1
|
Kemna RE, Kueck PJ, Blankenship AE, John CS, Johnson CN, Green ZD, Chamberlain T, Thyfault JP, Mahnken JD, Miller BF, Morris JK. Methods to characterize lactate turnover in aging and Alzheimer's disease; The LEAN study. Contemp Clin Trials 2024; 146:107682. [PMID: 39236780 DOI: 10.1016/j.cct.2024.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND There is evidence that chronic exercise can benefit the brain, but the effects vary markedly between studies. One potential mechanism for exercise-related benefit is the increase in systemic lactate concentration that is well-characterized to occur during exercise. Lactate is known to cross the blood brain barrier and can be used readily as a fuel for neurons. This may be particularly important in Alzheimer's Disease, which is characterized by cerebral hypometabolism. However, little is known about how whole-body lactate metabolism differs between older adults and individuals with cognitive impairment. This information is critical when considering potential differences in responses to exercise in various cognitive diagnosis groups. METHODS Here we describe the use of a "lactate clamp" procedure to adjust blood lactate levels to approximate those achieved during exercise, but while at rest. This trial will compare lactate oxidation between cognitively healthy older adults and cognitively impaired participants. We will further evaluate the effect of acute lactate infusion on cognitive performance. DISCUSSION The findings of the study described here, the Lactate for Energy and Neurocognition trial (clinicaltrials.gov # NCT05207397) will add to our understanding of systemic lactate mechanics in cognitively healthy older adults and individuals with Alzheimer's Disease. These findings will be applicable to ongoing exercise trials and to future studies aimed at modulating systemic bioenergetic function in aging and Alzheimer's Disease.
Collapse
Affiliation(s)
- Riley E Kemna
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Paul J Kueck
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Anneka E Blankenship
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Casey S John
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Chelsea N Johnson
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America; Cell Biology and Physiology, Universtiy of Kansas Medical Center, Kansas City, KS, United States of America
| | - Zachary D Green
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | | | - John P Thyfault
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America; Cell Biology and Physiology, Universtiy of Kansas Medical Center, Kansas City, KS, United States of America; Internal Medicine-Division of Endocrinology, Universtiy of Kansas Medical Center, Kansas City, KS, United States of America; Diabetes Institute, Universtiy of Kansas Medical Center, Kansas City, KS, United States of America
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America; Oklahoma City Veterance Association, Oklahoma City, OK, United States of America
| | - Jill K Morris
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America.
| |
Collapse
|
2
|
Park SY, Jung SR, Kim JY, Kim YW, Sung HK, Park SY, Doh KO, Koh JH. Lactate promotes fatty acid oxidation by the tricarboxylic acid cycle and mitochondrial respiration in muscles of obese mice. Am J Physiol Cell Physiol 2024; 327:C619-C633. [PMID: 38981606 DOI: 10.1152/ajpcell.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Lower oxidative capacity in skeletal muscles (SKMs) is a prevailing cause of metabolic diseases. Exercise not only enhances the fatty acid oxidation (FAO) capacity of SKMs but also increases lactate levels. Given that lactate may contribute to tricarboxylic acid cycle (TCA) flux and impact monocarboxylate transporter 1 in the SKMs, we hypothesize that lactate can influence glucose and fatty acid (FA) metabolism. To test this hypothesis, we investigated the mechanism underlying lactate-driven FAO regulation in the SKM of mice with diet-induced obesity (DIO). Lactate was administered to DIO mice immediately after exercise for over 3 wk. We found that increased lactate levels enhanced energy expenditure mediated by fat metabolism during exercise recovery and decreased triglyceride levels in DIO mice SKMs. To determine the lactate-specific effects without exercise, we administered lactate to mice on a high-fat diet (HFD) for 8 wk. Similar to our exercise conditions, lactate increased FAO, TCA cycle activity, and mitochondrial respiration in the SKMs of HFD-fed mice. In addition, under sufficient FA conditions, lactate increased uncoupling protein-3 abundance via the NADH-NAD+ shuttle. Conversely, ATP synthase abundance decreased in the SKMs of HFD mice. Taken together, our results suggest that lactate amplifies the adaptive increase in FAO capacity mediated by the TCA cycle and mitochondrial respiration in SKMs under sufficient FA abundance.NEW & NOTEWORTHY Lactate administration post-exercise promotes triglyceride content loss in skeletal muscles (SKMs) and reduced body weight. Lactate enhances fatty acid oxidation in the SKMs of high-fat diet (HFD)-fed mice due to enhanced mitochondrial oxygen consumption. In addition, lactate restores the malate-aspartate shuttle, which is reduced by a HFD, and activates the tricarboxylic acid cycle (TCA) cycle in SKMs. Interestingly, supraphysiological lactate facilitates uncoupling protein-3 expression through NADH/NAD+, which is enhanced under high-fat levels in SKMs.
Collapse
Affiliation(s)
- Sol-Yi Park
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Su-Ryun Jung
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jong-Yeon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - So-Young Park
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jin-Ho Koh
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
3
|
Giha HA. Hidden chronic metabolic acidosis of diabetes type 2 (CMAD): Clues, causes and consequences. Rev Endocr Metab Disord 2023; 24:735-750. [PMID: 37380824 DOI: 10.1007/s11154-023-09816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
Interpretation of existing data revealed that chronic metabolic acidosis is a pathognomic feature for type 2 diabetes (T2D), which is described here as "chronic metabolic acidosis of T2D (CMAD)" for the first time. The biochemical clues for the CMAD are summarised in the following; low blood bicarbonate (high anionic gap), low pH of interstitial fluid and urine, and response to acid neutralization, while the causes of extra protons are worked out to be; mitochondrial dysfunction, systemic inflammation, gut microbiota (GM), and diabetic lung. Although, the intracellular pH is largely preserved by the buffer system and ion transporters, a persistent systemic mild acidosis leaves molecular signature in cellular metabolism in diabetics. Reciprocally, there are evidences that CMAD contributes to the initiation and progression of T2D by; reducing insulin production, triggering insulin resistance directly or via altered GM, and inclined oxidative stress. The details about the above clues, causes and consequences of CMAD are obtained by searching literature spanning between 1955 and 2022. Finally, the molecular bases of CMAD are discussed in details by interpretation of an up-to-date data and aid of well constructed diagrams, with a conclusion unravelling that CMAD is a major player in T2D pathophysiology. To this end, the CMAD disclosure offers several therapeutic potentials for prevention, delay or attenuation of T2D and its complications.
Collapse
Affiliation(s)
- Hayder A Giha
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan.
| |
Collapse
|
4
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
5
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
6
|
Patil N, Howe O, Cahill P, Byrne HJ. Monitoring and modelling the dynamics of the cellular glycolysis pathway: A review and future perspectives. Mol Metab 2022; 66:101635. [PMID: 36379354 PMCID: PMC9703637 DOI: 10.1016/j.molmet.2022.101635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The dynamics of the cellular glycolysis pathway underpin cellular function and dysfunction, and therefore ultimately health, disease, diagnostic and therapeutic strategies. Evolving our understanding of this fundamental process and its dynamics remains critical. SCOPE OF REVIEW This paper reviews the medical relevance of glycolytic pathway in depth and explores the current state of the art for monitoring and modelling the dynamics of the process. The future perspectives of label free, vibrational microspectroscopic techniques to overcome the limitations of the current approaches are considered. MAJOR CONCLUSIONS Vibrational microspectroscopic techniques can potentially operate in the niche area of limitations of other omics technologies for non-destructive, real-time, in vivo label-free monitoring of glycolysis dynamics at a cellular and subcellular level.
Collapse
Affiliation(s)
- Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland; School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
7
|
Kano R, Sato K. The Relationship between Training Cycle-Dependent Fluctuations in Resting Blood Lactate Levels and Exercise Performance in College-Aged Rugby Players. J Funct Morphol Kinesiol 2022; 7:jfmk7040093. [PMID: 36278754 PMCID: PMC9589951 DOI: 10.3390/jfmk7040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
An increase in resting blood lactate (La-) concentration due to metabolic conditions has been reported. However, it is not clear whether resting La- changes with training cycles in athletes. The purpose of this study was to test the hypotheses that (1) the morning resting La- levels are lower in periods of high training compared to periods of low training and (2) these changes in La- concentration are related to athletes' metabolic capacity during exercise in male college-aged rugby players. Resting La- and blood glucose concentrations were measured in the morning in eight league rugby players during the summer pre-season period (Pre-period), the training and competition season period (TC-period), and the winter post-season period (Post-period). In each period, anaerobic power, La- concentration, and respiratory responses were measured during the 40 s maximal Wingate anaerobic test (WT). The resting La- concentration in the morning was significantly lower in the TC-Period (1.9 ± 0.6 mmol/L) than in the Post-Period (2.3 ± 0.9 mmol/L). The rate of decrease in La- level immediately after the 40 s WT was significantly higher in the TC-Period than in the Post-Period. The resting La- concentration was significantly correlated with the peak oxygen uptake and the carbon dioxide output during the WT. These results support the hypothesis that an athlete's training cycle (i.e., in season and off season) influences the resting La- levels as well as the metabolic capacity during high-intensity exercise. The monitoring of resting La- fluctuations may provide a convenient indication of the training cycle-dependent metabolic capacity in athletes.
Collapse
Affiliation(s)
- Ryotaro Kano
- Graduate School of Education, Tokyo Gakugei University, Tokyo 184-8501, Japan
| | - Kohei Sato
- Department of Health and Physical Education, Tokyo Gakugei University, Tokyo 184-8501, Japan
- Correspondence:
| |
Collapse
|
8
|
Maschari D, Saxena G, Law TD, Walsh E, Campbell MC, Consitt LA. Lactate-induced lactylation in skeletal muscle is associated with insulin resistance in humans. Front Physiol 2022; 13:951390. [PMID: 36111162 PMCID: PMC9468271 DOI: 10.3389/fphys.2022.951390] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Elevated circulating lactate has been associated with obesity and insulin resistance. The aim of the current study was to determine if lactate-induced lysine lactylation (kla), a post-translational modification, was present in human skeletal muscle and related to insulin resistance. Fifteen lean (Body Mass Index: 22.1 ± 0.5 kg/m2) and fourteen obese (40.6 ± 1.4 kg/m2) adults underwent a muscle biopsy and 2-h oral glucose tolerance test. Skeletal muscle lactylation was increased in obese compared to lean females (19%, p < 0.05) and associated with insulin resistance (r = 0.37, p < 0.05) in the whole group. Skeletal muscle lactylation levels were significantly associated with markers of anaerobic metabolism (plasma lactate and skeletal muscle lactate dehydrogenase [LDH], p < 0.05) and negatively associated with markers of oxidative metabolism (skeletal muscle cytochrome c oxidase subunit 4 and Complex I [pyruvate] OXPHOS capacity, p < 0.05). Treatment of primary human skeletal muscle cells (HSkMC) with sodium lactate for 24 h increased protein lactylation and IRS-1 serine 636 phosphorylation in a similar dose-dependent manner (p < 0.05). Inhibition of glycolysis (with 2-deoxy-d-glucose) or LDH-A (with sodium oxamate or LDH-A siRNA) for 24 h reduced HSkMC lactylation which paralleled reductions in culture media lactate accumulation. This study identified the existence of a lactate-derived post-translational modification in human skeletal muscle and suggests skeletal muscle lactylation could provide additional insight into the regulation of skeletal muscle metabolism, including insulin resistance.
Collapse
Affiliation(s)
- Dominic Maschari
- College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| | - Gunjan Saxena
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Timothy D. Law
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, United States
| | - Erin Walsh
- Biological Sciences Department, Ohio University, Athens, OH, United States
| | - Mason C. Campbell
- Biological Sciences Department, Ohio University, Athens, OH, United States
| | - Leslie A Consitt
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, United States
- Diabetes Institute, Ohio University, Athens, OH, United States
| |
Collapse
|
9
|
Martha JW, Wibowo A, Pranata R. Prognostic value of elevated lactate dehydrogenase in patients with COVID-19: a systematic review and meta-analysis. Postgrad Med J 2022; 98:422-427. [PMID: 33452143 PMCID: PMC7813054 DOI: 10.1136/postgradmedj-2020-139542] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE This meta-analysis aimed to evaluate the prognostic performance of elevated lactate dehydrogenase (LDH) in patients with COVID-19. METHODS A systematic literature search was performed using PubMed, Embase and EuropePMC on 19 November 2020. The outcome of interest was composite poor outcome, defined as a combined endpoint of mortality, severity, need for invasive mechanical ventilation and need for intensive care unit care. Severity followed the included studies' criteria. RESULTS There are 10 399 patients from 21 studies. Elevated LDH was present in 44% (34%-53%) of the patients. Meta-regression analysis showed that diabetes was correlated with elevated LDH (OR 1.01 (95% CI 1.00 to 1.02), p=0.038), but not age (p=0.710), male (p=0.068) and hypertension (p=0.969). Meta-analysis showed that elevated LDH was associated with composite poor outcome (OR 5.33 (95% CI 3.90 to 7.31), p<0.001; I2: 77.5%). Subgroup analysis showed that elevated LDH increased mortality (OR 4.22 (95% CI 2.49 to 7.14), p<0.001; I2: 89%). Elevated LDH has a sensitivity of 0.74 (95% CI 0.60 to 0.85), specificity of 0.69 (95% CI 0.58 to 0.78), positive likelihood ratio of 2.4 (95% CI 1.9 to 2.9), negative likelihood ratio of 0.38 (95% CI 0.26 to 0.55), diagnostic OR of 6 (95% CI 4 to 9) and area under curve of 0.77 (95% CI 0.73 to 0.80). Elevated LDH would indicate a 44% posterior probability and non-elevated LDH would in indicate 11% posterior probability for poor prognosis. Meta-regression analysis showed that age, male, hypertension and diabetes did not contribute to the heterogeneity of the analyses. CONCLUSION LDH was associated with poor prognosis in patients with COVID-19. PROSPERO REGISTRATION NUMBER CRD42020221594.
Collapse
Affiliation(s)
- Januar Wibawa Martha
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Padjadjaran, Rumah Sakit Umum Pusat Hasan Sadikin, Bandung, Jawa Barat, Indonesia
| | - Arief Wibowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Padjadjaran, Rumah Sakit Umum Pusat Hasan Sadikin, Bandung, Jawa Barat, Indonesia
| | - Raymond Pranata
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Padjadjaran, Rumah Sakit Umum Pusat Hasan Sadikin, Bandung, Jawa Barat, Indonesia
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Banten, Indonesia
| |
Collapse
|
10
|
The WWOX/HIF1A Axis Downregulation Alters Glucose Metabolism and Predispose to Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23063326. [PMID: 35328751 PMCID: PMC8955937 DOI: 10.3390/ijms23063326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Recent reports indicate that the hypoxia-induced factor (HIF1α) and the Warburg effect play an initiating role in glucotoxicity, which underlies disorders in metabolic diseases. WWOX has been identified as a HIF1α regulator. WWOX downregulation leads to an increased expression of HIF1α target genes encoding glucose transporters and glycolysis’ enzymes. It has been proven in the normoglycemic mice cells and in gestational diabetes patients. The aim of the study was to determine WWOX’s role in glucose metabolism regulation in hyperglycemia and hypoxia to confirm its importance in the development of metabolic disorders. For this purpose, the WWOX gene was silenced in human normal fibroblasts, and then cells were cultured under different sugar and oxygen levels. Thereafter, it was investigated how WWOX silencing alters the genes and proteins expression profile of glucose transporters and glycolysis pathway enzymes, and their activity. In normoxia normoglycemia, higher glycolysis genes expression, their activity, and the lactate concentration were observed in WWOX KO fibroblasts in comparison to control cells. In normoxia hyperglycemia, it was observed a decrease of insulin-dependent glucose uptake and a further increase of lactate. It likely intensifies hyperglycemia condition, which deepen the glucose toxic effect. Then, in hypoxia hyperglycemia, WWOX KO caused weaker glucose uptake and elevated lactate production. In conclusion, the WWOX/HIF1A axis downregulation alters glucose metabolism and probably predispose to metabolic disorders.
Collapse
|
11
|
A Competitive Sprinter's Resting Blood Lactate Levels Fluctuate with a One-Year Training Cycle: Case Reports. J Funct Morphol Kinesiol 2021; 6:jfmk6040095. [PMID: 34842747 PMCID: PMC8628947 DOI: 10.3390/jfmk6040095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
It has been reported that the variability of resting blood lactate concentration (BLa) is related to metabolic capacity. However, it is unclear whether the resting BLa of athletes can be utilized as a metabolic biomarker. This longitudinal case study tested the hypothesis that resting BLa levels in the morning fluctuate with a 1-year training cycle. The subject was an adult male sprinter, and BLa and blood glucose at the time of waking were measured every day for 1 year. The training cycles were divided into five phases: 1. Basic training: high-intensity and high-volume load; 2. Condition and speed training: high-intensity and low-volume load; 3. Competition training I: track race and high-intensity load; 4. Conditioning for injury; 5. Competition training II. The mean BLa levels in the basic training (1.10 ± 0.32 mmol/L and competition training I (1.06 ± 0.28 mmol/L) phases were significantly lower than in the condition and speed training (1.26 ± 0.40 mmol/L) and conditioning injury (1.37 ± 0.34 mmol/L) phases. The clarified training cycle dependence of resting BLa is suggested to be related to the ability to utilize lactate as an energy substrate with fluctuations in oxidative metabolic capacity. This case report supports the tentative hypothesis that resting BLa may be a biomarker index linked to the metabolic capacity according to the training cycle.
Collapse
|
12
|
Pala HG, Pala EE, Artunc Ulkumen B, Erbas O. Protective effects of dichloroacetic acid on endometrial injury and ovarian reserve in an experimental rat model of diabetes mellitus. J Obstet Gynaecol Res 2021; 47:4319-4328. [PMID: 34595798 DOI: 10.1111/jog.15045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/14/2021] [Accepted: 09/19/2021] [Indexed: 12/31/2022]
Abstract
AIM To study (1) ovarian and endometrial damage caused by the hyperglycemia and (2) the effects of dichloroacetic acid (DCA) on follicular reserve and endometrial damage in streptozocin induced diabetic rats. METHODS This study consisted 24 rats randomly separated into three groups. A diabetes model was achieved in 16 rats experimentally, and normoglycemic eight rats were assigned as control group (Group 1). The rats with diabetes were randomly separated to two groups: 1 mL/kg/day intraperitoneal 0.9% NaCl was given to eight rats as diabetic vehicle (Group 2) and 10 mg/kg/day DCA was given to other eight rats as DCA treated group (Group 3). Hysterectomy with bilateral oophorectomy was performed for histopathological evaluation and blood samples were collected after 4 weeks. RESULTS Diabetes caused ovarian and endometrial damage (p < 0.0001). Pentraxin-3 (PTX-3), lactic acid, and transforming growth factor-beta (TGF-β) were higher (p < 0.05, p < 0.05, and p < 0.0001, respectively), whereas anti-Mullerian hormone (AMH) was lower in diabetic rats (p < 0.05). These findings reflected the diabetic damage in the genital tract and diminished ovarian reserve occurred via fibrosis, severe inflammation, and oxidative stress. DCA improved the histopathological fibrosis and degeneration in the ovaries and endometrium (p < 0.05). There was a concominant decrease of TGF-β and lactic acid levels with DCA treatment (p < 0.05). DCA also improved ovarian reserve with higher AMH levels (p < 0.05). CONCLUSIONS The several unfavored changes in the endometrium and ovaries due to diabetes have been determined in this present study. DCA might provide the continuity of the endometrial cycle, physiological endometrial structure, ovarian follicular growth, oocyte maturation, and physiological ovarian function by decreasing the lactate levels via inhibiting pyruvate dehydrogenase kinase enzyme.
Collapse
Affiliation(s)
- Halil Gursoy Pala
- Division of Perinatology, Department of Obstetrics and Gynecology, Tepecik Training and Research Hospital, University of Health Sciences, İzmir, Turkey
| | - Emel Ebru Pala
- Department of Pathology, Tepecik Training and Research Hospital, University of Health Sciences, İzmir, Turkey
| | - Burcu Artunc Ulkumen
- Department of Obstetrics and Gynecology, Hafsa Sultan Hospital, Manisa Celal Bayar University, Manisa, Turkey
| | - Oytun Erbas
- Department of Physiology, Demiroglu Bilim University, Istanbul, Turkey
| |
Collapse
|
13
|
Allen MO, Salman TM, Alada ARA, Odetayo AF, Patrick EB, Salami SA. Effect of the beta-adrenergic blockade on intestinal lactate production and glycogen concentration in dogs infused with hexoses. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:287-296. [PMID: 34323061 DOI: 10.1515/jcim-2021-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To investigate effect of beta adrenergic blockade on intestinal lactate production and glycogen concentration in dogs infused with hexoses. METHODS Experiments were carried out on 35 fasted male anaesthetized dogs weighing between 9 and 16 kg. The animals were divided into 7 (5 dogs per group) groups. Group I dogs served as control and infused with normal saline, groups II-IV were intravenously infused with glucose (1.1 mg/kg/min), fructose (1.1 mg/kg/min) and galactose (1.1 mg/kg/min) respectively while groups V-VII animals were pretreated with propranolol (0.5 mg/kg) and were infused with glucose, fructose or galactose respectively. A vein draining the proximal segment of the jejunum was cannulated along with right and left femoral arteries and veins. Glucose uptake was calculated as the product of jejunal blood flow and the difference between arterial and venous glucose levels (A-V glucose), part of the jejunum tissue was homogenized for estimation of glycogen concentration, and plasma lactate was assayed using lactate colorimetric kit. RESULTS The result showed significant increase in venous lactate production in response to glucose (78.30 ± 4.57 mg/dl), fructose (60.72 ± 1.82 mg/dl) and galactose (71.70 ± 1.30 mg/dl) when compared with the control group (51.75 ± 1.32 mg/dl) at (p<0.05) with no significant difference in animals pretreated with propranolol. There was no significant difference in glycogen concentration (p>0.05) in animals infused with hexoses only compared with propanolol pretreated group. CONCLUSIONS Results suggests that one of the possible fates of the enormous amount of glucose taken up by the intestine is conversion to lactate and not glycogen and β-adrenergic receptor does not affect it.
Collapse
Affiliation(s)
- Michael O Allen
- Department of physiology, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria
| | - Toyin M Salman
- Department of physiology, University of Ilorin, Ilorin, Nigeria
| | | | | | - Eli B Patrick
- Department of physiology, University of Ilorin, Ilorin, Nigeria
| | - Shakiru A Salami
- Department of physiology, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria
| |
Collapse
|
14
|
Schumann T, König J, von Loeffelholz C, Vatner DF, Zhang D, Perry RJ, Bernier M, Chami J, Henke C, Kurzbach A, El-Agroudy NN, Willmes DM, Pesta D, de Cabo R, O Sullivan JF, Simon E, Shulman GI, Hamilton BS, Birkenfeld AL. Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Commun Biol 2021; 4:826. [PMID: 34211098 PMCID: PMC8249653 DOI: 10.1038/s42003-021-02279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jörg König
- Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jason Chami
- Heart Research Institute, Newtown, NSW, Australia
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dominik Pesta
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - John F O Sullivan
- Heart Research Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Simon
- Computational Biology, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Bradford S Hamilton
- CardioMetabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- King's College London, Department of Diabetes, School of Life Course Science, London, UK.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.
- Department of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Zhao T, Le S, Freitag N, Schumann M, Wang X, Cheng S. Effect of Chronic Exercise Training on Blood Lactate Metabolism Among Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front Physiol 2021; 12:652023. [PMID: 33776804 PMCID: PMC7992008 DOI: 10.3389/fphys.2021.652023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose: To assess the effect of chronic exercise training on blood lactate metabolism at rest (i.e., basal lactate concentrations) and during exercise (i.e., blood lactate concentration at a fixed load, load at a fixed blood lactate concentration, and load at the individual blood lactate threshold) among patients with type 2 diabetes mellitus (T2DM). Methods: PubMed (MedLine), Embase, Web of Science, and Scopus were searched. Randomized controlled trials, non-randomized controlled trials, and case-control studies using chronic exercise training (i.e., 4 weeks) and that assessed blood lactate concentrations at rest and during exercise in T2DM patients were included. Results: Thirteen studies were eligible for the systematic review, while 12 studies with 312 participants were included into the meta-analysis. In the pre-to-post intervention meta-analysis, chronic exercise training had no significant effect on changes in basal blood lactate concentrations (standardized mean difference (SMD) = -0.20; 95% CI, -0.55 to 0.16; p = 0.28), and the results were similar when comparing the effect of intervention and control groups. Furthermore, blood lactate concentration at a fixed load significantly decreased (SMD = -0.73; 95% CI, -1.17 to -0.29; p = 0.001), while load at a fixed blood lactate concentration increased (SMD = 0.40; 95% CI, 0.07 to 0.72; p = 0.02) after chronic exercise training. No change was observed in load at the individual blood lactate threshold (SMD = 0.28; 95% CI, -0.14 to 0.71; p = 0.20). Conclusion: Chronic exercise training does not statistically affect basal blood lactate concentrations; however, it may decrease the blood lactate concentrations during exercise, indicating improvements of physical performance capacity which is beneficial for T2DM patients' health in general. Why chronic exercise training did not affect basal blood lactate concentrations needs further investigation.
Collapse
Affiliation(s)
- Tong Zhao
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shenglong Le
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.,Faculty of Sport and Health Science, University of Jyväskylä, Jyväskylä, Finland.,Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nils Freitag
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany.,Olympic Training Center Berlin, Berlin, Germany
| | - Moritz Schumann
- Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany
| | - Xiuqiang Wang
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.,Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sulin Cheng
- Exercise, Health and Technology Centre, Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China.,Faculty of Sport and Health Science, University of Jyväskylä, Jyväskylä, Finland.,Exercise Translational Medicine Centre, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany
| |
Collapse
|
16
|
Posa DK, Baba SP. Intracellular pH Regulation of Skeletal Muscle in the Milieu of Insulin Signaling. Nutrients 2020; 12:nu12102910. [PMID: 32977552 PMCID: PMC7598285 DOI: 10.3390/nu12102910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D), along with obesity, is one of the leading health problems in the world which causes other systemic diseases, such as cardiovascular diseases and kidney failure. Impairments in glycemic control and insulin resistance plays a pivotal role in the development of diabetes and its complications. Since skeletal muscle constitutes a significant tissue mass of the body, insulin resistance within the muscle is considered to initiate the onset of diet-induced metabolic syndrome. Insulin resistance is associated with impaired glucose uptake, resulting from defective post-receptor insulin responses, decreased glucose transport, impaired glucose phosphorylation, oxidation and glycogen synthesis in the muscle. Although defects in the insulin signaling pathway have been widely studied, the effects of cellular mechanisms activated during metabolic syndrome that cross-talk with insulin responses are not fully elucidated. Numerous reports suggest that pathways such as inflammation, lipid peroxidation products, acidosis and autophagy could cross-talk with insulin-signaling pathway and contribute to diminished insulin responses. Here, we review and discuss the literature about the defects in glycolytic pathway, shift in glucose utilization toward anaerobic glycolysis and change in intracellular pH [pH]i within the skeletal muscle and their contribution towards insulin resistance. We will discuss whether the derangements in pathways, which maintain [pH]i within the skeletal muscle, such as transporters (monocarboxylate transporters 1 and 4) and depletion of intracellular buffers, such as histidyl dipeptides, could lead to decrease in [pH]i and the onset of insulin resistance. Further we will discuss, whether the changes in [pH]i within the skeletal muscle of patients with T2D, could enhance the formation of protein aggregates and activate autophagy. Understanding the mechanisms by which changes in the glycolytic pathway and [pH]i within the muscle, contribute to insulin resistance might help explain the onset of obesity-linked metabolic syndrome. Finally, we will conclude whether correcting the pathways which maintain [pH]i within the skeletal muscle could, in turn, be effective to maintain or restore insulin responses during metabolic syndrome.
Collapse
Affiliation(s)
- Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Relationships between plasma lactate, plasma alanine, genetic variations in lactate transporters and type 2 diabetes in the Japanese population. Drug Metab Pharmacokinet 2020; 35:131-138. [DOI: 10.1016/j.dmpk.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/28/2019] [Accepted: 10/03/2019] [Indexed: 01/17/2023]
|
18
|
Gordin D, Shah H, Shinjo T, St-Louis R, Qi W, Park K, Paniagua SM, Pober DM, Wu IH, Bahnam V, Brissett MJ, Tinsley LJ, Dreyfuss JM, Pan H, Dong Y, Niewczas MA, Amenta P, Sadowski T, Kannt A, Keenan HA, King GL. Characterization of Glycolytic Enzymes and Pyruvate Kinase M2 in Type 1 and 2 Diabetic Nephropathy. Diabetes Care 2019; 42:1263-1273. [PMID: 31076418 PMCID: PMC6609957 DOI: 10.2337/dc18-2585] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/11/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Elevated glycolytic enzymes in renal glomeruli correlated with preservation of renal function in the Medalist Study, individuals with ≥50 years of type 1 diabetes. Specifically, pyruvate kinase M2 (PKM2) activation protected insulin-deficient diabetic mice from hyperglycemia-induced glomerular pathology. This study aims to extend these findings in a separate cohort of individuals with type 1 and type 2 diabetes and discover new circulatory biomarkers for renal protection through proteomics and metabolomics of Medalists' plasma. We hypothesize that increased glycolytic flux and improved mitochondrial biogenesis will halt the progression of diabetic nephropathy. RESEARCH DESIGN AND METHODS Immunoblots analyzed selected glycolytic and mitochondrial enzymes in postmortem glomeruli of non-Medalists with type 1 diabetes (n = 15), type 2 diabetes (n = 19), and no diabetes (n = 5). Plasma proteomic (SOMAscan) (n = 180) and metabolomic screens (n = 214) of Medalists with and without stage 3b chronic kidney disease (CKD) were conducted and significant markers validated by ELISA. RESULTS Glycolytic (PKM1, PKM2, and ENO1) and mitochondrial (MTCO2) enzymes were significantly elevated in glomeruli of CKD- versus CKD+ individuals with type 2 diabetes. Medalists' plasma PKM2 correlated with estimated glomerular filtration rate (r 2 = 0.077; P = 0.0002). Several glucose and mitochondrial enzymes in circulation were upregulated with corresponding downregulation of toxic metabolites in CKD-protected Medalists. Amyloid precursor protein was also significantly upregulated, tumor necrosis factor receptors downregulated, and both confirmed by ELISA. CONCLUSIONS Elevation of enzymes involved in the metabolism of intracellular free glucose and its metabolites in renal glomeruli is connected to preserving kidney function in both type 1 and type 2 diabetes. The renal profile of elevated glycolytic enzymes and reduced toxic glucose metabolites is reflected in the circulation, supporting their use as biomarkers for endogenous renal protective factors in people with diabetes.
Collapse
Affiliation(s)
- Daniel Gordin
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA.,Folkhälsan Research Center, University of Helsinki, Helsinki, Finland.,Abdominal Center Nephrology, Helsinki University Hospital, Helsinki, Finland
| | - Hetal Shah
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Takanori Shinjo
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Ronald St-Louis
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Weier Qi
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA.,Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden
| | - Kyoungmin Park
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | | | - David M Pober
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | | | | | | | | | | | - Hui Pan
- Joslin Diabetes Center, Boston, MA
| | | | - Monika A Niewczas
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Peter Amenta
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | | | - Aimo Kannt
- Sanofi Deutschland GmbH, Frankfurt am Main, Germany.,Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hillary A Keenan
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA.,Sanofi-Genzyme, Cambridge, MA
| | - George L King
- Joslin Diabetes Center, Boston, MA .,Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Ishitobi M, Hosaka T, Morita N, Kondo K, Murashima T, Kitahara A, Takahashi K, Sumitani Y, Tanaka T, Yokoyama T, Kondo T, Ishida H. Serum lactate levels are associated with serum alanine aminotransferase and total bilirubin levels in patients with type 2 diabetes mellitus: A cross-sectional study. Diabetes Res Clin Pract 2019; 149:1-8. [PMID: 30711436 DOI: 10.1016/j.diabres.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/28/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
AIMS It was recently reported that lactate acts as a metabolic mediator and rises in the diabetic state, but the physiological effects are as yet poorly understood. The objective of the current study was to evaluate the significance of serum lactate elevation in type 2 diabetes mellitus (T2DM) patients. METHODS Fasting serum lactate levels, hematological and inflammatory serum markers and anthropometric parameters, obtained employing bioelectric impedance analysis, were measured in 103 patients with T2DM. RESULTS Statistically significant correlations of serum lactate levels with C-reactive peptide, insulin, aspartate aminotransferase, alanine aminotransferase (ALT), serum lipids, total bilirubin, adiponectin, homeostasis model assessment-insulin resistance, body weight, body mass index and body fat (weight or percentage of subcutaneous fat, visceral fat or total body fat), but neither fasting plasma glucose nor HbA1c, were detected. Stepwise regression analysis showed ALT to be independently positively associated with total bilirubin, while being negatively associated with serum lactate levels. Furthermore, serum lactate levels were significantly higher in patients with ALT-predominant liver dysfunction. CONCLUSION We found fasting serum lactate elevation in T2DM patients to be associated with the serum levels of ALT and total bilirubin independently of blood glucose control. TRIAL REGISTRATION UMIN clinical trials registry (UMIN000029178).
Collapse
Affiliation(s)
- Minori Ishitobi
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshio Hosaka
- Graduate Program in Food and Nutritional Science, Graduate School of Integrated Pharmaceutical and Nutritional Science, The University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Naru Morita
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Ken Kondo
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshitaka Murashima
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Atsuko Kitahara
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Kazuto Takahashi
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Yoshikazu Sumitani
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshiaki Tanaka
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | | | - Takuma Kondo
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Hitoshi Ishida
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| |
Collapse
|
20
|
Li H, Li X, Guo J, Wu G, Dong C, Pang Y, Gao S, Wang Y. Identification of biomarkers and mechanisms of diabetic cardiomyopathy using microarray data. Cardiol J 2018; 27:807-816. [PMID: 30246236 DOI: 10.5603/cj.a2018.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/20/2018] [Accepted: 05/03/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The study aimed to uncover the regulation mechanisms of diabetic cardiomyopathy (DCM) and provide novel prognostic biomarkers. METHODS The dataset GSE62203 downloaded from the Gene Expression Omnibus database was utilized in the present study. After pretreatment using the Affy package, differentially expressed genes (DEGs) were identified by the limma package, followed by functional enrichment analysis and protein- protein interaction (PPI) network analysis. Furthermore, module analysis was conducted using MCODE plug-in of Cytoscape, and functional enrichment analysis was also performed for genes in the modules. RESULTS A set of 560 DEGs were screened, mainly enriched in the metabolic process and cell cycle related process. Hub nodes in the PPI network were LDHA (lactate dehydrogenase A), ALDOC (aldolase C, fructose-bisphosphate) and ABCE1 (ATP Binding Cassette Subfamily E Member 1), which were also highlighted in Module 1 or Module 2 and predominantly enriched in the processes of glycolysis and ribosome biogenesis. Additionally, LDHA were linked with ALDOC in the PPI network. Besides, activating transcription factor 4 (ATF4) was prominent in Module 3; while myosin heavy chain 6 (MYH6) was highlighted in Module 4 and was mainly involved in muscle cells related biological processes. CONCLUSIONS Five potential biomarkers including LDHA, ALDOC, ABCE1, ATF4 and MYH6 were identified for DCM prognosis.
Collapse
Affiliation(s)
- Hui Li
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Xiaoyan Li
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Jian Guo
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Guifu Wu
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Chunping Dong
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Yaling Pang
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Shan Gao
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Yangwei Wang
- Department of Endocrinology, Shaanxi Provincial People's Hospital.
| |
Collapse
|
21
|
Chondronikola M, Magkos F, Yoshino J, Okunade AL, Patterson BW, Muehlbauer MJ, Newgard CB, Klein S. Effect of Progressive Weight Loss on Lactate Metabolism: A Randomized Controlled Trial. Obesity (Silver Spring) 2018; 26:683-688. [PMID: 29476613 PMCID: PMC5866193 DOI: 10.1002/oby.22129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/13/2017] [Accepted: 12/26/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Lactate is an intermediate of glucose metabolism that has been implicated in the pathogenesis of insulin resistance. This study evaluated the relationship between glucose kinetics and plasma lactate concentration ([LAC]) before and after manipulating insulin sensitivity by progressive weight loss. METHODS Forty people with obesity (BMI = 37.9 ± 4.3 kg/m2 ) were randomized to weight maintenance (n = 14) or weight loss (n = 19). Subjects were studied before and after 6 months of weight maintenance and before and after 5%, 11%, and 16% weight loss. A hyperinsulinemic-euglycemic clamp procedure in conjunction with [6,6-2 H2 ]glucose tracer infusion was used to assess glucose kinetics. RESULTS At baseline, fasting [LAC] correlated positively with endogenous glucose production rate (r = 0.532; P = 0.001) and negatively with insulin sensitivity, assessed as the insulin-stimulated glucose disposal (r = -0.361; P = 0.04). Progressive (5% through 16%) weight loss caused a progressive decrease in fasting [LAC], and the decrease in fasting [LAC] after 5% weight loss was correlated with the decrease in endogenous glucose production (r = 0.654; P = 0.002) and the increase in insulin sensitivity (r = -0.595; P = 0.007). CONCLUSIONS This study demonstrates the interrelationships among weight loss, hepatic and muscle glucose kinetics, insulin sensitivity, and [LAC], and it suggests that [LAC] can serve as an additional biomarker of glucose-related insulin resistance.
Collapse
Affiliation(s)
- Maria Chondronikola
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Faidon Magkos
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore & Clinical Nutrition Research Centre, A*STAR, Singapore
| | - Jun Yoshino
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adewole L. Okunade
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce W. Patterson
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J. Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Samuel Klein
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Del Prato S, Chilton R. Practical strategies for improving outcomes in T2DM: The potential role of pioglitazone and DPP4 inhibitors. Diabetes Obes Metab 2018; 20:786-799. [PMID: 29171700 PMCID: PMC5887932 DOI: 10.1111/dom.13169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022]
Abstract
T2DM is a complex disease underlined by multiple pathogenic defects responsible for the development and progression of hyperglycaemia. Each of these factors can now be tackled in a more targeted manner thanks to glucose-lowering drugs that have been made available in the past 2 to 3 decades. Recognition of the multiplicity of the mechanisms underlying hyperglycaemia calls for treatments that address more than 1 of these mechanisms, with more emphasis placed on the earlier use of combination therapies. Although chronic hyperglycaemia contributes to and amplifies cardiovascular risk, several trials have failed to show a marked effect from intensive glycaemic control. During the past 10 years, the effect of specific glucose-lowering agents on cardiovascular risk has been explored with dedicated trials. Overall, the cardiovascular safety of the new glucose-lowering agents has been proven with some of the trials summarized in this review, showing significant reduction of cardiovascular risk. Against this background, pioglitazone, in addition to exerting a sustained glucose-lowering effect, also has ancillary metabolic actions of potential interest in addressing the cardiovascular risk of T2DM, such as preservation of beta-cell mass and function. As such, it seems a logical agent to combine with other oral anti-hyperglycaemic agents, including dipeptidyl peptidase-4 inhibitors (DPP4i). DPP4i, which may also have a potential to preserve beta-cell function, is available as a fixed-dose combination with pioglitazone, and could, potentially, attenuate some of the side effects of pioglitazone, particularly if a lower dose of the thiazolidinedione is used. This review critically discusses the potential for early combination of pioglitazone and DPP4i.
Collapse
Affiliation(s)
- Stefano Del Prato
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Robert Chilton
- Division of CardiologyUniversity of Texas Health Science Center at San Antonio and South Texas Veterans Health Care SystemSan AntonioTexas
| |
Collapse
|
23
|
Lactate, a Neglected Factor for Diabetes and Cancer Interaction. Mediators Inflamm 2016; 2016:6456018. [PMID: 28077918 PMCID: PMC5203906 DOI: 10.1155/2016/6456018] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing body of evidence suggests that there exists a connection between diabetes and cancer. Nevertheless, to date, the potential reasons for this association are still poorly understood and currently there is no clinical evidence available to direct the proper management of patients presenting with these two diseases concomitantly. Both cancer and diabetes have been associated with abnormal lactate metabolism and high level of lactate production is the key biological property of these diseases. Conversely, high lactate contribute to a higher insulin resistant status and a more malignant phenotype of cancer cells, promoting diabetes and cancer development and progression. In view of associations between diabetes and cancers, the role of high lactate production in diabetes and cancer interaction should not be neglected. Here, we review the available evidence of lactate's role in different biological characteristics of diabetes and cancer and interactive relationship between them. Understanding the molecular mechanisms behind metabolic remodeling of diabetes- and cancer-related signaling would endow novel preventive and therapeutic approaches for diabetes and cancer treatment.
Collapse
|
24
|
Consitt LA, Saxena G, Saneda A, Houmard JA. Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. Am J Physiol Endocrinol Metab 2016; 311:E145-56. [PMID: 27221120 PMCID: PMC4967149 DOI: 10.1152/ajpendo.00452.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/19/2016] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to determine whether plasma lactate and skeletal muscle glucose regulatory pathways, specifically PDH dephosphorylation, are impaired during hyperinsulinemic conditions in middle- to older-aged individuals and determine whether exercise training could improve key variables responsible for skeletal muscle PDH regulation. Eighteen young (19-29 yr; n = 9 males and 9 females) and 20 middle- to older-aged (57-82 yr; n = 10 males and 10 females) individuals underwent a 2-h euglycemic hyperinsulinemic clamp. Plasma samples were obtained at baseline and at 30, 50, 90, and 120 min for analysis of lactate, and skeletal muscle biopsies were performed at 60 min for analysis of protein associated with glucose metabolism. In response to insulin, plasma lactate was elevated in aged individuals when normalized to insulin action. Insulin-stimulated phosphorylation of skeletal muscle PDH on serine sites 232, 293, and 300 decreased in young individuals only. Changes in insulin-stimulated PDH phosphorylation were positively related to changes in plasma lactate. No age-related differences were observed in skeletal muscle phosphorylation of LDH, GSK-3α, or GSK-3β in response to insulin or PDP1, PDP2, PDK2, PDK4, or MPC1 total protein. Twelve weeks of endurance- or strength-oriented exercise training improved insulin-stimulated PDH dephosphorylation, which was related to a reduced lactate response. These findings suggest that impairments in insulin-induced PDH regulation in a sedentary aging population contribute to impaired glucose metabolism and that exercise training is an effective intervention for treating metabolic inflexibility.
Collapse
Affiliation(s)
- Leslie A Consitt
- Department of Biomedical Sciences, Ohio University, Athens, Ohio; Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio; Diabetes Institute, Ohio University, Athens, Ohio;
| | - Gunjan Saxena
- Department of Biomedical Sciences, Ohio University, Athens, Ohio
| | - Alicson Saneda
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina; and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
25
|
Elferchichi M, Mercier J, Ammari M, Belguith H, Abdelmelek H, Sakly M, Lambert K. Subacute static magnetic field exposure in rat induces a pseudoanemia status with increase in MCT4 and Glut4 proteins in glycolytic muscle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1265-1273. [PMID: 26358208 DOI: 10.1007/s11356-015-5336-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to investigate the effect of subacute exposure to static magnetic fields (SMF) on hematological and muscle biochemical parameters in rats. Male Wistar rats, daily exposed to SMF, were exposed to SMF (128 mT, 1 h/day) during 15 consecutive days. SMF-exposed rats showed a significant decrease in red blood cell (RBC) count, hemoglobin (Hb), and hematocrit (Ht) values compared to sham-exposed rats (p < 0.05). Concomitant decreases of plasma iron level against increase in transferrin amount were also observed after SMF exposure (p < 0.0.05). In postprandial condition, SMF-exposed rats presented higher plasma lactate (p < 0.01). Additionally, SMF exposure increased monocarboxylate transporters (MCT4) and glucose transporter 4 (Glut4)'s contents only in glycolytic muscle (p < 0.05). SMF exposure induced alteration of hematological parameters; importantly, we noticed a pseudoanemia status, which seems to affect tissue oxygen delivery. Additionally, SMF exposure seems to favor the extrusion of lactate from the cell to the blood compartment. Given that, these arguments advocate for an adaptive response to a hypoxia status following SMF exposure.
Collapse
Affiliation(s)
- Miryam Elferchichi
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Université de Carthage, Jarzouna, 7021, Tunisia.
- PHYMEDEXP, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France.
| | - Jacques Mercier
- PHYMEDEXP, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Mohamed Ammari
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Université de Carthage, Jarzouna, 7021, Tunisia
| | - Hatem Belguith
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Université de Carthage, Jarzouna, 7021, Tunisia
| | - Hafedh Abdelmelek
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Université de Carthage, Jarzouna, 7021, Tunisia
| | - Mohsen Sakly
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Université de Carthage, Jarzouna, 7021, Tunisia
| | - Karen Lambert
- PHYMEDEXP, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| |
Collapse
|
26
|
Holwerda SW, Restaino RM, Manrique C, Lastra G, Fisher JP, Fadel PJ. Augmented pressor and sympathetic responses to skeletal muscle metaboreflex activation in type 2 diabetes patients. Am J Physiol Heart Circ Physiol 2015; 310:H300-9. [PMID: 26566729 DOI: 10.1152/ajpheart.00636.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/06/2015] [Indexed: 11/22/2022]
Abstract
Previous studies have reported exaggerated increases in arterial blood pressure during exercise in type 2 diabetes (T2D) patients. However, little is known regarding the underlying neural mechanism(s) involved. We hypothesized that T2D patients would exhibit an augmented muscle metaboreflex activation and this contributes to greater pressor and sympathetic responses during exercise. Mean arterial pressure (MAP), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were measured in 16 patients with T2D (8 normotensive and 8 hypertensive) and 10 healthy controls. Graded isolation of the muscle metaboreflex was achieved by postexercise ischemia (PEI) following static handgrip performed at 30% and 40% maximal voluntary contraction (MVC). A cold pressor test (CPT) was also performed as a generalized sympathoexcitatory stimulus. Increases in MAP and MSNA during 30 and 40% MVC handgrip were augmented in T2D patients compared with controls (P < 0.05), and these differences were maintained during PEI (MAP: 30% MVC PEI: T2D, Δ16 ± 2 mmHg vs. controls, Δ8 ± 1 mmHg; 40% MVC PEI: T2D, Δ26 ± 3 mmHg vs. controls, Δ16 ± 2 mmHg, both P < 0.05). MAP and MSNA responses to handgrip and PEI were not different between normotensive and hypertensive T2D patients (P > 0.05). Interestingly, MSNA responses were also greater in T2D patients compared with controls during the CPT (P < 0.05). Collectively, these findings indicate that muscle metaboreflex activation is augmented in T2D patients and this contributes, in part, to augmented pressor and sympathetic responses to exercise in this patient group. Greater CPT responses suggest that a heightened central sympathetic reactivity may be involved.
Collapse
Affiliation(s)
- Seth W Holwerda
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Robert M Restaino
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique
- Department of Medicine, University of Missouri, Columbia, Missouri
| | - Guido Lastra
- Department of Medicine, University of Missouri, Columbia, Missouri
| | - James P Fisher
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
27
|
Brinkmann C, Brixius K. Hyperlactatemia in type 2 diabetes: Can physical training help? J Diabetes Complications 2015; 29:965-9. [PMID: 26122286 DOI: 10.1016/j.jdiacomp.2015.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 01/11/2023]
Abstract
Type 2 diabetic patients often exhibit hyperlactatemia in association with a reduced aerobic-oxidative capacity and a restricted lactate transport. Studies suggest a link between increased lactate levels and the manifestation and progression of insulin resistance. However, the specificities of molecular mechanisms remain unclear, and it is not entirely clear whether elevated lactate levels are a cause or consequence of type 2 diabetes. This review focuses on lactate as a key molecule in diabetes and provides an overview of how regular physical activity can be helpful in normalizing elevated lactate levels in type 2 diabetic patients. Physical training may reduce lactate production and reinforce lactate transport and clearance among this particular patient group. We emphasize the crucial role physical training plays in the therapy of type 2 diabetes due to evidence that pharmacological treatment with metformin, which is commonly used in the first-line therapy of type 2 diabetes, does not help reducing lactate levels.
Collapse
Affiliation(s)
- Christian Brinkmann
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
| | - Klara Brixius
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
28
|
Opitz D, Lenzen E, Opiolka A, Redmann M, Hellmich M, Bloch W, Brixius K, Brinkmann C. Endurance training alters basal erythrocyte MCT-1 contents and affects the lactate distribution between plasma and red blood cells in T2DM men following maximal exercise. Can J Physiol Pharmacol 2015; 93:413-9. [PMID: 25844530 DOI: 10.1139/cjpp-2014-0467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic elevated lactate levels are associated with insulin resistance in patients with type 2 diabetes mellitus (T2DM). Furthermore, lactacidosis plays a role in limiting physical performance. Erythrocytes, which take up lactate via monocarboxylate transporter (MCT) proteins, may help transport lactate within the blood from lactate-producing to lactate-consuming organs. This study investigates whether cycling endurance training (3 times/week for 3 months) alters the basal erythrocyte content of MCT-1, and whether it affects lactate distribution kinetics in the blood of T2DM men (n = 10, years = 61 ± 9, body mass index = 31 ± 3 kg/m(2)) following maximal exercise (WHO step-incremental cycle ergometer test). Immunohistochemical staining indicated that basal erythrocyte contents of MCT-1 protein were up-regulated (+90%, P = 0.011) post-training. Erythrocyte and plasma lactate increased from before acute exercise (= resting values) to physical exhaustion pre- as well as post-training (pre-training: +309%, P = 0.004; +360%, P < 0.001; post-training: +318%, P = 0.008; +300%, P < 0.001), and did not significantly decrease during 5 min recovery. The lactate ratio (erythrocytes:plasma) remained unchanged after acute exercise pre-training, but was significantly increased after 5 min recovery post-training (compared with the resting value) (+22%, P = 0.022). The results suggest an increased time-delayed influx of lactate into erythrocytes following an acute bout of exercise in endurance-trained diabetic men.
Collapse
Affiliation(s)
- David Opitz
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
UNO K, TAKAYAMA T, TODOROKI K, INOUE K, Zhe MIN J, MIZUNO H, TOYO'OKA T. Evaluation of a Novel Positively-Charged Pyrrolidine-Based Chiral Derivatization Reagent for the Enantioseparation of Carboxylic Acids by LC-ESI-MS/MS. CHROMATOGRAPHY 2015. [DOI: 10.15583/jpchrom.2015.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kaoru UNO
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takahiro TAKAYAMA
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kenichiro TODOROKI
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Koichi INOUE
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Jun Zhe MIN
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hajime MIZUNO
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Toshimasa TOYO'OKA
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
30
|
Berhane F, Fite A, Daboul N, Al-Janabi W, Msallaty Z, Caruso M, Lewis MK, Yi Z, Diamond MP, Abou-Samra AB, Seyoum B. Plasma Lactate Levels Increase during Hyperinsulinemic Euglycemic Clamp and Oral Glucose Tolerance Test. J Diabetes Res 2015; 2015:102054. [PMID: 25961050 PMCID: PMC4417566 DOI: 10.1155/2015/102054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/19/2014] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
Insulin resistance, which plays a central role in the pathogenesis of type 2 diabetes (T2D), is an early indicator that heralds the occurrence of T2D. It is imperative to understand the metabolic changes that occur at the cellular level in the early stages of insulin resistance. The objective of this study was to determine the pattern of circulating lactate levels during oral glucose tolerance test (OGTT) and hyperinsulinemic euglycemic clamp (HIEC) study in normal nondiabetic subjects. Lactate and glycerol were determined every 30 minutes during OGTT and HIEC on 22 participants. Lactate progressively increased throughout the HIEC study period (P < 0.001). Participants with BMI < 30 had significantly higher mean M-values compared to those with BMI ≥ 30 at baseline (P < 0.05). This trend also continued throughout the OGTT. In addition, those with impaired glucose tolerance test (IGT) had significantly higher mean lactate levels compared to those with normal glucose tolerance (P < 0.001). In conclusion, we found that lactate increased during HIEC study, which is a state of hyperinsulinemia similar to the metabolic milieu seen during the early stages in the development of T2D.
Collapse
Affiliation(s)
- Feven Berhane
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Alemu Fite
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nour Daboul
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wissam Al-Janabi
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zaher Msallaty
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael Caruso
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Monique K. Lewis
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhengping Yi
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | - Berhane Seyoum
- Wayne State University School of Medicine, Detroit, MI 48201, USA
- *Berhane Seyoum:
| |
Collapse
|
31
|
Daneshyar S, Gharakhanlou R, Nikooie R, Forutan Y. The effect of high-fat diet and streptozotocin-induced diabetes and endurance training on plasma levels of calcitonin gene-related peptide and lactate in rats. Can J Diabetes 2014; 38:461-5. [PMID: 25219961 DOI: 10.1016/j.jcjd.2014.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/15/2014] [Accepted: 03/04/2014] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of type 2 diabetes induced by high-fat diet and streptozotocin, and the effect of endurance training on basal circulating levels of calcitonin gene-related peptide (CGRP) and lactate. METHODS Male Wistar rats were randomly divided into 4 groups: 1) control (n=8); 2) trained (n=8); 3) diabetic (n=8) and 4) trained diabetic (n=8). At the age of 7 weeks, diabetes was induced by feeding the animals a high-fat diet and injecting them with a low dose of streptozotocin (35 mg/kg). The animals at 10 weeks of age underwent an endurance training protocol on a treadmill for 7 weeks. Plasma lactate concentrations were measured by a lactate assay kit, and an enzyme immunoassay kit was used to measure CGRP. RESULTS The diabetic rats showed significant increases in plasma CGRP (3.0±1 ng/mL vs. 0.5±0.3 ng/mL, p<0.001) and plasma lactate levels (3.6±0.5 mmol/L vs. 1.3±0.5 mmol/L, p<0.001). Further, significant decrease in basal plasma lactate (2.6±0.5 mmol/L vs. 3.6±0.5 mmol/L, p<0.025) but not plasma CGRP levels (2.5±1.2 ng/mL vs. 3.0±1.3 ng/mL) were found in the diabetic subjects after the endurance training. CONCLUSIONS The results showed that endurance training could modify the basal circulating levels of lactate but not CGRP, which were elevated in this model of type 2 diabetic rats, indicating the lack of correspondence between the endurance training-induced changes of lactate and CGRP in this model of diabetes.
Collapse
Affiliation(s)
- Saeed Daneshyar
- Department of Physical Education and Sports Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Reza Gharakhanlou
- Department of Physical Education and Sports Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.
| | - Rohollah Nikooie
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yazdan Forutan
- Department of Exercise Physiology, Faculty of Exercise Physiology and Sports Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
32
|
Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014; 17:76-100. [PMID: 24929216 DOI: 10.1016/j.mito.2014.05.007] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/19/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
Metabolic pathways involved in lactate metabolism are important to understand the physiological response to exercise and the pathogenesis of prevalent diseases such as diabetes and cancer. Monocarboxylate transporters are being investigated as potential targets for diagnosis and therapy of these and other disorders. Glucose and alanine produce pyruvate which is reduced to lactate by lactate dehydrogenase in the cytoplasm without oxygen consumption. Lactate removal takes place via its oxidation to pyruvate by lactate dehydrogenase. Pyruvate may be either oxidized to carbon dioxide producing energy or transformed into glucose. Pyruvate oxidation requires oxygen supply and the cooperation of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. Congenital or acquired deficiency on gluconeogenesis or pyruvate oxidation, including tissue hypoxia, may induce lactate accumulation. Both obese individuals and patients with diabetes show elevated plasma lactate concentration compared to healthy subjects, but there is no conclusive evidence of hyperlactatemia causing insulin resistance. Available evidence suggests an association between defective mitochondrial oxidative capacity in the pancreatic β-cells and diminished insulin secretion that may trigger the development of diabetes in patients already affected with insulin resistance. Several mutations in the mitochondrial DNA are associated with diabetes mellitus, although the pathogenesis remains unsettled. Mitochondrial DNA mutations have been detected in a number of human cancers. d-lactate is a lactate enantiomer normally formed during glycolysis. Excess d-lactate is generated in diabetes, particularly during diabetic ketoacidosis. d-lactic acidosis is typically associated with small bowel resection.
Collapse
Affiliation(s)
- M Adeva-Andany
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain.
| | - M López-Ojén
- Internal Medicine Division, Policlínica Assistens, c/Federico García, 4-planta baja, 15009 La Coruña, Spain
| | - R Funcasta-Calderón
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - E Ameneiros-Rodríguez
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - C Donapetry-García
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - M Vila-Altesor
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - J Rodríguez-Seijas
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| |
Collapse
|
33
|
Kuwabara T, Takayama T, Todoroki K, Inoue K, Min JZ, Toyo’oka T. Evaluation of a series of prolylamidepyridines as the chiral derivatization reagents for enantioseparation of carboxylic acids by LC–ESI–MS/MS and the application to human saliva. Anal Bioanal Chem 2014; 406:2641-9. [DOI: 10.1007/s00216-014-7637-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
34
|
Juraschek SP, Selvin E, Miller ER, Brancati FL, Young JH. Plasma lactate and diabetes risk in 8045 participants of the atherosclerosis risk in communities study. Ann Epidemiol 2013; 23:791-796.e4. [PMID: 24176820 PMCID: PMC4034672 DOI: 10.1016/j.annepidem.2013.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/02/2013] [Accepted: 09/30/2013] [Indexed: 01/04/2023]
Abstract
PURPOSE Determinants of oxidative capacity, such as fitness and level of adiposity, are strongly associated with type 2 diabetes. Whether decreased oxidative capacity itself is a cause or consequence of insulin resistance and diabetes is unknown. METHODS We examined the association of plasma lactate, a marker of oxidative capacity, with incident diabetes in 8045 participants from the Atherosclerosis Risk in Communities (ARIC) Study with no history of subclinical or diagnosed diabetes at baseline (1996-1998). Incident diabetes was self-reported during annual telephone calls. RESULTS During a median follow-up of 12 years, there were 1513 new cases of diabetes. In Cox proportional hazards models, baseline plasma lactate (per 10 mg/dL) was significantly associated with diabetes (hazard ratio, 1.20; 95% confidence interval, 1.01-1.43), even after adjustment for diabetes risk factors, fasting glucose, and insulin. The upper quartile of baseline lactate (≥ 8.1 mg/dL) was also significantly associated with diabetes risk (hazard ratio, 1.20; 95% confidence interval, 1.02-1.41) compared with the lowest quartile (≤ 5.1 mg/dL). Significant associations persisted among persons without insulin resistance (homeostatic model assessment insulin resistance index < 2.6 U) (P-trend < .01). CONCLUSIONS These findings suggest that low oxidative capacity may precede diabetes. Future studies should evaluate the physiological origins of elevated lactate to better understand its possible role in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Stephen P Juraschek
- Department of Medicine, The Johns Hopkins University, School of Medicine, Baltimore, MD; Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, and The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | | | | | | |
Collapse
|
35
|
Tsutsui H, Mochizuki T, Inoue K, Toyama T, Yoshimoto N, Endo Y, Todoroki K, Min JZ, Toyo'oka T. High-throughput LC-MS/MS based simultaneous determination of polyamines including N-acetylated forms in human saliva and the diagnostic approach to breast cancer patients. Anal Chem 2013; 85:11835-42. [PMID: 24274257 DOI: 10.1021/ac402526c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The determination of polyamines and their N-acetylated forms was performed by ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The polyamines efficiently reacted with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) in 0.1 M borax (pH 9.3) at 60 °C for 30 min. The resulting derivatives were analyzed by electrospray ionization (ESI)-MS and sensitively detected by selected reaction monitoring (SRM). Furthermore, a rapid separation of the polyamine derivatives within 10 min was performed by UPLC using an antipressurized column packed with 1.7-μm octadecylsilyl (ODS) silica gel. The limits of detection (S/N = 3) on the SRM chromatograms were at the attomole level (9-43 amol). This procedure was used to successfully determine 11 polyamines, including their N-acetylated forms, in the saliva of patients with primary and relapsed breast cancer and healthy volunteers. The level of several polyamines (Ac-PUT, Ac-SPD, Ac-SPM, DAc-SPD, and DAc-SPM) increases in breast cancer patients. Furthermore, the levels of three polyamines (Ac-SPM, DAc-SPD, and DAc-SPM) were significantly higher only in the relapsed patients. The present method proved highly sensitive and is characterized by specificity and feasibility for sample analysis. Consequently, the proposed method is useful for the noninvasive salivary diagnosis of cancer patients and could be applied to determine polyamines in several specimens of biological nature.
Collapse
Affiliation(s)
- Haruhito Tsutsui
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka , 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Subash Shantha GP, Wasserman B, Astor BC, Coresh J, Brancati F, Sharrett AR, Young JH. Association of blood lactate with carotid atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. Atherosclerosis 2013; 228:249-55. [PMID: 23510829 PMCID: PMC3657708 DOI: 10.1016/j.atherosclerosis.2013.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 01/22/2013] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Cardiovascular risk factors such as aging, smoking, and insulin resistance may lead to atherosclerosis through various mechanisms of which their association with mitochondrial dysfunction may be one of them. In order to examine this hypothesis, we assessed the association between elevated blood lactate, a marker of mitochondrial dysfunction, and carotid atherosclerosis. METHODS From a total of 2066 participants from the Atherosclerosis Risk In Communities Carotid MRI study, 1496 were included for this analysis. Wall Thickness and Lipid core presence were measured using gadolinium-enhanced MRI. Blood lactate was categorized into quartiles (Q1: <5.9 mg/dl, Q2: 5.9-7.2 mg/dl, Q3: 7.3-9.2 mg/dl, and Q4: >9.2 mg/dl). RESULTS Of the 1496 study participants, 763 (51%) were females, 296 (19.8%) African American, 539 (36%) obese and 308 (20.6%) had diabetes. There was a strong and graded association between lactate and wall thickness [Q1: 1.08 mm (95% CI: 1.01 mm-1.15 mm), Q2: 1.33 mm (95% CI: 1.19 mm-1.47 mm), Q3: 1.44 (95% CI: 1.34 mm-1.54 mm) and Q4: 1.62 (95% CI: 1.53 mm-1.71 mm); p for trend <0.001] after adjusting for age, gender, ethnicity, stature, body mass index (BMI), waist circumference, LDL, High sensitivity C reactive protein (HsCRP), statin use, thiazolidinedione use, hypertension, and diabetes. This association was attenuated, but still significant, after adjusting for a marker of insulin resistance, the triglyceride/HDL ratio, [Q1: 0.96 mm (95% CI: 0.82 mm-1.10 mm), Q2: 1.17 mm (95% CI: 1.08 mm-1.26 mm), Q3: 1.18 mm (95% CI: 1.07 mm-1.29 mm), Q4: 1.22 mm (95% CI: 1.13 mm-1.31 mm), p for linear trend 0.039]. There was no association of lactate with lipid core presence after adjustment for wall thickness. CONCLUSIONS Blood lactate is associated with carotid atherosclerosis. Attenuation of the association with adjustment for triglyceride/HDL ratio, a marker of insulin resistance, suggests that lactate's association with carotid atherosclerosis may be related to insulin resistance.
Collapse
Affiliation(s)
| | - Bruce Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brad C. Astor
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Josef Coresh
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fredrick Brancati
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A. Richey Sharrett
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - J. Hunter Young
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Juraschek SP, Shantha GPS, Chu AY, Miller ER, Guallar E, Hoogeveen RC, Ballantyne CM, Brancati FL, Schmidt MI, Pankow JS, Young JH. Lactate and risk of incident diabetes in a case-cohort of the atherosclerosis risk in communities (ARIC) study. PLoS One 2013; 8:e55113. [PMID: 23383072 PMCID: PMC3559502 DOI: 10.1371/journal.pone.0055113] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/17/2012] [Indexed: 12/25/2022] Open
Abstract
Background Oxidative capacity is decreased in type 2 diabetes. Whether decreased oxidative capacity is a cause or consequence of diabetes is unknown. Our purpose is to evaluate whether lactate, a marker of oxidative capacity, is associated with incident diabetes. Methods and Findings We conducted a case-cohort study in the Atherosclerosis Risk in Communities (ARIC) study at year 9 of follow-up. We evaluated lactate’s association with diabetes risk factors at baseline and estimated the hazard ratio for incident diabetes by quartiles of plasma lactate in 544 incident diabetic cases and 533 non-cases. Plasma lactate showed a graded positive relationship with fasting glucose and insulin (P<0.001). The relative hazard for incident diabetes increased across lactate quartiles (P-trend ≤0.001). Following adjustment for demographic factors, medical history, physical activity, adiposity, and serum lipids, the hazard ratio in the highest quartile was 2.05 times the hazard in the lowest quartile (95% CI: 1.28, 3.28). After including fasting glucose and insulin the association became non-significant. Conclusions Lactate, an indicator of oxidative capacity, predicts incident diabetes independent of many other risk factors and is strongly related to markers of insulin resistance. Future studies should evaluate the temporal relationship between elevated lactate and impaired fasting glucose and insulin resistance.
Collapse
Affiliation(s)
- Stephen P. Juraschek
- The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- The Johns Hopkins Bloomberg School of Public Health, and The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Ghanshyam Palamaner Subash Shantha
- The Johns Hopkins Bloomberg School of Public Health, and The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Audrey Y. Chu
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Edgar R. Miller
- The Johns Hopkins Bloomberg School of Public Health, and The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Eliseo Guallar
- The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- The Johns Hopkins Bloomberg School of Public Health, and The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Ron C. Hoogeveen
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart Center, Houston, Texas, United States of America
| | - Christie M. Ballantyne
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart Center, Houston, Texas, United States of America
| | - Frederick L. Brancati
- The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- The Johns Hopkins Bloomberg School of Public Health, and The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Maria Inês Schmidt
- Graduate Studies Program in Epidemiology, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - J. Hunter Young
- The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- The Johns Hopkins Bloomberg School of Public Health, and The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Tsutsui H, Mochizuki T, Maeda T, Noge I, Kitagawa Y, Min JZ, Todoroki K, Inoue K, Toyo’oka T. Simultaneous determination of dl-lactic acid and dl-3-hydroxybutyric acid enantiomers in saliva of diabetes mellitus patients by high-throughput LC–ESI-MS/MS. Anal Bioanal Chem 2012; 404:1925-34. [DOI: 10.1007/s00216-012-6320-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022]
|
39
|
|
40
|
Iori E, Vinci B, Murphy E, Marescotti MC, Avogaro A, Ahluwalia A. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS One 2012; 7:e34704. [PMID: 22509346 PMCID: PMC3324505 DOI: 10.1371/journal.pone.0034704] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Nutrient balance in the human body is maintained through systemic signaling between different cells and tissues. Breaking down this circuitry to its most basic elements and reconstructing the metabolic network in-vitro provides a systematic method to gain a better understanding of how cross-talk between the organs contributes to the whole body metabolic profile and of the specific role of each different cell type. To this end, a 3-way connected culture of hepatocytes, adipose tissue and endothelial cells representing a simplified model of energetic substrate metabolism in the visceral region was developed. The 3-way culture was shown to maintain glucose and fatty acid homeostasis in-vitro. Subsequently it was challenged with insulin and high glucose concentrations to simulate hyperglycaemia. The aim was to study the capacity of the 3-way culture to maintain or restore normal circulating glucose concentrations in response to insulin and to investigate the effects these conditions on other metabolites involved in glucose and lipid metabolism. The results show that the system’s metabolic profile changes dramatically in the presence of high concentrations of glucose, and that these changes are modulated by the presence of insulin. Furthermore, we observed an increase in E-selectin levels in hyperglycaemic conditions and increased IL-6 concentrations in insulin-free-hyperglycaemic conditions, indicating, respectively, endothelial injury and proinflammatory stress in the challenged 3-way system.
Collapse
Affiliation(s)
- Elisabetta Iori
- Division of Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Padua, Padua, Italy
| | - Bruna Vinci
- Centro Interdipartimentale di Ricerca ″E.Piaggio″, University of Pisa, Pisa, Italy
- CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ellen Murphy
- Division of Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Padua, Padua, Italy
| | - Maria Cristina Marescotti
- Division of Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Padua, Padua, Italy
| | - Angelo Avogaro
- Division of Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Padua, Padua, Italy
| | - Arti Ahluwalia
- Centro Interdipartimentale di Ricerca ″E.Piaggio″, University of Pisa, Pisa, Italy
- CNR Institute of Clinical Physiology, Pisa, Italy
- * E-mail:
| |
Collapse
|
41
|
Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:72-80. [PMID: 21605693 DOI: 10.1016/j.cbpa.2011.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/08/2011] [Accepted: 05/09/2011] [Indexed: 11/22/2022]
Abstract
Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel.
Collapse
|
42
|
Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, Schneiter P. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr 2010; 92:1071-9. [PMID: 20826630 DOI: 10.3945/ajcn.2010.29566] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND When fructose is ingested together with glucose (GLUFRU) during exercise, plasma lactate and exogenous carbohydrate oxidation rates are higher than with glucose alone. OBJECTIVE The objective was to investigate to what extent GLUFRU increased lactate kinetics and oxidation rate and gluconeogenesis from lactate (GNG(L)) and from fructose (GNG(F)). DESIGN Seven endurance-trained men performed 120 min of exercise at ≈60% VO₂max (maximal oxygen consumption) while ingesting 1.2 g glucose/min + 0.8 g of either glucose or fructose/min (GLUFRU). In 2 trials, the effects of glucose and GLUFRU on lactate and glucose kinetics were investigated with glucose and lactate tracers. In a third trial, labeled fructose was added to GLUFRU to assess fructose disposal. RESULTS In GLUFRU, lactate appearance (120 ± 6 μmol · kg⁻¹ · min⁻¹), lactate disappearance (121 ± 7 μmol · kg⁻¹ · min⁻¹), and oxidation (127 ± 12 μmol · kg⁻¹ · min⁻¹) rates increased significantly (P < 0.001) in comparison with glucose alone (94 ± 16, 95 ± 16, and 97 ± 16 μmol · kg⁻¹ · min⁻¹, respectively). GNG(L) was negligible in both conditions. In GLUFRU, GNG(F) and exogenous fructose oxidation increased with time and leveled off at 18.8 ± 3.7 and 38 ± 4 μmol · kg⁻¹ · min⁻¹, respectively, at 100 min. Plasma glucose appearance rate was significantly higher (P < 0.01) in GLUFRU (91 ± 6 μmol · kg⁻¹ · min⁻¹) than in glucose alone (82 ± 9 μmol · kg⁻¹ · min⁻¹). Carbohydrate oxidation rate was higher (P < 0.05) in GLUFRU. CONCLUSIONS Fructose increased total carbohydrate oxidation, lactate production and oxidation, and GNG(F). Fructose oxidation was explained equally by fructose-derived lactate and glucose oxidation, most likely in skeletal and cardiac muscle. This trial was registered at clinicaltrials.gov as NCT01128647.
Collapse
Affiliation(s)
- Virgile Lecoultre
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
43
|
Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, Schmidt MI, Young JH. Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study. Int J Epidemiol 2010; 39:1647-55. [PMID: 20797988 PMCID: PMC2992628 DOI: 10.1093/ije/dyq126] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accumulating evidence implicates insufficient oxidative capacity in the development of type 2 diabetes. This notion has not been well tested in large, population-based studies. METHODS To test this hypothesis, we assessed the cross-sectional association of plasma lactate, an indicator of the gap between oxidative capacity and energy expenditure, with type 2 diabetes in 1709 older adults not taking metformin, who were participants in the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. RESULTS The prevalence of type 2 diabetes rose across lactate quartiles (11, 14, 20 and 30%; P for trend <0.0001). Following adjustment for demographic factors, physical activity, body mass index and waist circumference, the relative odds of type 2 diabetes across lactate quartiles were 0.98 [95% confidence interval (CI) 0.59-1.64], 1.64 (95% CI 1.03-2.64) and 2.23 (95% CI 1.38-3.59), respectively. Furthermore, lactate was associated with higher fasting glucose among non-diabetic adults. CONCLUSIONS Plasma lactate was strongly associated with type 2 diabetes in older adults. Plasma lactate deserves greater attention in studies of oxidative capacity and diabetes risk.
Collapse
Affiliation(s)
- Stephen O Crawford
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Wang Y, Simar D, Fiatarone Singh MA. Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance: a systematic review. Diabetes Metab Res Rev 2009; 25:13-40. [PMID: 19143033 DOI: 10.1002/dmrr.928] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this investigation was to review morphological and metabolic adaptations within skeletal muscle to exercise training in adults with type 2 diabetes mellitus (T2DM) or impaired glucose tolerance (IGT). A comprehensive, systematic database search for manuscripts was performed from 1966 to March 2008 using computerized databases, including Medline, Premedline, CINAHL, AMED, EMBASE and SportDiscus. Three reviewers independently assessed studies for potential inclusion (exposure to exercise training, T2DM or IGT, muscle biopsy performed). A total of 18 exercise training studies were reviewed. All morphological and metabolic outcomes from muscle biopsies were collected. The metabolic outcomes were divided into six domains: glycogen, glucose facilitated transporter 4 (GLUT4) and insulin signalling, enzymes, markers of inflammation, lipids metabolism and so on. Beneficial adaptations to exercise were seen primarily in muscle fiber area and capillary density, glycogen, glycogen synthase and GLUT4 protein expressions. Few randomized controlled trials including muscle biopsy data existed, with a small number of subjects involved. More trials, especially robustly designed exercise training studies, are needed in this field. Future research should focus on the insulin signalling pathway to better understand the mechanism of the improvements in insulin sensitivity and glucose homeostasis in response to various modalities and doses of exercise in this cohort.
Collapse
Affiliation(s)
- Yi Wang
- Exercise, Health and Performance Faculty Research Group, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
45
|
Abstract
In addition to hyperglycemia, diabetes is associated with increased levels of circulating free fatty acids, lactate, and branched chain amino acids, all of which produce an excessive reduced form of pyridine nucleotides NADH (reductive stress) in the cytosol and mitochondria. Our studies suggest that cytosolic NADH reductive stress under high glucose is largely caused by increased flux of glucose through polyol (sorbitol) pathway consisting of aldose reductase and sorbitol dehydrogenase. Inhibition of aldose reductase that blocks the polyol pathway has been shown to ameliorate diabetic neuropathy in humans. Cytosolic NADH reductive stress is predicted to increase production of diglycerides, reactive oxygen species, and methylglyoxal. Recent studies indicate that increasing NADH affects gene expression through the NADH activating transcriptional co-repressor, C-terminal binding protein (CtBP). In addition, it has been shown that the NADH utilizing enzyme, glyceraldehyde-3-phosphate dehydrogenase, participates as transcriptional regulator. These findings testify to the importance of NADH redox balance in cell biology and pathogenesis of diabetes and its complications. For example, through CtBP, the high NADH to NAD(+) ratio decreases an expression of SirT1, the protein inducing longevity and anti-apoptosis. This review covers metabolic cascades causing reductive stress and oxidative stress in diabetes after a brief introduction of the redox concept.
Collapse
Affiliation(s)
- Yasuo Ido
- Boston University Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
46
|
Qvisth V, Hagström-Toft E, Moberg E, Sjöberg S, Bolinder J. Lactate release from adipose tissue and skeletal muscle in vivo: defective insulin regulation in insulin-resistant obese women. Am J Physiol Endocrinol Metab 2007; 292:E709-14. [PMID: 17077346 DOI: 10.1152/ajpendo.00104.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the local tissue lactate production in the normal state and its possible disturbances in insulin resistance, rates of lactate release from adipose tissue (AT) and skeletal muscle (SM) were compared postabsorptively and during a hyperinsulinemic euglycemic clamp in 11 healthy nonobese and 11 insulin-resistant obese women. A combination of microdialysis, to measure interstitial lactate, and the 133Xe clearance technique, to determine local blood flow, were used. In the controls, local blood flow increased by 40% in SM (P<0.05) and remained unchanged in AT, whereas the interstitial-plasma difference in lactate doubled in AT (P<0.005) and was unaffected in SM during hyperinsulinemia. In the obese, blood flow and interstitial-plasma difference in lactate remained unchanged in both tissues during hyperinsulinemia. The lactate release (micromol100 g-1min-1) was 1.17+/-0.22 in SM and 0.43+/-0.11 in AT among the controls (P<0.01) and 0.86+/-0.23 in SM and 0.83+/-0.25 in AT among the obese women in the postabsorptive state. During insulin infusion, lactate release in the controls increased to 1.92+/-0.26 in SM (P<0.005) and to 1.14+/-0.22 in AT (P<0.005) but remained unchanged in the obese women. It is concluded that AT and SM are both significant sources of lactate release postabsorptively, and AT is at least as responsive to insulin as SM. The ability to increase lactate release in response to insulin is impaired in AT and SM in insulin-resistant obese women, involving defective insulin regulation of both tissue lactate metabolism and local blood flow.
Collapse
Affiliation(s)
- Veronica Qvisth
- Department of Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Pendergrass M, Bertoldo A, Bonadonna R, Nucci G, Mandarino L, Cobelli C, Defronzo RA. Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. Am J Physiol Endocrinol Metab 2007; 292:E92-100. [PMID: 16896161 DOI: 10.1152/ajpendo.00617.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Our objectives were to quantitate insulin-stimulated inward glucose transport and glucose phosphorylation in forearm muscle in lean and obese nondiabetic subjects, in lean and obese type 2 diabetic (T2DM) subjects, and in normal glucose-tolerant, insulin-resistant offspring of two T2DM parents. Subjects received a euglycemic insulin (40 mU.m(-2).min(-1)) clamp with brachial artery/deep forearm vein catheterization. After 120 min of hyperinsulinemia, a bolus of d-mannitol/3-O-methyl-d-[(14)C]glucose/d-[3-(3)H]glucose (triple-tracer technique) was given into brachial artery and deep vein samples obtained every 12-30 s for 15 min. Insulin-stimulated forearm glucose uptake (FGU) and whole body glucose metabolism (M) were reduced by 40-50% in obese nondiabetic, lean T2DM, and obese T2DM subjects (all P < 0.01); in offspring, the reduction in FGU and M was approximately 30% (P < 0.05). Inward glucose transport and glucose phosphorylation were decreased by approximately 40-50% (P < 0.01) in obese nondiabetic and T2DM groups and closely paralleled the decrease in FGU. The intracellular glucose concentration in the space accessible to glucose was significantly greater in obese nondiabetic, lean T2DM, obese T2DM, and offspring compared with lean controls. We conclude that 1) obese nondiabetic, lean T2DM, and offspring manifest moderate-to-severe muscle insulin resistance (FGU and M) and decreased insulin-stimulated glucose transport and glucose phosphorylation in forearm muscle; these defects in insulin action are not further reduced by the combination of obesity plus T2DM; and 2) the increase in intracelullar glucose concentration under hyperinsulinemic euglycemic conditions in obese and T2DM groups suggests that the defect in glucose phosphorylation exceeds the defect in glucose transport.
Collapse
Affiliation(s)
- Merri Pendergrass
- Univ. of Texas Health Science Center, Diabetes Division, 703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Lo JC, Kazemi MR, Hsue PY, Martin JN, Deeks SG, Schambelan M, Mulligan K. The Relationship between Nucleoside Analogue Treatment Duration, Insulin Resistance, and Fasting Arterialized Lactate Level in Patients with HIV Infection. Clin Infect Dis 2005; 41:1335-40. [PMID: 16206112 DOI: 10.1086/496981] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Accepted: 06/14/2005] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Treatment with nucleoside reverse-transcriptase inhibitors (NRTIs) is associated with hyperlactatemia, presumably as a result of NRTI-induced mitochondrial toxicity. We examined the association of NRTI treatment duration and lactate level in human immunodeficiency virus (HIV)-infected patients and assessed the relationship of treatment duration and lactate level with insulin resistance. METHODS Fasting arterialized venous lactate levels, routine blood chemistry findings, insulin resistance (determined by homeostasis model assessment [HOMA-IR]), percentage of body fat (determined by dual-energy radiographic absorptiometry), and detailed histories of antiretroviral therapy were obtained for 95 HIV-infected individuals. The independent association of NRTI treatment duration and lactate level was examined using multivariable linear regression. RESULTS Among 95 subjects with a mean age (+/- standard deviation [SD]) of 44 +/- 8 years), 95% had NRTI exposure, with current NRTI use in 83%. The mean (+/- SD) lactate level was 1.24 +/- 0.46 mmol/L (6% had a lactate level > 2 mmol/L). Longer duration of NRTI use was positively associated with lactate level (beta = 0.047; P < .01), as were age, duration of protease inhibitor treatment, and HOMA-IR. Female sex and percentage of body fat were negatively associated with lactate level. After adjustment for age, sex, diabetes, percentage of body fat, and duration of protease inhibitor therapy, an increased duration of NRTI therapy remained significantly associated with lactate level (beta = 0.035; P = .04). However, the addition of HOMA-IR to the adjusted model attenuated the relation between duration of NRTI therapy and lactate level (beta = 0.024; P = .14), whereas HOMA-IR was significantly associated with lactate level (beta = 0.206; P < .01). Furthermore, HOMA-IR was also associated with NRTI treatment duration in adjusted analyses. CONCLUSION NRTI treatment duration was independently associated with higher lactate level, but this relationship was attenuated after adjusting for HOMA-IR. These data raise the possibility that insulin resistance may be an additional mechanism through which NRTI therapy is related to lactate level.
Collapse
Affiliation(s)
- Joan C Lo
- Department of Medicine, University of California San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Konrad D. Utilization of the insulin-signaling network in the metabolic actions of alpha-lipoic acid-reduction or oxidation? Antioxid Redox Signal 2005; 7:1032-9. [PMID: 15998258 DOI: 10.1089/ars.2005.7.1032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alpha-lipoic acid is a naturally occurring cofactor of mitochondrial dehydrogenase complexes and a potent antioxidant. It can interchange between a reduced form and an oxidized form, thereby displaying reducing (antioxidant) and prooxidant properties, respectively. It is suggested that alpha-lipoic acid through its prooxidant properties acutely stimulates the insulin-signaling cascade, thereby increasing glucose uptake in muscle and fat cells. On the other hand, alpha-lipoic acid appears to protect the insulin-signaling cascade from oxidative stress-induced insulin resistance through its reducing capacities. In addition, alpha-lipoic acid seems to inhibit hepatic gluconeogenesis by interfering with fatty acid oxidation, as well as to increase peripheral glucose utilization by activating pyruvate dehydrogenase resulting in increased glucose oxidation. These different properties render alpha-lipoic acid a potentially attractive therapeutic agent for the treatment of insulin resistance. Moreover, given the potential role of oxidative stress in the pathogenesis of secondary complications in diabetes, alpha-lipoic acid might be beneficial in the prevention/treatment of these complications as was recently shown for diabetic neuropathy.
Collapse
Affiliation(s)
- Daniel Konrad
- Division of Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland.
| |
Collapse
|
50
|
Olsen DB, Sacchetti M, Dela F, Ploug T, Saltin B. Glucose clearance is higher in arm than leg muscle in type 2 diabetes. J Physiol 2005; 565:555-62. [PMID: 15774531 PMCID: PMC1464541 DOI: 10.1113/jphysiol.2004.081356] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Insulin-mediated glucose clearance (GC) is diminished in type 2 diabetes. Skeletal muscle has been estimated to account for essentially all of the impairment. Such estimations were based on leg muscle and extrapolated to whole body muscle mass. However, skeletal muscle is not a uniform tissue and insulin resistance may not be evenly distributed. We measured basal and insulin-mediated (1 pmol min-1 kg-1) GC simultaneously in the arm and leg in type 2 diabetes patients (TYPE 2) and controls (CON) (n=6 for both). During the clamp arterio-venous glucose extraction was higher in CON versus TYPE 2 in the arm (6.9+/-1.0 versus 4.7+/-0.8%; mean+/-s.e.m.; P=0.029), but not in the leg (4.2+/-0.8 versus 3.1+/-0.6%). Blood flow was not different between CON and TYPE 2 but was higher (P<0.05) in arm versus leg (CON: 74+/-8 versus 56+/-5; TYPE 2: 87+/-9 versus 43+/-6 ml min-1 kg-1 muscle, respectively). At basal, CON had 84% higher arm GC (P=0.012) and 87% higher leg GC (P=0.016) compared with TYPE 2. During clamp, the difference between CON and TYPE 2 in arm GC was diminished to 54% but maintained at 80% in the leg. In conclusion, this study shows that glucose clearance is higher in arm than leg muscles, regardless of insulin resistance, which may indicate better preserved insulin sensitivity in arm than leg muscle in type 2 diabetes.
Collapse
Affiliation(s)
- David B Olsen
- Copenhagen Muscle Research Centre, University Hospital Rigshospitalet, Section 7652, DK-2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|