1
|
Langham F, Tsai D, Forde BM, Camilleri S, Harris PNA, Roberts JA, Chiong F. Demographic, clinical and molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli bloodstream infections in Central Australia. Pathology 2024; 56:1012-1020. [PMID: 39060195 DOI: 10.1016/j.pathol.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 04/28/2024] [Indexed: 07/28/2024]
Abstract
We describe the demographics, clinical and molecular epidemiology of extended-spectrum β-lactamase (ESBL) Escherichia coli bloodstream infections (BSI) in Central Australia. All ESBL-producing E. coli bloodstream isolates from January 2018 to December 2020 were retrospectively identified. Demographic and clinical information was extracted by chart review. Whole-genome sequencing was performed for multi-locus sequence typing, antibiotic-resistance genes, and phylogenetic relationships. We identified 41 non-duplicate episodes of ESBL E. coli BSI. Median age was 55 years (IQR 47-63), 78% were female, 93% were Aboriginal, and half came from a remote community. Infections were predominantly urinary (68%, 28/41). In the 12 months prior, 70% (26/37) of identified patients had been hospitalised and 81% (30/37) prescribed antibiotics. Meropenem and piperacillin-tazobactam susceptibility was maintained in 100% and 95% of isolates, respectively. Co-resistance to non-β-lactam antibiotics was 32% to gentamicin, 61% to trimethoprim/sulfamethoxazole, and 68% to ciprofloxacin. For sequenced isolates, 41% (16/35) were sequence type 131 (ST131). Mean acquired antibiotic-resistance genes for each isolate was 12.3 (SD 3.1). Four isolates carried an OXA-1 gene. Only non-ST131 isolates carried AmpC and acquired quinolone-resistance genes. There was some evidence of clustering of closely related strains, but no evidence of community or healthcare admission overlap. ESBL rates are rapidly rising in Central Australia, which is a conducive environment for antibiotic resistance development (e.g., overcrowding, socioeconomic disadvantages, high healthcare exposure and high antibiotic use). Future research is required to explore resistance-transmission dynamics in this unique setting.
Collapse
Affiliation(s)
- Freya Langham
- Department of Infectious Diseases, Monash Health, Melbourne, Vic, Australia; Alice Springs Hospital, Central Australian Health Service, Alice Springs, NT, Australia.
| | - Danny Tsai
- Alice Springs Hospital, Central Australian Health Service, Alice Springs, NT, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Brian M Forde
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Shayne Camilleri
- Alice Springs Hospital, Central Australian Health Service, Alice Springs, NT, Australia; Department of Infectious Diseases, Austin Health, Melbourne, Vic, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia; Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, Brisbane, Qld, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia; Herston Infectious Diseases Institute, Metro North Health, Brisbane, Qld, Australia; Division of Anaesthesiology, Critical Care, Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Fabian Chiong
- Alice Springs Hospital, Central Australian Health Service, Alice Springs, NT, Australia; Department of Infectious Diseases, The Canberra Hospital, Canberra, ACT, Australia
| |
Collapse
|
2
|
Fang C, Zhou Z, Li J, Zhou M. Emergence of Staphylococcus argenteus in pediatrics: Molecular insights from a hospital in East China. Virulence 2024; 15:2396477. [PMID: 39185671 PMCID: PMC11364062 DOI: 10.1080/21505594.2024.2396477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Staphylococcus argenteus is a novel species within the Staphylococcus aureus complex and can cause serious bloodstream infections (BSIs) in humans, which have been mainly reported in adults, especially the elderly. In this study, we analyzed the molecular characterization of a strain of S. argenteus (22WJ8192) isolated from the peripheral vein blood sample of a seven-month-old female infant in Eastern China. The 22WJ8192 belonged to sequence type (ST)2250 and harbored six antibiotic-resistance genes and 53 virulence genes and was resistant to penicillin. Additionally, we conducted a comparative analysis of the molecular characteristics of S. argenteus sourced from various origins within the dataset, predominantly from the National Center for Biotechnology Information Collection (NCBI) genome database. Antibiotic-resistance genes blaR1, blaI_of_Z, blaZ, fosB-Saur, tet(L), aph(3")-IIIa, mecA, and dfrG were more prevalent among the strains of human origin. Virulence genes lukF-PV, sak, sdrE, scn, sdrC, and sdrD were more prevalent among strains of human origin. The presence of antibiotic-resistance genes blaR1, blaI_of_Z, blaZ, fosB-Saur, and aph(3")-IIIa in strain 22WJ8192 was also more common among strains of human origin in the dataset. Conversely, the antibiotic-resistance genes tet(L), mecA, and dfrG, typically found in strains of human origin, were not detected in 22WJ8192. Additionally, virulence genes lukF-PV, sak, sdrE, scn, sdrC, and sdrD present in 22WJ8192 exhibited a higher prevalence among strains of human origin in the dataset. In conclusion, this study emphasizes the potential of S. argenteus ST2250 to induce severe bloodstream infections in infants, shedding light on the molecular characteristics of this strain.
Collapse
Affiliation(s)
- Chao Fang
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Zheng Zhou
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianping Li
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Mingming Zhou
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Liew-Littorin C, Davidsson S, Nilsdotter-Augustinsson Å, Hellmark B, Brüggemann H, Söderquist B. Genomic characterization and clinical evaluation of prosthetic joint infections caused by Cutibacterium acnes. Microbiol Spectr 2024; 12:e0030324. [PMID: 39377601 PMCID: PMC11537072 DOI: 10.1128/spectrum.00303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Cutibacterium acnes is a major skin commensal that may act as an opportunistic pathogen. It is difficult to interpret findings of C. acnes in tissue cultures obtained during arthroplasty revision surgery, since they may represent true infection or contamination. This study investigated whether C. acnes obtained from prosthetic joint infections (PJIs) were related and shared common genomic traits that might correlate with clinical courses and patient outcomes. C. acnes isolates from revision surgery of patients with PJIs of the hip, shoulder, and knee were characterized using molecular methods to determine the sequence type (ST) and the presence of possible virulence determinants (Christie-Atkins-Munch-Peterson factors, dermatan sulfate-binding adhesion 1, hyaluronidase lyase, and linear plasmid). A standardized review of the patients' medical charts was performed. The study included 37 patients with C. acnes culture-positive tissue samples where multiple isolates of C. acnes belonged to the same ST. Most of the isolates belonged to phylotype IA1. Phylogenetic analysis of virulence determinants revealed no shared pattern among PJI isolates. Seven patients had a polymicrobial infection. Exchange revision was performed in 70% of the patients, and >50% of all patients received antibiotic treatment for ≥3 months. Failure was noted in seven patients. No specific ST or any identifiable unique feature among virulence determinants were found among C. acnes isolated from PJIs of hips and shoulders. The majority of patients had low inflammatory markers and were treated successfully, even polymicrobial infections. However, failure was more common among shoulder infections compared with hip infections. IMPORTANCE Prosthetic joint infection (PJI) is a rare complication after arthroplasty surgery. The infection seldom resolves without a combination of both surgical and antibiotic treatment and can cause significant suffering among affected patients. Cutibacterium acnes is a common skin bacterium that is most often found in shoulder PJIs but can also infect other prostheses. In this study, we conducted a review of patients with previously verified PJIs involving C. acnes in hip or shoulder prostheses, along with a genomic analysis of the bacteria causing the infections. The majority of patients had successful outcomes. We did not identify any specific phylogenetic lineage or specific molecular signature of virulence factors among these PJI-associated C. acnes isolates that seemed to be associated with increased potential to cause infection among this species. This indicates that C. acnes isolated from PJIs originates from the patients' own skin microbiome and is inoculated during the arthroplasty surgery.
Collapse
Affiliation(s)
- C. Liew-Littorin
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - S. Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Å. Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Östergötland, Sweden
| | - B. Hellmark
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - H. Brüggemann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - B. Söderquist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
4
|
Shindou J, Hayashi W, Kayama S, Yu L, Zuo H, Sugawara Y, Sugai M. First detection of VEB-1 extended-spectrum β-lactamase-producing Escherichia coli clinical isolate in Japan. Microbiol Spectr 2024; 12:e0052324. [PMID: 39287461 PMCID: PMC11537020 DOI: 10.1128/spectrum.00523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The extended-spectrum β-lactamase (ESBL) gene, blaVEB-1, was identified for the first time in an Escherichia coli clinical isolate, JARB-RN-0061, from blood cultures in a Japanese general hospital in 2021. The isolate exhibited high resistance to broad-spectrum cephalosporins, including ceftazidime (MIC >128 mg/L) and cefepime (MIC = 16 mg/L). blaVEB-1 was identified during whole-genome sequencing and characterization of the isolate. JARB-RN-0061 belonged to the B2-O2:K1:H7-ST95-fimH41 lineage and was classified as presumptive extraintestinal pathogenic E. coli (ExPEC) and uropathogenic E. coli (UPEC). Moreover, the strain harbored multiple virulence genes on the chromosome. The Col156/IncFIB(AP001918)/IncFII(29)-type plasmid (114,216 bp), with clbB and tcpC genes involved in bacteremia, was unique to the fimH41 subclone. The blaVEB-1 gene was located on a non-typeable and non-conjugative plasmid, pJARB-RN-0061_VEB-1 (17,093 bp). It was embedded in the class 1 integron In1883-like, with multidrug resistance gene cassettes for aacA4, aadB, cmlA5, qnrVC4, and dfrA14. Notably, comparative analysis of the complete sequence of plasmid pJARB-RN-0061_VEB-1 revealed that it was highly homologous to the blaVEB-1-harboring plasmid, pMS2H7VEB-1 (100% coverage and 99.99% identity), except for the Tn3 family transposon (4,931 bp) and the plasmid pRHBSTW-00138_5 (97% coverage and 100% identity) harbored by Klebsiella quasipneumoniae subsp. similipneumoniae strains from hospital sewage in Japan and wastewater influent in the United Kingdom, respectively. The emergence of a human pathogenic E. coli clinical isolate with the blaVEB-1-carrying plasmid in the B2-ST95 worldwide pandemic lineage, characterized by the virulence potential of ExPEC or UPEC but a low prevalence of antimicrobial resistance, would raise public health concerns. IMPORTANCE ESBLs are plasmid-mediated enzymes that confer resistance to clinically significant antimicrobial agents, such as broad-spectrum cephalosporins. Recently, the rapid spread of CTX-M-type ESBL-producing E. coli has become a global issue, including in Japan, where ESBL production in human pathogenic E. coli, such as the ExPEC and UPEC lineages, which typically harbor several virulence genes, is a severe public health concern. To date, VEB (Vietnamese extended-spectrum β-lactamase) producers have been found only in hospital wastewater and rivers in Japan. Thus, we describe the first detection of a very rare human-derived blaVEB-1 gene in the E. coli B2-ST95 pandemic clonal lineage that is highly associated with ExPEC and UPEC in a Japanese clinical setting. Furthermore, we characterized the genomic features of plasmids harboring the class 1 integron-borne blaVEB-1. Our findings highlight the significance of closely monitoring ESBL-producing E. coli isolates to prevent the potential dissemination of this resistance determinant in Japan.
Collapse
Affiliation(s)
- Junko Shindou
- Department of Laboratory Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Adhikari Y, Bailey MA, Krehling JT, Kitchens S, Gaonkar P, Munoz LR, Escobar C, Buhr RJ, Huber L, Price SB, Bourassa DV, Macklin KS. Assessment and genomic analysis of Salmonella and Campylobacter from different stages of an integrated no-antibiotics-ever (NAE) broiler complex: a longitudinal study. Poult Sci 2024; 103:104212. [PMID: 39191002 PMCID: PMC11396039 DOI: 10.1016/j.psj.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
The objective of this study was to determine prevalence and perform genomic analysis of Salmonella spp. and Campylobacter spp. isolated from different stages of an integrated NAE broiler complex. Environmental samples were screened with 3M-Molecular Detection System (MDS) and MDS positive samples were further processed for confirmation of results and identification. Core genome-based phylogenies were built for both bacteria isolated from this study along with selected NCBI genomes. The odds ratios and 95% confidence limits were compared among stages and sample types (α < 0.05) using multivariable model. Based on MDS results, 4% and 18% of total samples were positive for Salmonella spp. and Campylobacter spp. respectively. The odds of Salmonella detection in hatchery samples were 2.58 times as likely as compared to its detection in production farms' samples (P = 0.151) while the odds of Campylobacter detection in production farms' samples were 32.19 times as likely as its detection in hatchery (P = 0.0015). Similarly, the odds of Campylobacter detection in boot swabs, soil, water, and miscellaneous samples were statistically significant (P < 0.05) as compared with fly paper as reference group. The serovars identified for Salmonella were Typhimurium, Barranquilla, Liverpool, Kentucky, Enteritidis, Luciana, and Rough_O:r:1,5. For Campylobacter, the species identified were Campylobacter jejuni and Campylobacter coli. Phylogeny results show close genetic relatedness among bacterial strains isolated from different locations within the same stage and between different stages. The results show possibility of multiple entry points of such bacteria entering broiler complex and can potentially contaminate the final raw product in the processing plant. It suggests the need for a comprehensive control strategy with strict biosecurity measures and best management practices to minimize or eliminate such pathogens from the poultry food chain.
Collapse
Affiliation(s)
- Yagya Adhikari
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | - Matthew A Bailey
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | - James T Krehling
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | - Steven Kitchens
- Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Pankaj Gaonkar
- Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Luis R Munoz
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | - Cesar Escobar
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | - Richard J Buhr
- USDA ARS Poultry Microbiological Safety and Processing Research Unit, Athens, GA, USA
| | - Laura Huber
- Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Stuart B Price
- Department of Pathobiology, Auburn University, Auburn, AL, USA
| | | | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, Starkville, MS, USA.
| |
Collapse
|
6
|
Shen W, Hu Y, Liu D, Wang Y, Schwarz S, Zhang R, Cai J. Prevalence and genetic characterization of linezolid resistance gene reservoirs in hospital sewage from Zhejiang Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177162. [PMID: 39461535 DOI: 10.1016/j.scitotenv.2024.177162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Hospital sewage represented important hotspots for the aggregation and dissemination of clinically relevant pathogens and antimicrobial resistance genes. To investigate the prevalence and molecular epidemiology of linezolid resistance genes in hospital sewage, both influent and effluent samples from 11 hospitals in Zhejiang Province, China, were collected and analyzed for linezolid resistance gene carriers. Thirty colonies of putative isolates that grew on the selective media with 10 mg/L florfenicol were randomly picked per sample. A total of 420 Gram-positive isolates, including 330 from 11 influent samples and 90 from three effluent samples, were obtained. Each isolate carried at least one of the linezolid resistance genes, including optrA, poxtA, cfr, and cfr(D), and the optrA gene was highly dominant (388/420). Enterococci displayed predominance among the linezolid resistance gene carriers in the hospital sewage, exhibiting a resistance rate to linezolid of 77.8 %. The wild-type OptrA and OptrA variants KLDP, RDK, and KLDK, all associated with high linezolid MICs, were most frequently detected. Phylogenetic analysis revealed the multispecies and polyclonal distribution of linezolid-resistant bacteria in hospital sewage, while Enterococcus faecalis sequence types (STs) 16 and 179 demonstrated the widest dissemination across different hospitals. Despite generally high genetic diversity, phylogenetic analysis showed that 87 isolates, assigned to ten STs from both sewage and other sources, were genetically related. Moreover, the genetic environment of linezolid resistance genes in isolates from sewage was similar to that from animals, humans, or the environment, with "Tn554-fexA-optrA" as the most common structure. These findings revealed the potential risk of the transmission of linezolid resistance genes through hospital sewage to other environments.
Collapse
Affiliation(s)
- Weiyi Shen
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Hu
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dejun Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stefan Schwarz
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Jiachang Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Bacon RL, Hodo CL, Wu J, Welch S, Nickodem C, Vinasco J, Threadgill D, Gray SB, Norman KN, Lawhon SD. Diversity of Campylobacter spp. circulating in a rhesus macaque ( Macaca mulatta) breeding colony using culture and molecular methods. mSphere 2024:e0056024. [PMID: 39440965 DOI: 10.1128/msphere.00560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Campylobacter jejuni and Campylobacter coli represent the leading causes of bacterial gastroenteritis in humans, and infections can produce post-infectious irritable bowel syndrome (PI-IBS). Rhesus macaques (Macaca mulatta) (RM) are similarly susceptible to acute campylobacteriosis and represent a potential model of PI-IBS. We characterized the Campylobacter species circulating in an RM breeding colony using culture, qPCR, and whole genome sequencing (WGS). We also compared the C. jejuni and C. coli prevalence in RM as detected with qPCR versus culture and identified risk factors for bacteria presence and intestinal disease. Culture of 275 samples yielded C. coli (103) and C. jejuni (8), of which 21.6% were resistant to quinolones and 3.6% were resistant to macrolides. Multidrug-resistant isolates were obtained exclusively from animals exhibiting diarrhea or with histologically confirmed chronic enterocolitis. WGS revealed a non-clonal population of Campylobacter spp. Genotypic predictions of resistance were excellent except for aminoglycosides. All sequenced isolates contained genes for all subunits of cytolethal distending toxin. qPCR detected a prevalence of 45.9% for C. coli and 29.6% for C. jejuni. The quantity of either bacteria was significantly higher (P < 0.05) in animals with intestinal disease compared to healthy animals, though only young age was significantly associated with the presence of Campylobacter sp. or intestinal disease. Significantly more C. jejuni positive animals were detected with qPCR than with culture. These results provide a comprehensive characterization of Campylobacter spp. circulating in a breeding colony of RM in the United States and suggest that qPCR is superior for the detection of C. jejuni in RM. IMPORTANCE Gastrointestinal disease is one of the most common reasons for hospitalization in non-human primate colonies and accounts for over one-third of non-research related euthanasia. In rhesus macaques, this manifests as both acute diarrhea and chronic enterocolitis (CE), a syndrome of chronic diarrhea resulting in poor weight gain or weight loss which is minimally responsive to treatment. Campylobacter spp. are major causes of acute enterocolitis in rhesus macaques and may predispose individuals to the development of CE, similar to post-infectious irritable bowel syndrome in humans. Despite these concerns, there are few studies characterizing Campylobacter in rhesus macaque colonies, in particular utilizing whole genome sequencing and assessing findings with respect to the health status of the host. Our findings provide insight into Campylobacter strains circulating in rhesus macaque colonies, which can improve clinical monitoring, assist in treatment decisions, and provide new avenues of investigation into campylobacteriosis as a catalyst for CE.
Collapse
Affiliation(s)
- Rebecca L Bacon
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Carolyn L Hodo
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Jing Wu
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Shannara Welch
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Colette Nickodem
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Javier Vinasco
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Deborah Threadgill
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, Texas, USA
| | - Stanton B Gray
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Keri N Norman
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Kim DH, Seo H, Jung S, Kim BJ. Global prevalence of Mycobacterium massiliense strains with recombinant rpoB genes (Rec-Mas) horizontally transferred from Mycobacterium abscessus: two major types, dominant circulating clone 7 and MLST ST46 sequence type. Microbiol Spectr 2024:e0193524. [PMID: 39431893 DOI: 10.1128/spectrum.01935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Mycobacterium abscessus is a group of emerging antimicrobial-resistant nontuberculous mycobacteria that causes severe lung disease in infected patients globally. Recently, molecular epidemiology studies have indicated that horizontal gene transfer (HGT) events in the rpoB gene are prevalent between M. abscessus subspecies. To determine the global prevalence of M. abscessus strains subjected to rpoB HGT, we performed phylogenetic inference using a 711-bp rpoB sequence extracted from 1,786 M. abscessus isolates for which the whole-genome sequence was publicly available. Our data showed that a total of 74 isolates (4.1%) from 1,786 strains are subject to rpoB HGT, which is more prevalent than strains with hsp65 HGT (19 isolates from 1,786, 1.1%). Most of these (69 isolates) belong to two major groups of Mycobacterium massiliense, of which the rpoB gene is horizontally transferred from M. abscessus (Rec-mas), dominant circulating clone 7 (DCC7) (44 isolates) and ST46 type by multilocus sequence typing (25 isolates). The Rec-mas strains of the two groups have distinct geographical patient distributions, of which the former is mainly distributed in the United States, while the latter is prevalent in Asia. Our further genome-based analysis indicated that the ST46 type is a novel DCC candidate of M. massiliense that is responsible for dissemination between noncystic fibrosis patients in Asia. In conclusion, our global phylogenetic analysis revealed two major Rec-mas clones with distinct geographical distributions, namely, DCC7 and ST46. This study provides insights into the genetic clustering and person-to-person transmission of globally dominant and area-specific strains harboring the HGT rpoB gene. IMPORTANCE Horizontal gene transfer (HGT) events play a pivotal role in the evolution of Mycobacterium abscessus into dominant circulating clones (DCCs), which is capable of causing patient-to-patient transmission. In particular, HGT of the rpoB gene between strains of different subspecies of M. abscessus could also compromise differentiation between strains of M. abscessus. Here, for the first time, using 1,786 M. abscessus genome sequences, we evaluated the global prevalence of M. abscessus strains subjected to rpoB HGT. We found a greater prevalence of M. abscessus subjected to rpoB HGT than to those subjected to hsp65 HGT, which is mainly due to two Rec-mas clones, dominant circulating clone 7 and ST46, which are responsible for dissemination between non-CF patients in Asia. Our data highlight the importance of rpoB HGT in the evolution of M. abscessus, particularly Mycobacterium massiliense, into virulent DCC clones.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
| | - Sangkwon Jung
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Ke Y, Zhu Z, Lu W, Liu W, Ye L, Jia C, Yue M. Emerging blaNDM-positive Salmonella enterica in Chinese pediatric infections. Microbiol Spectr 2024:e0148524. [PMID: 39422511 DOI: 10.1128/spectrum.01485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Non-typhoidal Salmonella (NTS) is a common zoonotic foodborne pathogen, whose rising antimicrobial resistance has been an urgent threat to global public health. Here, we reported two carbapenem-resistant Salmonella enterica (CRSE) strains (NBFE-049 and NBFE-164) carrying the blaNDM genes, which were recovered from two Chinese children, belonged to Salmonella enterica serovar Typhimurium (S. Typhimurium) monophasic variant (S. 1,4,[5],12:i:-) ST34 (a sequence type) and S. Typhimurium ST19, respectively. Genes blaNDM-5 and blaNDM-13 were detected in NBFE-049 and NBFE-164, respectively. The blaNDM-5 in NBFE-049 was located in an IncHI2-type plasmid, named pNBFE-049. In NBFE-164, the blaNDM-13 was located in an IncI1-type plasmid, named pNBFE-164. The plasmid pNBFE-164 successfully transferred its resistance phenotype into the recipient strain Escherichia coli J53 with a high efficiency of 1.1 × 10-2, while no transconjugants were obtained in pNBFE-049 conjugation assays. We further elucidated the genetic relationships of globally occurring New Delhi Metallo-β-lactamase (NDM)-positive strains and locally distributed clinical strains within the same serovar. The closest relative of NBFE-049 was clinical Salmonella strain 1722, which was recovered in 2020 and differed by only three Single Nucleotide Polymorphisms (SNPs). No NDM-positive ST19 could be found in the National Center for Biotechnology Information (NCBI) database, and NBFE-164 showed a close genetic relationship with the other ST19 in this area. To sum up, we suggested the potential contributions of clonal spread and plasmid-mediated blaNDM transfer in CRSE dissemination. This study reported the complete genome of two blaNDM-carrying S. Typhimurium isolates, shedding new insights into the antimicrobial resistance mechanisms and dissemination patterns of the emerging CRSE.IMPORTANCENTS is one of the most common zoonotic pathogens that causes foodborne illnesses, while S. Typhimurium is one of the most common serovars. With the rising prevalence of multi-resistant Salmonella worldwide, carbapenems have emerged as the last-line antibiotics for treating severe bacterial infections. In this study, we reported the genomic characteristics of two carbapenem-resistant S. Typhimurium strains, which were recovered from two pediatric patients, carrying blaNDM-5 and blaNDM-13, providing new insights into the antimicrobial resistance deteriminants and transmission risk of blaNDM-positive NTS in China. We suggested the potential contributions of clonal spread and plasmid-mediated blaNDM transfer in CRSE dissemination. Future enhanced surveillance policy should mitigate CRSE spreading, and more importantly, clinical antimicrobial therapeutic regimens should be adjusted accordingly.
Collapse
Affiliation(s)
- Yefang Ke
- Department of Clinical Laboratory, Women and Children's Hospital of Ningbo University, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Zhe Zhu
- Department of Blood Transfusion, Ningbo No. 2 Hospital, Ningbo, China
| | - Wenbo Lu
- Department of Clinical Laboratory, Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Wenyuan Liu
- Department of Clinical Laboratory, Women and Children's Hospital of Ningbo University, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Lina Ye
- Department of Clinical Laboratory, Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
10
|
Kuang Z, Huang H, Chen L, Shang Y, Huang S, Liu J, Chen J, Xie X, Chen M, Wu L, Gao H, Zhao H, Li Y, Wu Q. Development of a High-Resolution Melting Method for the Detection of Clarithromycin-Resistant Helicobacter pylori in the Gastric Microbiome. Antibiotics (Basel) 2024; 13:975. [PMID: 39452241 PMCID: PMC11505316 DOI: 10.3390/antibiotics13100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The issue of Helicobacter pylori (H. pylori) resistance to clarithromycin (CLR) has consistently posed challenges for clinical treatment. Hence, a rapid susceptibility testing (AST) method urgently needs to be developed. Methods: In the present study, 35 isolates of H. pylori were isolated from 203 gastritis patients of the Guangzhou cohort, and the antimicrobial resistance phenotypes were associated with their genomes to analyze the relevant mutations. Based on these mutations, a rapid detection system utilizing high-resolution melting (HRM) curve analysis was designed and verified by the Shenzhen cohort, which consisted of 38 H. pylori strains. Results: Genomic analysis identified the mutation of the 2143 allele from A to G (A2143G) of 23S rRNA as the most relevant mutation with CLR resistance (p < 0.01). In the HRM system, the wild-type H. pylori showed a melting temperature (Tm) of 79.28 ± 0.01 °C, while the mutant type exhibited a Tm of 79.96 ± 0.01 °C. These differences enabled a rapid distinction between two types of H. pylori (p < 0.01). Verification examinations showed that this system could detect target DNA as low as 0.005 ng/μL in samples without being affected by other gastric microorganisms. The method also showed a good performance in the Shenzhen validation cohort, with 81.58% accuracy, and 100% specificity. Conclusions: We have developed an HRM system that can accurately and quickly detect CLR resistance in H. pylori. This method can be directly used for the detection of gastric microbiota samples and provides a new benchmark for the simple detection of H. pylori resistance.
Collapse
Affiliation(s)
- Zupeng Kuang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.K.); (Y.S.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Huishu Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Ling Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Yanyan Shang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.K.); (Y.S.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Shixuan Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Jun Liu
- Department of Gastroenterology, The Songgang People’s Hospital of Baoan District in Shenzhen, Shenzhen 518105, China;
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Lei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - He Gao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Hui Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| |
Collapse
|
11
|
Guo Q, Zhao X, Ma J, Zhou Y, Gao F, Huang W, Sun L, Zhu S, Li L, Sun H, Jia W, Zhang H, Zhao D. Serratia marcescens outbreak in a neonatal intensive care unit associated with contaminated handwashing sinks. Indian J Med Microbiol 2024; 52:100741. [PMID: 39368552 DOI: 10.1016/j.ijmmb.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE This article describes the origin of a S. marcescens outbreak in a neonatal intensive care unit (NICU). MATERIALS AND METHODS A retrospective case-control study including 12 S. marcescens-positive and 22 S. marcescens-negative neonates in the NICU was performed to identify the source of the outbreak. S. marcescens isolates were collected during the outbreak and analyzed using whole-genome sequencing (WGS). IQ-Tree software, BEAST2 software package and SCOTTI software were used to construct a phylogenetic tree and a propagation path map. RESULTS The index case occurred on February 21st and outbreak ended on March 9th, 2021, affecting a total of 12 neonates (2 with S. marcescens infection and 10 with S. marcescens colonization). Multivariate logistic regression identified that the distance of <0.8 m between the bed unit and the sink (odds ratio [OR], 20.50; 95 % confidence interval [CI], 1.09-384.86), a large number of rotating nurses within a week (OR 2.58, 95 % CI, 1.09-6.11) and use of humidification water in the incubator (OR 189.70, 95 % CI, 2.76-13027.31) were significant increased risk factors for S. marcescens infection or colonization in the outbreak. WGS sifted out a predominant clone between contaminated handwashing sinks and patients, suggesting that cross-transmission was involved in the dissemination of S. marcescens. CONCLUSION Contaminated handwashing sinks can be a communication intermediary of S. marcescens infection or colonization of neonates in the NICU. A distance of <0.8 m between the bed unit and the sink, and a large number of rotating nurses might play important roles in this outbreak. Attention should be paid to sinks contamination and contact transmission to prevent outbreaks.
Collapse
Affiliation(s)
- Qiaozhi Guo
- Hospital Infection Control Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Xiaopeng Zhao
- Division of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Jingxiang Ma
- Hospital Infection Control Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Yi Zhou
- Hospital Infection Control Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Fei Gao
- Clinical Microbiology Experiments Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Wei Huang
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Li Sun
- Division of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Sufei Zhu
- Clinical Microbiology Experiments Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Lijuan Li
- Quality Control Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Huimin Sun
- Hospital Infection Control Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Wei Jia
- Medical Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Huayan Zhang
- Division of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Division of Neonatology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Danyang Zhao
- Hospital Infection Control Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| |
Collapse
|
12
|
Dooley D, Ryu S, Giannone RJ, Edwards J, Dien BS, Slininger PJ, Trinh CT. Expanded genome and proteome reallocation in a novel, robust Bacillus coagulans strain capable of utilizing pentose and hexose sugars. mSystems 2024:e0095224. [PMID: 39377583 DOI: 10.1128/msystems.00952-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Bacillus coagulans, a Gram-positive thermophilic bacterium, is recognized for its probiotic properties and recent development as a microbial cell factory. Despite its importance for biotechnological applications, the current understanding of B. coagulans' robustness is limited, especially for undomesticated strains. To fill this knowledge gap, we characterized the metabolic capability and performed functional genomics and systems analysis of a novel, robust strain, B. coagulans B-768. Genome sequencing revealed that B-768 has the largest B. coagulans genome known to date (3.94 Mbp), about 0.63 Mbp larger than the average genome of sequenced B. coagulans strains, with expanded carbohydrate metabolism and mobilome. Functional genomics identified a well-equipped genetic portfolio for utilizing a wide range of C5 (xylose, arabinose), C6 (glucose, mannose, galactose), and C12 (cellobiose) sugars present in biomass hydrolysates, which was validated experimentally. For growth on individual xylose and glucose, the dominant sugars in biomass hydrolysates, B-768 exhibited distinct phenotypes and proteome profiles. Faster growth and glucose uptake rates resulted in lactate overflow metabolism, which makes B. coagulans a lactate overproducer; however, slower growth and xylose uptake diminished overflow metabolism due to the high energy demand for sugar assimilation. Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) made up 60%-65% of the measured proteomes but were allocated differently when growing on xylose and glucose. The trade-off in proteome reallocation, with high investment in COG-C over COG-G, explains the xylose growth phenotype with significant upregulation of xylose metabolism, pyruvate metabolism, and tricarboxylic acid (TCA) cycle. Strain B-768 tolerates and effectively utilizes inhibitory biomass hydrolysates containing mixed sugars and exhibits hierarchical sugar utilization with glucose as the preferential substrate.IMPORTANCEThe robustness of B. coagulans makes it a valuable microorganism for biotechnology applications; yet, this phenotype is not well understood at the cellular level. Through phenotypic characterization and systems analysis, this study elucidates the functional genomics and robustness of a novel, undomesticated strain, B. coagulans B-768, capable of utilizing inhibitory switchgrass biomass hydrolysates. The genome of B-768, enriched with carbohydrate metabolism genes, demonstrates high regulatory capacity. The coordination of proteome reallocation in Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) is critical for effective cell growth, sugar utilization, and lactate production via overflow metabolism. Overall, B-768 is a novel, robust, and promising B. coagulans strain that can be harnessed as a microbial biomanufacturing platform to produce chemicals and fuels from biomass hydrolysates.
Collapse
Affiliation(s)
- David Dooley
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| | - Richard J Giannone
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jackson Edwards
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Bruce S Dien
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Patricia J Slininger
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| |
Collapse
|
13
|
Ayoub H, Kumar MS, Mehta R, Thomas P, Dubey M, Dhanze H, Ajantha GS, Bhilegaonkar KN, Salih HM, Cull CA, Veeranna RP, Amachawadi RG. Exploring genetic determinants of antimicrobial resistance in Brucella melitensis strains of human and animal origin from India. Front Microbiol 2024; 15:1474957. [PMID: 39430107 PMCID: PMC11488214 DOI: 10.3389/fmicb.2024.1474957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) in Brucella melitensis, the causative agent of brucellosis, is of growing concern, particularly in low and middle-income countries. This study aimed to explore the genetic basis of AMR in B. melitensis strains from India. Methods Twenty-four isolates from humans and animals were subjected to antimicrobial susceptibility testing and whole-genome sequencing. Results Resistance to doxycycline (20.80%), ciprofloxacin (16.67%), cotrimoxazole (4.17%), and rifampicin (16.67%) was observed. Genome analysis revealed efflux-related genes like mprF, bepG, bepF, bepC, bepE, and bepD across all isolates, however, classical AMR genes were not detected. Mutations in key AMR-associated genes such as rpoB, gyrA, and folP were identified, intriguingly present in both resistant and susceptible isolates, suggesting a complex genotype-phenotype relationship in AMR among Brucella spp. Additionally, mutations in efflux genes were noted in resistant and some susceptible isolates, indicating their potential role in resistance mechanisms. However, mutations in AMR-associated genes did not consistently align with phenotypic resistance, suggesting a multifactorial basis for resistance. Discussion The study underscores the complexity of AMR in B. melitensis and advocates for a holistic multi-omics approach to fully understand resistance mechanisms. These findings offer valuable insights into genetic markers associated with AMR, guiding future research and treatment strategies.
Collapse
Affiliation(s)
- Haris Ayoub
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - M. Suman Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Rishabh Mehta
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Muskan Dubey
- Xavier University School of Medicine and Xavier University School of Veterinary Medicine, Oranjestad, Aruba
| | - Himani Dhanze
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ganavalli S. Ajantha
- Department of Microbiology, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | - K. N. Bhilegaonkar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Harith M. Salih
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Charley A. Cull
- Midwest Veterinary Services, Inc., Oakland, NE, United States
| | - Ravindra P. Veeranna
- Xavier University School of Medicine and Xavier University School of Veterinary Medicine, Oranjestad, Aruba
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
Glen KA, Lamont IL. Characterization of acquired β-lactamases in Pseudomonas aeruginosa and quantification of their contributions to resistance. Microbiol Spectr 2024; 12:e0069424. [PMID: 39248479 PMCID: PMC11448201 DOI: 10.1128/spectrum.00694-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Pseudomonas aeruginosa is a highly problematic opportunistic pathogen that causes a range of different infections. Infections are commonly treated with β-lactam antibiotics, including cephalosporins, monobactams, penicillins, and carbapenems, with carbapenems regarded as antibiotics of last resort. Isolates of P. aeruginosa can contain horizontally acquired bla genes encoding β-lactamase enzymes, but the extent to which these contribute to β-lactam resistance in this species has not been systematically quantified. The overall aim of this research was to address this knowledge gap by quantifying the frequency of β-lactamase-encoding genes in P. aeruginosa and by determining the effects of β-lactamases on susceptibility of P. aeruginosa to β-lactams. Genome analysis showed that β-lactamase-encoding genes are present in 3% of P. aeruginosa but are enriched in carbapenem-resistant isolates (35%). To determine the substrate antibiotics, 10 β-lactamases were expressed from an integrative plasmid in the chromosome of P. aeruginosa reference strain PAO1. The β-lactamases reduced susceptibility to a variety of clinically used antibiotics, including carbapenems (meropenem, imipenem), penicillins (ticarcillin, piperacillin), cephalosporins (ceftazidime, cefepime), and a monobactam (aztreonam). Different enzymes acted on different β-lactams. β-lactamases encoded by the genomes of P. aeruginosa clinical isolates had similar effects to the enzymes expressed in strain PAO1. Genome engineering was used to delete β-lactamase-encoding genes from three carbapenem-resistant clinical isolates and increased susceptibility to substrate β-lactams. Our findings demonstrate that acquired β-lactamases play an important role in β-lactam resistance in P. aeruginosa, identifying substrate antibiotics for a range of enzymes and quantifying their contributions to resistance.IMPORTANCEPseudomonas aeruginosa is an extremely problematic pathogen, with isolates that are resistant to the carbapenem class of β-lactam antibiotics being in critical need of new therapies. Genes encoding β-lactamase enzymes that degrade β-lactam antibiotics can be present in P. aeruginosa, including carbapenem-resistant isolates. Here, we show that β-lactamase genes are over-represented in carbapenem-resistant isolates, indicating their key role in resistance. We also show that different β-lactamases alter susceptibility of P. aeruginosa to different β-lactam antibiotics and quantify the effects of selected enzymes on β-lactam susceptibility. This research significantly advances the understanding of the contributions of acquired β-lactamases to antibiotic resistance, including carbapenem resistance, in P. aeruginosa and by implication in other species. It has potential to expedite development of methods that use whole genome sequencing of infecting bacteria to inform antibiotic treatment, allowing more effective use of antibiotics, and facilitate the development of new antibiotics.
Collapse
Affiliation(s)
- Karl A Glen
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Zhang X, Zhou Y, Fu L, Zhou L, Cheng X, Zhang W, Tan Z. WGS Analysis of Staphylococcus warneri Outbreak in a Neonatal Intensive Care Unit. Infect Drug Resist 2024; 17:4279-4289. [PMID: 39377031 PMCID: PMC11457789 DOI: 10.2147/idr.s473525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose Staphylococcus warneri is an opportunistic pathogen responsible for hospital-acquired infections (HAIs). The aim of this study was to describe an outbreak caused by S. warneri infection in a neonatal intensive care unit (NICU) and provide investigation, prevention and control strategies for this outbreak. Methods We conducted an epidemiological investigation of the NICU S. warneri outbreak, involving seven neonates, staff, and environmental screening, to identify the source of infection. WGS analyses were performed on S. warneri isolates, including species identification, core genome single-nucleotide polymorphism (cgSNP) analysis, pan-genome analysis, and genetic characterization assessment of the prevalence of specific antibiotic resistance and virulence genes. Results Eight S. warneri strains were isolated from this outbreak, with seven from neonates and one from environment. Six clinical cases within three days in 2021 were linked to one strain isolated from environmental samples; isolates varied by 0-69 SNPs and were confirmed to be from an outbreak through WGS. Multiple infection prevention measures were implemented, including comprehensive environmental disinfection and stringent protocols, and all affected neonates were transferred to the isolation wards. Following these interventions, no further cases of S. warneri infections were observed. Furthermore, pan-genome analysis results suggested that in human S. warneri may exhibit host specificity. Conclusion The investigation has revealed that the outbreak was linked to the milk preparation workbench by the WGS. It is recommended that there be a stronger focus on environmental disinfection management in order to raise awareness, improve identification, and prevention of healthcare-associated infections that are associated with the hospital environment.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Infection Management, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu Province, People’s Republic of China
| | - Yu Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, People’s Republic of China
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan Province, People’s Republic of China
| | - Lu Fu
- Department of Nosocomial Infection Management, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province, People’s Republic of China
| | - Lu Zhou
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, People’s Republic of China
| | - Xiangjun Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu Province, People’s Republic of China
| | - Wei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, People’s Republic of China
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan Province, People’s Republic of China
| | - Zhongming Tan
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
16
|
Mikhayel M, Praud K, Leclercq S, Karam Sarkis D, Doublet B. Genomic insights into epidemic plasmids carrying bla CTX-M and mcr-1 genes in Escherichia coli from Lebanese broiler production. JAC Antimicrob Resist 2024; 6:dlae149. [PMID: 39296921 PMCID: PMC11408927 DOI: 10.1093/jacamr/dlae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Background In a previous nationwide survey in the Lebanese broiler production, multidrug-resistant CTX-M-producing E. coli were found to carry the mobile colistin resistance gene mcr-1. Objectives To investigate the mobile genetic supports responsible for the spread of these resistance genes among E. coli in healthy broilers in Lebanon. Methods Thirty-three bla CTX-M and mcr-1 positive E. coli of various sequence types from 17 broilers farms were subjected to conjugation assays. Long-read sequencing (Oxford Nanopore Technologies) and hybrid assembly were performed to determine complete plasmid sequences and their phylogenetic diversity. Results Twenty-nine conjugative IncFII plasmids harboured the extended-spectrum β-lactamase genes bla CTX-M-3 (n = 25) or bla CTX-M-55 (n = 4). Highly related IncF2:A-:B-/bla CTX-M-3 plasmids differing only through IS-mediated genetic rearrangements in antibiotic resistance gene clusters were found in genetically diverse E. coli strains isolated from distant farms. The mobile colistin resistance genes mcr-1.1 and mcr-1.26 were carried by IncX4 and IncI2 plasmids. Worryingly, in one isolate, the ISEcp1-bla CTX-M-55 transposable unit was found integrated in a mcr-1.26-carrying IncX4 plasmid. Beside expanded cephalosporins and colistin resistances, all E. coli isolates were multidrug-resistant with different additional resistances against aminoglycosides, (fluoro)quinolones, fosfomycin, phenicols, sulphonamides, tetracycline and trimethoprim. Conclusions Closely related blaCTX-M-3/55-borne IncF2:A-:B- plasmids harbouring variable MDR regions and mcr-1 carrying IncX4 plasmids are widely disseminated in the E. coli population of healthy broilers in Lebanon. Further surveillance programmes of antimicrobial resistance and interventions to reduce the abusive use of medically important antibiotics are necessary to limit the spread of resistances in food-producing animals in Lebanon.
Collapse
Affiliation(s)
- Myriam Mikhayel
- INRAE, Université de Tours, ISP, Nouzilly, France
- Laboratoire des agents pathogènes, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Karine Praud
- INRAE, Université de Tours, ISP, Nouzilly, France
| | | | - Dolla Karam Sarkis
- Laboratoire des agents pathogènes, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | | |
Collapse
|
17
|
Zhang XW, Song JJ, Zeng SH, Huang YL, Luo JJ, Guo WL, Li XY. Plasmid-mediated azithromycin resistance in non-typhoidal Salmonella recovered from human infections. J Antimicrob Chemother 2024; 79:2688-2697. [PMID: 39119898 PMCID: PMC11442001 DOI: 10.1093/jac/dkae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES Mechanisms of non-typhoidal Salmonella (NTS) resistance to azithromycin have rarely been reported. Here we investigate the epidemiology and genetic features of 10 azithromycin-resistant NTS isolates. METHODS A total of 457 NTS isolates were collected from a tertiary hospital in Guangzhou. We performed antimicrobial susceptibility tests, conjugation experiments, efflux pump expression tests, whole-genome sequencing and bioinformatics analysis to conduct the study. RESULTS The results showed that 10 NTS isolates (2.8%) were resistant to azithromycin with minimum inhibitory concentration values ranging from 128 to 512 mg/L and exhibited multidrug resistance. The phylogenetic tree revealed that 5 S. London isolates (AR1-AR5) recognized at different times and departments were closely related [3-74 single-nucleotide polymorphisms (SNPs)] and 2 S. Typhimurium isolates (AR7 and AR8) were clones (<3 SNPs) at 3-month intervals. The azithromycin resistance was conferred by mph(A) gene found on different plasmids, including IncFIB, IncHI2, InFII, IncC and IncI plasmids. Among them, IncFIB, InFII and IncHI2 plasmids carried different IS26-class 1 integron (intI1) arrangement patterns that mediated multidrug resistance transmission. Conjugative IncC plasmid encoded resistance to ciprofloxacin, ceftriaxone and azithromycin. Furthermore, phylogenetic analysis demonstrated that mph(A)-positive plasmids closely related to 10 plasmids in this study were mainly discovered from NTS, Escherichia coli, Klebsiella pneumonia and Enterobacter hormaechei. The genetic environment of mph(A) in 10 NTS isolates was IS26-mph(A)-mrx(A)-mphR(A)-IS6100/IS26 that co-arranged with intI1 harbour multidrug-resistant (MDR) gene cassettes on diverse plasmids. CONCLUSIONS These findings highlighted that the dissemination of these plasmids carrying mph(A) and various intI1 MDR gene cassettes would seriously restrict the availability of essential antimicrobial agents for treating NTS infections.
Collapse
Affiliation(s)
- Xi-Wei Zhang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Jing-Jie Song
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Shi-Han Zeng
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Yu-Lan Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Jia-Jun Luo
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Wei-Long Guo
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern
Medical University, Guangzhou, China
| | - Xiao-Yan Li
- Shunde Hospital, Southern Medical University (The First People’s Hospital
of Shunde), No. 1 Jiazi Road, Lunjiao, Shunde District,
Foshan City, Guangdong Province, China
| |
Collapse
|
18
|
Shangpliang HNJ, Tamang JP. Genome Analysis of Potential Probiotic Levilactobacillus brevis AcCh91 Isolated from Indian Home-Made Fermented Milk Product (Chhurpi). Probiotics Antimicrob Proteins 2024; 16:1583-1607. [PMID: 37466831 DOI: 10.1007/s12602-023-10125-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Consumption of naturally fermented milk (NFM) products is the dietary culture in India. The mountainous people of Arunachal Pradesh in India prepare the assorted artisanal home-made NFM products from cow and yak milk. Previously, we isolated and identified 76 strains of lactic acid bacteria (LAB) from NFM products of Arunachal Pradesh, viz. mar, chhurpi and churkam. We hypothesized that some of these LAB strains may possess probiotic potentials; hence, we investigated the probiotic potentials of these strains. On the basis of in vitro and genetic screening for probiotic attributes including haemolytic ability, 20 LAB strains were selected out of 76 strains, for further analysis. Using in silico analysis, viz. multivariate heatmap and PCA (principal component analysis) biplot, Levilactobacillus brevis AcCh91 was selected as the most promising probiotic strain, which was further characterized by the whole-genome analysis. Lev. brevis AcCh91 showed the highest survival rate of 93.38% in low pH and 86.68 ± 2.69% in low bile and the highest hydrophobicity average of 86.34 ± 5.53%. This strain also showed auto-aggregation and co-aggregation with antimicrobial properties against the pathogens, showed ability to produce beta-galactosidase and cholesterol reduction property and, most importantly, produced GABA, an important psychobiotic element. Genomic analysis of Lev. brevis AcCh91 showed the presence of genes corresponding to GABA, vitamins, amino acids, cholesterol reduction, immunomodulation, bioactive peptides and antioxidant activity. The absence of antimicrobial-resistant genes and virulence factors was observed. Hence, genome analysis supports the probiotic potentials of Lev. brevis AcCh91, which may be further investigated to understand its health-promoting properties.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
19
|
Urrutia C, Leyton-Carcaman B, Abanto Marin M. Contribution of the Mobilome to the Configuration of the Resistome of Corynebacterium striatum. Int J Mol Sci 2024; 25:10499. [PMID: 39408827 PMCID: PMC11477358 DOI: 10.3390/ijms251910499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Corynebacterium striatum, present in the microbiota of human skin and nasal mucosa, has recently emerged as a causative agent of hospital-acquired infections, notable for its resistance to multiple antimicrobials. Its mobilome comprises several mobile genetic elements, such as plasmids, transposons, insertion sequences and integrons, which contribute to the acquisition of antimicrobial resistance genes. This study analyzes the contribution of the C. striatum mobilome in the transfer and dissemination of resistance genes. In addition, integrative and conjugative elements (ICEs), essential in the dissemination of resistance genes between bacterial populations, whose role in C. striatum has not yet been studied, are examined. This study examined 365 C. striatum genomes obtained from the NCBI Pathogen Detection database. Phylogenetic and pangenome analyses were performed, the resistance profile of the bacterium was recognized, and mobile elements, including putative ICE, were detected. Bioinformatic analyses identified 20 antimicrobial resistance genes in this species, with the Ermx gene being the most predominant. Resistance genes were mainly associated with plasmid sequence regions and class 1 integrons. Although an ICE was detected, no resistance genes linked to this element were found. This study provided valuable information on the geographic spread and prevalence of outbreaks observed through phylogenetic and pangenome analyses, along with identifying antimicrobial resistance genes and mobile genetic elements that carry many of the resistance genes and may be the subject of future research and therapeutic approaches.
Collapse
Affiliation(s)
- Catherine Urrutia
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Benjamin Leyton-Carcaman
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile
| | - Michel Abanto Marin
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
| |
Collapse
|
20
|
Stolfa S, Caggiano G, Ronga L, Dalfino L, Centrone F, Sallustio A, Sacco D, Mosca A, Stufano M, Saracino A, De Gennaro N, Casulli D, Netti N, Soldano S, Faggiano M, Loconsole D, Tafuri S, Grasso S, Chironna M. First Case of Candida Auris Sepsis in Southern Italy: Antifungal Susceptibility and Genomic Characterisation of a Difficult-to-Treat Emerging Yeast. Microorganisms 2024; 12:1962. [PMID: 39458271 PMCID: PMC11509443 DOI: 10.3390/microorganisms12101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Candida auris is an emerging yeast considered a serious threat to global health. We report the first case of C. auris candidemia in Southern Italy, characterized using whole genome sequencing (WGS), and compared with a second strain isolated from a patient who presented as C. auris-colonized following screening. The C. auris strain was isolated from clinical samples, identified via MALDI-TOF, and subjected to WGS. Antifungal susceptibility testing was performed using commercial broth microdilution plates, and resistance protein sequences were evaluated with TBLASTN-2.15.0. Following the initial C. auris isolation from patient A, active surveillance and environmental investigations were implemented for all ICU patients. Of the 26 ICU surfaces sampled, 46.1% tested positive for C. auris via real-time PCR. Screening identified a second patient (patient B) as C. auris-colonized. The phylogenetic characterization of strains from patients A and B, based on the D1/D2 region of the 28s rDNA and the internal transcribed spacer (ITS) region, showed high similarity with strains from Lebanon. SNP analysis revealed high clonality, assigning both strains to clade I, indicating a significant similarity with Lebanese strains. This case confirms the alarming spread of C. auris infections and highlights the need for stringent infection control measures to manage outbreaks.
Collapse
Affiliation(s)
- Stefania Stolfa
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (S.S.); (L.R.); (A.M.)
| | - Giuseppina Caggiano
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Luigi Ronga
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (S.S.); (L.R.); (A.M.)
| | - Lidia Dalfino
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari “A. Moro”, 70124 Bari, Italy; (L.D.); (M.S.); (S.G.)
| | - Francesca Centrone
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Anna Sallustio
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Davide Sacco
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
| | - Adriana Mosca
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (S.S.); (L.R.); (A.M.)
| | - Monica Stufano
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari “A. Moro”, 70124 Bari, Italy; (L.D.); (M.S.); (S.G.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, 70124 Bari, Italy; (A.S.); (N.D.G.)
| | - Nicolo’ De Gennaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, 70124 Bari, Italy; (A.S.); (N.D.G.)
| | - Daniele Casulli
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Nicola Netti
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Savino Soldano
- Policlinico Hospital Sanitary Direction, Bari Policlinico University Hospital, 70124 Bari, Italy;
| | - Maria Faggiano
- Pharmacy Unit, Bari Policlinico University Hospital, 70124 Bari, Italy;
| | - Daniela Loconsole
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Silvio Tafuri
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Salvatore Grasso
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari “A. Moro”, 70124 Bari, Italy; (L.D.); (M.S.); (S.G.)
| | - Maria Chironna
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (S.S.); (L.R.); (A.M.)
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| |
Collapse
|
21
|
Yang L, Wu X, Wu G, Wu Y, Li H, Shao B. Association analysis of antibiotic and disinfectant resistome in human and foodborne E. coli in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173888. [PMID: 38866143 DOI: 10.1016/j.scitotenv.2024.173888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
The widespread use of chemical disinfectants and antibiotics poses a major threat to food safety and human health. However, the mechanisms of co-transmission of antimicrobial resistance genes (ARGs) and biocides and metal resistance genes (BMRGs) of foodborne pathogens in the food chain is still unclear. This study isolated 343 E. coli strains from animal-derived foods in Beijing and incorporated online data of human-derived E. coli strains from NCBI. Our results demonstrated a relatively uniform distribution of strains from various regions in Beijing, indicating a lack of region-specific clustering. Additionally, predominant sequence types varied between food- and human-derived strains, suggesting a preference for different hosts and environments. Phenotypic association analysis showed that the chlorine disinfectants peroxides had a significant positive correlation with tetracyclines. Many more ARGs and BMRGs were enriched in human-associated E. coli compared with those in chicken- and pork-origin. The quaternary ammonium compounds (QACs) resistance gene qacEΔ1 had a strong correlation with aminoglycoside resistance gene aadA5, folate pathway antagonist resistance gene dfrA17, sul1 and macrolide resistance gene mph(A). The correlation results indicated a significant association between the copper resistance gene cluster pco and the silver resistance gene cluster sil. Coexistence of many resistance genes was observed within the qacEΔ1 gene structure, with qacEΔ1-sul1 being the most common combination. Our findings demonstrated that the epidemiological spread of resistance is affected by a combination of heavy metals, disinfectants and antibiotic use, suggesting that the prevention and control strategies of antimicrobial resistance need to be multifaceted and comprehensive.
Collapse
Affiliation(s)
- Lu Yang
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xuan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guoquan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Bing Shao
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Lim YC, Ong KH, Khor WC, Chua FYX, Lim JQ, Tan LK, Chen SL, Wong WK, Maiwald M, Barkham T, Koh TH, Khoo J, Chan JSH, Aung KT. Sequence Types and Antimicrobial Resistance Profiles of Salmonella Typhimurium in the Food Chain in Singapore. Microorganisms 2024; 12:1912. [PMID: 39338586 PMCID: PMC11434088 DOI: 10.3390/microorganisms12091912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Salmonella remains a significant foodborne pathogen globally with S. Typhimurium presenting as a frequently occurring serovar. This study aimed to characterize 67 S. Typhimurium isolates from humans, food, farms, and slaughterhouses collected in Singapore from 2016 to 2017. Using whole-genome sequencing analysis, the isolates were found to belong to either ST19 (n = 33) or ST36 (n = 34). ST36 predominated in human intestinal and chicken isolates, while human extra-intestinal and non-chicken food isolates belonged to ST19. Plasmids were predicted in 88.1% (n = 59) of the isolates with the most common incompatibility group profiles being IncFIB(S), IncFII(S) and IncQ1. IncFIB(S) (adjusted p-value < 0.05) and IncFII(S) (adjusted p-value < 0.05) were significantly more prevalent in ST19 isolates, while Col156 (adjusted p-value < 0.05) was more significantly found in ST36 isolates. ST36 isolates exhibited higher resistance to multiple antibiotic classes such as penicillins, phenicols, folate pathway inhibitors, aminoglycosides, β-lactam/β-lactamase inhibitor combinations, tetracyclines, and fluoroquinolones. Phylogenetics analysis suggested potential shared routes of transmission among human, chicken, farm and slaughterhouse environments. Taken together, this study offers a cross-sectional epidemiological insight into the genomic epidemiology and antimicrobial landscape of S. Typhimurium isolates in Singapore, informing strategies for future public health and food safety surveillance.
Collapse
Affiliation(s)
- Yen Ching Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Kar Hui Ong
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Favian Yue Xuan Chua
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Jia Qi Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Li Kiang Tan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Singapore 119228, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Wai Kwan Wong
- Centre for Animal & Veterinary Service, National Parks Board, Singapore 718827, Singapore
| | - Matthias Maiwald
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Timothy Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Tse Hsien Koh
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Department of Microbiology, Singapore General Hospital, Singapore 169856, Singapore
| | - Joanna Khoo
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Joanne Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| |
Collapse
|
23
|
Shi J, Xiao Y, Shen L, Wan C, Wang B, Zhou P, Zhang J, Han W, Yu F. Phenotypic and genomic analysis of the hypervirulent methicillin-resistant Staphylococcus aureus ST630 clone in China. mSystems 2024; 9:e0066424. [PMID: 39158330 PMCID: PMC11406941 DOI: 10.1128/msystems.00664-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) sequence type 630 (ST630) is a rarely reported lineage worldwide. This study aimed to trace the dissemination of the emerging MRSA ST630 clones in China and investigate their virulence potential. We collected 22 ST630-MRSA isolates from across China and performed whole-genome sequencing analysis and virulence characterization on these isolates. Epidemiological results showed that MRSA ST630 isolates were primarily isolated from pus/wound secretions, mainly originating from Jiangxi province, and carried diverse virulence and drug resistance genes. Staphylococcal cassette chromosome mec type V (SCCmec V) predominated (11/22, 50.0%) among the MRSA ST630 isolates. Interestingly, nearly half (45.5%) of the 22 ST630-MRSA isolates tested lacked intact SCCmec elements. Phylogenetic analysis demonstrated that ST630-MRSA could be divided into two distinct clades, with widespread dissemination mainly in Chinese regions. Five representative isolates were selected for phenotypic assays, including hemolysin activity, real-time fluorescence quantitative PCR, western blot analysis, hydrogen peroxide killing assay, blood killing assay, cell adhesion and invasion assay, and mouse skin abscess model. The results showed that, compared to the USA300-LAC strain, ST630 isolates exhibited particularly strong invasiveness and virulence in the aforementioned phenotypic assays. This study described the emergence of a highly virulent ST630-MRSA lineage and improved our insight into the molecular epidemiology of ST630 clones in China.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) sequence type 630 (ST630) is an emerging clone with an increasing isolation rate in China. This study raises awareness of the hypervirulent MRSA ST630 clones in China and alerts people to their widespread dissemination. ST630-staphylococcal cassette chromosome mec V is a noteworthy clone in China, and we present the first comprehensive genetic and phenotypic analysis of this lineage. Our findings provide valuable insights for the prevention and control of infections caused by this emerging MRSA clone.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Ong CT, Blackall PJ, Boe-Hansen GB, deWet S, Hayes BJ, Indjein L, Korolik V, Minchin C, Nguyen LT, Nordin Y, Siddle H, Turni C, Venus B, Westman ME, Zhang Z, Tabor AE. Whole-genome comparison using complete genomes from Campylobacter fetus strains revealed single nucleotide polymorphisms on non-genomic islands for subspecies differentiation. Front Microbiol 2024; 15:1452564. [PMID: 39328909 PMCID: PMC11424552 DOI: 10.3389/fmicb.2024.1452564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Bovine Genital Campylobacteriosis (BGC), caused by Campylobacter fetus subsp. venerealis, is a sexually transmitted bacterium that significantly impacts cattle reproductive performance. However, current detection methods lack consistency and reliability due to the close genetic similarity between C. fetus subsp. venerealis and C. fetus subsp. fetus. Therefore, this study aimed to utilize complete genome analysis to distinguish genetic features between C. fetus subsp. venerealis and other subspecies, thereby enhancing BGC detection for routine screening and epidemiological studies. Methods and results This study reported the complete genomes of four C. fetus subsp. fetus and five C. fetus subsp. venerealis, sequenced using long-read sequencing technologies. Comparative whole-genome analyses (n = 25) were conducted, incorporating an additional 16 complete C. fetus genomes from the NCBI database, to investigate the genomic differences between these two closely related C. fetus subspecies. Pan-genomic analyses revealed a core genome consisting of 1,561 genes and an accessory pangenome of 1,064 genes between the two C. fetus subspecies. However, no unique predicted genes were identified in either subspecies. Nonetheless, whole-genome single nucleotide polymorphisms (SNPs) analysis identified 289 SNPs unique to one or the C. fetus subspecies. After the removal of SNPs located on putative genomic islands, recombination sites, and those causing synonymous amino acid changes, the remaining 184 SNPs were functionally annotated. Candidate SNPs that were annotated with the KEGG "Peptidoglycan Biosynthesis" pathway were recruited for further analysis due to their potential association with the glycine intolerance characteristic of C. fetus subsp. venerealis and its biovar variant. Verification with 58 annotated C. fetus genomes, both complete and incomplete, from RefSeq, successfully classified these seven SNPs into two groups, aligning with their phenotypic identification as CFF (Campylobacter fetus subsp. fetus) or CFV/CFVi (Campylobacter fetus subsp. venerealis and its biovar variant). Furthermore, we demonstrated the application of mraY SNPs for detecting C. fetus subspecies using a quantitative PCR assay. Discussion Our results highlighted the high genetic stability of C. fetus subspecies. Nevertheless, Campylobacter fetus subsp. venerealis and its biovar variants encoded common SNPs in genes related to glycine intolerance, which differentiates them from C. fetus subsp. fetus. This discovery highlights the potential of employing a multiple-SNP assay for the precise differentiation of C. fetus subspecies.
Collapse
Affiliation(s)
- Chian Teng Ong
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Dutton Park, QLD, Australia
| | - Gry B Boe-Hansen
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Sharon deWet
- Department of Agriculture and Fisheries, Biosecurity Sciences Laboratory, Coopers Plains, QLD, Australia
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Lea Indjein
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Nathan, QLD, Australia
| | - Catherine Minchin
- Department of Agriculture and Fisheries, Agri-Science Queensland, Animal Science, Dutton Park, QLD, Australia
| | - Loan To Nguyen
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Yusralimuna Nordin
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Hannah Siddle
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Dutton Park, QLD, Australia
| | - Bronwyn Venus
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Mark E Westman
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Zhetao Zhang
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Ala E Tabor
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
25
|
Campbell AM, Gavilan RG, Abanto Marin M, Yang C, Hauton C, van Aerle R, Martinez-Urtaza J. Evolutionary dynamics of the successful expansion of pandemic Vibrio parahaemolyticus ST3 in Latin America. Nat Commun 2024; 15:7828. [PMID: 39244587 PMCID: PMC11380683 DOI: 10.1038/s41467-024-52159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The underlying evolutionary mechanisms driving global expansions of pathogen strains are poorly understood. Vibrio parahaemolyticus is one of only two marine pathogens where variants have emerged in distinct climates globally. The success of a Vibrio parahaemolyticus clone (VpST3) in Latin America- the first spread identified outside its endemic region of tropical Asia- provided an invaluable opportunity to investigate mechanisms of VpST3 expansion into a distinct marine climate. A global collection of VpST3 isolates and novel Latin American isolates were used for evolutionary population genomics, pangenome analysis and combined with oceanic climate data. We found a VpST3 population (LatAm-VpST3) introduced in Latin America well before the emergence of this clone in India, previously considered the onset of the VpST3 epidemic. LatAm-VpST3 underwent successful adaptation to local conditions over its evolutionary divergence from Asian VpST3 isolates, to become dominant in Latin America. Selection signatures were found in genes providing resilience to the distinct marine climate. Core genome mutations and accessory gene presences that promoted survival over long dispersals or increased environmental fitness were associated with environmental conditions. These results provide novel insights into the global expansion of this successful V. parahaemolyticus clone into regions with different climate scenarios.
Collapse
Affiliation(s)
- Amy Marie Campbell
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK
| | - Ronnie G Gavilan
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Barcelona, Spain
| | - Michel Abanto Marin
- Genomics and Bioinformatics Unit, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Chris Hauton
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK.
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
26
|
Menezes J, Frosini SM, Weese S, Perreten V, Schwarz S, Amaral AJ, Loeffler A, Pomba C. Transmission dynamics of ESBL/AmpC and carbapenemase-producing Enterobacterales between companion animals and humans. Front Microbiol 2024; 15:1432240. [PMID: 39290515 PMCID: PMC11405340 DOI: 10.3389/fmicb.2024.1432240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Antimicrobial resistance mediated by extended-spectrum beta-lactamase (ESBL)- and plasmid-mediated cephalosporinase (AmpC)-producing Enterobacterales, as well as carbapenemase-producing Enterobacterales have globally increased among companion animals, posing a potential health risk to humans in contact with them. This prospective longitudinal study investigates the transfer of ESBL/AmpC- and carbapenemase-producing Enterobacterales between companion animals and their cohabitant humans in Portugal (PT) and the United Kingdom (UK) during animal infection. Fecal samples and nasal swabs collected from dogs and cats with urinary tract infection (UTI) or skin and soft tissue infection (SSTI), and their cohabitant humans were screened for resistant strains. Relatedness between animal and human strains was established by whole-genome sequencing (WGS). ESBL/AmpC-producing Enterobacterales were detected in companion animals (PT = 55.8%; UK = 36.4%) and humans (PT = 35.9%; UK = 12.5%). Carbapenemase-producing Enterobacterales carriage was observed in one dog from Portugal (2.6%) and another dog from the UK (4.5%). Transmission of index clinical ESBL-producing Escherichia coli and Klebsiella pneumoniae strains to cohabitant humans was observed in three Portuguese households (6.9%, n = 43), with repeated isolation of the index strains on fecal samples from the animals and their cohabiting humans. In addition, longitudinal sharing of E. coli strains carried by companion animals and their owners was observed in other two Portuguese households and two households from the UK. Furthermore, a multidrug-resistant ACT-24-producing Enterobacter hormaechei subsp. hoffmannii strains were also shared within another Portuguese household. These results highlight the importance of the household as an epidemiological unit in the efforts to mitigate the spread of antimicrobial resistance, further emphasizing the need for antimicrobial surveillance in this context, capable of producing data that can inform and evaluate public health actions.
Collapse
Affiliation(s)
- Juliana Menezes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Siân-Marie Frosini
- Department of Clinical Science and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Scott Weese
- Ontario Veterinary College, Guelph, ON, Canada
| | - Vincent Perreten
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre of Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andreia J Amaral
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- Science and Technology School, University of Évora, Évora, Portugal
| | - Anette Loeffler
- Department of Clinical Science and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Constança Pomba
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
27
|
Arconada Nuin E, Vilken T, Xavier BB, Doua J, Morrow B, Geurtsen J, Go O, Spiessens B, Sarnecki M, Poolman J, Bonten M, Ekkelenkamp M, Lammens C, Goossens H, Glupczynski Y, Van Puyvelde S. A microbiological and genomic perspective of globally collected Escherichia coli from adults hospitalized with invasive E. coli disease. J Antimicrob Chemother 2024; 79:2142-2151. [PMID: 39001716 PMCID: PMC11368426 DOI: 10.1093/jac/dkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/14/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVES Escherichia coli can cause infections in the urinary tract and in normally sterile body sites leading to invasive E. coli disease (IED), including bacteraemia and sepsis, with older populations at increased risk. We aimed to estimate the theoretical coverage rate by the ExPEC4V and 9V vaccine candidates. In addition, we aimed at better understanding the diversity of E. coli isolates, including their genetic and phenotypic antimicrobial resistance (AMR), sequence types (STs), O-serotypes and the bacterial population structure. METHODS Blood and urine culture E. coli isolates (n = 304) were collected from hospitalized patients ≥60 years (n = 238) with IED during a multicentric, observational study across three continents. All isolates were tested for antimicrobial susceptibility, O-serotyped, whole-genome sequenced and bioinformatically analysed. RESULTS A large diversity of STs and of O-serotypes were identified across all centres, with O25b-ST131, O6-ST73 and O1-ST95 being the most prevalent types. A total of 45.4% and 64.7% of all isolates were found to have an O-serotype covered by the ExPEC4V and ExPEC9V vaccine candidates, respectively. The overall frequency of MDR was 37.4% and ST131 was predominant among MDR isolates. Low in-patient genetic variability was observed in cases where multiple isolates were collected from the same patient. CONCLUSIONS Our results highlight the predominance of MDR O25b-ST131 E. coli isolates across diverse geographic areas. These findings provide further baseline data on the theoretical coverage of novel vaccines targeting E. coli associated with IED in older adults and their associated AMR levels.
Collapse
Affiliation(s)
- Enya Arconada Nuin
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tuba Vilken
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Medical Microbiology and Infection Control, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joachim Doua
- Janssen Research & Development, Infectious Diseases & Vaccines, Janssen Pharmaceutica, Beerse, Belgium
| | - Brian Morrow
- Janssen Research & Development, Raritan, NJ, USA
| | - Jeroen Geurtsen
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Oscar Go
- Janssen Research & Development, Raritan, NJ, USA
| | - Bart Spiessens
- Janssen Research & Development, Infectious Diseases & Vaccines, Janssen Pharmaceutica, Beerse, Belgium
| | - Michal Sarnecki
- Janssen Vaccines, Branch of Cilag GmbH International, Bern, Switzerland
| | - Jan Poolman
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Marc Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- ECRAID, Utrecht, The Netherlands
| | - Miquel Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Puyvelde
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
28
|
Glen KA, Lamont IL. Penicillin-binding protein 3 sequence variations reduce susceptibility of Pseudomonas aeruginosa to β-lactams but inhibit cell division. J Antimicrob Chemother 2024; 79:2170-2178. [PMID: 39001778 PMCID: PMC11368433 DOI: 10.1093/jac/dkae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/03/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND β-lactam antibiotics, which inhibit penicillin-binding protein 3 (PBP3) that is required for cell division, play a key role in treating P. aeruginosa infections. Some sequence variations in PBP3 have been associated with β-lactam resistance but the effects of variations on antibiotic susceptibility and on cell division have not been quantified. Antibiotic efflux can also reduce susceptibility. OBJECTIVES To quantify the effects of PBP3 variations on β-lactam susceptibility and cell morphology in P. aeruginosa. METHODS Nineteen PBP3 variants were expressed from a plasmid in the reference strain P. aeruginosa PAO1 and genome engineering was used to construct five mutants expressing PBP3 variants from the chromosome. The effects of the variations on β-lactam minimum inhibitory concentration (MIC) and cell morphology were measured. RESULTS Some PBP3 variations reduced susceptibility to a variety of β-lactam antibiotics including meropenem, ceftazidime, cefepime and ticarcillin with different variations affecting different antibiotics. None of the tested variations reduced susceptibility to imipenem or piperacillin. Antibiotic susceptibility was further reduced when PBP3 variants were expressed in mutant bacteria overexpressing the MexAB-OprM efflux pump, with some variations conferring clinical levels of resistance. Some PBP3 variations, and sub-MIC levels of β-lactams, reduced bacterial growth rates and inhibited cell division, causing elongated cells. CONCLUSIONS PBP3 variations in P. aeruginosa can increase the MIC of multiple β-lactam antibiotics, although not imipenem or piperacillin. PBP3 variations, or the presence of sub-lethal levels of β-lactams, result in elongated cells indicating that variations reduce the activity of PBP3 and may reduce bacterial fitness.
Collapse
Affiliation(s)
- Karl A Glen
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
29
|
Soliman MS, Hansen CH, Hanafy M, Shawky S, Rashed H, Abdullah M, Soliman NS, Gad MA, Khairat S, El-Kholy A, Talaat AM. Drug resistance and genomic variations among Mycobacterium tuberculosis isolates from The Nile Delta, Egypt. Sci Rep 2024; 14:20401. [PMID: 39223176 PMCID: PMC11369133 DOI: 10.1038/s41598-024-70199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tuberculosis is a global public health concern. Earlier reports suggested the emergence of high rates of drug resistant tuberculosis in Egypt. This study included 102 isolates of Mycobacterium tuberculosis collected from two reference laboratories in Cairo and Alexandria. All clinical isolates were sub-cultured on Löwenstein-Jensen medium and analyzed using both BD BACTEC MGIT 960 SIRE Kit and standard diffusion disk assays to identify the antibiotic sensitivity profile. Extracted genomic DNA was subjected to whole genome sequencing (WGS) using Illumina platform. Isolates that belong to lineage 4 represented > 80%, while lineage 3 represented only 11% of the isolates. The percentage of drug resistance for the streptomycin, isoniazid, rifampicin and ethambutol were 31.0, 17.2, 19.5 and 20.7, respectively. Nearly 47.1% of the isolates were sensitive to the four anti-tuberculous drugs, while only one isolate was resistant to all four drugs. In addition, several new and known mutations were identified by WGS. High rates of drug resistance and new mutations were identified in our isolates. Tuberculosis control measures should focus on the spread of mono (S, I, R, E)- and double (S, E)-drug resistant strains present at higher rates throughout the whole Nile Delta, Egypt.
Collapse
Affiliation(s)
- May S Soliman
- Department of Clinical and Chemical Pathology, Kasr Al Aini, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Chungyi H Hansen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, USA
| | - Mostafa Hanafy
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, USA
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sherine Shawky
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Heba Rashed
- Clinical Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed Abdullah
- Central Public Health Laboratories, Ministry of Health and Population, Cairo, Egypt
| | - Noha Salah Soliman
- Department of Clinical and Chemical Pathology, Kasr Al Aini, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Maha A Gad
- Department of Clinical and Chemical Pathology, Kasr Al Aini, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sahar Khairat
- Department of Clinical and Chemical Pathology, Kasr Al Aini, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Amani El-Kholy
- Department of Clinical and Chemical Pathology, Kasr Al Aini, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
30
|
Li Q, Dai JJ, Chen SY, Sun RY, Wang D, Bai SC, Wang MG, Sun J, Liao XP, Liu YH, Fang LX. Prevalence and molecular characteristics of intestinal pathogenic Escherichia coli isolated from diarrheal pigs in Southern China. Vet Microbiol 2024; 296:110171. [PMID: 38981202 DOI: 10.1016/j.vetmic.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Intestinal pathogenic Escherichia coli (InPEC) is one of the most common causes of bacterial diarrhea in farm animals, including profuse neonatal diarrhea and post weaning diarrhea (PWD) in piglets. In this study, we investigated the prevalence of InPEC and associated primary virulence factors among 543 non-duplicate E. coli isolates from diarrheal pigs from 15 swine farms in southern China. Six major virulence genes associated with InPEC were identified among 69 (12.71 %) E. coli isolates and included est (6.62 %), K88 (4.79 %), elt (3.68 %), eae (1.47 %), stx2 (0.92 %) and F18 (0.55 %). Three pathotypes of InPEC were identified including ETEC (8.10 %), EPEC (1.29 %) and STEC/ETEC (0.92 %). In particular, K88 was only found in ETEC from breeding farms, whereas F18 was only present in STEC/ETEC hybrid from finishing farms. Whole genome sequence analysis of 37 E. coli isolates revealed that InPEC strains frequently co-carried multiple antibiotic resistance gene (ARG). est, elt and F18 were also found to co-locate with ARGs on a single IncFIB/IncFII plasmid. InPEC isolates from different pathotypes also possessed different profiles of virulence genes and antimicrobial resistance genes. Population structure analysis demonstrated that InPEC isolates from different pathotypes were highly heterogeneous whereas those of the same pathotype were extremely similar. Plasmid analysis revealed that K88 and/or est/elt were found on pGX18-2-like/pGX203-2-like and pGX203-1-like IncFII plasmids, while F18 and elt/est, as well as diverse ARGs were found to co-locate on IncFII/IncFIB plasmids with a non-typical backbone. Moreover, these key virulence genes were flanked by or adjacent to IS elements. Our findings indicated that both clonal expansion and horizontal spread of epidemic IncFII plasmids contributed to the prevalence of InPEC and the specific virulence genes (F4, F18, elt and est) in the tested swine farms.
Collapse
Affiliation(s)
- Qian Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing-Jing Dai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Yi Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Dong Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Shuan-Cheng Bai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China.
| |
Collapse
|
31
|
Chakrabortty A, Kapoor A, Dey T, Khochare SS, Arora L, Tak V, Nag VL, Bhatia PK, Shankar M. Genomic insights into in-ICU emergence of last-resort antimicrobial resistance in a rare, carbapenem resistant, ST16 Klebsiella pneumoniae strain from Jodhpur, India. J Glob Antimicrob Resist 2024; 38:90-97. [PMID: 38777181 DOI: 10.1016/j.jgar.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES To investigate the genomic differences between two extensively drug resistant, ST16 strains of Klebsiella pneumoniae recovered from patients in the same ICU, one of which was colistin resistant. METHODS Antimicrobial susceptibilities of the isolates were determined using VITEK-2. Hybrid assemblies for both strains were generated using Oxford Nanopore and Illumina technologies. The sequence type, capsule type, O-locus type, antimicrobial resistance determinants and plasmids carried by the isolates were inferred from the genome sequence. The phylogenetic placement, antimicrobial resistance, and virulence determinants of the isolates relative to a collection (n = 871) of ST16 isolates were assessed. RESULTS Both BC16, a colistin-resistant blood stream isolate and U23, a colistin-sensitive urinary isolate displayed near-identical antimicrobial resistance profiles and genome sequences with varying plasmid profiles. The BC16 genome only had 21 SNPs relative to U23 and belonged to the same capsule, O-antigen locus and multi-locus sequence types. The mgrB locus in BC16 was disrupted by an IS5 element. Phylogenetically, U23 and BC16 were placed on a clade with 4 strains belonging to K-type K48 and O-type O2a as opposed to majority (n = 807) of the strains (K-type K51 and O-type O3b). CONCLUSIONS BC16 was a colistin resistant derivative of U23, which evolved colistin resistance by an IS5-mediated disruption of the mgrB locus, likely during treatment of the index patient with colistin in the ICU. The strains belong to a rare subtype of ST16 with unique capsular and O-antigen types underscoring the utility of genomic surveillance networks and open-access genomic surveillance data in tracking problem clones.
Collapse
Affiliation(s)
- Ardhendu Chakrabortty
- Microbial Physiology Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Aastha Kapoor
- Microbial Physiology Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Tamal Dey
- Microbial Physiology Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Sharvika Subodh Khochare
- Microbial Physiology Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Lavanya Arora
- Microbial Physiology Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Vibhor Tak
- Department of Microbiology, All India Institute of Medical Sciences Jodhpur, Jodhpur, Rajasthan, 342005, India
| | - Vijaya Lakshmi Nag
- Department of Microbiology, All India Institute of Medical Sciences Jodhpur, Jodhpur, Rajasthan, 342005, India
| | - Pradeep Kumar Bhatia
- Department of Anesthesiology & Critical Care, All India Institute of Medical Sciences Jodhpur, Jodhpur, Rajasthan, 342005, India
| | - Manoharan Shankar
- Microbial Physiology Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India.
| |
Collapse
|
32
|
Rahman MH, El Zowalaty ME, Falgenhauer L, Khan MFR, Alam J, Popy NN, Rahman MB. Draft genome sequences of clinical mastitis-associated Enterococcus faecalis and Enterococcus faecium carrying multiple antimicrobial resistance genes isolated from dairy cows. J Glob Antimicrob Resist 2024; 38:111-115. [PMID: 38795772 DOI: 10.1016/j.jgar.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVES The emergence of antimicrobial-resistant and mastitis-associated Enterococcus faecalis and Enterococcus faecium is of great concern due to the huge economic losses associated with enterococcal infections. Here we report the draft genome sequences of E. faecalis and E. faecium strains that were isolated from raw milk samples obtained from mastitis-infected cows in Bangladesh. METHODS The two strains were isolated, identified, and genomic DNA was sequenced using the Illumina NextSeq 550 platform. The assembled contigs were analysed for virulence, antimicrobial resistance genes, and multilocus sequence type. The genomes were compared to previously reported E. faecalis and E. faecium genomes to generate core genome phylogenetic trees. RESULTS E. faecalis strain BR-MHR218Efa and E. faecium strain BR-MHR268Efe belonged to multilocus sequence types ST-190 and ST-22, respectively, both of which appear to represent relatively rare sequence types. BR-MHR268Efe harboured only one antibiotic resistance gene encoding resistance towards macrolides (lsa(A)), while BR-MHR218Efa harboured ten different antibiotic resistance genes encoding resistance to aminoglycosides (ant[6]-Ia, aph(3')-III), sulphonamides (aac(6')-II), lincosamides (lnu(B)), macrolides (erm(B)), MLSB antibiotics (msr(C)), tetracyclines (tet(M), tet(L)), trimethoprim (dfrG), and pleuromutilin-lincosamide-streptogramin A (lsa(E)). Virulence gene composition was different between the two isolates. BR-MHR218Efa harboured only two virulence genes involved in adherence (acm and scm). BR-MHR268Efe harboured eight complete virulence operons including three operons involved in adherence (Ace, Ebp pili, and EfaA), two operons involved in biofilm formation (BopD and Fsr), and three exoenzymes (gelatinase, hyaluronidase, SprE). CONCLUSIONS The genome sequences of the strains BR-MHR268Efe and BR-MHR218Efa will serve as a reference point for molecular epidemiological studies of mastitis-associated E. faecalis and E. faecium. Additionally, the findings will help understand the complex antimicrobial-resistance in livestock-assoiated Enterococci.
Collapse
Affiliation(s)
- Mohammad H Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohamed E El Zowalaty
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstrasse 81, 35392 Giessen, Germany
| | | | - Jahangir Alam
- National Institute of Biotechnology, Savar, Dhaka, Bangladesh
| | - Najmun Nahar Popy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Bahanur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
33
|
Sun L, Meng N, Wang H, Wang Z, Jiao X, Wang J. Occurrence and characteristics of bla OXA-181-carrying Klebsiella aerogenes from swine in China. J Glob Antimicrob Resist 2024; 38:35-41. [PMID: 38763331 DOI: 10.1016/j.jgar.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Klebsiella aerogenes is a largely understudied opportunistic pathogen that can cause sepsis and lead to high mortality rates. In this study, we reported the occurrence of carbapenem-resistant blaOXA-181-carrying Klebsiella aerogenes from swine in China and elucidate their genomic characteristics. METHODS A total of 126 samples, including 109 swine fecal swabs, 14 environmental samples, and three feed samples were collected from a pig farm in China. The samples were enriched with LB broth culture and then inoculated into MacConkey agar plates for bacterial isolation. After PCR detection of carbapenemases genes, the blaOXA-181-carrying isolates were subjected to antimicrobial susceptibility testing, and whole-genome sequence analysis. RESULTS Four Klebsiella aerogenes isolates carrying the blaOXA-181 gene were obtained from swine faecal samples. All the 4 strains were belonged to ST438. The blaOXA-181 genes were located in IncX3-ColKP3 hybrid plasmids with the core genetic structure of IS26-ΔIS3000-ΔISEcp1-blaOXA-181-ΔlysR-ΔereA-ΔrepA-ISKpn19-tinR-qnrS1-ΔIS2-IS26, which suggests the potential for horizontal transfer and further dissemination of this resistance gene among Enterobacteriaceae and other sources. CONCLUSIONS This study represents the first instance of OXA-181-producing K. aerogenes being identified from swine faeces in China. It is crucial to maintain continuous monitoring and ongoing attention to the detection of K. aerogenes carrying blaOXA-181 and other resistance genes in pigs.
Collapse
Affiliation(s)
- Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Nan Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanyun Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
34
|
Suphavilai C, Ko KKK, Lim KM, Tan MG, Boonsimma P, Chu JJK, Goh SS, Rajandran P, Lee LC, Tan KY, Shaik Ismail BB, Aung MK, Yang Y, Sim JXY, Venkatachalam I, Cherng BPZ, Spruijtenburg B, Chan KS, Oon LLE, Tan AL, Tan YE, Wijaya L, Tan BH, Ling ML, Koh TH, Meis JF, Tsui CKM, Nagarajan N. Detection and characterisation of a sixth Candida auris clade in Singapore: a genomic and phenotypic study. THE LANCET. MICROBE 2024; 5:100878. [PMID: 39008997 DOI: 10.1016/s2666-5247(24)00101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND The emerging fungal pathogen Candida auris poses a serious threat to global public health due to its worldwide distribution, multidrug resistance, high transmissibility, propensity to cause outbreaks, and high mortality. We aimed to characterise three unusual C auris isolates detected in Singapore, and to determine whether they constitute a novel clade distinct from all previously known C auris clades (I-V). METHODS In this genotypic and phenotypic study, we characterised three C auris clinical isolates, which were cultured from epidemiologically unlinked inpatients at a large tertiary hospital in Singapore. The index isolate was detected in April, 2023. We performed whole-genome sequencing (WGS) and obtained hybrid assemblies of these C auris isolates. The complete genomes were compared with representative genomes of all known C auris clades. To provide a global context, 3651 international WGS data from the National Center for Biotechnology Information (NCBI) database were included in a high-resolution single nucleotide polymorphism (SNP) analysis. Antifungal susceptibility testing was done and antifungal resistance genes, mating-type locus, and chromosomal rearrangements were characterised from the WGS data of the three investigated isolates. We further implemented Bayesian logistic regression models to classify isolates into known clades and simulate the automatic detection of isolates belonging to novel clades as their WGS data became available. FINDINGS The three investigated isolates were separated by at least 37 000 SNPs (range 37 000-236 900) from all existing C auris clades. These isolates had opposite mating-type allele and different chromosomal rearrangements when compared with their closest clade IV relatives. The isolates were susceptible to all tested antifungals. Therefore, we propose that these isolates represent a new clade of C auris, clade VI. Furthermore, an independent WGS dataset from Bangladesh, accessed via the NCBI Sequence Read Archive, was found to belong to this new clade. As a proof-of-concept, our Bayesian logistic regression model was able to flag these outlier genomes as a potential new clade. INTERPRETATION The discovery of a new C auris clade in Singapore and Bangladesh in the Indomalayan zone, showing a close relationship to clade IV members most commonly found in South America, highlights the unknown genetic diversity and origin of C auris, particularly in under-resourced regions. Active surveillance in clinical settings, along with effective sequencing strategies and downstream analysis, will be essential in the identification of novel strains, tracking of transmission, and containment of adverse clinical effects of C auris infections. FUNDING Duke-NUS Academic Medical Center Nurturing Clinician Researcher Scheme, and the Genedant-GIS Innovation Program.
Collapse
Affiliation(s)
- Chayaporn Suphavilai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Karrie Kwan Ki Ko
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Kar Mun Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Mei Gie Tan
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Patipan Boonsimma
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Joash Jun Keat Chu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Sui Sin Goh
- Department of Microbiology, Singapore General Hospital, Singapore
| | | | - Lai Chee Lee
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Kwee Yuen Tan
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | | | - May Kyawt Aung
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Yong Yang
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Jean Xiang Ying Sim
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Indumathi Venkatachalam
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Benjamin Pei Zhi Cherng
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands; Center of Expertise in Mycology of Radboud University Medical Center, Nijmegen, Netherlands
| | - Kian Sing Chan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Lynette Lin Ean Oon
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Ai Ling Tan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Yen Ee Tan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Limin Wijaya
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Moi Lin Ling
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands; Center of Expertise in Mycology of Radboud University Medical Center, Nijmegen, Netherlands; Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Clement Kin Ming Tsui
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
35
|
Stevens MJA, Horlbog JA, Diethelm A, Stephan R, Nüesch-Inderbinen M. Characteristics and comparative genome analysis of Yersinia enterocolitica and related species associated with human infections in Switzerland 2019-2023. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105652. [PMID: 39103026 DOI: 10.1016/j.meegid.2024.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE We aimed to characterise Yersinia enterocolitica from human clinical specimens in Switzerland using epidemiological, microbiological and whole-genome sequencing (WGS) data. METHODS Isolates (n = 149) were collected between January 2019 and December 2023. Epidemiological data was noted and strains were characterized by biochemical and serological typing, antimicrobial susceptibility testing (AST), and WGS-based analysis. RESULTS Most of the isolates (86%) were from stool specimens and 52% were from male patients. The patients' median age was 28 years (range < 1-94 years). Typing assigned the isolates to bioserotype 4/O:3 (44%), biotype 1A (34%), bioserotype 2/O:9 (21%), and bioserotype 3/O:3 (1%). WGS identified Y. enterocolitica (n = 147), Y. alsatica (n = 1) and Y. proxima (n = 1). Seven isolates were multidrug resistant (MDR) and harboured plasmid pAB829 carrying aph(3″)-Ib, aph(6)-Id, and tet(Y) (n = 1), pAC120 carrying aph(6)-Id and tet(A) (n = 2), or a 12.6 kb Tn2670-like transposon containing catA1, aadA12, sul1, and qacEΔ1 (n = 4). Virulence factors (VFs) included ail (n = 99), invB, (n = 145), ystA (n = 99), ystB (n = 48) and pYV-associated VFs (n = 93). MLST and cgMLST analysis showed that BT 1A strains consisted of several STs and were highly diverse, whereas BT 2/O:9 strains were all ST12 and clustered closely, and BT 4/O:3 strains mostly belonged to ST18 but were more diverse. SNP analysis revealed two highly clonal BT 4/O:3 subpopulations with wide spatio-temporal distribution. CONCLUSIONS Y. enterocolitica BT 1A, BT 2/O:9 and BT 4/O:3 are frequently associated with human yersiniosis in Switzerland. WGS-based subtyping of Y. enterocolitica is a powerful tool to explore the genetic diversity and the pathogenic potential of human isolates.
Collapse
Affiliation(s)
- Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Swiss National Reference Centre for Enteropathogenic Bacteria and Listeria, University of Zurich, Zurich, Switzerland
| | - Andrea Diethelm
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Swiss National Reference Centre for Enteropathogenic Bacteria and Listeria, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
36
|
Zhang S, Wang F, Peng Y, Gong X, Fan G, Lin Y, Yang L, Shen L, Niu S, Liu J, Yin Y, Yuan J, Lu H, Liu Y, Yang Y. Evolutionary trajectory and characteristics of Mpox virus in 2023 based on a large-scale genomic surveillance in Shenzhen, China. Nat Commun 2024; 15:7452. [PMID: 39198414 PMCID: PMC11358148 DOI: 10.1038/s41467-024-51737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
The global epidemic of Mpox virus (MPXV) continues, and a local outbreak has occurred in Shenzhen city since June 2023. Herein, the evolutionary trajectory and characteristics of MPXV in 2023 were analyzed using 92 MPXV sequences from the Shenzhen outbreak and the available genomes from GISAID and GenBank databases. Phylogenetic tracing of the 92 MPXVs suggests that MPXVs in Shenzhen may have multiple sources of importation, and two main transmission chains have been established. The combination of phylogenetic relationships, epidemiological features, and mutation characteristics supports the emergence of a new lineage C.1.1. Together with the B.1 lineage diverging from the A.1 lineage, C.1.1 lineage diverging from the C.1 lineage may serve as another significant evolutionary events of MPXV. Moreover, increasing apolipoprotein B mRNA-editing catalytic polypeptide-like 3 (APOBEC3) related mutations, higher rate of missense mutations, and less mutations in the non-coding regions have been shown during MPXV evolution. Host regulation proteins of MPXV have accumulated considerable amino acid mutations since the B.1 lineage, and a lineage-defining APOBEC3-related mutation that disrupts the N2L gene encoding a viral innate immune modulator has been identified in the C.1.1 lineage. In summary, our study provides compelling evidence for the ongoing evolution of MPXV with specific features.
Collapse
Affiliation(s)
- Shengjie Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Xiaohua Gong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Guohao Fan
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yuanlong Lin
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Liuqing Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Liang Shen
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Jiexiang Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yue Yin
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| |
Collapse
|
37
|
Song S, Yang S, Zheng R, Yin D, Cao Y, Wang Y, Qiao L, Bai R, Wang S, Yin W, Dong Y, Bai L, Yang H, Shen J, Wu C, Hu F, Wang Y. Adaptive evolution of carbapenem-resistant hypervirulent Klebsiella pneumoniae in the urinary tract of a single patient. Proc Natl Acad Sci U S A 2024; 121:e2400446121. [PMID: 39150777 PMCID: PMC11363291 DOI: 10.1073/pnas.2400446121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a growing concern due to its high mortality and limited treatment options. Although hypermucoviscosity is crucial for CR-hvKp infection, the role of changes in bacterial mucoviscosity in the host colonization and persistence of CR-hvKp is not clearly defined. Herein, we observed a phenotypic switch of CR-hvKp from a hypermucoviscous to a hypomucoviscous state in a patient with scrotal abscess and urinary tract infection (UTI). This switch was attributed to decreased expression of rmpADC, the regulator of mucoid phenotype, caused by deletion of the upstream insertion sequence ISKpn26. Postswitching, the hypomucoid variant showed a 9.0-fold decrease in mice sepsis mortality, a >170.0-fold reduction in the ability to evade macrophage phagocytosis in vitro, and an 11.2- to 40.9-fold drop in growth rate in normal mouse serum. Conversely, it exhibited an increased residence time in the mouse urinary tract (21 vs. 6 d), as well as a 216.4-fold boost in adhesion to bladder epithelial cells and a 48.7% enhancement in biofilm production. Notably, the CR-hvKp mucoid switch was reproduced in an antibiotic-free mouse UTI model. The in vivo generation of hypomucoid variants was primarily associated with defective or low expression of rmpADC or capsule synthesis gene wcaJ, mediated by ISKpn26 insertion/deletion or base-pair insertion. The spontaneous hypomucoid variants also outcompeted hypermucoid bacteria in the mouse urinary tract. Collectively, the ISKpn26-associated mucoid switch in CR-hvKp signifies the antibiotic-independent host adaptive evolution, providing insights into the role of mucoid switch in the persistence of CR-hvKp.
Collapse
Affiliation(s)
- Shikai Song
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
- Poultry Research Institute, Shandong Academy of Agricultural Science, Jinan250100, Shandong, China
| | - Shixin Yang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Ruicheng Zheng
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yue Cao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yao Wang
- Shandong Animal Disease Prevention and Control Center, Jinan250100, Shandong, China
| | - Lu Qiao
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Rina Bai
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Shuge Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Wenjuan Yin
- Department of Microbiology and Immunology, College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases of Hebei Province, Hebei University, Baoding071002, China
| | - Yanjun Dong
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Li Bai
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Hui Yang
- National Center for Food Safety Risk Assessment, Beijing100022, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai200433, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
38
|
Casimiro-Soriguer CS, Pérez-Florido J, Robles EA, Lara M, Aguado A, Rodríguez Iglesias MA, Lepe JA, García F, Pérez-Alegre M, Andújar E, Jiménez VE, Camino LP, Loruso N, Ameyugo U, Vazquez IM, Lozano CM, Chaves JA, Dopazo J. The integrated genomic surveillance system of Andalusia (SIEGA) provides a One Health regional resource connected with the clinic. Sci Rep 2024; 14:19200. [PMID: 39160186 PMCID: PMC11333592 DOI: 10.1038/s41598-024-70107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The One Health approach, recognizing the interconnectedness of human, animal, and environmental health, has gained significance amid emerging zoonotic diseases and antibiotic resistance concerns. This paper aims to demonstrate the utility of a collaborative tool, the SIEGA, for monitoring infectious diseases across domains, fostering a comprehensive understanding of disease dynamics and risk factors, highlighting the pivotal role of One Health surveillance systems. Raw whole-genome sequencing is processed through different species-specific open software that additionally reports the presence of genes associated to anti-microbial resistances and virulence. The SIEGA application is a Laboratory Information Management System, that allows customizing reports, detect transmission chains, and promptly alert on alarming genetic similarities. The SIEGA initiative has successfully accumulated a comprehensive collection of more than 1900 bacterial genomes, including Salmonella enterica, Listeria monocytogenes, Campylobacter jejuni, Escherichia coli, Yersinia enterocolitica and Legionella pneumophila, showcasing its potential in monitoring pathogen transmission, resistance patterns, and virulence factors. SIEGA enables customizable reports and prompt detection of transmission chains, highlighting its contribution to enhancing vigilance and response capabilities. Here we show the potential of genomics in One Health surveillance when supported by an appropriate bioinformatic tool. By facilitating precise disease control strategies and antimicrobial resistance management, SIEGA enhances global health security and reduces the burden of infectious diseases. The integration of health data from humans, animals, and the environment, coupled with advanced genomics, underscores the importance of a holistic One Health approach in mitigating health threats.
Collapse
Affiliation(s)
- Carlos S Casimiro-Soriguer
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Javier Pérez-Florido
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Enrique A Robles
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - María Lara
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Andrea Aguado
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | | | - José A Lepe
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
- Servicio de Microbiología, Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Federico García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
- Servicio de Microbiología. Hospital Universitario San Cecilio, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.GRANADA, 18012, Granada, Spain
| | - Mónica Pérez-Alegre
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Eloísa Andújar
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Victoria E Jiménez
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Lola P Camino
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Nicola Loruso
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Ulises Ameyugo
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Isabel María Vazquez
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Carlota M Lozano
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - J Alberto Chaves
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Joaquin Dopazo
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.
| |
Collapse
|
39
|
van den Berg DF, Costa AR, Esser JQ, Stanciu I, Geissler JQ, Zoumaro-Djayoon AD, Haas PJ, Brouns SJJ. Bacterial homologs of innate eukaryotic antiviral defenses with anti-phage activity highlight shared evolutionary roots of viral defenses. Cell Host Microbe 2024; 32:1427-1443.e8. [PMID: 39094584 DOI: 10.1016/j.chom.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism. Searching for phage defense systems related to innate antiviral genes from vertebrates and plants, we uncovered over 450 candidates. We validated six of these phage defense systems, including factors preventing viral attachment, R-loop-acting enzymes, the inflammasome, ubiquitin pathway, and pathogen recognition signaling. Collectively, these defense systems support the concept of deep evolutionary links and shared antiviral mechanisms between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jelger Q Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ilinka Stanciu
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jasper Q Geissler
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | | | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
40
|
Bandaranayake S, Williamson S, Stewart J, Payne M, Kaur S, Wang Q, Sintchenko V, Pavic A, Lan R. Genomic diversity of Salmonella enterica serovar Typhimurium isolated from chicken processing facilities in New South Wales, Australia. Front Microbiol 2024; 15:1440777. [PMID: 39206360 PMCID: PMC11349623 DOI: 10.3389/fmicb.2024.1440777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Contamination of poultry products by Salmonella enterica serovar Typhimurium (STm) is a major cause of foodborne infections and outbreaks. This study aimed to assess the diversity and antimicrobial resistance (AMR) carriage of STm in three chicken processing plants using genomic sequencing. It also aimed to investigate whether any particular strain types were associated with cases of human illness. Multilevel genome typing (MGT) was used to analyze 379 STm isolates from processed chicken carcasses. The diversity of chicken STm sequence types (STs) increased from MGT1 (2 STs) to MGT9 (257 STs). STs at MGT5 to MGT9 levels that were unique to one processing plant and shared among the processing plants were identified, likely reflecting the diversity of STm at their farm source. Fifteen medium resolution MGT5 STs matched those from human infections in Australia and globally. However, no STs matched between the chicken and human isolates at high resolution levels (MGT8 or MGT9), indicating the two STm populations were phylogenetically related but were unlikely to be directly epidemiologically linked. AMR genes were rare, with only a bla TEM-1 gene carried by a 95 kb IncI1 Alpha plasmid being identified in 20 isolates. In conclusion, subpopulations that were widespread in processing plants and had caused human infections were described using MGT5 STs. In this STM population, AMR was rare with only sporadic resistance to a single drug class observed. The genomic analysis of STm from chicken processing plants in this study provided insights into STm that contaminate meat chickens early in the food production chain.
Collapse
Affiliation(s)
- Samitha Bandaranayake
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Jack Stewart
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- Birling Laboratories, Bringelly, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
41
|
Middlebrook EA, Katani R, Fair JM. OrthoPhyl-streamlining large-scale, orthology-based phylogenomic studies of bacteria at broad evolutionary scales. G3 (BETHESDA, MD.) 2024; 14:jkae119. [PMID: 38839049 PMCID: PMC11304591 DOI: 10.1093/g3journal/jkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large-scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity-spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use cases: E. coli/Shigella, Brucella/Ochrobactrum and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| | - Robab Katani
- 401 Huck Life Sciences Building, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeanne M Fair
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| |
Collapse
|
42
|
Mattioni Marchetti V, Venturelli I, Cassetti T, Meschiari M, Migliavacca R, Bitar I. FosA3 emerging in clinical carbapenemase-producing C. freundii. Front Cell Infect Microbiol 2024; 14:1447933. [PMID: 39247055 PMCID: PMC11378647 DOI: 10.3389/fcimb.2024.1447933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024] Open
Abstract
Fosfomycin (FOS) is an effective antibiotic against multidrug-resistant Enterobacterales, but its effectiveness is reducing. Little is known on the current prevalence of FosA enzymes in low-risk pathogens, such as Citrobacter freundii. The aim of the study was the molecular characterization of a carbapenemase- and FosA-producing C. freundii collected in Italy. AK867, collected in 2023, showed an XDR profile, retaining susceptibility only to colistin. AK867 showed a FOS MIC >128 mg/L by ADM. Based on WGS, AK867 belonged to ST116 and owned a wide resistome, including fosA3, blaKPC-2, and blaVIM-1. fosA3 was carried by a conjugative pKPC-CAV1312 plasmid of 320,480 bp, on a novel composite transposon (12,907 bp). FosA3 transposon shared similarities with other fosA3-harboring pKPC-CAV1312 plasmids among Citrobacter spp. We report the first case of FosA3 production in clinical carbapenemase-producing C. freundii ST116. The incidence of FosA3 enzymes is increasing among Enterobacterales, affecting even low-virulence pathogens, as C. freundii.
Collapse
Affiliation(s)
- Vittoria Mattioni Marchetti
- Microbiology and Clinical Microbiology Unit, Scienze Clinico, Chirurgiche, Diagnostiche, Pediatriche (SCCDP) Department, University of Pavia, Pavia, Italy
| | - Irene Venturelli
- Clinical Microbiology, Azienda Unità Sanitaria Locale (AUSL) Modena, Modena, Italy
| | - Tiziana Cassetti
- Clinical Microbiology, Azienda Unità Sanitaria Locale (AUSL) Modena, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinic, Azienda Ospedaliera Universitaria (AOU) Policlinico di Modena, Modena, Italy
| | - Roberta Migliavacca
- Microbiology and Clinical Microbiology Unit, Scienze Clinico, Chirurgiche, Diagnostiche, Pediatriche (SCCDP) Department, University of Pavia, Pavia, Italy
- I.R.C.C.S. Policlinico S. Matteo, Pavia, Italy
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| |
Collapse
|
43
|
Kannekens-Jager MM, Duim B, van der Graaf-van Bloois L, Zomer AL, Broekhuizen-Stins MJ, Boswinkel M, Wagenaar JA, Broens EM. Methicillin-resistant Staphylococcus aureus outbreak in a Dutch equine referral clinic. J Med Microbiol 2024; 73:001873. [PMID: 39207837 PMCID: PMC11361372 DOI: 10.1099/jmm.0.001873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
In 2020 and 2022, nine cases of surgical site infections with a methicillin-resistant Staphylococcus aureus (MRSA) were diagnosed in horses in an equine referral clinic. Sixteen isolates (horses, n=9; environment, n=3; and staff members, n=4) were analysed retrospectively using Nanopore whole-genome sequencing to investigate the relatedness of two suspected MRSA outbreaks (2020 and 2022). The MRSA isolates belonged to ST398 and ST612. ST398 genomes from 2020 and 2022 formed three phylogenetic clusters. The first ST398 cluster from 2020 consisted of isolates from five horses and one staff member, and we suspected within clinic transmission. The second cluster of ST398 isolates from 2022 originated from two horses and two staff members but showed higher single nucleotide polymorphism (SNP) distances. One ST398 isolate from an individual staff member was not related to the other two clusters. The ST612 isolates were isolated in 2022 from two horses and three environmental samples and showed very low SNP distances (<7 SNPs), indicating the transmission of MRSA ST612 in this clinic in 2022. Molecular characterization revealed an abundant set of virulence genes and plasmids in the ST612 isolates in comparison to ST398 isolates. Phenotypic antimicrobial susceptibility showed that differences between the two sequence types were consistent with the genetic characteristics. MRSA ST612 has not been reported in Europe before, but it is a dominant clone in African hospitals and has been described in horses and people working with horses in Australia, indicating the importance of surveillance.
Collapse
Affiliation(s)
- Marleen M. Kannekens-Jager
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Birgitta Duim
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Linda van der Graaf-van Bloois
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Aldert L. Zomer
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Marian J. Broekhuizen-Stins
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Jaap A. Wagenaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Els M. Broens
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
44
|
van den Brandt A, Jonkheer EM, van Workum DJM, van de Wetering H, Smit S, Vilanova A. PanVA: Pangenomic Variant Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4895-4909. [PMID: 37267130 DOI: 10.1109/tvcg.2023.3282364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genomics researchers increasingly use multiple reference genomes to comprehensively explore genetic variants underlying differences in detectable characteristics between organisms. Pangenomes allow for an efficient data representation of multiple related genomes and their associated metadata. However, current visual analysis approaches for exploring these complex genotype-phenotype relationships are often based on single reference approaches or lack adequate support for interpreting the variants in the genomic context with heterogeneous (meta)data. This design study introduces PanVA, a visual analytics design for pangenomic variant analysis developed with the active participation of genomics researchers. The design uniquely combines tailored visual representations with interactions such as sorting, grouping, and aggregation, allowing users to navigate and explore different perspectives on complex genotype-phenotype relations. Through evaluation in the context of plants and pathogen research, we show that PanVA helps researchers explore variants in genes and generate hypotheses about their role in phenotypic variation.
Collapse
|
45
|
Nikodinoska I, Moran CA. Genome sequence data of Saccharomyces cerevisiae CBS 493.94. Data Brief 2024; 55:110557. [PMID: 38966666 PMCID: PMC11222789 DOI: 10.1016/j.dib.2024.110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/06/2024] Open
Abstract
Whole genome sequencing (WGS) and data concerning identity and safety for Saccharomyces cerevisiae CBS 493.94 are reported. This strain was isolated from a British brewery in 1958 and deposited at the CBS culture collection Westerdijk Fungal Biodiversity Institute under the accession number CBS 493.94. The long-reads sequencing data, obtained via PacBio Sequel, and short-reads data, via Illumina NovaSeq 6000, were deposited at NCBI under accession number PRJNA1044661. The hybrid assembly was made publicly available via Zenodo and NCBI. For strain identification, data from 18S rRNA, ANI dendrogram and Core Genome single nucleotide polymorphism (SNP) Tree showed that the present isolate belongs to the genus Saccharomyces, species cerevisiae. The potential genes of concern, e.g. antimycotic resestance genes, were not detected. This strain is commonly used as a feed additive for animal health improvement and the present data summarise the unambiguous identity and strain's FKS1 gene does not code for any amino acid variants of concern.
Collapse
Affiliation(s)
- Ivana Nikodinoska
- Alltech European Headquarters, Sarney, Summerhill Road, Dunboyne, Co. Meath, Ireland
| | - Colm A. Moran
- Regulatory Affairs Department, Alltech SARL, 14500 Vire, France
| |
Collapse
|
46
|
House LC, Hasan A, Asnayanti A, Alrubaye AAK, Pummill J, Rhoads D. Phylogenomic Analyses of Three Distinct Lineages Uniting Staphylococcus cohnii and Staphylococcus urealyticus from Diverse Hosts. Microorganisms 2024; 12:1549. [PMID: 39203392 PMCID: PMC11356006 DOI: 10.3390/microorganisms12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
We sequenced and assembled genomes for 17 isolates of Staphylococcus cohnii isolated from osteomyelitis lesions in young broilers from two separate experiments where we induced lameness using a hybrid wire-litter flooring system. Whole genome comparisons using three different methods support a close relationship of genomes from both S. cohnii and Staphylococcus urealyticus. The data support three different lineages, which we designated as Lineage 1, Lineage 2, and Lineage 3, uniting these two species within an evolving complex. We present evidence for horizontal transfer between lineages of genomic regions from 50-440 kbp. The transfer of a 186 kbp region from Lineage 1 to Lineage 2 appears to have generated Lineage 3. Human-associated isolates appear to be limited to Lineages 2 and 3 but Lineage 2 appears to contain a higher number of human pathogenic isolates. The chicken isolates from our lameness trials included genomically diverse isolates from both Lineage 1 and 2, and isolates from both lineages were obtained from osteomyelitis lesions of individual birds. Our results expand the diversity of Staphylococci associated with osteomyelitis in poultry and suggest a high diversity in the microbiome of day-old chicks. Our data also support a reevaluation and unification of the taxonomic classifications of S. cohnii and S. urealyticus.
Collapse
Affiliation(s)
- L. Caroline House
- John Brown University, Siloam Springs, AR 72761, USA;
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Amer Hasan
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad P.O. Box 1417, Iraq
| | - Andi Asnayanti
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Adnan A. K. Alrubaye
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72703, USA
| | - Jeff Pummill
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, AR 72703, USA
| | - Douglas Rhoads
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| |
Collapse
|
47
|
Sekulovic O, Gallagher C, Lee J, Hao L, Zinonos S, Tan CY, Anderson A, Kanevsky I. Evidence of Reduced Virulence and Increased Colonization Among Pneumococcal Isolates of Serotype 3 Clade II Lineage in Mice. J Infect Dis 2024; 230:e182-e188. [PMID: 39052735 PMCID: PMC11272092 DOI: 10.1093/infdis/jiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
Recent phylogenetic profiling of pneumococcal serotype 3 (Pn3) isolates revealed a dynamic interplay among major lineages with the emergence and global spread of a variant termed clade II. The cause of Pn3 clade II dissemination along with epidemiological and clinical ramifications are currently unknown. Here, we sought to explore biological characteristics of dominant Pn3 clades in a mouse model of pneumococcal invasive disease and carriage. Carriage and virulence potential were strain dependent with marked differences among clades. We found that clinical isolates from Pn3 clade II are less virulent and less invasive in mice compared to clade I isolates. We also observed that clade II isolates are carried for longer and at higher bacterial densities in mice compared to clade I isolates. Taken together, our data suggest that the epidemiological success of Pn3 clade II could be related to alterations in the pathogen's ability to cause invasive disease and to establish a robust carriage episode.
Collapse
Affiliation(s)
- Ognjen Sekulovic
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Caitlyn Gallagher
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Jonathan Lee
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Li Hao
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Stavros Zinonos
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Charles Y Tan
- Pfizer Inc, Early Clinical Development, Collegeville, Pennsylvania
| | | | - Isis Kanevsky
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| |
Collapse
|
48
|
Chekesa B, Singh H, Gonzalez-Juarbe N, Vashee S, Wiscovitch-Russo R, Dupont CL, Girma M, Kerro O, Gumi B, Ameni G. Pangenome and genomic signatures linked to the dominance of the lineage-4 of Mycobacterium tuberculosis isolated from extrapulmonary tuberculosis patients in western Ethiopia. PLoS One 2024; 19:e0304060. [PMID: 39052555 PMCID: PMC11271921 DOI: 10.1371/journal.pone.0304060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The lineage 4 (L4) of Mycobacterium tuberculosis (MTB) is not only globally prevalent but also locally dominant, surpassing other lineages, with lineage 2 (L2) following in prevalence. Despite its widespread occurrence, factors influencing the expansion of L4 and its sub-lineages remain poorly understood both at local and global levels. Therefore, this study aimed to conduct a pan-genome and identify genomic signatures linked to the elevated prevalence of L4 sublineages among extrapulmonary TB (EPTB) patients in western Ethiopia. METHODS A cross-sectional study was conducted at an institutional level involving confirmed cases of extrapulmonary tuberculosis (EPTB) patients from August 5, 2018, to December 30, 2019. A total of 75 MTB genomes, classified under lineage 4 (L4), were used for conducting pan-genome and genome-wide association study (GWAS) analyses. After a quality check, variants were identified using MTBseq, and genomes were de novo assembled using SPAdes. Gene prediction and annotation were performed using Prokka. The pan-genome was constructed using GET_HOMOLOGUES, and its functional analysis was carried out with the Bacterial Pan-Genome Analysis tool (BPGA). For GWAS analysis, Scoary was employed with Benjamini-Hochberg correction, with a significance threshold set at p-value ≤ 0.05. RESULTS The analysis revealed a total of 3,270 core genes, predominantly associated with orthologous groups (COG) functions, notably in the categories of '[R] General function prediction only' and '[I] Lipid transport and metabolism'. Conversely, functions related to '[N] Cell motility' and '[Q] Secondary metabolites biosynthesis, transport, and catabolism' were primarily linked to unique and accessory genes. The pan-genome of MTB L4 was found to be open. Furthermore, the GWAS study identified genomic signatures linked to the prevalence of sublineages L4.6.3 and L4.2.2.2. CONCLUSIONS Apart from host and environmental factors, the sublineage of L4 employs distinct virulence factors for successful dissemination in western Ethiopia. Given that the functions of these newly identified genes are not well understood, it is advisable to experimentally validate their roles, particularly in the successful transmission of specific L4 sublineages over others.
Collapse
Affiliation(s)
- Basha Chekesa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Collage of Natural and Computational Science, Wallaga University, Nekemte, Ethiopia
| | - Harinder Singh
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Sanjay Vashee
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | | | - Musse Girma
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Oudessa Kerro
- Institute of Agriculture, The University of Tennessee, Tennessee, Knoxville, United States of America
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
49
|
Chen J, Wu Y, Zhang G, Kang W, Wang T, Li J, Zhou M, Zhang L, Liu Y, Xu X, Jia X, Xu Y, Liu Y. Tracing the possible evolutionary trends of Morganella morganii: insights from molecular epidemiology and phylogenetic analysis. mSystems 2024; 9:e0030624. [PMID: 38884495 PMCID: PMC11264931 DOI: 10.1128/msystems.00306-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Morganella morganii, encompassing two subspecies, subsp. morganii and subsp. sibonii, is a common opportunistic pathogen, notable for intrinsic resistance to multiple antimicrobial agents. Despite its clinical significance, research into the potential evolutionary dynamics of M. morganii remains limited. This study involved the analysis of genome sequences from 431 M. morganii isolates, comprising 206 isolates that cause host infections, obtained from this study and 225 from the NCBI genome data sets. A diverse array of antimicrobial resistance genes (ARGs) was identified in M. morganii isolates, including mcr-1, tet(X4), tmexCD-toprJ, and various carbapenemase genes. In addition, a novel blaKPC-2-bearing plasmid with demonstrated conjugative capability was discovered in M. morganii. The majority of virulence-related genes (VRGs), except for the hlyCABD gene cluster, were found in almost all M. morganii. Three novel genospecies of M. morganii were identified, designated as M. chanii, M. variant1, and M. variant2. Compared to M. sibonii, M. chanii genospecies possessed a greater number of flagellar-related genes, typically located within mobile genetic elements (MGEs), suggesting potential for better environmental adaptability. Phylogenetic analysis further disclosed that M. morganii was divided into 12 sequence clusters (SCs). Particularly, SC9 harbored an elevated abundance of ARGs and VRGs, mainly toxin-related genes, and was associated with a higher presence of MGEs compared to non-SC9 strains. The collective findings suggest that M. morganii undergoes evolution driven by the influence of MGEs, thereby significantly enhancing its adaptability to selective pressures of environmental changes and clinical antimicrobial agents.IMPORTANCEThe growing clinical significance of Morganella morganii arises from its abundant virulence factors and antimicrobial resistance genes, resulting in elevated infection rates and increased clinical scrutiny. However, research on the molecular epidemiology and evolutionary trends of M. morganii has been scarce. Our study established a list of virulence-related genes (VRGs) for M. morganii and conducted a large-scale epidemiological investigation into these VRGs. Based on genomic classification, three novel genotypes of M. morganii were identified, representing evolutionary adaptations and responses to environmental challenges. Furthermore, we discovered the emergence of a sequence cluster enriched with antimicrobial resistance genes, VRGs, and mobile genetic elements, attributed to the selective pressure of antimicrobial agents. In addition, we identified a novel conjugative plasmid harboring the blaKPC-2 gene. These findings hold significance in monitoring and comprehending the epidemiology of M. morganii.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Kang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tong Wang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menglan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Liu
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuesong Xu
- Department of Clinical Laboratory, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xinmiao Jia
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yali Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Briercheck EL, Ravishankar S, Ahmed EH, Carías Alvarado CC, Barrios Menéndez JC, Silva O, Solórzano-Ortiz E, Siliézar Tala MM, Stevenson P, Xu Y, Wohns AW, Enriquez-Vera D, Barrionuevo C, Yu SC, Freud AG, Oakes C, Weigel C, Weinstock DM, Klimaszewski HL, Ngankeu A, Mutalima N, Samayoa-Reyes G, Newton R, Rochford R, Valvert F, Natkunam Y, Shustov A, Baiocchi RA, Warren EH. Geographic EBV variants confound disease-specific variant interpretation and predict variable immune therapy responses. Blood Adv 2024; 8:3731-3744. [PMID: 38815238 PMCID: PMC11296253 DOI: 10.1182/bloodadvances.2023012461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
ABSTRACT Epstein-Barr virus (EBV) is a potent carcinogen linked to hematologic and solid malignancies and causes significant global morbidity and mortality. Therapy using allogeneic EBV-specific lymphocytes shows promise in certain populations, but the impact of EBV genome variation on these strategies remains unexplored. To address this, we sequenced 217 EBV genomes, including hematologic malignancies from Guatemala, Peru, Malawi, and Taiwan, and analyzed them alongside 1307 publicly available EBV genomes from cancer, nonmalignant diseases, and healthy individuals across Africa, Asia, Europe, North America, and South America. These included, to our knowledge, the first natural killer (NK)/T-cell lymphoma (NKTCL) EBV genomes reported outside of East Asia. Our findings indicate that previously proposed EBV genome variants specific to certain cancer types are more closely tied to geographic origin than to cancer histology. This included variants previously reported to be specific to NKTCL but were prevalent in EBV genomes from other cancer types and healthy individuals in East Asia. After controlling for geographic region, we did identify multiple NKTCL-specific variants associated with a 7.8-fold to 21.9-fold increased risk. We also observed frequent variations in EBV genomes that affected peptide sequences previously reported to bind common major histocompatibility complex alleles. Finally, we found several nonsynonymous variants spanning the coding sequences of current vaccine targets BALF4, BKRF2, BLLF1, BXLF2, BZLF1, and BZLF2. These results highlight the need to consider geographic variation in EBV genomes when devising strategies for exploiting adaptive immune responses against EBV-related cancers, ensuring greater global effectiveness and equity in prevention and treatment.
Collapse
Affiliation(s)
- Edward L. Briercheck
- Division of Hematology and Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Shashidhar Ravishankar
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Elshafa Hassan Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - César Camilo Carías Alvarado
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Juan Carlos Barrios Menéndez
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Oscar Silva
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford University School of Medicine, Stanford, CA
| | - Elizabeth Solórzano-Ortiz
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Marcos Mauricio Siliézar Tala
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Philip Stevenson
- Division of Clinical Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Daniel Enriquez-Vera
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Shan-Chi Yu
- Department of Pathology at National Taiwan University Hospital, Taipei, Taiwan
| | - Aharon G. Freud
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Department of Pathology Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Christopher Oakes
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Apollinaire Ngankeu
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Nora Mutalima
- Epidemiology and Genetics Unit, Department of Health Sciences, University of York, York, United Kingdom
| | - Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Robert Newton
- Epidemiology and Genetics Unit, Department of Health Sciences, University of York, York, United Kingdom
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Fabiola Valvert
- Laboratorio de Investigación Biológica en Cáncer, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford University School of Medicine, Stanford, CA
| | - Andrei Shustov
- Division of Hematology and Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robert A. Baiocchi
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Edus H. Warren
- Division of Hematology and Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|