1
|
Wang Q, Song H, Dong H, Guo S, Yao M, Wan Y, Lu K. Multiphase Radical Chemical Processes Induced by Air Pollutants and the Associated Health Effects. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:1-13. [PMID: 39839244 PMCID: PMC11744397 DOI: 10.1021/envhealth.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 01/23/2025]
Abstract
Air pollution is increasingly recognized as a significant health risk, yet our understanding of its underlying chemical and physiological mechanisms remains incomplete. Fine particulate matter (PM2.5) and ozone (O3) interact with biomolecules in intracellular and microenvironments, such as the epithelial lining fluid (ELF), leading to the generation of reactive oxygen species (ROS). These ROS trigger cellular inflammatory responses and oxidative stress, contributing to a spectrum of diseases affecting the respiratory, cardiovascular, and central nervous systems. Extensive epidemiological and toxicological research highlights the pivotal role of ROS in air pollution-related diseases. It is crucial to comprehend the intricate chemical processes and accompanying physiological effects of ROS from air pollutants. This review aims to systematically summarize ROS generation mechanisms in the ELF and measurement techniques of oxidative potential (OP), taking the kinetic reactions of ROS cycling in the ELF as an example, and discusses the general health implications of ROS in respiratory, cardiovascular, and central nervous systems. Understanding these processes through interdisciplinary research is essential to develop effective and precise strategies as well as air quality standards to mitigate the public health impacts of air pollution globally.
Collapse
Affiliation(s)
- Qineng Wang
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huan Song
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huabin Dong
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Wan
- College
of Urban and Environmental Sciences, Peking
University, Beijing 100871, China
| | - Keding Lu
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Shahpoury P, Lelieveld S, Srivastava D, Baccarini A, Mastin J, Berkemeier T, Celo V, Dabek-Zlotorzynska E, Harner T, Lammel G, Nenes A. Seasonal Changes in the Oxidative Potential of Urban Air Pollutants: The Influence of Emission Sources and Proton- and Ligand-Mediated Dissolution of Transition Metals. ACS ES&T AIR 2024; 1:1262-1275. [PMID: 39417159 PMCID: PMC11474821 DOI: 10.1021/acsestair.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
The inhalation of fine particulate matter (PM2.5) is a major contributor to adverse health effects from air pollution worldwide. An important toxicity pathway is thought to follow oxidative stress from the formation of exogenous reactive oxygen species (ROS) in the body, a proxy of which is oxidative potential (OP). As redox-active transition metals and organic species are important drivers of OP in urban environments, we investigate how seasonal changes in emission sources, aerosol chemical composition, acidity, and metal dissolution influence OP dynamics. Using a kinetic model of the lung redox chemistry, we predicted ROS (O2 •-, H2O2, •OH) formation with input parameters comprising the ambient concentrations of PM2.5, water-soluble Fe and Cu, secondary organic matter, nitrogen dioxide, and ozone across two years and two urban sites in Canada. Particulate species were the largest contributors to ROS production. Soluble Fe and Cu had their highest and lowest values in summer and winter, and changes in Fe solubility were closely linked to seasonal variations in chemical aging, the acidity of aerosol, and organic ligand levels. The results indicate three conditions that influence OP across various seasons: (a) low aerosol pH and high organic ligand levels leading to the highest OP in summer, (b) opposite trends leading to the lowest OP in winter, and (c) intermediate conditions corresponding to moderate OP in spring and fall. This study highlights how atmospheric chemical aging modifies the oxidative burden of urban air pollutants, resulting in a seasonal cycle with a potential effect on population health.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Environmental
and Life Sciences, Trent University, Peterborough K9L0G2, Canada
| | - Steven Lelieveld
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Deepchandra Srivastava
- Division
of Environmental Health and Risk Management, School of Geography,
Earth & Environmental Sciences, University
of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | - Andrea Baccarini
- Laboratory
of Atmospheric Processes and their Impacts, School of Architecture,
Civil and Environmental Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Jacob Mastin
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, Toronto M3H5T4, Canada
| | - Thomas Berkemeier
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Valbona Celo
- Analysis
and Air Quality Section, Environment and
Climate Change Canada, Ottawa K1V1C7, Canada
| | - Ewa Dabek-Zlotorzynska
- Analysis
and Air Quality Section, Environment and
Climate Change Canada, Ottawa K1V1C7, Canada
| | - Tom Harner
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, Toronto M3H5T4, Canada
| | - Gerhard Lammel
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Athanasios Nenes
- Laboratory
of Atmospheric Processes and their Impacts, School of Architecture,
Civil and Environmental Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Institute
of Chemical Engineering Sciences, Foundation for Research and Technology
Hellas, Patras GR-26504, Greece
| |
Collapse
|
3
|
Rehman N, Jabeen F, Asad M, Nijabat A, Ali A, Khan SU, Luna-Arias JP, Mashwani ZUR, Siddiqa A, Karthikeyan A, Ahmad A. Exposure to zinc oxide nanoparticles induced reproductive toxicities in male Sprague Dawley rats. J Trace Elem Med Biol 2024; 83:127411. [PMID: 38387428 DOI: 10.1016/j.jtemb.2024.127411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND This research delves into the reproductive toxicology of zinc oxide nanoparticles (ZnO-NPs) in male Sprague Dawley rats. It specifically examines the repercussions of Zn accumulation in the testes, alterations in testosterone levels, and histopathological changes in the gonadal tissues. AIMS The primary objective of this study is to elucidate the extent of reproductive toxicity induced by ZnO-NPs in male Sprague Dawley rats. The investigation aims to contribute to a deeper understanding of the potential endocrine and reproductive disruptions caused by ZnO-NPs exposure. METHODS Characterization techniques including SEM-EDX and XRD affirmed the characteristic nature of ZnO-NPs. Twenty-five healthy post weaning rats (200-250 g) were intraperitoneally exposed to different concentrations of ZnO-NPs @ 10 or 20 or 30 mg/kg BW for 28 days on alternate days. RESULTS Results showed significant dose dependent decline in the body weight and testicular somatic index of rats. It also showed significant dose dependent accumulation of Zn in testis with increasing dose of ZnO-NPs. Conversely, serum testosterone level and sperm count were reduced with increasing dose of ZnO-NPs. Histological results showed dose dependent abnormalities i.e., vacuolization, edema, hemorrhage, destruction of seminiferous tubules, loss of germ cells and necrosis in rat testis. CONCLUSION The findings of this study clearly indicate that high doses of zinc oxide nanoparticles (ZnO-NPs) can adversely affect the structural integrity and functional efficacy of the male reproductive system. Given these results, it becomes crucial to implement stringent precautionary measures in the utilization of ZnO-NPs, particularly in cosmetics and other relevant sectors. Such measures are imperative to mitigate the toxicological impact of ZnO-NPs on the male reproductive system and potentially on other related physiological functions. This study underscores the need for regulatory vigilance and safety assessments in the application of nanotechnology to safeguard human health.
Collapse
Affiliation(s)
- Nagina Rehman
- Department of Zoology, University of Mianwali, Mianwali 42200, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College Women University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Asad
- Department of Zoology, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali 42200, Pakistan
| | - Amir Ali
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan; Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico.
| | - Safir Ullah Khan
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Juan Pedro Luna-Arias
- Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico; Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Ayesha Siddiqa
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, South Korea
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Shahpoury P, Lelieveld S, Johannessen C, Berkemeier T, Celo V, Dabek-Zlotorzynska E, Harner T, Lammel G, Nenes A. Influence of aerosol acidity and organic ligands on transition metal solubility and oxidative potential of fine particulate matter in urban environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167405. [PMID: 37777133 DOI: 10.1016/j.scitotenv.2023.167405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
The adverse health effects of air pollution around the world have been associated with the inhalation of fine particulate matter (PM2.5). Such outcomes are thought to be related to the induction of oxidative stress due to the excess formation of reactive oxygen species (ROS) in the respiratory and cardiovascular systems. The ability of airborne chemicals to deplete antioxidants and to form ROS is known as oxidative potential (OP). Here we studied the influence of aerosol acidity and organic ligands on the solubility of transition metals, in particular iron (Fe) and copper (Cu), and on the OP of PM2.5 from Canadian National Air Pollution Surveillance urban sites in Toronto, Vancouver, and Hamilton. Using chemical assays and model simulations of the lung redox chemistry, we quantified ROS formation in the lung lining fluid, targeting superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), as well as the PM2.5 redox potential (RP). Experimental •OH formation (OPOH) showed high correlations with RP and model-predicted ROS metrics. Both aerosol acidity and oxalate content enhanced the solubility of transition metals, with oxalate showing a stronger association. While experimental OP metrics were primarily associated with species of primary origin such as elemental carbon, Fe, and Cu, model-predicted ROS were associated with secondary processes including proton- and ligand-mediated dissolution of Fe. Model simulations showed that water-soluble Cu was the main contributor to O2•- formation, while water-soluble Fe dominated the formation of highly reactive •OH radical, particularly at study sites with highly acidic aerosol and elevated levels of oxalate. This study underscores the importance of reducing transition metal emissions in urban environments to improve population health.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Environmental and Life Sciences, Trent University, Peterborough, Canada; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| | - Steven Lelieveld
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Valbona Celo
- Analysis and Air Quality Section, Environment and Climate Change Canada, Ottawa, Canada
| | | | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| |
Collapse
|
5
|
Wang W, Luo Z, Liu X, Dai Y, Hu G, Zhao J, Yue T. Heterogeneous aggregation of carbon and silicon nanoparticles with benzo[a]pyrene modulates their impacts on the pulmonary surfactant film. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132340. [PMID: 37597387 DOI: 10.1016/j.jhazmat.2023.132340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Inhaled nanoparticles (NPs) can deposit in alveoli where they interact with the pulmonary surfactant (PS) and potentially induce toxicity. Although nano-bio interactions are influenced by the physicochemical properties of NPs, isolated NPs used in previous studies cannot accurately represent those found in atmosphere. Here we used molecular dynamics simulations to investigate the interplay between two types of NPs associated with benzo[a]pyrene (BaP) at the PS film. Silicon NPs (SiNPs), regardless of aggregation and adsorption, directly penetrated through the PS film with minimal disturbance. Meanwhile, BaPs adsorbed on SiNPs were rapidly solubilized by PS, increasing the BaP's bioaccessibility in alveoli. Carbon NPs (CNPs) showed aggregation and adsorption-dependent effects on the PS film. Compared to isolated CNPs, which extracted PS to form biomolecular coronas, aggregated CNPs caused more pronounced PS disruption, especially around irregularly shaped edges. SiNPs in mixture exacerbated the PS perturbation by piercing PS film around the site of CNP interactions. BaPs adsorbed on CNPs were less solubilized and suppressed PS extraction, but aggravated biophysical inhibition by prompting film collapse under compression. These results suggest that for proper assessment of inhalation toxicity of airborne NPs, it is imperative to consider their heterogeneous aggregation and adsorption of pollutants under atmospheric conditions.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhen Luo
- Department of Engineering Mechanics, State of Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State of Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Han D, Chen R, Kan H, Xu Y. The bio-distribution, clearance pathways, and toxicity mechanisms of ambient ultrafine particles. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:95-106. [PMID: 38074989 PMCID: PMC10702920 DOI: 10.1016/j.eehl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 02/17/2024]
Abstract
Ambient particles severely threaten human health worldwide. Compared to larger particles, ultrafine particles (UFPs) are highly concentrated in ambient environments, have a larger specific surface area, and are retained for a longer time in the lung. Recent studies have found that they can be transported into various extra-pulmonary organs by crossing the air-blood barrier (ABB). Therefore, to understand the adverse effects of UFPs, it is crucial to thoroughly investigate their bio-distribution and clearance pathways in vivo after inhalation, as well as their toxicological mechanisms. This review highlights emerging evidence on the bio-distribution of UFPs in pulmonary and extra-pulmonary organs. It explores how UFPs penetrate the ABB, the blood-brain barrier (BBB), and the placental barrier (PB) and subsequently undergo clearance by the liver, kidney, or intestine. In addition, the potential underlying toxicological mechanisms of UFPs are summarized, providing fundamental insights into how UFPs induce adverse health effects.
Collapse
Affiliation(s)
- Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Ramos-Contreras C, Piñeiro-Iglesias M, Concha-Graña E, Sánchez-Piñero J, Moreda-Piñeiro J, Franco-Uría A, López-Mahía P, Molina-Pérez F, Muniategui-Lorenzo S. Source apportionment of PM 10 and health risk assessment related in a narrow tropical valley. Study case: Metropolitan area of Aburrá Valley (Colombia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60036-60049. [PMID: 37017840 PMCID: PMC10163095 DOI: 10.1007/s11356-023-26710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/25/2023] [Indexed: 05/08/2023]
Abstract
This study investigates spatio-temporal variations of PM10 mass concentrations and associated metal(oid)s, δ13C carbon isotope ratios, polycyclic aromatic hydrocarbons (PAHs), total organic carbon (TOC) and equivalent black carbon (eBC) concentrations over a half year period (from March 2017 to October 2017) in two residential areas of Medellín (MED-1 and MED-2) and Itagüí municipality (ITA-1 and ITA-2) at a tropical narrow valley (Aburrá Valley, Colombia), where few data are available. A total of 104 samples were analysed by using validated analytical methodologies, providing valuable data for PM10 chemical characterisation. Metal(oid)s concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion, and PAHs concentrations were measured by Gas Chromatography-Mass Spectrometry (GC-MS) after Pressurised Hot Water Extraction (PHWE) and Membrane Assisted Solvent Extraction (MASE). Mean PM10 mass concentration ranged from 37.0 µg m-3 to 45.7 µg m-3 in ITA-2 and MED-2 sites, respectively. Al, Ca, Mg and Na (from 6249 ng m-3 for Mg at MED-1 site to 10,506 ng m-3 for Ca at MED-2 site) were the major elements in PM10 samples, whilst As, Be, Bi, Co, Cs, Li, Ni, Sb, Se, Tl and V were found at trace levels (< 5.4 ng m-3). Benzo[g,h,i] perylene (BghiP), benzo[b + j]fluoranthene (BbjF) and indene(1,2,3-c,d)pyrene (IcdP) were the most profuse PAHs in PM10 samples, with average concentrations of 0.82-0.86, 0.60-0.78 and 0.47-0.58 ng m-3, respectively. Results observed in the four sampling sites showed a similar dispersion pattern of pollutants, with temporal fluctuations which seems to be associated to the meteorology of the valley. A PM source apportionment study were carried out by using the positive matrix factorization (PMF) model, pointing to re-suspended dust, combustion processes, quarry activity and secondary aerosols as PM10 sources in the study area. Among them, combustion was the major PM10 contribution (accounting from 32.1 to 32.9% in ITA-1 and ITA-2, respectively), followed by secondary aerosols (accounting for 13.2% and 23.3% ITA-1 and MED-1, respectively). Finally, a moderate carcinogenic risk was observed for PM10-bound PAHs exposure via inhalation, whereas significant carcinogenic risk was estimated for carcinogenic metal(oid)s exposure in the area during the sampling period.
Collapse
Affiliation(s)
- Carlos Ramos-Contreras
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
- Grupo de Investigación en Gestión y Modelación Ambiental (GAIA), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - María Piñeiro-Iglesias
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Estefanía Concha-Graña
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Joel Sánchez-Piñero
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain.
| | - Amaya Franco-Uría
- Dept. of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Purificación López-Mahía
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Francisco Molina-Pérez
- Grupo de Investigación en Gestión y Modelación Ambiental (GAIA), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Soledad Muniategui-Lorenzo
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| |
Collapse
|
8
|
Chen YH, Nguyen D, Brindley S, Ma T, Xia T, Brune J, Brown JM, Tsai CSJ. The dependence of particle size on cell toxicity for modern mining dust. Sci Rep 2023; 13:5101. [PMID: 36991007 PMCID: PMC10060429 DOI: 10.1038/s41598-023-31215-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractProgressive massive pulmonary fibrosis among coal miners has unexpectedly increased. It would likely due to the greater generation of smaller rock and coal particles produced by powerful equipment used in modern mines. There is limited understanding of the relationship between micro- or nanoparticles with pulmonary toxicity. This study aims to determine whether the size and chemical characteristics of typical coal-mining dust contribute to cellular toxicity. Size range, surface features, morphology, and elemental composition of coal and rock dust from modern mines were characterized. Human macrophages and bronchial tracheal epithelial cells were exposed to mining dust of three sub- micrometer and micrometer size ranges at varying concentrations, then assessed for cell viability and inflammatory cytokine expression. Coal had smaller hydrodynamic size (180–3000 nm) compared to rock (495–2160 nm) in their separated size fractions, more hydrophobicity, less surface charge, and consisted of more known toxic trace elements (Si, Pt, Fe, Al, Co). Larger particle size had a negative association with in-vitro toxicity in macrophages (p < 0.05). Fine particle fraction, approximately 200 nm for coal and 500 nm for rock particles, explicitly induced stronger inflammatory reactions than their coarser counterparts. Future work will study additional toxicity endpoints to further elucidate the molecular mechanism causing pulmonary toxicity and determine a dose–response curve.
Collapse
|
9
|
Farhoudi M, Sadigh-Eteghad S, Farjami A, Salatin S. Nanoparticle and Stem Cell Combination Therapy for the Management of Stroke. Curr Pharm Des 2023; 29:15-29. [PMID: 36515043 DOI: 10.2174/1381612829666221213113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
Stroke is currently one of the primary causes of morbidity and mortality worldwide. Unfortunately, the available treatments for stroke are still extremely limited. Indeed, stem cell (SC) therapy is a new option for the treatment of stroke that could significantly expand the therapeutic time window of stroke. Some proposed mechanisms for stroke-based SC therapy are the incorporation of SCs into the host brain to replace dead or damaged cells/tissues. Moreover, acute cell delivery can inhibit apoptosis and decrease lesion size, providing immunomudolatory and neuroprotection effects. However, several major SC problems related to SCs such as homing, viability, uncontrolled differentiation, and possible immune response, have limited SC therapy. A combination of SC therapy with nanoparticles (NPs) can be a solution to address these challenges. NPs have received considerable attention in regulating and controlling the behavior of SCs because of their unique physicochemical properties. By reviewing the pathophysiology of stroke and the therapeutic benefits of SCs and NPs, we hypothesize that combined therapy will offer a promising future in the field of stroke management. In this work, we discuss recent literature in SC research combined with NP-based strategies that may have a synergistic outcome after stroke incidence.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Vatan Ö. Evaluation of In Vitro Cytotoxic, Genotoxic, Apoptotic, and Cell Cycle Arrest Potential of Iron-Nickel Alloy Nanoparticles. TOXICS 2022; 10:492. [PMID: 36136457 PMCID: PMC9506547 DOI: 10.3390/toxics10090492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
The use of iron-nickel alloy nanoparticles (Fe-Ni ANPs) is increasing daily in various fields. People are increasingly exposed to these nanoparticles for occupational and environmental reasons. Our study determined some of the effects of Fe-Ni ANP exposure and impacts on human health at the cellular level. The cytotoxic and genotoxic potentials of Fe-Ni ANPs were investigated by XTT, clonogenic, comet, and GammaH2AX analyses using Beas-2B cells. Annexin V, multicaspase, and cell cycle arrest methods were used to understand the apoptotic mechanism of action. The intracellular ROS method was used to determine the primary mechanism that leads to cytotoxic and genotoxic activity. The Fe-Ni ANPs showed cytotoxic activity with the XTT and clonogenic methods: they had genotoxic potential, as demonstrated via genotoxicity methods. It was determined that the cytotoxic effect was realized by the caspase-dependent apoptotic pathway, and the cells were stopped at the G0/G1 stage by Fe-Ni ANPs. Increased intracellular ROS due to Fe-Ni ANPs led to cytotoxic, genotoxic, and apoptotic activity. Potential risks to human health due to Fe-Ni ANPs were then demonstrated at the cellular level.
Collapse
Affiliation(s)
- Özgür Vatan
- Department of Biology, Faculty of Arts and Science, Görükle Campus, Bursa Uludağ University, 16059 Nilüfer, Bursa, Turkey
| |
Collapse
|
11
|
Pan X, Qin P, Liu R, Yu W. Molecular mechanism of coating carbon black nanoparticles with polycyclic aromatic hydrocarbons on the binding to serum albumin and the related cytotoxicity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Hemdan B, Garlapati VK, Sharma S, Bhadra S, Maddirala S, K M V, Motru V, Goswami P, Sevda S, Aminabhavi TM. Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents. ENVIRONMENTAL RESEARCH 2022; 204:112346. [PMID: 34742708 DOI: 10.1016/j.envres.2021.112346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.
Collapse
Affiliation(s)
- Bahaa Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Vijay Kumar Garlapati
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Swati Sharma
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Shivani Maddirala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Varsha K M
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Vineela Motru
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
13
|
Cao S, Fu B, Cai J, Zhang D, Wang C, Wu H. Linc00852 from cisplatin-resistant gastric cancer cell-derived exosomes regulates COMMD7 to promote cisplatin resistance of recipient cells through microRNA-514a-5p. Cell Biol Toxicol 2022:10.1007/s10565-021-09685-y. [PMID: 35088190 DOI: 10.1007/s10565-021-09685-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Cisplatin (DDP)-based chemotherapy is commonly referred to as advanced gastric cancer (GC). The purpose of this study was to unravel whether Linc00852 from DDP-resistant tumor cell-derived exosomes (Exos) promotes DDP resistance of GC cells. METHODS Reverse transcription quantitative polymerase chain reaction was used to detect the expression of Linc00852, miR-514a-5p, COMM domain protein 7 (COMMD7) mRNA, Bax mRNA, and Bcl-2 mRNA. Western blot was used to measure the expression of COMMD7 protein. The IC50 value of DDP is determined by MTT assay. The cell proliferation ability was measured by colony formation test. The apoptosis ability was measured by flow cytometry. The interaction between Linc00852, miR-514a-5p, and COMMD7 was confirmed by luciferase reporter gene assay and RNA pull-down assay. Xenograft tumor model was used to study the effect of Linc00852 on DDP resistance in vivo. RESULTS Linc00852 was up-regulated in DDP-resistant GC cells and their secreted exosomes. Down-regulating Linc00852 facilitated the sensitivity of DDP-resistant GC cells to DDP. Linc00852 bound to miR-514a-5p and COMMD7 was a target of miR-514a-5p. Linc00852 could regulate COMMD7 expression via targeting miR-514a-5p. Exosomes from DDP-resistant GC cells enhanced the resistance of recipient GC cells to DDP via exosomal delivery of Linc00852. Depletion of Linc00852 repressed the growth and DDP resistance of GC cells in vivo. CONCLUSION Linc00852 from DDP-resistant tumor cell-derived Exos regulates COMMD7 to promote drug resistance of GC cells through miR-514a-5p.
Collapse
Affiliation(s)
- Shuguang Cao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, Zhejiang, China
| | - Beilei Fu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, Zhejiang, China
| | - Jing Cai
- Department of Comprehensive Medicine, Wenzhou Central Hospital Medical Group, the Affiliated Second Hospital of Shanghai University, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dingli Zhang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, Zhejiang, China
| | - Chenxing Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, Zhejiang, China
| | - Hao Wu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
14
|
López M, López Lilao A, Ribalta C, Martínez Y, Piña N, Ballesteros A, Fito C, Koehler K, Newton A, Monfort E, Viana M. Particle release from refit operations in shipyards: Exposure, toxicity and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150216. [PMID: 34520930 DOI: 10.1016/j.scitotenv.2021.150216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
European harbours are known to contribute to air quality degradation. While most of the literature focuses on emissions from stacks or logistics operations, ship refit and repair activities are also relevant aerosol sources in EU harbour areas. Main activities include abrasive removal of filler and spray painting with antifouling coatings/primers/topcoats. This work aimed to assess ultrafine particle (UFP) emissions from ship maintenance activities and their links with exposure, toxicity and health risks for humans and the aquatic environment. Aerosol emissions were monitored during mechanical abrasion of surface coatings under real-world operating conditions in two scenarios in the Mallorca harbour (Spain). Different types of UFPs were observed: (1) highly regular (triangular, hexagonal) engineered nanoparticles (Ti-, Zr-, Fe-based), embedded as nano-additives in the coatings, and (2) irregular, incidental particles emitted directly or formed during abrasion. Particle number concentrations monitored were in the range of industrial activities such as drilling or welding (up to 5 ∗ 105/cm3, mean diameters <30 nm). The chemical composition of PM4 aerosols was dominated by metallic tracers in the coatings (Ti, Al, Ba, Zn). In vitro toxicity of PM2 aerosols evidenced reduced cell viability and a moderate potential for cytotoxic effects. While best practices (exhaust ventilation, personal protective equipment, dust removal) were in place, it is unlikely that exposures and environmental release can be fully avoided at all times. Thus, it is advisable that health and safety protocols should be comprehensive to minimise exposures in all types of locations (near- and far-field) and periods (activity and non-activity). Potential release to coastal surface waters of metallic engineered and incidental nanomaterials, as well as fine and coarse particles (in the case of settled dust), should be assessed and avoided.
Collapse
Affiliation(s)
- M López
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain; Barcelona University, Chemistry Faculty, C/ de Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - A López Lilao
- Institute of Ceramic Technology (ITC)- AICE - Universitat Jaume I, Campus Universitario Riu Sec, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
| | - C Ribalta
- The National Research Center for Work Environment (NRCWE), Lersø Parkallé 105, 2100 København, Denmark
| | - Y Martínez
- Baleari Island University (UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - N Piña
- Baleari Island University (UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - A Ballesteros
- Technological Institute of Packaging, Transportation and Logistics (ITENE), C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - C Fito
- Technological Institute of Packaging, Transportation and Logistics (ITENE), C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - K Koehler
- Johns Hopkins University (JHU), Baltimore, MD 21218, USA
| | - A Newton
- Johns Hopkins University (JHU), Baltimore, MD 21218, USA
| | - E Monfort
- Institute of Ceramic Technology (ITC)- AICE - Universitat Jaume I, Campus Universitario Riu Sec, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
| | - M Viana
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
15
|
Bozzuto G, D'Avenio G, Condello M, Sennato S, Battaglione E, Familiari G, Molinari A, Grigioni M. Label-free cell based impedance measurements of ZnO nanoparticles-human lung cell interaction: a comparison with MTT, NR, Trypan blue and cloning efficiency assays. J Nanobiotechnology 2021; 19:306. [PMID: 34620157 PMCID: PMC8499537 DOI: 10.1186/s12951-021-01033-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background There is a huge body of literature data on ZnOnanoparticles (ZnO NPs) toxicity. However, the reported results are seen to be increasingly discrepant, and deep comprehension of the ZnO NPs behaviour in relation to the different experimental conditions is still lacking. A recent literature overview emphasizes the screening of the ZnO NPs toxicity with more than one assay, checking the experimental reproducibility also versus time, which is a key factor for the robustness of the results. In this paper we compared high-throughput real-time measurements through Electric Cell-substrate Impedance-Sensing (ECIS®) with endpoint measurements of multiple independent assays. Results ECIS-measurements were compared with traditional cytotoxicity tests such as MTT, Neutral red, Trypan blue, and cloning efficiency assays. ECIS could follow the cell behavior continuously and noninvasively for days, so that certain long-term characteristics of cell proliferation under treatment with ZnO NPs were accessible. This was particularly important in the case of pro-mitogenic activity exerted by low-dose ZnO NPs, an effect not revealed by endpoint independent assays. This result opens new worrisome questions about the potential mitogenic activity exerted by ZnO NPs, or more generally by NPs, on transformed cells. Of importance, impedance curve trends (morphology) allowed to discriminate between different cell death mechanisms (apoptosis vs autophagy) in the absence of specific reagents, as confirmed by cell structural and functional studies by high-resolution microscopy. This could be advantageous in terms of costs and time spent. ZnO NPs-exposed A549 cells showed an unusual pattern of actin and tubulin distribution which might trigger mitotic aberrations leading to genomic instability. Conclusions ZnO NPs toxicity can be determined not only by the intrinsic NPs characteristics, but also by the external conditions like the experimental setting, and this could account for discrepant data from different assays. ECIS has the potential to recapitulate the needs required in the evaluation of nanomaterials by contributing to the reliability of cytotoxicity tests. Moreover, it can overcome some false results and discrepancies in the results obtained by endpoint measurements. Finally, we strongly recommend the comparison of cytotoxicity tests (ECIS, MTT, Trypan Blue, Cloning efficiency) with the ultrastructural cell pathology studies. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01033-w.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giuseppe D'Avenio
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Condello
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Simona Sennato
- CNR-ISC Sede Sapienza and Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Ezio Battaglione
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Agnese Molinari
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Mauro Grigioni
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Sharma HS, Lafuente JV, Muresanu DF, Sahib S, Tian ZR, Menon PK, Castellani RJ, Nozari A, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Neuroprotective effects of insulin like growth factor-1 on engineered metal nanoparticles Ag, Cu and Al induced blood-brain barrier breakdown, edema formation, oxidative stress, upregulation of neuronal nitric oxide synthase and brain pathology. PROGRESS IN BRAIN RESEARCH 2021; 266:97-121. [PMID: 34689867 DOI: 10.1016/bs.pbr.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are vulnerable to environmental or industrial exposure of engineered nanoparticles (NPs) from metals. Long-term exposure of NPs from various sources affect sensory-motor or cognitive brain functions. Thus, a possibility exists that chronic exposure of NPs affect blood-brain barrier (BBB) breakdown and brain pathology by inducing oxidative stress and/or nitric oxide production. This hypothesis was examined in the rat intoxicated with Ag, Cu or Al (50-60nm) nanoparticles (50mg/kg, i.p. once daily) for 7 days. In these NPs treated rats the BBB permeability, brain edema, neuronal nitric oxide synthase (nNOS) immunoreactivity and brain oxidants levels, e.g., myeloperoxidase (MP), malondialdehyde (MD) and glutathione (GT) was examined on the 8th day. Cu and Ag but not Al nanoparticles increased the MP and MD levels by twofold in the brain although, GT showed 50% decline. At this time increase in brain water content and BBB breakdown to protein tracers were seen in areas exhibiting nNOS positive neurons and cell injuries. Pretreatment with insulin like growth factor-1 (IGF-1) in high doses (1μg/kg, i.v. but not 0.5μg/kg daily for 7 days) together with NPs significantly reduced the oxidative stress, nNOS upregulation, BBB breakdown, edema formation and cell injuries. These novel observations demonstrate that (i) NPs depending on their metal constituent (Cu, Ag but not Al) induce oxidative stress and nNOS expression leading to BBB disruption, brain edema and cell damage, and (ii) IGF-1 depending on doses exerts powerful neuroprotection against nanoneurotoxicity, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Audignon-Durand S, Gramond C, Ducamp S, Manangama G, Garrigou A, Delva F, Brochard P, Lacourt A. Development of a Job-Exposure Matrix for Ultrafine Particle Exposure: The MatPUF JEM. Ann Work Expo Health 2021; 65:516-527. [PMID: 33637984 DOI: 10.1093/annweh/wxaa126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Ultrafine particles (UFPs) are generated from common work processes and have thus existed for a long time. Far more prevalent than engineered nanoparticles, they share common toxicological characteristics with them. However, there is no existing retrospective assessment tool specific to UFPs, for example, for epidemiological purposes. Thus, we aimed to develop a job-exposure matrix dedicated to UFPs. METHOD Fifty-seven work processes were identified as well as the chemical composition of UFPs emitted, following a literature review and the input of an expert panel. These work processes were associated with occupational codes as defined by the ISCO 1968 classification. The probability and frequency of UFP exposure were assessed for each combination of occupational code and process. Summarized probabilities and frequencies were then calculated for all ISCO occupational codes associated with several processes. Variations in exposure over time or across industrial sectors were accounted for in the assessment of each occupational code. RESULTS In the ISCO classification, 52.8% of the occupational codes (n = 835) assessed were associated with exposure to UFPs, consisting mainly of carbonaceous, metallic, and mineral families (39.5%, 22 and, 15.8%, respectively). Among them, 42.6% involved very probable exposure, and at a high frequency (regularly or continuously). CONCLUSION These results suggest that occupational exposure to UFPs may be extensive at the workplace and could concern a wide variety of workers. Pending the integration of a third parameter assessing the intensity of UFP exposure, the MatPUF JEM already constitutes a promising and easy-to-use tool to study the possible adverse health effects of UFPs at work. It may also guide prevention policies in the occupational environments concerned, including those involving engineered nanoparticles.
Collapse
Affiliation(s)
- Sabyne Audignon-Durand
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Céline Gramond
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France
| | - Stéphane Ducamp
- Santé Publique France, Division of Environmental and Occupational health, 12 rue du Val d'Osne, Saint Maurice, France
| | - Guyguy Manangama
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Alain Garrigou
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France
| | - Fleur Delva
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Patrick Brochard
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Aude Lacourt
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France
| |
Collapse
|
18
|
More SL, Kovochich M, Lyons-Darden T, Taylor M, Schulte AM, Madl AK. Review and Evaluation of the Potential Health Effects of Oxidic Nickel Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:642. [PMID: 33807756 PMCID: PMC7999720 DOI: 10.3390/nano11030642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The exceptional physical and chemical properties of nickel nanomaterials have been exploited in a range of applications such as electrical conductors, batteries, and biomaterials. However, it has been suggested that these unique properties may allow for increased bioavailability, bio-reactivity, and potential adverse health effects. Thus, the purpose of this review was to critically evaluate data regarding the toxicity of oxidic nickel nanoparticles (nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) nanoparticles) with respect to: (1) physico-chemistry properties; (2) nanomaterial characterization in the defined delivery media; (3) appropriateness of model system and translation to potential human effects; (4) biodistribution, retention, and clearance; (5) routes and relevance of exposure; and (6) current research data gaps and likely directions of future research. Inhalation studies were prioritized for review as this represents a potential exposure route in humans. Oxidic nickel particle size ranged from 5 to 100 nm in the 60 studies that were identified. Inflammatory responses induced by exposure of oxidic nickel nanoparticles via inhalation in rodent studies was characterized as acute in nature and only displayed chronic effects after relatively large (high concentration and long duration) exposures. Furthermore, there is no evidence, thus far, to suggest that the effects induced by oxidic nickel nanoparticles are related to preneoplastic events. There are some data to suggest that nano- and micron-sized NiO particles follow a similar dose response when normalized to surface area. However, future experiments need to be conducted to better characterize the exposure-dose-response relationship according to specific surface area and reactivity as a dose metric, which drives particle dissolution and potential biological responses.
Collapse
Affiliation(s)
- Sharlee L. More
- Cardno ChemRisk, 6720 S Macadam Ave Suite 150, Portland, OR 97219, USA
| | - Michael Kovochich
- Cardno ChemRisk, 30 North LaSalle St Suite 3910, Chicago, IL 60602, USA;
| | - Tara Lyons-Darden
- NiPERA, 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA; (T.L.-D.); (M.T.)
| | - Michael Taylor
- NiPERA, 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA; (T.L.-D.); (M.T.)
| | - Alexandra M. Schulte
- Cardno ChemRisk, 65 Enterprise Drive Suite 150, Aliso Viejo, CA 92656, USA; (A.M.S.); (A.K.M.)
| | - Amy K. Madl
- Cardno ChemRisk, 65 Enterprise Drive Suite 150, Aliso Viejo, CA 92656, USA; (A.M.S.); (A.K.M.)
| |
Collapse
|
19
|
Soares EV, Soares HMVM. Harmful effects of metal(loid) oxide nanoparticles. Appl Microbiol Biotechnol 2021; 105:1379-1394. [PMID: 33521847 PMCID: PMC7847763 DOI: 10.1007/s00253-021-11124-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The incorporation of nanomaterials (NMs), including metal(loid) oxide (MOx) nanoparticles (NPs), in the most diversified consumer products, has grown enormously in recent decades. Consequently, the contact between humans and these materials increased, as well as their presence in the environment. This fact has raised concerns and uncertainties about the possible risks of NMs to human health and the adverse effects on the environment. These concerns underline the need and importance of assessing its nanosecurity. The present review focuses on the main mechanisms underlying the MOx NPs toxicity, illustrated with different biological models: release of toxic ions, cellular uptake of NPs, oxidative stress, shading effect on photosynthetic microorganisms, physical restrain and damage of cell wall. Additionally, the biological models used to evaluate the potential hazardous of nanomaterials are briefly presented, with particular emphasis on the yeast Saccharomyces cerevisiae, as an alternative model in nanotoxicology. An overview containing recent scientific advances on cellular responses (toxic symptoms exhibited by yeasts) resulting from the interaction with MOx NPs (inhibition of cell proliferation, cell wall damage, alteration of function and morphology of organelles, presence of oxidative stress bio-indicators, gene expression changes, genotoxicity and cell dead) is critically presented. The elucidation of the toxic modes of action of MOx NPs in yeast cells can be very useful in providing additional clues about the impact of NPs on the physiology and metabolism of the eukaryotic cell. Current and future trends of MOx NPs toxicity, regarding their possible impacts on the environment and human health, are discussed. KEY POINTS: • The potential hazardous effects of MOx NPs are critically reviewed. • An overview of the main mechanisms associated with MOx NPs toxicity is presented. • Scientific advances about yeast cell responses to MOx NPs are updated and discussed.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory-CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
20
|
Chang X, Tian M, Zhang Q, Gao J, Li S, Sun Y. Nano nickel oxide promotes epithelial-mesenchymal transition through transforming growth factor β1/smads signaling pathway in A549 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1308-1317. [PMID: 32681694 DOI: 10.1002/tox.22995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Our previous study demonstrated that nano nickel oxide (NiO) induce pulmonary fibrosis in rats and collagen excessive formation in A549 cells, which mechanism was related with the increasing transforming growth factor β1 (TGF-β1) secretion. However, it remains unclear understanding the role of TGF-β1 in collagen excessive formation. Here, we found nano NiO could directly promote epithelial-mesenchymal transition (EMT) via the TGF-β1/Smads pathway in A549 cells. First, cytotoxicity induced by nano NiO has a dose- and time-dependent manner according to methylthiaozol tetrazolium assay. Second, nano NiO led to the increased contents of type I collagen (Col-I), TGF-β1, p-Smad2, p-Smad3, alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin, indicating Smads pathway activation and EMT occurence. Third, to verify whether TGF-β1 activated Smads signaling pathway and EMT occurence, A549 cells were exposed to nano NiO and TGF-β1 inhibitors (10 μM SB431542). The results showed that TGF-β1 inhibitors alleviated the nano NiO-induced cytotoxicity and Col-I excessive formation. Meanwhile, TGF-β1 inhibitors reversed the proteins expression trends of Col-I, p-Smad2, p-Smad3, α-SMA, vimentin, fibronectin, and E-cadherin. These observations suggested that EMT occurrence via TGF-β1/Smads pathway might play an important role in the collagen excessive formation induced by nano NiO in A549 cells.
Collapse
Affiliation(s)
- Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinxia Gao
- Institute of Occupational Disease Control and Prevention, Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Sheng Li
- Institute of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Oxidative Potential Induced by Ambient Particulate Matters with Acellular Assays: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8111410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acellular assays of oxidative potential (OP) induced by ambient particulate matters (PMs) are of great significance in screening for toxicity in PMs. In this review, several typical OP measurement techniques, including the respiratory tract lining fluid assay (RTLF), ascorbate depletion assay (AA), dithiothreitol assay (DTT), chemiluminescent reductive acridinium triggering (CRAT), dichlorofluorescin assay (DCFH) and electron paramagnetic/spin resonance assay (EPR/ESR) are discussed and their sensitivity to different PMs species composition, PMs size distribution and seasonality is compared. By comparison, the DTT assay tends to be the preferred method providing a more comprehensive measurement with transition metals and quinones accumulated in the fine PMs fraction. Specific transition metals (i.e., Mn, Cu, Fe) and quinones are found to contribute OPDTT directly whereas the redox properties of PMs species may be changed by the interactions between themselves. The selection of the appropriate OP measurement methods and the accurate analysis of the relationship between the methods and PM components is conducive to epidemiological researches which are related with oxidative stress induced by PMs exposure.
Collapse
|
22
|
Ahmad F, Muhmood T, Mahmood A. Deciphering the mechanism of hafnium oxide nanoparticles perturbation in the bio-physiological microenvironment of catalase. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abbf60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Nanoparticles (NPs) are extensively being used in state-of-the-art nano-based therapies, modern electronics, and consumer products, so can be released into the environment with enhancement interaction with humans. Hence, the exposures to these multifunctional NPs lead to changes in protein structure and functionality, raising serious health issues. This study thoroughly investigated the interaction and adsorption of catalase (CAT) with HfO2-NPs by circular dichroism (CD), Fourier transform infrared (FTIR), absorption, and fluorescence spectroscopic techniques. The results indicate that HfO2 NPs cause fluorescence quenching in CAT by a static quenching mechanism. The negative values of Vant Hoff thermodynamic expressions (ΔH
o
, ΔS
o
, and ΔG
o
) corroborate the spontaneity and exothermic nature of static quenching driven by van der Waals forces and hydrogen bonding. Also, FTIR, UV-CD, and UV–visible spectroscopy techniques confirmed that HfO2 NPs binding could induce microenvironment perturbations leading to secondary and tertiary conformation changes in CAT. Furthermore, synchronous fluorescence spectroscopy confirmed the significant changes in the microenvironment around tryptophan (Trp) residue caused by HfO2 NPs. The time depending denaturing of CAT biochemistry through HfO2-NPs was investigated by assaying catalase activity elucidates the potential toxic action of HfO2-NPs at the macromolecular level. Briefly, this provides an empathetic knowledge of the nanotoxicity and likely health effects of HfO2 NPs exposure.
Collapse
|
23
|
You DJ, Lee HY, Taylor-Just AJ, Linder KE, Bonner JC. Sex differences in the acute and subchronic lung inflammatory responses of mice to nickel nanoparticles. Nanotoxicology 2020; 14:1058-1081. [PMID: 32813574 DOI: 10.1080/17435390.2020.1808105] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nickel nanoparticles (NiNPs) are increasingly used in nanotechnology applications, yet information on sex differences in NiNP-induced lung disease is lacking. The goal of this study was to explore mechanisms of susceptibility between male and female mice after acute or subchronic pulmonary exposure to NiNPs. For acute exposure, male and female mice received a single dose of NiNPs with or without LPS by oropharyngeal aspiration and were necropsied 24 h later. For subchronic exposure, mice received NiNPs with or without LPS six times over 3 weeks prior to necropsy. After acute exposure to NiNPs and LPS, male mice had elevated cytokines (CXCL1 and IL-6) and more neutrophils in bronchoalveolar lavage fluid (BALF), along with greater STAT3 phosphorylation in lung tissue. After subchronic exposure to NiNPs and LPS, male mice exhibited increased monocytes in BALF. Moreover, subchronic exposure of male mice to NiNP only induced higher CXCL1 and CCL2 in BALF along with increased alveolar infiltrates and CCL2 in lung tissue. STAT1 in lung tissue was induced by subchronic exposure to NiNPs in females but not males. Males had a greater induction of IL-6 mRNA in liver after acute exposure to NiNPs and LPS, and greater CCL2 mRNA in liver after subchronic NiNP exposure. These data indicate that susceptibility of males to acute lung inflammation involves enhanced neutrophilia with increased CXCL1 and IL-6/STAT3 signaling, whereas susceptibility to subchronic lung inflammation involves enhanced monocytic infiltration with increased CXCL1 and CCL2. STAT transcription factors appear to play a role in these sex differences. This study demonstrates sex differences in the lung inflammatory response of mice to NiNPs that has implications for human disease.
Collapse
Affiliation(s)
- Dorothy J You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexia J Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Keith E Linder
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
24
|
Nedder M, Boland S, Devineau S, Zerrad-Saadi A, Rogozarski J, Lai-Kuen R, Baya I, Guibourdenche J, Vibert F, Chissey A, Gil S, Coumoul X, Fournier T, Ferecatu I. Uptake of Cerium Dioxide Nanoparticles and Impact on Viability, Differentiation and Functions of Primary Trophoblast Cells from Human Placenta. NANOMATERIALS 2020; 10:nano10071309. [PMID: 32635405 PMCID: PMC7407216 DOI: 10.3390/nano10071309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
The human placenta is at the interface between maternal and fetal circulations, and is crucial for fetal development. The nanoparticles of cerium dioxide (CeO2 NPs) from air pollution are an unevaluated risk during pregnancy. Assessing the consequences of placenta exposure to CeO2 NPs could contribute to a better understanding of NPs’ effect on the development and functions of the placenta and pregnancy outcome. We used primary villous cytotrophoblasts purified from term human placenta, with a wide range of CeO2 NPs concentrations (0.1–101 μg/cm2) and exposure time (24–72 h), to assess trophoblast uptake, toxicity and impact on trophoblast differentiation and endocrine function. We have shown the capacity of both cytotrophoblasts and syncytiotrophoblasts to internalize CeO2 NPs. CeO2 NPs affected trophoblast metabolic activity in a dose and time dependency, induced caspase activation and a LDH release in the absence of oxidative stress. CeO2 NPs decreased the fusion capacity of cytotrophoblasts to form a syncytiotrophoblast and disturbed secretion of the pregnancy hormones hCG, hPL, PlGF, P4 and E2, in accordance with NPs concentration. This is the first study on the impact of CeO2 NPs using human primary trophoblasts that decrypts their toxicity and impact on placental formation and functions.
Collapse
Affiliation(s)
- Margaux Nedder
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Sonja Boland
- BFA, Université de Paris, UMR 8251, CNRS, F-75013 Paris, France; (S.B.); (S.D.)
| | - Stéphanie Devineau
- BFA, Université de Paris, UMR 8251, CNRS, F-75013 Paris, France; (S.B.); (S.D.)
| | - Amal Zerrad-Saadi
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Jasmina Rogozarski
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - René Lai-Kuen
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMS 025—CNRS UMS 3612, F-75006 Paris, France;
| | - Ibtissem Baya
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Jean Guibourdenche
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
- Assistance Publique—Hôpitaux de Paris, Hôpital Cochin, Service d’hormonologie, F-75014 Paris, France
| | - Francoise Vibert
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Audrey Chissey
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Sophie Gil
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Xavier Coumoul
- Université de Paris, INSERM UMR-S 1124, F-75006 Paris, France;
| | - Thierry Fournier
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Ioana Ferecatu
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
- Correspondence: ; Tel.: +33-1-53-73-96-05; Fax: +33-1-44-07-39-92
| |
Collapse
|
25
|
Comunian S, Dongo D, Milani C, Palestini P. Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19's Morbidity and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4487. [PMID: 32580440 PMCID: PMC7345938 DOI: 10.3390/ijerph17124487] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Sars-cov-2 virus (Covid-19) is a member of the coronavirus family and is responsible for the pandemic recently declared by the World Health Organization. A positive correlation has been observed between the spread of the virus and air pollution, one of the greatest challenges of our millennium. Covid-19 could have an air transmission and atmospheric particulate matter (PM) could create a suitable environment for transporting the virus at greater distances than those considered for close contact. Moreover, PM induces inflammation in lung cells and exposure to PM could increase the susceptibility and severity of the Covid-19 patient symptoms. The new coronavirus has been shown to trigger an inflammatory storm that would be sustained in the case of pre-exposure to polluting agents. In this review, we highlight the potential role of PM in the spread of Covid-19, focusing on Italian cities whose PM daily concentrations were found to be higher than the annual average allowed during the months preceding the epidemic. Furthermore, we analyze the positive correlation between the virus spread, PM, and angiotensin-converting enzyme 2 (ACE2), a receptor involved in the entry of the virus into pulmonary cells and inflammation.
Collapse
Affiliation(s)
- Silvia Comunian
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
| | | | - Chiara Milani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
26
|
He W, Peng H, Ma J, Wang Q, Li A, Zhang J, Kong H, Li Q, Sun Y, Zhu Y. Autophagy changes in lung tissues of mice at 30 days after carbon black-metal ion co-exposure. Cell Prolif 2020; 53:e12813. [PMID: 32515860 PMCID: PMC7377941 DOI: 10.1111/cpr.12813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Accumulating studies have investigated the PM2.5-induced pulmonary toxicity, while gaps still remain in understanding its toxic mechanism. Due to its high specific surface area and adsorption capacity similar to nanoparticles, PM2.5 acts as a significant carrier of metals in air and then leads to altered toxic effects. In this study, we aimed to use CBs and Ni as model materials to investigate the autophagy changes and pulmonary toxic effects at 30 days following intratracheal instillation of CBs-Ni mixture. MATERIALS AND METHODS Groups of mice were instilled with 100 µL normal saline (NS), 20 µg CBs, and 4 µg Ni or CBs-Ni mixture, respectively. At 7 and 30 days post-instillation, all the mice were weighed and then sacrificed. The evaluation system was composed of the following: (a) autophagy and lysosomal function assessment, (b) trace element biodistribution observation in lungs, (c) pulmonary lavage biomedical analysis, (d) lung histopathological evaluation, (e) coefficient analysis of major organs and (f) CBs-Ni interaction and cell proliferation assessment. RESULTS We found that after CBs-Ni co-exposure, no obvious autophagy and lysosomal dysfunction or pulmonary toxicity was detected, along with complete clearance of Ni from lung tissues as well as recovery of biochemical indexes to normal range. CONCLUSIONS We conclude that the damaged autophagy and lysosomal function, as well as physiological function, was repaired at 30 days after exposure of CBs-Ni. Our findings provide a new idea for scientific assessment of the impact of fine particles on environment and human health, and useful information for the comprehensive treatment of air pollution.
Collapse
Affiliation(s)
- Wei He
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongzhen Peng
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jifei Ma
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Aiguo Li
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jichao Zhang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Huating Kong
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qingnuan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Sun
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ying Zhu
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
León-Mejía G, Quintana-Sosa M, de Moya Hernandez Y, Rodríguez IL, Trindade C, Romero MA, Luna-Carrascal J, Ortíz LO, Acosta-Hoyos A, Ruiz-Benitez M, Valencia KF, Rohr P, da Silva J, Henriques JAP. DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20516-20526. [PMID: 32246425 DOI: 10.1007/s11356-020-08533-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Diesel engine exhaust (DEE) is a complex mixture of toxic gases, halogenated aromatic hydrocarbons, alkyl polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons, benzene derivatives, metals and diesel exhaust particles (DEPs) generated from the incomplete combustion of diesel fuel. Many of the compounds in this mixture can cause oxidative damage to DNA and are considered carcinogenic for humans. Further, chronic DEE exposure increases risks of cardiovascular and pulmonary diseases. Despite these pervasive health risks, there is limited and inconsistent information regarding genetic factors conferring susceptibility or resistance to DEE genotoxicity. The present study evaluated the effects of polymorphisms in two base excision repair (BER) genes (OGG1 Ser326Cys and XRCC1 Arg280His), one homologous recombination (HRR) gene (XRCC3 Thr241Met) and two xenobiotic metabolism genes (GSTM1 and GSTT1) on the genotoxicity profiles among 123 mechanics exposed to workplace DEE. Polymorphisms were determined by PCR-RFLP. In comet assay, individuals with the GSTT1 null genotype demonstrated significantly greater % tail DNA in lymphocytes than those with non-null genotype. In contrast, these null individuals exhibited significantly lower frequencies of binucleated (BN) cells and nuclear buds (NBUDs) in buccal cells than non-null individuals. Heterozygous hOGG1 326 individuals (hOGG1 326 Ser/Cys) exhibited higher buccal cell NBUD frequency than hOGG1 326 Ser/Ser individuals. Individuals carrying the XRCC3 241 Met/Met polymorphism also showed significantly higher buccal cell NBUD frequencies than those carrying the XRCC3 241 Thr/Thr polymorphism. We found a high flow of particulate matter with a diameter of < 2.5 μm (PM2.5) in the workplace. The most abundant metals in DEPs were iron, copper, silicon and manganese as detected by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX). Scanning electron microscopy (SEM-EDS) revealed particles with diameters smaller than PM2.5, including nanoparticles forming aggregates and agglomerates. Our results demonstrate the genotoxic effects of DEE and the critical influence of genetic susceptibility conferred by DNA repair and metabolic gene polymorphisms that shed light into the understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| | - Milton Quintana-Sosa
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | | | - Ibeth Luna Rodríguez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Cristiano Trindade
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Marco Anaya Romero
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Jaime Luna-Carrascal
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Ludis Oliveros Ortíz
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Karen Franco Valencia
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Paula Rohr
- Laboratório de Genética, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Campus Carreiros, Av. Itália km 8, Rio Grande, RS, 96201-900, Brazil
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Cao D, Shu X, Zhu D, Liang S, Hasan M, Gong S. Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. NANO CONVERGENCE 2020; 7:14. [PMID: 32328852 PMCID: PMC7181468 DOI: 10.1186/s40580-020-00224-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
ZnO nanoparticles are widely used in biological, chemical, and medical fields, but their toxicity impedes their wide application. In this study, pristine ZnO NPs (~ 7 nm; ~ 18 nm; ~ 49 nm) and lipid-coated ZnO NPs (~ 13 nm; ~ 22 nm; ~ 52 nm) with different morphologies were prepared by chemical method and characterized by TEM, XRD, HRTEM, FTIR, and DLS. Our results showed that the lipid-coated ZnO NPs (~ 13 nm; ~ 22 nm; ~ 52 nm) groups improved the colloidal stability, prevented the aggregation and dissolution of nanocrystal particles in the solution, inhibited the dissolution of ZnO NPs into Zn2+ cations, and reduced cytotoxicity more efficiently than the pristine ZnO NPs (~ 7 nm; ~ 18 nm; ~ 49 nm). Compared to the lipid-coated ZnO NPs, pristine ZnO NPs (~ 7 nm; ~ 18 nm; ~ 49 nm) could dose-dependently destroy the cells at low concentrations. At the same concentration, ZnO NPs (~ 7 nm) exhibited the highest cytotoxicity. These results could provide a basis for the toxicological study of the nanoparticles and direct future investigations for preventing strong aggregation, reducing the toxic effects of lipid-bilayer and promoting the uptake of nanoparticles by HeLa cells efficiently.
Collapse
Affiliation(s)
- Dingding Cao
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Shengli Liang
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| | - Sheng Gong
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510220 China
| |
Collapse
|
29
|
Ziglari T, Anderson DS, Holian A. Determination of the relative contribution of the non-dissolved fraction of ZnO NP on membrane permeability and cytotoxicity. Inhal Toxicol 2020; 32:86-95. [PMID: 32216500 DOI: 10.1080/08958378.2020.1743394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: While the role of lysosomal membrane permeabilization (LMP) in NP-induced inflammatory responses has been recognized, the underlying mechanism of LMP is still unclear. The assumption has been that zinc oxide (ZnO)-induced LMP is due to Zn2+; however, little is known about the role of ZnO nanoparticles (NP) in toxicity.Methods: We examined the contribution of intact ZnO NP on membrane permeability using red blood cells (RBC) and undifferentiated THP-1 cells as models of particle-membrane interactions to simulate ZnO NP-lysosomal membrane interaction. The integrity of plasma membranes was evaluated by transmission electron microscopy (TEM) and confocal microscopy. ZnO NP dissolution was determined using ZnAF-2F, Zn2+ specific probe. The stability of ZnO NP inside the phagolysosomes of phagocytic cells, differentiated THP-1, alveolar macrophages, and bone marrow-derived macrophages, was determined.Results: ZnO NP caused significant hemolysis and cytotoxicity under conditions of negligible dissolution. Fully ionized Zn2SO4 caused slight hemolysis, while partially ionized ZnO induced significant hemolysis. Confocal microscopy and TEM images did not reveal membrane disruption in RBC and THP-1 cells, respectively. ZnO NP remained intact inside the phagolysosomes after a 4 h incubation with phagocytic cells.Conclusions: These studies demonstrate the ability of intact ZnO NP to induce membrane permeability and cytotoxicity without the contribution of dissolved Zn2+, suggesting that ZnO NP toxicity does not necessarily depend upon Zn2+. The stability of ZnO NP inside the phagolysosomes suggests that LMP is the result of the toxic effect of intact ZnO NP on phagolysosomal membranes.
Collapse
Affiliation(s)
- Tahereh Ziglari
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Donald S Anderson
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
30
|
Cheng Z, Liang X, Liang S, Yin N, Faiola F. A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis. J Environ Sci (China) 2020; 87:194-204. [PMID: 31791492 DOI: 10.1016/j.jes.2019.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Air pollution has been linked to many health issues, including skin conditions, especially in children. Among all the atmospheric pollutants, ultrafine particles have been deemed very dangerous since they can readily penetrate the lungs and skin, and be absorbed into the bloodstream. Here, we employed a human embryonic stem cell (hESC)-based differentiation system towards keratinocytes, to test the effects of ultrafine carbon particles, which mimic ambient ultrafine particles, at environment related concentrations. We found that 10 ng/mL to 10 μg/mL ultrafine carbon particles down-regulated the expression of the pluripotency marker SOX2 in hESCs. Moreover, 1 μg/mL to 10 μg/mL carbon particle treatments disrupted the keratinocyte differentiation, and up-regulated inflammation- and psoriasis-related genes, such as IL-1β, IL-6, CXCL1, CXCL2, CXCL3, CCL20, CXCL8, and S100A7 and S100A9, respectively. Overall, our results provide a new insight into the potential developmental toxicity of atmospheric ultrafine particles.
Collapse
Affiliation(s)
- Zhanwen Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Jahangirnejad R, Goudarzi M, Kalantari H, Najafzadeh H, Rezaei M. Subcellular Organelle Toxicity Caused by Arsenic Nanoparticles in Isolated Rat Hepatocytes. THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2020; 11:41-52. [PMID: 31905194 PMCID: PMC7024596 DOI: 10.15171/ijoem.2020.1614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/24/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Arsenic, an environmental pollutant, is a carcinogenic metalloid and also an anticancer agent. OBJECTIVE To evaluate the toxicity of arsenic nanoparticles in rat hepatocytes. METHODS Freshly isolated rat hepatocytes were exposed to 0, 20, 40, and 100 μM of arsenic nanoparticles and its bulk counterpart. Their viability, reactive oxygen species level, glutathione depletion, mitochondrial and lysosomal damage, and apoptosis were evaluated. RESULTS By all concentrations, lysosomal damage and apoptosis were clearly evident in hepatocytes exposed to arsenic nanoparticles. Evaluation of mitochondria and lysosomes revealed that lysosomes were highly damaged. CONCLUSION Exposure to arsenic nanoparticles causes apoptosis and organelle impairment. The nanoparticles have potentially higher toxicity than the bulk arsenic. Lysosomes are highly affected. It seems that, instead of mitochondria, lysosomes are the first target organelles involved in the toxicity induced by arsenic nanoparticles.
Collapse
Affiliation(s)
- Rashid Jahangirnejad
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Najafzadeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - Mohsen Rezaei
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
32
|
Analysis of Particulate Matter Concentration Variability and Origin in Selected Urban Areas in Poland. SUSTAINABILITY 2019. [DOI: 10.3390/su11205735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The work presents the results of research and analyses related to measurements of concentration and chemical composition of three size fractions of particulate matter (PM), PM10, PM2.5 and PM1.0. The studies were conducted in the years 2014–2016 during both the heating and non-heating season in two Polish cities: Wrocław and Poznań. The studies indicate that in Wrocław and Poznań, the highest annual concentrations of particulate matter (PM1.0, PM2.5, and PM10) were observed in 2016, and the mean concentrations were respectively equal to 18.16 μg/m3, 30.88 μg/m3 and 41.08 μg/m3 (Wrocław) and 8.5 μg/m3, 30.8 μg/m3 and 32.9 μg/m3 (Poznań). Conducted analyses of the chemical composition of the particulate matter also indicated higher concentrations of organic and elemental carbon (OC and EC), and water-soluble ions in a measurement series which took place in the heating season were studied. Analyses with the use of principal component analysis (PCA) indicated a dominating percentage of fuel combustion processes as sources of particulate matter emission in the areas considered in this research. Acquired results from these analyses may indicate the influence of secondary aerosols on air quality. In the summer season, a significant role could be also played by an influx of pollutants—mineral dust—originating from outside the analyzed areas or from the resuspension of mineral and soil dust.
Collapse
|
33
|
Nagy A, Robbins NL. The hurdles of nanotoxicity in transplant nanomedicine. Nanomedicine (Lond) 2019; 14:2749-2762. [DOI: 10.2217/nnm-2019-0192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanomedicine has matured significantly in the past 20 years and a number of nanoformulated therapies are cleared by regulatory agencies for use across the globe. Transplant medicine is one area that has significantly benefited from the advancement of nanomedicine in recent times. However, while nanoparticle-based therapies have improved toxicological profiles of some drugs, there are still a number of aspects regarding the biocompatibility and toxicity of nanotherapies that require further research. The goal of this article is to review toxicological profiles of immunosuppressant therapies and their conversion into nanomedicine formulations as well as introduce future challenges associated with current in vitro and in vivo toxicological models.
Collapse
Affiliation(s)
- Amber Nagy
- 59th Medical Wing, Office of Science & Technology, Joint Base San Antonio-Lackland, TX 78236, USA
| | - Nicholas L Robbins
- 59th Medical Wing, Office of Science & Technology, Joint Base San Antonio-Lackland, TX 78236, USA
| |
Collapse
|
34
|
Yokel RA, Hancock ML, Cherian B, Brooks AJ, Ensor ML, Vekaria HJ, Sullivan PG, Grulke EA. Simulated biological fluid exposure changes nanoceria's surface properties but not its biological response. Eur J Pharm Biopharm 2019; 144:252-265. [PMID: 31563633 DOI: 10.1016/j.ejpb.2019.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023]
Abstract
Nanoscale cerium dioxide (nanoceria) has industrial applications, capitalizing on its catalytic, abrasive, and energy storage properties. It auto-catalytically cycles between Ce3+ and Ce4+, giving it pro-and anti-oxidative properties. The latter mediates beneficial effects in models of diseases that have oxidative stress/inflammation components. Engineered nanoparticles become coated after body fluid exposure, creating a corona, which can greatly influence their fate and effects. Very little has been reported about nanoceria surface changes and biological effects after pulmonary or gastrointestinal fluid exposure. The study objective was to address the hypothesis that simulated biological fluid (SBF) exposure changes nanoceria's surface properties and biological activity. This was investigated by measuring the physicochemical properties of nanoceria with a citric acid coating (size; morphology; crystal structure; surface elemental composition, charge, and functional groups; and weight) before and after exposure to simulated lung, gastric, and intestinal fluids. SBF-exposed nanoceria biological effect was assessed as A549 or Caco-2 cell resazurin metabolism and mitochondrial oxygen consumption rate. SBF exposure resulted in loss or overcoating of nanoceria's surface citrate, greater nanoceria agglomeration, deposition of some SBF components on nanoceria's surface, and small changes in its zeta potential. The engineered nanoceria and SBF-exposed nanoceria produced no statistically significant changes in cell viability or cellular oxygen consumption rates.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States.
| | - Matthew L Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Benjamin Cherian
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Alexandra J Brooks
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Marsha L Ensor
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States.
| | - Hemendra J Vekaria
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0509, United States.
| | - Patrick G Sullivan
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0509, United States.
| | - Eric A Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| |
Collapse
|
35
|
Abstract
OBJECTIVE Exposure to airborne particulate matter (PM) is estimated to cause millions of premature deaths annually. This work conveys known routes of exposure to PM and resultant health effects. METHODS A review of available literature. RESULTS Estimates for daily PM exposure are provided. Known mechanisms by which insoluble particles are transported and removed from the body are discussed. Biological effects of PM, including immune response, cytotoxicity, and mutagenicity, are reported. Epidemiological studies that outline the systemic health effects of PM are presented. CONCLUSION While the integrated, per capita, exposure of PM for a large fraction of the first-world may be less than 1 mg per day, links between several syndromes, including attention deficit hyperactivity disorder (ADHD), autism, loss of cognitive function, anxiety, asthma, chronic obstructive pulmonary disease (COPD), hypertension, stroke, and PM exposure have been suggested. This article reviews and summarizes such links reported in the literature.
Collapse
|
36
|
|
37
|
Stuttgen V, Giffney HE, Anandan A, Alabdali A, Twarog C, Belhout SA, O Loughlin M, Podhorska L, Delaney C, Geoghegan N, Mc-Fadden J, Alhadhrami NA, Fleming A, Phadke S, Yadav R, Fattah S, McCartney F, Alsharif SA, McCaul J, Singh K, Erikandath S, O Meara F, Wychowaniec JK, Cutrona MB, MacMaster G, Reynolds AL, Gaines S, Hogg B, Farrelly M, D Alton M, Coulahan P, Bhattacharjee S. The UCD nanosafety workshop (03 December 2018): towards developing a consensus on safe handling of nanomaterials within the Irish university labs and beyond - a report. Nanotoxicology 2019; 13:717-732. [PMID: 31111769 DOI: 10.1080/17435390.2019.1621402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Careful handling of the nanomaterials (NMs) in research labs is crucial to ensure a safe working environment. As the largest university in Ireland, University College Dublin (UCD) has invested significant resources to update researchers working with NMs. Due to sizes often <100 nm, the NMs including nanoparticles, harbor unprecedented materialistic properties, for example, enhanced reactivity, conductivity, fluorescence, etc. which albeit conferring the NMs an edge over bulk materials regarding the applied aspects; depending on the dose, also render them to be toxic. Thus, a set of regulatory guidelines have emerged regarding safe handling of the NMs within occupational set-ups. Unfortunately, the current regulations based on the toxic chemicals and carcinogens are often confusing, lack clarity, and difficult to apply for the NMs. As a research-intensive university, a diverse range of research activities occur within the UCD labs, and it is difficult, at times impossible, for the UCD Safety, Insurance, Operational Risk & Compliance (SIRC) office to develop a set of common guidelines and cater throughout all its labs conducting research with the NMs. Hence, a necessity for dialog and exchange of ideas was felt across the UCD which encouraged the researchers including early stage researchers (e.g. PhDs, Postdocs) from multiple schools to participate in a workshop held on the 03 December 2018. The workshop tried to follow a pragmatic approach, where apart from discussing both the in vitro and in vivo scenarios, practical cases simulating situations faced frequently in the labs were discussed. This report summarizes the findings made during the workshop by this emerging critical mass in UCD.
Collapse
Affiliation(s)
- Vivien Stuttgen
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Hugh E Giffney
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Ayana Anandan
- b School of Biology and Environmental Science (SBES) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Anwar Alabdali
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Caroline Twarog
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Samir A Belhout
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Mark O Loughlin
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Lucia Podhorska
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Colm Delaney
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Niamh Geoghegan
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Jessica Mc-Fadden
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Nahlah A Alhadhrami
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Aisling Fleming
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Shreyas Phadke
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Ravi Yadav
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Sarinj Fattah
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Fiona McCartney
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Shada Ali Alsharif
- d School of Physics , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Jasmin McCaul
- e School of Biomolecular and Biomedical Science (SBBS) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Krutika Singh
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Sumesh Erikandath
- d School of Physics , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Fergal O Meara
- e School of Biomolecular and Biomedical Science (SBBS) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Jacek K Wychowaniec
- c School of Chemistry , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Meritxell B Cutrona
- b School of Biology and Environmental Science (SBES) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Gwyneth MacMaster
- b School of Biology and Environmental Science (SBES) , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Alison L Reynolds
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Susan Gaines
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Bridget Hogg
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Marc Farrelly
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Mark D Alton
- f Biomedical Facilities , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Peter Coulahan
- g Safety, Insurance, Operational Risk & Compliance (SIRC) Office , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | - Sourav Bhattacharjee
- a School of Veterinary Medicine , University College Dublin (UCD) , Belfield , Dublin , Ireland
| |
Collapse
|
38
|
In Vivo Comparative Study on Acute and Sub-acute Biological Effects Induced by Ultrafine Particles of Different Anthropogenic Sources in BALB/c Mice. Int J Mol Sci 2019; 20:ijms20112805. [PMID: 31181746 PMCID: PMC6600162 DOI: 10.3390/ijms20112805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 02/02/2023] Open
Abstract
Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 μg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.
Collapse
|
39
|
Tian M, Chang X, Zhang Q, Li C, Li S, Sun Y. TGF-β1 mediated MAPK signaling pathway promotes collagen formation induced by Nano NiO in A549 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:719-727. [PMID: 30810263 DOI: 10.1002/tox.22738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) could induce pulmonary fibrosis, however, the mechanisms are still unknown. The aim of the present study was to explore the roles of transforming growth factor-β1 (TGF-β1), mitogen-activated protein kinase (MAPK) pathway and MMPs/TIMPs balance in Nano NiO-induced pulmonary fibrosis. For that purpose, we first established Nano NiO-induced human lung adenocarcinoma epithelial cells (A549 cells) model of collagen excessive formation through detecting the levels of hydroxyproline (Hyp) and type I collagen (Col-I). Then the protein levels of TGF-β1, MAPKs, and MMPs/TIMPs were assessed by Western blot. The results showed that Nano NiO resulted in the increased contents of Hyp, Col-I, and TGF-β1, the MAPK pathway activation and MMPs/TIMPs imbalance with a dose-dependent manner. In addition, to investigate whether TGF-β1 mediated MAPK signaling pathway, A549 cells were treated by 100 μg/mL Nano NiO combined with TGF-β1, p38 MAPK, and ERK1/2 inhibitors (10 μM SB431542, 10 μM SB203580, and 10 μM U0126), respectively. We found that MAPK signal pathway was suppressed by TGF-β1 inhibitor. Meanwhile, the increased contents of Hyp and Col-I, and MMPs/TIMPs imbalance were alleviated by the p38 MAPK and ERK1/2 inhibitors, respectively. These findings indicated that the MAPK pathway and MMPs/TIMPs imbalance were involved in collagen excessive formation induced by Nano NiO.
Collapse
Affiliation(s)
- Minmin Tian
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
40
|
Spadaro L, Arena F, Di Chio R, Palella A. Definitive Assessment of the Level of Risk of Exhausted Catalysts: Characterization of Ni and V Contaminates at the Limit of Detection. Top Catal 2018. [DOI: 10.1007/s11244-018-1118-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Trovato MC, Andronico D, Sciacchitano S, Ruggeri RM, Picerno I, Di Pietro A, Visalli G. Nanostructures: between natural environment and medical practice. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:295-307. [PMID: 30205650 DOI: 10.1515/reveh-2017-0036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Abstract
Nanoparticles (NPs) are small structures under 100 nm in dimension. Interrelationships among the morphological parameters and toxicity of NPs have been the focus of several investigations that assessed potential health risk in environmentally-exposed subjects and the realistic uses of NPs in medical practice. In the current review, we provide a summary of the cellular mechanisms of membrane-mediated transport, including old and novel molecules that transport nanostructures across cellular membranes. The effects of geochemical exposure to natural NPs are evaluated through epidemiological data and cancerous pathways activated by Fe2+ NPs. Specifically, we discuss screening for papillary thyroid carcinomas in the inhabitants of the Sicilian volcanic area surrounding Mount Etna to compare the incidence of thyroid carcinoma in this population. Lastly, considering the increased production of carbon nanotubes (CNTs), we examine the toxicity and potential use of these engineered NPs in drug delivery of an extensive amount of therapeutic and imaging molecules (theranosis) that can be conjugated to CNTs.
Collapse
Affiliation(s)
- Maria Concetta Trovato
- Department of Clinical and Experimental Medicine, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Daniele Andronico
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Etneo, Sezione di Catania, Piazza Roma 2, Catania, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena n. 324, Rome, Italy
- Laboratorio di Ricerca Biomedica, Fondazione Università Niccolò Cusano per la Ricerca Medico Scientifica, Via Don Carlo Gnocchi 3, Rome, Italy
| | - Rosaria Maddalena Ruggeri
- Department of Clinical and Experimental Medicine, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Isa Picerno
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| |
Collapse
|
42
|
Sousa CA, Soares HMVM, Soares EV. Nickel Oxide (NiO) Nanoparticles Induce Loss of Cell Viability in Yeast Mediated by Oxidative Stress. Chem Res Toxicol 2018; 31:658-665. [PMID: 30043610 DOI: 10.1021/acs.chemrestox.8b00022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present work aimed to elucidate whether the toxic effects of nickel oxide (NiO) nanoparticles (NPs) on the yeast Saccharomyces cerevisiae were associated with oxidative stress (OS) and what mechanisms may have contributed to this OS. Cells exposed to NiO NPs accumulated superoxide anions and hydrogen peroxide, which were intracellularly generated. Yeast cells coexposed to NiO NPs and antioxidants (l-ascorbic acid and N- tert-butyl-α-phenylnitrone) showed quenching of reactive oxygen species (ROS) and increased resistance to NiO NPs, indicating that the loss of cell viability was associated with ROS accumulation. Mutants lacking mitochondrial DNA (ρ0) displayed reduced levels of ROS and increased resistance to NiO NPs, which suggested the involvement of the mitochondrial respiratory chain in ROS production. Yeast cells exposed to NiO NPs presented decreased levels of reduced glutathione (GSH). Mutants deficient in GSH1 ( gsh1Δ) or GSH2 ( gsh2Δ) genes displayed increased levels of ROS and increased sensitivity to NiO NPs, which underline the central role of GSH against NiO NPs-induced OS. This work suggests that the increased levels of intracellular ROS (probably due to the perturbation of the electron transfer chain in mitochondria) combined with the depletion of GSH pool constitute important mechanisms of NiO NPs-induced loss of cell viability in the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Cátia A Sousa
- Bioengineering Laboratory-CIETI, Chemical Engineering Department , ISEP-School of Engineering of Polytechnic Institute of Porto , Rua Dr. António Bernardino de Almeida, 431 , 4249-015 Porto , Portugal.,CEB-Centre of Biological Engineering , University of Minho , 4710-057 Braga , Portugal.,REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia , Universidade do Porto , Rua Dr. Roberto Frias, s/n , 4200-465 Porto , Portugal
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia , Universidade do Porto , Rua Dr. Roberto Frias, s/n , 4200-465 Porto , Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory-CIETI, Chemical Engineering Department , ISEP-School of Engineering of Polytechnic Institute of Porto , Rua Dr. António Bernardino de Almeida, 431 , 4249-015 Porto , Portugal.,CEB-Centre of Biological Engineering , University of Minho , 4710-057 Braga , Portugal
| |
Collapse
|
43
|
Sarwar F, Malik RN, Chow CW, Alam K. Occupational exposure and consequent health impairments due to potential incidental nanoparticles in leather tanneries: An evidential appraisal of south Asian developing countries. ENVIRONMENT INTERNATIONAL 2018; 117:164-174. [PMID: 29753147 DOI: 10.1016/j.envint.2018.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
The incidental nanoparticles' (INPs) emission at work and the consequent health impairments is a burning issue of occupational toxicology. The present study is a thorough review of available literature marking an assortment of indicators on INPs generation at leather tanneries and measurable occupational ailments. The literature reported evidences unleash a similarity between the mechanisms of leather tannery induced health damages and toxico-kinetics of incidental nanoparticles in human body. The data on physico-chemical characterization of leather tannery surface dust presents presence of stressors like heavy metals, microbes, animal fur and fibers along with organic and inorganic chemicals. Bearing same characteristics, the mechanism of INPs' induced toxicity (inflammation, increased reactive oxygen species and permeability of blood brain barrier), major target organs (lung, heart, brain, skin and liver) and health damages (cancer, DNA damage, blood coagulation, cardiac arrest, platelet alteration) are quite similar to those found among tannery workers. This review also presents the identification of the different types of potential INPs production and process sources in leather tanneries. There is no data found on Particulate size variation and consequent disparity of these characterizations has been established. However, the reported literature furnishes evidences which support the premise that there is a dire need of size based incidental particulates investigation with a special emphasis on nanoparticles.
Collapse
Affiliation(s)
- Fiza Sarwar
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Earth & Environmental Sciences, Bahria University, Islamabad, Pakistan.
| | - Riffat Naseem Malik
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Khan Alam
- Department of Physics, University of Peshawar, Pakistan
| |
Collapse
|
44
|
Evaluation of the genotoxic properties of nickel oxide nanoparticles in vitro and in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:47-53. [PMID: 30442345 DOI: 10.1016/j.mrgentox.2018.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 04/24/2018] [Accepted: 06/01/2018] [Indexed: 11/24/2022]
Abstract
Nickel-based nanoparticles (NPs) are new products with an increasing number of industrial applications that were developed in recent years. NiO NPs are present in several nanotechnological industrial products, and the characterization of their genotoxic potential is essential. The present study assessed the genotoxicity of NiO NPs in vivo and in vitro using the somatic mutation and recombination test in somatic cells of Drosophila melanogaster (SMART), the cytokinesis - block micronucleus assay (CBMN), and the comet assay in a V79 cell line. The NiO NPs used in this study were about 30 nm in mean size. Larvae of Drosophila melanogaster were exposed to 5 mL of five different concentrations (1.31, 2.62, 5.25, 10.5, and 21 mg/mL) of NiO NPs. In turn, V79 cells were treated with a concentration range of 15-2000 μg/mL NiO NPs. The SMART showed that all concentrations of NiO NPs are genotoxic to the standart (ST) cross when compared to the negative control. On the other hand, only the highest concentration (21 mg/mL) was genotoxic to the HB cross. Somatic recombination was the preferential mechanism lesions were induced in D. melanogaster. The results show that NiO NPs were mutagenic to V79 cells as assessed by the CBMN assay. Significant differences in the frequencies of micronuclei (MN) were observed using the highest NiO NP concentrations (250 and 500 μg/mL) in the 4- and 24-h treatments, but when 125 μg/mL NiO NPs was used, such difference was observed only in the 4-h exposure time. The comet assay revealed that 62, 125, 250 and 500 μg/mL NiO NPs induced a significant increase in DNA damage. The results observed in this study indicate that NiO NPs are genotoxic and mutagenic in vitro and in vivo.
Collapse
|
45
|
Yan F, Wu Y, Liu H, Wu Y, Shen H, Li W. ATF3 is positively involved in particulate matter-induced airway inflammation in vitro and in vivo. Toxicol Lett 2018; 287:113-121. [DOI: 10.1016/j.toxlet.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
|
46
|
Fisher KM, McLeish JA, Jamieson LE, Jiang J, Hopgood JR, McLaughlin S, Donaldson K, Campbell CJ. SERS as a tool for in vitro toxicology. Faraday Discuss 2018; 187:501-20. [PMID: 27032696 DOI: 10.1039/c5fd00216h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Measuring markers of stress such as pH and redox potential are important when studying toxicology in in vitro models because they are markers of oxidative stress, apoptosis and viability. While surface enhanced Raman spectroscopy is ideally suited to the measurement of redox potential and pH in live cells, the time-intensive nature and perceived difficulty in signal analysis and interpretation can be a barrier to its broad uptake by the biological community. In this paper we detail the development of signal processing and analysis algorithms that allow SERS spectra to be automatically processed so that the output of the processing is a pH or redox potential value. By automating signal processing we were able to carry out a comparative evaluation of the toxicology of silver and zinc oxide nanoparticles and correlate our findings with qPCR analysis. The combination of these two analytical techniques sheds light on the differences in toxicology between these two materials from the perspective of oxidative stress.
Collapse
Affiliation(s)
- Kate M Fisher
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| | - Jennifer A McLeish
- MRC Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Lauren E Jamieson
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| | - Jing Jiang
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| | - James R Hopgood
- Institute for Digital Communications, Joint Research Institute for Signal and Image Processing, School of Engineering, University of Edinburgh, EH9 3JL, UK
| | - Stephen McLaughlin
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Ken Donaldson
- MRC Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Colin J Campbell
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
47
|
Sisler JD, Shaffer J, Soo JC, LeBouf RF, Harper M, Qian Y, Lee T. In vitro toxicological evaluation of surgical smoke from human tissue. J Occup Med Toxicol 2018; 13:12. [PMID: 29619075 PMCID: PMC5879936 DOI: 10.1186/s12995-018-0193-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
Background Operating room personnel have the potential to be exposed to surgical smoke, the by-product of using electrocautery or laser surgical device, on a daily basis. Surgical smoke is made up of both biological by-products and chemical pollutants that have been shown to cause eye, skin and pulmonary irritation. Methods In this study, surgical smoke was collected in real time in cell culture media by using an electrocautery surgical device to cut and coagulate human breast tissues. Airborne particle number concentration and particle distribution were determined by direct reading instruments. Airborne concentration of selected volatile organic compounds (VOCs) were determined by evacuated canisters. Head space analysis was conducted to quantify dissolved VOCs in cell culture medium. Human small airway epithelial cells (SAEC) and RAW 264.7 mouse macrophages (RAW) were exposed to surgical smoke in culture media for 24 h and then assayed for cell viability, lactate dehydrogenase (LDH) and superoxide production. Results Our results demonstrated that surgical smoke-generated from human breast tissues induced cytotoxicity and LDH increases in both the SAEC and RAW. However, surgical smoke did not induce superoxide production in the SAEC or RAW. Conclusion These data suggest that the surgical smoke is cytotoxic in vitro and support the previously published data that the surgical smoke may be an occupational hazard to healthcare workers.
Collapse
Affiliation(s)
- Jennifer D Sisler
- 1Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, West Virginia 26505 USA
| | - Justine Shaffer
- 1Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, West Virginia 26505 USA
| | - Jhy-Charm Soo
- 2Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, West Virginia 26505 USA
| | - Ryan F LeBouf
- 3Field Study Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, West Virginia 26505 USA
| | - Martin Harper
- 2Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, West Virginia 26505 USA.,Zefon International, Inc., 5350 SW 1st Lane, Ocala, FL USA.,5Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL USA
| | - Yong Qian
- 1Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, West Virginia 26505 USA
| | - Taekhee Lee
- 2Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, West Virginia 26505 USA
| |
Collapse
|
48
|
Sheehan B, Murphy F, Mullins M, Furxhi I, Costa AL, Simeone FC, Mantecca P. Hazard Screening Methods for Nanomaterials: A Comparative Study. Int J Mol Sci 2018; 19:ijms19030649. [PMID: 29495342 PMCID: PMC5877510 DOI: 10.3390/ijms19030649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022] Open
Abstract
Hazard identification is the key step in risk assessment and management of manufactured nanomaterials (NM). However, the rapid commercialisation of nano-enabled products continues to out-pace the development of a prudent risk management mechanism that is widely accepted by the scientific community and enforced by regulators. However, a growing body of academic literature is developing promising quantitative methods. Two approaches have gained significant currency. Bayesian networks (BN) are a probabilistic, machine learning approach while the weight of evidence (WoE) statistical framework is based on expert elicitation. This comparative study investigates the efficacy of quantitative WoE and Bayesian methodologies in ranking the potential hazard of metal and metal-oxide NMs—TiO2, Ag, and ZnO. This research finds that hazard ranking is consistent for both risk assessment approaches. The BN and WoE models both utilize physico-chemical, toxicological, and study type data to infer the hazard potential. The BN exhibits more stability when the models are perturbed with new data. The BN has the significant advantage of self-learning with new data; however, this assumes all input data is equally valid. This research finds that a combination of WoE that would rank input data along with the BN is the optimal hazard assessment framework.
Collapse
Affiliation(s)
- Barry Sheehan
- Department of Accounting and Finance, University of Limerick, V94PH93 Limerick, Ireland.
| | - Finbarr Murphy
- Department of Accounting and Finance, University of Limerick, V94PH93 Limerick, Ireland.
| | - Martin Mullins
- Department of Accounting and Finance, University of Limerick, V94PH93 Limerick, Ireland.
| | - Irini Furxhi
- Department of Accounting and Finance, University of Limerick, V94PH93 Limerick, Ireland.
| | - Anna L Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza (RA), Italy.
| | - Felice C Simeone
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza (RA), Italy.
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, Particulate Matter and Health Risk (POLARIS) Research Centre, University of Milano Bicocca, 20126 Milano, Italy.
| |
Collapse
|
49
|
Saquib Q, Siddiqui MA, Ahmad J, Ansari SM, Faisal M, Wahab R, Alatar AA, Al-Khedhairy AA, Musarrat J. Nickel Oxide Nanoparticles Induced Transcriptomic Alterations in HEPG2 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:163-174. [PMID: 29453538 DOI: 10.1007/978-3-319-72041-8_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nickel oxide nanoparticles (NiO-NPs) are increasingly used and concerns have been raised on its toxicity. Although a few studies have reported the toxicity of NiO-NPs, a comprehensive understanding of NiO-NPs toxicity in human cells is still lagging. In this study, we integrated transcriptomic approach and genotoxic evidence to depict the mechanism of NiO-NPs toxicity in human hepatocellular carcinoma (HepG2) cells. DNA damage analysis was done using comet assay, which showed 26-fold greater tail moment in HepG2 cells at the highest concentration of 100 μg/ml. Flow cytometric analysis showed concentration dependent enhancement in intracellular reactive oxygen species (ROS). Real-time PCR analysis of apoptotic (p53, bax, bcl2) and oxidative stress (SOD1) genes showed transcriptional upregulation. Transcriptome analysis using qPCR array showed over expression of mRNA transcripts related to six different cellular pathways. Our data unequivocally suggests that NiO-NPs induces oxidative stress, DNA damage, apoptosis and transcriptome alterations in HepG2 cells.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia.
| | - Maqsood A Siddiqui
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Javed Ahmad
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Sabiha M Ansari
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Rizwan Wahab
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- Department of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
50
|
Yu S, Liu F, Wang C, Zhang J, Zhu A, Zou L, Han A, Li J, Chang X, Sun Y. Role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles in rats. Mol Med Rep 2017; 17:3133-3139. [PMID: 29257258 DOI: 10.3892/mmr.2017.8226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles (nano‑NiO) in rats. Male Wistar rats received saline (control), nano‑NiO [0.015, 0.06 or 0.24 mg/kg body weight (b.w.)] or micro‑NiO (0.24 mg/kg b.w.) by intratracheal instilling twice a week for 6 weeks. Liver tissues were then collected and examined for biomarkers of nitrative and oxidative stress, as well as mRNA expression of heme oxygenase (HO)‑1 and metallothionein (MT)‑1. The results demonstrated that the NiO exposure groups had increased liver wet weight and coefficient to body weight, as well as liver pathological changes, evidenced as cellular edema, hepatic sinus disappeara-nce and binucleated hepatocytes. The activities of total nitric oxide synthase and inducible nitric oxide synthase, and the nitric oxide content, were increased in the 0.24 mg/kg nano‑NiO group compared with the control group. The MT‑1 mRNA expression levels were downregulated, while HO‑1 mRNA was upregulated in the 0.24 mg/kg nano‑NiO exposure group compared with the control group. In addition, abnormal changes of hydroxyl radical, lipid peroxidation, catalase, glutathione peroxidase, total superoxide dismutase and total antioxidative capacity were observed in the liver tissues of the 0.24 mg/kg nano‑NiO exposure group, compared with the control group. The present results therefore indicated that nano‑NiO‑induced liver toxicity may be associated with nitrative and oxidative stress in rats.
Collapse
Affiliation(s)
- Shu Yu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fangfang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chen Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jingyi Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - An Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lingyue Zou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Aijie Han
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jin Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|