is one of the most harmful urban pollutants, but its biological mechanisms have not been fully elucidated yet. Human bronchial epithelial cells (HBEpC) and human macrophage cells (differentiated human monocytic cell line) were exposed to O3 at the concentration of 240 μg/m3 (120 ppb), corresponding to the European Union alert threshold. Cell viability, reactive oxygen species (ROS) production, and pro-inflammatory cytokines release (IL-8 and TNF-α) were evaluated. Results indicated that O3 exposure increases ROS production in both cell types and enhances cytokines release in macrophages. O3 stimulated IL-8 and TNF-α in HBEpC when the cells were pretreated with Lipopolysaccharide, used to mimic a pre-existing inflammatory condition. Proteomics analysis revealed that, in HBEpC, O3 caused the up-regulation of aldo-keto reductase family 1 member B10, a recognized critical protein in lung carcinogenesis. In conclusion, our results show that 120 ppb O3 can lead to potential damage to human health suggesting the need for a revision of the actual alert levels.
Collapse
Affiliation(s)
- C Milillo
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - L Falcone
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy
| | - P Di Carlo
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - E Aruffo
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - P Del Boccio
- Department of Pharmacy, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - M C Cufaro
- Department of Pharmacy, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - A Patruno
- Department of Medicine and Aging Sciences, University G. d'Annunzio, 66100 Chieti, Italy
| | - M Pesce
- Department of Medicine and Aging Sciences, University G. d'Annunzio, 66100 Chieti, Italy.
| | - P Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
11
|
Sengupta A, Roldan N, Kiener M, Froment L, Raggi G, Imler T, de Maddalena L, Rapet A, May T, Carius P, Schneider-Daum N, Lehr CM, Kruithof-de Julio M, Geiser T, Marti TM, Stucki JD, Hobi N, Guenat OT. A New Immortalized Human Alveolar Epithelial Cell Model to Study Lung Injury and Toxicity on a Breathing Lung-On-Chip System. FRONTIERS IN TOXICOLOGY 2022; 4:840606. [PMID: 35832493 PMCID: PMC9272139 DOI: 10.3389/ftox.2022.840606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
The evaluation of inhalation toxicity, drug safety and efficacy assessment, as well as the investigation of complex disease pathomechanisms, are increasingly relying on in vitro lung models. This is due to the progressive shift towards human-based systems for more predictive and translational research. While several cellular models are currently available for the upper airways, modelling the distal alveolar region poses several constraints that make the standardization of reliable alveolar in vitro models relatively difficult. In this work, we present a new and reproducible alveolar in vitro model, that combines a human derived immortalized alveolar epithelial cell line (AXiAEC) and organ-on-chip technology mimicking the lung alveolar biophysical environment (AXlung-on-chip). The latter mimics key features of the in vivo alveolar milieu: breathing-like 3D cyclic stretch (10% linear strain, 0.2 Hz frequency) and an ultrathin, porous and elastic membrane. AXiAECs cultured on-chip were characterized for their alveolar epithelial cell markers by gene and protein expression. Cell barrier properties were examined by TER (Transbarrier Electrical Resistance) measurement and tight junction formation. To establish a physiological model for the distal lung, AXiAECs were cultured for long-term at air-liquid interface (ALI) on-chip. To this end, different stages of alveolar damage including inflammation (via exposure to bacterial lipopolysaccharide) and the response to a profibrotic mediator (via exposure to Transforming growth factor β1) were analyzed. In addition, the expression of relevant host cell factors involved in SARS-CoV-2 infection was investigated to evaluate its potential application for COVID-19 studies. This study shows that AXiAECs cultured on the AXlung-on-chip exhibit an enhanced in vivo-like alveolar character which is reflected into: 1) Alveolar type 1 (AT1) and 2 (AT2) cell specific phenotypes, 2) tight barrier formation (with TER above 1,000 Ω cm2) and 3) reproducible long-term preservation of alveolar characteristics in nearly physiological conditions (co-culture, breathing, ALI). To the best of our knowledge, this is the first time that a primary derived alveolar epithelial cell line on-chip representing both AT1 and AT2 characteristics is reported. This distal lung model thereby represents a valuable in vitro tool to study inhalation toxicity, test safety and efficacy of drug compounds and characterization of xenobiotics.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Nuria Roldan
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mirjam Kiener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Laurène Froment
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Giulia Raggi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Theo Imler
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | | | - Aude Rapet
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | | | - Patrick Carius
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Janick D Stucki
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Nina Hobi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
12
|
Herminghaus A, Kozlov AV, Szabó A, Hantos Z, Gylstorff S, Kuebart A, Aghapour M, Wissuwa B, Walles T, Walles H, Coldewey SM, Relja B. A Barrier to Defend - Models of Pulmonary Barrier to Study Acute Inflammatory Diseases. Front Immunol 2022; 13:895100. [PMID: 35874776 PMCID: PMC9300899 DOI: 10.3389/fimmu.2022.895100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or pathogen-associated molecular pattern and inflammatory agents e.g. damage-associated molecular pattern cause significant disturbances in the pulmonary barrier. The physiological and biological functions, as well as the architecture and homeostatic maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and cytokines, and is further covered with a mucus layer containing antimicrobial peptides, which are responsible for the pathogen clearance. Submucosal antigen-presenting cells and neutrophilic granulocytes are also involved in the defense mechanisms and counterregulation of pulmonary infections, and thus may directly affect the pulmonary barrier function. The detailed understanding of the pulmonary barrier including its architecture and functions is crucial for the diagnosis, prognosis, and therapeutic treatment strategies of pulmonary diseases. Thus, considering multiple side effects and limited efficacy of current therapeutic treatment strategies in patients with inflammatory diseases make experimental in vitro and in vivo models necessary to improving clinical therapy options. This review describes existing models for studyying the pulmonary barrier function under acute inflammatory conditions, which are meant to improve the translational approaches for outcome predictions, patient monitoring, and treatment decision-making.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Andrey V. Kozlov
- L Boltzmann Institute for Traumatology in Cooperation with AUVA and Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Human Pathology , IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Zoltán Hantos
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Severin Gylstorff
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, University of Duesseldorf, Duesseldorf, Germany
| | - Mahyar Aghapour
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Bianka Wissuwa
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Thorsten Walles
- Department of Thoracic Surgery, Magdeburg University Medicine, Magdeburg, Germany
| | - Heike Walles
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Centre, Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- *Correspondence: Borna Relja,
| |
Collapse
|
13
|
Albano GD, Montalbano AM, Gagliardo R, Anzalone G, Profita M. Impact of Air Pollution in Airway Diseases: Role of the Epithelial Cells (Cell Models and Biomarkers). Int J Mol Sci 2022; 23:2799. [PMID: 35269941 PMCID: PMC8911203 DOI: 10.3390/ijms23052799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Biomedical research is multidisciplinary and often uses integrated approaches performing different experimental models with complementary functions. This approach is important to understand the pathogenetic mechanisms concerning the effects of environmental pollution on human health. The biological activity of the substances is investigated at least to three levels using molecular, cellular, and human tissue models. Each of these is able to give specific answers to experimental problems. A scientific approach, using biological methods (wet lab), cell cultures (cell lines or primary), isolated organs (three-dimensional cell cultures of primary epithelial cells), and animal organisms, including the human body, aimed to understand the effects of air pollution on the onset of diseases of the respiratory system. Biological methods are divided into three complementary models: in vitro, ex vivo, and in vivo. In vitro experiments do not require the use of whole organisms (in vivo study), while ex vivo experiments use isolated organs or parts of organs. The concept of complementarity and the informatic support are useful tools to organize, analyze, and interpret experimental data, with the aim of discussing scientific notions with objectivity and rationality in biology and medicine. In this scenario, the integrated and complementary use of different experimental models is important to obtain useful and global information that allows us to identify the effect of inhaled pollutants on the incidence of respiratory diseases in the exposed population. In this review, we focused our attention on the impact of air pollution in airway diseases with a rapid and descriptive analysis on the role of epithelium and on the experimental cell models useful to study the effect of toxicants on epithelial cells.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Angela Marina Montalbano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Rosalia Gagliardo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Giulia Anzalone
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| | - Mirella Profita
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (G.D.A.); (A.M.M.); (R.G.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90100 Palermo, Italy;
| |
Collapse
|
14
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
15
|
Duan W, Cen Y, Lin C, Ouyang H, Du K, Kumar A, Wang B, Avolio J, Grasemann H, Moraes TJ. Inflammatory epithelial cytokines after in vitro respiratory syncytial viral infection are associated with reduced lung function. ERJ Open Res 2021; 7:00365-2021. [PMID: 34527729 PMCID: PMC8435810 DOI: 10.1183/23120541.00365-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections in early life predispose children with cystic fibrosis (CF) to more severe lung function decline in later life. The mechanisms explaining the associations between RSV and progression of CF lung disease are not clear. In this study, a human bronchial epithelial cell line and primary human nasal epithelial cells (PNECs) from individuals with CF and healthy control donors were infected with RSV. Real-time PCR, plaque assay, cytokine detection, immunofluorescence and Western blot analyses were performed. RSV is replicated to a higher degree in CF epithelial cells as compared to control cells; however, no defects in innate immune pathways were identified in CF cells. Rather, primary p.Phe508del cystic fibrosis transmembrane conductance regulator PNECs produced more cytokines after RSV infection than control cells. Moreover, interleukin-8 and tumour necrosis factor-α production post RSV negatively correlated with lung function (% predicted forced expiratory volume in 1 s) in the individuals who donated the cells. These data suggest that CF epithelium has a dysfunctional response to RSV allowing for enhanced viral replication and an exaggerated inflammatory response that ultimately may predispose to greater airway inflammation and reduced lung function. This work demonstrates an association between epithelial inflammatory cytokines after in vitro viral infection and lung function in cystic fibrosis, and reinforces the importance of studying innate immune epithelial cell function in cystic fibrosishttps://bit.ly/3gDNwwo
Collapse
Affiliation(s)
- Wenming Duan
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Yuchen Cen
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Cindy Lin
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Kai Du
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Anushree Kumar
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Borui Wang
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Hartmut Grasemann
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Division of Respiratory Medicine, Dept of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Respiratory Medicine, Dept of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
16
|
Misaki K, Takano H, Kanazawa H, Inoue KI. Biological Response-Enhancing Activity with Antigens in A549 Cells Exposed to Representative Polycyclic Aromatic Hydrocarbons. ACS OMEGA 2021; 6:22224-22232. [PMID: 34497913 PMCID: PMC8412928 DOI: 10.1021/acsomega.1c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The question of what kinds of airborne particles, including diesel exhaust particles and their adherent chemical constituents, exacerbate the activity of allergic and inflammatory respiratory diseases has not been elucidated in detail. Therefore, chemicals that have amplifying actions on Dermatophagoides farinae (Df) body extract-induced IL-8, the inflammatory cytokines of the innate immune system, were comprehensively examined using commonly used human alveolar epithelial cells, A549, as simple screening for 17 polycyclic aromatic hydrocarbons (PAHs), which are representative organic constituents in atmospheric samples. The significant amplifying actions of two PAHs, dibenzo[a,l]pyrene (DB[a,l]P) at 50 nM and dibenzo[a,i]pyrene (DB[a,i]P) at 2 μM for 48 h, for IL-8 protein release induced by mite antigens in epithelial cells were observed for the first time. In contrast, the enhancement of IL-8 was not observed in protein levels for these PAHs without the antigens. Meanwhile, the significant synergistic amplifying effect of DB[a,l]P at 50 nM on proinflammatory actions was measured in gene expression (i.e., IL-8, IL-6, ICAM-1, and TNF-α) levels in the experimental setting; for the results, the induction of TNF-α may have been the essential factor that enhanced the amplifying activity of DB[a,l]P for IL-8 gene expression and protein release. Examining the exacerbating effect on allergic pathophysiological states for DB[a,l]P is planned for further study.
Collapse
Affiliation(s)
- Kentaro Misaki
- School
of Nursing, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hirohisa Takano
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- Department
of Urban Management, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hiroaki Kanazawa
- School
of Nursing, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ken-ichiro Inoue
- School
of Nursing, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
17
|
Ferreira LF, Garcia Neto PG, Titon SCM, Titon B, Muxel SM, Gomes FR, Assis VR. Lipopolysaccharide Regulates Pro- and Anti-Inflammatory Cytokines, Corticosterone, and Melatonin in Toads. Integr Org Biol 2021; 3:obab025. [PMID: 34589667 PMCID: PMC8475549 DOI: 10.1093/iob/obab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 01/29/2023] Open
Abstract
Glucocorticoids and melatonin (MEL) show integrated and complex immunomodulatory effects, mostly described for endotherms, yet underexplored in amphibians. In this context, the RT-qPCR of molecules mediating inflammatory processes in amphibians is a valuable tool to explore the relationships among molecular biology, endocrine mediators, and immune response in these animals. In this study, toads (Rhinella diptycha) received an intraperitoneal saline injection or lipopolysaccharide (LPS; 2 mg/kg). Six hours post-injection, we analyzed plasma corticosterone (CORT) and MEL levels and pro- and anti-inflammatory molecules (IL-1β, IL-6, IL-10, IFN-γ, and C1s). We found increased CORT and decreased MEL levels in response to LPS. Also, IL-1β, IL-6, and IL-10 were upregulated in LPS-injected toads compared with saline-injected toads. Overall, our results demonstrate an LPS-induced inflammatory response with endocrine and immune modulation in R. diptycha toads, exhibiting expected patterns for an inflammatory stimulus within this time frame (6 h post-injection). Toads were responsive to LPS by secreting different cytokines, such as proinflammatory cytokines IL-1β and IL-6, related to immune cell attraction to inflammatory sites and the anti-inflammatory cytokine IL-10, which limits the rate of leukocyte infiltration, inflammation, and downregulates the expression of proinflammatory cytokines. Increased circulating CORT levels are probably associated with the activation of the hypothalamus-pituitary-interrenal axis by the LPS and the endocrine actions of IL-6. Furthermore, decreased circulating MEL levels are likely due to inhibited MEL secretion by the pineal gland by inflammatory stimuli, indicating the activation/existence of the immune-pineal axis in amphibians.
Collapse
Affiliation(s)
- L F Ferreira
- Faculdade de Filosofia, Ciências e Letras do Centro Universitário Fundação Santo André, Avenida Príncipe de Gales, 821, Santo André, SP 09060-650, Brasil
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - P G Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - S C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - B Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - S M Muxel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - F R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - V R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| |
Collapse
|
18
|
Bennet TJ, Randhawa A, Hua J, Cheung KC. Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells 2021; 10:1602. [PMID: 34206722 PMCID: PMC8304815 DOI: 10.3390/cells10071602] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.
Collapse
Affiliation(s)
- Tanya J. Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Avineet Randhawa
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jessica Hua
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
19
|
Aitken ML, Somayaji R, Hinds TR, Pier M, Droguett K, Rios M, Skerrett SJ, Villalon M. Glycated Albumin Triggers an Inflammatory Response in the Human Airway Epithelium and Causes an Increase in Ciliary Beat Frequency. Front Physiol 2021; 12:653177. [PMID: 33967824 PMCID: PMC8102681 DOI: 10.3389/fphys.2021.653177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/17/2021] [Indexed: 01/30/2023] Open
Abstract
The role of inflammation in airway epithelial cells and its regulation are important in several respiratory diseases. When disease is present, the barrier between the pulmonary circulation and the airway epithelium is damaged, allowing serum proteins to enter the airways. We identified that human glycated albumin (GA) is a molecule in human serum that triggers an inflammatory response in human airway epithelial cultures. We observed that single-donor human serum induced IL-8 secretion from primary human airway epithelial cells and from a cystic fibrosis airway cell line (CF1-16) in a dose-dependent manner. IL-8 secretion from airway epithelial cells was time dependent and rapidly increased in the first 4 h of incubation. Stimulation with GA promoted epithelial cells to secrete IL-8, and this increase was blocked by the anti-GA antibody. The IL-8 secretion induced by serum GA was 10–50-fold more potent than TNFα or LPS stimulation. GA also has a functional effect on airway epithelial cells in vitro, increasing ciliary beat frequency. Our results demonstrate that the serum molecule GA is pro-inflammatory and triggers host defense responses including increases in IL-8 secretion and ciliary beat frequency in the human airway epithelium. Although the binding site of GA has not yet been described, it is possible that GA could bind to the receptor for advanced glycated end products (RAGE), known to be expressed in the airway epithelium; however, further experiments are needed to identify the mechanism involved. We highlight a possible role for GA in airway inflammation.
Collapse
Affiliation(s)
- Moira L Aitken
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ranjani Somayaji
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Thomas R Hinds
- Department of Pharmacy, School of Medicine, University of Washington, Seattle, WA, United States
| | - Maricela Pier
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Karla Droguett
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Rios
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Shawn J Skerrett
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Villalon
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
de Loyola MB, dos Reis TTA, de Oliveira GXLM, da Fonseca Palmeira J, Argañaraz GA, Argañaraz ER. Alpha-1-antitrypsin: A possible host protective factor against Covid-19. Rev Med Virol 2021; 31:e2157. [PMID: 32844538 PMCID: PMC7461031 DOI: 10.1002/rmv.2157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Understanding Covid-19 pathophysiology is crucial for a better understanding of the disease and development of more effective treatments. Alpha-1-antitrypsin (A1AT) is a constitutive tissue protector with antiviral and anti-inflammatory properties. A1AT inhibits SARS-CoV-2 infection and two of the most important proteases in the pathophysiology of Covid-19: the transmembrane serine protease 2 (TMPRSS2) and the disintegrin and metalloproteinase 17 (ADAM17). It also inhibits the activity of inflammatory molecules, such as IL-8, TNF-α, and neutrophil elastase (NE). TMPRSS2 is essential for SARS-CoV-2-S protein priming and viral infection. ADAM17 mediates ACE2, IL-6R, and TNF-α shedding. ACE2 is the SARS-CoV-2 entry receptor and a key component for the balance of the renin-angiotensin system, inflammation, vascular permeability, and pulmonary homeostasis. In addition, clinical findings indicate that A1AT levels might be important in defining Covid-19 outcomes, potentially partially explaining associations with air pollution and with diabetes. In this review, we focused on the interplay between A1AT with TMPRSS2, ADAM17 and immune molecules, and the role of A1AT in the pathophysiology of Covid-19, opening new avenues for investigating effective treatments.
Collapse
Affiliation(s)
| | | | | | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Faculty of Health ScienceUniversity of BrasíliaBrasiliaBrazil
| | - Gustavo A. Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health ScienceUniversity of BrasíliaBrasiliaBrazil
| | - Enrique R. Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health ScienceUniversity of BrasíliaBrasiliaBrazil
| |
Collapse
|
21
|
Somade OT, Ajayi BO, Adeyi OE, Adeshina AA, Adekoya MO, Abdulhameed RO. Oxidative stress-mediated induction of pulmonary oncogenes, inflammatory, and apoptotic markers following time-course exposure to ethylene glycol monomethyl ether in rats. Metabol Open 2021; 9:100075. [PMID: 33409483 PMCID: PMC7773962 DOI: 10.1016/j.metop.2020.100075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ethylene glycol monomethyl ether (EGME) has been used in many products usually handled by humans including inks, paints, polishes, brake fluids and so on. This present study therefore, investigated its effect on lung, in a time-course study in male Wistar rats. Animals were orally administered 50 mg/kg body weight of EGME for a period of 7, 14, and 21 days. Following 7 days of oral exposure to EGME, activities of GPx and SOD were significantly increased, as well as levels of K-Ras, c-Myc, p53, caspase-3, TNF-α and, IL-6, while NO level and GST activity were significantly reduced compared with control. At the end of 14 days exposure, GSH level was significantly decreased, while levels of K-Ras, c-Myc, p53, caspase-3, TNF-α, IL-6, NO and the activities of SOD and GPx were significantly elevated with respect to control. After 21 days of EGME administration, levels of Bcl-2, IL-10, GSH and NO as well as GST activity were significantly decreased, while levels of K-Ras, c-Myc, p53, Bax, caspase-3, IL-6, IL-1β, TNF-α, as well as GPx, CAT, and SOD activities were significantly elevated compared with control. Lung histopathology revealed chronic disseminated alveolar inflammation, bronchiolitis, severe alveolar and bronchi hyperplasia, severe disseminated inflammation, thrombosis, and thickened vessels as a result of EGME exposures. Exposures to EGME could trigger lung damage via the disorganization of the antioxidant system, eliciting the up-regulation of inflammatory, apoptotic, and oncogenic markers in rats.
Collapse
Key Words
- Apoptosis
- Bax, Bcl-2 associated X
- Bcl-2, B-cell lymphoma 2
- CAT, catalase
- Ethylene glycol monomethyl ether
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- GST, glutathione S-transferase
- Histopathology
- IL-1β, interleukin-1 beta
- IL-6, interleukin-6
- Inflammation
- K-Ras, Kirsten rat sarcoma viral oncogene
- Lung
- MDA, malondialdehyde
- NO, nitric oxide
- Oncogenes
- Oxidative stress
- SOD, superoxide dismutase
- TNF-α, tumor necrosis factor alpha
- c-myc, myelocytomatosis
- p53, tumor suppressor protein
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babajide O. Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Olubisi E. Adeyi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Mary O. Adekoya
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ridwan O. Abdulhameed
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
22
|
Qiu D, Zhang L, Zhan J, Yang Q, Xiong H, Hu W, Ji Q, Huang J. Hyperglycemia Decreases Epithelial Cell Proliferation and Attenuates Neutrophil Activity by Reducing ICAM-1 and LFA-1 Expression Levels. Front Genet 2020; 11:616988. [PMID: 33414814 PMCID: PMC7785031 DOI: 10.3389/fgene.2020.616988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Delayed repair is a serious public health concern for diabetic populations. Intercellular adhesion molecule 1 (ICAM-1) and Lymphocyte function-associated antigen 1 (LFA-1) play important roles in orchestrating the repair process. However, little is known about their effects on endothelial cell (EC) proliferation and neutrophil activity in subjects with hyperglycemia (HG). We cultured ECs and performed a scratch-closure assay to determine the relationship between ICAM-1 and EC proliferation. Specific internally labeled bacteria were used to clarify the effects of ICAM-1 and LFA-1 on neutrophil phagocytosis. Transwell assay and fluorescence-activated cell sorting analysis evaluated the roles of ICAM-1 and LFA-1 in neutrophil recruitment. ICAM-1+/+ and ICAM-1-/- mice were used to confirm the findings in vivo. The results demonstrated that HG decreased the expression of ICAM-1, which lead to the low proliferation of ECs. HG also attenuated neutrophil recruitment and phagocytosis by reducing the expression of ICAM-1 and LFA-1, which were strongly associated with the delayed repair.
Collapse
Affiliation(s)
- Dongxu Qiu
- Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Xiangya Hospital, Central South University, Changsha, China
| | - Junkun Zhan
- Department of Geriatrics, The Second Hospital of Xiangya, Hunan, China
| | - Qiong Yang
- Department of Geriatrics, The Second Hospital of Xiangya, Hunan, China
| | - Hongliang Xiong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weitong Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiao Ji
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Lin J, Li J, Shu M, Wu W, Zhang W, Dou Q, Wu J, Zeng X. The rCC16 Protein Protects Against LPS-Induced Cell Apoptosis and Inflammatory Responses in Human Lung Pneumocytes. Front Pharmacol 2020; 11:1060. [PMID: 32760279 PMCID: PMC7371929 DOI: 10.3389/fphar.2020.01060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
Objective Our previous clinical study showed that low lung levels of CC16 strongly influence the occurrence and development of ARDS. The aim of the present study was to evaluate the therapeutic effect of rCC16 on LPS-induced inflammation in A549 cells and to determine its mechanism. Methods Cell apoptosis and inflammation was induced by LPS stimulation. The cytotoxic effect of rCC16 was evaluated using the MTT assay. Cytokine levels were determined using enzyme-linked immunosorbent assays. The molecular mechanism of rCC16 was investigated by analyzing relevant signaling pathways. Results The LPS treatment of A549 cells significantly decreased cell viability, increased the levels of the apoptotic proteins Bax, Bak and Cleaved Caspase-3, the secretion of inflammatory cytokines, and the expression levels of TLR4, p-NF/κB, MAPK proteins. While the levels of Bcl-2, p-AKT, p-mTOR, p-ERK1/2, NF/κB, p-AMPK, and p-p38 were significantly decreased in LPS-treated A549 cells. Our experimental results also confirmed that rCC16 inhibited LPS-induced apoptosis, promoted A549 cell proliferation by activating the PI3K/AKT/mTOR/ERK1/2 pathway, and inhibited the release of certain inflammatory factors, especially HMGB1, through dephosphorylation and inactivation of the TLR4/NF-κB/AMPK signaling pathways. Conclusion These results highlight the potential utility of CC16 as an important cytokine for the prevention or treatment of inflammation and show that CC16 may play an important role in the future clinical treatment of ARDS.
Collapse
Affiliation(s)
- Jinle Lin
- Department of Emergency Medicine, Shenzhen Baoan First People's Hospital, Nanfang Medical University, Shenzhen, China.,Department of Respiratory and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Jiemei Li
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Min Shu
- Emergency Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Weigang Wu
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wenwu Zhang
- Department of Emergency Medicine, Shenzhen Baoan First People's Hospital, Nanfang Medical University, Shenzhen, China
| | - Qingli Dou
- Department of Emergency Medicine, Shenzhen Baoan First People's Hospital, Nanfang Medical University, Shenzhen, China
| | - Jian Wu
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Xiaobin Zeng
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
| |
Collapse
|
24
|
Wang Y, Adamcakova-Dodd A, Steines BR, Jing X, Salem AK, Thorne PS. Comparison of in vitro toxicity of aerosolized engineered nanomaterials using air-liquid interface mono-culture and co-culture models. NANOIMPACT 2020; 18:100215. [PMID: 32885098 PMCID: PMC7462419 DOI: 10.1016/j.impact.2020.100215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Airborne engineered nanomaterials (ENMs) can readily enter the human body through inhalation potentially leading to adverse health effects such as cardiovascular and pulmonary diseases. Our group has previously utilized and validated an integrated low flow system capable of generating and depositing airborne ENMs directly onto cells at an air-liquid interface (ALI). To further improve this ALI method for an even closer representation of the in vivo system, a co-culture model containing epithelial, endothelial and macrophage cell lines (A549, EA.hy 926, and THP-1 differentiated macrophages) was established and validated for testing ENMs toxicity. In the co-culture model, cells were exposed to citrate-capped gold (Au), 15% silver on silica (Ag-SiO2) and copper oxide (CuO) ENMs under the same protocol (4 h ALI exposure with a target concentration of 3.5 mg/m3) and compared to responses with A549 cells only or THP-1 differentiated cells only. The toxicological profile was assessed by measuring cell viability, reactive oxygen species (ROS) production, lactate dehydrogenase (LDH) release, and interleukin (IL)-8 concentration. Results showed that 15% Ag-SiO2 induced more oxidative stress-related toxicity in the co-culture than in A549 cells alone. Both 15% Ag-SiO2 and CuO exposure produced significantly higher levels of IL-8 in the co-culture compared with A549 cells alone. Citrate-capped Au was largely inert. Further exposures of CuO on macrophages alone provided evidence of cell-cell interaction in the co-culture model. In addition, the co-culture model exhibited a similar response to primary human bronchial epithelial cells in terms of ROS and IL-8 responses after CuO exposure, suggesting a more advanced refinement of the conventional model for in vitro inhalation study.
Collapse
Affiliation(s)
- Yifang Wang
- Human Toxicology Interdisciplinary Program, University of Iowa, Iowa City, IA, USA
| | | | - Benjamin R. Steines
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | - Xuefang Jing
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | | | - Peter S. Thorne
- Human Toxicology Interdisciplinary Program, University of Iowa, Iowa City, IA, USA
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
Magalhães J, Pinheiro M, Drasler B, Septiadi D, Petri-Fink A, Santos SG, Rothen-Rutishauser B, Reis S. Lipid nanoparticles biocompatibility and cellular uptake in a 3D human lung model. Nanomedicine (Lond) 2020; 15:259-271. [PMID: 31789097 DOI: 10.2217/nnm-2019-0256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Design nanostructured lipid carriers (NLC) to facilitate drug delivery to tuberculosis-infected areas, exploiting macrophage mannose receptors and assess their uptake in a 3D human lung model. Materials & methods: NLCs and mannosylated-NLCs were synthetized and characterized. Their uptake and biocompatibility were tested in a 3D human lung model. Results: The formulations have appropriate size (170–202 nm) and morphology for lung deposition. Cell membrane integrity was maintained and no significant pro-inflammatory cytokine (IL-1β, IL-8 and TNF-α) secretion or morphological changes were observed 24 h post nanoparticles exposure. NLCs and mannosylated NLCs were distributed in the apical side of the lung tissue, both in macrophages and in epithelial cells. Conclusion: NLCs are biocompatible carriers and can be used for pulmonary drug delivery.
Collapse
Affiliation(s)
- Joana Magalhães
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Portugal
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| |
Collapse
|
26
|
Benzyloxycarbonyl-proline-prolinal (ZPP): Dual complementary roles for neutrophil inhibition. Biochem Biophys Res Commun 2019; 517:691-696. [PMID: 31400851 DOI: 10.1016/j.bbrc.2019.07.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
Neutrophil influx and activation contributes to organ damage in several major lung diseases. This inflammatory influx is initiated and propagated by both classical chemokines such as interleukin-8 and by downstream mediators such as the collagen fragment cum neutrophil chemokine Pro-Gly-Pro (PGP), which share use of the ELR + CXC receptor family. Benzyloxycarbonyl-proline-prolinal (ZPP) is known to suppress the PGP pathway via inhibition of prolyl endopeptidase (PE), the terminal enzyme in the generation of PGP from collagen. However, the structural homology of ZPP and PGP suggests that ZPP might also directly affect classical glutamate-leucine-arginine positive (ELR+) CXC chemokine signaling. In this investigation, we confirm that ZPP inhibits PE in vitro, demonstrate that ZPP inhibits both ELR + CXC and PGP-mediated chemotaxis in human and murine neutrophils, abrogates neutrophil influx induced by murine intratracheal challenge with LPS, and attenuates human neutrophil chemotaxis to sputum samples of human subjects with cystic fibrosis. Cumulatively, these data demonstrate that ZPP has dual, complementary inhibitory effects upon neutrophil chemokine/matrikine signaling which make it an attractive compound for clinical study of neutrophil inhibition in conditions (such as cystic fibrosis and chronic obstructive pulmonary disease) which evidence concurrent harmful increases of both chemokine and matrikine signaling.
Collapse
|
27
|
Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett 2019; 301:133-145. [DOI: 10.1016/j.toxlet.2018.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023]
|
28
|
Takao S, Masuda T, Yamaguchi K, Sakamoto S, Horimasu Y, Nakashima T, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Hattori N. High preoperative C-reactive protein level is a risk factor for acute exacerbation of interstitial lung disease after non-pulmonary surgery. Medicine (Baltimore) 2019; 98:e14296. [PMID: 30702600 PMCID: PMC6380803 DOI: 10.1097/md.0000000000014296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 11/27/2022] Open
Abstract
Several studies have investigated the incidence of and risk factors for acute exacerbation (AE) in patients with interstitial lung disease (ILD) after lung resection surgery. However, the incidence and risk factors for AE-ILD after non-pulmonary surgery are not known. The aim of this study was to investigate the incidence of and risk factors for AE-ILD after non-pulmonary surgery.Eighty patients who were diagnosed with ILD on preoperative chest computed tomography (CT) imaging and underwent non-pulmonary surgery under general anesthesia at Hiroshima University Hospital between September 2011 and September 2017 were enrolled. We retrospectively compared the preoperative patient characteristics, laboratory findings, and factors associated with anesthetic management between the patients who developed AE-ILD and those who did not.The incidence of AE-ILD after non-pulmonary surgery was 6.3% and the mortality rate was 80%. Univariate logistic analysis showed that a usual interstitial pneumonia pattern on computed tomography, a high C-reactive protein (CRP) level, a long operating time, high blood loss, and blood transfusion during surgery were significant risk factors for AE-ILD. In multivariate analysis, only a high CRP level (odds ratio 2.556, 95% confidence interval 1.110-5.889, P = .028) was identified as an independent risk factor for AE-ILD after non-pulmonary surgery.The risk of AE-ILD should be kept in mind in patients with ILD and a high CRP level before non-pulmonary surgery. These patients should also be monitored carefully for development of AE-ILD after surgery.
Collapse
|
29
|
Haggadone MD, Peters-Golden M. Microenvironmental Influences on Extracellular Vesicle-Mediated Communication in the Lung. Trends Mol Med 2018; 24:963-975. [DOI: 10.1016/j.molmed.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
|
30
|
IL-8-induced O-GlcNAc modification via GLUT3 and GFAT regulates cancer stem cell-like properties in colon and lung cancer cells. Oncogene 2018; 38:1520-1533. [PMID: 30305725 DOI: 10.1038/s41388-018-0533-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Interleukin-8 (IL-8) is a pro-inflammatory chemokine that is associated with induction of chemotaxis and degranulation of neutrophils. IL-8 is overexpressed in many tumors, including colon and lung cancer, and recent studies demonstrated essential roles for IL-8 in tumor progression within the tumor microenvironment. However, the molecular mechanism underlying the functions of IL-8 in tumor progression is unclear. In this study, we found that IL-8 is overexpressed in colon and lung cancer cells with cancer stem cell (CSC)-like characteristics and is required for CSC properties, including tumor-initiating abilities. These findings suggest that IL-8 plays an essential role in the development of CSCs. We also showed that IL-8 stimulation of colon and lung cancer cells-induced glucose uptake and expressions of glucose transporter 3 (GLUT3) and glucosamine fructose-6-phosphate aminotransferase (GFAT), a regulator of glucose flux to the hexosamine biosynthetic pathway, resulting in enhancement of protein O-GlcNAcylation. We demonstrated that these events are required for the generation and maintenance CSC-like characteristics of colon and lung cancer cells. Moreover, an O-GlcNAcylation inhibitor, OSMI1, reduced CSC number and tumor development in vivo. Together, these results reveal that IL-8-induced O-GlcNAcylation is required for generation and maintenance of CSCs of colon and lung cancer cells and suggests this regulatory pathway as a candidate therapeutic target of CSCs.
Collapse
|
31
|
Mixed bacterial responses to dust exposure in an A549 eukaryotic co-culture. Appl Microbiol Biotechnol 2018; 102:9759-9770. [DOI: 10.1007/s00253-018-9322-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 02/03/2023]
|
32
|
Oh H, Kim CY, Ryu B, Kim U, Kim J, Lee JM, Lee BH, Moon J, Jung CR, Park JH. Respiratory Toxicity of Polyhexamethylene Guanidine Phosphate Exposure in Zebrafish. Zebrafish 2018; 15:460-472. [PMID: 30133415 DOI: 10.1089/zeb.2018.1571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Humidifier disinfectants containing polyhexamethylene guanidine phosphate (PHMG-P) can induce pulmonary toxicity and has caused human casualties in South Korea since 2006. Thereby, the safety evaluation of household chemicals such as PHMG-P has garnered increased importance. However, many limitations, such as the lack of specialized facilities and animal welfare concerns associated with the use of murine models, persist. Zebrafish gills have high functional and structural similarity to mammalian lungs. Moreover, zebrafish are sensitive to toxic substances, resulting in changes in behavioral or ventilatory patterns. Based on these facts, in this study, we aimed to evaluate the pulmonary toxicity of PHMG-P in zebrafish. Zebrafish exposed to PHMG-P showed an increase in mRNA levels of inflammatory factors persisting for 28 days along with histopathologic changes in the gills. An exposure time-dependent alteration in infiltration of inflammatory cells and destruction of gill lamellae was observed. In addition, an increase in mRNA levels of fibrosis factors was observed in gills exposed to PHMG-P for 28 days, as assessed by collagen staining with Masson's trichrome. These results supported the cellular level results. Taken together, our results reveal pulmonary toxic effects of PHMG-P and suggest useful markers for evaluating pulmonary toxicity.
Collapse
Affiliation(s)
- Hanseul Oh
- 1 Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University , Seoul, Republic of Korea
| | - C-Yoon Kim
- 2 Department of Medicine, School of Medicine, Konkuk University , Seoul, Republic of Korea
| | - Bokyeong Ryu
- 1 Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University , Seoul, Republic of Korea
| | - Ukjin Kim
- 1 Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University , Seoul, Republic of Korea
| | - Jin Kim
- 1 Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University , Seoul, Republic of Korea
| | - Ji-Min Lee
- 1 Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University , Seoul, Republic of Korea
| | - Byoung-Hee Lee
- 3 National Institute of Biological Resources , Incheon, Republic of Korea
| | - Jisook Moon
- 4 Department of Biotechnology, College of Life Science, CHA University , Seoul, Republic of Korea
| | - Cho-Rok Jung
- 5 Gene Therapy Research Unit, KRIBB , Daejeon, Republic of Korea
| | - Jae-Hak Park
- 1 Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
33
|
Neuropeptides SP and CGRP Diminish the Moraxella catarrhalis Outer Membrane Vesicle- (OMV-) Triggered Inflammatory Response of Human A549 Epithelial Cells and Neutrophils. Mediators Inflamm 2018; 2018:4847205. [PMID: 30174554 PMCID: PMC6098883 DOI: 10.1155/2018/4847205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP) play both pro- and anti-inflammatory activities and are produced during infection and inflammation. Moraxella catarrhalis is one of the leading infectious agents responsible for inflammatory exacerbation in chronic obstructive pulmonary disease (COPD). Since the airway inflammation in COPD is connected with activation of both epithelial cells and accumulated neutrophils, in this study we determined the in vitro effects of neuropeptides on the inflammatory potential of these cells in response to M. catarrhalis outer membrane vesicle (OMV) stimulant. The various OMV-mediated proinflammatory effects were demonstrated. Next, using hBD-2-pGL4[luc2] plasmid with luciferase reporter gene, SP and CGRP were shown to inhibit the IL-1β-dependent expression of potent neutrophil chemoattractant, hBD-2 defensin, in transfected A549 epithelial cells (type II alveolar cells) upon OMV stimulation. Both neuropeptides exerted antiapoptotic activity through rescuing a significant fraction of A549 cells from OMV-induced cell death and apoptosis. Finally, CGRP caused an impairment of specific but not azurophilic granule exocytosis from neutrophils as shown by evaluation of gelatinase-associated lipocalin (NGAL) or CD66b expression and elastase release, respectively. Concluding, these findings suggest that SP and CGRP mediate the dampening of proinflammatory action triggered by M. catarrhalis OMVs towards cells engaged in lung inflammation in vitro.
Collapse
|
34
|
Santos G, Lai X, Eberhardt M, Vera J. Bacterial Adherence and Dwelling Probability: Two Drivers of Early Alveolar Infection by Streptococcus pneumoniae Identified in Multi-Level Mathematical Modeling. Front Cell Infect Microbiol 2018; 8:159. [PMID: 29868515 PMCID: PMC5962665 DOI: 10.3389/fcimb.2018.00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/25/2018] [Indexed: 01/31/2023] Open
Abstract
Pneumococcal infection is the most frequent cause of pneumonia, and one of the most prevalent diseases worldwide. The population groups at high risk of death from bacterial pneumonia are infants, elderly and immunosuppressed people. These groups are more vulnerable because they have immature or impaired immune systems, the efficacy of their response to vaccines is lower, and antibiotic treatment often does not take place until the inflammatory response triggered is already overwhelming. The immune response to bacterial lung infections involves dynamic interactions between several types of cells whose activation is driven by intracellular molecular networks. A feasible approach to the integration of knowledge and data linking tissue, cellular and intracellular events and the construction of hypotheses in this area is the use of mathematical modeling. For this paper, we used a multi-level computational model to analyse the role of cellular and molecular interactions during the first 10 h after alveolar invasion of Streptococcus pneumoniae bacteria. By “multi-level” we mean that we simulated the interplay between different temporal and spatial scales in a single computational model. In this instance, we included the intracellular scale of processes driving lung epithelial cell activation together with the scale of cell-to-cell interactions at the alveolar tissue. In our analysis, we combined systematic model simulations with logistic regression analysis and decision trees to find genotypic-phenotypic signatures that explain differences in bacteria strain infectivity. According to our simulations, pneumococci benefit from a high dwelling probability and a high proliferation rate during the first stages of infection. In addition to this, the model predicts that during the very early phases of infection the bacterial capsule could be an impediment to the establishment of the alveolar infection because it impairs bacterial colonization.
Collapse
Affiliation(s)
- Guido Santos
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
35
|
Fisher KM, McLeish JA, Jamieson LE, Jiang J, Hopgood JR, McLaughlin S, Donaldson K, Campbell CJ. SERS as a tool for in vitro toxicology. Faraday Discuss 2018; 187:501-20. [PMID: 27032696 DOI: 10.1039/c5fd00216h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Measuring markers of stress such as pH and redox potential are important when studying toxicology in in vitro models because they are markers of oxidative stress, apoptosis and viability. While surface enhanced Raman spectroscopy is ideally suited to the measurement of redox potential and pH in live cells, the time-intensive nature and perceived difficulty in signal analysis and interpretation can be a barrier to its broad uptake by the biological community. In this paper we detail the development of signal processing and analysis algorithms that allow SERS spectra to be automatically processed so that the output of the processing is a pH or redox potential value. By automating signal processing we were able to carry out a comparative evaluation of the toxicology of silver and zinc oxide nanoparticles and correlate our findings with qPCR analysis. The combination of these two analytical techniques sheds light on the differences in toxicology between these two materials from the perspective of oxidative stress.
Collapse
Affiliation(s)
- Kate M Fisher
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| | - Jennifer A McLeish
- MRC Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Lauren E Jamieson
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| | - Jing Jiang
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| | - James R Hopgood
- Institute for Digital Communications, Joint Research Institute for Signal and Image Processing, School of Engineering, University of Edinburgh, EH9 3JL, UK
| | - Stephen McLaughlin
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Ken Donaldson
- MRC Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Colin J Campbell
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
36
|
Yang L, Herrera J, Gilbertsen A, Xia H, Smith K, Benyumov A, Bitterman PB, Henke CA. IL-8 mediates idiopathic pulmonary fibrosis mesenchymal progenitor cell fibrogenicity. Am J Physiol Lung Cell Mol Physiol 2017; 314:L127-L136. [PMID: 28860143 PMCID: PMC5866425 DOI: 10.1152/ajplung.00200.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease, but the mechanisms driving progression remain incompletely defined. We previously reported that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs), which serve as a cell of origin for IPF fibroblasts. Proliferating IPF MPCs are located at the periphery of fibroblastic foci in an active cellular front at the interface between the myofibroblast-rich focus core and adjacent normal alveolar structures. Among a large set of genes that distinguish IPF MPCs from their control counterparts, we identified IL-8 as a candidate mediator of IPF MPC fibrogenicity and driver of fibrotic progression. IPF MPCs and their progeny displayed increased steady-state levels of IL-8 and its cognate receptor CXCR1 and secreted more IL-8 than did controls. IL-8 functioned in an autocrine manner promoting IPF MPC self-renewal and the proliferation and motility of IPF MPC progeny. Secreted IL-8 also functioned in a paracrine manner stimulating macrophage migration. Analysis of IPF lung tissue demonstrated codistribution of IPF MPCs with activated macrophages in the active cellular front of the fibroblastic focus. These findings indicate that IPF MPC-derived IL-8 is capable of expanding the mesenchymal cell population and recruiting activated macrophages cells to actively evolving fibrotic lesions.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Jeremy Herrera
- Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Hong Xia
- Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Karen Smith
- Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Alexey Benyumov
- Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Craig A Henke
- Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
37
|
Lombardi G, Sansoni V, Banfi G. Measuring myokines with cardiovascular functions: pre-analytical variables affecting the analytical output. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:299. [PMID: 28856139 PMCID: PMC5555982 DOI: 10.21037/atm.2017.07.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 12/30/2022]
Abstract
In the last few years, a growing number of molecules have been associated to an endocrine function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several pathophysiological conditions including the cardiovascular ones. However, data from different studies are often not completely comparable or even discordant. This would be due, at least in part, to the whole set of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects the final output. In research, for example, when samples are collected over a long time and by different laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of myokines with cardiovascular functions.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
38
|
Neudecker V, Yuan X, Bowser JL, Eltzschig HK. MicroRNAs in mucosal inflammation. J Mol Med (Berl) 2017; 95:935-949. [PMID: 28726085 DOI: 10.1007/s00109-017-1568-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/28/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022]
Abstract
Of the total human body's surface, the majority is internal surface, belonging to the lungs (100 m2) and intestinal tract (400 m2). In comparison, the external surface area, belonging to the skin, comprises less than 1% (2 m2). Continuous exposure of the mucosal surface to external factors (e.g., pathogens, food particles) requires tight regulation to maintain homeostasis. MicroRNAs (miRNAs) have gained noticeable attention as playing important roles in maintaining the steady-state of tissues by modulating immune functions and inflammatory responses. Accordingly, associations have been found between miRNA expression levels and human health conditions and diseases. These findings have important implications in inflammatory diseases involving pulmonary and intestinal mucosa, such as acute lung injury or inflammatory bowel disease. In this review, we highlight the known biology of miRNAs and discuss the role of miRNAs in modulating mucosal defense and homeostasis. Additionally, we discuss miRNAs serving as potential therapeutic targets to treat immunological conditions, particularly mucosal inflammation.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany.
| | - Xiaoyi Yuan
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jessica L Bowser
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
39
|
Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 2017; 544:235-239. [PMID: 28406212 PMCID: PMC5600291 DOI: 10.1038/nature22034] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/05/2017] [Indexed: 02/02/2023]
Abstract
A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such 'human knockouts' can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a 'human knockout project', a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.
Collapse
|
40
|
Yang S, Yu Z, Wang L, Yuan T, Wang X, Zhang X, Wang J, Lv Y, Du G. The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activition. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:147-155. [PMID: 28192201 DOI: 10.1016/j.jep.2017.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bergenin, an active constituent of the plants of the genus Bergenia, was reported to have anti-inflammatory effects in the treatment of chronic bronchitis and chronic gastritis clinically. However, its therapeutic effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and its potential mechanisms of actions were still unknown. AIM OF THIS STUDY To evaluate the effect of bergenin on murine model of acute lung injury induced by LPS and also to explore its potential mechanisms. MATERIALS AND METHODS Half an hour and 12h after an intranasal inhalation of LPS, male BALB/c mice were treated with bergenin (50,100 and 200mg/kg) or dexamethasone (DEX, 5mg/kg) by gavage. Twenty-four hours after LPS exposure, the lung wet/dry ratio, histological changes, myeloperoxidase (MPO) in lung tissues, inflammatory cells (in BALF) and cytokines (in BALF and serum) were detected. Meanwhile, the protein expression of MyD88 and the phosphorylation of NF-κB p65 in lung tissue were analyzed using immunoblot analysis. Moreover, the nuclear translocation and the phosphorylation of NF-κB p65 in Raw264.7 cells were also analyzed. The viability of Raw264.7 cells was determined by MTT assay. RESULTS Results showed that bergenin significantly decreased pulmonary edema, improved histological changes and reduced MPO activity in lung tissues. Moreover, bergenin obviously decreased inflammatory cells, IL-1β and IL-6 production in BALF, as well as IL-1β, TNF-α and IL-6 production in serum of LPS-induced ALI mice. Furthermore, bergenin markedly inhibited LPS-induced NF-κB p65 phosphorylation, as well as the expression of MyD88 but not the expression of NF-κB p65 in lung tissues. Additionally, bergenin also significantly inhibited the nuclear translocation and the phosphorylation of NF-κB p65 stimulated by LPS in Raw264.7 cells. CONCLUSIONS These findings suggested that bergenin had a therapeutic effect on LPS-induced ALI by inhibiting NF-κB activition.
Collapse
Affiliation(s)
- Shengqian Yang
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Ziru Yu
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Lin Wang
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Tianyi Yuan
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Xue Wang
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, PR China.
| | - Xue Zhang
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Yang Lv
- Beijing Key Laboratory of Drug Crystal Research, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
41
|
Singla S, Chen J, Sethuraman S, Sysol JR, Gampa A, Zhao S, Machado RF. Loss of lung WWOX expression causes neutrophilic inflammation. Am J Physiol Lung Cell Mol Physiol 2017; 312:L903-L911. [PMID: 28283473 DOI: 10.1152/ajplung.00034.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor WW domain-containing oxidoreductase (WWOX) exhibits regulatory interactions with an array of transcription factors and signaling molecules that are positioned at the well-known crossroads between inflammation and cancer. WWOX is also subject to downregulation by genotoxic environmental exposures, making it of potential interest to the study of lung pathobiology. Knockdown of lung WWOX expression in mice was observed to cause neutrophil influx and was accompanied by a corresponding vascular leak and inflammatory cytokine production. In cultured human alveolar epithelial cells, loss of WWOX expression resulted in increased c-Jun- and IL-8-dependent neutrophil chemotaxis toward cell monolayers. WWOX was observed to directly interact with c-Jun in these cells, and its absence resulted in increased nuclear translocation of c-Jun. Finally, inhibition of the c-Jun-activating kinase JNK abrogated the lung neutrophil influx observed during WWOX knockdown in mice. Altogether, these observations represent a novel mechanism of pulmonary neutrophil influx that is highly relevant to the pathobiology and potential treatment of a number of different lung inflammatory conditions.
Collapse
Affiliation(s)
- Sunit Singla
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Shruthi Sethuraman
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Justin R Sysol
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Amulya Gampa
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Shuangping Zhao
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
42
|
Ishikawa S, Ito S. Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue. Toxicol In Vitro 2017; 38:170-178. [PMID: 27596523 DOI: 10.1016/j.tiv.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/12/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
In vitro models of human bronchial epithelium are useful for toxicological testing because of their resemblance to in vivo tissue. We constructed a model of human bronchial tissue which has a fibroblast layer embedded in a collagen matrix directly below a fully-differentiated epithelial cell layer. The model was applied to whole cigarette smoke (CS) exposure repeatedly from an air-liquid interface culture while bronchial epithelial cells were differentiating. The effects of CS exposure on differentiation were determined by histological and gene expression analyses on culture day 21. We found a decrease in ciliated cells and perturbation of goblet cell differentiation. We also analyzed the effects of CS exposure on the inflammatory response, and observed a significant increase in secretion of IL-8, GRO-α, IL-1β, and GM-CSF. Interestingly, secretion of these mediators was augmented with repetition of whole CS exposure. Our data demonstrate the usefulness of our bronchial tissue model for in vitro testing and the importance of exposure repetition in perturbing the differentiation and inflammation processes.
Collapse
Affiliation(s)
- Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan
| |
Collapse
|
43
|
Rodríguez-Calvo R, Tajes M, Vázquez-Carrera M. The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets 2017; 21:291-304. [PMID: 28055275 DOI: 10.1080/14728222.2017.1279146] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolonged inflammatory response contributes to the pathogenesis of chronic disease-related disturbances. Among nuclear receptors (NRs), the orphan NR4A subfamily, which includes Nur77 (NR4A1), Nurr1 (NR4A2) and NOR1 (NR4A3), has recently emerged as a therapeutic target for the treatment of inflammation. Areas covered: This review focuses on the capacity of NR4A receptors to counter-regulate the development of the inflammatory response, with a special focus on the molecular transrepression mechanisms. Expert opinion: Recent studies have highlighted the role of NR4A receptors as significant regulators of the inflammatory response. NR4A receptors are rapidly induced by inflammatory stimuli, thus suggesting that they are required for the initiation of inflammation. Nevertheless, NR4A anti-inflammatory properties indicate that this acute regulation could be a protective reaction aimed at resolving inflammation in the later stages. Therefore, NR4A receptors are involved in a negative feedback mechanism to maintain the inflammatory balance. However, the underlying mechanisms are not entirely clear. Only a small number of NR4A-target genes have been identified, and the transcriptional repression mechanisms are only beginning to emerge. Despite further research is needed to fully understand the role of NR4A receptors in inflammation, these NRs should be considered as targets for new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- a Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Pere Virgili Health Research Institute (IISPV) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Medicine and Health Sciences , Rovira i Virgili University , Reus , Spain
| | - Marta Tajes
- b Heart Diseases Biomedical Research Group, Inflammatory and Cardiovascular Disorders Program , Hospital del Mar Medical Research Institute (IMIM), Parc de Salut Mar , Barcelona , Spain
| | - Manuel Vázquez-Carrera
- c Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643 , University of Barcelona , Barcelona , Spain
| |
Collapse
|
44
|
Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch 2017; 469:135-147. [PMID: 27921210 PMCID: PMC5203840 DOI: 10.1007/s00424-016-1917-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/31/2022]
Abstract
Inflammatory lung diseases like asthma bronchiale, chronic obstructive pulmonary disease and allergic airway inflammation are widespread public diseases that constitute an enormous burden to the health systems. Mainly classified as inflammatory diseases, the treatment focuses on strategies interfering with local inflammatory responses by the immune system. Inflammatory lung diseases predispose patients to severe lung failures like alveolar oedema, respiratory distress syndrome and acute lung injury. These life-threatening syndromes are caused by increased permeability of the alveolar and airway epithelium and exudate formation. However, the mechanism underlying epithelium barrier breakdown in the lung during inflammation is elusive. This review emphasises the role of the tight junction of the airway epithelium as the predominating structure conferring epithelial tightness and preventing exudate formation and the impact of inflammatory perturbations on their function.
Collapse
Affiliation(s)
- Oliver H Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
45
|
Gohy ST, Hupin C, Pilette C, Ladjemi MZ. Chronic inflammatory airway diseases: the central role of the epithelium revisited. Clin Exp Allergy 2016; 46:529-42. [PMID: 27021118 DOI: 10.1111/cea.12712] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The respiratory epithelium plays a critical role for the maintenance of airway integrity and defense against inhaled particles. Physical barrier provided by apical junctions and mucociliary clearance clears inhaled pathogens, allergens or toxics, to prevent continuous stimulation of adaptive immune responses. The "chemical barrier", consisting of several anti-microbial factors such as lysozyme and lactoferrin, constitutes another protective mechanism of the mucosae against external aggressions before adaptive immune response starts. The reconstruction of damaged respiratory epithelium is crucial to restore this barrier. This review examines the role of the airway epithelium through recent advances in health and chronic inflammatory diseases in the lower conducting airways (in asthma and chronic obstructive pulmonary disease). Better understanding of normal and altered epithelial functions continuously provides new insights into the physiopathology of chronic airway diseases and should help to identify new epithelial-targeted therapies.
Collapse
Affiliation(s)
- S T Gohy
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| | - C Hupin
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium
| | - C Pilette
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium.,Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| | - M Z Ladjemi
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
46
|
Lombardi G, Sanchis-Gomar F, Perego S, Sansoni V, Banfi G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine 2016; 54:284-305. [PMID: 26718191 DOI: 10.1007/s12020-015-0834-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
Abstract
Physical inactivity has been recognized, by the World Health Organization as the fourth cause of death (5.5 % worldwide). On the contrary, physical activity (PA) has been associated with improved quality of life and decreased risk of several diseases (i.e., stroke, hypertension, myocardial infarction, obesity, malignancies). Bone turnover is profoundly affected from PA both directly (load degree is the key determinant for BMD) and indirectly through the activation of several endocrine axes. Several molecules, secreted by muscle (myokines) and adipose tissues (adipokines) in response to exercise, are involved in the fine regulation of bone metabolism in response to the energy availability. Furthermore, bone regulates energy metabolism by communicating its energetic needs thanks to osteocalcin which acts on pancreatic β-cells and adipocytes. The beneficial effects of exercise on bone metabolism depends on the intermittent exposure to myokines (i.e., irisin, IL-6, LIF, IGF-I) which, instead, act as inflammatory/pro-resorptive mediators when chronically elevated; on the other hand, the reduction in the circulating levels of adipokines (i.e., leptin, visfatin, adiponectin, resistin) sustains these effects as well as improves the whole-body metabolic status. The aim of this review is to highlight the newest findings about the exercise-dependent regulation of these molecules and their role in the fine regulation of bone metabolism.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | | | - Silvia Perego
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
47
|
Guruvayoorappan C, Kuttan G. Effect of Amentoflavone on the Inhibition of Pulmonary Metastasis Induced by B16F-10 Melanoma Cells in C57BL/6 Mice. Integr Cancer Ther 2016; 6:185-97. [PMID: 17548797 DOI: 10.1177/1534735407302345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was an investigation of the antimetastatic activity of amentoflavone using B16F-10 melanoma—induced experimental lung metastasis in C57BL/6 mice. Amentoflavone treatment significantly reduced tumor nodule formation accompanied by reduced lung collagen hydroxyproline, hexosamine, and uronic acid levels. Serum sialic acid and γglutamyl transpeptidase levels were also significantly inhibited after amentoflavone treatment. Amentoflavone treatment up-regulated the lung tissue inhibitor of metalloprotease-1 and tissue inhibitor of metalloprotease-2 expression. The cytokine profile and growth factors such as interleukin-1β , interleukin-6, tumor necrosis factor-α, granulocyte monocyte— colony stimulating factor, vascular endothelial growth factor, interleukin-2, and tissue inhibitor of metalloprotease-1 in the serum of these animals were markedly altered after amentoflavone treatment. This altered level of cytokines after amentoflavone treatment was also accompanied by enhanced natural killer cell antibody—dependent cellular cytotoxicity. The study reveals that amentoflavone treatment could alter proinflammatory cytokine production and could inhibit the activation and nuclear translocation of p65, p50, c-Rel subunits of nuclear factor—κB, and other transcription factors such as c-fos, activated transcription factor—2, and cyclic adenosine monophosphate response element—binding protein in B16F-10 melanoma cells.
Collapse
|
48
|
Pharmacologic Strategies for the Treatment of Acute Respiratory Distress Syndrome: The Horizon is Getting Closer. J Intensive Care Med 2016. [DOI: 10.1177/0885066602238036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Malazdrewich C, Ames TR, Abrahamsen MS, Maheswaran SK. Pulmonary Expression of Tumor Necrosis Factor Alpha, Interleukin-1 Beta, and Interleukin-8 in the Acute Phase of Bovine Pneumonic Pasteurellosis. Vet Pathol 2016; 38:297-310. [PMID: 11355660 DOI: 10.1354/vp.38-3-297] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory cytokines are suspected to contribute to the pathogenesis of bovine pneumonic pasteurellosis (BPP) through neutrophil recruitment, leukocyte activation, and the induction of a broad array of soluble inflammatory mediators. An in vivo experimental model of BPP was used to characterize the pulmonary expression kinetics of tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β), and interleukin-8 (IL-8) genes and proteins during the acute phase of disease development. Cytokine expression in bronchoalveolar lavage (BAL) fluid, BAL cells, and pneumonic lung parenchyma was quantitated by northern blot analysis, enzyme-linked immunosorbent assay (ELISA), and in situ hybridization at 2, 4, 8, 16, and 24 hours after endobronchial inoculation of Pasteurella (Mannheimia) haemolytica. Expression of TNFα, IL-1β, and IL-8 was significantly increased in the airways and lung lesions of infected calves as compared with mock-infected controls. Although kinetic patterns varied, peak levels of cytokine mRNA occurred within 8 hours postinfection (PI), and peak cytokine concentrations occurred within 16 hours PI. In all samples, IL-8 was expressed to the greatest extent and TNFα was least expressed. Expression of TNFα was restricted to alveolar macrophages. Alveolar and interstitial macrophages produced IL-1β and IL-8 in the first 4 hours; bronchial and bronchiolar epithelial cells were also significant sources of IL-8 during this period. By 8 hours PI, neutrophils were the dominant source of both IL-1β and IL-8. These findings demonstrate a spatial and temporal association between pulmonary expression of inflammatory cytokines and acute lung pathology, supporting the hypothesis that cytokines contribute to inflammatory lung injury in BPP.
Collapse
Affiliation(s)
- C Malazdrewich
- Department of Clinical and Population Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, USA
| | | | | | | |
Collapse
|
50
|
Kienhorst LBE, van Lochem E, Kievit W, Dalbeth N, Merriman ME, Phipps-Green A, Loof A, van Heerde W, Vermeulen S, Stamp LK, van Koolwijk E, de Graaf J, Holzinger D, Roth J, Janssens HJEM, Merriman TR, Broen JCA, Janssen M, Radstake TRDJ. Gout Is a Chronic Inflammatory Disease in Which High Levels of Interleukin-8 (CXCL8), Myeloid-Related Protein 8/Myeloid-Related Protein 14 Complex, and an Altered Proteome Are Associated With Diabetes Mellitus and Cardiovascular Disease. Arthritis Rheumatol 2016; 67:3303-13. [PMID: 26248007 DOI: 10.1002/art.39318] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 07/30/2015] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The frequent association of gout with metabolic syndrome and cardiovascular disease (CVD) suggests that it has a systemic component. Our objective was to study whether circulating proinflammatory cytokines are associated with comorbidities in gout patients. METHODS We studied 330 gout patients from 3 independent cohorts and compared them with 144 healthy individuals and 276 disease controls. We measured circulating levels of interleukin-8 (IL-8)/CXCL8, IL-1β, IL-6, IL-10, IL-12, and tumor necrosis factor, after which we performed proteome-wide analysis in a selection of samples to identify proteins that were possibly prognostic for the development of comorbidities. Replication analysis was performed specifically for myeloid-related protein 8 (MRP-8)/MRP-14 complex. RESULTS Compared to healthy controls and disease control patients, patients with gouty arthritis (n = 48) had significantly higher mean levels of CXCL8 (P < 0.001), while other cytokines were almost undetectable. Similarly, patients with intercritical gout showed high levels of CXCL8. CXCL8 was independently associated with diabetes mellitus in patients with intercritical gout (P < 0.0001). Proteome-wide analysis in gouty arthritis (n = 18) and intercritical gout (n = 39) revealed MRP-8 and MRP-14 as the proteins with the greatest differential expression between low and high levels of CXCL8 and also showed a positive correlation of MRP8/MRP14 complex with CXCL8 levels (R(2) = 0.49, P < 0.001). These findings were replicated in an independent cohort. The proteome of gout patients with high levels of CXCL8 was associated with diabetes mellitus (odds ratio 16.5 [95% confidence interval 2.8-96.6]) and CVD (odds ratio 3.9 [95% confidence interval 1.0-15.3]). CONCLUSION Circulating levels of CXCL8 are increased during both the acute and intercritical phases of gout, and they coincide with a specific circulating proteome that is associated with risk of diabetes mellitus and CVD. Further research focused on the roles of CXCL8 and MRP8/MRP14 complex in patients with gout is warranted.
Collapse
Affiliation(s)
| | | | - Wietske Kievit
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Arnoud Loof
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Sita Vermeulen
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | - Hein J E M Janssens
- Radboud University Medical Center, Nijmegen, The Netherlands, and Rijnstate Hospital, Arnhem, The Netherlands
| | | | | | | | | |
Collapse
|