1
|
Simoes MR, Bombassaro B, Gallo-Ferraz AL, Nogueira PAS, Monfort-Pires M, Zanesco AM, Valdivieso-Rivera F, Nogueira GAS, Sponton CH, Castilho RF, Velloso LA. Balb/c mice are protected from glucose and acute cold intolerance. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167725. [PMID: 40023454 DOI: 10.1016/j.bbadis.2025.167725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The brown adipose tissue is a potential target for interventions aimed at treating obesity and other metabolic disorders. Both genetic and environmental factors are known to regulate brown adipose tissue function and exploring the interaction between these factors could unveil new mechanisms involved in the regulation of thermogenesis. In this study, we evaluated three genetically distinct mice strains submitted to two environmental factors known to modulate brown adipose tissue function, namely, cold exposure and the consumption of a high-fat diet. The comparison of Balb/c, C57BL/6, and Swiss mice revealed that Balb/c mice were the most glucose-tolerant and the most cold-tolerant. In addition, Balb/c presented the greatest brown adipose tissue oxygen consumption, which was independent of differences in uncoupling protein 1 expression and function. The search for uncoupling protein 1-independent mechanisms that could explain the greatest cold tolerance of Balb/c mice resulted in the identification of the N-acyl amino acid regulator, PM20D1, which had a greater gene expression in the brown adipose tissue of Balb/c mice as compared to the other two strains. The immunoneutralization of PM20D1 in Balb/c mice, resulted in increased blood glucose levels and worsening of cold tolerance. In addition, the in silico knockout of Pm20d1 impacted several metabolic processes, including thermogenesis, glucose tolerance, and insulin sensitivity. In conclusion, Balb/c mice are protected from glucose and acute cold intolerance, independently of the diet. We propose that PM20D1, in an uncoupling protein 1-independent fashion, can have an important role in this protection.
Collapse
Affiliation(s)
- Marcela R Simoes
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo 13083-864, Brazil
| | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo 13083-864, Brazil
| | - Ana Luisa Gallo-Ferraz
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo 13083-864, Brazil
| | - Pedro A S Nogueira
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo 13083-864, Brazil
| | | | - Ariane M Zanesco
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo 13083-864, Brazil
| | - Fernando Valdivieso-Rivera
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo 13083-864, Brazil; Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Guilherme A S Nogueira
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo 13083-864, Brazil
| | - Carlos H Sponton
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo 13083-864, Brazil; Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Roger F Castilho
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083-888, Brazil
| | - Licio A Velloso
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo 13083-864, Brazil; National Institute of Science and Technology on Neuroimmunomodulation, Campinas, São Paulo 13083-864, Brazil.
| |
Collapse
|
2
|
Ferreira YAM, Estadella D, Pisani LP. Effect of Different Fatty Acid Types on Mitochondrial Dysfunction Associated With Brown and Beige Adipose Tissue. Nutr Rev 2025:nuaf048. [PMID: 40233210 DOI: 10.1093/nutrit/nuaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Adipose tissue serves as a dynamic endocrine organ that is pivotal in metabolic regulation. Augmenting mitochondrial activity within this tissue holds promise in combating obesity. Mitochondrial function is intricately modulated by diverse fatty acid compositions. This comprehensive review aimed to elucidate the molecular mechanisms underlying mitochondrial dysfunction induced by various fatty acid profiles. While saturated fatty acids (SFAs) pose a threat to mitochondrial integrity, polyunsaturated fatty acids (PUFAs), notably n-3, mitigate SFA-induced damage, concurrently regulating thermogenic gene expression. With regard to monounsaturated fatty acids (MUFAs), their impact on mitochondrial function in adipose tissue remains relatively unexplored. Although human studies are imperative for comprehensive insights, prioritizing the consumption of n-3 fatty acids and MUFAs has emerged as a strategic approach, potentially enhancing mitochondrial biogenesis and metabolic pathways. This synthesis underscores the critical need for further investigation of the differential effects of fatty acid types on adipose tissue mitochondria, offering potential avenues for obesity intervention.
Collapse
Affiliation(s)
- Yasmin Alaby Martins Ferreira
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil
| | - Débora Estadella
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil
| |
Collapse
|
3
|
Park SY, Cho Y, Son SM, Hur JH, Kim Y, Oh H, Lee HY, Jung S, Park S, Kim IY, Lee SJ, Choi CS. Activin E is a new guardian protecting against hepatic steatosis via inhibiting lipolysis in white adipose tissue. Exp Mol Med 2025; 57:466-477. [PMID: 39948368 PMCID: PMC11873131 DOI: 10.1038/s12276-025-01403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 03/04/2025] Open
Abstract
Hepatic endoplasmic reticulum (ER) stress is implicated in the development of steatosis and its progression to nonalcoholic steatohepatitis (NASH). The ER in the liver can sustain metabolic function by activating defense mechanisms that delay or prevent the progression of nonalcoholic fatty liver disease (NAFLD). However, the precise mechanisms by which the ER stress response protects against NAFLD remain largely unknown. Recently, activin E has been linked to metabolic diseases such as insulin resistance and NAFLD. However, the physiological conditions and regulatory mechanisms driving hepatic Inhbe expression (which encodes activin E) as well as the metabolic role of activin E in NAFLD require further investigation. Here we found that hepatic Inhbe expression increased under prolonged fasting and ER stress conditions, which was mediated by ATF4, as determined by promoter analysis in a mouse model. Consistently, a positive correlation between INHBE and ATF4 expression levels in relation to NAFLD status was confirmed using public human NAFLD datasets. To investigate the role of activin E in hepatic steatosis, we assessed the fluxes of the lipid metabolism in an Inhbe-knockout mouse model. These mice displayed a lean phenotype but developed severe hepatic steatosis under a high-fat diet. The deficiency of Inhbe resulted in increased lipolysis in adipose tissue, leading to increased fatty acid influx into the liver. Conversely, hepatic overexpression of Inhbe ameliorated hepatic steatosis by suppressing lipolysis in adipose tissue through ALK7-Smad signaling. In conclusion, activin E serves as a regulatory hepatokine that prevents fatty acid influx into the liver, thereby protecting against NAFLD.
Collapse
Affiliation(s)
- Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yoonil Cho
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Sae-Mi Son
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Jang Ho Hur
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hyunhee Oh
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Hui-Young Lee
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Sanghee Park
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Exercise Rehabilitation, Gachon University, Incheon, Republic of Korea
| | - Il-Young Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea.
- Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
4
|
Ehab M, Omran N, Handoussa H. The modulatory effect of oat on brain-derived neurotrophic factor, orexigenic neuropeptides, and dopaminergic signaling in obesity-induced rat model: a comparative study to orlistat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1251-1262. [PMID: 39314063 DOI: 10.1002/jsfa.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Obesity is a non-communicable complex disease that is the fifth leading cause of death worldwide. According to a novel viewpoint, the brain plays a significant role in the central regulation of satiety and energy homeostasis. Because of its rich nutritional profile and versatile uses, oat (Avena sativa) is one of the most popular functional foods recommended by many nutritionists. The anti-obesity effect of oat was hypothesized, focusing on the brain as the target organ. In the current study, the interplay between brain biomarkers, obesity, and its related complications was evaluated in diet-induced obese rats for 25 weeks, in which 60 adult male white albino Wistar rats were divided into three control and seven treatment groups given oat extracts in a dose-dependent manner. RESULTS Oat significantly improved obesity-related metabolic complications. In terms of brain function, oat significantly increased dopaminergic signaling, brain-derived neurotrophic factor levels, vaspin, irisin, and uncoupling protein-1 brain levels, while decreasing the expression of agouti-related peptide and neuropeptide Y (P-value < 0.05). CONCLUSION The current study proposes oat supplementation as a new conceptual framework with numerous implications for hedonic and homeostatic mechanisms that control satiety. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Madonna Ehab
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nayra Omran
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- School of Life and Medicinal Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
5
|
Wang Z, Zhu M, Li Q, Cao J, Zhong Q, Jin Z, Huang Y, Lan Q, Gao Y, Xiong Z. Lycorine ameliorates liver steatosis, oxidative stress, ferroptosis and intestinal homeostasis imbalance in MASLD mice. Mol Med 2024; 30:235. [PMID: 39604837 PMCID: PMC11600876 DOI: 10.1186/s10020-024-01003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease worldwide and few drugs are available for its treatment. Lycorine has effective anti-inflammatory and lipid-lowering effects, but the impact on MASLD is not fully understood. In this study, we intend to test the intervention effect of lycorine on MASLD. METHODS A MASLD mouse model was constructed on a high-fat diet for 16 weeks, and low, medium, and high doses of lycorine were given by gavage for the last 4 weeks. Detecting indicators related to liver steatosis, oxidative stress, and ferroptosis. In vivo and in vitro experiments co-validate potential targets identified by network pharmacology, molecular docking and western blot for lycorine intervention in MASLD liver. A combination of pathology, western blot, qRT-PCR, and 16 S rRNA sequencing verified adipose tissue and intestinal alterations. RESULTS Lycorine ameliorated hepatic steatosis, oxidative stress and ferroptosis in MASLD mice by inhibiting the expression of phosphorylated EGFR, inhibiting the PI3K/AKT signaling pathway. We also observed a dose-dependent effect of lycorine to improve some of the indicators of MASLD. In vitro, knockdown of EGFR significantly attenuated palmitic acid-induced hepatocyte steatosis. In addition, lycorine promoted WAT browning for thermogenesis and energy consumption, affected the composition of intestinal flora, improved the intestinal barrier, and reduced intestinal inflammation. CONCLUSIONS EGFR was the target of lycorine intervention in MASLD. Lycorine ameliorated hepatic steatosis, oxidative stress and ferroptosis by affecting the EGFR/PI3K/AKT signaling pathway in MASLD mice. Furthermore, lycorine promoted WAT browning and ameliorated intestinal homeostatic imbalance. The above effects may also have dose-dependent effects.
Collapse
Affiliation(s)
- Ziwen Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengpei Zhu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangqiang Zhong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Jin
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Huang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lan
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Gao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- , Present address: #39 Yanhu Avenue, East Lake Scenic Area, Wuhan, 430077, Hubei, China.
| |
Collapse
|
6
|
Xu X, Charrier A, Congrove S, Ockunzzi J, Buchner DA. Cell-state-dependent regulation of PPARγ signaling by the transcription factor ZBTB9 in adipocytes. J Biol Chem 2024; 300:107985. [PMID: 39542250 DOI: 10.1016/j.jbc.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear hormone receptor that is a master regulator of adipocyte differentiation and function. ZBTB9 is a widely expressed but poorly studied transcription factor that was predicted to interact with PPARγ based on large-scale protein-protein interaction experiments. In addition, genome-wide association studies (GWAS) revealed associations between ZBTB9 and BMI, T2D risk, and HbA1c levels. Here we show that Zbtb9 deficiency in mature adipocytes decreased PPARγ activity and protein level, and thus acts as a positive regulator of PPARγ signaling. In contrast, Zbtb9 deficiency in 3T3-L1 and human preadipocytes increased PPARγ levels and enhanced adipogenesis. Transcriptomic and transcription factor binding site analyses of Zbtb9 deficient preadipocytes revealed that the E2F pathway, controlled by the E2F family of transcription factors that are classically associated with cell cycle regulation, was among the most upregulated pathways. E2F1 positively regulates adipogenesis by promoting Pparg expression, independent of its cell cycle role, via direct binding to the Pparg promoter early during adipogenesis. RB phosphorylation (pRB), which regulates E2F activity, was also upregulated in Zbtb9 deficient preadipocytes. Critically, an E2F1 inhibitor blocked the effects of Zbtb9 deficiency on adipogenesis. Collectively, these results demonstrate that Zbtb9 inhibits adipogenesis as a negative regulator of Pparg expression via pRB-E2F signaling. Our findings reveal cell-state dependent roles of ZBTB9 in adipocytes, identifying a new molecule that regulates adipocyte biology as both a positive and negative regulator of PPARγ signaling depending on the cellular context, and thus may be important in the pathogenesis of obesity and T2D.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alyssa Charrier
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sunny Congrove
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jeremiah Ockunzzi
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
7
|
Bardova K, Janovska P, Vavrova A, Kopecky J, Zouhar P. Adaptive Induction of Nonshivering Thermogenesis in Muscle Rather Than Brown Fat Could Counteract Obesity. Physiol Res 2024; 73:S279-S294. [PMID: 38752772 PMCID: PMC11412341 DOI: 10.33549/physiolres.935361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Warm-blooded animals such as birds and mammals are able to protect stable body temperature due to various thermogenic mechanisms. These processes can be facultative (occurring only under specific conditions, such as acute cold) and adaptive (adjusting their capacity according to long-term needs). They can represent a substantial part of overall energy expenditure and, therefore, affect energy balance. Classical mechanisms of facultative thermogenesis include shivering of skeletal muscles and (in mammals) non-shivering thermogenesis (NST) in brown adipose tissue (BAT), which depends on uncoupling protein 1 (UCP1). Existence of several alternative thermogenic mechanisms has been suggested. However, their relative contribution to overall heat production and the extent to which they are adaptive and facultative still needs to be better defined. Here we focus on comparison of NST in BAT with thermogenesis in skeletal muscles, including shivering and NST. We present indications that muscle NST may be adaptive but not facultative, unlike UCP1-dependent NST. Due to its slow regulation and low energy efficiency, reflecting in part the anatomical location, induction of muscle NST may counteract development of obesity more effectively than UCP1-dependent thermogenesis in BAT.
Collapse
Affiliation(s)
- K Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | | | | | | | |
Collapse
|
8
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
9
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
10
|
Cui X, Cao Q, Li F, Jing J, Liu Z, Yang X, Schwartz GJ, Yu L, Shi H, Shi H, Xue B. The histone methyltransferase SUV420H2 regulates brown and beige adipocyte thermogenesis. JCI Insight 2024; 9:e164771. [PMID: 38713533 PMCID: PMC11382888 DOI: 10.1172/jci.insight.164771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Activation of brown adipose tissue (BAT) thermogenesis increases energy expenditure and alleviates obesity. Here we discover that histone methyltransferase suppressor of variegation 4-20 homolog 2 (Suv420h2) expression parallels that of Ucp1 in brown and beige adipocytes and that Suv420h2 knockdown significantly reduces - whereas Suv420h2 overexpression significantly increases - Ucp1 levels in brown adipocytes. Suv420h2 knockout (H2KO) mice exhibit impaired cold-induced thermogenesis and are prone to diet-induced obesity. In contrast, mice with specific overexpression of Suv420h2 in adipocytes display enhanced cold-induced thermogenesis and are resistant to diet-induced obesity. Further study shows that Suv420h2 catalyzes H4K20 trimethylation at eukaryotic translation initiation factor 4E-binding protein 1 (4e-bp1) promoter, leading to downregulated expression of 4e-bp1, a negative regulator of the translation initiation complex. This in turn upregulates PGC1α protein levels, and this upregulation is associated with increased expression of thermogenic program. We conclude that Suv420h2 is a key regulator of brown/beige adipocyte development and thermogenesis.
Collapse
Affiliation(s)
- Xin Cui
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Zhixue Liu
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Xiaosong Yang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Liqing Yu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huidong Shi
- Georgia Cancer Center and
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Xu X, Charrier A, Congrove S, Buchner DA. Cell-state dependent regulation of PPAR γ signaling by ZBTB9 in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583402. [PMID: 38496622 PMCID: PMC10942320 DOI: 10.1101/2024.03.04.583402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Adipocytes play a critical role in metabolic homeostasis. Peroxisome proliferator-activated receptor- γ (PPAR γ ) is a nuclear hormone receptor that is a master regulator of adipocyte differentiation and function. ZBTB9 was predicted to interact with PPAR γ based on large-scale protein interaction experiments. In addition, GWAS studies in the type 2 diabetes (T2D) Knowledge Portal revealed associations between Z btb9 and both BMI and T2D risk. Here we show that ZBTB9 positively regulates PPAR γ activity in mature adipocytes. Surprisingly Z btb9 knockdown (KD) also increased adipogenesis in 3T3-L1 cells and human preadipocytes. E2F activity was increased and E2F downstream target genes were upregulated in Zbtb9 -KD preadipocytes. Accordingly, RB phosphorylation, which regulates E2F activity, was enhanced in Zbtb9 -KD preadipocytes. Critically, an E2F1 inhibitor blocked the effects of Zbtb9 deficiency on adipogenic gene expression and lipid accumulation. Collectively, these results demonstrate that Zbtb9 inhibits adipogenesis as a negative regulator of Pparg expression via altered RB-E2F1 signaling. Our findings reveal complex cell-state dependent roles of ZBTB9 in adipocytes, identifying a new molecule that regulates adipogenesis and adipocyte biology as both a positive and negative regulator of PPAR γ signaling depending on the cellular context, and thus may be important in the pathogenesis and treatment of obesity and T2D.
Collapse
|
12
|
Ng MY, Song ZJ, Venkatesan G, Rodriguez-Cuenca S, West JA, Yang S, Tan CH, Ho PCL, Griffin JL, Vidal-Puig A, Bassetto M, Hagen T. Conjugating uncoupler compounds with hydrophobic hydrocarbon chains to achieve adipose tissue selective drug accumulation. Sci Rep 2024; 14:4932. [PMID: 38418847 PMCID: PMC10901892 DOI: 10.1038/s41598-024-54466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhi Jian Song
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | | | - Sergio Rodriguez-Cuenca
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, The University of Cambridge, Cambridge, UK
| | - James A West
- Department of Biochemistry, The University of Cambridge, Cambridge, UK
| | - Shili Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Choon Hong Tan
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Julian L Griffin
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Aberdeen, UK
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, The University of Cambridge, Cambridge, UK
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Giordano AP, Gambaro SE, Alzamendi A, Harnichar AE, Rey MA, Ongaro L, Spinedi E, Zubiría MG, Giovambattista A. Dexamethasone Inhibits White Adipose Tissue Browning. Int J Mol Sci 2024; 25:2714. [PMID: 38473960 DOI: 10.3390/ijms25052714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
White adipose tissue (WAT) regulates energy balance through energy storage, adipokines secretion and the thermogenesis process. Beige adipocytes are responsible for WAT thermogenesis. They are generated by adipogenesis or transdifferentiation during cold or β3-adrenergic agonist stimulus through a process called browning. Browning has gained significant interest for to its preventive effect on obesity. Glucocorticoids (GCs) have several functions in WAT biology; however, their role in beige adipocyte generation and WAT browning is not fully understood. The aim of our study was to determine the effect of dexamethasone (DXM) on WAT thermogenesis. For this purpose, rats were treated with DXM at room temperature (RT) or cold conditions to determine different thermogenic markers. Furthermore, the effects of DXM on the adipogenic potential of beige precursors and on mature beige adipocytes were evaluated in vitro. Our results showed that DXM decreased UCP-1 mRNA and protein levels, mainly after cold exposure. In vitro studies showed that DXM decreased the expression of a beige precursor marker (Ebf2), affecting their ability to differentiate into beige adipocytes, and inhibited the thermogenic response of mature beige adipocytes (Ucp-1, Dio2 and Pgc1α gene expressions and mitochondrial respiration). Overall, our data strongly suggest that DXM can inhibit the thermogenic program of both retroperitoneal and inguinal WAT depots, an effect that could be exerted, at least partially, by inhibiting de novo cell generation and the thermogenic response in beige adipocytes.
Collapse
Affiliation(s)
- Alejandra Paula Giordano
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Sabrina Eliana Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Ana Alzamendi
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
| | - Alejandro Ezequiel Harnichar
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
| | - María Amanda Rey
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 0G4, Canada
| | - Eduardo Spinedi
- CENEXA (UNLP-CONICET), La Plata Medical School-UNLP, Calles 60 y 120, La Plata 1900, Argentina
| | - María Guillermina Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
14
|
Weidlinger S, Winterberger K, Pape J, Weidlinger M, Janka H, von Wolff M, Stute P. Impact of estrogens on resting energy expenditure: A systematic review. Obes Rev 2023; 24:e13605. [PMID: 37544655 DOI: 10.1111/obr.13605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
The fear of weight gain is one of the main reasons for women not to initiate or to early discontinue hormonal contraception or menopausal hormone therapy. Resting energy expenditure is by far the largest component and the most important determinant of total energy expenditure. Given that low resting energy expenditure is a confirmed predictive factor for weight gain and consecutively for the development of obesity, research into the influence of sex steroids on resting energy expenditure is a particularly exciting area. The objective of this systematic review was to evaluate the effects of medication with natural and synthetic estrogens on resting energy expenditure in healthy normal weight and overweight women. Through complex systematic literature searches, a total of 10 studies were identified that investigated the effects of medication with estrogens on resting energy expenditure. Our results demonstrate that estrogen administration increases resting energy expenditure by up to +208 kcal per day in the context of contraception and by up to +222 kcal per day in the context of menopausal hormone therapy, suggesting a preventive effect of circulating estrogen levels and estrogen administration on weight gain and obesity development.
Collapse
Affiliation(s)
- Susanna Weidlinger
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Katja Winterberger
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Janna Pape
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | | | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, Bern, Switzerland
| | - Michael von Wolff
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Petra Stute
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Coulter AA, Greenway FL, Zhang D, Ghosh S, Coulter CR, James SL, He Y, Cusimano LA, Rebello CJ. Naringenin and β-carotene convert human white adipocytes to a beige phenotype and elevate hormone- stimulated lipolysis. Front Endocrinol (Lausanne) 2023; 14:1148954. [PMID: 37143734 PMCID: PMC10153092 DOI: 10.3389/fendo.2023.1148954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Naringenin, a peroxisome proliferator-activated receptor (PPAR) activator found in citrus fruits, upregulates markers of thermogenesis and insulin sensitivity in human adipose tissue. Our pharmacokinetics clinical trial demonstrated that naringenin is safe and bioavailable, and our case report showed that naringenin causes weight loss and improves insulin sensitivity. PPARs form heterodimers with retinoic-X-receptors (RXRs) at promoter elements of target genes. Retinoic acid is an RXR ligand metabolized from dietary carotenoids. The carotenoid β-carotene reduces adiposity and insulin resistance in clinical trials. Our goal was to examine if carotenoids strengthen the beneficial effects of naringenin on human adipocyte metabolism. Methods Human preadipocytes from donors with obesity were differentiated in culture and treated with 8µM naringenin + 2µM β-carotene (NRBC) for seven days. Candidate genes involved in thermogenesis and glucose metabolism were measured as well as hormone-stimulated lipolysis. Results We found that β-carotene acts synergistically with naringenin to boost UCP1 and glucose metabolism genes including GLUT4 and adiponectin, compared to naringenin alone. Protein levels of PPARα, PPARγ and PPARγ-coactivator-1α, key modulators of thermogenesis and insulin sensitivity, were also upregulated after treatment with NRBC. Transcriptome sequencing was conducted and the bioinformatics analyses of the data revealed that NRBC induced enzymes for several non-UCP1 pathways for energy expenditure including triglyceride cycling, creatine kinases, and Peptidase M20 Domain Containing 1 (PM20D1). A comprehensive analysis of changes in receptor expression showed that NRBC upregulated eight receptors that have been linked to lipolysis or thermogenesis including the β1-adrenergic receptor and the parathyroid hormone receptor. NRBC increased levels of triglyceride lipases and agonist-stimulated lipolysis in adipocytes. We observed that expression of RXRγ, an isoform of unknown function, was induced ten-fold after treatment with NRBC. We show that RXRγ is a coactivator bound to the immunoprecipitated PPARγ protein complex from white and beige human adipocytes. Discussion There is a need for obesity treatments that can be administered long-term without side effects. NRBC increases the abundance and lipolytic response of multiple receptors for hormones released after exercise and cold exposure. Lipolysis provides the fuel for thermogenesis, and these observations suggest that NRBC has therapeutic potential.
Collapse
Affiliation(s)
- Ann A. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Frank L. Greenway
- Clinical Trials, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Dachuan Zhang
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sujoy Ghosh
- Adjunct Faculty, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Cathryn R. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sarah L. James
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Yanlin He
- Brain Glycemic and Metabolism Control, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Luke A. Cusimano
- Cusimano Plastic and Reconstructive Surgery, Baton Rouge, LA, United States
| | - Candida J. Rebello
- Nutrition and Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
16
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
17
|
Michurina S, Stafeev I, Boldyreva M, Truong VA, Ratner E, Menshikov M, Hu YC, Parfyonova Y. Transplantation of Adipose-Tissue-Engineered Constructs with CRISPR-Mediated UCP1 Activation. Int J Mol Sci 2023; 24:ijms24043844. [PMID: 36835254 PMCID: PMC9959691 DOI: 10.3390/ijms24043844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Thermogenic adipocytes have potential utility for the development of approaches to treat type 2 diabetes and obesity-associated diseases. Although several reports have proved the positive effect of beige and brown adipocyte transplantation in obese mice, translation to human cell therapy needs improvement. Here, we describe the application of CRISPR activation (CRISPRa) technology for generating safe and efficient adipose-tissue-engineered constructs with enhanced mitochondrial uncoupling protein 1 (UCP1) expression. We designed the CRISPRa system for the activation of UCP1 gene expression. CRISPRa-UCP1 was delivered into mature adipocytes by a baculovirus vector. Modified adipocytes were transplanted in C57BL/6 mice, followed by analysis of grafts, inflammation and systemic glucose metabolism. Staining of grafts on day 8 after transplantation shows them to contain UCP1-positive adipocytes. Following transplantation, adipocytes remain in grafts and exhibit expression of PGC1α transcription factor and hormone sensitive lipase (HSL). Transplantation of CRISPRa-UCP1-modified adipocytes does not influence glucose metabolism or inflammation in recipient mice. We show the utility and safety of baculovirus vectors for CRISPRa-based thermogenic gene activation. Our findings suggest a means of improving existing cell therapy approaches using baculovirus vectors and CRISPRa for modification and transplantation of non-immunogenic adipocytes.
Collapse
Affiliation(s)
- Svetlana Michurina
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (S.M.); (I.S.)
| | - Iurii Stafeev
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
- Correspondence: (S.M.); (I.S.)
| | - Maria Boldyreva
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
- Cell and Molecular Biology Unit, Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Elizaveta Ratner
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov, 121552 Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
18
|
Janovska P, Zouhar P, Bardova K, Otahal J, Vrbacky M, Mracek T, Adamcova K, Lenkova L, Funda J, Cajka T, Drahota Z, Stanic S, Rustan AC, Horakova O, Houstek J, Rossmeisl M, Kopecky J. Impairment of adrenergically-regulated thermogenesis in brown fat of obesity-resistant mice is compensated by non-shivering thermogenesis in skeletal muscle. Mol Metab 2023; 69:101683. [PMID: 36720306 PMCID: PMC9922683 DOI: 10.1016/j.molmet.2023.101683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) can be activated via the adrenergic system in response to cold or diet, contributing to both thermal and energy homeostasis. Other mechanisms, including metabolism of skeletal muscle, may also be involved in NST. However, relative contribution of these energy dissipating pathways and their adaptability remain a matter of long-standing controversy. METHODS We used warm-acclimated (30 °C) mice to characterize the effect of an up to 7-day cold acclimation (6 °C; CA) on thermoregulatory thermogenesis, comparing inbred mice with a genetic background conferring resistance (A/J) or susceptibility (C57BL/6 J) to obesity. RESULTS Both warm-acclimated C57BL/6 J and A/J mice exhibited similar cold endurance, assessed as a capability to maintain core body temperature during acute exposure to cold, which improved in response to CA, resulting in comparable cold endurance and similar induction of UCP1 protein in BAT of mice of both genotypes. Despite this, adrenergic NST in BAT was induced only in C57BL/6 J, not in A/J mice subjected to CA. Cold tolerance phenotype of A/J mice subjected to CA was not based on increased shivering, improved insulation, or changes in physical activity. On the contrary, lipidomic, proteomic and gene expression analyses along with palmitoyl carnitine oxidation and cytochrome c oxidase activity revealed induction of lipid oxidation exclusively in skeletal muscle of A/J mice subjected to CA. These changes appear to be related to skeletal muscle NST, mediated by sarcolipin-induced uncoupling of sarco(endo)plasmic reticulum calcium ATPase pump activity and accentuated by changes in mitochondrial respiratory chain supercomplexes assembly. CONCLUSIONS Our results suggest that NST in skeletal muscle could be adaptively augmented in the face of insufficient adrenergic NST in BAT, depending on the genetic background of the mice. It may provide both protection from cold and resistance to obesity, more effectively than BAT.
Collapse
Affiliation(s)
- Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jakub Otahal
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marek Vrbacky
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Lucie Lenkova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Cajka
- Laboratory of Translational Metabolism and Laboratory of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Zdenek Drahota
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic,Department of Physiology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44, Prague, Czech Republic
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 0371, Oslo, Norway
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Josef Houstek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
19
|
Li S, Wang K, Wang Z, Zhang W, Liu Z, Cheng Y, Zhu J, Zhong M, Hu S, Zhang Y. Application and trend of bioluminescence imaging in metabolic syndrome research. Front Chem 2023; 10:1113546. [PMID: 36700071 PMCID: PMC9868317 DOI: 10.3389/fchem.2022.1113546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Bioluminescence imaging is a non-invasive technology used to visualize physiological processes in animals and is useful for studying the dynamics of metabolic syndrome. Metabolic syndrome is a broad spectrum of diseases which are rapidly increasing in prevalence, and is closely associated with obesity, type 2 diabetes, nonalcoholic fatty liver disease, and circadian rhythm disorder. To better serve metabolic syndrome research, researchers have established a variety of animal models expressing luciferase, while also committing to finding more suitable luciferase promoters and developing more efficient luciferase-luciferin systems. In this review, we systematically summarize the applications of different models for bioluminescence imaging in the study of metabolic syndrome.
Collapse
Affiliation(s)
- Shirui Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Kang Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,Postgraduate Department, Shandong First Medical University, Jinan, China
| | - Zeyu Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,Postgraduate Department, Shandong First Medical University, Jinan, China
| | - Wenjie Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zenglin Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yugang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Sanyuan Hu, ; Yun Zhang,
| | - Yun Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Sanyuan Hu, ; Yun Zhang,
| |
Collapse
|
20
|
SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice. Nat Commun 2022; 13:7439. [PMID: 36509749 PMCID: PMC9744749 DOI: 10.1038/s41467-022-35219-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Brown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD+-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, here we reveal that SIRT7, one of seven mammalian sirtuins, suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions. Whole-body and brown adipose tissue-specific Sirt7 knockout mice have higher body temperature and energy expenditure. SIRT7 deficiency increases the protein level of UCP1, a key regulator of brown adipose tissue thermogenesis. Mechanistically, we found that SIRT7 deacetylates insulin-like growth factor 2 mRNA-binding protein 2, an RNA-binding protein that inhibits the translation of Ucp1 mRNA, thereby enhancing its inhibitory action on Ucp1. Furthermore, SIRT7 attenuates the expression of batokine genes, such as fibroblast growth factor 21. In conclusion, we propose that SIRT7 serves as an energy-saving factor by suppressing brown adipose tissue functions.
Collapse
|
21
|
Shen H, He T, Wang S, Hou L, Wei Y, Liu Y, Mo C, Zhao Z, You W, Guo H, Li B. SOX4 promotes beige adipocyte-mediated adaptive thermogenesis by facilitating PRDM16-PPARγ complex. Theranostics 2022; 12:7699-7716. [PMID: 36451857 PMCID: PMC9706582 DOI: 10.7150/thno.77102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Brown and beige fat protect against cold environments and obesity by catabolizing stored energy to generate heat. This process is achieved by controlling thermogenesis-related gene expression and the development of brown/beige fat through the induction of transcription factors, most notably PPARγ. However, the cofactors that induce the expression of thermogenic genes with PPARγ are still not well understood. In this study, we explored the role of SOX4 in adaptive thermogenesis and its relationship with PPARγ. Methods: Whole transcriptome deep sequencing (RNA-seq) analysis of inguinal subcutaneous white adipose tissue (iWAT) after cold stimulation was performed to identify genes with differential expression in mice. Indirect calorimetry detected oxygen consumption rate and heat generation. mRNA levels were analyzed by qPCR assays. Proteins were detected by immunoblotting and immunofluorescence. Interaction of proteins was detected by endogenous and exogenous Co-IP. ChIP-qPCR, FAIRE assay and luciferase reporter assays were used to investigate transcriptional regulation. Results: SOX4 was identified as the main transcriptional effector of thermogenesis. Mice with either adipocyte-specific or UCP1+ cells deletion of SOX4 exhibited significant cold intolerance, decreased energy expenditure, and beige adipocyte formation, which was attributed to decreased thermogenic gene expression. In addition, these mice developed obesity on a high-fat diet, with severe hepatic steatosis, insulin resistance, and inflammation. At the cell level, loss of SOX4 from preadipocytes inhibited the development of beige adipocytes, and loss of SOX4 from mature beige adipocytes reduced the expression of thermogenesis-related genes and energy metabolism. Mechanistically, SOX4 stimulated the transcriptional activity of Ucp1 by binding to PPARγ and activating its transcriptional function. These actions of SOX4 were, at least partly, mediated by recruiting PRDM16 to PPARγ, thus forming a transcriptional complex to elevate the expression of thermogenic genes. Conclusion: SOX4, as a coactivator of PPARγ, drives the thermogenic gene expression program and thermogenesis of beige fat, promoting energy expenditure. It has important physiological significance in resisting cold and obesity.
Collapse
Affiliation(s)
- Huanming Shen
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China
| | - Ting He
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China
| | - Shuai Wang
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China
| | - Lingfeng Hou
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China
| | - Yixin Wei
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China
| | - Yunjia Liu
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China
| | - Chunli Mo
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China
| | - Zehang Zhao
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China
| | - WeiXin You
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China
| | - Huiling Guo
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China.,✉ Corresponding authors: Dr. Huiling Guo School of Life Sciences, Xiamen University, Xiang'an District, Xiamen, Fujian, China, 361102; Tel: 86-592-2186717; E-mail: . Dr. Boan Li School of Life Sciences, Xiamen University, Xiang'an District, Xiamen, Fujian, China, 361102; Tel: 86-592-2186717; E-mail:
| | - Boan Li
- State key laboratory of cellular stress biology, innovation center for cell signaling network and engineering research center of molecular diagnostics of the ministry of education, school of life sciences, Xiamen university, Xiamen 361100, Fujian, China.,Lead Contact.,✉ Corresponding authors: Dr. Huiling Guo School of Life Sciences, Xiamen University, Xiang'an District, Xiamen, Fujian, China, 361102; Tel: 86-592-2186717; E-mail: . Dr. Boan Li School of Life Sciences, Xiamen University, Xiang'an District, Xiamen, Fujian, China, 361102; Tel: 86-592-2186717; E-mail:
| |
Collapse
|
22
|
Al-Obaidi ZAF, Erdogan CS, Sümer E, Özgün HB, Gemici B, Sandal S, Yilmaz B. Investigation of obesogenic effects of hexachlorobenzene, DDT and DDE in male rats. Gen Comp Endocrinol 2022; 327:114098. [PMID: 35878704 DOI: 10.1016/j.ygcen.2022.114098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Obesity has become a very important public health problem and is increasing globally. Genetics, individual and environmental factors play roles in the etiology of this complex disorder. Recently, several environmental pollutants have been suggested to have obesogenic activities. Peroxisome proliferator activating receptor gamma (PPARγ), uncoupling protein-1 (UCP1) and their expression in white adipose tissue (WAT) and brown adipose tissue (BAT) play key roles in adipogenesis. UCP3 and irisin were reported to play roles in non-shivering thermogenesis. Our primary aim was to investigate obesogenic effects of hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) in rats. In addition, thermoregulatory effects of HCB, DDT and DDE were also investigated by analyzing the levels of Ucp3 and irisin. Thirty-two adult male Sprague-Dawley rats were randomly divided into four groups as control, HCB, DDT and DDE. Animals were administered with organochlorine pesticides (OCPs; 5 mg/kg bw) by oral gavage every other day for five weeks. At the end of the experimental period, the animals were sacrificed, BAT and WAT samples were collected to analyze Pparγ, Ucp1 and Ucp3 levels. Moreover, skeletal muscle samples were collected to examine Ucp3 and irisin levels. Serum glucose, cholesterol and triglyceride levels were also determined. Body weight and core temperature of the animals were not significantly affected by any of the OCP administration. Serum glucose, cholesterol and triglyceride levels were similar among the experimental groups. Pparγ expression was significantly elevated by HCB administration only in WAT (p < 0.05). On the other hand, both Pparγ and Ucp1 expressions were diminished in WAT and BAT (p < 0.01) by DDT treatment, while in WAT, DDE significantly decreased Pparγ expression without altering its expression in BAT (p < 0.001). Ucp3 and irisin levels in skeletal muscle were not altered. Our findings show that both DDT and DDE reduce the browning of WAT by suppressing white adipocytes and thus may have obesogenic activity in male rats without altering thermoregulation. In addition, HCB, DDT and DDE-induced alterations in expression of Pparγ and Ucp1 in WAT implicates differential regulation of adipogenic processes.
Collapse
Affiliation(s)
| | | | - Engin Sümer
- Yeditepe University, Faculty of Medicine, Experimental Research Center, Istanbul, Turkey
| | - Hüseyin Bugra Özgün
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Süleyman Sandal
- İnönü University, Faculty of Medicine, Department of Physiology, Malatya, Turkey
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
23
|
da Silva IV, Gullette S, Florindo C, Huang NK, Neuberger T, Ross AC, Soveral G, Castro R. The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis. Biomedicines 2022; 10:biomedicines10051159. [PMID: 35625895 PMCID: PMC9138310 DOI: 10.3390/biomedicines10051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE−/− (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sean Gullette
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Correspondence: (G.S.); (R.C.)
| | - Rita Castro
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Correspondence: (G.S.); (R.C.)
| |
Collapse
|
24
|
Alberici LC, Oliveira HCF. Mitochondrial Adaptive Responses to Hypertriglyceridemia and Bioactive Lipids. Antioxid Redox Signal 2022; 36:953-968. [PMID: 34409856 DOI: 10.1089/ars.2021.0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Significance: Altered plasma triglyceride metabolism and changes in dietary fatty acid types and levels are major contributors to the development of metabolic and cardiovascular diseases such as fatty liver disease, obesity, diabetes, and atherosclerosis. Lipid accumulation in visceral adipose tissue and ectopically in other organs, as well as lipid-induced redox imbalance, is connected to mitochondrial dysfunction in a range of oxidative stress-associated metabolic and degenerative disorders. Recent Advances: Successful mitochondrial adaptive responses in the context of hypertriglyceridemia and dietary bioactive polyunsaturated fatty acids contribute to increase body energy expenditure and reduce oxidative stress, thus allowing several cell types to cope with metabolic challenges and stresses. These responses include mitochondrial redox signaling, mild uncoupling, and changes in network dynamic behavior. Critical Issues: Mitochondrial bioenergetics and redox changes in a lipid overload context are relatively well characterized. However, the turning point between adaptive and maladaptive mitochondrial responses remains a critical issue to be elucidated. In addition, the relationship between changes in fusion/fission machinery and mitochondrial function is less well understood. Future Directions: The effective mitochondrial responses described here support the research for new drug design and diet or nutraceutical formulations targeting mitochondrial mild uncoupling and effective quality control as putative strategies for cardiometabolic diseases. Antioxid. Redox Signal. 36, 953-968.
Collapse
Affiliation(s)
- Luciane C Alberici
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helena C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
25
|
Funda J, Villena JA, Bardova K, Adamcova K, Irodenko I, Flachs P, Jedlickova I, Haasova E, Rossmeisl M, Kopecky J, Janovska P. Adipose tissue-specific ablation of PGC-1β impairs thermogenesis in brown fat. Dis Model Mech 2022; 15:dmm049223. [PMID: 35466996 PMCID: PMC9066513 DOI: 10.1242/dmm.049223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Impaired thermogenesis observed in mice with whole-body ablation of peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β; officially known as PPARGC1B) may result from impaired brown fat (brown adipose tissue; BAT) function, but other mechanism(s) could be involved. Here, using adipose-specific PGC-1β knockout mice (PGC-1β-AT-KO mice) we aimed to learn whether specific PGC-1β ablation in adipocytes is sufficient to drive cold sensitivity. Indeed, we found that warm-adapted (30°C) mutant mice were relatively sensitive to acute cold exposure (6°C). When these mice were subjected to cold exposure for 7 days (7-day-CE), adrenergic stimulation of their metabolism was impaired, despite similar levels of thermogenic uncoupling protein 1 in BAT in PGC-1β-AT-KO and wild-type mice. Gene expression in BAT of mutant mice suggested a compensatory increase in lipid metabolism to counteract the thermogenic defect. Interestingly, a reduced number of contacts between mitochondria and lipid droplets associated with low levels of L-form of optic atrophy 1 was found in BAT of PGC-1β-AT-KO mice. These genotypic differences were observed in warm-adapted mutant mice, but they were partially masked by 7-day-CE. Collectively, our results suggest a role for PGC-1β in controlling BAT lipid metabolism and thermogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jiří Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Josep A. Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Illaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Flachs
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Ivana Jedlickova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Eliska Haasova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
26
|
Comprehensive mouse microbiota genome catalog reveals major difference to its human counterpart. PLoS Comput Biol 2022; 18:e1009947. [PMID: 35259160 PMCID: PMC8932566 DOI: 10.1371/journal.pcbi.1009947] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/18/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Mouse is the most used model for studying the impact of microbiota on its host, but the repertoire of species from the mouse gut microbiome remains largely unknown. Accordingly, the similarity between human and mouse microbiomes at a low taxonomic level is not clear. We construct a comprehensive mouse microbiota genome (CMMG) catalog by assembling all currently available mouse gut metagenomes and combining them with published reference and metagenome-assembled genomes. The 41’798 genomes cluster into 1’573 species, of which 78.1% are uncultured, and we discovered 226 new genera, seven new families, and one new order. CMMG enables an unprecedented coverage of the mouse gut microbiome exceeding 86%, increases the mapping rate over four-fold, and allows functional microbiota analyses of human and mouse linking them to the driver species. Comparing CMMG to microbiota from the unified human gastrointestinal genomes shows an overlap of 62% at the genus but only 10% at the species level, demonstrating that human and mouse gut microbiota are largely distinct. CMMG contains the most comprehensive collection of consistently functionally annotated species of the mouse and human microbiome to date, setting the ground for analysis of new and reanalysis of existing datasets at an unprecedented depth. The microbiome plays an indispensable role in our health. Metagenomics enables valuable insights into the composition and functional potential of microbial populations. The analysis of metagenomic data is complex and depends on the availability of reference genomes. The mouse is the most used model for studying the impact of microbiota on its host. However, the microbial species living in the mouse gut remain poorly characterized. We created a comprehensive catalog of all bacterial species commonly living in the gut of laboratory mice by analyzing all publicly available metagenomes from the mouse gut. We collected almost 42 thousand bacterial genomes from 1’573 species, of which 78.1% are uncultured. Our catalog effectively answers the need for a genome reference for this microbiome and allows efficient analysis of mouse gut metagenomes down to the species level. We discovered that mice and humans harbor a largely distinct set of species in their gastrointestinal tracts, a hereto unfeasible analysis.
Collapse
|
27
|
Qin B, Qincao L, He S, Liao Y, Shi J, Xie F, Diao N, Bai L. Parathyroid hormone-related protein prevents high-fat-diet-induced obesity, hepatic steatosis and insulin resistance in mice. Endocr J 2022; 69:55-65. [PMID: 34408100 DOI: 10.1507/endocrj.ej20-0728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Obesity, closely related to systematic metabolic disorders, has become a major public health problem in recent decades. Here, we aimed to study the function of Parathyroid hormone-related protein (PTHrP) on high fat diet (HFD) induced murine obesity. Male C57BL/6J mice were transduced with adeno-associated virus vector encoding PTHrP (AAV-PTHrP) or adeno-associated virus control vector (AAV-Vehicle), following with HFD for 8 weeks. In addition, mice without transduction were fed on normal diet or HFD, respectively. Histological, metabolic and biochemical changes were detected. At the endpoint of experiment, body weight of mice treated with AAV-PTHrP did not increase as much as mice with AAV-Vehicle, but similar as mice with normal diet. Food efficiency ratio and weight of interscapular brown adipose tissue and epididymal white adipose tissue in mice overexpressed PTHrP were also lower than mice transducted with AAV-Vehicle. Besides, administration of AAV-PTHrP inhibited HFD-induced adipocyte hypertrophy. Protein level of PKA signaling pathway and thermogenic gene in adipose tissue exhibited a significant raise in HFD + AAV-PTHrP group, whereas transcription of inflammatory gene were decreased. Additionally, PTHrP overexpression ameliorated HFD-induced dyslipidemia, hepatic steatosis and insulin sensitivity. In HFD-induced murine obesity model, PTHrP is crucial to maintain metabolic homeostasis. PTHrP drives white adipose tissue browning and inhibits whitening of brown adipose tissue. Most importantly, PTHrP prevented HFD-induced obesity, hepatic steatosis and insulin resistance.
Collapse
Affiliation(s)
- Biyan Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Litao Qincao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shuying He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yan Liao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Na Diao
- Guangdong Provincial Key Laboratory of Colorectal Diseases, Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
28
|
miR-21 mimic blocks obesity in mice: A novel therapeutic option. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:401-416. [PMID: 34552821 PMCID: PMC8426473 DOI: 10.1016/j.omtn.2021.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are promising drug targets for obesity and metabolic disorders. Recently, miRNA mimics are providing a unique mechanism of action that guides the process for drug development and sets out the context of their therapeutic application. miRNA (miR)-21 expression in white adipose tissue (WAT) has been associated with obesity. We aimed to analyze miR-21 expression levels in relation to diabetes and obesity to determine the effect that miR-21 mimic has on processes involved in WAT functionality, to dissect the underlying molecular mechanisms, and to study the potential therapeutic application of the miR-21 mimic against obesity. We found higher miR-21 levels in WAT from non-diabetic obese compared to normoweight humans and mice. Moreover, in 3T3-L1 adipocytes, miR-21 mimic affect genes involved in WAT functionality regulation and significantly increase the expression of genes involved in browning and thermogenesis. Interestingly, in vivo treatment with the miR-21 mimic blocked weight gain induced by a high-fat diet in obese mice, without modifying food intake or physical activity. This was associated with metabolic enhancement, WAT browning, and brown adipose tissue (AT) thermogenic programming through vascular endothelial growth factor A (VEGF-A), p53, and transforming growth factor β1 (TGF-β1) signaling pathways. Our findings suggest that miR-21 mimic-based therapy may provide a new opportunity to therapeutically manage obesity and consequently, its associated alterations.
Collapse
|
29
|
Jang J, Chang SH, Song D, Song NJ, Han S, Oh S, Yun UJ, Ahn JY, Lee S, Ku JM, Park KW. Butein-Enriched Fractions of Butea monosperma (Lam.) Taub. Flower Decrease Weight Gains and Increase Energy Expenditure in High-Fat Diet-Induced Obese Mice. J Med Food 2021; 24:1271-1279. [PMID: 34847724 DOI: 10.1089/jmf.2021.k.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Butea monosperma (Lam.) Taub. has been applied to treat inflammatory, metabolic, and infectious diseases. However, the antiobesity effects of B. monosperma (Lam.) Taub. flower (BMF) and the underlying mechanisms have not been determined. In this study, we analyzed the various extraction procedures, investigated the antiobesity effects, and identified the main chemical constituents of BMF. The BMF was subjected to acid hydrolysis in 5% H2SO4 in methanol at 50°C for 48 h and partitioned with ethyl acetate. The acid-hydrolyzed BMF ethyl acetate extracts (BMFE) strongly induced the expression of uncoupling protein 1 (Ucp1) and other thermogenic genes in C3H10T1/2 adipocytes. Daily oral administration of 70 mg/kg BMFE (BMFE70) to mice with diet-induced obesity resulted in less body weight gain, increased glucose tolerance, higher rectal temperature, and increased oxygen consumption. Qualitative and quantitative analyses along with treatments in Akt1 knockout mouse embryonic fibroblasts indicate that butein is a major active ingredient of BMFE, which stimulates Ucp1 gene expression. These data show the effects of butein-containing B. monosperma flower extract on thermogenesis and energy expenditure, further suggesting the potential role of BMFE as a functional ingredient in obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jaeyool Jang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Dawoon Song
- Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Saeroarum Han
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Seungjun Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Ui Jeong Yun
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology and Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jin-Mo Ku
- Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
30
|
Shamsi F, Wang CH, Tseng YH. The evolving view of thermogenic adipocytes - ontogeny, niche and function. Nat Rev Endocrinol 2021; 17:726-744. [PMID: 34625737 PMCID: PMC8814904 DOI: 10.1038/s41574-021-00562-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The worldwide incidence of obesity and its sequelae, such as type 2 diabetes mellitus, have reached pandemic levels. Central to the development of these metabolic disorders is adipose tissue. White adipose tissue stores excess energy, whereas brown adipose tissue (BAT) and beige (also known as brite) adipose tissue dissipate energy to generate heat in a process known as thermogenesis. Strategies that activate and expand BAT and beige adipose tissue increase energy expenditure in animal models and offer therapeutic promise to treat obesity. A better understanding of the molecular mechanisms underlying the development of BAT and beige adipose tissue and the activation of thermogenic function is the key to creating practical therapeutic interventions for obesity and metabolic disorders. In this Review, we discuss the regulation of the tissue microenvironment (the adipose niche) and inter-organ communication between BAT and other tissues. We also cover the activation of BAT and beige adipose tissue in response to physiological cues (such as cold exposure, exercise and diet). We highlight advances in harnessing the therapeutic potential of BAT and beige adipose tissue by genetic, pharmacological and cell-based approaches in obesity and metabolic disorders.
Collapse
Affiliation(s)
- Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
31
|
Albracht-Schulte K, Wilson S, Johnson P, Pahlavani M, Ramalingam L, Goonapienuwala B, Kalupahana NS, Festuccia WT, Scoggin S, Kahathuduwa CN, Moustaid-Moussa N. Sex-Dependent Effects of Eicosapentaenoic Acid on Hepatic Steatosis in UCP1 Knockout Mice. Biomedicines 2021; 9:1549. [PMID: 34829779 PMCID: PMC8615653 DOI: 10.3390/biomedicines9111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022] Open
Abstract
Visceral obesity may be a driving factor in nonalcoholic fatty liver disease (NAFLD) development. Previous studies have shown that the omega-3 polyunsaturated fatty acid, eicosapentaenoic acid (EPA), ameliorates obesity in high-fat (HF) fed male, C57Bl/6 mice at thermoneutral conditions, independent of uncoupling protein 1 (UCP1). Our goals herein were to investigate sex-dependent mechanisms of EPA in the livers of wild type (WT) and UCP1 knockout (KO) male and female mice fed a HF diet (45% kcal fat; WT-HF, KO-HF) with or without supplementation of 36 g/kg EPA (WT-EPA, KO-EPA). KO significantly increased body weight in males, with no significant reductions with EPA in the WT or KO groups. In females, there were no significant differences in body weight among KO groups and no effects of EPA. In males, liver TGs were significantly higher in the KO-HF group and reduced with EPA, which was not observed in females. Accordingly, gene and protein markers of mitochondrial oxidation, peroxisomal biogenesis and oxidation, as well as metabolic futile cycles were sex-dependently impacted by KO and EPA supplementation. These findings suggest a genotypic difference in response to dietary EPA supplementation on the livers of male and female mice with diet-induced obesity and housed at thermoneutrality.
Collapse
Affiliation(s)
- Kembra Albracht-Schulte
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Savanna Wilson
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Paige Johnson
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Mandana Pahlavani
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Latha Ramalingam
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Bimba Goonapienuwala
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Nishan S. Kalupahana
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - William T. Festuccia
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Shane Scoggin
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| | - Chanaka N. Kahathuduwa
- Texas Tech University Health Sciences Center, Department of Laboratory Sciences and Primary Care, Lubbock, TX 79430, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.A.-S.); (S.W.); (P.J.); (M.P.); (L.R.); (B.G.); (N.S.K.); (S.S.)
| |
Collapse
|
32
|
Yan S, Kumari M, Xiao H, Jacobs C, Kochumon S, Jedrychowski M, Chouchani E, Ahmad R, Rosen ED. IRF3 reduces adipose thermogenesis via ISG15-mediated reprogramming of glycolysis. J Clin Invest 2021; 131:144888. [PMID: 33571167 DOI: 10.1172/jci144888] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Adipose thermogenesis is repressed in obesity, reducing the homeostatic capacity to compensate for chronic overnutrition. Inflammation inhibits adipose thermogenesis, but little is known about how this occurs. Here we showed that the innate immune transcription factor IRF3 is a strong repressor of thermogenic gene expression and oxygen consumption in adipocytes. IRF3 achieved this by driving expression of the ubiquitin-like modifier ISG15, which became covalently attached to glycolytic enzymes, thus reducing their function and decreasing lactate production. Lactate repletion was able to restore thermogenic gene expression, even when the IRF3/ISG15 axis was activated. Mice lacking ISG15 phenocopied mice lacking IRF3 in adipocytes, as both had elevated energy expenditure and were resistant to diet-induced obesity. These studies provide a deep mechanistic understanding of how the chronic inflammatory milieu of adipose tissue in obesity prevents thermogenic compensation for overnutrition.
Collapse
Affiliation(s)
- Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Manju Kumari
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Shihab Kochumon
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Edward Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Li C, Davis X, Lahni P, Stuck J, Williamson L, Kaplan J. Obesity protects against sepsis-induced and norepinephrine-induced white adipose tissue browning. Am J Physiol Endocrinol Metab 2021; 321:E433-E442. [PMID: 34370596 PMCID: PMC8461795 DOI: 10.1152/ajpendo.00380.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022]
Abstract
Sepsis is a dysregulated systemic response to infection and can lead to organ damage and death. Obesity is a significant problem worldwide and affects outcomes from sepsis. Our laboratory demonstrated that white adipose tissue (WAT) undergoes browning during sepsis, a process whereby WAT adopts a brown adipose tissue phenotype. However, this browning process was not observed in obese mice during sepsis. White adipose tissue browning is detrimental in patients with burn injury and cancer. We hypothesize that norepinephrine (NE) induces WAT browning in nonobese mice but not in obese mice similarly to sepsis-induced WAT browning. Six-week-old C57BL/6 male mice were randomized to a high-fat diet or normal diet. After 6-7 wk of feeding, polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Norepinephrine was administered intraperitoneally via osmotic minipumps for 18 h or 72 h (no CLP) at which time tissue and plasma were harvested. Controls were mice that underwent CLP (no NE) with 18-h harvest. A separate group of mice underwent pretreatment with NE or vehicle infusion for 72 h, CLP was performed, and at 18 h had tissue and plasma harvested. Sepsis resulted in significant weight loss in both nonobese and obese mice. NE treatment alone caused weight loss in obese mice. Septic nonobese mice had higher uncoupling protein-1 (UCP1) expression compared with control and obese septic mice. NE treatment increased UCP1 expression in nonobese, but not obese mice. NE-treated obese septic mice had lower lung myeloperoxidase (MPO) activity, alanine aminotransferase (ALT), aspartate aminotransferase (AST), TNFα, and IL-6 levels compared with NE-treated nonobese septic mice. Obesity protects mice from septic-induced and NE-induced WAT browning.NEW & NOTEWORTHY White adipose tissue browning is detrimental in patients with burn injury and cancer. WAT browning occurs in nonobese mice and can be induced by β receptor norepinephrine infusion, but obese mice are resistant to sepsis-induced and norepinephrine-induced WAT browning. We propose that the lack of WAT browning and unchanged inflammatory cytokine response may contribute to the protection of obese mice from sepsis.
Collapse
Affiliation(s)
- Cheryl Li
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xenia Davis
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joanna Stuck
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Williamson
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jennifer Kaplan
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
34
|
Sheng Y, Xia F, Chen L, Lv Y, Lv S, Yu J, Liu J, Ding G. Differential Responses of White Adipose Tissue and Brown Adipose Tissue to Calorie Restriction During Aging. J Gerontol A Biol Sci Med Sci 2021; 76:393-399. [PMID: 32222773 DOI: 10.1093/gerona/glaa070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Indexed: 01/15/2023] Open
Abstract
Age-related adipose tissue dysfunction is potentially important in the development of insulin resistance and metabolic disorder. Caloric restriction (CR) is a robust intervention to reduce adiposity, improve metabolic health, and extend healthy life span. Both white adipose tissue (WAT) and brown adipose tissue (BAT) are involved in energy homeostasis. CR triggers the beiging of WAT in young mice; however, the effects of CR on beiging of WAT and function of BAT during aging are unclear. This study aimed to investigate how age and CR impact the beiging of WAT, the function of BAT, and metabolic health in mice. C57BL/6 mice were fed CR diet (40% less than the ad libitum [AL] diet) for 3 months initiated in young (3 months), middle-aged (12 months), and old (19 months) stage. We found age-related changes in different types of adipose tissue, including adipocyte enlargement, declined beiging of WAT, and declined thermogenic and β-oxidational function of BAT. Moreover, CR attenuated age-associated adipocyte enlargement and prevented the age-related decline in beiging potential of WAT. These protective effects on the beiging potential were significant in inguinal WAT at all three ages, which were significant in epididymal WAT at young and old age. In contrast, thermogenic and β-oxidational function of BAT further declined after CR in the young age group. In conclusion, our findings reveal the contribution of WAT beiging decline to age-related metabolic disorder and suggest nutritional intervention, specifically targeting WAT beiging, as an effective approach to metabolic health during aging.
Collapse
Affiliation(s)
- Yunlu Sheng
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Fan Xia
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Lei Chen
- Division of Geriatric Respiratory, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Yifan Lv
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Shan Lv
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Jing Yu
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Juan Liu
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| |
Collapse
|
35
|
Ryan CR, Finch MS, Dunham TC, Murphy JE, Roy BD, MacPherson REK. Creatine Monohydrate Supplementation Increases White Adipose Tissue Mitochondrial Markers in Male and Female Rats in a Depot Specific Manner. Nutrients 2021; 13:2406. [PMID: 34371916 PMCID: PMC8308802 DOI: 10.3390/nu13072406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
White adipose tissue (WAT) is a dynamic endocrine organ that can play a significant role in thermoregulation. WAT has the capacity to adopt structural and functional characteristics of the more metabolically active brown adipose tissue (BAT) and contribute to non-shivering thermogenesis under specific stimuli. Non-shivering thermogenesis was previously thought to be uncoupling protein 1 (UCP1)-dependent however, recent evidence suggests that UCP1-independent mechanisms of thermogenesis exist. Namely, futile creatine cycling has been identified as a contributor to WAT thermogenesis. The purpose of this study was to examine the efficacy of creatine supplementation to alter mitochondrial markers as well as adipocyte size and multilocularity in inguinal (iWAT), gonadal (gWAT), and BAT. Thirty-two male and female Sprague-Dawley rats were treated with varying doses (0 g/L, 2.5 g/L, 5 g/L, and 10 g/L) of creatine monohydrate for 8 weeks. We demonstrate that mitochondrial markers respond in a sex and depot specific manner. In iWAT, female rats displayed significant increases in COXIV, PDH-E1alpha, and cytochrome C protein content. Male rats exhibited gWAT specific increases in COXIV and PDH-E1alpha protein content. This study supports creatine supplementation as a potential method of UCP1-independant thermogenesis and highlights the importance of taking a sex-specific approach when examining the efficacy of browning therapeutics in future research.
Collapse
Affiliation(s)
- Chantal R. Ryan
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (C.R.R.); (M.S.F.)
| | - Michael S. Finch
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (C.R.R.); (M.S.F.)
| | - Tyler C. Dunham
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; (T.C.D.); (J.E.M.); (B.D.R.)
| | - Jensen E. Murphy
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; (T.C.D.); (J.E.M.); (B.D.R.)
| | - Brian D. Roy
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; (T.C.D.); (J.E.M.); (B.D.R.)
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (C.R.R.); (M.S.F.)
| |
Collapse
|
36
|
Therapeutic Perspectives of Thermogenic Adipocytes in Obesity and Related Complications. Int J Mol Sci 2021; 22:ijms22137177. [PMID: 34281227 PMCID: PMC8267903 DOI: 10.3390/ijms22137177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
There is a rapidly increasing prevalence of obesity and related metabolic disorders such as type 2 diabetes worldwide. White adipose tissue (WAT) stores excess energy, whereas brown and beige adipose tissues consume energy to generate heat in the process of thermogenesis. Adaptive thermogenesis occurs in response to environmental cues as a means of generating heat by dissipating stored chemical energy. Due to its cumulative nature, very small differences in energy expenditure from adaptive thermogenesis can have a significant impact on systemic metabolism over time. Targeting brown adipose tissue (BAT) activation and converting WAT to beige fat as a method to increase energy expenditure is one of the promising strategies to combat obesity. In this review, we discuss the activation of the thermogenic process in response to physiological conditions. We highlight recent advances in harnessing the therapeutic potential of thermogenic adipocytes by genetic, pharmacological and cell-based approaches in the treatment of obesity and metabolic disorders in mice and the human.
Collapse
|
37
|
Xu X, Ma A, Li T, Cui W, Wang X, Li J, Li Q, Pang Y. Genetic and Functional Characterization of Novel Brown-Like Adipocytes Around the Lamprey Brain. Front Cell Dev Biol 2021; 9:674939. [PMID: 34277616 PMCID: PMC8281276 DOI: 10.3389/fcell.2021.674939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
During the process of vertebrate evolution, many thermogenic organs and mechanisms have appeared. Mammalian brown adipose tissue (BAT) generates heat through the uncoupling oxidative phosphorylation of mitochondria, acts as a natural defense against hypothermia and inhibits the development of obesity. Although the existence, cellular origin and molecular identity of BAT in humans have been well studied, the genetic and functional characteristics of BAT from lampreys remain unknown. Here, we identified and characterized a novel, naturally existing brown-like adipocytes at the lamprey brain periphery. Similar to human BAT, the lamprey brain periphery contains brown-like adipocytes that maintain the same morphology as human brown adipocytes, containing multilocular lipid droplets and high mitochondrion numbers. Furthermore, we found that brown-like adipocytes in the periphery of lamprey brains responded to thermogenic reagent treatment and cold exposure and that lamprey UCP2 promoted precursor adipocyte differentiation. Molecular mapping by RNA-sequencing showed that inflammation in brown-like adipocytes treated with LPS and 25HC was enhanced compared to controls. The results of this study provide new evidence for human BAT research and demonstrate the multilocular adipose cell functions of lampreys, including: (1) providing material energy and protecting structure, (2) generating additional heat and contributing to adaptation to low-temperature environments, and (3) resisting external pathogens.
Collapse
Affiliation(s)
- XiaoLuan Xu
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - AnQi Ma
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - TieSong Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - WenXue Cui
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - XueFeng Wang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
38
|
Wang CH, Lundh M, Fu A, Kriszt R, Huang TL, Lynes MD, Leiria LO, Shamsi F, Darcy J, Greenwood BP, Narain NR, Tolstikov V, Smith KL, Emanuelli B, Chang YT, Hagen S, Danial NN, Kiebish MA, Tseng YH. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med 2021; 12:12/558/eaaz8664. [PMID: 32848096 DOI: 10.1126/scitranslmed.aaz8664] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Brown and brown-like beige/brite adipocytes dissipate energy and have been proposed as therapeutic targets to combat metabolic disorders. However, the therapeutic effects of cell-based therapy in humans remain unclear. Here, we created human brown-like (HUMBLE) cells by engineering human white preadipocytes using CRISPR-Cas9-SAM-gRNA to activate endogenous uncoupling protein 1 expression. Obese mice that received HUMBLE cell transplants showed a sustained improvement in glucose tolerance and insulin sensitivity, as well as increased energy expenditure. Mechanistically, increased arginine/nitric oxide (NO) metabolism in HUMBLE adipocytes promoted the production of NO that was carried by S-nitrosothiols and nitrite in red blood cells to activate endogenous brown fat and improved glucose homeostasis in recipient animals. Together, these data demonstrate the utility of using CRISPR-Cas9 technology to engineer human white adipocytes to display brown fat-like phenotypes and may open up cell-based therapeutic opportunities to combat obesity and diabetes.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Morten Lundh
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Denmark.,Gubra Aps, Hørsholm, DK-2970, Denmark
| | - Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Rókus Kriszt
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583.,Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Luiz O Leiria
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil.,Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Justin Darcy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Kyle L Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Denmark
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 34126, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Susan Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Zhang J, Khazalwa EM, Abkallo HM, Zhou Y, Nie X, Ruan J, Zhao C, Wang J, Xu J, Li X, Zhao S, Zuo E, Steinaa L, Xie S. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 2021; 48:347-360. [PMID: 34144928 DOI: 10.1016/j.jgg.2021.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing technology has dramatically influenced swine research by enabling the production of high-quality disease-resistant pig breeds, thus improving yields. In addition, CRISPR/Cas9 has been used extensively in pigs as one of the tools in biomedical research. In this review, we present the advancements of the CRISPR/Cas9 system in swine research, such as animal breeding, vaccine development, xenotransplantation, and disease modeling. We also highlight the current challenges and some potential applications of the CRISPR/Cas9 technologies.
Collapse
Affiliation(s)
- Jinfu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Emmanuel M Khazalwa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Yuan Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiongwei Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Jing Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Erwei Zuo
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, PR China.
| | - Lucilla Steinaa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
40
|
Ke H, Luan Y, Wu S, Zhu Y, Tong X. The Role of Mondo Family Transcription Factors in Nutrient-Sensing and Obesity. Front Endocrinol (Lausanne) 2021; 12:653972. [PMID: 33868181 PMCID: PMC8044463 DOI: 10.3389/fendo.2021.653972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
In the past several decades obesity has become one of the greatest health burdens worldwide. Diet high in fats and fructose is one of the main causes for the prevalence of metabolic disorders including obesity. Promoting brown or beige adipocyte development and activity is regarded as a potential treatment of obesity. Mondo family transcription factors including MondoA and carbohydrate response element binding protein (ChREBP) are critical for nutrient-sensing in multiple metabolic organs including the skeletal muscle, liver, adipose tissue and pancreas. Under normal nutrient conditions, MondoA and ChREBP contribute to maintaining metabolic homeostasis. When nutrient is overloaded, Mondo family transcription factors directly regulate glucose and lipid metabolism in brown and beige adipocytes or modulate the crosstalk between metabolic organs. In this review, we aim to provide an overview of recent advances in the understanding of MondoA and ChREBP in sensing nutrients and regulating obesity or related pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Mendes C, Gomes G, Belpiede LT, do Carmo Buonfiglio D, Motta-Teixeira LC, Amaral FG, Cipolla-Neto J. The effects of melatonin daily supplementation to aged rats on the ability to withstand cold, thermoregulation and body weight. Life Sci 2020; 265:118769. [PMID: 33309717 DOI: 10.1016/j.lfs.2020.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/01/2023]
Abstract
AIMS Investigate the role of melatonin on the regulation of body temperature in aged animals that have impaired melatonin production. MATERIAL AND METHODS Aged Male Wistar rats were randomly assigned to the following groups: 1) control (vehicle added to the water bottles during the dark phase) and 2) melatonin-treated (10 mg/kg melatonin added to the water bottles during the dark phase). Before and after 16 weeks of vehicle or melatonin treatment, control group and melatonin-treated animals were acutely exposed to 18 °C for 2 h for an acute cold challenge and thermal images were obtained using an infrared camera. After 16 weeks, animals were euthanized and brown and beige adipocytes were collected for analysis of genes involved in the thermogenesis process by real-time PCR, and the uncoupling protein expression was evaluated by immunoblotting. Browning intensity of beige adipocytes were quantified by staining with hematoxylin-eosin. KEY FINDINGS Chronic melatonin supplementation induced a minor increase in body mass and increased the animal's thermogenic potential in the cold acute challenge. Brown and beige adipocytes acted in a coordinated and complementary way to ensure adequate heat production. SIGNIFICANCE Melatonin plays an important role in the thermoregulatory mechanisms, ensuring greater capacity to withstand cold and, also, participating in the regulation of energy balance.
Collapse
Affiliation(s)
- Caroline Mendes
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Gomes
- Department of Physics and Interdisciplinary Science (FCI), São Carlos Institute of Physics (IFSC), University of São Paulo, São Paulo, Brazil
| | - Luciana Tocci Belpiede
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Lívia Clemente Motta-Teixeira
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Gaspar Amaral
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
42
|
Lee M, Lee M. The Effects of C3G and D3G Anthocyanin-Rich Black Soybean on Energy Metabolism in Beige-like Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12011-12018. [PMID: 33059446 DOI: 10.1021/acs.jafc.0c04891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various mechanisms of obesity prevention have been identified; however, the roles of brown or beige fat as regulators of the energy balance are unclear. The effects of anthocyanin-rich black soybean, Glycine max (L.) Merr., testa (ABS) extracts on the energy balance were investigated by comparing beige-like adipocytes (BLA) and white adipocytes (WAT). ABS extracts reduced peroxisome proliferator-activated receptor gamma protein expression and triglyceride accumulation in WAT and BLA without inducing nuclear damage. The biomarkers of fat degradation (phospho-AMPKα and ATGL) or glycerol secretion in the medium and β-oxidation of fatty acids (CPT2) in the ABS-treated BLA were increased compared to those in WAT. ABS extracts significantly increased the expression of thermogenesis markers (UCP1 and CIDEA) and biomarkers related to mitochondrial activation (cytochrome c and NRF1) in BLA. In the primary cell culture of brown adipocytes (BAT) from rats fed ABS, the expression levels of PGC1-α, cytochrome c, and UCP1 proteins were increased compared to those in BAT from nonfed rats. A reduction in the NAD/NADH ratio was consistently associated with an increase in the oxygen consumption rate and basal/maximal respiration rate in ABS-treated BLA. Anthocyanins promote beiging in the body, contribute to the prevention of obesity, and are potentially useful functional materials.
Collapse
Affiliation(s)
- Minjee Lee
- Research Institute of Obesity Sciences, Sungshin Women's University, Seoul 01133, Korea
- Department of Food and Nutrition, Sungshin Women's University, Seoul 01133, Korea
| | - Myoungsook Lee
- Research Institute of Obesity Sciences, Sungshin Women's University, Seoul 01133, Korea
- Department of Food and Nutrition, Sungshin Women's University, Seoul 01133, Korea
| |
Collapse
|
43
|
Biochemical adaptations in white adipose tissue following aerobic exercise: from mitochondrial biogenesis to browning. Biochem J 2020; 477:1061-1081. [PMID: 32187350 DOI: 10.1042/bcj20190466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of white adipose tissue (WAT) biochemistry has evolved over the last few decades and it is now clear that WAT is not simply a site of energy storage, but rather a pliable endocrine organ demonstrating dynamic responsiveness to the effects of aerobic exercise. Similar to its established effects in skeletal muscle, aerobic exercise induces many biochemical adaptations in WAT including mitochondrial biogenesis and browning. While past research has focused on the regulation of these biochemical processes, there has been renewed interest as of late given the potential of harnessing WAT mitochondrial biogenesis and browning to treat obesity and type II diabetes. Unfortunately, despite increasing evidence that innumerable factors, both exercise induced and pharmacological, can elicit these biochemical adaptations in WAT, the underlying mechanisms remain poorly defined. Here, we begin with a historical account of our understanding of WAT exercise biochemistry before presenting detailed evidence in favour of an up-to-date model by which aerobic exercise induces mitochondrial biogenesis and browning in WAT. Specifically, we discuss how aerobic exercise induces increases in WAT lipolysis and re-esterification and how this could be a trigger that activates the cellular energy sensor 5' AMP-activated protein kinase to mediate the induction of mitochondrial biogenesis and browning via the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator-1 alpha. While this review primarily focuses on mechanistic results from rodent studies special attention is given to the translation of these results, or lack thereof, to human physiology.
Collapse
|
44
|
Lysyl oxidase inhibition enhances browning of white adipose tissue and adaptive thermogenesis. Genes Dis 2020; 9:140-150. [PMID: 35005114 PMCID: PMC8720662 DOI: 10.1016/j.gendis.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence from both animal and human studies suggests that activation of beige fat increases cellular energy expenditure, ultimately reducing adiposity. Here, we report the central role of adipocyte-derived lysyl oxidase (Lox) in the formation of thermogenic beige fat. Mice exposed to cold or a β3 agonist showed drastically lower Lox expression in thermogenically activated beige fat. Importantly, inhibition of Lox activity with BAPN stimulated biogenesis of beige fat in inguinal white adipose tissue (iWAT) under housing conditions and potentiated cold-induced adaptive thermogenesis and beiging in both iWAT and epididymal white adipose tissue (eWAT). Notably, white adipocytes with Lox repression undergo transdifferentiation into beige adipocytes which can be suppressed by tumor necrosis factor-α (TNFα) via ERK activation. This work provides new insight into the molecular control to expand beige fat by Lox inhibition and suggest the potential for utilizing inhibitor of Lox to treat the emerging epidemics of obesity and diabetes.
Collapse
|
45
|
Dehvari N, Sato M, Bokhari MH, Kalinovich A, Ham S, Gao J, Nguyen HTM, Whiting L, Mukaida S, Merlin J, Chia LY, Wootten D, Summers RJ, Evans BA, Bengtsson T, Hutchinson DS. The metabolic effects of mirabegron are mediated primarily by β 3 -adrenoceptors. Pharmacol Res Perspect 2020; 8:e00643. [PMID: 32813332 PMCID: PMC7437350 DOI: 10.1002/prp2.643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022] Open
Abstract
The β3 -adrenoceptor agonist mirabegron is approved for use for overactive bladder and has been purported to be useful in the treatment of obesity-related metabolic diseases in humans, including those involving disturbances of glucose homeostasis. We investigated the effect of mirabegron on glucose homeostasis with in vitro and in vivo models, focusing on its selectivity at β-adrenoceptors, ability to cause browning of white adipocytes, and the role of UCP1 in glucose homeostasis. In mouse brown, white, and brite adipocytes, mirabegron-mediated effects were examined on cyclic AMP, UCP1 mRNA, [3 H]-2-deoxyglucose uptake, cellular glycolysis, and O2 consumption. Mirabegron increased cyclic AMP levels, UCP1 mRNA content, glucose uptake, and cellular glycolysis in brown adipocytes, and these effects were either absent or reduced in white adipocytes. In brite adipocytes, mirabegron increased cyclic AMP levels and UCP1 mRNA content resulting in increased UCP1-mediated oxygen consumption, glucose uptake, and cellular glycolysis. The metabolic effects of mirabegron in both brown and brite adipocytes were primarily due to actions at β3 -adrenoceptors as they were largely absent in adipocytes derived from β3 -adrenoceptor knockout mice. In vivo, mirabegron increased whole body oxygen consumption, glucose uptake into brown and inguinal white adipose tissue, and improved glucose tolerance, all effects that required the presence of the β3 -adrenoceptor. Furthermore, in UCP1 knockout mice, the effects of mirabegron on glucose tolerance were attenuated. Thus, mirabegron had effects on cellular metabolism in adipocytes that improved glucose handling in vivo, and were primarily due to actions at the β3 -adrenoceptor.
Collapse
Affiliation(s)
- Nodi Dehvari
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Masaaki Sato
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Muhammad Hamza Bokhari
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Anastasia Kalinovich
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Seungmin Ham
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Jie Gao
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Huong T. M. Nguyen
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Lynda Whiting
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Saori Mukaida
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Jon Merlin
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Ling Yeong Chia
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Denise Wootten
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Roger J. Summers
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Bronwyn A. Evans
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Tore Bengtsson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Dana S. Hutchinson
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| |
Collapse
|
46
|
Dodd GT, Xirouchaki CE, Eramo M, Mitchell CA, Andrews ZB, Henry BA, Cowley MA, Tiganis T. Intranasal Targeting of Hypothalamic PTP1B and TCPTP Reinstates Leptin and Insulin Sensitivity and Promotes Weight Loss in Obesity. Cell Rep 2020; 28:2905-2922.e5. [PMID: 31509751 DOI: 10.1016/j.celrep.2019.08.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/29/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
The importance of hypothalamic leptin and insulin resistance in the development and maintenance of obesity remains unclear. The tyrosine phosphatases protein tyrosine phosphatase 1B (PTP1B) and T cell protein tyrosine phosphatase (TCPTP) attenuate leptin and insulin signaling and are elevated in the hypothalami of obese mice. We report that elevated PTP1B and TCPTP antagonize hypothalamic leptin and insulin signaling and contribute to the maintenance of obesity. Deletion of PTP1B and TCPTP in the hypothalami of obese mice enhances CNS leptin and insulin sensitivity, represses feeding, and increases browning, to decrease adiposity and improve glucose metabolism. The daily intranasal administration of a PTP1B inhibitor, plus the glucocorticoid antagonist RU486 that decreases TCPTP expression, represses feeding, increases browning, promotes weight loss, and improves glucose metabolism in obese mice. Our findings causally link heightened hypothalamic PTP1B and TCPTP with leptin and insulin resistance and the maintenance of obesity and define a viable pharmacological approach by which to promote weight loss in obesity.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Chrysovalantou E Xirouchaki
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew Eramo
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Zane B Andrews
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, VIC 3800, Australia
| | - Belinda A Henry
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, VIC 3800, Australia
| | - Michael A Cowley
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, VIC 3800, Australia
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Monash Metabolic Phenotyping Facility, Monash University, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| |
Collapse
|
47
|
Heenan KA, Carrillo AE, Fulton JL, Ryan EJ, Edsall JR, Rigopoulos D, Markofski MM, Flouris AD, Dinas PC. Effects of Nutrition/Diet on Brown Adipose Tissue in Humans: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:E2752. [PMID: 32927664 PMCID: PMC7551565 DOI: 10.3390/nu12092752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) provides a minor contribution to diet-induced thermogenesis (DIT)-the metabolic response to food consumption. Increased BAT activity is generally considered beneficial for mammalian metabolism and has been associated with favorable health outcomes. The aim of the current systematic review was to explore whether nutritional factors and/or diet affect human BAT activity. METHODS We searched PubMed Central, Embase and Cochrane Library (trials) to conduct this systematic review (PROSPERO protocol: CRD42018082323). RESULTS We included 24 eligible papers that studied a total of 2785 participants. We found no mean differences in standardized uptake value of BAT following a single meal or after 6 weeks of L-Arginine supplementation. Resting energy expenditure (REE), however, was increased following a single meal and after supplementation of capsinoid and catechin when compared to a control condition (Z = 2.41, p = 0.02; mean difference = 102.47 (95% CI = 19.28-185.67)). CONCLUSIONS Human BAT activity was not significantly affected by nutrition/diet. Moreover, REE was only increased in response to a single meal, but it is unlikely that this was due to increased BAT activity. BAT activity assessments in response to the chronic effect of food should be considered along with other factors such as body composition and/or environmental temperature.
Collapse
Affiliation(s)
- Kelsey A. Heenan
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA; (K.A.H.); (A.E.C.); (J.L.F.); (E.J.R.); (J.R.E.)
| | - Andres E. Carrillo
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA; (K.A.H.); (A.E.C.); (J.L.F.); (E.J.R.); (J.R.E.)
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece; (D.R.); (A.D.F.)
| | - Jacob L. Fulton
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA; (K.A.H.); (A.E.C.); (J.L.F.); (E.J.R.); (J.R.E.)
| | - Edward J. Ryan
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA; (K.A.H.); (A.E.C.); (J.L.F.); (E.J.R.); (J.R.E.)
| | - Jason R. Edsall
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA; (K.A.H.); (A.E.C.); (J.L.F.); (E.J.R.); (J.R.E.)
| | - Dimitrios Rigopoulos
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece; (D.R.); (A.D.F.)
| | - Melissa M. Markofski
- Department of Health and Human Performance, University of Houston, Houston, TX 77204, USA;
| | - Andreas D. Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece; (D.R.); (A.D.F.)
| | - Petros C. Dinas
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece; (D.R.); (A.D.F.)
| |
Collapse
|
48
|
Hurtado Del Pozo C, Ruiz HH, Arivazhagan L, Aranda JF, Shim C, Daya P, Derk J, MacLean M, He M, Frye L, Friedline RH, Noh HL, Kim JK, Friedman RA, Ramasamy R, Schmidt AM. A Receptor of the Immunoglobulin Superfamily Regulates Adaptive Thermogenesis. Cell Rep 2020; 28:773-791.e7. [PMID: 31315054 PMCID: PMC6686683 DOI: 10.1016/j.celrep.2019.06.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/22/2019] [Accepted: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
Exquisite regulation of energy homeostasis protects from nutrient deprivation but causes metabolic dysfunction upon nutrient excess. In human and murine adipose tissue, the accumulation of ligands of the receptor for advanced glycation end products (RAGE) accompanies obesity, implicating this receptor in energy metabolism. Here, we demonstrate that mice bearing global- or adipocyte-specific deletion of Ager, the gene encoding RAGE, display superior metabolic recovery after fasting, a cold challenge, or high-fat feeding. The RAGE-dependent mechanisms were traced to suppression of protein kinase A (PKA)-mediated phosphorylation of its key targets, hormone-sensitive lipase and p38 mitogen-activated protein kinase, upon β-adrenergic receptor stimulation—processes that dampen the expression and activity of uncoupling protein 1 (UCP1) and thermogenic programs. This work identifies the innate role of RAGE as a key node in the immunometabolic networks that control responses to nutrient supply and cold challenges, and it unveils opportunities to harness energy expenditure in environmental and metabolic stress. Hurtado del Pozo et al. show that the deletion of adipocyte RAGE, whose ligands accumulate in metabolic stress, protects from obesity and cold challenges through the modulation of protein kinase A activities. This work adds RAGE to the immunometabolic networks that regulate energy expenditure in environmental and metabolic stress.
Collapse
Affiliation(s)
- Carmen Hurtado Del Pozo
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Henry H Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Juan Francisco Aranda
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Cynthia Shim
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Peter Daya
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Julia Derk
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Michael MacLean
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Meilun He
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Laura Frye
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Randall H Friedline
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA 01605, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA 01605, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, 435 East 30(th) Street, New York, NY 10016, USA.
| |
Collapse
|
49
|
Martínez-Sánchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21176039. [PMID: 32839413 PMCID: PMC7503240 DOI: 10.3390/ijms21176039] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone discovered almost 30 years ago with important implications in metabolism. It is primarily produced by white adipose tissue (WAT) in proportion to the amount of fat. The discovery of leptin was a turning point for two principle reasons: on one hand, it generated promising expectations for the treatment of the obesity, and on the other, it changed the classical concept that white adipose tissue was simply an inert storage organ. Thus, adipocytes in WAT produce the majority of leptin and, although its primary role is the regulation of fat stores by controlling lipolysis and lipogenesis, this hormone also has implications in other physiological processes within WAT, such as apoptosis, browning and inflammation. Although a massive number of questions related to leptin actions have been answered, the necessity for further clarification facilitates constantly renewing interest in this hormone and its pathways. In this review, leptin actions in white adipose tissue will be summarized in the context of obesity.
Collapse
|
50
|
Aouichat S, Chayah M, Bouguerra-Aouichat S, Agil A. Time-Restricted Feeding Improves Body Weight Gain, Lipid Profiles, and Atherogenic Indices in Cafeteria-Diet-Fed Rats: Role of Browning of Inguinal White Adipose Tissue. Nutrients 2020; 12:E2185. [PMID: 32717874 PMCID: PMC7469029 DOI: 10.3390/nu12082185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Time-restricted feeding (TRF) showed a potent effect in preventing obesity and improving metabolicoutcomes in several animal models of obesity. However, there is, as of yet, scarce evidence concerning its effectiveness against obesogenic challenges that more accurately mimic human Western diets, such as the cafeteria diet. Moreover, the mechanism for its efficacy is poorly understood. White adipose browning has been linked to body weight loss. Herein, we tested whether TRF has the potential to induce browning of inguinal white adipose tissue (iWAT) and to attenuate obesity and associated dyslipidemia in a cafeteria-diet-induced obesity model. Male Wistar rats were fed normal laboratory chow (NC) or cafeteria diet (CAF) for 16 weeks and were subdivided into two groups that were subjected to either ad libitum (ad lib, A) or TRF (R) for 8 h per day. Rats under the TRF regimen had a lower body weight gain and adiposity than the diet-matchedad lib rats, despite equivalent levels of food intake and locomotor activity. In addition, TRF improved the deranged lipid profile (total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL-c), low-density lipoprotein (LDL-c)) and atherogenic indices (atherogenic index of plasma (AIP), atherogenic coefficient (AC), coronary risk index (CRI) in CAF-fed rats. Remarkably, TRF resulted in decreased size of adipocytes and induced emergence of multilocular brown-like adipocytes in iWAT of NC- and CAF-fed rats. Protein expression of browning markers, such as uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), were also up-regulated in the iWAToftime-restricted NC- or CAF-fed rats. These findings suggest that a TRF regimen is an effective strategy to improve CAF diet-induced obesity, probably via a mechanismthe involving WAT browning process.
Collapse
Affiliation(s)
- Samira Aouichat
- Department of Pharmacology, Biohealth Institute and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (M.C.)
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, El Alia, 16011 Algiers, Algeria;
| | - Meriem Chayah
- Department of Pharmacology, Biohealth Institute and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (M.C.)
| | - Souhila Bouguerra-Aouichat
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, El Alia, 16011 Algiers, Algeria;
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (M.C.)
| |
Collapse
|