1
|
Li X, Zeng Q, Liu C, Yi X, Luo H, Tong Q, Chen H, You X. The Immune Modulatory Role of Surfactants in Mycoplasma pneumoniae Infection. J Inflamm Res 2025; 18:2909-2922. [PMID: 40034686 PMCID: PMC11873027 DOI: 10.2147/jir.s507526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
Mycoplasma pneumoniae is a prevalent respiratory microbe that causes acute inflammation in the respiratory system. Surfactant proteins (SP), particularly SP-A and SP-D, are essential for the immunological protection against M. pneumoniae infection. Variant SP-A2 may lead to immune reactions, which could account for the variability in clinical manifestations among individuals. Mechanistically, these surfactant proteins may act as candidate receptors, facilitating both the adhesion of M. pneumoniae and internalization of community-acquired respiratory distress syndrome toxin. They also exhibit a high affinity for lipid ligands on the surface of M. pneumoniae membranes via their carbohydrate recognition domains, which aid in the direct clearing of the bacteria. In addition, SP-A and SP-D demonstrated synergistic effects in augmenting the intake and elimination of M. pneumoniae by alveolar macrophages. Furthermore, these surfactant proteins negatively regulate pulmonary inflammation by influencing lymphocyte and dendritic cell activities, reducing airway eosinophilic infiltration, and managing asthma-related inflammatory responses. A thorough understanding of the immunomodulatory roles of surfactant proteins in M. pneumoniae infection will shed light on how homeostasis is preserved during mycoplasma pneumonia and may guide the development of novel therapeutic strategies against this organism.
Collapse
Affiliation(s)
- Xinru Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, People’s Republic of China
| | - Qianrui Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, People’s Republic of China
| | - Chang Liu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, People’s Republic of China
| | - Xinchao Yi
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Qin Tong
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, People’s Republic of China
| | - Hongliang Chen
- Chenzhou No. 1 People’s Hospital (The Affiliated Chenzhou Hospital), Hengyang Medical College, University of South China, Chenzhou, People’s Republic of China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
2
|
Hanusrichterova J, Kolomaznik M, Barosova R, Adamcakova J, Mokra D, Mokry J, Skovierova H, Kelly MM, de Heuvel E, Wiehler S, Proud D, Shen H, Mukherjee PG, Amrein MW, Calkovska A. Pulmonary surfactant and prostaglandin E 2 in airway smooth muscle relaxation of human and male guinea pigs. Physiol Rep 2024; 12:e70026. [PMID: 39245804 PMCID: PMC11381196 DOI: 10.14814/phy2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Pulmonary surfactant serves as a barrier to respiratory epithelium but can also regulate airway smooth muscle (ASM) tone. Surfactant (SF) relaxes contracted ASM, similar to β2-agonists, anticholinergics, nitric oxide, and prostanoids. The exact mechanism of surfactant relaxation and whether surfactant relaxes hyperresponsive ASM remains unknown. Based on previous research, relaxation requires an intact epithelium and prostanoid synthesis. We sought to examine the mechanisms by which surfactant causes ASM relaxation. Organ bath measurements of isometric tension of ASM of guinea pigs in response to exogenous surfactant revealed that surfactant reduces tension of healthy and hyperresponsive tracheal tissue. The relaxant effect of surfactant was reduced if prostanoid synthesis was inhibited and/or if prostaglandin E2-related EP2 receptors were antagonized. Atomic force microscopy revealed that human ASM cells stiffen during contraction and soften during relaxation. Surfactant softened ASM cells, similarly to the known bronchodilator prostaglandin E2 (PGE2) and the cell softening was abolished when EP4 receptors for PGE2 were antagonized. Elevated levels of PGE2 were found in cultures of normal human bronchial epithelial cells exposed to pulmonary surfactant. We conclude that prostaglandin E2 and its EP2 and EP4 receptors are likely involved in the relaxant effect of pulmonary surfactant in airways.
Collapse
Grants
- APVV-17-0250 Agentúra na Podporu Výskumu a Vývoja (APVV)
- VEGA 1/0055/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV (VEGA)
- 26246 Ministerstvo školstva, vedy, výskumu a športu SR | Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR (Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic for the Structural Funds of EU)
- 34237 Ministerstvo školstva, vedy, výskumu a športu SR | Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR (Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic for the Structural Funds of EU)
- University of Calgary (U of C)
Collapse
Affiliation(s)
- J Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - M Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - R Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - J Adamcakova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - D Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - J Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - H Skovierova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - M M Kelly
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - E de Heuvel
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S Wiehler
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - D Proud
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - H Shen
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - P G Mukherjee
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - M W Amrein
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
3
|
Aghaei M, Talari FS, Mollahosseini A, Keramati M. Validation of a high-performance liquid chromatography method for determining lysophosphatidylcholine content in bovine pulmonary surfactant medication. Biomed Chromatogr 2024; 38:e5926. [PMID: 38881378 DOI: 10.1002/bmc.5926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Pulmonary surfactant replacement therapy is a promising improvement in neonatal care for infants with respiratory distress syndrome. Lysophosphatidylcholine (LPC) is an undesirable component that can hinder surfactant proteins from enhancing the adsorption of surfactant lipids to balance surface tensions by creating a saturated coating on the interior of the lungs. A novel normal-phase liquid chromatography method utilizing UV detection and non-toxic solvents was developed and validated for the first time to analyze LPC in the complex matrix of pulmonary surfactant medication. The analytical method validation included evaluation of system suitability, repeatability, intermediate precision, linearity, accuracy, limit of detection (LOD), limit of quantification (LOQ), stability and robustness. The method yielded detection and quantification limits of 4.4 and 14.5 μg/ml, respectively. The calibration curve was modified linearly within the LOQ to 1.44 mg/ml range, with a determination coefficient of 0.9999 for standards and 0.9997 for sample solutions. Given the lack of reliable published data on LPC analysis in pulmonary surfactant medications, this newly developed method demonstrates promising results and offers advantages of HPLC methodology, including simplicity, accuracy, specificity, sensitivity and an exceptionally low LOD and LOQ. These attributes contribute to considering this achievement as an innovative method.
Collapse
Affiliation(s)
- Mahsa Aghaei
- ARC Bioassay (Iran Food and Drug Administration Accredited QC Laboratory of Biopharmaceutical Products), Tehran, Iran
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Faezeh Shirgaei Talari
- ARC Bioassay (Iran Food and Drug Administration Accredited QC Laboratory of Biopharmaceutical Products), Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Malihe Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Burak MF, Tuncman G, Ayci AN, Chetal K, Seropian GYL, Inouye K, Lai ZW, Dagtekin N, Sadreyev RI, Israel E, Hotamışlıgil GS. An Adipo-Pulmonary Axis Mediated by FABP4 Hormone Defines a Therapeutic Target Against Obesity-Induced Airway Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603433. [PMID: 39071372 PMCID: PMC11275790 DOI: 10.1101/2024.07.15.603433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Obesity-related airway disease is a clinical condition without a clear description and effective treatment. Here, we define this pathology and its unique properties, which differ from classic asthma phenotypes, and identify a novel adipo-pulmonary axis mediated by FABP4 hormone as a critical mediator of obesity-induced airway disease. Through detailed analysis of murine models and human samples, we elucidate the dysregulated lipid metabolism and immunometabolic responses within obese lungs, particularly highlighting the stress response activation and downregulation of surfactant-related genes, notably SftpC. We demonstrate that FABP4 deficiency mitigates these alterations, demonstrating a key role in obesity-induced airway disease pathogenesis. Importantly, we identify adipose tissue as the source of FABP4 hormone in the bronchoalveolar space and describe strong regulation in the context of human obesity, particularly among women. Finally, our exploration of antibody-mediated targeting of circulating FABP4 unveils a novel therapeutic avenue, addressing a pressing unmet need in managing obesity-related airway disease. These findings not only define the presence of a critical adipo-pulmonary endocrine link but also present FABP4 as a therapeutic target for managing this unique airway disease that we refer to as fatty lung disease associated with obesity. One Sentence Summary Investigating FABP4's pivotal role in obesity-driven airway disease, this study unveils an adipo-pulmonary axis with potential therapeutic implications.
Collapse
|
5
|
Mönki J, Mykkänen A. Lipids in Equine Airway Inflammation: An Overview of Current Knowledge. Animals (Basel) 2024; 14:1812. [PMID: 38929431 PMCID: PMC11200544 DOI: 10.3390/ani14121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Mild-moderate and severe equine asthma (MEA and SEA) are prevalent inflammatory airway conditions affecting horses of numerous breeds and disciplines. Despite extensive research, detailed disease pathophysiology and the differences between MEA and SEA are still not completely understood. Bronchoalveolar lavage fluid cytology, broadly used in clinical practice and in equine asthma research, has limited means to represent the inflammatory status in the lower airways. Lipidomics is a field of science that can be utilized in investigating cellular mechanisms and cell-to-cell interactions. Studies in lipidomics have a broad variety of foci, of which fatty acid and lipid mediator profile analyses and global lipidomics have been implemented in veterinary medicine. As many crucial proinflammatory and proresolving mediators are lipids, lipidomic studies offer an interesting yet largely unexplored means to investigate inflammatory reactions in equine airways. The aim of this review article is to collect and summarize the findings of recent lipidomic studies on equine airway inflammation.
Collapse
Affiliation(s)
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014 Helsinki, Finland;
| |
Collapse
|
6
|
Bradding P, Porsbjerg C, Côté A, Dahlén SE, Hallstrand TS, Brightling CE. Airway hyperresponsiveness in asthma: The role of the epithelium. J Allergy Clin Immunol 2024; 153:1181-1193. [PMID: 38395082 DOI: 10.1016/j.jaci.2024.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Airway hyperresponsiveness (AHR) is a key clinical feature of asthma. The presence of AHR in people with asthma provides the substrate for bronchoconstriction in response to numerous diverse stimuli, contributing to airflow limitation and symptoms including breathlessness, wheeze, and chest tightness. Dysfunctional airway smooth muscle significantly contributes to AHR and is displayed as increased sensitivity to direct pharmacologic bronchoconstrictor stimuli, such as inhaled histamine and methacholine (direct AHR), or to endogenous mediators released by activated airway cells such as mast cells (indirect AHR). Research in in vivo human models has shown that the disrupted airway epithelium plays an important role in driving inflammation that mediates indirect AHR in asthma through the release of cytokines such as thymic stromal lymphopoietin and IL-33. These cytokines upregulate type 2 cytokines promoting airway eosinophilia and induce the release of bronchoconstrictor mediators from mast cells such as histamine, prostaglandin D2, and cysteinyl leukotrienes. While bronchoconstriction is largely due to airway smooth muscle contraction, airway structural changes known as remodeling, likely mediated in part by epithelial-derived mediators, also lead to airflow obstruction and may enhance AHR. In this review, we outline the current knowledge of the role of the airway epithelium in AHR in asthma and its implications on the wider disease. Increased understanding of airway epithelial biology may contribute to better treatment options, particularly in precision medicine.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andréanne Côté
- Quebec Heart and Lung Institute, Université Laval, Laval, Quebec, Canada; Department of Medicine, Université Laval, Laval, Quebec, Canada
| | - Sven-Erik Dahlén
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Wash; Center for Lung Biology, University of Washington, Seattle, Wash.
| | - Christopher E Brightling
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
7
|
Mönki J, Holopainen M, Ruhanen H, Karikoski N, Käkelä R, Mykkänen A. Lipid species profiling of bronchoalveolar lavage fluid cells of horses housed on two different bedding materials. Sci Rep 2023; 13:21778. [PMID: 38066223 PMCID: PMC10709413 DOI: 10.1038/s41598-023-49032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The lipidome of equine BALF cells has not been described. The objectives of this prospective repeated-measures study were to explore the BALF cells' lipidome in horses and to identify lipids associated with progression or resolution of airway inflammation. BALF cells from 22 horses exposed to two bedding materials (Peat 1-Wood shavings [WS]-Peat 2) were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of bedding on lipid class and species compositions were tested with rmANOVA. Correlations between lipids and cell counts were examined. The BALF cells' lipidome showed bedding-related differences for molar percentage (mol%) of 60 species. Whole phosphatidylcholine (PC) class and its species PC 32:0 (main molecular species 16:0_16:0) had higher mol% after Peat 2 compared with WS. Phosphatidylinositol 38:4 (main molecular species 18:0_20:4) was higher after WS compared with both peat periods. BALF cell count correlated positively with mol% of the lipid classes phosphatidylserine, sphingomyelin, ceramide, hexosylceramide, and triacylglycerol but negatively with PC. BALF cell count correlated positively with phosphatidylinositol 38:4 mol%. In conclusion, equine BALF cells' lipid profiles explored with MS-based lipidomics indicated subclinical inflammatory changes after WS. Inflammatory reactions in the cellular lipid species composition were detected although cytological responses indicating inflammation were weak.
Collapse
Affiliation(s)
- Jenni Mönki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland.
| | - Minna Holopainen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Ninja Karikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| |
Collapse
|
8
|
Shemilt JD, Horsley A, Jensen OE, Thompson AB, Whitfield CA. Surfactant amplifies yield-stress effects in the capillary instability of a film coating a tube. JOURNAL OF FLUID MECHANICS 2023; 971:A24. [PMID: 37799571 PMCID: PMC7615153 DOI: 10.1017/jfm.2023.588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
To assess how the presence of surfactant in lung airways alters the flow of mucus that leads to plug formation and airway closure, we investigate the effect of insoluble surfactant on the instability of a viscoplastic liquid coating the interior of a cylindrical tube. Evolution equations for the layer thickness using thin-film and long-wave approximations are derived that incorporate yield-stress effects and capillary and Marangoni forces. Using numerical simulations and asymptotic analysis of the thin-film system, we quantify how the presence of surfactant slows growth of the Rayleigh-Plateau instability, increases the size of initial perturbation required to trigger instability and decreases the final peak height of the layer. When the surfactant strength is large, the thin-film dynamics coincide with the dynamics of a surfactant-free layer but with time slowed by a factor of four and the capillary Bingham number, a parameter proportional to the yield stress, exactly doubled. By solving the long-wave equations numerically, we quantify how increasing surfactant strength can increase the critical layer thickness for plug formation to occur and delay plugging. The previously established effect of the yield stress in suppressing plug formation [Shemilt et al., J. Fluid Mech., 2022, vol. 944, A22] is shown to be amplified by introducing surfactant. We discuss the implications of these results for understanding the impact of surfactant deficiency and increased mucus yield stress in obstructive lung diseases.
Collapse
Affiliation(s)
- James D. Shemilt
- Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alexander Horsley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Oxford Road M13 9PL, UK
| | - Oliver E. Jensen
- Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alice B. Thompson
- Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Carl A. Whitfield
- Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Oxford Road M13 9PL, UK
| |
Collapse
|
9
|
Toumpanakis D, Usmani OS. Small airways in asthma: Pathophysiology, identification and management. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:171-180. [PMID: 39171124 PMCID: PMC11332871 DOI: 10.1016/j.pccm.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 08/23/2024]
Abstract
Background The aim of this review is to summarize the current evidence regarding small airway disease in asthma, focusing on recent advances in small airway pathophysiology, assessment and therapeutic implications. Methods A search in Medline was performed, using the keywords "small airways", "asthma", "oscillometry", "nitrogen washout" and "imaging". Our review was based on studies from adult asthmatic patients, although evidence from pediatric populations is also discussed. Results In asthma, inflammation in small airways, increased mucus production and airway wall remodelling are the main pathogenetic mechanisms of small airway disease. Small airway dysfunction is a key component of asthma pathophysiology, leading to increased small airway resistance and airway closure, with subsequent ventilation inhomogeneities, hyperresponsiveness and airflow limitation. Classic tests of lung function, such as spirometry and body plethysmography are insensitive to detect small airway disease, providing only indirect measurements. As discussed in our review, both functional and imaging techniques that are more specific for small airways, such as oscillometry and the multiple breath nitrogen washout have delineated the role of small airways in asthma. Small airways disease is prevalent across all asthma disease stages and especially in severe disease, correlating with important clinical outcomes, such as asthma control and exacerbation frequency. Moreover, markers of small airways dysfunction have been used to guide asthma treatment and monitor response to therapy. Conclusions Assessment of small airway disease provides unique information for asthma diagnosis and monitoring, with potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, United Kingdom
- General State Hospital for Thoracic Diseases of Athens “Sotiria”, Athens, 11527, Greece
| | - Omar S. Usmani
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, United Kingdom
| |
Collapse
|
10
|
Raith M, Swoboda I. Birch pollen-The unpleasant herald of spring. FRONTIERS IN ALLERGY 2023; 4:1181675. [PMID: 37255542 PMCID: PMC10225653 DOI: 10.3389/falgy.2023.1181675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Type I respiratory allergies to birch pollen and pollen from related trees of the order Fagales are increasing in industrialized countries, especially in the temperate zone of the Northern hemisphere, but the reasons for this increase are still debated and seem to be multifaceted. While the most important allergenic molecules of birch pollen have been identified and characterized, the contribution of other pollen components, such as lipids, non-allergenic immunomodulatory proteins, or the pollen microbiome, to the development of allergic reactions are sparsely known. Furthermore, what also needs to be considered is that pollen is exposed to external influences which can alter its allergenicity. These external influences include environmental factors such as gaseous pollutants like ozone or nitrogen oxides or particulate air pollutants, but also meteorological events like changes in temperature, humidity, or precipitation. In this review, we look at the birch pollen from different angles and summarize current knowledge on internal and external influences that have an impact on the allergenicity of birch pollen and its interactions with the epithelial barrier. We focus on epithelial cells since these cells are the first line of defense in respiratory disease and are increasingly considered to be a regulatory tissue for the protection against the development of respiratory allergies.
Collapse
|
11
|
Draper M, Bester M, Van Rooy M, Oberholzer H. Adverse pulmonary effects after oral exposure to copper, manganese and mercury, alone and in mixtures, in a Spraque-Dawley rat model. Ultrastruct Pathol 2023; 47:146-159. [PMID: 36857290 DOI: 10.1080/01913123.2023.2184891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The rise in respiratory disease has been attributed to an increase in environmental pollution. Heavy metals contribute to environmental contamination via air, water, soil and food. The effects of atmospheric exposure to heavy metals on pulmonary structure and function have been researched, but the effects through drinking water have been neglected. The aim of this study was to investigate the potential in vivo alterations in the pulmonary tissue of male Sprague-Dawley rats after a 28-day oral exposure to copper (Cu), manganese (Mn) and mercury (Hg), alone and in mixtures, at 100 times the World Health Organization's (WHO) safety limit for each heavy metal in drinking water. Forty-eight male Sprague-Dawley rats were randomly divided into eight groups (n = 6): control, Cu, Mn, Hg, Cu + Mn, Cu + Hg, Mn + Hg and Cu, Mn + Hg. The morphology of lung tissue and the bronchioles were evaluated using light- and transmission electron microscopy. For all exposed groups, morphological changes included thickened inter- and intra-alveolar spaces, stratified epithelium, disrupted smooth muscle and early fibrosis and desquamation of the epithelia of the bronchioles to varying degrees. In all exposed groups, ultrastructurally, an increase in disarranged collagen and elastin fibers, nuclear membrane detachment, chromatin condensation, indistinct nucleoli and an increase in collagen fiber disarrangement was observed. This study has identified that oral exposure to Cu, Mn and Hg and as part of mixtures caused pathogenesis due to inflammation, cellular damage and fibrosis with Mn + Hg being the most potent heavy metal group.
Collapse
Affiliation(s)
- M Draper
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Mj Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - M Van Rooy
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Hm Oberholzer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
12
|
Khoubnasabjafari M, Altunay N, Tuzen M, Kaya S, Katin KP, Farajzadeh MA, Hosseini M, Mogaddam MRA, Jouyban A. Experimental and theoretical observations in a mixed mode dispersive solid phase extraction of exogenous surfactants from exhaled breath condensate prior to HPLC-MS/MS analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Yong SB, Gau SY, Guo YC, Wei JCC. Allergy from perspective of environmental pollution effects: from an aspect of atopic dermatitis, immune system, and atmospheric hazards-a narrative review of current evidences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57091-57101. [PMID: 35759095 DOI: 10.1007/s11356-022-21582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution has become more diversified in recent years as technologies for urbanization is increasingly more advanced. Several environmental factors such as air and water pollutants have been linked to allergic symptoms. For instance, because of industrialization for city development in many countries, polluted soil or tiny particles in the air could result in an even more hazardous environment for people to reside. Aside from the aspects of environmental issues, other newly emerging factors such as the electromagnetic field (EMF) also require further investigation. Here, in this narrative review, we focused on allergens from atmospheric and water pollution, hygiene improvement, changes in food trend, and residential environmental pollution. Current evidences regarding the association between various pollutants and the potential clinical diseases could be induced. For people with high skin exposure to air pollutants such as PM 2.5, PM 10, or sulfur dioxide, potential onset of dermatological allergic events should be alerted. The mechanisms involved in allergic diseases are being discussed and summarized. Interactions between immunological mechanisms and clinical implications could potentially provide clearer view to the association between allergic status and pollutants. Moreover, understanding the mechanistic role of allergens can raise awareness to global environment and public health.
Collapse
Affiliation(s)
- Su Boon Yong
- Division of Pediatric Allergy, Immunology, Rheumatology, Lin-Shin Hospital, Taichung, Taiwan, Republic of China
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Yu-Chen Guo
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China.
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., South District, Taichung City, 40201, Taiwan, Republic of China.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
14
|
A mixed deep eutectic solvents-based air-assisted liquid–liquid microextraction of surfactants from exhaled breath condensate samples prior to HPLC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1204:123289. [DOI: 10.1016/j.jchromb.2022.123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 11/19/2022]
|
15
|
Blanco O, Ramírez W, Lugones Y, Díaz E, Morejón A, Rodríguez VS, Alfonso W, Labrada A. Protective effects of Surfacen® in allergen-induced asthma mice model. Int Immunopharmacol 2022; 102:108391. [PMID: 34836793 DOI: 10.1016/j.intimp.2021.108391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022]
Abstract
Airway obstruction with increased airway resistance in asthma, commonly caused by smooth muscle constriction, mucosal edema and fluid secretion into the airway lumen, may partly be due to a poor function of pulmonary surfactant. Surfacen®, a clinical pulmonary surfactant, has anti-inflammatory action, but its effect on asthma has not been studied. This work aimed to evaluate the effect of Surfacen® in a murine allergen-induced acute asthma model, using house dust mite allergens. In a therapeutic experimental setting, mice were first sensitized by being administered with two doses (sc) of Dermatophagoides siboney allergen in aluminum hydroxide followed by one intranasal administration of the allergen. Then, sensitized mice were administered with aerosol of hypertonic 3% NaCl, Salbutamol 0.15 mg/kg, or Surfacen® 16 mg in a whole-body chamber on days 22, 23, and 24. Further, mice were subjected to aerosol allergen challenge on day 25. Surfacen® showed bronchial dilation and inhibition of Th2 inflammation (lower levels of IL-5 and IL-13 in broncoalveolar lavage) which increased IFN-γ and unchanged IL-10 in BAL. Moreover, Sufacen® administration was associated with a marked inhibition of the serum specific IgE burst upon allergen exposure, as well as, IgG2a antibody increase, suggesting potential anti-allergy effects with inclination towards Th1. These results support also the effectiveness of the aerosol administration method to deliver the drug into lungs. Surfacen® induced a favorable pharmacological effect, with a bronchodilator outcome comparable to Salbutamol, consistent with its action as a lung surfactant, and with an advantageous anti-inflammatory and anti-allergic immunomodulatory effect.
Collapse
Affiliation(s)
- Odalys Blanco
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Wendy Ramírez
- Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Yuliannis Lugones
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Elaine Díaz
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Alain Morejón
- Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Valentín S Rodríguez
- Universidad de Ciencias Médicas de Camagüey. Hospital General Docente Martín Chang Puga, Nuevitas. Camagüey, Cuba
| | - Wilma Alfonso
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Alexis Labrada
- Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba.
| |
Collapse
|
16
|
Principe S, Benfante A, Battaglia S, Maitland Van Der Zee AH, Scichilone N. The potential role of SP-D as an early biomarker of severity of asthma. J Breath Res 2021; 15. [PMID: 34428746 DOI: 10.1088/1752-7163/ac20c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/12/2022]
Abstract
Surfactant decreases the surface tension of peripheral airways and modulates the immunological responses of the lung. The alterations of surfactant due to the airway inflammation suggest a role in the pathogenesis of asthma. We aim to test the hypothesis that serum levels of SP-A (Surfactant Protein A) and SP-D (Surfactant Protein-D) are altered in patients with mild asthma compared to healthy controls and those alterations are related to functional abnormalities of peripheral airways, which are an early marker of progression of asthma. In this pilot study, we recruited 20 mild asthmatics and 10 healthy controls. We measured serum SP-A and SP-D and all subjects underwent clinical, lung functional and biological assessments. Serum SP-D was significantly higher in asthmatics compared to healthy controls (mean (SD) values: 7.9(4.65) vs 3.31(1.71) ng ml-1,p-value: 0.008). In the asthmatic group, serum SP-D was significantly correlated to CalvNO (alveolar NO concentration) (R-squared: 0.26;p-value: 0.014). These preliminary findings suggest that serum SP-D could be used as a lung-specific biomarker of small airways damage thus predicting the progression to the most severe forms of asthma.
Collapse
Affiliation(s)
- Stefania Principe
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, University of Palermo, Medicina Interna e Specialistica di Eccellenza 'G. D'Alessandro' (PROMISE) c/o Pneumologia, AOUP 'Policlinico Paolo Giaccone', 90127 Palermo, Italy.,Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Alida Benfante
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, University of Palermo, Medicina Interna e Specialistica di Eccellenza 'G. D'Alessandro' (PROMISE) c/o Pneumologia, AOUP 'Policlinico Paolo Giaccone', 90127 Palermo, Italy
| | - Salvatore Battaglia
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, University of Palermo, Medicina Interna e Specialistica di Eccellenza 'G. D'Alessandro' (PROMISE) c/o Pneumologia, AOUP 'Policlinico Paolo Giaccone', 90127 Palermo, Italy
| | - Anke H Maitland Van Der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nicola Scichilone
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, University of Palermo, Medicina Interna e Specialistica di Eccellenza 'G. D'Alessandro' (PROMISE) c/o Pneumologia, AOUP 'Policlinico Paolo Giaccone', 90127 Palermo, Italy
| |
Collapse
|
17
|
Wang W, Ma Y, Zhuang Z, Zhou S, Ma M, Wu Q, Bai R, Li T. Synthesis of walnut‐like polyaniline by using polyvinyl alcohol micellar template with excellent film transmission. J Appl Polym Sci 2021. [DOI: 10.1002/app.50701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wenjiao Wang
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Yong Ma
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Zhao Zhuang
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Shujie Zhou
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Mingliang Ma
- School of Civil Engineering Qingdao University of Technology Qingdao P. R. China
| | - Qi Wu
- Sino‐German Institute of Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Ruiqin Bai
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Tingxi Li
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| |
Collapse
|
18
|
You YN, Xing QQ, Zhao X, Ji JJ, Yan H, Zhou T, Dong YM, Ren LS, Hou ST, Ding YY. Gu-Ben-Fang-Xiao decoction modulates lipid metabolism by activating the AMPK pathway in asthma remission. Biomed Pharmacother 2021; 138:111403. [PMID: 33714782 DOI: 10.1016/j.biopha.2021.111403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gu-Ben-Fang-Xiao decoction (GBFXD), derived from the traditional Chinese medicine Yu-Ping-Feng-San, is widely used in clinical settings and has obvious curative effects in respiratory diseases. GBFXD regulates cholesterol transport and lipid metabolism in chronic persistent asthma. There is evidence for its beneficial effects in the remission stage of asthma; however, its metabolic regulatory effects and underlying mechanisms during asthma remission are unclear. In the present study, we used liquid chromatography-mass spectrometry (LC-MS) to analyse the metabolic profile of mouse serum during asthma remission. The acquired LC-MS data were subjected to a multivariate analysis for identification of significantly altered metabolites. In total, 42 metabolites were significantly differentially expressed among the control, model, and GBFXD groups. In particular, levels of fatty acids, acylcarnitines, phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, triglycerides, and diacylglycerols were altered during asthma remission. GBFXD may maintain lipid homeostasis on the lung surface by modulating lipid metabolism and may thereby alleviate asthma. We further quantified hypogeic acid (FA 16:1) based on targeted metabolomics and found that GBFXD may regulate fatty acid metabolism by activating the AMP-activated protein kinase (AMPK) pathway. These results support the use of GBFXD in patients with asthma remission.
Collapse
Affiliation(s)
- Yan-Nan You
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiong-Qiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian-Jian Ji
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ying-Mei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Shun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu-Ting Hou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan-Yuan Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
19
|
Murphy RC, Lai Y, Nolin JD, Aguillon Prada RA, Chakrabarti A, Novotny MV, Seeds MC, Altemeier WA, Gelb MH, Hite RD, Hallstrand TS. Exercise-induced alterations in phospholipid hydrolysis, airway surfactant, and eicosanoids and their role in airway hyperresponsiveness in asthma. Am J Physiol Lung Cell Mol Physiol 2021; 320:L705-L714. [PMID: 33533300 DOI: 10.1152/ajplung.00546.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms responsible for driving endogenous airway hyperresponsiveness (AHR) in the form of exercise-induced bronchoconstriction (EIB) are not fully understood. We examined alterations in airway phospholipid hydrolysis, surfactant degradation, and lipid mediator release in relation to AHR severity and changes induced by exercise challenge. Paired induced sputum (n = 18) and bronchoalveolar lavage (BAL) fluid (n = 11) were obtained before and after exercise challenge in asthmatic subjects. Samples were analyzed for phospholipid structure, surfactant function, and levels of eicosanoids and secreted phospholipase A2 group 10 (sPLA2-X). A primary epithelial cell culture model was used to model effects of osmotic stress on sPLA2-X. Exercise challenge resulted in increased surfactant degradation, phospholipase activity, and eicosanoid production in sputum samples of all patients. Subjects with EIB had higher levels of surfactant degradation and phospholipase activity in BAL fluid. Higher basal sputum levels of cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) were associated with direct AHR, and both the postexercise and absolute change in CysLTs and PGD2 levels were associated with EIB severity. Surfactant function either was abnormal at baseline or became abnormal after exercise challenge. Baseline levels of sPLA2-X in sputum and the absolute change in amount of sPLA2-X with exercise were positively correlated with EIB severity. Osmotic stress ex vivo resulted in movement of water and release of sPLA2-X to the apical surface. In summary, exercise challenge promotes changes in phospholipid structure and eicosanoid release in asthma, providing two mechanisms that promote bronchoconstriction, particularly in individuals with EIB who have higher basal levels of phospholipid turnover.
Collapse
Affiliation(s)
- Ryan C Murphy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - Ying Lai
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - James D Nolin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - Robier A Aguillon Prada
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Arindam Chakrabarti
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Michael V Novotny
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Michael C Seeds
- Section on Molecular Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - William A Altemeier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington.,Department of Biochemistry, University of Washington, Seattle, Washington
| | - Robert Duncan Hite
- Division of Pulmonary Disease & Critical Care Medicine, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Jargin S. Surgical and endoscopic treatment of pulmonary tuberculosis: A report from russia. HAMDAN MEDICAL JOURNAL 2021. [DOI: 10.4103/hmj.hmj_29_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Louf JF, Kratz F, Datta SS. Elastocapillary network model of inhalation. PHYSICAL REVIEW RESEARCH 2020; 2:043382. [DOI: 10.1103/physrevresearch.2.043382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Stilhano RS, Costa AJ, Nishino MS, Shams S, Bartolomeo CS, Breithaupt-Faloppa AC, Silva EA, Ramirez AL, Prado CM, Ureshino RP. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors. FASEB J 2020; 34:14103-14119. [PMID: 32965736 PMCID: PMC7537138 DOI: 10.1096/fj.202001394rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has provoked major stresses on the health-care systems of several countries, and caused the death of more than a quarter of a million people globally, mainly in the elderly population with preexisting pathologies. Previous studies with coronavirus (SARS-CoV) point to gender differences in infection and disease progression with increased susceptibility in male patients, indicating that estrogens may be associated with physiological protection against the coronavirus. Therefore, the objectives of this work are threefold. First, we aim to summarize the SARS-CoV-2 infection pathway and the roles both the virus and patient play in COVID-19 (Coronavirus disease 2019) progression, clinical symptomatology, and mortality. Second, we detail the effect estrogen has on viral infection and host infection response, including its role in both the regulation of key viral receptor expression and the mediation of inflammatory activity. Finally, we describe how ERs (estrogen receptors) and RAGE (receptor for advanced glycation end-products) play a critical role in metabolic pathways, which we envisage could maintain a close interplay with SARS-CoV and COVID-19 mortality rates, despite a current lack of research directly determining how. Taken together, we present the current state of the field regarding SARS-CoV-2 research and illuminate where research is needed to better define the role both estrogen and metabolic comorbidities have in the COVID-19 disease state, which can be key in screening potential therapeutic options as the search for effective treatments continue.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Angelica Jardim Costa
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michelle Sayuri Nishino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil.,Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Carla Maximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Abstract
Purpose of Review Lung tissues are highly susceptible to airway inflammation as they are inevitably exposed to inhaled pathogens and allergens. In the lungs, clearance of infectious agents and regulation of inflammatory responses are important for the first-line defense, where surfactants play a role in host defense mechanisms. In this review, clinical significance of pulmonary surfactants in asthma has been highlighted. Recent Findings Surfactants, such as surfactant protein A (SP-A) and SP-D released from alveolar epithelium, reduce pathogen infection and control immune-cell activation. Especially, SP-D directly binds to eosinophil surface, leading to inhibition of extracellular trap formation and reduction in airway inflammation. Production of surfactants is commonly determined by both genetic (single nucleotide polymorphisms) and environmental factors influencing processes involved in the development of asthma. In addition, nintedanib (an intracellular inhibitor of tyrosine kinases) could increase SP-D levels and is used in patients with idiopathic pulmonary fibrosis. These findings may provide a possible application of SP-D in asthma. Summary Surfactants are key players contributing to host defense through maintaining the immune system. As clinical implications of surfactants involved in asthma have been suggested, further translational studies are needed to apply surfactants as an effective therapeutic target in patients with asthma.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jaehyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
24
|
Abstract
This article will discuss in detail the pathophysiology of asthma from the point of view of lung mechanics. In particular, we will explain how asthma is more than just airflow limitation resulting from airway narrowing but in fact involves multiple consequences of airway narrowing, including ventilation heterogeneity, airway closure, and airway hyperresponsiveness. In addition, the relationship between the airway and surrounding lung parenchyma is thought to be critically important in asthma, especially as related to the response to deep inspiration. Furthermore, dynamic changes in lung mechanics over time may yield important information about asthma stability, as well as potentially provide a window into future disease control. All of these features of mechanical properties of the lung in asthma will be explained by providing evidence from multiple investigative methods, including not only traditional pulmonary function testing but also more sophisticated techniques such as forced oscillation, multiple breath nitrogen washout, and different imaging modalities. Throughout the article, we will link the lung mechanical features of asthma to clinical manifestations of asthma symptoms, severity, and control. © 2020 American Physiological Society. Compr Physiol 10:975-1007, 2020.
Collapse
Affiliation(s)
- David A Kaminsky
- University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Bujan A, Alonso SDV, Chiaramoni NS. Lipopolymers and lipids from lung surfactants in association with N-acetyl-l-cysteine: Characterization and cytotoxicity. Chem Phys Lipids 2020; 231:104936. [PMID: 32589880 DOI: 10.1016/j.chemphyslip.2020.104936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
In the present work, we obtained polymeric diacetylene liposomes that can associate N-Acetyl-l-Cysteine (NAC), a broad spectrum mucolytic. The reason for studying these formulations is that they could be applied in the future as NAC delivery systems, with a possible dose reduction but maintaining its effect. Liposomes used herein are obtained by a photopolymerization reaction, thus gaining stability and rigidity. Lipids belonging to lung surfactant were added in different ratios to the formulations in order to maximize its possible interaction with the lung tissue. Because of lipopolymer stability, the oral or nasal route could be appropriated. This formulation could efficiently transport NAC to exert its mucolytic activity and help in diseases such as cystic fibrosis, which has abnormal mucus production. Also, this type of treatment could be useful in other types of diseases, interacting with the mucus layer and making the lung tissue more permeable to other therapies. Formulations so obtained presented high levels of polymerization. Also, they present small hollow fibers structures with a high number of polymeric units. These types of arrangements could present advantages in the field of drug delivery, giving the possibility of a controlled release. Lipopolymers with lipids from lung surfactant associated with NAC are promising complexes in order to treat not only respiratory illnesses. The stability of the formulation would allow its inoculation through other routes such as the oral one, helping the reposition of NAC as an antioxidant drug. Finally, these formulations are non-toxic and easy to produce.
Collapse
Affiliation(s)
- Ariana Bujan
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires, Argentina; Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires, Argentina
| | - Silvia Del Valle Alonso
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires, Argentina; Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires, Argentina
| | - Nadia S Chiaramoni
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires, Argentina; Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires, Argentina.
| |
Collapse
|
26
|
Kinose D, Ogawa E, Kawashima S, Matsuo-Kashiwagi Y, Yukimura-Seto R, Yamazaki A, Yoshihashi S, Hirayama Y, Nakano Y. An index of the fractal characteristic of an airway tree is associated with airflow limitations and future body mass index reduction in COPD patients. J Appl Physiol (1985) 2020; 128:1280-1286. [PMID: 32240020 DOI: 10.1152/japplphysiol.00461.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disorders of the fractality of an airway tree and a vessel tree have been studied in pulmonary diseases. Here we successfully applied Mishima's D to the bronchial minimal inner cross-sectional area (iCSA) measured in multidetector computed tomography (MDCT) images of chronic obstructive pulmonary disease (COPD) and non-COPD smokers (n = 162), by defining D in the following formula: logN(≥X) = -D × logX + c, where X is a certain iCSA value, N(≥X) is the number of airway branches having iCSA greater than or equal to X, and c is a constant. Mathematically, this D of iCSA was associated with the expected reduction ratio of iCSA at bifurcations, which can be estimated by 2-1/D. This D of iCSA also correlated weakly with the box-counting fractal dimension and Weibel's reduction ratio over airway generations, which indicated that the airway tree was not a perfect fractal object and that the branch bifurcation was asymmetric. The D of iCSA showed positive correlations with lung function measurements of airflow limitation in study participants. In addition, D of iCSA representing the periphery showed an association with future body mass index reduction, most likely as an indicator of energy efficacy for breathing as predicted by Hess-Murray's law. D of iCSA may be helpful to understanding the pathogenesis of obstructive lung diseases.NEW & NOTEWORTHY An airway tree is a fractal object. We showed that the distribution of minimal inner cross-sectional area (iCSA) of airway branches can be expressed by a fractal index, D, of minimal iCSA. This D was correlated with airflow limitation and future body mass index reduction in chronic obstructive pulmonary disease patients, as predicted by Hess-Murray's law.
Collapse
Affiliation(s)
- Daisuke Kinose
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Emiko Ogawa
- Health Administration Center, Shiga University of Medical Science, Otsu, Japan
| | - Satoru Kawashima
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yumiko Matsuo-Kashiwagi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Ruriko Yukimura-Seto
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Akio Yamazaki
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Saiko Yoshihashi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yoko Hirayama
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
27
|
Nawroth JC, van der Does AM, Ryan (Firth) A, Kanso E. Multiscale mechanics of mucociliary clearance in the lung. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190160. [PMID: 31884926 PMCID: PMC7017338 DOI: 10.1098/rstb.2019.0160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Mucociliary clearance (MCC) is one of the most important defence mechanisms of the human respiratory system. Its failure is implicated in many chronic and debilitating airway diseases. However, due to the complexity of lung organization, we currently lack full understanding on the relationship between these regional differences in anatomy and biology and MCC functioning. For example, it is unknown whether the regional variability of airway geometry, cell biology and ciliary mechanics play a functional role in MCC. It therefore remains unclear whether the regional preference seen in some airway diseases could originate from local MCC dysfunction. Though great insights have been gained into the genetic basis of cilia ultrastructural defects in airway ciliopathies, the scaling to regional MCC function and subsequent clinical phenotype remains unpredictable. Understanding the multiscale mechanics of MCC would help elucidate genotype-phenotype relationships and enable better diagnostic tools and treatment options. Here, we review the hierarchical and variable organization of ciliated airway epithelium in human lungs and discuss how this organization relates to MCC function. We then discuss the relevancy of these structure-function relationships to current topics in lung disease research. Finally, we examine how state-of-the-art computational approaches can help address existing open questions. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | - Anne M. van der Does
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Amy Ryan (Firth)
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Eva Kanso
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
28
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
29
|
Nolin JD, Murphy RC, Gelb MH, Altemeier WA, Henderson WR, Hallstrand TS. Function of secreted phospholipase A 2 group-X in asthma and allergic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:827-837. [PMID: 30529275 DOI: 10.1016/j.bbalip.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- James D Nolin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Ryan C Murphy
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States of America; Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - William R Henderson
- Division of Allergy and Infectious DIseases, University of Washington, Seattle, WA, United States of America
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
30
|
Veerapandian R, Snyder JD, Samarasinghe AE. Influenza in Asthmatics: For Better or for Worse? Front Immunol 2018; 9:1843. [PMID: 30147697 PMCID: PMC6095982 DOI: 10.3389/fimmu.2018.01843] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Asthma and influenza are two pathologic conditions of the respiratory tract that affect millions worldwide. Influenza virus of the 2009 pandemic was highly transmissible and caused severe respiratory disease in young and middle-aged individuals. Asthma was discovered to be an underlying co-morbidity that led to hospitalizations during this influenza pandemic albeit with less severe outcomes. However, animal studies that investigated the relationship between allergic inflammation and pandemic (p)H1N1 infection, showed that while characteristics of allergic airways disease were exacerbated by this virus, governing immune responses that cause exacerbations may actually protect the host from severe outcomes associated with influenza. To better understand the relationship between asthma and severe influenza during the last pandemic, we conducted a systematic literature review of reports on hospitalized patients with asthma as a co-morbid condition during the pH1N1 season. Herein, we report that numerous other underlying conditions, such as cardiovascular, neurologic, and metabolic diseases may have been underplayed as major drivers of severe influenza during the 2009 pandemic. This review synopses, (1) asthma and influenza independently, (2) epidemiologic data surrounding asthma during the 2009 influenza pandemic, and (3) recent advances in our understanding of allergic host–pathogen interactions in the context of allergic airways disease and influenza in mouse models. Our goal is to showcase possible immunological benefits of allergic airways inflammation as countermeasures for influenza virus infections as a learning tool to discover novel pathways that can enhance our ability to hinder influenza virus replication and host pathology induced thereof.
Collapse
Affiliation(s)
- Raja Veerapandian
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, United States
| | - John D Snyder
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, United States.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
31
|
Rahimpour E, Khoubnasabjafari M, Jouyban-Gharamaleki V, Jouyban A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal Bioanal Chem 2018; 410:6411-6440. [PMID: 30046867 DOI: 10.1007/s00216-018-1259-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
In contrast to bronchial and nasal lavages, the analysis of exhaled breath condensate (EBC) is a promising, simple, non-invasive, repeatable, and diagnostic method for studying the composition of airway lining fluid with the potential to assess lung inflammation, exacerbations, and disease severity, and to monitor the effectiveness of treatment regimens. Recent investigations have revealed the potential applications of EBC analysis in systemic diseases. In this review, we highlight the analytical studies conducted on non-volatile compounds/biomarkers in EBC. In contrast to other related articles, this review is classified on the basis of analytical techniques and includes almost all the applied methods and their methodological limitations for quantification of non-volatile compounds in EBC samples, providing a guideline for further researches. The studies were identified by searching the SCOPUS database with the keywords "biomarkers," "non-volatile compounds," "determination method," and "EBC."
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Scala G, Kinaret P, Marwah V, Sund J, Fortino V, Greco D. Multi-omics analysis of ten carbon nanomaterials effects highlights cell type specific patterns of molecular regulation and adaptation. NANOIMPACT 2018; 11:99-108. [PMID: 32140619 PMCID: PMC7043328 DOI: 10.1016/j.impact.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/28/2018] [Accepted: 05/05/2018] [Indexed: 05/19/2023]
Abstract
New strategies to characterize the effects of engineered nanomaterials (ENMs) based on omics technologies are emerging. However, given the intricate interplay of multiple regulatory layers, the study of a single molecular species in exposed biological systems might not allow the needed granularity to successfully identify the pathways of toxicity (PoT) and, hence, portraying adverse outcome pathways (AOPs). Moreover, the intrinsic diversity of different cell types composing the exposed organs and tissues in living organisms poses a problem when transferring in vivo experimentation into cell-based in vitro systems. To overcome these limitations, we have profiled genome-wide DNA methylation, mRNA and microRNA expression in three human cell lines representative of relevant cell types of the respiratory system, A549, BEAS-2B and THP-1, exposed to a low dose of ten carbon nanomaterials (CNMs) for 48 h. We applied advanced data integration and modelling techniques in order to build comprehensive regulatory and functional maps of the CNM effects in each cell type. We observed that different cell types respond differently to the same CNM exposure even at concentrations exerting similar phenotypic effects. Furthermore, we linked patterns of genomic and epigenomic regulation to intrinsic properties of CNM. Interestingly, DNA methylation and microRNA expression only partially explain the mechanism of action (MOA) of CNMs. Taken together, our results strongly support the implementation of approaches based on multi-omics screenings on multiple tissues/cell types, along with systems biology-based multi-variate data modelling, in order to build more accurate AOPs.
Collapse
Affiliation(s)
- Giovanni Scala
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| | - Pia Kinaret
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| | - Veer Marwah
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
| | - Jukka Sund
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
| | - Vittorio Fortino
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Dario Greco
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
33
|
Terakosolphan W, Trick JL, Royall PG, Rogers SE, Lamberti O, Lorenz CD, Forbes B, Harvey RD. Glycerol Solvates DPPC Headgroups and Localizes in the Interfacial Regions of Model Pulmonary Interfaces Altering Bilayer Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6941-6954. [PMID: 29738253 DOI: 10.1021/acs.langmuir.8b00866] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The inclusion of glycerol in formulations for pulmonary drug delivery may affect the bioavailability of inhaled steroids by retarding their transport across the lung epithelium. The aim of this study was to evaluate whether the molecular interactions of glycerol with model pulmonary interfaces provide a biophysical basis for glycerol modifying inhaled drug transport. Dipalmitoylphosphatidylcholine (DPPC) monolayers and liposomes were used as model pulmonary interfaces, in order to examine the effects of bulk glycerol (0-30% w/w) on their structures and dynamics using complementary biophysical measurements and molecular dynamics (MD) simulations. Glycerol was found to preferentially interact with the carbonyl groups in the interfacial region of DPPC and with phosphate and choline in the headgroup, thus causing an increase in the size of the headgroup solvation shell, as evidenced by an expansion of DPPC monolayers (molecular area increased from 52 to 68 Å2) and bilayers seen in both Langmuir isotherms and MD simulations. Both small angle neutron scattering and MD simulations indicated a reduction in gel phase DPPC bilayer thickness by ∼3 Å in 30% w/w glycerol, a phenomenon consistent with the observation from FTIR data, that glycerol caused the lipid headgroup to remain oriented parallel to the membrane plane in contrast to its more perpendicular conformation adopted in pure water. Furthermore, FTIR measurements suggested that the terminal methyl groups of the DPPC acyl chains were constrained in the presence of glycerol. This observation is supported by MD simulations, which predict bridging between adjacent DPPC headgroups by glycerol as a possible source of its putative membrane stiffening effect. Collectively, these data indicate that glycerol preferentially solvates DPPC headgroups and localizes in specific areas of the interfacial region, resulting in structural changes to DPPC bilayers which may influence cell permeability to drugs.
Collapse
Affiliation(s)
- Wachirun Terakosolphan
- School of Cancer and Pharmaceutical Sciences , King's College London , London SE1 9NH , United Kingdom
| | - Jemma L Trick
- Department of Physics , King's College London , London WC2R 2LS , United Kingdom
| | - Paul G Royall
- School of Cancer and Pharmaceutical Sciences , King's College London , London SE1 9NH , United Kingdom
| | - Sarah E Rogers
- Rutherford Appleton Laboratory , ISIS Facility , Chilton , Oxfordshire OX11 0QX , United Kingdom
| | - Olimpia Lamberti
- Department of Physics , King's College London , London WC2R 2LS , United Kingdom
| | - Christian D Lorenz
- Department of Physics , King's College London , London WC2R 2LS , United Kingdom
| | - Ben Forbes
- School of Cancer and Pharmaceutical Sciences , King's College London , London SE1 9NH , United Kingdom
| | - Richard D Harvey
- Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , Halle (Saale) , 06099 , Germany
| |
Collapse
|
34
|
Chronic features of allergic asthma are enhanced in the absence of resistin-like molecule-beta. Sci Rep 2018; 8:7061. [PMID: 29728628 PMCID: PMC5935686 DOI: 10.1038/s41598-018-25321-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
Asthma is characterized by inflammation and architectural changes in the lungs. A number of immune cells and mediators are recognized as initiators of asthma, although therapeutics based on these are not always effective. The multifaceted nature of this syndrome necessitate continued exploration of immunomodulators that may play a role in pathogenesis. We investigated the role of resistin-like molecule-beta (RELM-β), a gut antibacterial, in the development and pathogenesis of Aspergillus-induced allergic airways disease. Age and gender matched C57BL/6J and Retnlb−/− mice rendered allergic to Aspergillus fumigatus were used to measure canonical markers of allergic asthma at early and late time points. Inflammatory cells in airways were similar, although Retnlb−/− mice had reduced tissue inflammation. The absence of RELM-β elevated serum IgA and pro-inflammatory cytokines in the lungs at homeostasis. Markers of chronic disease including goblet cell numbers, Muc genes, airway wall remodelling, and hyperresponsiveness were greater in the absence RELM-β. Specific inflammatory mediators important in antimicrobial defence in allergic asthma were also increased in the absence of RELM-β. These data suggest that while characteristics of allergic asthma develop in the absence of RELM-β, that RELM-β may reduce the development of chronic markers of allergic airways disease.
Collapse
|
35
|
Davies MJ, Leach AG, Riley F. An investigation into drug partitioning behaviour in simulated pulmonary surfactant monolayers with associated molecular modelling. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael J. Davies
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Andrew G. Leach
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Fatima Riley
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
36
|
Ta LDH, Yap GC, Tay CJX, Lim ASM, Huang CH, Chu CW, De Sessions PF, Shek LP, Goh A, Van Bever HPS, Teoh OH, Soh JY, Thomas B, Ramamurthy MB, Goh DYT, Lay C, Soh SE, Chan YH, Saw SM, Kwek K, Chong YS, Godfrey KM, Hibberd ML, Lee BW. Establishment of the nasal microbiota in the first 18 months of life: Correlation with early-onset rhinitis and wheezing. J Allergy Clin Immunol 2018; 142:86-95. [PMID: 29452199 DOI: 10.1016/j.jaci.2018.01.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/19/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dynamic establishment of the nasal microbiota in early life influences local mucosal immune responses and susceptibility to childhood respiratory disorders. OBJECTIVE The aim of this case-control study was to monitor, evaluate, and compare development of the nasal microbiota of infants with rhinitis and wheeze in the first 18 months of life with those of healthy control subjects. METHODS Anterior nasal swabs of 122 subjects belonging to the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) birth cohort were collected longitudinally over 7 time points in the first 18 months of life. Nasal microbiota signatures were analyzed by using 16S rRNA multiplexed pair-end sequencing from 3 clinical groups: (1) patients with rhinitis alone (n = 28), (2) patients with rhinitis with concomitant wheeze (n = 34), and (3) healthy control subjects (n = 60). RESULTS Maturation of the nasal microbiome followed distinctive patterns in infants from both rhinitis groups compared with control subjects. Bacterial diversity increased over the period of 18 months of life in control infants, whereas infants with rhinitis showed a decreasing trend (P < .05). An increase in abundance of the Oxalobacteraceae family (Proteobacteria phylum) and Aerococcaceae family (Firmicutes phylum) was associated with rhinitis and concomitant wheeze (adjusted P < .01), whereas the Corynebacteriaceae family (Actinobacteria phylum) and early colonization with the Staphylococcaceae family (Firmicutes phylum; 3 weeks until 9 months) were associated with control subjects (adjusted P < .05). The only difference between the rhinitis and control groups was a reduced abundance of the Corynebacteriaceae family (adjusted P < .05). Determinants of nasal microbiota succession included sex, mode of delivery, presence of siblings, and infant care attendance. CONCLUSION Our results support the hypothesis that the nasal microbiome is involved in development of early-onset rhinitis and wheeze in infants.
Collapse
Affiliation(s)
- Le Duc Huy Ta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gaik Chin Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Carina Jing Xuan Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alicia Shi Min Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chiung-Hui Huang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Collins Wenhan Chu
- Genome Institute of Singapore, Agency for Science, Technology and Research Singapore, Singapore
| | | | - Lynette P Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Anne Goh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Hugo P S Van Bever
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Oon Hoe Teoh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Jian Yi Soh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Biju Thomas
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Mahesh Babu Ramamurthy
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Daniel Y T Goh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Christophe Lay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Danone Nutricia Research, Singapore
| | - Shu-E Soh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Kenneth Kwek
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore
| | - Yap-Seng Chong
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Martin Lloyd Hibberd
- Genome Institute of Singapore, Agency for Science, Technology and Research Singapore, Singapore
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
37
|
Association between high-density lipoprotein cholesterol level and pulmonary function in healthy Korean adolescents: the JS high school study. BMC Pulm Med 2017; 17:190. [PMID: 29228928 PMCID: PMC5725943 DOI: 10.1186/s12890-017-0548-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/30/2017] [Indexed: 11/10/2022] Open
Abstract
Background Accumulating evidence suggests that high-density lipoprotein (HDL) cholesterol is associated with pulmonary function and pulmonary disorders. The aim of this study was to evaluate the association between HDL cholesterol and pulmonary function in healthy adolescents. Methods This cross-sectional study was based on data collected for the JS High School study. The analysis included 644 adolescents (318 male and 326 female) aged 15–16 years old and free from asthma or chronic obstructive pulmonary disease. Fasting blood samples were collected for hematologic and biochemical assessment. Forced vital capacity volume (FVC) and forced expiratory volume in the 1 s (FEV1) were measured using dry-rolling-seal spirometry. The associations between HDL cholesterol and pulmonary function were analyzed using multiple linear regression models. Results Among male adolescents, an increase of 1.0 mg/dL in HDL cholesterol was associated with 10 mL decrease in FVC (p = 0.013) and FEV1 (p = 0.013) after adjusting for age, height, weight, alcohol drinking, smoking, physical activity, systolic blood pressure, total cholesterol, triglyceride, and monthly household income. Percent predicted values of FVC (p = 0.036) and FEV1 (p = 0.017) were also inversely associated with HDL cholesterol. However, among female adolescents, HDL cholesterol level was not significantly associated with absolute or percent predictive value of FVC and FEV1. Conclusions Higher HDL cholesterol level may be associated with decreased pulmonary function among healthy male adolescents. The sex differences observed in the association between HDL cholesterol and pulmonary function need further investigation. Electronic supplementary material The online version of this article (10.1186/s12890-017-0548-6) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Selim AO, Gouda ZA, Selim SA. An experimental study of a rat model of emphysema induced by cigarette smoke exposure and the effect of Survanta therapy. Ann Anat 2017; 211:69-77. [DOI: 10.1016/j.aanat.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
|
39
|
Magniez JC, Baudoin M, Liu C, Zoueshtiagh F. Dynamics of liquid plugs in prewetted capillary tubes: from acceleration and rupture to deceleration and airway obstruction. SOFT MATTER 2016; 12:8710-8717. [PMID: 27714328 DOI: 10.1039/c6sm01463a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The dynamics of individual liquid plugs pushed at a constant pressure head inside prewetted cylindrical capillary tubes is investigated experimentally and theoretically. It is shown that, depending on the thickness of the prewetting film and the magnitude of the pressure head, the plugs can either experience a continuous acceleration leading to a dramatic decrease of their size and eventually their rupture or conversely, a progressive deceleration associated with their growth and an exacerbation of the airway obstruction. These behaviors are quantitatively reproduced using a simple nonlinear model [Baudoin et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 859] adapted here for cylindrical channels. Furthermore, an analytical criterion for the transition between these two regimes is derived and successfully compared with extensive experimental data. The potential implications of this work for pulmonary obstructive diseases are discussed.
Collapse
Affiliation(s)
- J C Magniez
- IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, Université de Lille, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| | - M Baudoin
- IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, Université de Lille, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| | - C Liu
- IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, Université de Lille, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| | - F Zoueshtiagh
- IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, Université de Lille, Avenue Poincaré, 59652 Villeneuve d'Ascq, France.
| |
Collapse
|
40
|
Benfante A, Battaglia S, Principe S, Di Mitri C, Paternò A, Spatafora M, Scichilone N. Asthmatics with high levels of serum surfactant protein D have more severe disease. Eur Respir J 2016; 47:1864-7. [PMID: 26989101 DOI: 10.1183/13993003.02142-2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/30/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Alida Benfante
- Dipartimento di Biomedicina e Medicina Specialistica, Sezione di Pneumologia, University of Palermo, Palermo, Italy
| | - Salvatore Battaglia
- Dipartimento di Biomedicina e Medicina Specialistica, Sezione di Pneumologia, University of Palermo, Palermo, Italy
| | - Stefania Principe
- Dipartimento di Biomedicina e Medicina Specialistica, Sezione di Pneumologia, University of Palermo, Palermo, Italy
| | - Chiara Di Mitri
- Dipartimento di Biomedicina e Medicina Specialistica, Sezione di Pneumologia, University of Palermo, Palermo, Italy
| | - Alessandra Paternò
- Dipartimento di Biomedicina e Medicina Specialistica, Sezione di Pneumologia, University of Palermo, Palermo, Italy
| | - Mario Spatafora
- Dipartimento di Biomedicina e Medicina Specialistica, Sezione di Pneumologia, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Dipartimento di Biomedicina e Medicina Specialistica, Sezione di Pneumologia, University of Palermo, Palermo, Italy
| |
Collapse
|
41
|
Liu X, Liew Z, Olsen J, Pedersen LH, Bech BH, Agerbo E, Yuan W, Li J. Association of prenatal exposure to acetaminophen and coffee with childhood asthma. Pharmacoepidemiol Drug Saf 2015; 25:188-95. [PMID: 26676925 DOI: 10.1002/pds.3940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 01/25/2023]
Abstract
PURPOSE Some studies have suggested that maternal acetaminophen use during pregnancy is associated with asthma in the offspring, and coffee consumption may modify the toxicity of acetaminophen. We aim to examine whether pregnancy maternal acetaminophen use increases the risk for offspring asthma, and whether such a potential association could be modified by maternal coffee consumption. METHODS We included 63,652 live-born singletons enrolled in the Danish National Birth Cohort. Maternal acetaminophen use and coffee consumption during pregnancy were assessed prospectively via the enrolment questionnaire and three computer-assisted telephone interviews. Asthma cases were identified by using the Danish National Patient Register and the Danish National Prescription Registry. We estimated the hazard ratios (HRs) for asthma according to prenatal acetaminophen and coffee exposure using Cox proportional hazards regression model. RESULTS After adjusting for potential confounders, acetaminophen use during pregnancy was associated with an increased risk of offspring asthma (HR = 1.16, 95% confidence interval (CI): 1.11-1.22). Coffee drinking during pregnancy was associated with a slightly decreased risk (HR = 0.94, 95%CI: 0.90-0.99). But there was no strong evidence of effect measure modification of acetaminophen use on offspring asthma by coffee consumption. CONCLUSIONS Acetaminophen use during pregnancy was associated with a modest increased risk for offspring asthma, which was not modified by coffee consumption.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Zeyan Liew
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jørn Olsen
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark.,Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Lars Henning Pedersen
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bodil Hammer Bech
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Esben Agerbo
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark.,CIRRAU-Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Wei Yuan
- Department of Epidemiology and Social Science on Reproductive Health, Shanghai Institute of Planned Parenthood Research, WHO Collaborating Center for Research in Human Reproduction, National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai, China
| | - Jiong Li
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
42
|
Ullah S, Sandqvist S, Beck O. Measurement of Lung Phosphatidylcholines in Exhaled Breath Particles by a Convenient Collection Procedure. Anal Chem 2015; 87:11553-60. [DOI: 10.1021/acs.analchem.5b03433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shahid Ullah
- Department
of Laboratory Medicine, Karolinska Institute, 14183 Stockholm, Sweden
| | - Sören Sandqvist
- Department
of Clinical Pharmacology, Karolinska University Laboratory, 14186 Huddinge, Sweden
| | - Olof Beck
- Department
of Laboratory Medicine, Karolinska Institute, 14183 Stockholm, Sweden
- Department
of Clinical Pharmacology, Karolinska University Laboratory, 14186 Huddinge, Sweden
| |
Collapse
|
43
|
Calkovska A, Uhliarova B, Joskova M, Franova S, Kolomaznik M, Calkovsky V, Smolarova S. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle. Respir Physiol Neurobiol 2015; 209:95-105. [PMID: 25583659 DOI: 10.1016/j.resp.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.
Collapse
Affiliation(s)
- A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - B Uhliarova
- Department of Otorhinolaryngology, FD Roosevelt Faculty Hospital, Banska Bystrica, Slovakia.
| | - M Joskova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - S Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - M Kolomaznik
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - V Calkovsky
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Slovakia.
| | - S Smolarova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
44
|
Tully JE, Hoffman SM, Lahue KG, Nolin JD, Anathy V, Lundblad LKA, Daphtary N, Aliyeva M, Black KE, Dixon AE, Poynter ME, Irvin CG, Janssen-Heininger YMW. Epithelial NF-κB orchestrates house dust mite-induced airway inflammation, hyperresponsiveness, and fibrotic remodeling. THE JOURNAL OF IMMUNOLOGY 2013; 191:5811-21. [PMID: 24227776 DOI: 10.4049/jimmunol.1301329] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
NF-κB activation within the epithelium has been implicated in the pathogenesis of asthma, yet the exact role of epithelial NF-κB in allergen-induced inflammation and airway remodeling remains unclear. In the current study, we used an intranasal house dust mite (HDM) extract exposure regimen time course in BALB/c mice to evaluate inflammation, NF-κB activation, airway hyperresponsiveness (AHR), and airway remodeling. We used CC10-IκBαSR transgenic mice to evaluate the functional importance of epithelial NF-κB in response to HDM. After a single exposure of HDM, mRNA expression of proinflammatory mediators was significantly elevated in lung tissue of wild-type (WT) mice, in association with increases in nuclear RelA and RelB, components of the classical and alternative NF-κB pathway, respectively, in the bronchiolar epithelium. In contrast, CC10-IκBαSR mice displayed marked decreases in nuclear RelA and RelB and mRNA expression of proinflammatory mediators compared with WT mice. After 15 challenges with HDM, WT mice exhibited increases in inflammation, AHR, mucus metaplasia, and peribronchiolar fibrosis. CC10-IκBαSR transgenic mice displayed marked decreases in neutrophilic infiltration, tissue damping, and elastance parameters, in association will less peribronchiolar fibrosis and decreases in nuclear RelB in lung tissue. However, central airway resistance and mucus metaplasia remained elevated in CC10-IκBαSR transgenic mice, in association with the continued presence of lymphocytes, and partial decreases in eosinophils and IL-13. The current study demonstrates that following airway exposure with an asthma-relevant allergen, activation of classical and alternative NF-κB pathways occurs within the airway epithelium and may coordinately contribute to allergic inflammation, AHR, and fibrotic airway remodeling.
Collapse
Affiliation(s)
- Jane E Tully
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stephan M, Suhling H, Schade J, Wittlake M, Tasic T, Klemann C, Pabst R, Jurawitz MC, Raber KA, Hoymann HG, Braun A, Glaab T, Hoffmann T, Schmiedl A, von Hörsten S. Effects of dipeptidyl peptidase-4 inhibition in an animal model of experimental asthma: a matter of dose, route, and time. Physiol Rep 2013; 1:e00095. [PMID: 24303167 PMCID: PMC3841031 DOI: 10.1002/phy2.95] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/23/2022] Open
Abstract
The CD26-associated enzymatic activity of dipeptidyl peptidase-4 (DPP4) as well as the recruitment of CD26(+) T cells increase under allergic airway inflammation. Furthermore, genetic deficiency of CD26/DPP4 exerts protective effects in experimental asthma. Therefore, CD26/DPP4 might represent a novel therapeutic target in asthma. To study the effects of pharmacological inhibition of DPP4 on allergic airway inflammation the DPP4-inhibitor isoleucine thiazolidide was tested using different doses at different time points (at sensitization, immediately before and simultaneously with the allergen challenge, as well as continuously via drinking water), and different routes (intraperitoneal, oral, and by inhalation). Allergic-like airway inflammation was induced in Fischer 344 rats (Charles River) sensitized against ovalbumin (OVA) using OVA aerosols. Intraperitoneal application of the DPP4 inhibitor showed effects neither at sensitization nor at challenge, whereas a continuous application via drinking water using high doses of the inhibitor led to an aggravation of the histomorphological signs of airway inflammation. In contrast, aerosolization of the DPP4 inhibitor simultaneously with the allergen significantly reduced airway hyperresponsiveness and ameliorated histopathological signs compared to controls. In addition, this treatment resulted in increased mRNA levels of surfactant proteins, suggesting an involvement of DPP4 inhibitors in surfactant metabolism in OVA-challenged rats. Continuous systemic inhibition of DPP4 via the oral route aggravates allergic airway inflammation. In contrast, topical inhibition of DPP4 exerts potential protective effects, and further research in humans is needed.
Collapse
Affiliation(s)
- Michael Stephan
- Institute of Functional and Applied Anatomy, Hannover Medical School Hannover, Germany ; Clinic of Psychosomatics and Psychotherapy, Hannover Medical School Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hamed R, Fiegel J. Synthetic tracheal mucus with native rheological and surface tension properties. J Biomed Mater Res A 2013; 102:1788-98. [PMID: 23813841 DOI: 10.1002/jbm.a.34851] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 11/07/2022]
Abstract
In this study, the development of a model tracheal mucus with chemical composition and physical properties (bulk viscoelasticity and surface tension) matched to that of native tracheal mucus is described. The mucus mimetics (MMs) were formulated using components that are abundant in tracheal mucus (glycoproteins, proteins, lipids, ions, and water) at concentrations similar to those found natively. Pure solutions were unable to achieve the gel behavior observed with native mucus. The addition of a bifunctional cross-linking agent enabled control over the viscoelastic properties of the MMs by tailoring the concentration of the cross-linking agent and the duration of cross-linking. Three MM formulations with different bulk viscoelastic properties, all within the normal range for nondiseased tracheal mucus, were chosen for investigation of surfactant spreading at the air-mimetic interface. Surfactant spread quickly and completely on the least viscoelastic mimetic surface, enabling the surface tension of the mimetic to be lowered to match native tracheal mucus. However, surfactant spreading on the more viscoelastic mimetics was hindered, suggesting that the bulk properties of the mimetics dictate the range of surface properties that can be achieved.
Collapse
Affiliation(s)
- R Hamed
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, Iowa, 52242; Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | | |
Collapse
|
47
|
Airway reopening through catastrophic events in a hierarchical network. Proc Natl Acad Sci U S A 2012; 110:859-64. [PMID: 23277557 DOI: 10.1073/pnas.1211706110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When you reach with your straw for the final drops of a milkshake, the liquid forms a train of plugs that flow slowly initially because of the high viscosity. They then suddenly rupture and are replaced with a rapid airflow with the characteristic slurping sound. Trains of liquid plugs also are observed in complex geometries, such as porous media during petroleum extraction, in microfluidic two-phase flows, or in flows in the pulmonary airway tree under pathological conditions. The dynamics of rupture events in these geometries play the dominant role in the spatial distribution of the flow and in determining how much of the medium remains occluded. Here we show that the flow of a train of plugs in a straight channel is always unstable to breaking through a cascade of ruptures. Collective effects considerably modify the rupture dynamics of plug trains: Interactions among nearest neighbors take place through the wetting films and slow down the cascade, whereas global interactions, through the total resistance to flow of the train, accelerate the dynamics after each plug rupture. In a branching tree of microchannels, similar cascades occur along paths that connect the input to a particular output. This divides the initial tree into several independent subnetworks, which then evolve independently of one another. The spatiotemporal distribution of the cascades is random, owing to strong sensitivity to the plug divisions at the bifurcations.
Collapse
|
48
|
Pires-Neto RC, Morales MMB, Lancas T, Inforsato N, Duarte MIS, Amato MBP, de Carvalho CRR, da Silva LFF, Mauad T, Dolhnikoff M. Expression of acute-phase cytokines, surfactant proteins, and epithelial apoptosis in small airways of human acute respiratory distress syndrome. J Crit Care 2012; 28:111.e9-111.e15. [PMID: 22835422 DOI: 10.1016/j.jcrc.2012.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Recent studies suggest a role for distal airway injury in acute respiratory distress syndrome (ARDS). The epithelium lining the small airways secretes a large number of molecules such as surfactant components and inflammatory mediators. There is little information on how these small airway secretory functions are altered in ARDS. MATERIALS AND METHODS We studied the lungs of 31 patients with ARDS (Pao(2)/fraction of inspired oxygen ≤200, 45 ± 14 years, 16 men) and 11 controls (52 ± 16 years, 7 men) submitted to autopsy and quantified the expression of interleukin (IL) 6, IL-8, surfactant proteins (SP) A and SP-B in the epithelium of small airways using immunohistochemistry and image analysis. In addition, an index of airway epithelial apoptosis was determined by the terminal deoxynucleotidyl transferase-mediated deoxyuridine-triphosphatase nick-end labeling assay, caspase 3, and Fas/Fas ligand expression. The density of inflammatory cells expressing IL-6 and IL-8 within the small airway walls was also quantified. RESULTS Acute respiratory distress syndrome airways showed an increase in the epithelial expression of IL-8 (P = .006) and an increased density of inflammatory cells expressing IL-6 (P = .004) and IL-8 (P < .001) compared with controls. There were no differences in SP-A and SP-B epithelium expression or in epithelial apoptosis index between ARDS and controls. CONCLUSION Distal airways are involved in ARDS lung inflammation and show a high expression of proinflammatory interleukins in both airway epithelial and inflammatory cells. Apoptosis may not be a major mechanism of airway epithelial cell death in ARDS.
Collapse
Affiliation(s)
- Ruy Camargo Pires-Neto
- Department of Pathology, Experimental Air Pollution Laboratory-LIM05, Sao Paulo University Medical School, 01246903 Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schmiedl A, Krainski J, Schwichtenhövel F, Schade J, Klemann C, Raber KA, Zscheppang K, Beekmann T, Acevedo C, Glaab T, Wedekind D, Pabst R, von Hörsten S, Stephan M. Reduced airway inflammation in CD26/DPP4-deficient F344 rats is associated with altered recruitment patterns of regulatory T cells and expression of pulmonary surfactant proteins. Clin Exp Allergy 2011; 40:1794-808. [PMID: 20560982 DOI: 10.1111/j.1365-2222.2010.03547.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION CD26 is highly expressed on lung epithelial cells as well as on immune cells. Ovalbumin (OVA)-induced airway inflammation induces a further increase of CD26 expression. CD26-deficient rat strains exhibit blunted clinical courses in models of experimental asthma. OBJECTIVE (1) To investigate the involvement of regulatory T cells (Tregs) and the surfactant system in a rat model of genetic CD26 deficiency. (2) To investigate regulatory mechanisms dependent on the endogenous CD26 expression. (3) To investigate the impact of CD26 on surfactant protein (SP)-levels under inflammatory conditions. METHODS Wild-type and CD26-deficient F344 rats were sensitized to and challenged with OVA. Subsequently, airway inflammation, SP levels as well as surface tension of the bronchoalveolar lavage (BAL) fluid were evaluated. RESULTS CD26 deficiency led to decreased airway inflammation, e.g. reduced numbers of eosinophils and activated T cells in the BAL. Remarkably, the CD26-deficient rats exhibited a significantly increased influx of FoxP3(+) Tregs into the lungs and increased IL-10-secretion/production by draining lymph node cells in culture experiments. Furthermore, in OVA-challenged CD26-deficient rats, the increase of the expression of the collectins SP-A and SP-D as well as of the surface tension-active SP-B was significantly less pronounced than in the CD26-positive strain. Only in the wild-type rats, functional alterations of the surfactant system, e.g. the increased surface tension were obvious after OVA challenge. CONCLUSION Reduced airway inflammation in CD26-deficient F344 rats appear to be mediated by differences in the recruitment and activity of Tregs. This altered inflammation is associated with differences in the SP expression as well as function.
Collapse
Affiliation(s)
- A Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schulze C, Schaefer UF, Ruge CA, Wohlleben W, Lehr CM. Interaction of metal oxide nanoparticles with lung surfactant protein A. Eur J Pharm Biopharm 2010; 77:376-83. [PMID: 21056657 DOI: 10.1016/j.ejpb.2010.10.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/21/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
The alveolar lining fluid (ALF) covering the respiratory epithelium of the deep lung is the first biological barrier encountered by nanoparticles after inhalation. We here report for the first time significant differences for metal oxide nanoparticles to the binding of surfactant protein A (SP-A), the predominant protein component of ALF. SP-A is a physiologically most relevant protein and provides important biological signals. Also, it is involved in the lung's immune defence, controlling e.g. particle binding, uptake or transcytosis by epithelial cells and macrophages. In our study, we could prove different particle-protein interaction for eight different nanoparticles, whereas particles of the same bulk material revealed different adsorption patterns. In contrast to other proteins as bovine serum albumin (BSA), SP-A does not seem to significantly deagglomerate large agglomerates of particles, indicating different adsorption mechanisms as in the well-investigated model protein BSA. These findings may have important consequences for biological fate and toxicological effects of inhaled nanomaterials.
Collapse
Affiliation(s)
- Christine Schulze
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbruecken, Germany.
| | | | | | | | | |
Collapse
|