1
|
Aiassa V, Ferreira MDR, Ingaramo P, D'Alessandro ME. Salvia hispanica L. (chia) seed have beneficial effects upon visceral adipose tissues extracellular matrix disorders and inflammation developed in a sucrose-rich diet-induced adiposity rodent model. Mol Cell Endocrinol 2025; 597:112438. [PMID: 39638143 DOI: 10.1016/j.mce.2024.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
We have previously demonstrated that dietary Salvia hispanica L. (chia) seed, rich in α-linolenic acid (ALA), was able to reduce visceral adiposity and improves insulin sensitivity in a rodent experimental model of adiposity induced by the administration of a sucrose-rich diet (SRD). The evidence suggests that the pathological expansion of visceral adipose tissue (VAT) is accompanied by changes in the extracellular matrix (ECM) components, which can lead to fibrosis, and/or a greater expression of pro-inflammatory adipokines. The aim of the present work was to evaluate the effect of chia seed administration upon key components and modulators of ECM remodeling and inflammation in different white adipose tissues (WAT) (epididymal-eWAT- and retroperitoneal-rWAT-) in a SRD-induced adiposity rodent model. The results showed that chia seed reduced the increased hydroxyproline levels observed in SRD-fed group and this was accompanied by changes in the activity/expression of matrix metalloproteinases MMP-2 and MMP-9. No changes were observed in transforming growth factor β (TGF-β) expression levels. In addition, this nutritional intervention was able to reduce the levels of PAI-1 and MCP-1, and to increase the levels of adiponectin in both VAT. An increase in the ratio of n-3/n-6 polyunsaturated fatty acids in the membrane phospholipids of both VAT was also observed. The present study demonstrated that chia seed have anti-fibrotic and anti-inflammatory actions in the VAT which could play a key role in the amelioration of visceral adiposity and whole-body insulin insensitivity developed in SRD-fed rats.
Collapse
Affiliation(s)
- Victoria Aiassa
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Paola Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL- CONICET), Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
2
|
Chen F, Ma L, Liu Q, Zhou Z, Yi W. Recent advances and therapeutic applications of PPARγ-targeted ligands based on the inhibition mechanism of Ser273 phosphorylation. Metabolism 2025; 163:156097. [PMID: 39637972 DOI: 10.1016/j.metabol.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
PPARγ functions as a master ligand-dependent transcription factor that regulates the expressions of a variety of key genes related to metabolic homeostasis and inflammatory immunity. It has been recognized as a popular and druggable target in modern drug discovery. Similar to other nuclear receptors, PPARγ is a phosphoprotein, and its biological functions are regulated by phosphorylation, especially at Ser273 site which is mediated by CDK5 or ERK. In the past decade, the excessive level of PPARγ-Ser273 phosphorylation has been confirmed to be a crucial factor in promoting the occurrence and development of some major diseases. Ligands capable of inhibiting PPARγ-Ser273 phosphorylation have shown great potentials for treatment. Despite these achievements, to our knowledge, no related review focusing on this topic has been conducted so far. Therefore, we herein summarize the basic knowledge of PPARγ and CDK5/ERK-mediated PPARγ-Ser273 phosphorylation as well as its physiopathological role in representative diseases. We also review the developments and therapeutic applications of PPARγ-targeted ligands based on this mechanism. Finally, we suggest several directions for future investigations. We expect that this review can evoke more inspiration of scientific communities, ultimately facilitating the promotion of the PPARγ-Ser273 phosphorylation-involved mechanism as a promising breakthrough point for addressing the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
3
|
Li S, An J, Zhang T, Chen G, Zhang Z, Guo Z, Dai Z, Cheng X, Cheng S, Xiong X, Wang N, Jiang G, Xu B, Lei H. Integration of network pharmacology, UHPLC-Q exactive orbitrap HRMS technique and metabolomics to elucidate the active ingredients and mechanisms of compound danshen pills in treating hypercholesterolemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118759. [PMID: 39209003 DOI: 10.1016/j.jep.2024.118759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypercholesterolemia (HLC) was a key risk factor for cardiovascular disease (CVD) characterized by elevated cholesterol levels, particularly LDL. While traditional Chinese medicine preparations Compound Danshen Pills(CDP) has been clinically used for hypercholesterolemia and coronary heart disease, its specific therapeutic effect on HLC remains understudied, necessitating further investigation into its mechanisms. AIM OF THE STUDY The aim of this study was to explore the potential of CDP in treating HLC and elucidate its underlying mechanisms and active components. MATERIALS AND METHODS A hypercholesterolemic lipemia rat model induced by a high-fat diet was employed. Network pharmacology combined with UHPLC-Q exactive orbitrap HRMS technique was used to predict the active components, targets and mechanisms of CDP for HLC. Histological analysis and serum biochemical assays were used to assess the therapeutic effect of CDP and its main active ingredient Sa B on hypercholesterolemic lipemia rat model. Immunofluorescence assays and western blotting were used to verify the mechanism of CDP and Sa B in the treatment of HLC. Metabolomics approach was used to demonstrate that CDP and Sa B affected the metabolic profile of HLC. RESULTS Our findings demonstrated that both CDP and its main active ingredient Sa B significantly ameliorated hypercholesterolemic lipemic lesions, reducing levels of TC, LDL, AST, ALT, and ALP. Histological analysis revealed a decrease in lipid droplet accumulation and collagen fiber deposition in the liver, as well as reduced collagen fiber deposition in the aorta. Network pharmacology predicted potential targets such as PPARα and CYP27A1. Immunofluorescence assays and western blotting confirmed that CDP and Sa B upregulated the expression of Adipor1, PPARα and CYP27A1. Metabolomics analyses further indicated improvements in ABC transporters metabolic pathways, with differential metabolites such as riboflavin, taurine, and choline showed regression in levels after CDP treatment and riboflavin, L-Threonine, Thiamine, L-Leucine, and Adenosine showed improved expression after Sa B treatment. CONCLUSION CDP and Sa B have been shown to alleviate high-fat diet-induced hypercholesterolemia by activating the PPAR pathway and improving hepatic lipid metabolism. Our study demonstrated, for the first time, the complex mechanism of CDP, Sa B in the treatment of hypercholesterolemia at the protein and metabolic levels and provided a new reference that could elucidate the pharmacological effects of traditional Chinese medicine on hypercholesterolemia from multiple perspectives.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Guangyun Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Zixuan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Xuehao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Sijin Cheng
- School of Nursing, Beijing University of Chinese Medicine, Beijing, 102488, China
| | | | - Nan Wang
- Aimin Pharmaceutical Group, Henan, 463500, China
| | | | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| |
Collapse
|
4
|
Noori M, Azimirad M, Ghorbaninejad M, Meyfour A, Zali MR, Yadegar A. PPAR-γ agonist mitigates intestinal barrier dysfunction and inflammation induced by Clostridioides difficile SlpA in vitro. Sci Rep 2024; 14:32087. [PMID: 39738433 PMCID: PMC11686163 DOI: 10.1038/s41598-024-83815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Clostridioides difficile is the leading cause of healthcare- and antibiotic-associated diarrhea. Surface layer protein A (SlpA), an essential component of the bacterium's outermost layer, contributes to colonization and inflammation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) has been demonstrated to improve intestinal integrity and prevent inflammation in host cells. Here, we investigated the role of PPAR-γ in SlpA-mediated inflammation in Caco-2 cells and THP-1 derived macrophages. The extraction of SlpA was carried out for three toxigenic C. difficile clinical strains (RT126, RT001, RT084) and a non-toxigenic strain (ATCC 700057). The gene expression of tight junction (TJ) proteins and inflammatory markers was determined using RT-qPCR. The production of proinflammatory cytokines and nitric oxide was measured by ELISA and Griss reaction, respectively. Western blotting was performed to detect PPAR-γ level before and after adding its agonist, pioglitazone. SlpA of C. difficile strains enhanced the expression of TLR-4, NF-κB, MyD88, IL-17, MCP-1, IL-8, IL-6, TNF-α, IL-1β, whilst the gene expression level of JAM-A, claudin-1, occludin, PPAR-γ and its receptor (CD36) was decreased in both Caco-2 cells and THP-1 derived macrophages. Moreover, pioglitazone caused a notable elevation in the expression level of PPAR-γ, only following treatment with RT126 SlpA. Besides, pioglitazone pretreatment improved TJ impairment in Caco-2 cells and attenuated proinflammatory cytokine expression in both SlpA-treated cell lines. SlpA can attenuate PPAR-γ expression, trigger TJ disruption, and stimulate inflammatory response in host cells. Notably, these events could be reversed by pretreatment of cells with PPAR-γ agonist. Further experiments are required to corroborate the present findings.
Collapse
Affiliation(s)
- Maryam Noori
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Le Jan D, Siliman Misha M, Destrumelle S, Terceve O, Thorin C, Larcher T, Ledevin M, Desfontis JC, Betti E, Mallem Y. Omega-3 Fatty Acid and Vitamin D Supplementations Partially Reversed Metabolic Disorders and Restored Gut Microbiota in Obese Wistar Rats. BIOLOGY 2024; 13:1070. [PMID: 39765737 PMCID: PMC11673857 DOI: 10.3390/biology13121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025]
Abstract
Obesity is a global public health issue linked to various comorbidities in both humans and animals. This study investigated the effects of vitamin D (VD) and omega-3 fatty acids (ω3FA) on obesity, gut dysbiosis, and metabolic alterations in Wistar rats. After 13 weeks on a standard (S) or High-Fat, High-Sugar (HFHS) diet, the rats received VD, ω3FA, a combination (VD/ω3), or a control (C) for another 13 weeks. The HFHS diet led to increased weight gain, abdominal circumference, glucose intolerance, insulin resistance, and gut dysbiosis. VD supplementation improved their fasting blood glucose and reduced liver damage, while ω3FA slowed BMI progression, reduced abdominal fat, liver damage, and intestinal permeability, and modulated the gut microbiota. The combination of VD/ω3 prevented weight gain, decreased abdominal circumference, improved glucose tolerance, and reduced triglycerides. This study demonstrates that VD and ω3FA, alone or combined, offer significant benefits in preventing obesity, gut dysbiosis, and metabolic alterations, with the VD/ω3 combination showing the most promise. Further research is needed to explore the mechanisms behind these effects and their long-term potential in both animal and human obesity management.
Collapse
Affiliation(s)
- Dylan Le Jan
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Mohamed Siliman Misha
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Sandrine Destrumelle
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Olivia Terceve
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Chantal Thorin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Oniris, UMR 703, PanTher, APEX, 44307 Nantes, France; (C.T.); (T.L.); (M.L.)
| | - Thibaut Larcher
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Oniris, UMR 703, PanTher, APEX, 44307 Nantes, France; (C.T.); (T.L.); (M.L.)
| | - Mireille Ledevin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Oniris, UMR 703, PanTher, APEX, 44307 Nantes, France; (C.T.); (T.L.); (M.L.)
| | - Jean-Claude Desfontis
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Eric Betti
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Yassine Mallem
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| |
Collapse
|
6
|
Tumenbayar BI, Pham K, Biber JC, Tutino VM, Brazzo JA, Yao P, Bae Y. FAK and p130Cas Modulate Stiffness-Mediated Early Transcription and Cellular Metabolism. Cytoskeleton (Hoboken) 2024. [PMID: 39651636 DOI: 10.1002/cm.21971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Cellular metabolism is influenced by the stiffness of the extracellular matrix. Focal adhesion kinase (FAK) and its binding partner, p130Cas, transmit biomechanical signals, such as substrate stiffness, to the cell to regulate a variety of cellular responses, but their roles in early transcriptional and metabolic responses remain largely unexplored. We cultured mouse embryonic fibroblasts with or without siRNA-mediated FAK or p130Cas knockdown and assessed the early transcriptional responses of these cells to placement on soft and stiff substrates by RNA sequencing and bioinformatics analyses. Exposure to the stiff substrate altered the expression of genes important for metabolic and biosynthetic processes, and these responses were influenced by knockdown of FAK and p130Cas. Our findings reveal that FAK-p130Cas signaling mechanotransduces substrate stiffness to early transcriptional changes that alter cellular metabolism and biosynthesis.
Collapse
Affiliation(s)
- Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - John C Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Vincent M Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
7
|
Liu Q, Wu X, Duan W, Pan X, Wabitsch M, Lu M, Li J, Huang LH, Zhou Z, Zhu Y. ACAT1/SOAT1 maintains adipogenic ability in preadipocytes by regulating cholesterol homeostasis. J Lipid Res 2024; 65:100680. [PMID: 39481851 PMCID: PMC11638590 DOI: 10.1016/j.jlr.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
Maintaining cholesterol homeostasis is critical for preserving adipocyte function during the progression of obesity. Despite this, the regulatory role of cholesterol esterification in governing adipocyte expandability has been understudied. Acyl-coenzyme A (CoA):cholesterol acyltransferase/Sterol O-acyltransferase 1 (ACAT1/SOAT1) is the dominant enzyme to synthesize cholesteryl ester in most tissues. Our previous study demonstrated that knockdown of either ACAT1 or ACAT2 impaired adipogenesis. However, the underlying mechanism of how ACAT1 mediates adipogenesis remains unclear. Here, we reported that ACAT1 is the dominant isoform in white adipose tissue of both humans and mice, and knocking out ACAT1 reduced fat mass in mice. Furthermore, ACAT1-deficiency inhibited the early stage of adipogenesis via attenuating PPARγ pathway. Mechanistically, ACAT1 deficiency inhibited SREBP2-mediated cholesterol uptake and thus reduced intracellular and plasma membrane cholesterol levels during adipogenesis. Replenishing cholesterol could rescue adipogenic master gene-Pparγ's-transcription in ACAT1-deficient cells during adipogenesis. Finally, overexpression of catalytically functional ACAT1, not the catalytic-dead ACAT1, rescued cholesterol levels and efficiently rescued the transcription of PPARγ as well as the adipogenesis in ACAT1-deficient preadipocytes. In summary, our study revealed the indispensable role of ACAT1 in adipogenesis via regulating intracellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Qing Liu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong
| | - Xiaolin Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong
| | - Wei Duan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohan Pan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Ming Lu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jing Li
- Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangsen Zhou
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yuyan Zhu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; The Hong Kong Polytechnic University Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China.
| |
Collapse
|
8
|
Jindal J, Hill J, Harte J, Dunachie SJ, Kronsteiner B. Starvation and infection: The role of sickness-associated anorexia in metabolic adaptation during acute infection. Metabolism 2024; 161:156035. [PMID: 39326837 DOI: 10.1016/j.metabol.2024.156035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Sickness-associated anorexia, the reduction in appetite seen during infection, is a widely conserved and well-recognized symptom of acute infection, yet there is very little understanding of its functional role in recovery. Anorexic sickness behaviours can be understood as an evolutionary strategy to increase tolerance to pathogen-mediated illness. In this review we explore the evidence for mechanisms and potential metabolic benefits of sickness-associated anorexia. Energy intake can impact on the immune response, control of inflammation and tissue stress, and on pathogen fitness. Fasting mediators including hormone-sensitive lipase, peroxisome proliferator-activated receptor-alpha (PPAR-α) and ketone bodies are potential facilitators of infection recovery through multiple pathways including suppression of inflammation, adaptation to lipid utilising pathways, and resistance to pathogen-induced cellular stress. However, the effect and benefit of calorie restriction is highly heterogeneous depending on both the infection and the metabolic status of the host, which has implications regarding clinical recommendations for feeding during different infections.
Collapse
Affiliation(s)
- Jessy Jindal
- The Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Jennifer Hill
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jodie Harte
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Cao Z, Jiang X, He Y, Zheng X. Metabolic landscape in venous thrombosis: insights into molecular biology and therapeutic implications. Ann Med 2024; 56:2401112. [PMID: 39297312 DOI: 10.1080/07853890.2024.2401112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 05/12/2024] [Indexed: 09/21/2024] Open
Abstract
The findings of the last decade suggest a complex link between inflammatory cells, coagulation, and the activation of platelets and their synergistic interaction to promote venous thrombosis. Inflammation is present throughout the process of venous thrombosis, and various metabolic pathways of erythrocytes, endothelial cells, and immune cells involved in venous thrombosis, including glucose metabolism, lipid metabolism, homocysteine metabolism, and oxidative stress, are associated with inflammation. While the metabolic microenvironment has been identified as a marker of malignancy, recent studies have revealed that for cancer thrombosis, alterations in the metabolic microenvironment appear to also be a potential risk. In this review, we discuss how the synergy between metabolism and thrombosis drives thrombotic disease. We also explore the great potential of anti-inflammatory strategies targeting venous thrombosis and the complex link between anti-inflammation and metabolism. Furthermore, we suggest how we can use our existing knowledge to reduce the risk of venous thrombosis.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Mesmar F, Muhsen M, Mirchandani R, Tourigny JP, Tennessen JM, Bondesson M. The herbicide acetochlor causes lipid peroxidation by inhibition of glutathione peroxidase activity. Toxicol Sci 2024; 202:302-313. [PMID: 39240656 PMCID: PMC11589103 DOI: 10.1093/toxsci/kfae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome is increasing worldwide, particularly in rural communities, where residents have a higher risk of exposure to pesticides. We investigated whether six commonly used agricultural pesticides on corn and soy fields possess adipogenic and metabolic disruption activity. Exposure to two of these pesticides, the herbicides acetochlor and metolachlor, induced adipogenesis in vitro in mouse 3T3-L1 preadipocytes. The most potent compound, acetochlor, was selected for further studies in zebrafish. Acetochlor exposure induced morphological malformations and lethality in zebrafish larvae with an EC50 of 7.8 µM and LC50 of 12 µM. Acetochlor exposure at 10 nM resulted in lipid accumulation in zebrafish larvae when simultaneously fed a high-cholesterol diet. To decipher the molecular mechanisms behind acetochlor action, we performed transcriptomic and lipidomic analyses of exposed animals. The combined omics results suggested that acetochlor exposure increased Nrf2 activity in response to reactive oxygen species, as well as induced lipid peroxidation and ferroptosis. We further discovered that acetochlor structurally shares a chloroacetamide group with known inhibitors of glutathione peroxidase 4 (GPX4). Computational docking analysis suggested that acetochlor covalently binds to the active site of GPX4. Consistent with this prediction, Gpx activity was efficiently repressed by acetochlor in zebrafish, whereas lipid peroxidation was increased. We propose that acetochlor disrupts lipid homeostasis by inhibiting GPX activity, resulting in the accumulation of lipid peroxidation, 4-hydroxynonenal, and reactive oxygen species, which in turn activate Nrf2. Because metolachlor, among other acetanilide herbicides, also contains the chloroacetamide group, inhibition of GPX activity may represent a novel, common molecular initiating event of metabolic disruption.
Collapse
Affiliation(s)
- Fahmi Mesmar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| | - Maram Muhsen
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| | - Rachna Mirchandani
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| |
Collapse
|
11
|
Du L, Ding X, Tian Y, Chen J, Li W. Effect of anthocyanins on metabolic syndrome through interacting with gut microbiota. Pharmacol Res 2024; 210:107511. [PMID: 39577753 DOI: 10.1016/j.phrs.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metabolic syndrome, as a complex pathological condition, is caused by a series of pathogenic factors and has become a global public health challenge. Anthocyanins, a natural water-soluble flavonoid pigment, have attracted much attention due to their antioxidant, anti-inflammatory, and anticancer biological activities. After ingestion, a majority of anthocyanins is not directly absorbed but rather reaches the colon. Hence, the exertion of their biological benefits is closely intertwined with the role played by gut microbiota. In this review, we introduce the pathogenesis and intervention methods of metabolic syndrome, as well as the interaction between anthocyanins and gut microbiota. We also discuss the therapeutic potential of anthocyanins through gut microbiota in addressing a range of metabolic syndrome conditions, including obesity, type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver disease, inflammatory bowel disease, polycystic ovary syndrome, osteoporosis, and cancer.
Collapse
Affiliation(s)
- Lanlan Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuwen Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Soares VC, Dias SSG, Santos JC, Bozza PT. Unlocking secrets: lipid metabolism and lipid droplet crucial roles in SARS-CoV-2 infection and the immune response. J Leukoc Biol 2024; 116:1254-1268. [PMID: 39087951 DOI: 10.1093/jleuko/qiae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024] Open
Abstract
Lipid droplets (LDs) are crucial for maintaining lipid and energy homeostasis within cells. LDs are highly dynamic organelles that present a phospholipid monolayer rich in neutral lipids. Additionally, LDs are associated with structural and nonstructural proteins, rapidly mobilizing lipids for various biological processes. Lipids play a pivotal role during viral infection, participating during viral membrane fusion, viral replication, and assembly, endocytosis, and exocytosis. SARS-CoV-2 infection often induces LD accumulation, which is used as a source of energy for the replicative process. These findings suggest that LDs are a hallmark of viral infection, including SARS-CoV-2 infection. Moreover, LDs participate in the inflammatory process and cell signaling, activating pathways related to innate immunity and cell death. Accumulating evidence demonstrates that LD induction by SARS-CoV-2 is a highly coordinated process, aiding replication and evading the immune system, and may contribute to the different cell death process observed in various studies. Nevertheless, recent research in the field of LDs suggests these organelles according to the pathogen and infection conditions may also play roles in immune and inflammatory responses, protecting the host against viral infection. Understanding how SARS-CoV-2 influences LD biogenesis is crucial for developing novel drugs or repurposing existing ones. By targeting host lipid metabolic pathways exploited by the virus, it is possible to impact viral replication and inflammatory responses. This review seeks to discuss and analyze the role of LDs during SARS-CoV-2 infection, specifically emphasizing their involvement in viral replication and the inflammatory response.
Collapse
Affiliation(s)
- Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Suelen Silva Gomes Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Julia Cunha Santos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| |
Collapse
|
13
|
Wu A, Yang ZK, Kong P, Yu P, Li YT, Xu JL, Bian SS, Teng JW. Exploring osteosarcoma based on the tumor microenvironment. Front Immunol 2024; 15:1423194. [PMID: 39654890 PMCID: PMC11625786 DOI: 10.3389/fimmu.2024.1423194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Osteosarcoma is a cancerous bone tumor that develops from mesenchymal cells and is characterized by early metastasis, easy drug resistance, high disability, and mortality. Immunological characteristics of the tumor microenvironment (TME) have attracted attention for the prognosis and treatment of osteosarcoma, and there is a need to explore a signature with high sensitivity for prognosis. In the present study, a total of 84 samples of osteosarcoma were acquired from the UCSC Xena database, analyzed for immune infiltration and classified into two categories depending on their immune properties, and then screened for DEGs between the two groups and analyzed for enrichment, with the majority of DEGs enriched in the immune domain. To further analyze their immune characteristics, the immune-related genes were obtained from the TIMER database. We performed an intersection analysis to identify immune-related differentially expressed genes (IR-DEGs), which were analyzed using a univariate COX regression, and LASSO analysis was used to obtain the ideal genes to construct the risk model, and to uncover the prognostic distinctions between high-risk scoring group and low-risk scoring group, a survival analysis was conducted. The risk assessment model developed in this study revealed a notable variation in survival analysis outcomes between the high-risk and low-risk scoring groups, and the conclusions reached by the model are consistent with the findings of previous scholars. They also yield meaningful results when analyzing immune checkpoints. The risk assessment model developed in this study is precise and dependable for forecasting outcomes and analyzing characteristics of osteosarcoma.
Collapse
Affiliation(s)
- Ao Wu
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhi-kai Yang
- Hand and Foot Orthopaedic Department, Changle County People’s Hospital, Weifang, Shandong, China
| | - Peng Kong
- Department of Minimally Invasive Orthopedics, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, Shandong, China
| | - Peng Yu
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - You-tong Li
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jia-le Xu
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Si-shan Bian
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jia-wen Teng
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
14
|
Diab F, Zbeeb H, Zeaiter L, Baldini F, Pagano A, Minicozzi V, Vergani L. Unraveling the metabolic activities of bioactive compounds on cellular models of hepatosteatosis and adipogenesis through docking analysis with PPARs. Sci Rep 2024; 14:28196. [PMID: 39548141 PMCID: PMC11568224 DOI: 10.1038/s41598-024-78374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Obesity is associated with fatty liver disease. Available therapies show modest efficacy, and nutraceuticals with good effectiveness and safety are largely investigated. We focused on five natural compounds, three plant phenolic compounds (carvacrol, rosmarinic acid, silybin), and two thyroid hormones (T2: 3,5-diiodo-l-thyronine; T3: 3,5,3'-triiodo-L-thyronine) as comparison, to assess their beneficial effects on two cellular models of hepatosteatosis and adipogenesis. All compounds ameliorated the lipid accumulation and oxidative stress in both models, but with different potencies. The peroxisome proliferator-activated receptors (PPARs) are pivotal controllers of adipogenesis and lipid metabolism. For the main isoforms, PPARγ and PPARa, we assessed their possible binding to the compounds by molecular docking calculations, and their expression pattern by real-time PCR. All compounds bind both PPARs with different affinity, while not all compounds affect their expression. The results may clarify the distinctive molecular mechanisms underlying the action of the five compounds in the different cell models with possible applications to treat obesity.
Collapse
Affiliation(s)
- Farah Diab
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
- DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Hawraa Zbeeb
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Lama Zeaiter
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
- Istituto Italiano Tecnologia, Genova, Italy
| | | | - Aldo Pagano
- DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome Tor Vergata and INFN - Section of Rome Tor Vergata, Rome, Italy
| | - Laura Vergani
- DISTAV, Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
15
|
Yilihamu Y, Xu R, Jia W, Kukun H, Aihemaiti D, Chang Y, Ding S, Wang Y. Role of long non-coding RNA TCONS_02443383 in regulating cell adhesion and peroxisome proliferator-activated receptor (PPAR) signaling genes in atherosclerosis: A New Zealand white rabbit model study. Gene 2024; 927:148694. [PMID: 38878987 DOI: 10.1016/j.gene.2024.148694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE In this study, we performed RNA sequencing (RNA-seq) on the abdominal aorta tissue of New Zealand rabbits and investigated the potential association of lncRNA TCONS_02443383 with the development of AS through bioinformatics analysis of the sequencing data. The obtained results were further validated using quantitative real-time polymerase chain reaction (qRT-PCR). METHOD We induced an AS model in New Zealand rabbits by causing balloon injury to the abdominal aorta vascular wall and administering a high-fat diet. We then upregulated the expression level of the lncRNA TCONS_02443383 by injecting lentiviral plasmids through the ear vein. RNA sequencing (RNA-seq) was performed on the abdominal aorta tissues. We conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and Gene Ontology (GO) analyses. RESULT The overexpression of the lncRNA TCONS_02443383 led to an upregulation of peroxisome proliferator-activated receptor (PPAR) signaling pathways as well as genes related to cell adhesion. CONCLUSION The overexpression of the lncRNA TCONS_02443383 can inhibit the occurrence and development of AS by upregulating peroxisome proliferator-activated receptor (PPAR) signaling pathways and genes related to cell adhesion.
Collapse
Affiliation(s)
- Yilinuer Yilihamu
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Rui Xu
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Wenxiao Jia
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Hanjiaerbieke Kukun
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Dilinuerkezi Aihemaiti
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Yifan Chang
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Shuang Ding
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China.
| | - Yunling Wang
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China.
| |
Collapse
|
16
|
Masenga SK, Desta S, Hatcher M, Kirabo A, Lee DL. How PPAR-alpha mediated inflammation may affect the pathophysiology of chronic kidney disease. Curr Res Physiol 2024; 8:100133. [PMID: 39665027 PMCID: PMC11629568 DOI: 10.1016/j.crphys.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Chronic kidney disease (CKD) is a major risk factor for death in adults. Inflammation plays a role in the pathogenesis of CKD, but the mechanisms are poorly understood. Peroxisome proliferator-activated receptor alpha (PPAR-α) is a nuclear receptor and one of the three members (PPARα, PPARβ/δ, and PPARγ) of the PPARs that plays an important role in ameliorating pathological processes that accelerate acute and chronic kidney disease. Although other PPARs members are well studied, the role of PPAR-α is not well described and its role in inflammation-mediated chronic disease is not clear. Herein, we review the role of PPAR-α in chronic kidney disease with implications for the immune system.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Mark Hatcher
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dexter L. Lee
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
17
|
Wu Q, Jiao Y, Li J, Ma Y, Wang J, Luo M, Wang Y, Fan X, Liu C. Flavokawain B is an effective natural peroxisome proliferator-activated receptor γ-selective agonist with a strong glucose-lowering effect. Biochem Pharmacol 2024; 229:116548. [PMID: 39304103 DOI: 10.1016/j.bcp.2024.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Rosiglitazone, a full PPARγ agonist and a classical insulin sensitizer, was once used as a powerful weapon in the treatment of T2DM. However, its applications have been restricted recently because of its multiple side effects. Here, a natural compound, flavokawain B (FKB), which was screened in our previous experiments, was investigated for its potential as a preferable insulin sensitizer because it has no or few side effects. Using the surface plasmon resonance (SPR) technique, we confirmed that FKB is a natural ligand for PPARγ with high binding affinity. In in vitro experiments, FKB significantly increased 2-NBDG uptake in HepG2 and 3T3-L1 cells, which partially stimulated PPARγ transcriptional activity. Compared with rosiglitazone, FKB had little effect on the adipose differentiation of 3T3-L1 cells, and all of these features suggest that FKB is a selective modulator of PPARγ (SPPARγM). Moreover, FKB increased the mRNA expression levels of most genes related to insulin sensitivity and glucose metabolism but had no obvious effect on those related to adipose differentiation. In vivo experiments confirmed that FKB effectively decreased abnormal fasting blood glucose and postprandial blood glucose levels and reduced glycated hemoglobin levels, similar to rosiglitazone, in HFD-fed/STZ-treated and db/db mice, two T2DM animal models, but did not cause side effects, such as weight gain or liver or kidney damage. Further investigation revealed that FKB could inhibit PPARγ-Ser273 phosphorylation, which is the key mechanism involved in improving insulin resistance. Together, FKB is a well-performing SPPARγM that exerts a powerful glucose-lowering effect without causing the same side effects as rosiglitazone, and it may have great potential for development.
Collapse
Affiliation(s)
- Qixin Wu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue Jiao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingzhe Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanyan Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingyi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingzhu Luo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yiting Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinrong Fan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Changzhen Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
18
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
19
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
20
|
Ortiz-Barragán E, Estrada-Soto S, Giacoman-Martínez A, Alarcón-Aguilar FJ, Fortis-Barrera Á, Marquina-Rodríguez H, Gaona-Tovar E, Lazzarini-Lechuga R, Suárez-Alonso A, Almanza-Pérez JC. Antihyperglycemic and Hypolipidemic Activities of Flavonoids Isolated from Smilax Dominguensis Mediated by Peroxisome Proliferator-Activated Receptors. Pharmaceuticals (Basel) 2024; 17:1451. [PMID: 39598363 PMCID: PMC11597028 DOI: 10.3390/ph17111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
Background/objetives: Mexican people use Smilax dominguensis as a traditional medicine for diabetes control. Some reports have shown an anti-hyperglycemic effect in animal models. In the current research, a chemical bio-guided fractionation in vitro and in silico was performed to identify compounds with anti-hyperglycemic and hypolipidemic effects through PPARγ/α dual agonist activity because they regulate genes involved in energy storage and burning, such as GLUT4 and FATP. Methods: The S. dominguensis extract was evaluated in mice through oral glucose tolerance tests. The bioactive extract was fractionated by open-column chromatography, and seven final fractions (F1-F7) were obtained and evaluated. C2C12 myoblasts were treated with the fractions, and the mRNA expression levels of PPARs, GLUT-4, and FATP were quantified. The most active fractions were evaluated on GLUT-4 translocation and lipid storage in C2C12 cells and 3T3-L1 adipocytes, respectively. Results: The F3 fraction increased the expressions of PPARγ, GLUT-4, PPARα, and FATP, and it induced GLUT-4 translocation and decreased lipid storage. F3 was then analyzed by NMR, identifying three flavonoids: luteolin, apigenin, and kaempferol. These compounds were analyzed by molecular docking and on PPAR expressions. Luteolin, apigenin, and kaempferol produced a discrete increase in the mRNA expression of PPARs. Luteolin and kaempferol also decreased lipid storage. Conclusions: Our findings indicate that the compounds identified in S. dominguensis exhibit dual agonist activity on PPARγ/PPARα and have the potential for the development of new therapeutic agents helpful in diabetes, obesity, or metabolic syndrome.
Collapse
Affiliation(s)
- Erandi Ortiz-Barragán
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09310, Mexico;
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (S.E.-S.)
| | - Abraham Giacoman-Martínez
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocaril San Rafael Atlixco 186, Col. Leyes de Reforma 1a Secc. Iztapalapa, Ciudad de México 09310, Mexico; (A.G.-M.); (F.J.A.-A.); (Á.F.-B.); (A.S.-A.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de México 11340, Mexico
| | - Francisco J. Alarcón-Aguilar
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocaril San Rafael Atlixco 186, Col. Leyes de Reforma 1a Secc. Iztapalapa, Ciudad de México 09310, Mexico; (A.G.-M.); (F.J.A.-A.); (Á.F.-B.); (A.S.-A.)
| | - Ángeles Fortis-Barrera
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocaril San Rafael Atlixco 186, Col. Leyes de Reforma 1a Secc. Iztapalapa, Ciudad de México 09310, Mexico; (A.G.-M.); (F.J.A.-A.); (Á.F.-B.); (A.S.-A.)
| | - Hugo Marquina-Rodríguez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (S.E.-S.)
| | - Emmanuel Gaona-Tovar
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (S.E.-S.)
| | - Roberto Lazzarini-Lechuga
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09310, Mexico;
| | - Alfredo Suárez-Alonso
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocaril San Rafael Atlixco 186, Col. Leyes de Reforma 1a Secc. Iztapalapa, Ciudad de México 09310, Mexico; (A.G.-M.); (F.J.A.-A.); (Á.F.-B.); (A.S.-A.)
| | - Julio César Almanza-Pérez
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocaril San Rafael Atlixco 186, Col. Leyes de Reforma 1a Secc. Iztapalapa, Ciudad de México 09310, Mexico; (A.G.-M.); (F.J.A.-A.); (Á.F.-B.); (A.S.-A.)
| |
Collapse
|
21
|
Fang B, Luo J, Cui Z, Liu R, Wang P, Zhang J. Pea Albumin Alleviates Oleic Acid-Induced Lipid Accumulation in LO2 Cells Through Modulating Lipid Metabolism and Fatty Acid Oxidation Pathways. Foods 2024; 13:3482. [PMID: 39517266 PMCID: PMC11545291 DOI: 10.3390/foods13213482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Excessive lipid accumulation in the liver can cause NAFLD, leading to chronic liver injury. To relieve liver lipid accumulation by dietary proteins, this study used oleic acid (OA) induction to establish a stable in vitro LO2 cell lipid accumulation model. This model was used to explore the mechanism by which pea albumin (PA) regulates lipid levels in LO2 cells. PA has been shown to ameliorate OA-induced lipid accumulation in LO2 cells by reducing the aggregation of intracellular lipid droplets and lowering cell TG and TC levels. In addition, it can alleviate OA-induced LO2 cell damage and oxidative stress, reduce cellular ALT and AST secretion, lower cellular MDA levels, and increase GSH-Px viability. Regulation of lipid metabolism in LO2 cells involves inhibiting the cellular lipid synthesis pathway and activating the expression of proteins related to the triglyceride catabolic and fatty acid oxidation pathways. PA contributes to regulating lipid accumulation in LO2 cells. This study provides new insights into alleviating liver fat accumulation and a theoretical basis for exploring the mechanism of protein regulation of liver cell lipid metabolism.
Collapse
Affiliation(s)
- Bing Fang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China;
| | - Zhengwu Cui
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
| | - Rong Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
| |
Collapse
|
22
|
Di Majo D, Ricciardi N, Moncada A, Allegra M, Frinchi M, Di Liberto V, Pitonzo R, Rappa F, Saiano F, Vetrano F, Miceli A, Giglia G, Ferraro G, Sardo P, Gambino G. Golden Tomato Juice Enhances Hepatic PPAR-α Expression, Mitigates Metabolic Dysfunctions and Influences Redox Balance in a High-Fat-Diet Rat Model. Antioxidants (Basel) 2024; 13:1324. [PMID: 39594468 PMCID: PMC11591511 DOI: 10.3390/antiox13111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Golden tomato (GT), harvested at the veraison stage, has gained attention due to its rich content of bioactive compounds and potential health benefits. Previous studies have highlighted GT's antioxidant properties and its positive effects on metabolic syndrome (MetS), a condition characterized by obesity, dyslipidemia, and oxidative stress. This study investigates for the first time a derivative from GT, i.e., the juice (GTJ), which could be a potential candidate for development as a functional food. We first characterized GT juice, identifying 9-oxo-10(E),12(E)-octadecadienoic (9-oxo-10(E),12(E)-ODA) fatty acid, a known peroxisome proliferator-activated receptor alpha (PPAR-α) agonist, using High-Performance Liquid Chromatography (HPLC)-mass spectrometry. Then, using a high-fat-diet (HFD) rat model, we assessed the impact of daily GT juice supplementation in addressing MetS. We outlined that GTJ improved body weight and leptin-mediated food intake. Moreover, it ameliorated glucose tolerance, lipid profile, systemic redox homeostasis, hepatic oxidative stress, and steatosis in HFD rats. Furthermore, GT juice enhances the hepatic transcription of PPAR-α, thus putatively promoting fatty acid oxidation and lipid metabolism. These findings suggest that GT juice mitigates lipidic accumulation and putatively halters oxidative species at the hepatic level through PPAR-α activation. Our study underscores the protective effects of GT juice against MetS, highlighting its future potential as a nutraceutical for improving dysmetabolism and associated alterations.
Collapse
Affiliation(s)
- Danila Di Majo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| | - Nicolò Ricciardi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Alessandra Moncada
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Mario Allegra
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Rosa Pitonzo
- ATeN (Advanced Technologies Network) Center, 90128 Palermo, Italy;
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Filippo Saiano
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Filippo Vetrano
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Alessandro Miceli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
- Euro Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| | - Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| |
Collapse
|
23
|
Xie Y, Wu F, Chen Z, Hou Y. Epithelial membrane protein 1 in human cancer: a potential diagnostic biomarker and therapeutic target. Biomark Med 2024; 18:995-1005. [PMID: 39469853 PMCID: PMC11633390 DOI: 10.1080/17520363.2024.2416887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Epithelial membrane protein 1 (EMP1) is a member of the small hydrophobic membrane protein subfamily. EMP1 is aberrantly expressed in various tumor tissues and governs multiple cellular behaviors (e.g., proliferation, differentiation, and migration). The resultant regulation of the cancer pathway is responsible for the metastasis of cancer cells and determines the risk of malignant tumor progression. This review provides an updated overview of EMP1 as either an oncogene or a tumor suppressor contingent on the cancer type and summarizes its upstream regulators and downstream target genes. This systematic review summarizes our current understanding of the role of EMP1 in malignant tumor development, including critical functional mechanisms and implications for its potential use as the biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Wu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
24
|
Zhang YL, Sun SJ, Zeng L. Biological effects and mechanisms of dietary chalcones: latest research progress, future research strategies, and challenges. Food Funct 2024; 15:10582-10599. [PMID: 39392421 DOI: 10.1039/d4fo03618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.
Collapse
Affiliation(s)
- Yun Liang Zhang
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Shuang Jiao Sun
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Li Zeng
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
25
|
Szkopek D, Mendel M, Kinsner M, Fotschki B, Juśkiewicz J, Kozłowski K, Matusevičius P, Konieczka P. Interaction Between Peroxisome Proliferator-Activated Receptors and Cannabidiol in the Gut of Chickens Applied to Different Challenge Conditions. Int J Mol Sci 2024; 25:11398. [PMID: 39518951 PMCID: PMC11547005 DOI: 10.3390/ijms252111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are important targets for cannabidiol (CBD), which mediate many of its biological actions. The hypothesis of the present research assumed that PPARs affect the gut response to different challenge factors in chickens (C. perfringens vs. lipopolysaccharides (LPS) from E. coli), and that CBD can mediate the pathways of this response. The study proved that CBD and the challenge factors significantly affect the expression level of PPARα (p = 0.001) and selected genes determining gut barrier function. A positive correlation was demonstrated between PPARs and genes involved in the formation of tight junctions, immune, and oxidative stress responses in chickens. Dietary supplementation with CBD actively mediated the expression rate of PPARs, but the mechanism of interaction between CBD and PPARs was different depending on the stress factor used. The addition of CBD to the birds' diets did not contribute to reducing intestinal permeability under induced stress conditions nor cause stress, as indicated by the absence of elevated blood cortisol and endotoxin levels. CBD also supported the mechanisms of protecting intestinal cells from the cytotoxic effects in a C. perfringens challenge through the levels of genes involved in oxidative stress. This study indicates the importance of research toward understanding the mechanisms of PPARs as a target for enhancing intestinal barrier function, provides new results on the biological action of CBD in chickens, and shows a constant PPAR association with the jejunum mucosa of birds.
Collapse
Affiliation(s)
- Dominika Szkopek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland;
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | - Krzysztof Kozłowski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Paulius Matusevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes 18, LT-47181 Kaunas, Lithuania;
| | - Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| |
Collapse
|
26
|
D P, Hani U, Haider N, Talath S, Shanmugarajan D, P P, P A, Prashantha Kumar BR. Novel PPAR-γ agonists as potential neuroprotective agents against Alzheimer's disease: rational design, synthesis , in silico evaluation, PPAR-γ binding assay and transactivation and expression studies. RSC Adv 2024; 14:33247-33266. [PMID: 39434987 PMCID: PMC11492828 DOI: 10.1039/d4ra06330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disorder. It is caused by accumulation of amyloid beta (Aβ) plaques and tau tangles, which gradually leads to cognitive decline and memory loss. Peroxisome proliferator-activated receptor gamma (PPAR-γ), a nuclear receptor, plays a significant role in regulating genes responsible for metabolism and inflammation. Studies have shown that PPAR-γ activation has neuroprotective effects, can potentially reduce inflammation and oxidative stress, and stimulates mitochondrial biogenesis. Current study presents the design, synthesis and in vitro evaluation of PPAR-γ agonists for AD that are tailored to optimize binding with the PPAR-γ receptor. The compounds 4a, 4h and 4j exhibited notable binding affinities towards PPAR-γ LBD, with IC50 values of 8.607, 9.242, and 5.974 μM, respectively, in TR-FRET binding assay. These compounds were cell proliferative and non-cytotoxic in a neuroblastoma cell line (SH-SY5Y). They also demonstrated dose-dependent PPAR-γ activation in transactivation assay. Their neuroprotective effect was studied based on their anti-inflammatory and anti-oxidant potential by reducing the levels of proinflammatory markers (TNF-α, IL-6 and IL-1β) and ROS in Aβ-induced SH-SY5Y neuroblastoma cells using a flow cytometry method. The synthesized compounds also showed interactions in molecular docking study with the PPAR-γ receptor and demonstrated good stability in MD simulation. Our results highlight that through activation of PPAR-γ, the compounds 4a, 4h and 4j offer neuroprotective effects by reducing neuroinflammation and oxidative stress, and hence, they may be considered lead molecules for treating AD.
Collapse
Affiliation(s)
- Priya D
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara Mysuru 570015 India +91-821-2548359 +91-821-2548353
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University Abha 62529 Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University Abha 62529 Saudi Arabia
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University Ras Al Khaimah 11172 United Arab Emirates
| | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara Mysuru 570015 India +91-821-2548359 +91-821-2548353
| | - Prabitha P
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara Mysuru 570015 India +91-821-2548359 +91-821-2548353
| | - Archana P
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara Mysuru 570015 India +91-821-2548359 +91-821-2548353
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara Mysuru 570015 India +91-821-2548359 +91-821-2548353
| |
Collapse
|
27
|
Posta E, Fekete I, Varkonyi I, Zold E, Barta Z. The Versatile Role of Peroxisome Proliferator-Activated Receptors in Immune-Mediated Intestinal Diseases. Cells 2024; 13:1688. [PMID: 39451206 PMCID: PMC11505700 DOI: 10.3390/cells13201688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that sense lipophilic molecules and act as transcription factors to regulate target genes. PPARs have been implicated in the regulation of innate immunity, glucose and lipid metabolism, cell proliferation, wound healing, and fibrotic processes. Some synthetic PPAR ligands are promising molecules for the treatment of inflammatory and fibrotic processes in immune-mediated intestinal diseases. Some of these are currently undergoing or have previously undergone clinical trials. Dietary PPAR ligands and changes in microbiota composition could modulate PPARs' activation to reduce inflammatory responses in these immune-mediated diseases, based on animal models and clinical trials. This narrative review aims to summarize the role of PPARs in immune-mediated bowel diseases and their potential therapeutic use.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
| | - Istvan Varkonyi
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| |
Collapse
|
28
|
Saha P, Talwar P. Identification of PPREs and PPRE associated genes in the human genome: insights into related kinases and disease implications. Front Immunol 2024; 15:1457648. [PMID: 39434882 PMCID: PMC11491715 DOI: 10.3389/fimmu.2024.1457648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction "Peroxisome Proliferator-Activated Receptors" (PPARs) belong to the class of transcription factors (TF) identified as Nuclear Receptors (NR). Upon activation by peroxisome proliferators (PPs), PPARs modulate a diverse range of genes, consequently regulating intra-cellular lipid metabolism, glucose uptake, apoptosis, and cell proliferation. Subsequent to the heterodimerization of Retinoid X Receptors (RXR) with PPARs induced by the binding of activators to PPARs, facilitates the binding of the resulting complex to Peroxisome Proliferator-Activated Receptors Response Elements (PPRE), with a consensus sequence 5'AGGTCANAGGTCA-3', and regulate the transcription of the targeted genes. Methods A comprehensive screening of PPRE within the whole human genome was performed using the Genome Workbench and UCSC Genome Browser to find the associated genes. Subsequently, the kinase subset was isolated from the extracted list of PPRE-related genes. Functional enrichment of the kinases was performed using FunRich, ToppGene, and ShinyGO. Network analysis and enrichment studies were then further performed using NDEx to elucidate these identified kinases' connections and significance. Additionally, the disease association of the PPRE kinases was analyzed using DisGeNET data in R studio and the COSMIC dataset. Results A comprehensive analysis of 1002 PPRE sequences within the human genome (T2T), yielded the identification of 660 associated genes, including 29 kinases. The engagement of these kinases in various biological pathways, such as apoptosis, platelet activation, and cytokine pathways, revealed from the functional enrichment analysis, illuminates the multifaceted role of PPAR in the regulation of cellular homeostasis and biological processes. Network analysis reveals the kinases interact with approximately 5.56% of the Human Integrated Protein-Protein Interaction rEference (HIPPIE) network. Disease association analysis using DisGeNET and COSMIC datasets revealed the significant roles of these kinases in cellular processes and disease modulation. Discussion This study elucidates the regulatory role of PPAR-associated genes and their association with numerous biological pathways. The involvement of the kinases with disease-related pathways highlights new potential for the development of therapeutic strategies designed for disease management and intervention.
Collapse
|
29
|
Mishra SK, Mishra V. Saroglitazar Enhances Memory Functions and Adult Neurogenesis via Up-Regulation of Wnt/β Catenin Signaling in the Rat Model of Dementia. ACS Chem Neurosci 2024; 15:3449-3458. [PMID: 39265183 DOI: 10.1021/acschemneuro.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have emerged as a promising target for the treatment of various neurodegenerative disorders. Studies have shown that both PPAR α & γ individually modulate various pathophysiological events like neuroinflammation and insulin resistance, which are known to variedly affect neurogenesis. Our study aimed to evaluate the effect of saroglitazar (SGZR), a dual PPAR agonist, on adult neurogenesis and spatial learning and memory, in intracerebroventricular streptozotocin (ICV STZ)-induced dementia in rats. We have found that SGZR at the dose of 4 mg/kg per oral showed significant improvement in learning and memory compared to ICV STZ-treated rats. A substantial increase in neurogenesis was observed in the subventricular zone (SVZ) and the dentate gyrus (DG), as indicated by an increase in the number of 5-bromo-2'-deoxyuridine (BrdU)+ cells, BrdU+ nestin+ cells, and doublecortin (DCX)+cells. Treatment with SGZR also decreased the active form of glycogen synthase kinase 3β (GSK3β) and hence enhanced the nuclear translocation of the β-catenin. Enhanced expression of Wnt transcription factors and target genes indicates that the up-regulation of Wnt signaling might be involved in the observed increase in neurogenesis. Hence, it can be concluded that the SGZR enhances memory functions and adult neurogenesis via the upregulation of Wnt β-catenin signaling in ICV STZ-treated rats.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Faculty of Pharmacy, Kalinga University, Raipur, Chhattisgarh 492101, India
| | - Vaibhav Mishra
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
30
|
Dawn S, Manna P, Das T, Kumar P, Ray M, Gayen S, Amin SA. Exploring fingerprints for antidiabetic therapeutics related to peroxisome proliferator-activated receptor gamma (PPARγ) modulators: A chemometric modeling approach. Comput Biol Chem 2024; 112:108142. [PMID: 39004027 DOI: 10.1016/j.compbiolchem.2024.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
This study demonstrated the correlation of molecular structures of Peroxisome proliferator-activated receptor gamma (PPARγ) modulators and their biological activities. Bayesian classification, and recursive partitioning (RP) studies have been applied to a dataset of 323 PPARγ modulators with diverse scaffolds. The results provide a deep insight into the important sub-structural features modulating PPARγ. The molecular docking analysis again confirmed the significance of the identified sub-structural features in the modulation of PPARγ activity. Molecular dynamics simulations further underscored the stability of the complexes formed by investigated modulators with PPARγ. Overall, the integration of many computational approaches unveiled key structural motifs essential for PPARγ modulatory activity that will shed light on the development of effective modulators in the future.
Collapse
Affiliation(s)
- Subham Dawn
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India
| | - Prabir Manna
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India
| | - Totan Das
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Prabhat Kumar
- Jagtarni Upgraded Senior Secondary School, Khamhar, Samastipur, Bihar 851128, India
| | - Moumita Ray
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700032, India.
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India.
| |
Collapse
|
31
|
Yu XQ, Mao JZ, Yang SY, Wang L, Yang CZ, Huang L, Qian QH, Zhu TT. Autocrine IL-8 Contributes to Propionibacterium Acnes-induced Proliferation and Differentiation of HaCaT Cells via AKT/FOXO1/ Autophagy. Curr Med Sci 2024; 44:1058-1065. [PMID: 39196519 DOI: 10.1007/s11596-024-2894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/08/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Proprionibacterium acnes (P. acnes)-induced inflammatory responses, proliferation and differentiation of keratinocytes contribute to the progression of acne vulgaris (AV). P. acnes was found to enhance the production of interleukin-8 (IL-8) by keratinocytes. This study aimed to investigate the role of IL-8 in P. acnes-induced proliferation and differentiation of keratinocytes and the underlying mechanism. METHODS The P. acnes-stimulated HaCaT cell (a human keratinocyte cell line) model was established. Western blotting and immunofluorescence were performed to detect the expression of the IL-8 receptors C-X-C motif chemokine receptor 1 (CXCR1) and C-X-C motif chemokine receptor 2 (CXCR2) on HaCaT cells. Cell counting kit-8 (CCK-8) assay, 5-ethynyl-20-deoxyuridine (EdU) assay and Western blotting were performed to examine the effects of IL-8/CXCR2 axis on the proliferation and differentiation of HaCaT cells treated with P. acnes, the IL-8 neutralizing antibody, the CXCR2 antagonist (SB225002), or the CXCR1/CXCR2 antagonist (G31P). Western blotting, nuclear and cytoplasmic separation, CCK-8 assay, and EdU assay were employed to determine the downstream pathway of CXCR2 after P. acnes-stimulated HaCaT cells were treated with the CXCR2 antagonist, the protein kinase B (AKT) antagonist (AZD5363), or the constitutively active forkhead box O1 (FOXO1) mutant. Finally, autophagy markers were measured in HaCaT cells following the transfection of the FOXO1 mutant or treatment with the autophagy inhibitor 3-methyladenine (3-MA). RESULTS The expression levels of CXCR1 and CXCR2 were significantly increased on the membrane of HaCaT cells following P. acnes stimulation. The IL-8/CXCR2 axis predominantly promoted the proliferation and differentiation of P. acnes-induced HaCaT cells by activating AKT/FOXO1/autophagy signaling. In brief, IL-8 bound to its receptor CXCR2 on the membrane of keratinocytes to activate the AKT/FOXO1 axis. Subsequently, phosphorylated FOXO1 facilitated autophagy to promote the proliferation and differentiation of P. acnes-induced keratinocytes. CONCLUSION This study demonstrated the novel autocrine effect of IL-8 on the proliferation and differentiation of P. acnes-induced keratinocytes, suggesting a potential therapeutic target for AV.
Collapse
Affiliation(s)
- Xiu-Qin Yu
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jin-Zhu Mao
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Shu-Yun Yang
- Department of Dermatology, Baoshan People's Hospital of Yunnan Province, Baoshan, 678000, China
| | - Lu Wang
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chang-Zhi Yang
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lei Huang
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qi-Hong Qian
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Ting-Ting Zhu
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
32
|
Koyama S, Weber EL, Heinbockel T. Possible Combinatorial Utilization of Phytochemicals and Extracellular Vesicles for Wound Healing and Regeneration. Int J Mol Sci 2024; 25:10353. [PMID: 39408681 PMCID: PMC11476926 DOI: 10.3390/ijms251910353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Organ and tissue damage can result from injury and disease. How to facilitate regeneration from damage has been a topic for centuries, and still, we are trying to find agents to use for treatments. Two groups of biological substances are known to facilitate wound healing. Phytochemicals with bioactive properties form one group. Many phytochemicals have anti-inflammatory effects and enhance wound healing. Recent studies have described their effects at the gene and protein expression levels, highlighting the receptors and signaling pathways involved. The extremely large number of phytochemicals and the multiple types of receptors they activate suggest a broad range of applicability for their clinical use. The hydrophobic nature of many phytochemicals and the difficulty with chemical stabilization have been a problem. Recent developments in biotechnology and nanotechnology methods are enabling researchers to overcome these problems. The other group of biological substances is extracellular vesicles (EVs), which are now known to have important biological functions, including the improvement of wound healing. The proteins and nanoparticles contained in mammalian EVs as well as the specificity of the targets of microRNAs included in the EVs are becoming clear. Plant-derived EVs have been found to contain phytochemicals. The overlap in the wound-healing capabilities of both phytochemicals and EVs and the differences in their nature suggest the possibility of a combinatorial use of the two groups, which may enhance their effects.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erin L. Weber
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
33
|
Cui X, Huang X, Chen X, Li H, Wu Y, Yang Z, Liu Z, Feng R, Xu J, Wei C, Ding Z, Cheng H. Influence of Starvation on Biochemical, Physiological, Morphological, and Transcriptional Responses Associated with Glucose and Lipid Metabolism in the Liver of Javelin Goby ( Synechogobius hasta). Animals (Basel) 2024; 14:2734. [PMID: 39335323 PMCID: PMC11429288 DOI: 10.3390/ani14182734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, the influence of fasting on hepatic glucose and lipid metabolism was explored by examining biochemical, antioxidative, and morphological indicators and transcriptional expression in the liver of javelin goby (Synechogobius hasta) after 0, 3, 7, or 14 days of starvation. Marked reductions in hepatic glycogen and triglycerides occurred from the seventh day of starvation until the end of the trial (p < 0.05). However, no alterations in hepatic cholesterol or protein were detected throughout the entire experiment (p > 0.05). During fasting, the activities of pyruvate kinase, lactate dehydrogenase, and glycogen phosphorylase a all rose firstly and then fell (p < 0.05). The activities of hepatic fatty acid synthase and acetyl-CoA carboxylase were minimized to their lowest levels at the end of food deprivation (p < 0.05), while lipase was elevated after 7-14 days of fasting (p < 0.05). Catalase, glutathione, and the total antioxidative capacity were increased and maintained their higher values in the later stage of fasting (p < 0.05), whereas malondialdehyde was not significantly changed (p > 0.05). Hepatic vein congestion, remarkable cytoplasmic vacuoles, and irregular cell shape were present in S. hasta which endured 3-7 days of fasting and were less pronounced when food shortage was prolonged. In terms of genes associated with glucose and lipid metabolism, the hepatic phosphofructokinase gene was constantly up-regulated during fasting (p < 0.05). However, the mRNA levels of glycogen synthase and glucose-6-phosphatase were obviously lower when the food scarcity extended to 7 days or more (p < 0.05). Fatty acid synthase, stearoyl-CoA desaturase 1, and peroxisome proliferator-activated receptor γ were substantially down-regulated in S. hasta livers after 7-14 days of food deprivation (p < 0.05). However, genes involved in lipolysis and fatty acid transport were transcriptionally enhanced to varying extents and peaked at the end of fasting (p < 0.05). Overall, starvation lasting 7 days or more could concurrently mobilize hepatic carbohydrates and fat as energy resources and diminished their hepatic accumulation by suppressing biosynthesis and enhancing catabolism and transport, ultimately metabolically and structurally perturbing the liver in S. hasta. This work presents preliminary data on the dynamic characteristics of hepatic glucose and lipid metabolism in S. hasta in response to starvation, which may shed light on the sophisticated mechanisms of energetic homeostasis in fish facing nutrient unavailability and may benefit the utilization/conservation of S. hasta.
Collapse
Affiliation(s)
- Xiangyu Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Honghui Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yanru Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zikui Yang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Rui Feng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
34
|
Durairajan SSK, Singh AK, Iyaswamy A. Peroxisome proliferator-activated receptor agonists: A new hope towards the management of alcoholic liver disease. World J Gastroenterol 2024; 30:3965-3971. [PMID: 39351059 PMCID: PMC11438660 DOI: 10.3748/wjg.v30.i35.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
In this editorial, we examine a paper by Koizumi et al, on the role of peroxisome proliferator-activated receptor (PPAR) agonists in alcoholic liver disease (ALD). The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD. The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis, which are both affected by ALD. Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide. This editorial analyzes the possibility of PPAR agonists as treatments for ALD. As key factors of inflammation and metabolism, PPARs offer multiple methods for managing the complex etiology of ALD. We assess the abilities of PPARα, PPARγ, and PPARβ/δ agonists to prevent steatosis, inflammation, and fibrosis due to liver diseases. Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease. This editorial discusses the data analyzed and the obstacles, advantages, and mechanisms of action of PPAR agonists for ALD. Further research is needed to understand the efficacy, safety, and mechanisms of PPAR agonists for treating ALD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Abhay Kumar Singh
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| |
Collapse
|
35
|
He YJ, Liao H, Yang G, Qiu W, Xuan R, Zheng G, Xu B, Yang X, Magnuson JT, Schlenk D, Zheng C. Perfluorohexanesulfonic Acid (PFHxS) Impairs Lipid Homeostasis in Zebrafish Larvae through Activation of PPARα. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16258-16268. [PMID: 39146316 DOI: 10.1021/acs.est.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 μg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.
Collapse
Affiliation(s)
- Ying-Jie He
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haolin Liao
- Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ge Yang
- Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| |
Collapse
|
36
|
Zubareva OE, Kharisova AR, Roginskaya AI, Kovalenko AA, Zakharova MV, Schwarz AP, Sinyak DS, Zaitsev AV. PPARβ/δ Agonist GW0742 Modulates Microglial and Astroglial Gene Expression in a Rat Model of Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:10015. [PMID: 39337503 PMCID: PMC11432388 DOI: 10.3390/ijms251810015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The role of astroglial and microglial cells in the pathogenesis of epilepsy is currently under active investigation. It has been proposed that the activity of these cells may be regulated by the agonists of peroxisome proliferator-activated nuclear receptors (PPARs). This study investigated the effects of a seven-day treatment with the PPAR β/δ agonist GW0742 (Fitorine, 5 mg/kg/day) on the behavior and gene expression of the astroglial and microglial proteins involved in the regulation of epileptogenesis in the rat brain within a lithium-pilocarpine model of temporal lobe epilepsy (TLE). TLE resulted in decreased social and increased locomotor activity in the rats, increased expression of astro- and microglial activation marker genes (Gfap, Aif1), pro- and anti-inflammatory cytokine genes (Tnfa, Il1b, Il1rn), and altered expression of other microglial (Nlrp3, Arg1) and astroglial (Lcn2, S100a10) genes in the dorsal hippocampus and cerebral cortex. GW0742 attenuated, but did not completely block, some of these impairments. Specifically, the treatment affected Gfap gene expression in the dorsal hippocampus and Aif1 gene expression in the cortex. The GW0742 injections attenuated the TLE-specific enhancement of Nlrp3 and Il1rn gene expression in the cortex. These results suggest that GW0742 may affect the expression of some genes involved in the regulation of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aleksey V. Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 194223 Saint Petersburg, Russia; (O.E.Z.); (A.R.K.); (A.I.R.); (A.A.K.); (M.V.Z.); (A.P.S.); (D.S.S.)
| |
Collapse
|
37
|
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Martínez De Los Reyes N, Toledano-Díaz A, López-Sebastián A, Santiago Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. PPARG is dispensable for bovine embryo development up to tubular stages†. Biol Reprod 2024; 111:557-566. [PMID: 38832705 PMCID: PMC11402522 DOI: 10.1093/biolre/ioae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Following blastocyst hatching, ungulate embryos undergo a prolonged preimplantation period termed conceptus elongation. Conceptus elongation constitutes a highly susceptible period for embryonic loss, and the embryonic requirements during this process are largely unknown, but multiple lipid compounds have been identified in the fluid nourishing the elongating conceptuses. Peroxisome proliferator-activated receptors mediate the signaling actions of prostaglandins and other lipids, and, between them, PPARG has been pointed out to play a relevant role in conceptus elongation by a functional study that depleted PPARG in both uterus and conceptus. The objective of this study has been to determine if embryonic PPARG is required for bovine embryo development. To that aim, we have generated bovine PPARG knock-out embryos in vitro using two independent gene ablation strategies and assessed their developmental ability. In vitro development to Day 8 blastocyst was unaffected by PPARG ablation, as total, inner cell mass, and trophectoderm cell numbers were similar between wild-type and knock-out D8 embryos. In vitro post-hatching development to D12 was also comparable between different genotypes, as embryo diameter, epiblast cell number, embryonic disk formation, and hypoblast migration rates were unaffected by the ablation. The development of tubular stages equivalent to E14 was assessed in vivo, following a heterologous embryo transfer experiment, observing that the development of extra-embryonic membranes and of the embryonic disk was not altered by PPARG ablation. In conclusion, PPARG ablation did not impaired bovine embryo development up to tubular stages.
Collapse
Affiliation(s)
- Alba Pérez-Gómez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Leopoldo González-Brusi
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Inés Flores-Borobia
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nuria Martínez De Los Reyes
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adolfo Toledano-Díaz
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio López-Sebastián
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julián Santiago Moreno
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Priscila Ramos-Ibeas
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pablo Bermejo-Álvarez
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
38
|
Laghezza A, Cerchia C, Genovese M, Montanari R, Capelli D, Wackerlig J, Simic S, Falbo E, Pecora L, Leuci R, Brunetti L, Piemontese L, Tortorella P, Biswas A, Singh RP, Tambe S, Sudeep CA, Pattnaik AK, Jayaprakash V, Paoli P, Lavecchia A, Loiodice F. A chemical modification of a peroxisome proliferator-activated receptor pan agonist produced a shift to a new dual alpha/gamma partial agonist endowed with mitochondrial pyruvate carrier inhibition and antidiabetic properties. Eur J Med Chem 2024; 275:116567. [PMID: 38865743 DOI: 10.1016/j.ejmech.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
New analogs of the PPAR pan agonist AL29-26 encompassed ligand (S)-7 showing potent activation of PPARα and -γ subtypes as a partial agonist. In vitro experiments and docking studies in the presence of PPAR antagonists were performed to help interpretation of biological data and investigate the main interactions at the binding sites. Further in vitro experiments showed that (S)-7 induced anti-steatotic effects and enhancement of the glucose uptake. This latter effect could be partially ascribed to a significant inhibition of the mitochondrial pyruvate carrier demonstrating that (S)-7 also acted through insulin-independent mechanisms. In vivo experiments showed that this compound reduced blood glucose and lipid levels in a diabetic mice model displaying no toxicity on bone, kidney, and liver. To our knowledge, this is the first example of dual PPARα/γ partial agonist showing these combined effects representing, therefore, the potential lead of new drugs for treatment of dyslipidemic type 2 diabetes.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Carmen Cerchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| | - Massimo Genovese
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Stefan Simic
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Emanuele Falbo
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| | - Lucia Pecora
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Rosalba Leuci
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Leonardo Brunetti
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Suhas Tambe
- Adgyl Lifescience Private Ltd., Bengaluru, 560058, India
| | - C A Sudeep
- Bioanalytical Section, Eurofins Advinus Biopharma Services India Pvt Ltd., Bengaluru, 560058, India
| | - Ashok Kumar Pattnaik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy.
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
39
|
Yang H, Zingaro VA, Lincoff J, Tom H, Oikawa S, Oses-Prieto JA, Edmondson Q, Seiple I, Shah H, Kajimura S, Burlingame AL, Grabe M, Ruggero D. Remodelling of the translatome controls diet and its impact on tumorigenesis. Nature 2024; 633:189-197. [PMID: 39143206 DOI: 10.1038/s41586-024-07781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/03/2024] [Indexed: 08/16/2024]
Abstract
Fasting is associated with a range of health benefits1-6. How fasting signals elicit changes in the proteome to establish metabolic programmes remains poorly understood. Here we show that hepatocytes selectively remodel the translatome while global translation is paradoxically downregulated during fasting7,8. We discover that phosphorylation of eukaryotic translation initiation factor 4E (P-eIF4E) is induced during fasting. We show that P-eIF4E is responsible for controlling the translation of genes involved in lipid catabolism and the production of ketone bodies. Inhibiting P-eIF4E impairs ketogenesis in response to fasting and a ketogenic diet. P-eIF4E regulates those messenger RNAs through a specific translation regulatory element within their 5' untranslated regions (5' UTRs). Our findings reveal a new signalling property of fatty acids, which are elevated during fasting. We found that fatty acids bind and induce AMP-activated protein kinase (AMPK) kinase activity that in turn enhances the phosphorylation of MAP kinase-interacting protein kinase (MNK), the kinase that phosphorylates eIF4E. The AMPK-MNK-eIF4E axis controls ketogenesis, revealing a new lipid-mediated kinase signalling pathway that links ketogenesis to translation control. Certain types of cancer use ketone bodies as an energy source9,10 that may rely on P-eIF4E. Our findings reveal that on a ketogenic diet, treatment with eFT508 (also known as tomivosertib; a P-eIF4E inhibitor) restrains pancreatic tumour growth. Thus, our findings unveil a new fatty acid-induced signalling pathway that activates selective translation, which underlies ketogenesis and provides a tailored diet intervention therapy for cancer.
Collapse
Affiliation(s)
- Haojun Yang
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- School of Medicine and Department of Urology, UCSF, San Francisco, CA, USA
| | - Vincenzo Andrea Zingaro
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- School of Medicine and Department of Urology, UCSF, San Francisco, CA, USA
| | - James Lincoff
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
- Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Harrison Tom
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- School of Medicine and Department of Urology, UCSF, San Francisco, CA, USA
| | - Satoshi Oikawa
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Quinn Edmondson
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
- Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Ian Seiple
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
- Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| | - Alma L Burlingame
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
| | - Michael Grabe
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
- Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA.
- School of Medicine and Department of Urology, UCSF, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
40
|
Singh A, Singh K, Sharma A, Kaur U, Kaur K, Mohinder Singh Bedi P. Recent Developments in 1,2,3-Triazole Based α-Glucosidase Inhibitors: Design Strategies, Structure-Activity Relationship and Mechanistic Insights. Chem Biodivers 2024; 21:e202401109. [PMID: 38951966 DOI: 10.1002/cbdv.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Kamaljit Kaur
- Hershey Dental Group, Hershey, Pennsylvania, 17033, USA
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
41
|
Kelling M, Dimza M, Bartlett A, Traktuev DO, Duarte JD, Keeley EC. Omega-3 fatty acids in the treatment of heart failure. Curr Probl Cardiol 2024; 49:102730. [PMID: 38950721 DOI: 10.1016/j.cpcardiol.2024.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Omega-3 polyunsaturated fatty acids (Ω-3 PUFAs) have garnered increased attention as a therapeutic option in cardiovascular disease. Most of the research to date has focused on their lipid altering effects and clinical benefits in patients with coronary artery disease, however, there are data supporting their use in the treatment of heart failure. We review the mechanisms through which Ω-3 PUFAs exert their positive effects on the cardiovascular system and highlight the observational and treatment studies that assessed their effects in patients with heart failure.
Collapse
Affiliation(s)
- Matthew Kelling
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida
| | - Michelle Dimza
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida
| | - Alec Bartlett
- Department of Medicine, University of Arizona, Phoenix, Arizona, United States
| | - Dmitry O Traktuev
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Pulmonary, Critical care and Sleep Medicine, University of Florida
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
| | - Ellen C Keeley
- Department of Medicine, University of Florida, Gainesville, Florida; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
42
|
Kumar N, Yang ML, Sun P, Hunker KL, Li J, Jia J, Fan F, Wang J, Ning X, Gao W, Xu M, Zhang J, Chang L, Chen YE, Huo Y, Zhang Y, Ganesh SK. Genetic variation in CCDC93 is associated with elevated central systolic blood pressure, impaired arterial relaxation, and mitochondrial dysfunction. PLoS Genet 2024; 20:e1011151. [PMID: 39250516 PMCID: PMC11421807 DOI: 10.1371/journal.pgen.1011151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/24/2024] [Accepted: 01/23/2024] [Indexed: 09/11/2024] Open
Abstract
Genetic studies of blood pressure (BP) traits to date have been performed on conventional measures by brachial cuff sphygmomanometer for systolic BP (SBP) and diastolic BP, integrating several physiologic occurrences. Genetic associations with central SBP (cSBP) have not been well-studied. Genetic discovery studies of BP have been most often performed in European-ancestry samples. Here, we investigated genetic associations with cSBP in a Chinese population and functionally validated the impact of a novel associated coiled-coil domain containing 93 (CCDC93) gene on BP regulation. An exome-wide association study (EWAS) was performed using a mixed linear model of non-invasive cSBP and peripheral BP traits in a Han Chinese population (N = 5,954) from Beijing, China genotyped with a customized Illumina ExomeChip array. We identified four SNP-trait associations with three SNPs, including two novel associations (rs2165468-SBP and rs33975708-cSBP). rs33975708 is a coding variant in the CCDC93 gene, c.535C>T, p.Arg179Cys (MAF = 0.15%), and was associated with increased cSBP (β = 29.3 mmHg, P = 1.23x10-7). CRISPR/Cas9 genome editing was used to model the effect of Ccdc93 loss in mice. Homozygous Ccdc93 deletion was lethal prior to day 10.5 of embryonic development. Ccdc93+/- heterozygous mice were viable and morphologically normal, with 1.3-fold lower aortic Ccdc93 protein expression (P = 0.0041) and elevated SBP as compared to littermate Ccdc93+/+ controls (110±8 mmHg vs 125±10 mmHg, P = 0.016). Wire myography of Ccdc93+/- aortae showed impaired acetylcholine-induced relaxation and enhanced phenylephrine-induced contraction. RNA-Seq transcriptome analysis of Ccdc93+/- mouse thoracic aortae identified significantly enriched pathways altered in fatty acid metabolism and mitochondrial metabolism. Plasma free fatty acid levels were elevated in Ccdc93+/- mice (96±7mM vs 124±13mM, P = 0.0031) and aortic mitochondrial dysfunction was observed through aberrant Parkin and Nix protein expression. Together, our genetic and functional studies support a novel role of CCDC93 in the regulation of BP through its effects on vascular mitochondrial function and endothelial function.
Collapse
Affiliation(s)
- Nitin Kumar
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pengfei Sun
- Department of Cardiology, Peking University First hospital, Beijing, China
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kristina L. Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jianping Li
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Jia Jia
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Jinghua Wang
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjia Ning
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Gao
- Department of Cardiology, Peking University Third hospital, Beijing, China
| | - Ming Xu
- Department of Cardiology, Peking University Third hospital, Beijing, China
| | - Jifeng Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lin Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Y. Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yong Huo
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
- Hypertension Precision Diagnosis and Treatment Research Center, Peking University First Hospital, Beijing, China
| | - Santhi K. Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
43
|
Taniguchi-Ponciano K, Hinojosa-Alvarez S, Hernandez-Perez J, Chavez-Santoscoy RA, Remba-Shapiro I, Guinto G, Magallon-Gayon E, Telles-Ramirez B, de Leon-Conconi RP, Vela-Patiño S, Andonegui-Elguera S, Cano-Zaragoza A, Martinez-Mendoza F, Kerbel J, Loza-Mejia M, Rodrigo-Salazar J, Mendez-Perez A, Aguilar-Flores C, Chavez-Gonzalez A, Ortiz-Reyes E, Gomez-Apo E, Bonifaz LC, Marrero-Rodriguez D, Mercado M. Longitudinal multiomics analysis of aggressive pituitary neuroendocrine tumors: comparing primary and recurrent tumors from the same patient, reveals genomic stability and heterogeneous transcriptomic profiles with alterations in metabolic pathways. Acta Neuropathol Commun 2024; 12:142. [PMID: 39217365 PMCID: PMC11365143 DOI: 10.1186/s40478-024-01796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/12/2024] [Indexed: 09/04/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNET) represent the vast majority of sellar masses. Some behave aggressively, growing rapidly and invading surrounding tissues, with high rates of recurrence and resistance to therapy. Our aim was to establish patterns of genomic, transcriptomic and methylomic evolution throughout time in primary and recurrent tumors from the same patient. Therefore, we performed transcriptome- and exome-sequencing and methylome microarrays of aggressive, primary, and recurrent PitNET from the same patient. Primary and recurrent tumors showed a similar exome profile, potentially indicating a stable genome over time. In contrast, the transcriptome of primary and recurrent PitNET was dissimilar. Gonadotroph, silent corticotroph, as well as metastatic corticotroph and a somatotroph PitNET expressed genes related to fatty acid biosynthesis and metabolism, phosphatidylinositol signaling, glycerophospholipid and phospholipase D signaling, respectively. Diacylglycerol kinase gamma (DGKG), a key enzyme in glycerophospholipid metabolism and phosphatidylinositol signaling pathways, was differentially expressed between primary and recurrent PitNET. These alterations did not seem to be regulated by DNA methylation, but rather by several transcription factors. Molecular docking showed that dasatinib, a small molecule tyrosine kinase inhibitor used in the treatment of chronic lymphocytic and acute lymphoblastic leukemia, could target DGKG. Dasatinib induced apoptosis and decreased proliferation in GH3 cells. Our data indicate that pituitary tumorigenesis could be driven by transcriptomically heterogeneous clones, and we describe alternative pharmacological therapies for aggressive and recurrent PitNET.
Collapse
Affiliation(s)
- Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | | | | | | | - Ilan Remba-Shapiro
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Gerardo Guinto
- Centro Neurológico, Centro Médico ABC, Ciudad de Mexico, México
| | | | | | | | - Sandra Vela-Patiño
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Sergio Andonegui-Elguera
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Amayrani Cano-Zaragoza
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Florencia Martinez-Mendoza
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Jacobo Kerbel
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México
| | - Marco Loza-Mejia
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Juan Rodrigo-Salazar
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Alonso Mendez-Perez
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Cristina Aguilar-Flores
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Antonieta Chavez-Gonzalez
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Elenka Ortiz-Reyes
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Erick Gomez-Apo
- Área de Neuropatología, Servicio de Anatomía Patológica, Hospital General de México Dr. Eduardo Liceaga, Ciudad de Mexico, México
| | - Laura C Bonifaz
- Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Daniel Marrero-Rodriguez
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México.
| | - Moises Mercado
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de Mexico, 06720, México.
| |
Collapse
|
44
|
Konger RL, Xuei X, Derr-Yellin E, Fang F, Gao H, Liu Y. The Loss of PPARγ Expression and Signaling Is a Key Feature of Cutaneous Actinic Disease and Squamous Cell Carcinoma: Association with Tumor Stromal Inflammation. Cells 2024; 13:1356. [PMID: 39195246 DOI: 10.3390/cells13161356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Given the importance of peroxisome proliferator-activated receptor (PPAR)-gamma in epidermal inflammation and carcinogenesis, we analyzed the transcriptomic changes observed in epidermal PPARγ-deficient mice (Pparg-/-epi). A gene set enrichment analysis revealed a close association with epithelial malignancy, inflammatory cell chemotaxis, and cell survival. Single-cell sequencing of Pparg-/-epi mice verified changes to the stromal compartment, including increased inflammatory cell infiltrates, particularly neutrophils, and an increase in fibroblasts expressing myofibroblast marker genes. A comparison of transcriptomic data from Pparg-/-epi and publicly available human and/or mouse actinic keratoses (AKs) and cutaneous squamous cell carcinomas (SCCs) revealed a strong correlation between the datasets. Importantly, PPAR signaling was the top common inhibited canonical pathway in AKs and SCCs. Both AKs and SCCs also had significantly reduced PPARG expression and PPARγ activity z-scores. Smaller reductions in PPARA expression and PPARα activity and increased PPARD expression but reduced PPARδ activation were also observed. Reduced PPAR activity was also associated with reduced PPARα/RXRα activity, while LPS/IL1-mediated inhibition of RXR activity was significantly activated in the tumor datasets. Notably, these changes were not observed in normal sun-exposed skin relative to non-exposed skin. Finally, Ppara and Pparg were heavily expressed in sebocytes, while Ppard was highly expressed in myofibroblasts, suggesting that PPARδ has a role in myofibroblast differentiation. In conclusion, these data provide strong evidence that PPARγ and possibly PPARα represent key tumor suppressors by acting as master inhibitors of the inflammatory changes found in AKs and SCCs.
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoling Xuei
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fang Fang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
45
|
Weijie Z, Meng Z, Chunxiao W, Lingjie M, Anguo Z, Yan Z, Xinran C, Yanjiao X, Li S. Obesity-induced chronic low-grade inflammation in adipose tissue: A pathway to Alzheimer's disease. Ageing Res Rev 2024; 99:102402. [PMID: 38977081 DOI: 10.1016/j.arr.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive impairment worldwide. Overweight and obesity are strongly associated with comorbidities, such as hypertension, diabetes, and insulin resistance (IR), which contribute substantially to the development of AD and subsequent morbidity and mortality. Adipose tissue (AT) is a highly dynamic organ composed of a diverse array of cell types, which can be classified based on their anatomic localization or cellular composition. The expansion and remodeling of AT in the context of obesity involves immunometabolic and functional shifts steered by the intertwined actions of multiple immune cells and cytokine signaling within AT, which contribute to the development of metabolic disorders, IR, and systemic markers of chronic low-grade inflammation. Chronic low-grade inflammation, a prolonged, low-dose stimulation by specific immunogens that can progress from localized sites and affect multiple organs throughout the body, leads to neurodystrophy, increased apoptosis, and disruption of homeostasis, manifesting as brain atrophy and AD-related pathology. In this review, we sought to elucidate the mechanisms by which AT contributes to the onset and progression of AD in obesity through the mediation of chronic low-grade inflammation, particularly focusing on the roles of adipokines and AT-resident immune cells.
Collapse
Affiliation(s)
- Zhai Weijie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wei Chunxiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Lingjie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Anguo
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000 China
| | - Zhang Yan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Cui Xinran
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xu Yanjiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Sun Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
46
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
47
|
Lietzke AC, Bealer E, Crumley K, King J, Stendahl AM, Zhu J, Pearson GL, Levi-D'Ancona E, Henry-Kanarek B, Reck EC, Arnipalli M, Sidarala V, Walker EM, Pennathur S, Madsen JGS, Shea LD, Soleimanpour SA. Limitations in mitochondrial programming restrain the differentiation and maturation of human stem cell-derived β cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605318. [PMID: 39211191 PMCID: PMC11361182 DOI: 10.1101/2024.07.26.605318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pluripotent stem cell (SC)-derived islets offer hope as a renewable source for β cell replacement for type 1 diabetes (T1D), yet functional and metabolic immaturity may limit their long-term therapeutic potential. Here, we show that limitations in mitochondrial transcriptional programming impede the formation and maturation of SC-derived β (SC-β) cells. Utilizing transcriptomic profiling, assessments of chromatin accessibility, mitochondrial phenotyping, and lipidomics analyses, we observed that SC-β cells exhibit reduced oxidative and mitochondrial fatty acid metabolism compared to primary human islets that are related to limitations in key mitochondrial transcriptional networks. Surprisingly, we found that reductions in glucose- stimulated mitochondrial respiration in SC-islets were not associated with alterations in mitochondrial mass, structure, or genome integrity. In contrast, SC-islets show limited expression of targets of PPARIZ and PPARγ, which regulate mitochondrial programming, yet whose functions in β cell differentiation are unknown. Importantly, treatment with WY14643, a potent PPARIZ agonist, induced expression of mitochondrial targets, improved insulin secretion, and increased the formation and maturation of SC-β cells both in vitro and following transplantation. Thus, mitochondrial programming promotes the differentiation and maturation of SC-β cells and may be a promising target to improve β cell replacement efforts for T1D.
Collapse
|
48
|
Radosavljevic T, Brankovic M, Samardzic J, Djuretić J, Vukicevic D, Vucevic D, Jakovljevic V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants (Basel) 2024; 13:906. [PMID: 39199152 PMCID: PMC11351122 DOI: 10.3390/antiox13080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), encompasses a range of liver conditions from steatosis to nonalcoholic steatohepatitis (NASH). Its prevalence, especially among patients with metabolic syndrome, highlights its growing global impact. The pathogenesis of MASLD involves metabolic dysregulation, inflammation, oxidative stress, genetic factors and, notably, mitochondrial dysfunction. Recent studies underscore the critical role of mitochondrial dysfunction in MASLD's progression. Therapeutically, enhancing mitochondrial function has gained interest, along with lifestyle changes and pharmacological interventions targeting mitochondrial processes. The FDA's approval of resmetirom for metabolic-associated steatohepatitis (MASH) with fibrosis marks a significant step. While resmetirom represents progress, further research is essential to understand MASLD-related mitochondrial dysfunction fully. Innovative strategies like gene editing and small-molecule modulators, alongside lifestyle interventions, can potentially improve MASLD treatment. Drug repurposing and new targets will advance MASLD therapy, addressing its increasing global burden. Therefore, this review aims to provide a better understanding of the role of mitochondrial dysfunction in MASLD and identify more effective preventive and treatment strategies.
Collapse
Affiliation(s)
- Tatjana Radosavljevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Brankovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dusan Vukicevic
- Uniklinik Mannheim, Theodor-Kutyer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Danijela Vucevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia
| |
Collapse
|
49
|
Banerjee SK, Thurlow LR, Kannan K, Richardson AR. Glucose transporter 1 is essential for the resolution of methicillin-resistant S. aureus skin and soft tissue infections. Cell Rep 2024; 43:114486. [PMID: 38990718 PMCID: PMC11323221 DOI: 10.1016/j.celrep.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Skin/soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) pose a major healthcare burden. Distinct inflammatory and resolution phases comprise the host immune response to SSTIs. Resolution is a myeloid PPARγ-dependent anti-inflammatory phase that is essential for the clearance of MRSA. However, the signals activating PPARγ to induce resolution remain unknown. Here, we demonstrate that myeloid glucose transporter 1 (GLUT-1) is essential for the onset of resolution. MRSA-challenged macrophages are unsuccessful in generating an oxidative burst or immune radicals in the absence of GLUT-1 due to a reduction in the cellular NADPH pool. This translates in vivo as a significant reduction in lipid peroxidation products required for the activation of PPARγ in MRSA-infected mice lacking myeloid GLUT-1. Chemical induction of PPARγ during infection circumvents this GLUT-1 requirement and improves resolution. Thus, GLUT-1-dependent oxidative burst is essential for the activation of PPARγ and subsequent resolution of SSTIs.
Collapse
Affiliation(s)
- Srijon K Banerjee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Lance R Thurlow
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7450, USA
| | - Kartik Kannan
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
50
|
Beygi M, Ahi S, Zolghadri S, Stanek A. Management of Metabolic-Associated Fatty Liver Disease/Metabolic Dysfunction-Associated Steatotic Liver Disease: From Medication Therapy to Nutritional Interventions. Nutrients 2024; 16:2220. [PMID: 39064665 PMCID: PMC11279539 DOI: 10.3390/nu16142220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common long-lasting liver disease that affects millions of people around the world. It is best identified with a hepatic fat build-up that ultimately leads to inflammation and damage. The classification and nomenclature of NAFLD have long been a controversial topic, until 2020 when a group of international experts recommended substituting NAFLD with MAFLD (metabolic dysfunction-associated FLD). MAFLD was then terminologically complemented in 2023 by altering it to MASLD, i.e., metabolic dysfunction-associated steatotic liver disease (MASLD). Both the MAFLD and the MASLD terminologies comprise the metabolic element of the disorder, as they offer diagnostic benchmarks that are embedded in the metabolic risk factors that underlie the disease. MASLD (as a multisystemic disease) provides a comprehensive definition that includes a larger population of patients who are at risk of liver morbidity and mortality, as well as adverse cardiovascular and diabetes outcomes. MASLD highlights metabolic risks in lean or normal weight individuals, a factor that has not been accentuated or discussed in previous guidelines. Novel antihyperglycemic agents, anti-hyperlipidemic drugs, lifestyle modifications, nutritional interventions, and exercise therapies have not been extensively studied in MAFLD and MASLD. Nutrition plays a vital role in managing both conditions, where centralizing on a diet rich in whole vegetables, fruits, foods, healthy fats, lean proteins, and specific nutrients (e.g., omega-3 fatty acids and fibers) can improve insulin resistance and reduce inflammation. Thus, it is essential to understand the role of nutrition in managing these conditions and to work with patients to develop an individualized plan for optimal health. This review discusses prevention strategies for NAFLD/MAFLD/MASLD management, with particular attention to nutrition and lifestyle correction.
Collapse
Affiliation(s)
- Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology (IUT), Isfahan 8415683111, Iran;
| | - Salma Ahi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland
| |
Collapse
|