1
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
2
|
Liu Q, Li YQ, Xu WM, Fan SY, Huang Y, Lu SR, Kang XP, Zhang Y, Ji W, Dong WW. Polysaccharides from fermented garlic attenuate high-fat diet-induced obesity in mice through gut microbes. J Food Sci 2024; 89:10096-10112. [PMID: 39656675 DOI: 10.1111/1750-3841.17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
The weight loss and lipid-lowering effects of fermented garlic polysaccharides (BGP) in obese mice were analyzed by detecting the intestinal flora and short-chain fatty acids. An obesity model was established by feeding mice a high-fat diet (HFD) for 8 weeks. After euthanasia, biochemical index testing and hematoxylin and eosin staining were performed. Spearman analysis was used to assess the relationship between the 16S rRNA sequencing results and the fatty acid content in mouse feces. Compared with the obese model mice, the BGP group had significantly reduced body weight and serum triglycerides, total cholesterol, low-density lipoprotein cholesterol, malondialdehyde, and free fatty acids in the serum. Moreover, BGP reversed HFD-induced gut microbiota dysbiosis, as indicated by the elevated populations of Paraclostridium, Lachnospiraceae_UCG_006, Enterorhabdus, and Lachnospiraceae-NK4A136. BGP also significantly increased the contents of acetic, propionic, butyric, and valeric acids. These results indicate that BGP may serve as a potential prebiotic agent that modulates particular bacteria in the gut and their byproducts that play a crucial role in preventing diseases associated with obesity.
Collapse
Affiliation(s)
- Qi Liu
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Ya-Qian Li
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Wen-Man Xu
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Si-Yao Fan
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Yu Huang
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Shi-Rui Lu
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Xue-Ping Kang
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yang Zhang
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Wenxiu Ji
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Wei-Wei Dong
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
3
|
Isildar B, Beydogan AB, Koyuturk E, Coskun Yazici ZM, Koyuturk M, Bolkent S. Effects of ∆-9 tetrahydrocannabinol on the small intestine altered by high fructose diet: A Histopathological study. Histochem Cell Biol 2024; 162:363-372. [PMID: 39110194 PMCID: PMC11393283 DOI: 10.1007/s00418-024-02311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/13/2024]
Abstract
The consumption of fructose is increasing day by day. Understanding the impact of increasing fructose consumption on the small intestine is crucial since the small intestine processes fructose into glucose. ∆9-Tetrahydrocannabinol (THC), a key cannabinoid, interacts with CB1 and CB2 receptors in the gastrointestinal tract, potentially mitigating inflammation. Therefore, this study aimed to investigate the effects of the high-fructose diet (HFD) on the jejunum of rats and the role of THC consumption in reversing these effects. Experiments were conducted on Sprague-Dawley rats, with the experimental groups as follows: control (C), HFD, THC, and HFD + THC. The HFD group received a 10% fructose solution in drinking water for 12 weeks. THC groups were administered 1.5 mg/kg/day of THC intraperitoneally for the last four weeks. Following sacrification, the jejunum was evaluated for mucus secretion capacity. IL-6, JNK, CB2 and PCNA expressions were assessed through immunohistochemical analysis and the ultrastructural alterations via transmission electron microscopy. The results showed that fructose consumption did not cause weight gain but triggered inflammation in the jejunum, disrupted the cell proliferation balance, and increased mucus secretion in rats. Conversely, THC treatment displayed suppressed inflammation and improved cell proliferation balance caused by HFD. Ultrastructural examinations showed that the zonula occludens structures deteriorated in the HFD group, along with desmosome shrinkage. Mitochondria were found to be increased due to THC application following HFD. In conclusion, the findings of this research reveal the therapeutic potential of THC in reversing HFD-related alterations and provide valuable insights for clinical application.
Collapse
Affiliation(s)
- Basak Isildar
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Alisa Bahar Beydogan
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ece Koyuturk
- Faculty of Medicine, Otto-Von-Guericke-Universität Magdeburg, Magdeburg, Germany.
| | - Zeynep Mine Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Meral Koyuturk
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
4
|
Huang HM, Chang YC, Lee JJ, Huang YS, Wu KLH. ω-3 PUFAs Ameliorated the Maternal High-Fructose Diet-Induced Early-Onset Retinopathy in Offspring via Inhibiting NLRP3-Associated Neuroinflammation. Mol Nutr Food Res 2024; 68:e2400135. [PMID: 39318064 DOI: 10.1002/mnfr.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Indexed: 09/26/2024]
Abstract
SCOPE Maternal high fructose diet (HFD) during pregnancy and lactation can initiate retinal dysfunction. However, the underlying mechanism remains largely unknown. METHODS AND RESULTS By using the rodent model of maternal HFD in this study, the results from electroretinography (ERG) indicate that b-wave amplitude, an index of inner retinal function, is significantly reduced as early as 3 months old and the deteriorated effect can be detected at 15 months old. Further, the protein expressions of CD11b (a marker of active microglia), p40phox subunit of NADPH oxidase, GFAP (a marker of active astrocytes), and NLPR3 examined by western blot and immunofluorescence are significantly increased in the retina of the male HFD offspring at 3 months old. Treatment with omega-3 polyunsaturated fatty acids (ω-3 PUFAs) for 2 weeks (from 2.5 to 3 months old) effectively reverses the aforementioned changes. CONCLUSION Together, these results indicate that the early onset and extensive retinal dysfunction may be a result of glial activation which is induced by maternal HFD to initiate an inflammatory microenvironment leading to a long-term progression of retinopathy. Short-term administration of ω-3 PUFA at a young age may be a feasible strategy to intervene in the maternal HFD-programmed retinal impairment in male offspring.
Collapse
Affiliation(s)
- Hsiu-Mei Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, 83301, Taiwan
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, 83301, Taiwan
| | - Jong-Jer Lee
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, 83301, Taiwan
| | - Yao-Sheng Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, 83301, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Republic of China
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, 700, Republic of China
| |
Collapse
|
5
|
Kopec M, Beton-Mysur K. The role of glucose and fructose on lipid droplet metabolism in human normal bronchial and cancer lung cells by Raman spectroscopy. Chem Phys Lipids 2024; 259:105375. [PMID: 38159659 DOI: 10.1016/j.chemphyslip.2023.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Fructose is one of the most important monosaccharides in the human diet that the human body needs for proper metabolism. This paper presents an approach to study biochemical changes caused by sugars in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging. Results after supplementation of human bronchial and lung cells with fructose are also discussed and compared with results obtained for pure human bronchial and lung cells. Based on Raman techniques we have proved that peaks at 750 cm-1, 1126 cm-1, 1444 cm-1, 1584 cm-1 and 2845 cm-1 can be treated as biomarkers to monitor fructose changes in cells. Results for fructose have been compared with results for glucose. Raman analysis of the bands at 750 cm-1, 1126 cm-1, 1584 cm-1 and 2845 cm-1 for pure BEpiC and A549 cells and BEpiC and A549 after supplementation with fructose and glucose are higher after supplementation with fructose in comparison to glucose. The obtained results shed light on the uninvestigated influence of glucose and fructose on lipid droplet metabolism by Raman spectroscopy methods.
Collapse
Affiliation(s)
- Monika Kopec
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
6
|
Oyabambi AO, Bamidele O, Boluwatife AB, Adedayo LD. Glucoregulatory effect of butyrate is associated with elevated circulating VEGF and reduced cardiac lactate in high fructose fed rats. Heliyon 2023; 9:e22008. [PMID: 38034766 PMCID: PMC10682615 DOI: 10.1016/j.heliyon.2023.e22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Background High fructose diet has been linked with impaired body metabolism and cardiovascular diseases. Sodium butyrate (NaB) was documented to improve glucoregulation and cardiometabolic problems associated with high fructose diet (HFrD) but the mechanisms behind it are unclear. As a result, the purpose of this study was to look into the effects of NaB on VEGF and cardiac lactate in HFrD-induced dysmetabolism. Methods Twenty male Wistar rats of weight 130-140 g were assigned randomly after a week of acclimation into four groups: Control diet (CTR), High fructose drink (HFrD); 10 % (w/v), NaB (200 mg/kg bw), and HFrD + NaB (200 mg/kg bw). The animals were induced to be unconscious with 50 mg/kg of pentobarbital sodium intraperitoneally, blood samples were taken via cardiac puncture and cardiac tissue homogenates were obtained for Fasting Blood Sugar (FBS) and plasma insulin, cardiac glycogen, plasma and cardiac glycogen synthase, plasma and cardiac nitric oxide as well as vascular endothelial growth factor (VEGF). Result HFrD resulted in statistical elevation body and cardiac weight, plasma glucose, plasma insulin, cardiac lactate, glycogen and decreased nitric oxide level (NO) when compared with the control group. Administration of NaB reduced cardiac weight, blood glucose, plasma insulin, cardiac lactate while nitric oxide and glycogen increased (P < 0.05). NaB increased plasma glycogen synthase in normal rats, plasma and cardiac circulating VEGF in HFrD administered rats (P < 0.05) while no change was produced in plasma and cardiac glycogen synthase level of HFrD treated rats. Conclusion Sodium butyrate improves glucoregulation by reducing cardiac lactate and increasing circulating VEGF in HFrD-treated rats.
Collapse
Affiliation(s)
- Adewumi Oluwafemi Oyabambi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Physiology Programme, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Olubayode Bamidele
- Physiology Programme, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Aindero Blessing Boluwatife
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence Dayo Adedayo
- Physiology Programme, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
7
|
Cargnin-Carvalho A, da Silva MR, Costa AB, Engel NA, Farias BX, Bressan JB, Backes KM, de Souza F, da Rosa N, de Oliveira Junior AN, Goldim MPDS, Correa MEAB, Venturini LM, Fortunato JJ, Prophiro JS, Petronilho F, Silveira PCL, Ferreira GK, Rezin GT. High concentrations of fructose cause brain damage in mice. Biochem Cell Biol 2023; 101:313-325. [PMID: 36947832 DOI: 10.1139/bcb-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.
Collapse
Affiliation(s)
- Anderson Cargnin-Carvalho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Bianca Xavier Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Joice Benedet Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Kassiane Mathiola Backes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Francielly de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | | | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Immunoparasitology Research Group, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
8
|
Ondee T, Pongpirul K, Udompornpitak K, Sukkummee W, Lertmongkolaksorn T, Senaprom S, Leelahavanichkul A. High Fructose Causes More Prominent Liver Steatohepatitis with Leaky Gut Similar to High Glucose Administration in Mice and Attenuation by Lactiplantibacillus plantarum dfa1. Nutrients 2023; 15:1462. [PMID: 36986190 PMCID: PMC10056651 DOI: 10.3390/nu15061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
High-sugar diet-induced prediabetes and obesity are a global current problem that can be the result of glucose or fructose. However, a head-to-head comparison between both sugars on health impact is still lacking, and Lactiplantibacillus plantarum dfa1 has never been tested, and has recently been isolated from healthy volunteers. The mice were administered with the high glucose or fructose preparation in standard mouse chaw with or without L. plantarum dfa1 gavage, on alternate days, and in vitro experiments were performed using enterocyte cell lines (Caco2) and hepatocytes (HepG2). After 12 weeks of experiments, both glucose and fructose induced a similar severity of obesity (weight gain, lipid profiles, and fat deposition at several sites) and prediabetes condition (fasting glucose, insulin, oral glucose tolerance test, and Homeostatic Model Assessment for Insulin Resistance (HOMA score)). However, fructose administration induced more severe liver damage (serum alanine transaminase, liver weight, histology score, fat components, and oxidative stress) than the glucose group, while glucose caused more prominent intestinal permeability damage (FITC-dextran assay) and serum cytokines (TNF-α, IL-6, and IL-10) compared to the fructose group. Interestingly, all of these parameters were attenuated by L. plantarum dfa1 administration. Because there was a subtle change in the analysis of the fecal microbiome of mice with glucose or fructose administration compared to control mice, the probiotics altered only some microbiome parameters (Chao1 and Lactobacilli abundance). For in vitro experiments, glucose induced more damage to high-dose lipopolysaccharide (LPS) (1 µg/mL) to enterocytes (Caco2 cell) than fructose, as indicated by transepithelial electrical resistance (TEER), supernatant cytokines (TNF-α and IL-8), and glycolysis capacity (by extracellular flux analysis). Meanwhile, both glucose and fructose similarly facilitated LPS injury in hepatocytes (HepG2 cell) as evaluated by supernatant cytokines (TNF-α, IL-6, and IL-10) and extracellular flux analysis. In conclusion, glucose possibly induced a more severe intestinal injury (perhaps due to LPS-glucose synergy) and fructose caused a more prominent liver injury (possibly due to liver fructose metabolism), despite a similar effect on obesity and prediabetes. Prevention of obesity and prediabetes with probiotics was encouraged.
Collapse
Affiliation(s)
- Thunnicha Ondee
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Clinical Research Center, Bumrungrad International Hospital, Bangkok 10110, Thailand
- Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GB, UK
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warumphon Sukkummee
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Department of Pharmacology, Faculty of Medicine Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanapat Lertmongkolaksorn
- Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sayamon Senaprom
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology Research Unit (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Differential Effect of Fructose in the Presence or Absence of Fatty Acids on Circadian Metabolism in Hepatocytes. Metabolites 2023; 13:metabo13020138. [PMID: 36837757 PMCID: PMC9961817 DOI: 10.3390/metabo13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
We aimed to explore whether fructose in the absence or presence of fatty acids modulates circadian metabolism in AML-12 hepatocytes. Fructose treatment under steatosis conditions (FruFA) led to fat synthesis resulting in increased triglycerides and cholesterol content. Fructose led to reduced activity of the AMPK and mTOR-signaling pathway. However, FruFA treatment led to inhibition of the AMPK signaling pathway but activation of the mTOR pathway. Fructose also increased the expression of inflammatory markers, whereas the addition of fatty acids dampened their circadian expression. At the clock level, fructose or FruFA altered the expression of the core clock. More specifically, fructose led to altered expression of the BMAL1-RORα-REV-ERBα axis, together with reduced phosphorylated BMAL1 levels. In conclusion, our results show that hepatocytes treated with fructose respond differently if fatty acids are present, leading to a differential effect on metabolism and circadian rhythms. This is achieved by modulating BMAL1 activity and expression.
Collapse
|
10
|
Bandawane D, Kotkar A, Ingole P. Protective Effect of Hydroalcoholic Extract of Punica granatum Leaves on High Fructose Induced Insulin Resistance in Experimental Animals. Cardiovasc Hematol Disord Drug Targets 2023; 23:263-276. [PMID: 38038001 DOI: 10.2174/011871529x273808231129035950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Insulin resistance (IR) is a condition characterized by reduced sensitivity of body tissues to insulin, leading to impaired regulation of downstream metabolic pathways and elevated blood glucose levels. Diets rich in fructose have been proven to cause insulin resistance in test rats, resulting in decreased insulin sensitivity, particularly in the liver, and compromised disposal of glucose from the body. In the search for effective treatments, Plant-derived formulations have gained popularity because to their ability for treating a variety of ailments. One such plant is Punica granatum Linn. from the Punicaceae family, which has long been used in the treatment of diabetes and its consequences. This study investigates the insulin-resistant activity of an extract from Punica granatum leaves. The study goal is to assess the possible protective role of Punica granatum against insulin resistance through various analyses, including serum glucose and insulin levels, lipid profile assessment, measurement of liver enzymes (ALP, SGOT, SGPT), and histopathological examination of liver sections. METHODS The study involves several key methods to evaluate the insulin-resistant activity of Punica granatum extract in high fructose diet induced insulin resistance animal model. The extract was administered orally to the experimental animals. These methods include the measurement of serum glucose and serum insulin levels, analysis of the lipid profile, quantification of liver enzymes such as ALP, SGOT, and SGPT, and a detailed histopathological examination of liver tissue sections. These analyses collectively provide insights into the impact of Punica granatum extract on insulin resistance and related metabolic parameters. RESULTS Findings of this study provide insight on the possible benefits of Punica granatum extract on insulin resistance. Through the assessment of serum glucose and insulin levels, lipid profile analysis, and measurement of liver enzymes, the study elucidates the impact of the extract on key metabolic indicators. Additionally, the histopathological examination of liver sections provides visual insights into the structural changes that may occur as a result of the treatment. CONCLUSION In conclusion, this study highlights the ability of Punica granatum extract as a candidate for addressing insulin resistance. The findings suggest that the extract may have a protective role against insulin resistance, as evidenced by improvements in serum glucose and insulin levels, lipid profile, liver enzyme levels, and histopathological characteristics. Further research and investigations are warranted to fully understand the mechanisms underlying these observed effects and to validate the potential of Punica granatum extract as a therapeutic option for managing insulin resistance and its associated complications.
Collapse
Affiliation(s)
- Deepti Bandawane
- Department of Pharmacology, PES's Modern College of Pharmacy, Nigdi, Pune, India
| | - Ashwini Kotkar
- Department of Pharmacology, PES's Modern College of Pharmacy, Nigdi, Pune, India
| | - Pooja Ingole
- Department of Pharmacology, PES's Modern College of Pharmacy, Nigdi, Pune, India
| |
Collapse
|
11
|
Alshuniaber MA, Alshammari GM, Eleawa SM, Yagoub AEA, Al-Khalifah AS, Alhussain MH, Al-Harbi LN, Yahya MA. Camel milk protein hydrosylate alleviates hepatic steatosis and hypertension in high fructose-fed rats. PHARMACEUTICAL BIOLOGY 2022; 60:1137-1147. [PMID: 35672152 PMCID: PMC9176680 DOI: 10.1080/13880209.2022.2079678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Camel milk is used in traditional medicine to treat diabetes mellitus hypertension and other metabolic disorders. OBJECTIVE This study evaluated the antisteatotic and antihypertensive effects of camel milk protein hydrolysate (CMH) in high fructose (HF)-fed rats and compared it with the effects afforded by the intact camel milk protein extract (ICM). MATERIALS AND METHODS Adult male Wistar rats were divided into 6 groups (n = 8 each) as 1) control, 2) ICM (1000 mg/kg), 3) CMH (1000 mg/kg), 4) HF (15% in drinking water), 5) HF (15%) + ICM (1000 mg/kg), and 6) HF (15%) + CMH (1000 mg/kg). All treatments were given orally for 21 weeks, daily. RESULTS Both ICM and CMH reduced fasting glucose and insulin levels, serum and hepatic levels of cholesterol and triglycerides, and serum levels of ALT and AST, angiotensin II, ACE, endothelin-1, and uric acid in HF-fed rats. In addition, both ICM and CMH reduced hepatic fat deposition in the hepatocytes and reduced hepatocyte damage. This was associated with an increase in the hepatic activity of AMPK, higher PPARα mRNA, reduced expression of fructokinase C, SREBP1, SREBP2, fatty acid synthase, and HMG-CoA-reductase. Both treatments lowered systolic and diastolic blood pressure. However, the effects of CMH on all these parameters were greater as compared to ICM. DISCUSSION AND CONCLUSIONS The findings of this study encourage the use of CMH in a large-scale population and clinical studies to treat metabolic steatosis and hypertension.
Collapse
Affiliation(s)
- Mohammad A. Alshuniaber
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samy M. Eleawa
- College of Health Sciences, Applied Medical Sciences Department, PAAET, Safat, Kuwait
| | - Abu ElGasim A. Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullrahman S. Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maha H. Alhussain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Hassan NF, Hassan AH, El-Ansary MR. Cytokine modulation by etanercept ameliorates metabolic syndrome and its related complications induced in rats administered a high-fat high-fructose diet. Sci Rep 2022; 12:20227. [PMID: 36418417 PMCID: PMC9684438 DOI: 10.1038/s41598-022-24593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate the effect of etanercept (ETA)-an anti-tumor necrosis factor α (TNF-α) monoclonal antibody-on metabolic disorders such as obesity, hypertension, dyslipidemia, and insulin resistance associated with the metabolic syndrome (MS). MS was induced in rats via high-fat high-fructose (HFHF) administration for 8 weeks. Rats were divided into three groups: negative control, HFHF model, and ETA-treated groups [HFHF + ETA (0.8 mg/kg/twice weekly, subcutaneously) administered in the last 4 weeks]. ETA effectively diminished the prominent features of MS via a significant reduction in the percent body weight gain along with the modulation of adipokine levels, resulting in a significant elevation of serum adiponectin consistent with TNF-α and serum leptin level normalization. Moreover, ETA enhanced dyslipidemia and the elevated blood pressure. ETA managed the prominent features of MS and its associated complications via the downregulation of the hepatic inflammatory pathway that induces nonalcoholic steatohepatitis (NASH)-from the expression of Toll-like receptor 4, nuclear factor kappa B, and TNF-α until that of transforming growth factor-in addition to significant improvements in glucose utilization, insulin sensitivity, and liver function parameter activity and histopathological examination. ETA was effective for the treatment of all prominent features of MS and its associated complications, such as type II diabetes mellitus and NASH.
Collapse
Affiliation(s)
- Noha F. Hassan
- grid.440876.90000 0004 0377 3957Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Azza H. Hassan
- grid.7776.10000 0004 0639 9286Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mona R. El-Ansary
- grid.440876.90000 0004 0377 3957Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
13
|
Krøyer Rasmussen M, Thøgersen R, Horsbøl Lindholm P, Bertram HC, Pilegaard H. Hepatic PGC-1α has minor regulatory effect on the transcriptome and metabolome during high fat high fructose diet and exercise. Gene 2022; 851:147039. [DOI: 10.1016/j.gene.2022.147039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
14
|
Qiu C, He W, Li Y, Jiang F, Pan Y, Zhang M, Lin D, Zhang K, Yang Y, Wang W, Hua P. Formation of halogenated disinfection byproducts in chlorinated real water during making hot beverage: Effect of sugar addition. CHEMOSPHERE 2022; 305:135417. [PMID: 35750228 DOI: 10.1016/j.chemosphere.2022.135417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Chlorine disinfection is widely applied in drinking water treatment plant to inactivate pathogens in drinking water, but it unintentionally reacts with organic matter present in source waters and generates halogenated disinfection byproducts (DBPs). Sugar is one of the most commonly used seasoning in our diet. The addition of sugar could significantly improve the taste of the beverages; however, the effects of sugar on DBP formation and transformation remain unknown. In this study, the effects of sugar type and dose on the halogenated DBP formation in chlorinated boiled real tap water were evaluated during making hot beverages. We found that sugar can react with chlorine residual in tap water and generate halogenated DBPs. As the most commonly used table sugar, the addition of sucrose in the water sample at 100 or 500 mg/L as C could increase the level of total organic halogen (TOX) by ∼35%, when compared with the boiled tap water sample without sugar addition. In addition, fifteen reported and new polar brominated and chlorinated DBPs were detected and proposed from the reaction between chlorine and sucrose; accordingly, the corresponding transformation pathways were also proposed. Moreover, the DBP formation in the chlorinated boiled real tap water samples with the addition of xylose, glucose, sucrose, maltose and lactose were also investigated. By comparing with the TOX levels in the water samples with different sugar addition and their calculated TOX risk indexes, it was suggested that applying xylose as a sweetener in beverages could not only obtain a relatively high sweetness but also minimize the adverse effect inducing by halogenated DBPs during making hot beverages.
Collapse
Affiliation(s)
- Chuyin Qiu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Weiting He
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meihui Zhang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Daying Lin
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Kaili Zhang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yanduo Yang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wen Wang
- School of Environmental Science & Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Pei Hua
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
15
|
Zhang Q, Meng XH, Qiu C, Shen H, Zhao Q, Zhao LJ, Tian Q, Sun CQ, Deng HW. Integrative analysis of multi-omics data to detect the underlying molecular mechanisms for obesity in vivo in humans. Hum Genomics 2022; 16:15. [PMID: 35568907 PMCID: PMC9107154 DOI: 10.1186/s40246-022-00388-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity is a complex, multifactorial condition in which genetic play an important role. Most of the systematic studies currently focuses on individual omics aspect and provide insightful yet limited knowledge about the comprehensive and complex crosstalk between various omics levels. SUBJECTS AND METHODS Therefore, we performed a most comprehensive trans-omics study with various omics data from 104 subjects, to identify interactions/networks and particularly causal regulatory relationships within and especially those between omic molecules with the purpose to discover molecular genetic mechanisms underlying obesity etiology in vivo in humans. RESULTS By applying differentially analysis, we identified 8 differentially expressed hub genes (DEHGs), 14 differentially methylated regions (DMRs) and 12 differentially accumulated metabolites (DAMs) for obesity individually. By integrating those multi-omics biomarkers using Mendelian Randomization (MR) and network MR analyses, we identified 18 causal pathways with mediation effect. For the 20 biomarkers involved in those 18 pairs, 17 biomarkers were implicated in the pathophysiology of obesity or related diseases. CONCLUSIONS The integration of trans-omics and MR analyses may provide us a holistic understanding of the underlying functional mechanisms, molecular regulatory information flow and the interactive molecular systems among different omic molecules for obesity risk and other complex diseases/traits.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Community Nursing, School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Xiang-He Meng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lan-Juan Zhao
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Chang-Qing Sun
- Department of Community Nursing, School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
Dysmetabolism and Neurodegeneration: Trick or Treat? Nutrients 2022; 14:nu14071425. [PMID: 35406040 PMCID: PMC9003269 DOI: 10.3390/nu14071425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests the existence of a strong link between metabolic syndrome and neurodegeneration. Indeed, epidemiologic studies have described solid associations between metabolic syndrome and neurodegeneration, whereas animal models contributed for the clarification of the mechanistic underlying the complex relationships between these conditions, having the development of an insulin resistance state a pivotal role in this relationship. Herein, we review in a concise manner the association between metabolic syndrome and neurodegeneration. We start by providing concepts regarding the role of insulin and insulin signaling pathways as well as the pathophysiological mechanisms that are in the genesis of metabolic diseases. Then, we focus on the role of insulin in the brain, with special attention to its function in the regulation of brain glucose metabolism, feeding, and cognition. Moreover, we extensively report on the association between neurodegeneration and metabolic diseases, with a particular emphasis on the evidence observed in animal models of dysmetabolism induced by hypercaloric diets. We also debate on strategies to prevent and/or delay neurodegeneration through the normalization of whole-body glucose homeostasis, particularly via the modulation of the carotid bodies, organs known to be key in connecting the periphery with the brain.
Collapse
|
17
|
Aoun R, Chokor FAZ, Taktouk M, Nasrallah M, Ismaeel H, Tamim H, Nasreddine L. Dietary fructose and its association with the metabolic syndrome in Lebanese healthy adults: a cross-sectional study. Diabetol Metab Syndr 2022; 14:29. [PMID: 35139893 PMCID: PMC8827166 DOI: 10.1186/s13098-022-00800-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies investigating the association between dietary fructose intake and the metabolic syndrome (MetS) are scarce and have produced controversial findings. This study aimed at (1) assessing total dietary fructose intake in a sample of Lebanese healthy adults, and determining the intake levels of natural vs. added fructose; (2) investigating the association of dietary fructose with MetS; and (3) identifying the socioeconomic and lifestyle factors associated with high fructose intake. METHODS A cross-sectional survey was conducted on a representative sample of adults living in Beirut, Lebanon (n = 283). Anthropometric and biochemical data were collected, and dietary intake was assessed using a food frequency questionnaire. Intakes of naturally-occurring fructose from fructose-containing food sources, such as fruits, vegetables, honey, were considered as "natural fructose". Acknowledging that the most common form of added sugar in commodities is sucrose or High Fructose Corn Syrup (HFCS), 50% of added sugar in food products was considered as added fructose. Total dietary fructose intake was calculated by summing up natural and added fructose intakes. Logistic regression analyses were conducted to investigate the association of total, added and natural fructose intakes with the MetS and to identify the socioeconomic predictors of high fructose intake. RESULTS Mean intake of total fructose was estimated at 51.42 ± 35.54 g/day, representing 6.58 ± 3.71% of energy intakes (EI). Natural and added fructose intakes were estimated at 12.29 ± 8.57 and 39.12 ± 34.10 g/day (1.78 ± 1.41% EI and 4.80 ± 3.56% EI), respectively. Participants in the highest quartile of total and added fructose intakes had higher odds of MetS (OR = 2.84, 95%CI: 1.01, 7.94 and OR = 3.18, 95%CI: 1.06, 9.49, respectively). In contrast, natural fructose intake was not associated with MetS. Age, gender and crowding index were identified as factors that may modulate dietary fructose intakes. CONCLUSIONS The observed association between high added fructose intake and the MetS highlights the need for public health strategies aimed at limiting sugar intake from industrialized foods and promoting healthier dietary patterns in Lebanon.
Collapse
Affiliation(s)
- Rita Aoun
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Fatima Al Zahraa Chokor
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Mandy Taktouk
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Mona Nasrallah
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Vascular Medicine Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hussain Ismaeel
- Vascular Medicine Program, American University of Beirut Medical Center, Beirut, Lebanon
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hani Tamim
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
- Clinical Research Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Lara Nasreddine
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
18
|
Cox LA, Chan J, Rao P, Hamid Z, Glenn JP, Jadhav A, Das V, Karere GM, Quillen E, Kavanagh K, Olivier M. Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet. BMC Genomics 2021; 22:870. [PMID: 34861817 PMCID: PMC8641221 DOI: 10.1186/s12864-021-08166-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may be essential to understand the perturbations leading to insulin resistance and abnormalities in lipid and carbohydrate metabolism. We studied vervet monkeys (Clorocebus aethiops sabaeus) fed a HFr (n=5) or chow diet (n=5) for 6 weeks, and obtained clinical measures of liver function, blood insulin, cholesterol and triglycerides. In addition, we performed untargeted global transcriptomics, proteomics, and metabolomics analyses on liver biopsies to determine the molecular impact of a HFr diet on coordinated pathways and networks that differed by diet. RESULTS We show that integration of omics data sets improved statistical significance for some pathways and networks, and decreased significance for others, suggesting that multiple omics datasets enhance confidence in relevant pathway and network identification. Specifically, we found that sirtuin signaling and a peroxisome proliferator activated receptor alpha (PPARA) regulatory network were significantly altered in hepatic response to HFr. Integration of metabolomics and miRNAs data further strengthened our findings. CONCLUSIONS Our integrated analysis of three types of omics data with pathway and regulatory network analysis demonstrates the usefulness of this approach for discovery of molecular networks central to a biological response. In addition, metabolites aspartic acid and docosahexaenoic acid (DHA), protein ATG3, and genes ATG7, and HMGCS2 link sirtuin signaling and the PPARA network suggesting molecular mechanisms for altered hepatic gluconeogenesis from consumption of a HFr diet.
Collapse
Affiliation(s)
- Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA.
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA.
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA.
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, 27157, Winston-Salem, NC, USA.
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Prahlad Rao
- University of Tennessee Health Science Center, TN, Memphis, USA
| | - Zeeshan Hamid
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
| | - Jeremy P Glenn
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Avinash Jadhav
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Vivek Das
- Novo Nordisk Research Center, Seattle, WA, USA
| | - Genesio M Karere
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Ellen Quillen
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Kylie Kavanagh
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, 27157, Winston-Salem, NC, USA
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| |
Collapse
|
19
|
Béghin L, Huybrechts I, Drumez E, Kersting M, Walker RW, Kafatos A, Molnar D, Manios Y, Moreno LA, De Henauw S, Gottrand F. High Fructose Intake Contributes to Elevated Diastolic Blood Pressure in Adolescent Girls: Results from The HELENA Study. Nutrients 2021; 13:3608. [PMID: 34684609 PMCID: PMC8538236 DOI: 10.3390/nu13103608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The association between high fructose consumption and elevated blood pressure continues to be controversial, especially in adolescence. The aim of this study was to assess the association between fructose consumption and elevated blood pressure in an European adolescent population. METHODS A total of 1733 adolescents (mean ± SD age: 14.7 ± 1.2; percentage of girls: 52.8%) were analysed from the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study in eight European countries. Blood pressure was measured using validated devices and methods for measuring systolic blood pressure (SBP) and diastolic blood pressure (DBP). Dietary data were recorded via repeated 24 h recalls (using specifically developed HELENA-DIAT software) and converted into pure fructose (monosaccharide form) and total fructose exposure (pure fructose + fructose from sucrose) intake using a specific fructose composition database. Food categories were separated at posteriori in natural vs. were non-natural foods. Elevated BP was defined according to the 90th percentile cut-off values and was compared according to tertiles of fructose intake using univariable and multivariable mixed logistic regression models taking into account confounding factors: centre, sex, age and z-score-BMI, MVPA (Moderate to Vigorous Physical Activity) duration, tobacco consumption, salt intake and energy intake. RESULTS Pure fructose from non-natural foods was only associated with elevated DBP (DBP above the 10th percentile in the highest consuming girls (OR = 2.27 (1.17-4.40); p = 0.015) after adjustment for cofounding factors. CONCLUSIONS Consuming high quantities of non-natural foods was associated with elevated DBP in adolescent girls, which was in part due to high fructose levels in these foods categories. The consumption of natural foods containing fructose, such as whole fruits, does not impact blood pressure and should continue to remain a healthy dietary habit.
Collapse
Affiliation(s)
- Laurent Béghin
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE and CIC-1403, F-59000 Lille, France;
| | - Inge Huybrechts
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (I.H.); (S.D.H.)
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, F-69000 Lyon, France
| | - Elodie Drumez
- Univ. Lille, CHU Lille, ULR 2694—METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France;
- CHU Lille, Department of Biostatistics, F-59000 Lille, France
| | - Mathilde Kersting
- Research Department of Child Nutrition, Pediatric University Clinic, Ruhr-University Bochum, D-44791 Bochum, Germany;
| | - Ryan W Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Anthony Kafatos
- Preventive Medicine and Nutrition Clinic, University of Crete School of Medicine, G-14122 Crete, Greece;
| | - Denes Molnar
- Department of Pediatrics, University of Pecs, H-7600 Pecs, Hungary;
| | - Yannis Manios
- Department of Nutrition and Dietetics, University of Harakopio, G-10431 Athens, Greece;
| | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group Escuela Universitaria de Ciencas de la Salud, Universidad de Zaragoza, S-50009 Zaragoza, Spain;
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (I.H.); (S.D.H.)
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE and CIC-1403, F-59000 Lille, France;
| |
Collapse
|
20
|
Zielińska D, Marciniak-Lukasiak K, Karbowiak M, Lukasiak P. Effects of Fructose and Oligofructose Addition on Milk Fermentation Using Novel Lactobacillus Cultures to Obtain High-Quality Yogurt-like Products. Molecules 2021; 26:molecules26195730. [PMID: 34641276 PMCID: PMC8510434 DOI: 10.3390/molecules26195730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
The incorporation of prebiotics in fermented milk products is one of the best ways to promote health benefits while improving their sensory characteristics at the same time. The aim of this study was to evaluate the effects of the addition of fructose and oligofructose (1% and 2%) on the physicochemical, rheological, sensory, and microbiological quality attributes of fermented milk products inoculated with indigenous probiotic starter cultures of Lactobacillus isolated from Polish traditional fermented foods. The samples were evaluated during 35 days of refrigerated storage. The oligofructose and fructose caused increases in the populations of bacteria in comparison to the control fermented milk products without the addition of saccharides. The degrees of acidification in different fermented milk samples, as well as their viscosity, firmness, syneresis, and color attributes, changed during storage. The highest overall sensory quality levels were observed for the samples supplemented with L. brevis B1 and oligofructose. This study is the first attempt to compare the influences of different sugar sources on the physicochemical, rheological, sensory, and microbiological quality attributes of fermented milk products.
Collapse
Affiliation(s)
- Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
- Correspondence: (D.Z.); (K.M.-L.); Tel.: +48-22-59-37067 (D.Z.); +48-22-59-37548 (K.M.-L.)
| | - Katarzyna Marciniak-Lukasiak
- Department of Food Technology and Assessment, Division of Fat and Oils and Food Concentrates Technology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland
- Correspondence: (D.Z.); (K.M.-L.); Tel.: +48-22-59-37067 (D.Z.); +48-22-59-37548 (K.M.-L.)
| | - Marcelina Karbowiak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Piotr Lukasiak
- Faculty of Computing and Telecommunications, Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland;
- Laboratory of Bioinformatics, Institute of Biochemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
21
|
Biochemical and genomic identification of novel thermophilic Bacillus licheniformis strains YNP1-TSU, YNP2-TSU, and YNP3-TSU with potential in 2,3-butanediol production from non-sterile food waste fermentation. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Chan AML, Ng AMH, Mohd Yunus MH, Idrus RBH, Law JX, Yazid MD, Chin KY, Shamsuddin SA, Lokanathan Y. Recent Developments in Rodent Models of High-Fructose Diet-Induced Metabolic Syndrome: A Systematic Review. Nutrients 2021; 13:nu13082497. [PMID: 34444658 PMCID: PMC8401262 DOI: 10.3390/nu13082497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic syndrome (MetS) is the physiological clustering of hypertension, hyperglycemia, hyperinsulinemia, dyslipidemia, and insulin resistance. The MetS-related chronic illnesses encompass obesity, the cardiovascular system, renal operation, hepatic function, oncology, and mortality. To perform pre-clinical research, it is imperative that these symptoms be successfully induced and optimized in lower taxonomy. Therefore, novel and future applications for a disease model, if proven valid, can be extrapolated to humans. MetS model establishment is evaluated based on the significance of selected test parameters, paradigm shifts from new discoveries, and the accessibility of the latest technology or advanced methodologies. Ultimately, the outcome of animal studies should be advantageous for human clinical trials and solidify their position in advanced medicine for clinicians to treat and adapt to serious or specific medical situations. Rodents (Rattus norvegicus and Mus musculus) have been ideal models for mammalian studies since the 18th century and have been mapped extensively. This review compiles and compares studies published in the past five years between the multitude of rodent comparative models. The response factors, niche parameters, and replicability of diet protocols are also compiled and analyzed to offer insight into MetS-related disease-specific modelling.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
- Ming Medical Sdn. Bhd., D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1A/22, Petaling Jaya 47101, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
- Correspondence: ; Tel.: +60-3-9145-7704
| |
Collapse
|
23
|
Durante M, Sgambellone S, Lucarini L, Failli P, Laurino A, Collotta D, Provensi G, Masini E, Collino M. D-Tagatose Feeding Reduces the Risk of Sugar-Induced Exacerbation of Myocardial I/R Injury When Compared to Its Isomer Fructose. Front Mol Biosci 2021; 8:650962. [PMID: 33928123 PMCID: PMC8076855 DOI: 10.3389/fmolb.2021.650962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
It is known that fructose may contribute to myocardial vulnerability to ischemia/reperfusion (I/R) injury. D-tagatose is a fructose isomer with less caloric value and used as low-calorie sweetener. Here we compared the metabolic impact of fructose or D-tagatose enriched diets on potential exacerbation of myocardial I/R injury. Wistar rats were randomizedly allocated in the experimental groups and fed with one of the following diets: control (CTRL), 30% fructose-enriched (FRU 30%) or 30% D-tagatose-enriched (TAG 30%). After 24 weeks of dietary manipulation, rats underwent myocardial injury caused by 30 min ligature of the left anterior descending (LAD) coronary artery followed by 24 h′ reperfusion. Fructose consumption resulted in body weight increase (49%) as well as altered glucose, insulin and lipid profiles. These effects were associated with increased I/R-induced myocardial damage, oxidative stress (36.5%) and inflammation marker expression. TAG 30%-fed rats showed lower oxidative stress (21%) and inflammation in comparison with FRU-fed rats. Besides, TAG diet significantly reduced plasmatic inflammatory cytokines and GDF8 expression (50%), while increased myocardial endothelial nitric oxide synthase (eNOS) expression (59%). Overall, we demonstrated that D-tagatose represents an interesting sugar alternative when compared to its isomer fructose with reduced deleterious impact not only on the metabolic profile but also on the related heart susceptibility to I/R injury.
Collapse
Affiliation(s)
- Mariaconcetta Durante
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Paola Failli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Annunziatina Laurino
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
24
|
Drosophila insulin-like peptides regulate concentration-dependent changes of appetite to different carbohydrates. ZOOLOGY 2021; 146:125927. [PMID: 33894679 DOI: 10.1016/j.zool.2021.125927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
The volumes of sugar solutions ingested and amounts of different carbohydrates eaten were measured in fruit fly lines with mutated genes for Drosophila insulin-like peptides (DILPs). The wild type w1118 flies consumed 20-40 μg of fructose or glucose per day regardless of carbohydrate concentration. This relatively constant amount of consumed carbohydrate was regulated due to satiety-driven decreases in the ingested volume of sugar solution, a so-called "compensatory feeding" strategy. This decrease was not observed for flies fed sucrose solutions. The dilp3 mutant and quadruple mutant dilp1-4 showed no "compensatory feeding" when fed glucose but these two mutants consumed larger amounts of sucrose than the wild type from solutions with carbohydrate concentrations equal to or higher than 4%. Flies with mutations of dilp2, dilp3, dilp4, dilp5, and dilp6 genes consumed larger amounts of carbohydrate from 4-10% sucrose solutions as compared to the wild type. Mutations of DILPs affected appetite mainly for sucrose and glucose, but the least for fructose. The presented data confirm our hypothesis that DILPs are involved in the regulation of fly appetite in response to type and concentration of carbohydrate.
Collapse
|
25
|
Calvete-Torre I, Muñoz-Almagro N, Pacheco MT, Antón MJ, Dapena E, Ruiz L, Margolles A, Villamiel M, Moreno FJ. Apple pomaces derived from mono-varietal Asturian ciders production are potential source of pectins with appealing functional properties. Carbohydr Polym 2021; 264:117980. [PMID: 33910710 DOI: 10.1016/j.carbpol.2021.117980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
Comprehensive chemical characterization of nine mono-varietal apple pomaces obtained from the production of ciders with PDO is described. They were rich in essential minerals, fibers (35-52.9 %), and polyphenols. High levels in GalA (11.8-21.6 %), revealed the suitability of these apple pomaces as efficient sources of pectins. Extracted pectins showed high variability in monomer composition, with degrees of methylesterification, strongly associated with pectins functional properties, ranging from 58 to 88 %. For a subset of apple pomace varieties, pectin extraction was accomplished by conventional acid heat treatment or ultrasound. Despite ultrasound-assisted extraction did not improve pectin yield, it minimized levels of "non-pectin" components as revealed by the low content of Glc/Man, leading to the obtainment of high-purity pectin. Our work highlights the key role played by the selection of the apple variety to streamline the potential food applications (gelling/thickening agents or prebiotics) of the extracted pectins that largely depend on their structural features.
Collapse
Affiliation(s)
- Inés Calvete-Torre
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Nerea Muñoz-Almagro
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M Teresa Pacheco
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María José Antón
- The Regional Agrifood Research and Development Service (SERIDA), Carretera AS-267 PK 19, 33300, Villaviciosa, Asturias, Spain
| | - Enrique Dapena
- The Regional Agrifood Research and Development Service (SERIDA), Carretera AS-267 PK 19, 33300, Villaviciosa, Asturias, Spain
| | - Lorena Ruiz
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Mar Villamiel
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - F Javier Moreno
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
26
|
Iskender H, Yenice G, Terim Kapakin KA, Dokumacioglu E, Sevim C, Hayirli A, Altun S. Effects of high fructose diet on lipid metabolism and the hepatic NF-κB/ SIRT-1 pathway. Biotech Histochem 2021; 97:30-38. [PMID: 33629622 DOI: 10.1080/10520295.2021.1890214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The liver is the primary site for fructose metabolism; therefore, the liver is susceptible to fructose related metabolic disturbances including metabolic insulin dysfunction, dyslipidemia and inflammation. We investigated whether astaxanthin (ASX) can modify hepatic nuclear factor-kappa B (NF-κB)/sirtuin-1 (SIRT-1) expression to alter oxidative stress caused by ingestion of excess fructose in rats. The animals were divided randomly into two x two factorially arranged groups: two regimens were given either water (W) or 30% fructose in drinking water (F). These two groups were divided further into two subgroups each: two treatments, either orally with 0.2 ml olive oil (OO) or 1 mg ASX/kg/day in 0.2 ml olive oil (ASX). Fructose administration increased serum glucose, triglycerides and very low density lipoproteins, and decreased serum concentration of high density lipoproteins; fructose did not alter serum total cholesterol. Excess fructose decreased hepatic superoxide dismutase (SOD) and increased hepatic NF-κB and MDA levels. ASX treatment increased hepatic SIRT-1 and decreased hepatic NF-κB and malondialdehyde (MDA) levels. ASX treatment decreased hepatic NF-κB and increased SOD levels, but did not alter MDA level in rats fed high fructose. ASX administration ameliorated oxidative stress caused by excess fructose by increasing hepatic NF-κB and SIRT-1 expression.
Collapse
Affiliation(s)
- Hatice Iskender
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, Artvin, Turkey
| | - Guler Yenice
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | | | - Eda Dokumacioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, Artvin, Turkey
| | - Cigdem Sevim
- Department of Pharmacology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Armagan Hayirli
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
27
|
Khorshidian N, Shadnoush M, Zabihzadeh Khajavi M, Sohrabvandi S, Yousefi M, Mortazavian AM. Fructose and high fructose corn syrup: are they a two-edged sword? Int J Food Sci Nutr 2021; 72:592-614. [PMID: 33499690 DOI: 10.1080/09637486.2020.1862068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-fructose syrups are used as sugar substitutes due to their physical and functional properties. High fructose corn syrup (HFCS) is used in bakery products, dairy products, breakfast cereals and beverages, but it has been reported that there might be a direct relationship between high fructose intake and adverse health effects such as obesity and the metabolic syndrome. Thus, fructose has recently received much attention, most of which was negative. Although studies have indicated that there might be a correlation between high fructose-rich diet and several adverse effects, however, the results of these studies cannot be certainly generalised to the effects of HFCS; because they have investigated pure fructose at very high concentrations in measurement of metabolic upsets. This review critically considered the advantages and possible disadvantages of HFCS application and consumption in food industry, as a current challenging issue between nutritionists and food technologists.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zabihzadeh Khajavi
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amir M Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Pitchumoni CS, Goldstein DR, Vuittonet CL. Gas, Belching, Bloating, and Flatulence: Pathogenesis, Evaluation, and Management. GERIATRIC GASTROENTEROLOGY 2021:1203-1227. [DOI: 10.1007/978-3-030-30192-7_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Knowledge attitudes and behaviors of adult individuals about high fructose corn syrup consumption; cross sectional survey study. Clin Nutr ESPEN 2020; 40:179-186. [PMID: 33183534 DOI: 10.1016/j.clnesp.2020.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The purpose of this study is; to examine the knowledge and attitudes of individuals about ready-to food consumption and food products containing high fructose corn syrup (HFCS). STUDY DESIGN Research in the city center in the eastern Mediterranean region of Turkey was held with 18 individuals over the age of two shoppers at the supermarket. METHODS The study is a descriptive cross-sectional questionnaire-based study. The research was conducted between 15.09.2018 and 30.03.2019. Data were collected from 254 individuals using face-to-face interview technique. The questionnaire form consisted of questions created by the researcher to determine socio-demographic variables as well as information about ready-made food intake and foods containing high fructose corn syrup. RESULTS The suitability of the questionnaire for factor analysis was evaluated with the "Kaiser-Meyer-Olkin coefficient" and "Bartlett Sphericity Test". As a result of the exploratory factor analysis, the 21-item survey form explains 52% of the total variance. The questionnaire items consist of four factors. Cronbach's Alpha reliability of the questionnaire is 0.860 on the whole. In the sub-factors; The first factor was 0.859, the second factor was 0.764, the third factor was 0.652, and the fourth factor was 0.616. The findings obtained in the study were analyzed using the Independent Sample t Test, One Way Anova test, Mann Whitney U test and Tukey test. SPSS 21, USA was used to analyze the study. It was determined that the average age of the participants was 31.3 ± 11.7, the rate of paying attention to ingredients and nutritional values while purchasing ready-made foods was low, and 1/4 of them did not pay attention to high fructose corn syrup in their content. There was a significant correlation between the age and employment status of the participants and their knowledge and attitudes about the foods containing corn syrup (p < 0.05). CONCLUSION It was concluded that individuals should be educated about health risks while purchasing ready-made food products and should be more informed about foods containing HFCS. It is recommended that the questionnaire used in the study be tested in different sample groups in order to increase its validity and reliability evidence.
Collapse
|
30
|
Ozcan-Sınır G, Inan S, Suna S, Tamer CE, Akgül MB, Bagdas D, Sonmez G, Evrensel T, Kaya E, Sarandol E, Dündar HZ, Tarım OF, Ercan I, Sıgırlı D, Incedayı B, Copur OU. Effect of High Fructose Corn Sirup on Pancreatic Ductal Adenocarcinoma Induced by Dimethyl Benzantracene (DMBA) in Rats. Nutr Cancer 2020; 73:339-349. [PMID: 32475178 DOI: 10.1080/01635581.2020.1770811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Increased risk of pancreatic cancer may be associated with consumption of sugar containing foods. The aim of this study was to evaluate the effect of peach nectar containing high fructose corn sirup (HFCS) consumption in a pancreatic carcinogenesis rat model induced by 7,12-Dimethyl benzanthracene (DMBA). Fifty-day-old male Sprague Dawley rats were fed with peach nectar containing HFCS + chow, peach nectar containing sucrose + chow and only chow. After 8 mo, feeding period, each group was divided into two subgroups, in which the rats were implanted with DMBA and no DMBA (sham). Histologic specimens were evaluated according to the routine tissue processing protocol. The animals with ad libitum access to pn-HFCS, pn-sucrose and chow (only) showed significant differences in chow consumption and glucose level. Necropsy and histopathologic findings showed tumor formation in the entire group treated with DMBA. Excluding one rat in chow group, which was classified as poorly differentiated type, the others were classified as moderately differentiated pancreatic ductal adenocarcinoma (PDAC). This study demonstrated that daily intake of HFCS did not increase body weight and there was no effect of peach nectar consumption on the development of PDAC induced by DMBA in rats.
Collapse
Affiliation(s)
- Gulsah Ozcan-Sınır
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Sevda Inan
- Department of Pathology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Senem Suna
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Canan Ece Tamer
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Mustafa Barış Akgül
- Department of Surgery, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Deniz Bagdas
- Department of Psychiatry, Yale University School of Medicine, New Heaven, CT, USA
| | - Gursel Sonmez
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Turkkan Evrensel
- Department of Medical Oncology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey Görükle
| | - Ekrem Kaya
- Department of Surgery, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Emre Sarandol
- Department of Biochemistry, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Halit Ziya Dündar
- Department of Surgery, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Omer Faruk Tarım
- Department of Paediatric Endocrinology, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Ilker Ercan
- Department of Biostatistic, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Deniz Sıgırlı
- Department of Biostatistic, Faculty of Medicine, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Bige Incedayı
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| | - Omer Utku Copur
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Görükle, Bursa, Turkey
| |
Collapse
|
31
|
Gumede NM, Lembede BW, Brooksbank RL, Erlwanger KH, Chivandi E. β-Sitosterol Shows Potential to Protect Against the Development of High-Fructose Diet-Induced Metabolic Dysfunction in Female Rats. J Med Food 2020; 23:367-374. [DOI: 10.1089/jmf.2019.0120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Nontobeko M. Gumede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Busisani W. Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard L. Brooksbank
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy H. Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
32
|
Van Laar ADE, Grootaert C, Van Camp J. Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Crit Rev Food Sci Nutr 2020; 61:713-741. [PMID: 32212974 DOI: 10.1080/10408398.2020.1743966] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Obesity and type 2 diabetes are major health problems affecting hundreds of millions of people. Caloric overfeeding with calorie-dense food ingredients like sugars may contribute to these chronic diseases. Sugar research has also identified mechanisms via which conventional sugars like sucrose and fructose can adversely influence metabolic health. To replace these sugars, numerous sugar replacers including artificial sweeteners and sugar alcohols have been developed. Rare sugars became new candidates to replace conventional sugars and their health effects are already reported in individual studies, but overviews and critical appraisals of their health effects are missing. This is the first paper to provide a detailed review of the metabolic health effects of rare sugars as a group. Especially allulose has a wide range of health effects. Tagatose and isomaltulose have several health effects as well, while other rare sugars mainly provide health benefits in mechanistic studies. Hardly any health claims have been approved for rare sugars due to a lack of evidence from human trials. Human trials with direct measures for disease risk factors are needed to allow a final appraisal of promising rare sugars. Mechanistic cell culture studies and animal models are required to enlarge our knowledge on understudied rare sugars.
Collapse
Affiliation(s)
- Amar D E Van Laar
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - John Van Camp
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Patil M, Jadhav A, Patil U. Functional characterization and in vitro screening of Fructobacillus fructosus MCC 3996 isolated from Butea monosperma flower for probiotic potential. Lett Appl Microbiol 2020; 70:331-339. [PMID: 32003005 DOI: 10.1111/lam.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023]
Abstract
The fructophilic bacterium Fructobacillus fructosus MCC 3996 described in the present investigation was isolated from the nectar of Butea monosperma flower and evaluated in vitro for the manifestation of probiotic features. The strain utilizes fructose faster than glucose and is capable to grow in the range of 1-35% fructose concentration (optimum 5% w/v) and thus denotes its fructophilic nature. In vitro assessments of the strain have examined for the endurance in acidic environment/gastric juice, the better auto-aggregation ability even in the presence of hydrolytic enzymes, co-aggregation with pathogenic bacteria, hydrophobicity properties and no haemolytic activity to elucidate its feasible probiotic use. The significant antagonistic activity against several detrimental bacteria, despite lacking the bacteriocin secretion, is an astonishing feature. Owing to the indigenous origin of the isolate, it could be used as a probiotic, starter culture, and/or the active ingredient of food formulation may contribute to improve the desirable fermentation, long-term storage and nutritional benefits of foods especially rich in fructose. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided in vitro evidence that Fructobacillus fructosus MCC 3996 have endurance in acidic gastric juice, better co-aggregation, auto-aggregation properties, splendid antagonistic activities against several bacteria involved in food spoilage/human infections, pertinent antibiotic susceptibility profile and no haemolytic activity. Also, F. fructosus have the capability to survive in the appreciable amount of fructose, and this advocates that the strain could be used as starter culture and/or the active ingredient of fructose-rich foods. The current in vitro study provided a strong basis for further in vivo research to identify the health beneficial characteristics of F. fructosus and its potential could be effectively utilized as health-boosting ingredient in food and pharmaceutical industries.
Collapse
Affiliation(s)
- M Patil
- Department of Microbiology, R. C. Patel Arts, Commerce and Science College, Shirpur, India
| | - A Jadhav
- Department of Microbiology, Government Institute of Science, Aurangabad, India
| | - U Patil
- Department of Microbiology, Government Institute of Science, Aurangabad, India
| |
Collapse
|
34
|
DA SILVA ALESSANDRA, ROCHA DANIELAMAYUMIU, LOPES LÍLIANL, BRESSAN JOSEFINA, HERMSDORFF HELENHERMANAM. High-saturated fatty meals with orange juice intake have subjective appetite sensations suppressed: Acute, postprandial study. AN ACAD BRAS CIENC 2020; 92:e20191085. [DOI: 10.1590/0001-3765202020191085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 11/22/2022] Open
|
35
|
Merino B, Fernández-Díaz CM, Cózar-Castellano I, Perdomo G. Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients 2019; 12:E94. [PMID: 31905727 PMCID: PMC7019254 DOI: 10.3390/nu12010094] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemics of obesity and diabetes have been linked to increased sugar consumption in humans. Here, we review fructose and glucose metabolism, as well as potential molecular mechanisms by which excessive sugar consumption is associated to metabolic diseases and insulin resistance in humans. To this end, we focus on understanding molecular and cellular mechanisms of fructose and glucose transport and sensing in the intestine, the intracellular signaling effects of dietary sugar metabolism, and its impact on glucose homeostasis in health and disease. Finally, the peripheral and central effects of dietary sugars on the gut-brain axis will be reviewed.
Collapse
Affiliation(s)
- Beatriz Merino
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Cristina M. Fernández-Díaz
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - German Perdomo
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Departamento de Ciencias de la Salud, Universidad de Burgos, Burgos 09001, Spain
| |
Collapse
|
36
|
Ezquerro S, Rodríguez A, Portincasa P, Frühbeck G. Effects of Diets on Adipose Tissue. Curr Med Chem 2019; 26:3593-3612. [PMID: 28521681 DOI: 10.2174/0929867324666170518102340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Obesity is a major health problem that has become a global epidemic. Overweight and obesity are commonly associated with the development of several pathologies, such as insulin resistance, cardiovascular diseases, sleep apnea and several types of cancer, which can lead to further morbidity and mortality. An increased abdominal adiposity renders overweight and obese individuals more prone to metabolic and cardiovascular problems. OBJECTIVE This Review aims to describe the dietary strategies to deal with excess adiposity given the medical, social and economic consequences of obesity. METHODS One hundred and eighty-five papers were included in the present Review. RESULTS Excess adiposity leads to several changes in the biology, morphology and function of the adipose tissue, such as adipocyte hypertrophy and hyperplasia, adipose tissue inflammation and fibrosis and an impaired secretion of adipokines, contributing to the onset of obesity- related comorbidities. The first approach for obesity management and prevention is the implementation of a diet combined with physical activity. The present review summarizes the compelling evidence showing body composition changes, impact on cardiometabolism and potential adverse effects of very-low calorie, low- and high-carbohydrate, high-protein or low-fat diets. The use of macronutrients during the preprandial and postprandial state has been also reviewed to better understand the metabolic changes induced by different dietary interventions. CONCLUSION Dietary changes should be individualised, tailored to food preferences and allow for flexible approaches to reducing calorie intake in order to increase the motivation and compliance of overweight and obese patients.
Collapse
Affiliation(s)
- Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology University of Bari Medical School, Policlinico Hospital, Bari, Italy
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
37
|
Vilkickyte G, Raudonis R, Motiekaityte V, Vainoriene R, Burdulis D, Viskelis J, Raudone L. Composition of Sugars in Wild and Cultivated Lingonberries ( Vaccinium vitis-idaea L.). Molecules 2019; 24:molecules24234225. [PMID: 31757105 PMCID: PMC6930526 DOI: 10.3390/molecules24234225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Products of lingonberries are widely used in the human diet; they are also promising beauty and health therapeutic candidates in the cosmetic and pharmaceutical industries. It is important to examine the sugar profile of these berries, due to potential deleterious health effects resulting from high sugar consumption. The aim of this study was to determine the composition of sugars in wild clones and cultivars or lower taxa of lingonberries by HPLC–ELSD method of analysis. Acceptable system suitability, linearity, limits of detection and quantification, precision, and accuracy of this analytical method were achieved. The same sugars with moderate amounts of fructose, glucose, and low amounts of sucrose were found in wild and cultivated lingonberries. Cultivar ‘Erntekrone’ and wild lingonberries collected from full sun, dry pine tree forests with lower altitude and latitude of the location, distinguished themselves with exclusive high contents of sugars. The changes in the sugar levels during the growing season were apparent in lingonberries and the highest amounts accumulated at the end of the vegetation. According to our findings, lingonberries seem to be an appropriate source of dietary sugars.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-622-34977
| | - Raimondas Raudonis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (R.R.); (D.B.)
| | - Vida Motiekaityte
- Biomedical Sciences Department, Siauliai State College. Ausros av. 40, LT-76241 Siauliai, Lithuania;
| | - Rimanta Vainoriene
- Paitaiciu str, The Botanical Garden of Siauliai University, 4, LT-77175 Siauliai, Lithuania;
| | - Deividas Burdulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (R.R.); (D.B.)
| | - Jonas Viskelis
- Laboratory of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno str. 30, LT-54333 Babtai, Kaunas distr., Lithuania;
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania;
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (R.R.); (D.B.)
| |
Collapse
|
38
|
Val-Laillet D. Review: Impact of food, gut-brain signals and metabolic status on brain activity in the pig model: 10 years of nutrition research using in vivo brain imaging. Animal 2019; 13:2699-2713. [PMID: 31354119 DOI: 10.1017/s1751731119001745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review is to offer a panorama on 10 years of nutrition research using in vivo brain imaging in the pig model. First, we will review some work describing the brain responses to food signals, including basic tastants such as sweet and bitter at both oral and visceral levels, as well as conditioned preferred and aversive flavours. Second, we will have a look at the impact of weight gain and obesity on brain metabolism and functional responses, drawing the parallel with obese human patients. Third, we will evoke the concept of the developmental origins of health and diseases, and how the pig model can shed light on the importance of maternal nutrition during gestation and lactation for the development of the gut-brain axis and adaptation abilities of the progeny to nutritional environments. Finally, three examples of preventive or therapeutic strategies will be introduced: the use of sensory food ingredients or pre-, pro-, and postbiotics to improve metabolic and cognitive functions; the implementation of chronic vagus nerve stimulation to prevent weight gain and glucose metabolism alterations; and the development of bariatric surgery in the pig model for the understanding of its complex mechanisms at the gut-brain level. A critical conclusion will brush the limitations of neurocognitive studies in the pig model and put in perspective the rationale and ethical concerns underlying the use of pig experimentation in nutrition and neurosciences.
Collapse
Affiliation(s)
- D Val-Laillet
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| |
Collapse
|
39
|
Sneed NM, Patrician PA, Morrison SA. Influences of added sugar consumption in adults with type 2 diabetes risk: A principle-based concept analysis. Nurs Forum 2019; 54:698-706. [PMID: 31612529 DOI: 10.1111/nuf.12399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study is to describe the concept added sugar in the context of type 2 diabetes (T2D) risk in adults. BACKGROUND Dietary added sugars are associated with a greater risk for T2D; however, it is unclear if added sugars influence T2D risk directly or if their effects are mediated by excess caloric intake and weight gain. DESIGN A principle-based concept analysis following the PRISMA guidelines was conducted to clarify the concept of added sugar. A systematic search was conducted using PubMed and Embase. Multidisciplinary, empirical evidence was appraised using four guiding principles outlined by the principle-based concept analysis method. RESULTS Thirty-five publications were included in this concept analysis. The concept, added sugar in the context of T2D risk, was found to be epistemologically immature and lacked conceptual clarity. CONCLUSIONS Added sugar is an immature concept warranting further refinement for conceptual advancement. To enhance conceptual clarity, the term "added sugar" should be used consistently in the scientific literature when discussing foods or beverages containing added sugars or caloric sweeteners. A clearer delineation of added sugar and its association with T2D risk in adults is critical to advance this concept within the scientific literature.
Collapse
Affiliation(s)
| | - Patricia A Patrician
- Department of Family, Community Health, and Systems, School of Nursing, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon A Morrison
- Department of Family, Community Health, and Systems, School of Nursing, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
40
|
Hoyas I, Leon-Sanz M. Nutritional Challenges in Metabolic Syndrome. J Clin Med 2019; 8:E1301. [PMID: 31450565 PMCID: PMC6780536 DOI: 10.3390/jcm8091301] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
Metabolic Syndrome (MetS) is a combination of risk factors for the development of cardiovascular disease (CVD) and type 2 diabetes. Different diagnostic criteria were proposed, but a consensus was reached in 2009 based on values of waist circumference, blood pressure, fasting glycemia, triglycerides, and high-density lipoprotein (HDL)-cholesterol levels. The main underlying etiologic factor is insulin resistance. The quality and quantity of individual macronutrients have an influence on the development and resolution of this syndrome. However, the main treatment goal is weight loss and a decrease in insulin resistance. A controlled energy dietary recommendation, together with moderate levels of physical activity, may positively change the parameters of MetS. However, there is no single dietary or exercise prescription that works for all patients. Dietary patterns such as Mediterranean-style, dietary approaches to stop hypertension (DASH), low-carbohydrate, and low-fat diets can ameliorate insulin resistance and MetS. Long-term adherence to a healthy lifestyle is key in assuring that individuals significantly reduce the risk of CVD and diabetes mellitus.
Collapse
Affiliation(s)
- Irene Hoyas
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, 28041 Madrid, Spain
| | | |
Collapse
|
41
|
Diet-Induced Rabbit Models for the Study of Metabolic Syndrome. Animals (Basel) 2019; 9:ani9070463. [PMID: 31330823 PMCID: PMC6680936 DOI: 10.3390/ani9070463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and metabolic syndrome (MetS) have become a growing problem for public health and clinical practice, given their increased prevalence due to the rise of sedentary lifestyles and excessive caloric intake from processed food rich in fat and sugar. There are several definitions of MetS, but most of them describe it as a cluster of cardiovascular and metabolic alterations such as abdominal obesity, reduced high-density lipoprotein (HDL) and elevated low-density lipoprotein (LDL) cholesterol, elevated triglycerides, glucose intolerance, and hypertension. Diagnosis requires three out of these five criteria to be present. Despite the increasing prevalence of MetS, the understanding of its pathophysiology and relationship with disease is still limited. Indeed, the pathological consequences of MetS components have been reported individually, but investigations that have studied the effect of the combination of MeS components on organ pathological remodeling are almost nonexistent. On the other hand, animal models are a powerful tool in understanding the mechanisms that underlie pathological processes such as MetS. In the first part of the review, we will briefly overview the advantages, disadvantages and pathological manifestations of MetS in porcine, canine, rodent, and rabbit diet-induced experimental models. Then, we will focus on the different dietary regimes that have been used in rabbits to induce MetS by means of high-fat, cholesterol, sucrose or fructose-enriched diets and their effects on physiological systems and organ remodeling. Finally, we will discuss the use of dietary regimes in different transgenic strains and special rabbit breeds.
Collapse
|
42
|
Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122192. [PMID: 31234281 PMCID: PMC6617076 DOI: 10.3390/ijerph16122192] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a serious health problem, but the dose-response relationship between sugar-sweetened beverages (SSBs) and NAFLD remains uncertain. Methods: A systematic review and dose-response meta-analysis were conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Review Manager 5.3 and Stata 14.0 were used to combine trials and analyze data. The dose-response meta-analysis was performed by non-linear trend regression. Results: Twelve studies recruiting a total of 35,705 participants were included. The results showed that the consumption of SSBs was associated with 1.39-fold increased odds of NAFLD (95% CI: 1.29–1.50, p < 0.00001). The risk of NAFLD rose with an increased consumption of SSBs, while the consumptions of low doses (<1 cup/week), middle doses (1–6 cups/week) and high doses (≥7 cups/week) of SSBs increased the relative risk of NAFLD by 14%, 26% and 53%, respectively (p = 0.01, p < 0.00001, p = 0.03, respectively). Conclusions: This study demonstrates that consumers of SSBs are at significantly increased risk of NAFLD, and the consumption of SSBs has a dose-dependent effect on the risk of NAFLD. The findings of this study strengthen the evidence base for healthy dietary patterns and are meaningful for the primary prevention of NAFLD.
Collapse
|
43
|
Modulation of GSK - 3β/β - catenin cascade by commensal bifidobateria plays an important role for the inhibition of metaflammation-related biomarkers in response to LPS or non-physiological concentrations of fructose: An in vitro study. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Raghav A, Ahmad J, Naseem I. Chronic unpredictable environmental stress impair biochemical and physiological homeostasis: Role in diabetes mellitus. Diabetes Metab Syndr 2019; 13:1021-1030. [PMID: 31336438 DOI: 10.1016/j.dsx.2019.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
AIMS Chronic unpredictable environmental stress (CUES) may induce predisposition to diabetes mellitus. This study investigates the role of CUES on impaired homeostasis. MATERIAL AND METHODS Stressed group mice (n = 20) were exposed to CUES for 16 weeks. Weekly body weight, feed consumption, feed efficiency ratio, fasting blood glucose were monitored. Plasma HbA1c, plasma cortisol, plasma epinephrine and plasma insulin, serum lipids, antioxidants and carbohydrate metabolizing enzymes activity were assessed along with DNA damage and histopathological examination of liver, kidney, pancreas, spleen and skeletal muscles. RESULTS AND CONCLUSION s: Fasting blood glucose levels & HbA1c in the stressed were significantly higher compared to control (p < 0.001). Serum lipids were found insignificantly higher in stressed mice compared to control. Body weights of the stressed mice and feed efficiency ratio were found significant (p < 0.001). Plasma corticosterone, plasma epinephrine, HOMA-IR was found to be significantly higher in the stressed group (p < 0.001). Plasma insulin level was found to be significantly lower in the stressed group (p < 0.001). Significant changes were observed in antioxidants level, carbohydrate metabolizing enzymes activity, peripheral tissues and DNA integrity. CUES initiates pathogenesis of diabetes.
Collapse
Affiliation(s)
- Alok Raghav
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Imrana Naseem
- Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
45
|
Kelly OJ, Gilman JC, Ilich JZ. Utilizing Dietary Nutrient Ratios in Nutritional Research: Expanding the Concept of Nutrient Ratios to Macronutrients. Nutrients 2019; 11:E282. [PMID: 30696021 PMCID: PMC6413020 DOI: 10.3390/nu11020282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
We recently showed that using micronutrient ratios in nutritional research might provide more insights into how diet affects metabolism and health outcomes, based on the notion that nutrients, unlike drugs, are not consumed one at a time and do not target a single metabolic pathway. In this paper, we present a concept of macronutrient ratios, including intra- and inter-macronutrient ratios. Macronutrient intakes from food only, from the What We Eat in America website (summarized National Health and Nutrition Examination Survey data) were transposed into Microsoft Excel to generate ratios. Overall, the dietary ratios of macronutrients may be more revealing and useful in epidemiology and in basic nutritional research than focusing on individual protein, fat, and carbohydrate intakes. While macronutrient ratios may be applied to all types of nutritional research, nutritional epidemiology, and, ultimately, dietary guidelines, the methodology required has not been established yet. In the meantime, intra- and inter-macronutrient ratios may serve as a measure of individual and total macronutrient quality.
Collapse
Affiliation(s)
- Owen J Kelly
- Abbott Nutrition, 2900 Easton Square Place, 01C13A/ES1, Columbus, OH 43219, USA.
| | - Jennifer C Gilman
- Abbott Nutrition, 2900 Easton Square Place, 01C13A/ES1, Columbus, OH 43219, USA.
| | - Jasminka Z Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
46
|
Campos MTFDS, Valente FMQ, Araújo RMA, Bressan J. Mourning and Takotsubo cardiomyopathy: neuroendocrine implications and nutritional management. Rev Assoc Med Bras (1992) 2018; 64:952-959. [PMID: 30517244 DOI: 10.1590/1806-9282.64.10.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 11/21/2022] Open
Abstract
This article aims to make reference to some recent mourning aspects considered risk factors for cardiovascular disease, specifically the Takotsubo cardiomyopathy. The objective was to describe the stress from the death of a loved one combining it to the possibility of occurrence of Takotsubo cardiomyopathy through the perception of a traumatic event by the cortex, which triggers the subcortical brain circuit affecting the endocrine response. Given the growing acknowledgement of this cardiomyopathy, it is possible to contextualize the nutritional behaviours and decisions surrounding it, whose benefits must exceed the condition of temporary cardiac dysfunction and extend to food choices that have some influence in the limbic system. It is a descriptive analysis that aims to problematize the theme into reflections based on this experience, considering the foundation with the science of nutrition.
Collapse
Affiliation(s)
| | | | - Raquel Maria Amaral Araújo
- Associated Professor. Department of Nutrition and Health - DNS, Federal University of Viçosa (UFV), campus Viçosa, Viçosa (MG), Brasil
| | - Josefina Bressan
- Senior Professor. Department of Nutrition and Health/UFV. Post-Graduation Program of Nutrition Sciences, Federal University of Viçosa, Viçosa (MG), Brasil
| |
Collapse
|
47
|
Intestinal fructose malabsorption is associated with increased lactulose fermentation in the intestinal lumen. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2018. [DOI: 10.1016/j.jpedp.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Ozaki RKF, Speridião PDGL, Soares ACF, Morais MBD. Intestinal fructose malabsorption is associated with increased lactulose fermentation in the intestinal lumen. J Pediatr (Rio J) 2018; 94:609-615. [PMID: 29111202 DOI: 10.1016/j.jped.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To study fructose malabsorption in children and adolescents with abdominal pain associated with functional gastrointestinal disorders. As an additional objective, the association between intestinal fructose malabsorption and food intake, including the estimated fructose consumption, weight, height, and lactulose fermentability were also studied. METHODS The study included 31 patients with abdominal pain (11 with functional dyspepsia, 10 with irritable bowel syndrome, and 10 with functional abdominal pain). The hydrogen breath test was used to investigate fructose malabsorption and lactulose fermentation in the intestinal lumen. Food consumption was assessed by food registry. Weight and height were measured. RESULTS Fructose malabsorption was characterized in 21 (67.7%) patients (nine with irritable bowel syndrome, seven with functional abdominal pain, and five with functional dyspepsia). Intolerance after fructose administration was observed in six (28.6%) of the 21 patients with fructose malabsorption. Fructose malabsorption was associated with higher (p<0.05) hydrogen production after lactulose ingestion, higher (p<0.05) energy and carbohydrate consumption, and higher (p<0.05) body mass index z-score value for age. Median estimates of daily fructose intake by patients with and without fructose malabsorption were, respectively, 16.1 and 10.5g/day (p=0.087). CONCLUSION Fructose malabsorption is associated with increased lactulose fermentability in the intestinal lumen. Body mass index was higher in patients with fructose malabsorption.
Collapse
Affiliation(s)
- Roberto Koity Fujihara Ozaki
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM), Programa de Pós-graduação em Nutrição, São Paulo, SP, Brazil
| | | | - Ana Cristina Fontenele Soares
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM), Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil
| | - Mauro Batista de Morais
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM), Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil.
| |
Collapse
|
49
|
Hsu CN, Lin YJ, Hou CY, Tain YL. Maternal Administration of Probiotic or Prebiotic Prevents Male Adult Rat Offspring against Developmental Programming of Hypertension Induced by High Fructose Consumption in Pregnancy and Lactation. Nutrients 2018; 10:nu10091229. [PMID: 30181501 PMCID: PMC6163452 DOI: 10.3390/nu10091229] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Excessive intake of fructose is associated with hypertension. Gut microbiota and their metabolites are thought to be associated with the development of hypertension. We examined whether maternal high-fructose (HF) diet-induced programmed hypertension via altering gut microbiota, regulating short-chain fatty acids (SCFAs) and their receptors, and mediating nutrient-sensing signals in adult male offspring. Next, we aimed to determine whether early gut microbiota-targeted therapies with probiotic Lactobacillus casei and prebiotic inulin can prevent maternal HF-induced programmed hypertension. Pregnant rats received 60% high-fructose (HF) diet, with 2 × 108 CFU/day Lactobacillus casei via oral gavage (HF+Probiotic), or with 5% w/w long chain inulin (HF+prebiotic) during pregnancy and lactation. Male offspring (n = 7–8/group) were assigned to four groups: control, HF, HF+Probiotic, and HF+Prebiotic. Rats were sacrificed at 12 weeks of age. Maternal probiotic Lactobacillus casei and prebiotic inulin therapies protect against hypertension in male adult offspring born to fructose-fed mothers. Probiotic treatment prevents HF-induced hypertension is associated with reduced plasma acetate level and decreased renal mRNA expression of Olfr78. While prebiotic treatment increased plasma propionate level and restored HF-induced reduction of Frar2 expression. Maternal HF diet has long-term programming effects on the adult offspring’s gut microbiota. Probiotic and prebiotic therapies exerted similar protective effects on blood pressure but they showed different mechanisms on modulation of gut microbiota. Maternal HF diet induced developmental programming of hypertension, which probiotic Lactobacillus casei or prebiotic inulin therapy prevented. Maternal gut microbiota-targeted therapies could be reprogramming strategies to prevent the development of hypertension caused by maternal consumption of fructose-rich diet.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
50
|
Nephan G, Coskun ZM, Bolkent S. Dipeptidyl peptidase-4 inhibition prevents cell death via extrinsic and intrinsic apoptotic pathways in rat pancreas with insulin resistance. Cell Biochem Funct 2018; 36:212-220. [DOI: 10.1002/cbf.3333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/21/2018] [Accepted: 04/13/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Gulay Nephan
- Department of Medical Biology, Faculty of Cerrahpasa Medicine; Istanbul University; Istanbul Turkey
| | - Zeynep Mine Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences; Istanbul Bilim University; Istanbul Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine; Istanbul University; Istanbul Turkey
| |
Collapse
|