1
|
Reid SM, Byrne AMP, Lean FZX, Ross CS, Pascu A, Hepple R, Dominguez M, Frost S, Coward VJ, Núñez A, James J, Stephan L, Aegerter JN, Brown IH, Banyard AC. A multi-species, multi-pathogen avian viral disease outbreak event: Investigating potential for virus transmission at the wild bird - poultry interface. Emerg Microbes Infect 2024; 13:2348521. [PMID: 38686548 PMCID: PMC11168234 DOI: 10.1080/22221751.2024.2348521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
A free-range organic broiler (Gallus gallus domesticus) premises in Staffordshire was infected by high pathogenicity avian influenza virus (HPAIV) H5N8 during the 2020-2021 epizootic in the United Kingdom (UK). Following initial confirmation of the infection in poultry, multiple wild bird species were seen scavenging on chicken carcasses. Detected dead wild birds were subsequently demonstrated to have been infected and succumbed to HPAIV H5N8. Initially, scavenging species, magpie (Pica pica) and raven (Corvus corax) were found dead on the premises but over the following days, buzzards (Buteo buteo) were also found dead within the local area with positive detection of HPAIV in submitted carcasses. The subacute nature of microscopic lesions within a buzzard was consistent with the timeframe of infection. Finally, a considerable number of free-living pheasants (Phasianus colchicus) were also found dead in the surrounding area, with carcasses having higher viral antigen loads compared to infected chickens. Limited virus dissemination was observed in the carcasses of the magpie, raven, and buzzard. Further, an avirulent avian paramyxovirus type 1 (APMV-1) was detected within poultry samples as well as in the viscera of a magpie infected with HPAIV. Immunohistochemistry did not reveal colocalization of avian paramyxovirus antigens with lesions, supporting an avirulent APMV-1 infection. Overall, this case highlights scenarios in which bi-directional transmission of avian viral diseases between commercial and wild bird species may occur. It also underlines the importance of bio separation and reduced access when infection pressure from HPAIV is high.
Collapse
Affiliation(s)
- Scott M. Reid
- Virology Department, Animal and Plant Health Agency (APHA) Weybridge, Addlestone, UK
| | - Alexander M. P. Byrne
- Virology Department, Animal and Plant Health Agency (APHA) Weybridge, Addlestone, UK
| | - Fabian Z. X. Lean
- Pathology and Animal Sciences Department, APHA Weybridge, Addlestone, UK
| | - Craig S. Ross
- Virology Department, Animal and Plant Health Agency (APHA) Weybridge, Addlestone, UK
| | - Andrei Pascu
- APHA England Field Delivery, APHA Stafford, Stafford, UK
| | | | | | | | - Vivien J. Coward
- Virology Department, Animal and Plant Health Agency (APHA) Weybridge, Addlestone, UK
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, APHA Weybridge, Addlestone, UK
| | - Joe James
- Virology Department, Animal and Plant Health Agency (APHA) Weybridge, Addlestone, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, APHA Weybridge, Addlestone, UK
| | - Levon Stephan
- Veterinary Exotic Notifiable Disease Unit (VENDU), London, UK
| | | | - Ian H. Brown
- Virology Department, Animal and Plant Health Agency (APHA) Weybridge, Addlestone, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, APHA Weybridge, Addlestone, UK
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency (APHA) Weybridge, Addlestone, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, APHA Weybridge, Addlestone, UK
| |
Collapse
|
2
|
Root JJ, Porter SM, Lenoch JB, Ellis JW, Bosco-Lauth AM. Susceptibilities and viral shedding of peridomestic wildlife infected with clade 2.3.4.4b highly pathogenic avian influenza virus (H5N1). Virology 2024; 600:110231. [PMID: 39278105 DOI: 10.1016/j.virol.2024.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
We tested the ability of six peridomestic wildlife species to replicate a highly pathogenic (HP) clade 2.3.4.4b AIV (H5N1) isolated in the U.S. during 2022. All tested species replicated and shed virus, at least to some degree. Of the six species evaluated (house sparrows (Passer domesticus), European starlings (Sturnus vulgaris), feral pigeons (Columba livia), striped skunks (Mephitis mephitis), Virginia opossums (Didelphis virginiana), and cottontails (Sylvilagus sp.)), striped skunks and Virginia opossums shed the highest viral titers of 106.3 PFU/mL and 105.0 PFU/mL, respectively. Overall, the results of this study indicate that certain peridomestic species could pose a biosecurity threat to poultry operations in some situations. In addition, this study and field reports indicate that the HP AIVs circulating in the U.S. during 2022-2024 may have an extremely broad range of species that can be impacted by and/or replicate and shed these viruses.
Collapse
Affiliation(s)
- J Jeffrey Root
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA.
| | - Stephanie M Porter
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | - Julianna B Lenoch
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, CO, USA
| | - Jeremy W Ellis
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | - Angela M Bosco-Lauth
- Colorado State University, Department of Biomedical Sciences, Fort Collins, CO, USA
| |
Collapse
|
3
|
Desvars-Larrive A, Vogl AE, Puspitarani GA, Yang L, Joachim A, Käsbohrer A. A One Health framework for exploring zoonotic interactions demonstrated through a case study. Nat Commun 2024; 15:5650. [PMID: 39009576 PMCID: PMC11250852 DOI: 10.1038/s41467-024-49967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The eco-epidemiology of zoonoses is often oversimplified to host-pathogen interactions while findings derived from global datasets are rarely directly transferable to smaller-scale contexts. Through a systematic literature search, we compiled a dataset of naturally occurring zoonotic interactions in Austria, spanning 1975-2022. We introduce the concept of zoonotic web to describe the complex relationships between zoonotic agents, their hosts, vectors, food, and environmental sources. The zoonotic web was explored through network analysis. After controlling for research effort, we demonstrate that, within the projected unipartite source-source network of zoonotic agent sharing, the most influential zoonotic sources are human, cattle, chicken, and some meat products. Analysis of the One Health 3-cliques (triangular sets of nodes representing human, animal, and environment) confirms the increased probability of zoonotic spillover at human-cattle and human-food interfaces. We characterise six communities of zoonotic agent sharing, which assembly patterns are likely driven by highly connected infectious agents in the zoonotic web, proximity to human, and anthropogenic activities. Additionally, we report a frequency of emerging zoonotic diseases in Austria of one every six years. Here, we present a flexible network-based approach that offers insights into zoonotic transmission chains, facilitating the development of locally-relevant One Health strategies against zoonoses.
Collapse
Affiliation(s)
- Amélie Desvars-Larrive
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria.
- Complexity Science Hub, Vienna, Austria.
| | - Anna Elisabeth Vogl
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gavrila Amadea Puspitarani
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Complexity Science Hub, Vienna, Austria
| | | | - Anja Joachim
- Centre of Pathobiology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Annemarie Käsbohrer
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Headley SA, Fritzen JTT, Silva FHP, Minarelli SLM, Biondo LM, Kmetiuk LB, Biondo AW, Alfieri AA. Subclinical Ovine Gammaherpesvirus 2-Related Infections in Free-Ranging Wild Boars ( Sus scrofa) from Southern Brazil. Pathogens 2024; 13:515. [PMID: 38921812 PMCID: PMC11207053 DOI: 10.3390/pathogens13060515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Ovine gammaherpesvirus 2 (OvGHV2), is a Macavirus and the cause of sheep-associated malignant catarrhal fever (SA-MCF), in which sheep are the asymptomatic reservoir hosts. Susceptible mammalian populations infected by OvGHV2 may develop clinical SA-MCF or subclinical infections. All members of the Macavirus genus known to be associated with MCF are collectively referred to as the MCF virus (MCFV) complex. This report describes the occurrence of subclinical OvGHV2-related infections in free-ranging wild boars (Sus scrofa) from southern Brazil. Specific body organs (n = 14) and biological samples (nasal and oral swabs; n = 17) were collected from 24 asymptomatic wild boars from a conservation unit located within the Central-eastern mesoregion of Paraná State. Organs were processed to observe histopathological patterns suggestive of diseases of domestic animals; only pulmonary samples were used in an immunohistochemical assay designed to detect MCFV tissue antigens. Furthermore, all samples were submitted to molecular assays designed to detect the OvGHV2 tegument protein gene. Viral-induced pneumonia was diagnosed in two wild boars; one of these contained OvGHV2 DNA, with MCFV antigens identified in the other. Additionally, MCFV tissue antigens were detected within pulmonary epithelial cells of the lungs with and without pulmonary disease. Collectively, OvGHV2 was detected in 37.5% (9/24) of all wild boars, with detection occurring in the organs of 57.1% (8/14) wild boars and the oral cavity of one animal. These results demonstrated that these wild boars were subclinically infected by OvGHV2, and that infection produced typical pulmonary alterations. In addition, the detection of OvGHV2 within the oral cavity of one wild boar may suggest that this animal may be a potential disseminator of this pathogen to susceptible animal populations, including livestock and wildlife, acting as a possible bridge host for OvGHV2. Furthermore, infection by OvGHV2 probably occurred due to incidental contact with asymptomatic sheep maintained within the surrounding rural areas and not within the conservation units.
Collapse
Affiliation(s)
- Selwyn Arlington Headley
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil;
- Multi-User Animal Health Laboratory (LAMSA), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Juliana Torres Tomazi Fritzen
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (J.T.T.F.); (S.L.M.M.)
| | - Flavia Helena Pereira Silva
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil;
| | - Silvio Luis Marsiglio Minarelli
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (J.T.T.F.); (S.L.M.M.)
| | - Leandro Meneguelli Biondo
- National Institute of the Atlantic Forest (INMA), Brazilian Ministry of Science, Technology, and Innovation, Santa Teresa 29650-000, Brazil;
| | - Louise Bach Kmetiuk
- Zoonosis Surveillance Unit, City Secretary of Health, Curitiba 81265-320, Brazil;
| | - Alexander Welker Biondo
- Department of Veterinary Medicine, Federal University of Paraná, Curitiba 80035-050, Brazil;
| | - Amauri Alcindo Alfieri
- Multi-User Animal Health Laboratory (LAMSA), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (J.T.T.F.); (S.L.M.M.)
| |
Collapse
|
5
|
Harran E, Kuntz G, Decors A, Bourhy P, Auffret A, Bigeard C, Cherel D, Kodjo A, Le Dréan E, Lejas C, Lequeux G, Pilard MA, Pivette M, Guillois Y, Ayral F. Tracking potential Leptospira sources following human cases of leptospirosis: A One Health approach applied to an ecosystem in Brittany, France. One Health 2024; 18:100726. [PMID: 38644972 PMCID: PMC11026838 DOI: 10.1016/j.onehlt.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Pathogenic Leptospira can cause leptospirosis: a widespread, potentially fatal bacterial zoonosis whose risk is mediated by the soil and water features, animal host distributions, meaning the local ecosystem. When human cases of leptospirosis occur, it is challenging to track down their source because ecosystem-level epidemiological knowledge on Leptospira is needed. Between 2016 and 2019 in a focal riparian ecosystem, the human population experienced an outbreak and successive cases of leptospirosis attributable to L. kirschneri and L. interrogans. The epidemiological investigation was carried out using the One Health approach, as described in international health guidelines. As a first step in this process, we investigated leptospiral carriage in the main animal hosts found in the region. We sampled 143 nutrias, 17 muskrats, and 10 Norway rats using convenient trapping. DNA was extracted from their kidneys, lungs, and urine and subjected to real-time PCR (RT-PCR) targeting the Leptospira 16S rDNA and lfb1 genes. In the farms along the river's stretch of interest, we sampled serum from 439 cattle and used a microscopic agglutination test to detect the presence of antibodies against Leptospira. Urine samples were concomitantly obtained from 145 cattle and were used in two analyses: RT-PCR targeting the Leptospira 16S rDNA gene and Leptospira culturing. We found th, wt rodents were the most likely source of the L. interrogans behind the human cases. The cattle tested negative for Leptospira DNA but positive for antibodies against the serogroups implicated in the human cases. We failed to identify the potential source of the L. kirschneri responsible for several human cases of leptospirosis. Our results call for further clarification of the Leptospira maintenance community, which may comprise known maintenance hosts, such as rodents, as well as taxa not commonly considered to be maintenance hosts but that can still spread Leptospira. The resulting research network will collaboratively conduct future eco-epidemiological surveys to illuminate the leptospirosis risks faced by humans and animals within ecosystems.
Collapse
Affiliation(s)
- Elena Harran
- USC 1233-RS2GP, VetAgro Sup, Université de Lyon, Marcy L'Etoile 69280, France
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | | | - Anouk Decors
- Office Français de la Biodiversité, Direction de la recherche et de l'appui scientifique, Orléans 45100, France
| | - Pascale Bourhy
- Biology of Spirochetes Unit, National Reference Center for Leptospirosis, Institut Pasteur, University of Paris Cité, Paris, France
| | | | - Clément Bigeard
- Ecole Nationale des Services Vétérinaires – France Vétérinaire Internationale, VetAgro Sup, Université de Lyon, Marcy L'Etoile 69280, France
| | | | - Angeli Kodjo
- Laboratoire des Leptospires et d'Analyses Vétérinaires, VetAgro Sup, Université de Lyon, Marcy L'Etoile 69280, France
| | | | - Cyrille Lejas
- Fédération Départementale de Gestion des Espèces exotiques envahissantes (FDGDON 35), Direction Technique, 35340 Ercé-prés-Liffré, France
| | | | - Marie-Agnès Pilard
- Agence Régionale de Santé Bretagne, Délégation Départementale d'Ille-et-Vilaine, Département Santé-Environnement, 35042 Rennes, France
| | - Mathilde Pivette
- Santé Publique France, Direction des regions, Bretagne, 94415 Saint-Maurice, France
| | - Yvonnick Guillois
- Santé Publique France, Direction des regions, Bretagne, 94415 Saint-Maurice, France
| | - Florence Ayral
- USC 1233-RS2GP, VetAgro Sup, Université de Lyon, Marcy L'Etoile 69280, France
- VetAgro Sup, Pôle EVAAS, 69280 Marcy L'Etoile, France
| |
Collapse
|
6
|
Huang R, Ji X, Zhu L, Zhang C, Luo T, Liang B, Jiang B, Zhou A, Du C, Sun Y. Metagenomic and Antibiotic Resistance Analysis of the Gut Microbiota in Larus relictus and Anatidae Species Inhabiting the Honghaizi Wetland of Ordos, Inner Mongolia, from 2021 to 2023. Microorganisms 2024; 12:978. [PMID: 38792807 PMCID: PMC11123678 DOI: 10.3390/microorganisms12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus relictus) and Anatidae species. Alpha diversity analysis revealed that the intestinal microbial richness of L. relictus was significantly lower than that of Anatidae, with distinct differences observed in microbial composition. Notably, the intestines of L. relictus harboured more pathogenic bacteria such as clostridium, which may contribute to the decline in their population and endangered status. A total of 117 strains of Escherichia coli were isolated, with 90.60% exhibiting full susceptibility to 21 antibiotics, while 25.3% exhibited significant biofilm formation. Comprehensive Antibiotic Resistance Database data indicated that glycopeptide resistance genes were the most prevalent type carried by migratory birds, alongside quinolone, tetracycline and lincosamide resistance genes. The abundance of resistance genes carried by migratory birds decreased over time. This metagenomic analysis provides valuable insights into the intestinal microbial composition of these wild bird species, offering important guidance for their conservation efforts, particularly for L. relictus, and contributing to our understanding of pathogen spread and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ronglei Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.H.); (C.Z.); (A.Z.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.J.); (L.Z.); (B.L.); (B.J.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China
| | - Xue Ji
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.J.); (L.Z.); (B.L.); (B.J.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China
| | - Lingwei Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.J.); (L.Z.); (B.L.); (B.J.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China
| | - Chengyang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.H.); (C.Z.); (A.Z.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.J.); (L.Z.); (B.L.); (B.J.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China
| | - Tingting Luo
- College of Animal Sciences, Jilin University, Changchun 130062, China;
| | - Bing Liang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.J.); (L.Z.); (B.L.); (B.J.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China
| | - Bowen Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.J.); (L.Z.); (B.L.); (B.J.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China
| | - Ang Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.H.); (C.Z.); (A.Z.)
| | - Chongtao Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.H.); (C.Z.); (A.Z.)
| | - Yang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.J.); (L.Z.); (B.L.); (B.J.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China
| |
Collapse
|
7
|
Sánchez-Cano A, Camacho MC, Ramiro Y, Cardona-Cabrera T, Höfle U. Seasonal changes in bird communities on poultry farms and house sparrow-wild bird contacts revealed by camera trapping. Front Vet Sci 2024; 11:1369779. [PMID: 38444782 PMCID: PMC10912304 DOI: 10.3389/fvets.2024.1369779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Wild birds are considered reservoirs of poultry pathogens although transmission routes have not been conclusively established. Here we use camera trapping to study wild bird communities on commercial layer and red-legged partridge farms over a one-year timeframe. We also analyze direct and indirect interactions of other bird species with the house sparrow (Passer domesticus), a potential bridge host. Methods We conducted camera trapping events between January 2018 and October 2019, in two caged layer farms, one free-range layer farm, and two red-legged partridge farms in South-Central Spain. Results and Discussion We observed wild bird visits on all types of farms, with the significantly highest occurrence on red-legged partridge farms where food and water are more easily accessible, followed by commercial caged layer farms, and free-range chicken farms. The house sparrow (Passer domesticus) followed by spotless starlings (Sturnus unicolor) was the most encountered species on all farms, with the highest frequency in caged layer farms. On partridge farms, the house sparrow accounted for 58% of the wild bird detections, while on the free-range chicken farm, it made up 11% of the detections. Notably, the breeding season, when food and water are scarce in Mediterranean climates, saw the highest number of wild bird visits to the farms. Our findings confirm that the house sparrow, is in direct and indirect contact with layers and red-legged partridges and other wild birds independent of the type of farm. Contacts between house sparrows and other bird species were most frequent during the breeding season followed by the spring migration period. The species most frequently involved in interactions with the house sparrow belonged to the order Passeriformes. The study provides a comparative description of the composition and seasonal variations of bird communities in different types of layer/ poultry farms in Southern Spain i.e. a Mediterranean climate. It confirms the effectiveness of biosecurity measures that restrict access to feed and water. Additionally, it underscores the importance of synanthropic species, particularly the house sparrow, as potential bridge vector of avian pathogens.
Collapse
Affiliation(s)
- Alberto Sánchez-Cano
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
8
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Martelli L, Fornasiero D, Scarton F, Spada A, Scolamacchia F, Manca G, Mulatti P. Study of the Interface between Wild Bird Populations and Poultry and Their Potential Role in the Spread of Avian Influenza. Microorganisms 2023; 11:2601. [PMID: 37894259 PMCID: PMC10609042 DOI: 10.3390/microorganisms11102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Water birds play a crucial role in disseminating and amplifying avian influenza viruses (AIVs) in the environment. However, they may have limited interactions with domestic facilities, raising the hypothesis that other wild birds may play the bridging role in introducing AIVs into poultry. An ornithocoenosis study, based on census-transect and camera-trapping methods, was conducted in 2019 in ten poultry premises in northeast Italy to characterize the bird communities and envisage the species that might act as bridge hosts for AIVs. The data collected were explored through a series of multivariate analyses (correspondence analysis and non-metric multidimensional scaling), and biodiversity indices (observed and estimated richness, Shannon entropy and Pielou's evenness). The analyses revealed a high level of complexity in the ornithic population, with 147 censused species, and significant qualitative and quantitative differences in wild bird species composition, both in space and in time. Among these, only a few were observed in close proximity to the farm premises (i.e., Magpies, Blackbirds, Cattle Egrets, Pheasants, Eurasian Collared Doves, and Wood Pigeons), thus suggesting their potential role in spilling over AIVs to poultry; contrarily, waterfowls appeared to be scarcely inclined to close visits, especially during autumn and winter seasons. These findings stress the importance of ongoing research on the wild-domestic bird interface, advocating for a wider range of species to be considered in AIVs surveillance and prevention programs.
Collapse
Affiliation(s)
- Luca Martelli
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | - Diletta Fornasiero
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | | | - Arianna Spada
- SELC Soc. Coop., 30175 Venice, Italy; (F.S.); (A.S.)
| | - Francesca Scolamacchia
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | - Grazia Manca
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| |
Collapse
|
10
|
Hassell JM, Muloi DM, VanderWaal KL, Ward MJ, Bettridge J, Gitahi N, Ouko T, Imboma T, Akoko J, Karani M, Muinde P, Nakamura Y, Alumasa L, Furmaga E, Kaitho T, Amanya F, Ogendo A, Fava F, Wee BA, Phan H, Kiiru J, Kang’ethe E, Kariuki S, Robinson T, Begon M, Woolhouse MEJ, Fèvre EM. Epidemiological connectivity between humans and animals across an urban landscape. Proc Natl Acad Sci U S A 2023; 120:e2218860120. [PMID: 37450494 PMCID: PMC10629570 DOI: 10.1073/pnas.2218860120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
Urbanization is predicted to be a key driver of disease emergence through human exposure to novel, animal-borne pathogens. However, while we suspect that urban landscapes are primed to expose people to novel animal-borne diseases, evidence for the mechanisms by which this occurs is lacking. To address this, we studied how bacterial genes are shared between wild animals, livestock, and humans (n = 1,428) across Nairobi, Kenya-one of the world's most rapidly developing cities. Applying a multilayer network framework, we show that low biodiversity (of both natural habitat and vertebrate wildlife communities), coupled with livestock management practices and more densely populated urban environments, promotes sharing of Escherichia coli-borne bacterial mobile genetic elements between animals and humans. These results provide empirical support for hypotheses linking resource provision, the biological simplification of urban landscapes, and human and livestock demography to urban dynamics of cross-species pathogen transmission at a landscape scale. Urban areas where high densities of people and livestock live in close association with synanthropes (species such as rodents that are more competent reservoirs for zoonotic pathogens) should be prioritized for disease surveillance and control.
Collapse
Affiliation(s)
- James M. Hassell
- Global Health Program, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC20008
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, CT06510
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, LiverpoolL69 3BX, United Kingdom
| | - Dishon M. Muloi
- Usher Institute, University of Edinburgh, EdinburghEH16 4SS, United Kingdom
- International Livestock Research Institute, 00100Nairobi, Kenya
- Centre for Immunity, Infection and Evolution, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Kimberly L. VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN55108
| | - Melissa J. Ward
- Usher Institute, University of Edinburgh, EdinburghEH16 4SS, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Faculty of Medicine, University of Southampton, SouthamtonSO17 1BJ, United Kingdom
| | - Judy Bettridge
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, LiverpoolL69 3BX, United Kingdom
- International Livestock Research Institute, 00100Nairobi, Kenya
| | | | - Tom Ouko
- Kenya Medical Research Institute, 00200Nairobi, Kenya
| | | | - James Akoko
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Maurice Karani
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Patrick Muinde
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Yukiko Nakamura
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo060-0818, Japan
| | - Lorren Alumasa
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Erin Furmaga
- Department of Epidemiology, Columbia University, New York, NY10032
| | - Titus Kaitho
- Veterinary Services Department, Kenya Wildlife Service, 00100Nairobi, Kenya
| | - Fredrick Amanya
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Allan Ogendo
- International Livestock Research Institute, 00100Nairobi, Kenya
| | - Francesco Fava
- International Livestock Research Institute, 00100Nairobi, Kenya
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133Milan, Italy
| | - Bryan A. Wee
- Usher Institute, University of Edinburgh, EdinburghEH16 4SS, United Kingdom
| | - Hang Phan
- Nuffield Department of Clinical Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - John Kiiru
- Kenya Medical Research Institute, 00200Nairobi, Kenya
| | | | - Sam Kariuki
- Kenya Medical Research Institute, 00200Nairobi, Kenya
| | - Timothy Robinson
- Food and Agriculture Organization of the United Nations, 00153Rome, Italy
| | - Michael Begon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, LiverpoolL69 3BX, United Kingdom
| | - Mark E. J. Woolhouse
- Usher Institute, University of Edinburgh, EdinburghEH16 4SS, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, LiverpoolL69 3BX, United Kingdom
- International Livestock Research Institute, 00100Nairobi, Kenya
| |
Collapse
|
11
|
Bouchez-Zacria M, Ruette S, Richomme C, Lesellier S, Payne A, Boschiroli ML, Courcoul A, Durand B. Analysis of a multi-type resurgence of Mycobacterium bovis in cattle and badgers in Southwest France, 2007-2019. Vet Res 2023; 54:41. [PMID: 37138355 PMCID: PMC10158257 DOI: 10.1186/s13567-023-01168-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Although control measures to tackle bovine tuberculosis (bTB) in cattle have been successful in many parts of Europe, this disease has not been eradicated in areas where Mycobacterium bovis circulates in multi-host systems. Here we analyzed the resurgence of 11 M. bovis genotypes (defined based on spoligotyping and MIRU-VNTR) detected in 141 farms between 2007 and 2019, in an area of Southwestern France where wildlife infection was also detected from 2012 in 65 badgers. We used a spatially-explicit model to reconstruct the simultaneous diffusion of the 11 genotypes in cattle farms and badger populations. Effective reproduction number R was estimated to be 1.34 in 2007-2011 indicating a self-sustained M. bovis transmission by a maintenance community although within-species Rs were both < 1, indicating that neither cattle nor badger populations acted as separate reservoir hosts. From 2012, control measures were implemented, and we observed a decrease of R below 1. Spatial contrasts of the basic reproduction ratio suggested that local field conditions may favor (or penalize) local spread of bTB upon introduction into a new farm. Calculation of generation time distributions showed that the spread of M. bovis has been more rapid from cattle farms (0.5-0.7 year) than from badger groups (1.3-2.4 years). Although eradication of bTB appears possible in the study area (since R < 1), the model suggests it is a long-term prospect, because of the prolonged persistence of infection in badger groups (2.9-5.7 years). Supplementary tools and efforts to better control bTB infection in badgers (including vaccination for instance) appear necessary.
Collapse
Affiliation(s)
- Malika Bouchez-Zacria
- Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France
- Independent Researcher, Audincthun, France
| | - Sandrine Ruette
- French Office for Biodiversity (OFB), Research and Scientific Support Direction, Vincennes, France
| | - Céline Richomme
- Nancy Laboratory for Rabies and Wildlife, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Malzéville, France
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Malzéville, France
| | - Ariane Payne
- French Office for Biodiversity (OFB), Research and Scientific Support Direction, Vincennes, France
| | - Maria-Laura Boschiroli
- Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France
- Tuberculosis Reference Laboratory, Bacterial Zoonosis Unit, Laboratory for Animal Health, Paris-Est University, ANSES, 94700, Maisons‑Alfort, France
| | - Aurélie Courcoul
- Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France
- Oniris, Nantes, France
| | - Benoit Durand
- Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France.
| |
Collapse
|
12
|
Santos N, Colino EF, Arnal MC, de Luco DF, Sevilla I, Garrido JM, Fonseca E, Valente AM, Balseiro A, Queirós J, Almeida V, Vicente J, Gortázar C, Alves PC. Complementary roles of wild boar and red deer to animal tuberculosis maintenance in multi-host communities. Epidemics 2022; 41:100633. [PMID: 36174428 DOI: 10.1016/j.epidem.2022.100633] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
The contribution of wildlife species to pathogen maintenance in multi-host communities has seldom been quantified. To assess the relative contribution of the main wildlife hosts of animal tuberculosis (TB) to its maintenance, we estimated the basic reproduction number (R0) of Mycobacterium tuberculosis complex in wild boar and red deer at 29 sites in the Iberian Peninsula. Host abundance and true TB prevalence were estimated for each species at each site by sampling from distributions incorporating the uncertainty in the proportion of the population harvested each year, sensitivity, and specificity of the diagnostic methods, while excretion of mycobacteria was estimated using site-occupancy models. The distributions of these parameters were then used to estimate, at each site, the R0,wild boar (range 0.1 - 55.9, average 8.7, standard deviation 11.8), and the R0,red deer (0.1 - 18.9, 2.2, 3.9). Animal TB is maintained in epidemiological scenarios ranging from any single species acting as a maintenance host (the wild boar in 18 sites and the red deer in 5), to facultative multi-host disease (6 sites). The prevalence of TB in the red deer is likely an important driver of the epidemiology in multi-host communities. The wild boar was the main maintenance host of TB in most of the study sites and could have an epidemiological role linking the wildlife multi-host community and livestock.
Collapse
Affiliation(s)
- Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Elisa Ferreras Colino
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - María Cruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Iker Sevilla
- Animal Health Department. NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Joseba M Garrido
- Animal Health Department. NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Eliana Fonseca
- Instituto de Conservação da Natureza e das Florestas, I.P., Braga, Portugal
| | - Ana M Valente
- CESAM, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Ana Balseiro
- Animal Health Department, Instituto de Ganadería de Montaña (IGM, CSIC-ULE), León, Spain; Animal Health Department, Facultad de Veterinaria, Universidad de León, León, Spain, Instituto de Ganadería de Montaña (IGM, CSIC-ULE), León, Spain
| | - João Queirós
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Virgílio Almeida
- Faculty of Veterinary Medicine, University of Lisbon, Campus da Ajuda, Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Campus da Ajuda, Lisboa, Portugal
| | - Joaquín Vicente
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Paulo Célio Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal; Estação Biológica de Mértola (EBM), CIBIO, Mértola, Portugal
| |
Collapse
|
13
|
McLeish MJ, Zamfir AD, Babalola BM, Peláez A, Fraile A, García-Arenal F. Metagenomics show high spatiotemporal virus diversity and ecological compartmentalisation: Virus infections of melon, Cucumis melo, crops, and adjacent wild communities. Virus Evol 2022; 8:veac095. [PMID: 36405340 PMCID: PMC9667876 DOI: 10.1093/ve/veac095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/24/2022] [Accepted: 09/30/2022] [Indexed: 07/22/2023] Open
Abstract
The emergence of viral diseases results from novel transmission dynamics between wild and crop plant communities. The bias of studies towards pathogenic viruses of crops has distracted from knowledge of non-antagonistic symbioses in wild plants. Here, we implemented a high-throughput approach to compare the viromes of melon (Cucumis melo) and wild plants of crop (Crop) and adjacent boundaries (Edge). Each of the 41-plant species examined was infected by at least one virus. The interactions of 104 virus operational taxonomic units (OTUs) with these hosts occurred largely within ecological compartments of either Crop or Edge, with Edge having traits of a reservoir community. Local scale patterns of infection were characterised by the positive correlation between plant and virus richness at each site, the tendency for increased specialist host use through seasons, and specialist host use by OTUs observed only in Crop, characterised local-scale patterns of infection. In this study of systematically sampled viromes of a crop and adjacent wild communities, most hosts showed no disease symptoms, suggesting non-antagonistic symbioses are common. The coexistence of viruses within species-rich ecological compartments of agro-systems might promote the evolution of a diversity of virus strategies for survival and transmission. These communities, including those suspected as reservoirs, are subject to sporadic changes in assemblages, and so too are the conditions that favour the emergence of disease.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián D Zamfir
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Bisola M Babalola
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
14
|
Camp JV, Desvars-Larrive A, Nowotny N, Walzer C. Monitoring Urban Zoonotic Virus Activity: Are City Rats a Promising Surveillance Tool for Emerging Viruses? Viruses 2022; 14:v14071516. [PMID: 35891496 PMCID: PMC9316102 DOI: 10.3390/v14071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Urban environments represent unique ecosystems where dense human populations may come into contact with wildlife species, some of which are established or potential reservoirs for zoonotic pathogens that cause human diseases. Finding practical ways to monitor the presence and/or abundance of zoonotic pathogens is important to estimate the risk of spillover to humans in cities. As brown rats (Rattus norvegicus) are ubiquitous in urban habitats, and are hosts of several zoonotic viruses, we conducted longitudinal sampling of brown rats in Vienna, Austria, a large population center in Central Europe. We investigated rat tissues for the presence of several zoonotic viruses, including flaviviruses, hantaviruses, coronaviruses, poxviruses, hepatitis E virus, encephalomyocarditis virus, and influenza A virus. Although we found no evidence of active infections (all were negative for viral nucleic acids) among 96 rats captured between 2016 and 2018, our study supports the findings of others, suggesting that monitoring urban rats may be an efficient way to estimate the activity of zoonotic viruses in urban environments.
Collapse
Affiliation(s)
- Jeremy V. Camp
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Amélie Desvars-Larrive
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Complexity Science Hub Vienna, 1080 Vienna, Austria
- VetFarm, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY 10460, USA
| |
Collapse
|
15
|
Vittecoq M, Brazier L, Elguero E, Bravo IG, Renaud N, Manzano‐Marín A, Prugnolle F, Godreuil S, Blanchon T, Roux F, Durand P, Renaud F, Thomas F. Multiresistant Enterobacteriaceae in yellow-legged gull chicks in their first weeks of life. Ecol Evol 2022; 12:e8974. [PMID: 35784041 PMCID: PMC9188031 DOI: 10.1002/ece3.8974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Wild animal species living in anthropogenic areas are commonly carriers of antimicrobial-resistant bacteria (AMRB), but their role in the epidemiology of these bacteria is unclear. Several studies on AMRB in wildlife have been cross-sectional in design and sampled individual animals at only one point in time. To further understand the role of wildlife in maintaining and potentially transmitting these bacteria to humans and livestock, longitudinal studies are needed in which samples are collected from individual animals over multiple time periods. In Europe, free-ranging yellow-legged gulls (Larus michahellis) commonly live in industrialized areas, forage in landfills, and have been found to carry AMRB in their feces. Using bacterial metagenomics and antimicrobial resistance characterization, we investigated the spatial and temporal patterns of AMRB in a nesting colony of yellow-legged gulls from an industrialized area in southern France. We collected 54 cloacal swabs from 31 yellow-legged gull chicks in 20 nests on three dates in 2016. We found that AMRB in chicks increased over time and was not spatially structured within the gull colony. This study highlights the complex occurrence of AMRB in a free-ranging wildlife species and contributes to our understanding of the public health risks and implications associated with ARMB-carrying gulls living in anthropogenic areas.
Collapse
Affiliation(s)
- Marion Vittecoq
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
- Tour du ValatResearch Institute for the Conservation of Mediterranean WetlandsArlesFrance
| | - Lionel Brazier
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Eric Elguero
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Ignacio G. Bravo
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | | | | | - Franck Prugnolle
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Sylvain Godreuil
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Thomas Blanchon
- Tour du ValatResearch Institute for the Conservation of Mediterranean WetlandsArlesFrance
| | - François Roux
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Patrick Durand
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - François Renaud
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Frédéric Thomas
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| |
Collapse
|
16
|
Le Gall-Ladevèze C, Guinat C, Fievet P, Vollot B, Guérin JL, Cappelle J, Le Loc'h G. Quantification and characterisation of commensal wild birds and their interactions with domestic ducks on a free-range farm in southwest France. Sci Rep 2022; 12:9764. [PMID: 35697735 PMCID: PMC9192735 DOI: 10.1038/s41598-022-13846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The role of commensal birds in the epidemiology of pathogens in poultry farms remains unclear. Our study aimed to identify potential key species for interactions with domestic ducks on one free-range duck farm in southwest France. Methods combined direct individual observations on duck outdoor foraging areas, network analysis, and general linear mixed models of abundances. Results showed a wide diversity of wild bird species visiting foraging areas, heavily dominated in frequency by White wagtails (Motacilla alba) and Sparrows (Passer domesticus and Passer montanus). These also were the only species seen entering duck premises or perching on drinkers in the presence of ducks. Moreover, White wagtails were the species most frequently observed on the ground and in close proximity to ducks. Network analysis suggested the role of White wagtails and Sparrows in linking ducks to other wild birds on the farm. The abundance of White wagtails was positively associated with open vegetation, with the presence of ducks and particularly in the afternoon, while the abundance of Sparrows was positively associated only with the fall-winter season. By precisely characterising interactions, the study was able to identify few wild bird species which should be prioritized in infectious investigations at the interface with poultry.
Collapse
Affiliation(s)
| | - Claire Guinat
- Department of Biosystems Science and Engineering, ETHZürich, Mattenstrasse, Basel, Switzerland
- SIB, Lausanne, Switzerland
| | | | | | | | - Julien Cappelle
- ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
- UMR ASTRE, CIRAD, 34398, Montpellier, France
| | | |
Collapse
|
17
|
Lin YP, Tufts DM, Combs M, Dupuis AP, Marcinkiewicz AL, Hirsbrunner AD, Diaz AJ, Stout JL, Blom AM, Strle K, Davis AD, Kramer LD, Kolokotronis SO, Diuk-Wasser MA. Cellular and immunological mechanisms influence host-adapted phenotypes in a vector-borne microparasite. Proc Biol Sci 2022; 289:20212087. [PMID: 35193398 PMCID: PMC8864362 DOI: 10.1098/rspb.2021.2087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/18/2022] [Indexed: 01/15/2023] Open
Abstract
Predicting pathogen emergence and spillover risk requires understanding the determinants of a pathogens' host range and the traits involved in host competence. While host competence is often considered a fixed species-specific trait, it may be variable if pathogens diversify across hosts. Balancing selection can lead to maintenance of pathogen polymorphisms (multiple-niche-polymorphism; MNP). The causative agent of Lyme disease, Borrelia burgdorferi (Bb), provides a model to study the evolution of host adaptation, as some Bb strains defined by their outer surface protein C (ospC) genotype, are widespread in white-footed mice and others are associated with non-rodent vertebrates (e.g. birds). To identify the mechanisms underlying potential strain × host adaptation, we infected American robins and white-footed mice, with three Bb strains of different ospC genotypes. Bb burdens varied by strain in a host-dependent fashion, and strain persistence in hosts largely corresponded to Bb survival at early infection stages and with transmission to larvae (i.e. fitness). Early survival phenotypes are associated with cell adhesion, complement evasion and/or inflammatory and antibody-mediated removal of Bb, suggesting directional selective pressure for host adaptation and the potential role of MNP in maintaining OspC diversity. Our findings will guide future investigations to inform eco-evolutionary models of host adaptation for microparasites.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| | - Danielle M. Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
- Infectious Diseases and Microbiology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Combs
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Alan P. Dupuis
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | | | | | - Alexander J. Diaz
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Jessica L. Stout
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Anna M. Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| | - April D. Davis
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Laura D. Kramer
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Institute for Genomic Health, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Maria A. Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Receveur JP, Bauer A, Pechal JL, Picq S, Dogbe M, Jordan HR, Rakestraw AW, Fast K, Sandel M, Chevillon C, Guégan JF, Wallace JR, Benbow ME. A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease). FEMS Microbiol Rev 2022; 46:fuab045. [PMID: 34468735 PMCID: PMC8767449 DOI: 10.1093/femsre/fuab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding the interactions of ecosystems, humans and pathogens is important for disease risk estimation. This is particularly true for neglected and newly emerging diseases where modes and efficiencies of transmission leading to epidemics are not well understood. Using a model for other emerging diseases, the neglected tropical skin disease Buruli ulcer (BU), we systematically review the literature on transmission of the etiologic agent, Mycobacterium ulcerans (MU), within a One Health/EcoHealth framework and against Hill's nine criteria and Koch's postulates for making strong inference in disease systems. Using this strong inference approach, we advocate a null hypothesis for MU transmission and other understudied disease systems. The null should be tested against alternative vector or host roles in pathogen transmission to better inform disease management. We propose a re-evaluation of what is necessary to identify and confirm hosts, reservoirs and vectors associated with environmental pathogen replication, dispersal and transmission; critically review alternative environmental sources of MU that may be important for transmission, including invertebrate and vertebrate species, plants and biofilms on aquatic substrates; and conclude with placing BU within the context of other neglected and emerging infectious diseases with intricate ecological relationships that lead to disease in humans, wildlife and domestic animals.
Collapse
Affiliation(s)
- Joseph P Receveur
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexandra Bauer
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Alex W Rakestraw
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Kayla Fast
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Michael Sandel
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Christine Chevillon
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
| | - Jean-François Guégan
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
- UMR Animal, santé, territoires, risques et écosystèmes, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de coopération internationale en recherche agronomique pour le développement (Cirad), Université de Montpellier (UM), Montpellier, France
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA, USA
| | - M Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- AgBioResearch, Michigan State University, East Lansing, MI, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
COLMAN RE, BRINKERHOFF RJ, BUSCH JD, RAY C, DOYLE A, SAHL JW, KEIM P, COLLINGE SK, WAGNER DM. No evidence for enzootic plague within black-tailed prairie dog (Cynomys ludovicianus) populations. Integr Zool 2021; 16:834-851. [PMID: 33882192 PMCID: PMC9292313 DOI: 10.1111/1749-4877.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Yersinia pestis, causative agent of plague, occurs throughout the western United States in rodent populations and periodically causes epizootics in susceptible species, including black-tailed prairie dogs (Cynomys ludovicianus). How Y. pestis persists long-term in the environment between these epizootics is poorly understood but multiple mechanisms have been proposed, including, among others, a separate enzootic transmission cycle that maintains Y. pestis without involvement of epizootic hosts and persistence of Y. pestis within epizootic host populations without causing high mortality within those populations. We live-trapped and collected fleas from black-tailed prairie dogs and other mammal species from sites with and without black-tailed prairie dogs in 2004 and 2005 and tested all fleas for presence of Y. pestis. Y. pestis was not detected in 2126 fleas collected in 2004 but was detected in 294 fleas collected from multiple sites in 2005, before and during a widespread epizootic that drastically reduced black-tailed prairie dog populations in the affected colonies. Temporal and spatial patterns of Y. pestis occurrence in fleas and genotyping of Y. pestis present in some infected fleas suggest Y. pestis was introduced multiple times from sources outside the study area and once introduced, was dispersed between several sites. We conclude Y. pestis likely was not present in these black-tailed prairie dog colonies prior to epizootic activity in these colonies. Although we did not identify likely enzootic hosts, we found evidence that deer mice (Peromyscus maniculatus) may serve as bridging hosts for Y. pestis between unknown enzootic hosts and black-tailed prairie dogs.
Collapse
Affiliation(s)
- Rebecca E. COLMAN
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - R. Jory BRINKERHOFF
- Environmental Studies ProgramUniversity of Colorado at BoulderBoulderColoradoUSA
| | - Joseph D. BUSCH
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Chris RAY
- Environmental Studies ProgramUniversity of Colorado at BoulderBoulderColoradoUSA
| | - Adina DOYLE
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Jason W. SAHL
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Paul KEIM
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Sharon K. COLLINGE
- Environmental Studies ProgramUniversity of Colorado at BoulderBoulderColoradoUSA
| | - David M. WAGNER
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
20
|
Moinet M, Wilkinson DA, Aberdein D, Russell JC, Vallée E, Collins-Emerson JM, Heuer C, Benschop J. Of Mice, Cattle, and Men: A Review of the Eco-Epidemiology of Leptospira borgpetersenii Serovar Ballum. Trop Med Infect Dis 2021; 6:189. [PMID: 34698305 PMCID: PMC8544700 DOI: 10.3390/tropicalmed6040189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
In New Zealand (NZ), leptospirosis is a mostly occupational zoonosis, with >66% of the recently notified cases being farm or abattoir workers. Livestock species independently maintain Leptospira borgpetersenii serovar Hardjo and L. interrogans serovar Pomona, and both are included in livestock vaccines. The increasing importance in human cases of Ballum, a serovar associated with wildlife, suggests that wildlife may be an overlooked source of infection. Livestock could also act as bridge hosts for humans. Drawing from disease ecology frameworks, we chose five barriers to include in this review based on the hypothesis that cattle act as bridge hosts for Ballum. Using a narrative methodology, we collated published studies pertaining to (a) the distribution and abundance of potential wild maintenance hosts of Ballum, (b) the infection dynamics (prevalence and pathogenesis) in those same hosts, (c) Ballum shedding and survival in the environment, (d) the exposure and competency of cattle as a potential bridge host, and (e) exposure for humans as a target host of Ballum. Mice (Mus musculus), rats (Rattus rattus, R. norvegicus) and hedgehogs (Erinaceus europaeus) were suspected as maintenance hosts of Ballum in NZ in studies conducted in the 1970s-1980s. These introduced species are distributed throughout NZ, and are present on pastures. The role of other wildlife in Ballum (and more broadly Leptospira) transmission remains poorly defined, and has not been thoroughly investigated in NZ. The experimental and natural Ballum infection of cattle suggest a low pathogenicity and the possibility of shedding. The seroprevalence in cattle appears higher in recent serosurveys (3 to 14%) compared with studies from the 1970s (0 to 3%). This review identifies gaps in the knowledge of Ballum, and highlights cattle as a potential spillover host. Further studies are required to ascertain the role that wild and domestic species may play in the eco-epidemiology of Ballum in order to understand its survival in the environment, and to inform control strategies.
Collapse
Affiliation(s)
- Marie Moinet
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand; (D.A.W.); (D.A.); (E.V.); (J.M.C.-E.); (C.H.); (J.B.)
| | - David A. Wilkinson
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand; (D.A.W.); (D.A.); (E.V.); (J.M.C.-E.); (C.H.); (J.B.)
- New Zealand Food Safety Science and Research Centre, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - Danielle Aberdein
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand; (D.A.W.); (D.A.); (E.V.); (J.M.C.-E.); (C.H.); (J.B.)
| | - James C. Russell
- Department of Statistics, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Emilie Vallée
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand; (D.A.W.); (D.A.); (E.V.); (J.M.C.-E.); (C.H.); (J.B.)
| | - Julie M. Collins-Emerson
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand; (D.A.W.); (D.A.); (E.V.); (J.M.C.-E.); (C.H.); (J.B.)
| | - Cord Heuer
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand; (D.A.W.); (D.A.); (E.V.); (J.M.C.-E.); (C.H.); (J.B.)
| | - Jackie Benschop
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand; (D.A.W.); (D.A.); (E.V.); (J.M.C.-E.); (C.H.); (J.B.)
| |
Collapse
|
21
|
Hoyos J, Carrasquilla MC, León C, Montgomery JM, Salyer SJ, Komar N, González C. Host selection pattern and flavivirus screening of mosquitoes in a disturbed Colombian rainforest. Sci Rep 2021; 11:18656. [PMID: 34545162 PMCID: PMC8452662 DOI: 10.1038/s41598-021-98076-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/20/2021] [Indexed: 11/08/2022] Open
Abstract
Studies on the feeding behavior of hematophagous insects, particularly those of medical importance, are relevant for tracking possible pathogen transmission routes and identifying biases in the choice of vertebrates. We evaluated host selection of blood-feeding mosquitoes in a disturbed forest in the Magdalena Medio valley in Colombia from March 2017 to April 2018, after the introduction of Zika virus to the Americas from the 2015-2016 outbreak. We estimated vertebrate diversity and collected blood-engorged female mosquitoes. Genomic DNA/RNA was extracted from the mosquito's abdomen for vertebrate host identification and pathogen detection. We performed conventional PCR and sequencing, using universal primers targeting vertebrate regions of the eukaryotic mitochondrial genome to determine bloodmeal host. Additionally, we tested for the presence of flaviviruses in all mosquito samples with RT-PCR. Based on the identity and quantity of detected bloodmeals, we performed mosquito-vertebrate interaction network analysis and estimated topology metrics. In total, we collected 292 engorged female mosquitoes representing 20 different species. Bloodmeal analyses identified 26 vertebrate species, the majority of which were mammals (N = 16; 61.5%). No flaviviruses of medical importance were detected from the samples. Although feeding patterns varied, network analyses showed a high degree of specialization by mosquitoes and revealed ecological and phylogenetic relationships among the host community. We conclude that host selection or preference by mosquitoes is species specific.
Collapse
Affiliation(s)
- Juliana Hoyos
- Department of Biological Sciences, Center for Research in Tropical Microbiology and Parasitology (CIMPAT), University of Los Andes, Bogotá, Colombia.
| | - María Cristina Carrasquilla
- Department of Biological Sciences, Center for Research in Tropical Microbiology and Parasitology (CIMPAT), University of Los Andes, Bogotá, Colombia
| | - Cielo León
- Department of Biological Sciences, Center for Research in Tropical Microbiology and Parasitology (CIMPAT), University of Los Andes, Bogotá, Colombia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephanie J Salyer
- Global Epidemiology, Laboratory, and Surveillance Branch, Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Nicholas Komar
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Ft. Collins, CO, USA
| | - Camila González
- Department of Biological Sciences, Center for Research in Tropical Microbiology and Parasitology (CIMPAT), University of Los Andes, Bogotá, Colombia.
| |
Collapse
|
22
|
Zeng Z, Gao S, Wang HN, Huang LY, Wang XL. A predictive analysis on the risk of peste des petits ruminants in livestock in the Trans-Himalayan region and validation of its transboundary transmission paths. PLoS One 2021; 16:e0257094. [PMID: 34506571 PMCID: PMC8432769 DOI: 10.1371/journal.pone.0257094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
Although the Trans-Himalayan region (THR) is an important endemic and rendezvous area of peste des petits ruminants (PPR), monitoring and prevention measurements are difficult to execute because of the rough geographical conditions. Besides, a heterogeneous breeding system and the poor veterinary service of susceptible animals compound the existing problems. Here, we propose a forecasting system to define the key points of PPR prevention and aid the countries in saving time, labor, and products to achieve the goal of the global eradication project of PPR. The spatial distribution of PPR was predicted in the THR for the first time using a niche model that was constructed with a combination of eco-geographical, anthropoid, meteorological, and host variables. The transboundary least-cost paths (LCPs) of small ruminants in the THR were also calculated. Our results reveal that the low-elevation area of the THR had a higher PPR risk and was mainly dominated by human variables. The high-elevation area had lower risk and was mainly dominated by natural variables. Eight LCPs representing corridors among India, Nepal, Bhutan, Bangladesh, and China were obtained. This confirmed the potential risk of transboundary communication by relying on PPR contamination on the grasslands for the first time. The predicted potential risk communication between the two livestock systems and landscapes (high and low elevation) might play a role in driving PPR transboundary transmission.
Collapse
Affiliation(s)
- Zan Zeng
- College of Wildlife & Protected Area, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang Province, The People’s Republic of China
- Key Laboratory of Wildlife Diseases and Biosecurity Management of Heilongjiang Province, Harbin, Heilongjiang Province, The People’s Republic of China
| | - Shan Gao
- College of Wildlife & Protected Area, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang Province, The People’s Republic of China
- Key Laboratory of Wildlife Diseases and Biosecurity Management of Heilongjiang Province, Harbin, Heilongjiang Province, The People’s Republic of China
| | - Hao-Ning Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang Province, The People’s Republic of China
| | - Li-Ya Huang
- Changbai Mountain Academy of Sciences, Antu, Jilin Province, The People’s Republic of China
| | - Xiao-Long Wang
- College of Wildlife & Protected Area, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang Province, The People’s Republic of China
- Key Laboratory of Wildlife Diseases and Biosecurity Management of Heilongjiang Province, Harbin, Heilongjiang Province, The People’s Republic of China
| |
Collapse
|
23
|
Serological and molecular detection of pathogenic Leptospira in domestic and stray cats on Reunion Island, French Indies. Epidemiol Infect 2021; 149:e229. [PMID: 34372952 PMCID: PMC8569831 DOI: 10.1017/s095026882100176x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
Interaction Patterns between Wildlife and Cattle Reveal Opportunities for Mycobacteria Transmission in Farms from North-Eastern Atlantic Iberian Peninsula. Animals (Basel) 2021; 11:ani11082364. [PMID: 34438821 PMCID: PMC8388635 DOI: 10.3390/ani11082364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Interactions taking place between sympatric wildlife and livestock may contribute to interspecies transmission of the Mycobacterium tuberculosis complex or non-tuberculous mycobacteria, leading to the spread of relevant mycobacterioses or to interferences with the diagnosis of tuberculosis. The aim of this study was to characterize the spatiotemporal patterns of interactions between wildlife and cattle in a low bovine tuberculosis prevalence Atlantic region. Camera traps were set during a one-year period in cattle farms with a history of tuberculosis and/or non-tuberculous mycobacterioses. The frequency and duration of wildlife visits, and the number of individuals per visit, were analysed through generalized linear mixed models. The seasons, type of place, type of point, and period of the day were the explanatory variables. A total of 1293 visits were recorded during 2741 days of camera observation. Only 23 visits showed direct contacts with cattle, suggesting that mycobacteria transmission at the wildlife-livestock interface would occur mainly through indirect interactions. Cattle pastures represented the most appropriate habitat for interspecies transmission of mycobacteria, and badgers' latrines appear to be a potential hotspot for mycobacteria circulation between badgers, wild boars, foxes, and cattle. According to both previous epidemiological information and the interaction patterns observed, wild boars, badgers, foxes, and small rodents are the species or group most often in contact with livestock, and thus may be the most involved in the epidemiology of mycobacterioses in the wildlife-livestock interface in this area.
Collapse
|
25
|
Gortázar C, Barroso P, Nova R, Cáceres G. The role of wildlife in the epidemiology and control of Foot-and-mouth-disease And Similar Transboundary (FAST) animal diseases: A review. Transbound Emerg Dis 2021; 69:2462-2473. [PMID: 34268873 DOI: 10.1111/tbed.14235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Transboundary Animal Diseases (TADs) are notifiable diseases which are highly transmissible and have the potential for rapid spread regardless of national borders. Many TADs are shared between domestic animals and wildlife, with the potential to affect both livestock sector and wildlife conservation and eventually, public health in the case of zoonosis. The European Commission for the Control of Foot-and-Mouth Disease (EuFMD), a commission of the Food and Agriculture Organization of the United Nations (FAO), has grouped six TADs as 'Foot-and-mouth disease (FMD) And Similar Transboundary animal diseases' (FAST diseases). FAST diseases are ruminant infections caused by viruses, for which vaccination is a control option. The EuFMD hold-FAST strategy aims primarily at addressing the threat represented by FAST diseases for Europe. Prevention and control of FAST diseases might benefit from assessing the role of wildlife. We reviewed the role of wildlife as indicators, victims, bridge hosts or maintenance hosts for the six TADs included in the EuFMD hold-FAST strategy: FMD, peste des petits ruminants, lumpy skin disease, sheep and goatpox, Rift Valley fever and bovine ephemeral fever. We observed that wildlife can act as indicator species. In addition, they are occasionally victims of disease outbreaks, and they are often relevant for disease management as either bridge or maintenance hosts. Wildlife deserves to become a key component of future integrated surveillance and disease control strategies in an ever-changing world. It is advisable to increase our knowledge on wildlife roles in relevant TADs to improve our preparedness in case of an outbreak in previously disease-free regions, where wildlife may be significant for disease surveillance and control.
Collapse
Affiliation(s)
- Christian Gortázar
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Patricia Barroso
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Rodrigo Nova
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Germán Cáceres
- European Commission for the Control of Foot-and-Mouth Disease, Rome, Italy
| |
Collapse
|
26
|
Shapiro JT, Víquez-R L, Leopardi S, Vicente-Santos A, Mendenhall IH, Frick WF, Kading RC, Medellín RA, Racey P, Kingston T. Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses 2021; 13:1356. [PMID: 34372562 PMCID: PMC8310020 DOI: 10.3390/v13071356] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022] Open
Abstract
Many of the world's most pressing issues, such as the emergence of zoonotic diseases, can only be addressed through interdisciplinary research. However, the findings of interdisciplinary research are susceptible to miscommunication among both professional and non-professional audiences due to differences in training, language, experience, and understanding. Such miscommunication contributes to the misunderstanding of key concepts or processes and hinders the development of effective research agendas and public policy. These misunderstandings can also provoke unnecessary fear in the public and have devastating effects for wildlife conservation. For example, inaccurate communication and subsequent misunderstanding of the potential associations between certain bats and zoonoses has led to persecution of diverse bats worldwide and even government calls to cull them. Here, we identify four types of miscommunication driven by the use of terminology regarding bats and the emergence of zoonotic diseases that we have categorized based on their root causes: (1) incorrect or overly broad use of terms; (2) terms that have unstable usage within a discipline, or different usages among disciplines; (3) terms that are used correctly but spark incorrect inferences about biological processes or significance in the audience; (4) incorrect inference drawn from the evidence presented. We illustrate each type of miscommunication with commonly misused or misinterpreted terms, providing a definition, caveats and common misconceptions, and suggest alternatives as appropriate. While we focus on terms specific to bats and disease ecology, we present a more general framework for addressing miscommunication that can be applied to other topics and disciplines to facilitate more effective research, problem-solving, and public policy.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany;
| | - Stefania Leopardi
- Laboratory of Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA 30322, USA;
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Winifred F. Frick
- Bat Conservation International, Austin, TX 78746, USA;
- Department of Ecology and Evolution, University of California, Santa Cruz, CA 95060, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Rodrigo A. Medellín
- Institute of Ecology, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Paul Racey
- The Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
27
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Gubbins S, Libeau G, Broglia A, Aznar I, Van der Stede Y. Assessment of the control measures of the category A diseases of Animal Health Law: peste des petits ruminants. EFSA J 2021; 19:e06708. [PMID: 34354766 PMCID: PMC8323035 DOI: 10.2903/j.efsa.2021.6708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for peste des petits ruminants (PPR). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radii of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radii of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period of 21 days was assessed as effective, except for the first affected establishments detected, where 33 days is recommended. It was concluded that beyond the protection (3 km) and the surveillance zones (10 km) only 9.6% (95% CI: 3.1-25.8%) and 2.3% (95% CI: 1-5.5%) of the infections from an affected establishment may occur, respectively. This may be considered sufficient to contain the disease spread (95% probability of containing transmission corresponds to 5.3 km). Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad-hoc requests in relation to PPR.
Collapse
|
28
|
Hemotropic Mycoplasma and Bartonella Species Diversity in Free-Roaming Canine and Feline from Luanda, Angola. Pathogens 2021; 10:pathogens10060735. [PMID: 34200906 PMCID: PMC8230469 DOI: 10.3390/pathogens10060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Free-roaming dogs and cats represent potential reservoirs for zoonotic vector-borne pathogens shedding to the human population. Given the health impact of these pathogens, we searched free-roaming dogs and cats included in an animal population control program from Luanda, Angola, for Bartonella and hemotropic mycoplasma infection. We report the detection of Bartonella henselae (2/66; 3%), Candidatus Mycoplasma haemominutum (5/66; 7.5%) and Mycoplasma haemofelis (1/66; 1.5%) in cats. One dog was found positive for Mycoplasma haemocanis (1/20; 5%). This is the first report of Bartonella henselae infections in stray cats and of hemotropic mycoplasmas in cats and dogs from Angola. Despite the relatively small sample size, our results sustain the hypothesis of uncontrolled circulation of these agents in highly mobile synanthropic animal populations of Luanda. Population and vector control could contribute to reducing the likelihood for animal-to-animal and animal-to-human transmission.
Collapse
|
29
|
Kriegel ER, Cherney DJR, Kiffner C. Conventional knowledge, general attitudes and risk perceptions towards zoonotic diseases among Maasai in northern Tanzania. Heliyon 2021; 7:e07041. [PMID: 34041394 PMCID: PMC8144003 DOI: 10.1016/j.heliyon.2021.e07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding factors influencing conventional medical knowledge (CMK), general attitudes and risk perceptions of zoonotic diseases among rural residents who face risk of exposure to such diseases is important for human, livestock, and wildlife health. Focusing on Maasai from Makame, Kiteto District (Tanzania) who largely maintained a semi-nomadic lifestyle, we evaluated respondents’ CMK of causes, symptoms, treatments, and prevention methods of rabies, brucellosis, and anthrax. In addition, we identified socio-demographic correlates of CMK with respect to the target zoonoses. Finally, we assessed the relative frequency of practices that increase the risk of pathogen transmission, and compared the risk perception of the three diseases. We conducted structured interviews with Maasai respondents (n = 46) in six sub-villages of Makame and considered education, gender, age, and wealth (indicated by standardized number of livestock) as potential correlates of CMK. Respondents had greater CMK of rabies and anthrax, but feared anthrax the most. Receiving formal education increased rabies CMK (p ≤ 0.05). The CMK of anthrax and brucellosis was not associated with any of the tested variables (p > 0.05). Risk perceptions were correlated with knowledge scores for rabies and anthrax (p ≤ 0.05), and multiple interviewees reported engaging in practices that potentially enhance pathogen transmission. Specific socio-demographic attributes (i.e., formal education) may explain the observed variation in CMK of zoonotic diseases. This information can be used to develop and tailor health education programs for specific at-risk groups.
Collapse
Affiliation(s)
- E R Kriegel
- Department of Animal Science, Cornell University, Ithaca, NY 14853-4801 USA
| | - D J R Cherney
- Department of Animal Science, Cornell University, Ithaca, NY 14853-4801 USA
| | - C Kiffner
- Center for Wildlife Management Studies, The School for Field Studies, PO Box 304, Karatu, Tanzania.,Junior Research Group Human-Wildlife Conflict & Coexistence, Leibniz Centre for Agricultural Landscape Research (ZALF), Research Area Land Use and Governance, Müncheberg, Germany
| |
Collapse
|
30
|
Peste des Petits Ruminants Virus Infection at the Wildlife-Livestock Interface in the Greater Serengeti Ecosystem, 2015-2019. Viruses 2021; 13:v13050838. [PMID: 34066336 PMCID: PMC8148116 DOI: 10.3390/v13050838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/02/2023] Open
Abstract
Peste des petits ruminants (PPR) is a viral disease of goats and sheep that occurs in Africa, the Middle East and Asia with a severe impact on livelihoods and livestock trade. Many wild artiodactyls are susceptible to PPR virus (PPRV) infection, and some outbreaks have threatened endangered wild populations. The role of wild species in PPRV epidemiology is unclear, which is a knowledge gap for the Global Strategy for the Control and Eradication of PPR. These studies aimed to investigate PPRV infection in wild artiodactyls in the Greater Serengeti and Amboseli ecosystems of Kenya and Tanzania. Out of 132 animals purposively sampled in 2015–2016, 19.7% were PPRV seropositive by ID Screen PPR competition enzyme-linked immunosorbent assay (cELISA; IDvet, France) from the following species: African buffalo, wildebeest, topi, kongoni, Grant’s gazelle, impala, Thomson’s gazelle, warthog and gerenuk, while waterbuck and lesser kudu were seronegative. In 2018–2019, a cross-sectional survey of randomly selected African buffalo and Grant’s gazelle herds was conducted. The weighted estimate of PPRV seroprevalence was 12.0% out of 191 African buffalo and 1.1% out of 139 Grant’s gazelles. All ocular and nasal swabs and faeces were negative by PPRV real-time reverse transcription-polymerase chain reaction (RT-qPCR). Investigations of a PPR-like disease in sheep and goats confirmed PPRV circulation in the area by rapid detection test and/or RT-qPCR. These results demonstrated serological evidence of PPRV infection in wild artiodactyl species at the wildlife–livestock interface in this ecosystem where PPRV is endemic in domestic small ruminants. Exposure to PPRV could be via spillover from infected small ruminants or from transmission between wild animals, while the relatively low seroprevalence suggests that sustained transmission is unlikely. Further studies of other major wild artiodactyls in this ecosystem are required, such as impala, Thomson’s gazelle and wildebeest.
Collapse
|
31
|
Abstract
Zoonotic diseases are infectious diseases of humans caused by pathogens that are shared between humans and other vertebrate animals. Previously, pristine natural areas with high biodiversity were seen as likely sources of new zoonotic pathogens, suggesting that biodiversity could have negative impacts on human health. At the same time, biodiversity has been recognized as potentially benefiting human health by reducing the transmission of some pathogens that have already established themselves in human populations. These apparently opposing effects of biodiversity in human health may now be reconcilable. Recent research demonstrates that some taxa are much more likely to be zoonotic hosts than others are, and that these animals often proliferate in human-dominated landscapes, increasing the likelihood of spillover. In less-disturbed areas, however, these zoonotic reservoir hosts are less abundant and nonreservoirs predominate. Thus, biodiversity loss appears to increase the risk of human exposure to both new and established zoonotic pathogens. This new synthesis of the effects of biodiversity on zoonotic diseases presents an opportunity to articulate the next generation of research questions that can inform management and policy. Future studies should focus on collecting and analyzing data on the diversity, abundance, and capacity to transmit of the taxa that actually share zoonotic pathogens with us. To predict and prevent future epidemics, researchers should also focus on how these metrics change in response to human impacts on the environment, and how human behaviors can mitigate these effects. Restoration of biodiversity is an important frontier in the management of zoonotic disease risk.
Collapse
|
32
|
Dwight IA, Coates PS, Stoute ST, Pitesky ME. Health surveillance of a potential bridge host: Pathogen exposure risks posed to avian populations augmented with captive-bred pheasants. Transbound Emerg Dis 2021; 69:1095-1107. [PMID: 33711203 PMCID: PMC9290078 DOI: 10.1111/tbed.14068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
Augmentation of wild populations with captive‐bred individuals presents an inherent risk of co‐introducing novel pathogens to naïve species, but it can be an important tool for supplementing small or declining populations. Game species used for human enterprise and recreation such as the ring‐necked pheasant (Phasianus colchicus) are commonly raised in captivity and released onto public and private wildlands as a method of augmenting naturalized pheasant populations. This study presents findings on pathogen exposure from three sources of serological data collected in California during 2014–2017 including (a) 71 pen‐reared pheasants sampled across seven game bird breeding farms, (b) six previously released pen‐reared pheasants captured at two study sites where wild pheasants occurred and (c) 79 wild pheasants captured across six study sites. In both pen‐reared and wild pheasants, antibodies were detected against haemorrhagic enteritis virus (HEV), infectious laryngotracheitis (ILT), infectious bursal disease virus (IBDV), paramyxovirus type 1 (PMV‐1) and Pasteurella multocida (PM). Previously released pen‐reared pheasants were seropositive for HEV, ILT, and PM. Generalized linear mixed models accounting for intraclass correlation within groups indicated that pen‐reared pheasants were more than twice as likely to test positive for HEV antibodies. Necropsy and ancillary diagnostics were performed in addition to serological testing on 40 pen‐reared pheasants sampled from five of the seven farms. Pheasants from three of these farms tested positive by PCR for Siadenovirus, the causative agent of both haemorrhagic enteritis in turkeys and marble spleen disease of pheasants, which are serologically indistinguishable. Following necropsy, owners from the five farms were surveyed regarding husbandry and biosecurity practices. Farms ranged in size from 10,000 to more than 100,000 birds, two farms raised other game bird species on premises, and two farms used some form of vaccination. Biosecurity practices varied by farm, but the largest farm implemented the strictest practices.
Collapse
Affiliation(s)
- Ian A Dwight
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Peter S Coates
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Simone T Stoute
- California Animal Health and Food Safety Laboratory, University of California Davis, Turlock, CA, USA
| | - Maurice E Pitesky
- School of Veterinary Medicine, Cooperative Extension, University of California Davis, Davis, CA, USA
| |
Collapse
|
33
|
Solis A, Nunn CL. One health disparities and COVID-19. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:70-77. [PMID: 33708387 PMCID: PMC7928980 DOI: 10.1093/emph/eoab003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
The global impact of the COVID-19 pandemic has disproportionately affected some communities and populations more than others. We propose that an interdisciplinary framework of 'One Health Disparities' advances understanding of the social and systemic issues that drive COVID-19 in vulnerable populations. One Health Disparities integrates the social environment with One Health perspectives on the interconnectedness of human, animal, and environmental health. To apply this framework, we consider One Health Disparities that emerge in three key components of disease transmission: exposure, susceptibility, and disease expression. Exposure disparities arise through variation in contact with COVID-19's causative agent, SARS-CoV-2. Disparities in susceptibility and disease expression also exist; these are driven by biological and social factors, such as diabetes and obesity, and through variation in access to healthcare. We close by considering how One Health Disparities informs understanding of spillback into new animal reservoirs, and what this might mean for further human health disparities. Lay summary One Health focuses on interconnections between human, animal, and environmental health. We propose that social environments are also important to One Health and help illuminate disparities in the coronavirus pandemic, including its origins, transmission and susceptibility among humans, and spillback to other species. We call this framework One Health Disparities.
Collapse
Affiliation(s)
- Alma Solis
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Duke University, Durham, NC 27710, USA.,Triangle Center for Evolutionary Medicine (TriCEM), Duke University, Durham, NC 27708, USA
| |
Collapse
|
34
|
Hernández FA, Manqui J, Mejías C, Acosta-Jamett G. Domestic Dogs and Wild Foxes Interactions in a Wildlife-Domestic Interface of North-Central Chile: Implications for Multi-Host Pathogen Transmission. Front Vet Sci 2021; 8:631788. [PMID: 33634181 PMCID: PMC7899968 DOI: 10.3389/fvets.2021.631788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 11/24/2022] Open
Abstract
Domestic dogs (Canis familiaris) often cohabite at interfaces shared by humans and wildlife, interacting with wild canids as predators, prey, competitors and reservoirs of several multi-host pathogens, such as canid-borne micro and macro parasites that could impact on wildlife, livestock and public health. However, spatio-temporal patterns of indirect interactions as promoters of pathogen transfer between domestic and wild canids are largely unknown. In this study, we used camera traps to describe the activity patterns and habitat use of dogs, chilla (Lycalopex griseus) and culpeo (Lycalopex culpaeus) foxes and identify the local-scale factors that may affect the frequency of dog-fox interactions through an anthropization gradient of the Coquimbo region, Chile. We assessed local-scale variables that may predict the number of interactions between dogs and foxes, and compared the time interval between dog-culpeo and dog-chilla interactions. Our findings suggested that closeness to urbanized zones predicts the frequency of indirect interactions between dogs and foxes. We found higher number of dog-fox interactions (60 interactions) at a periurban site adjacent to two coastal towns (Tongoy and Guanaqueros), compared to other two more undisturbed sites (12 interactions) increasingly distanced from urbanized areas. We showed that dogs interacted more frequently with chilla foxes (57 interactions) than with culpeo foxes (15 interactions), and the first interaction type occurred almost exclusively at the periurban site, where dogs and chillas were more frequently detected than in the other sites. We detected a marked temporal segregation between dogs and foxes, but dog-chilla interactions resulted in shorter time intervals (2.5 median days) compared to dog-culpeo interactions (7.6 median days), suggesting a higher potential risk of pathogen spillover between the first species pairing. Based on previous studies, we suggest periurban zones may constitute a potential focus of pathogen exposure between dog and fox populations in the study area. Our research contributes to improving the knowledge on the spatio-temporal patterns of interspecific contact between invasive and native carnivores within the context of multi-host pathogen dynamics. Our outcomes will inform theoretical epidemiological models designed to predict and minimize the contact risk between domestic and threatened species, guiding effective control strategies at the wildlife-domestic interface.
Collapse
Affiliation(s)
- Felipe A Hernández
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jonatan Manqui
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Mejías
- Programa de Magíster en Ecología Aplicada, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gerardo Acosta-Jamett
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.,Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
35
|
Verhagen JH, Fouchier RAM, Lewis N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021; 13:212. [PMID: 33573231 PMCID: PMC7912471 DOI: 10.3390/v13020212] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) outbreaks in wild birds and poultry are no longer a rare phenomenon in Europe. In the past 15 years, HPAI outbreaks-in particular those caused by H5 viruses derived from the A/Goose/Guangdong/1/1996 lineage that emerged in southeast Asia in 1996-have been occuring with increasing frequency in Europe. Between 2005 and 2020, at least ten HPAI H5 incursions were identified in Europe resulting in mass mortalities among poultry and wild birds. Until 2009, the HPAI H5 virus outbreaks in Europe were caused by HPAI H5N1 clade 2.2 viruses, while from 2014 onwards HPAI H5 clade 2.3.4.4 viruses dominated outbreaks, with abundant genetic reassortments yielding subtypes H5N1, H5N2, H5N3, H5N4, H5N5, H5N6 and H5N8. The majority of HPAI H5 virus detections in wild and domestic birds within Europe coincide with southwest/westward fall migration and large local waterbird aggregations during wintering. In this review we provide an overview of HPAI H5 virus epidemiology, ecology and evolution at the interface between poultry and wild birds based on 15 years of avian influenza virus surveillance in Europe, and assess future directions for HPAI virus research and surveillance, including the integration of whole genome sequencing, host identification and avian ecology into risk-based surveillance and analyses.
Collapse
Affiliation(s)
- Josanne H. Verhagen
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Nicola Lewis
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield AL9 7TA, Hertfordshire, UK
| |
Collapse
|
36
|
Morgan CN, Matheny AM, Nakazawa YJ, Kling C, Gallardo-Romero N, Seigler L, Barbosa Costa G, Hutson C, Maghlakelidze G, Olson V, Doty JB. Laboratory Infection of Novel Akhmeta Virus in CAST/EiJ Mice. Viruses 2020; 12:v12121416. [PMID: 33317132 PMCID: PMC7763702 DOI: 10.3390/v12121416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Akhmeta virus is a zoonotic Orthopoxvirus first identified in 2013 in the country of Georgia. Subsequent ecological investigations in Georgia have found evidence that this virus is widespread in its geographic distribution within the country and in its host-range, with rodents likely involved in its circulation in the wild. Yet, little is known about the pathogenicity of this virus in rodents. We conducted the first laboratory infection of Akhmeta virus in CAST/EiJ Mus musculus to further characterize this novel virus. We found a dose-dependent effect on mortality and weight loss (p < 0.05). Anti-orthopoxvirus antibodies were detected in the second- and third-highest dose groups (5 × 104 pfu and 3 × 102 pfu) at euthanasia by day 10, and day 14 post-infection, respectively. Anti-orthopoxvirus antibodies were not detected in the highest dose group (3 × 106 pfu), which were euthanized at day 7 post-infection and had high viral load in tissues, suggesting they succumbed to disease prior to mounting an effective immune response. In order of highest burden, viable virus was detected in the nostril, lung, tail, liver and spleen. All individuals tested in the highest dose groups were DNAemic. Akhmeta virus was highly pathogenic in CAST/EiJ Mus musculus, causing 100% mortality when ≥3 × 102 pfu was administered.
Collapse
Affiliation(s)
- Clint N. Morgan
- Poxvirus & Rabies Branch, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of High-Consequence Pathogens & Pathology, Atlanta, GA 30329, USA; (A.M.M.); (Y.J.N.); (C.K.); (N.G.-R.); (L.S.); (C.H.); (V.O.); (J.B.D.)
- Correspondence: ; Tel.: +1-404-639-0844
| | - Audrey M. Matheny
- Poxvirus & Rabies Branch, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of High-Consequence Pathogens & Pathology, Atlanta, GA 30329, USA; (A.M.M.); (Y.J.N.); (C.K.); (N.G.-R.); (L.S.); (C.H.); (V.O.); (J.B.D.)
- Oak Ridge Institute for Science and Education, CDC Fellowship Program, Oak Ridge, TN 37830, USA
| | - Yoshinori J. Nakazawa
- Poxvirus & Rabies Branch, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of High-Consequence Pathogens & Pathology, Atlanta, GA 30329, USA; (A.M.M.); (Y.J.N.); (C.K.); (N.G.-R.); (L.S.); (C.H.); (V.O.); (J.B.D.)
| | - Chantal Kling
- Poxvirus & Rabies Branch, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of High-Consequence Pathogens & Pathology, Atlanta, GA 30329, USA; (A.M.M.); (Y.J.N.); (C.K.); (N.G.-R.); (L.S.); (C.H.); (V.O.); (J.B.D.)
- Oak Ridge Institute for Science and Education, CDC Fellowship Program, Oak Ridge, TN 37830, USA
| | - Nadia Gallardo-Romero
- Poxvirus & Rabies Branch, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of High-Consequence Pathogens & Pathology, Atlanta, GA 30329, USA; (A.M.M.); (Y.J.N.); (C.K.); (N.G.-R.); (L.S.); (C.H.); (V.O.); (J.B.D.)
| | - Laurie Seigler
- Poxvirus & Rabies Branch, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of High-Consequence Pathogens & Pathology, Atlanta, GA 30329, USA; (A.M.M.); (Y.J.N.); (C.K.); (N.G.-R.); (L.S.); (C.H.); (V.O.); (J.B.D.)
- Kāpili Services, LLC, An Alaka’ina Foundation Company, Honolulu, HI 96814, USA
| | - Galileu Barbosa Costa
- Núcleo de Epidemiologia e Bioestatística, Centro de Pesquisas Gonçalo Moniz, Fiocruz, Bahia 40296-710, Brazil;
| | - Christina Hutson
- Poxvirus & Rabies Branch, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of High-Consequence Pathogens & Pathology, Atlanta, GA 30329, USA; (A.M.M.); (Y.J.N.); (C.K.); (N.G.-R.); (L.S.); (C.H.); (V.O.); (J.B.D.)
| | - Giorgi Maghlakelidze
- U.S. Centers for Disease Control and Prevention, South Caucuses Office, Tbilisi 0177, Georgia;
| | - Victoria Olson
- Poxvirus & Rabies Branch, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of High-Consequence Pathogens & Pathology, Atlanta, GA 30329, USA; (A.M.M.); (Y.J.N.); (C.K.); (N.G.-R.); (L.S.); (C.H.); (V.O.); (J.B.D.)
| | - Jeffrey B. Doty
- Poxvirus & Rabies Branch, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Division of High-Consequence Pathogens & Pathology, Atlanta, GA 30329, USA; (A.M.M.); (Y.J.N.); (C.K.); (N.G.-R.); (L.S.); (C.H.); (V.O.); (J.B.D.)
| |
Collapse
|
37
|
A Review of Avian Influenza A Virus Associations in Synanthropic Birds. Viruses 2020; 12:v12111209. [PMID: 33114239 PMCID: PMC7690888 DOI: 10.3390/v12111209] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Avian influenza A viruses (IAV) have received significant attention due to the threat they pose to human, livestock, and wildlife health. In this review, we focus on what is known about IAV dynamics in less common avian species that may play a role in trafficking IAVs to poultry operations. Specifically, we focus on synanthropic bird species. Synanthropic species, otherwise known as peridomestic, are species that are ecologically associated with humans and anthropogenically modified landscapes, such as agricultural and urban areas. Aquatic birds such as waterfowl and shorebirds are the species most commonly associated with avian IAVs, and are generally considered the reservoir or maintenance hosts in the natural ecology of these viruses. Waterfowl and shorebirds are occasionally associated with poultry facilities, but are uncommon or absent in many areas, especially large commercial operations. In these cases, spillover hosts that share resources with both maintenance hosts and target hosts such as poultry may play an important role in introducing wild bird viruses onto farms. Consequently, our focus here is on what is known about IAV dynamics in synanthropic hosts that are commonly found on both farms and in nearby habitats, such as fields, lakes, wetlands, or riparian areas occupied by waterfowl or shorebirds.
Collapse
|
38
|
Moreno-Salas L, Espinoza-Carniglia M, Lizama-Schmeisser N, Torres-Fuentes LG, Silva-de La Fuente MC, Lareschi M, González-Acuña D. Molecular detection of Rickettsia in fleas from micromammals in Chile. Parasit Vectors 2020; 13:523. [PMID: 33069260 PMCID: PMC7568392 DOI: 10.1186/s13071-020-04388-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background Rickettsial diseases are considered important in public health due to their dispersal capacity determined by the particular characteristics of their reservoirs and/or vectors. Among the latter, fleas play an important role, since the vast majority of species parasitize wild and invasive rodents, so their detection is relevant to be able to monitor potential emerging diseases. The aim of this study was to detect, characterize, and compare Rickettsia spp. from the fleas of micromammals in areas with different human population densities in Chile. Methods The presence of Rickettsia spp. was evaluated by standard polymerase chain reaction (PCR) and sequencing in 1315 fleas collected from 1512 micromammals in 29 locations, with different human population densities in Chile. A generalized linear model (GLM) was used to identify the variables that may explain Rickettsia prevalence in fleas. Results DNA of Rickettsia spp. was identified in 13.2% (174 of 1315) of fleas tested. Fifteen flea species were found to be Rickettsia-positive. The prevalence of Rickettsia spp. was higher in winter, semi-arid region and natural areas, and the infection levels in fleas varied between species of flea. The prevalence of Rickettsia among flea species ranged between 0–35.1%. Areas of lower human density showed the highest prevalence of Rickettsia. The phylogenetic tree showed two well-differentiated clades with Rickettsia bellii positioned as basal in one clade. The second clade was subdivided into two subclades of species related to Rickettsia of the spotted fever group. Conclusions To our knowledge, this is the first report of the occurrence and molecular characterization of Rickettsia spp. in 15 flea species of micromammals in Chile. In this study, fleas were detected carrying Rickettsia DNA with zoonotic potential, mainly in villages and natural areas of Chile. Considering that there are differences in the prevalence of Rickettsia in fleas associated with different factors, more investigations are needed to further understand the ecology of Rickettsia in fleas and their implications for human health.![]()
Collapse
Affiliation(s)
- Lucila Moreno-Salas
- Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Concepción, Chile.
| | - Mario Espinoza-Carniglia
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CONICET CCT-La Plata-UNLP), La Plata, Argentina
| | - Nicol Lizama-Schmeisser
- Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Concepción, Chile
| | | | - María Carolina Silva-de La Fuente
- Universidad de Concepción, Facultad de Ciencias Veterinarias, Chillán, Chile.,Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Marcela Lareschi
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CONICET CCT-La Plata-UNLP), La Plata, Argentina
| | | |
Collapse
|
39
|
Randhawa N, Bird BH, VanWormer E, Sijali Z, Kilonzo C, Msigwa A, Ekiri AB, Samson A, Epstein JH, Wolking DJ, Smith WA, Martínez-López B, Kazwala R, Mazet JAK. Fruit bats in flight: a look into the movements of the ecologically important Eidolon helvum in Tanzania. ONE HEALTH OUTLOOK 2020; 2:16. [PMID: 32835170 PMCID: PMC7402849 DOI: 10.1186/s42522-020-00020-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/06/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Many ecologically important plants are pollinated or have their seeds dispersed by fruit bats, including the widely distributed African straw-colored fruit bats (Eidolon helvum). Their ability to fly long distances makes them essential for connecting plant populations across fragmented landscapes. While bats have been implicated as a reservoir of infectious diseases, their role in disease transmission to humans is not well understood. In this pilot study, we tracked E. helvum to shed light on their movement patterns in Tanzania and possible contact with other species. METHODS Tracking devices were deployed on 25 bats captured in the Morogoro Municipal and Kilombero District area near the Udzungwa Mountains of Tanzania. Nightly flight patterns, areas corresponding to foraging bouts and feeding roosts, and new day roosts were determined from bat movement data and characterized according to their proximity to urban built-up and protected areas. Sites for additional environmental surveillance using camera traps were identified via tracking data to determine species coming in contact with fruits discarded by bats. RESULTS Tracking data revealed variability between individual bat movements and a fidelity to foraging areas. Bats were tracked from one to six nights, with a mean cumulative nightly flight distance of 26.14 km (min: 0.33, max: 97.57) based on data from high-resolution GPS tags. While the majority of their foraging locations were in or near urban areas, bats also foraged in protected areas, of which the Udzungwa Mountains National Park was the most frequented. Camera traps in fruit orchards frequented by tracked bats showed the presence of multiple species of wildlife, with vervet monkeys (Chlorocebus pygerythrus) observed as directly handling and eating fruit discarded by bats. CONCLUSIONS Because we observed multiple interactions of animals with fruits discarded by bats, specifically with vervet monkeys, the possibility of disease spillover risk exists via this indirect pathway. With flight distances of up to 97 km, however, the role of E. helvum in the seed dispersal of plants across both protected and urban built-up areas in Tanzania may be even more important, especially by helping connect increasingly fragmented landscapes during this Anthropocene epoch.
Collapse
Affiliation(s)
- Nistara Randhawa
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Drive, Davis, CA USA
| | - Brian H. Bird
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Drive, Davis, CA USA
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, School of Natural Resources, University of Nebraska, Lincoln, NE USA
| | - Zikankuba Sijali
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Christopher Kilonzo
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Drive, Davis, CA USA
| | - Alphonce Msigwa
- Tanzania National Park, Burigi-Chato National Park, Karagwe-Kagera, Tanzania
| | - Abel B. Ekiri
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Aziza Samson
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - David J. Wolking
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Drive, Davis, CA USA
| | - Woutrina A. Smith
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Drive, Davis, CA USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Rudovick Kazwala
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jonna A. K. Mazet
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Drive, Davis, CA USA
| |
Collapse
|
40
|
Exposure to and Circulation of Avian Influenza and Newcastle Disease Viruses in Peridomestic Wild Birds in the United Arab Emirates. J Wildl Dis 2020. [DOI: 10.7589/2019-06-164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
COVID-19, an Emerging Coronavirus Infection: Current Scenario and Recent Developments – An Overview. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.02] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
42
|
Franklin AB, Ramey AM, Bentler KT, Barrett NL, McCurdy LM, Ahlstrom CA, Bonnedahl J, Shriner SA, Chandler JC. Gulls as Sources of Environmental Contamination by Colistin-resistant Bacteria. Sci Rep 2020; 10:4408. [PMID: 32157139 PMCID: PMC7064522 DOI: 10.1038/s41598-020-61318-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/25/2020] [Indexed: 11/09/2022] Open
Abstract
In 2015, the mcr-1 gene was discovered in Escherichia coli in domestic swine in China that conferred resistance to colistin, an antibiotic of last resort used in treating multi-drug resistant bacterial infections in humans. Since then, mcr-1 was found in other human and animal populations, including wild gulls. Because gulls could disseminate the mcr-1 gene, we conducted an experiment to assess whether gulls are readily colonized with mcr-1 positive E. coli, their shedding patterns, transmission among conspecifics, and environmental deposition. Shedding of mcr-1 E. coli by small gull flocks followed a lognormal curve and gulls shed one strain >101 log10 CFU/g in their feces for 16.4 days, which persisted in the environment for 29.3 days. Because gulls are mobile and can shed antimicrobial-resistant bacteria for extended periods, gulls may facilitate transmission of mcr-1 positive E. coli to humans and livestock through fecal contamination of water, public areas and agricultural operations.
Collapse
Affiliation(s)
- Alan B Franklin
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA.
| | - Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Kevin T Bentler
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Nicole L Barrett
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Loredana M McCurdy
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | | | - Jonas Bonnedahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Infectious Diseases, Region Kalmar County, Kalmar, Sweden
| | - Susan A Shriner
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Jeffrey C Chandler
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| |
Collapse
|
43
|
Fernandez Aguilar X, Mahapatra M, Begovoeva M, Kalema-Zikusoka G, Driciru M, Ayebazibwe C, Adwok DS, Kock M, Lukusa JPK, Muro J, Marco I, Colom-Cadena A, Espunyes J, Meunier N, Cabezón O, Caron A, Bataille A, Libeau G, Parekh K, Parida S, Kock R. Peste des Petits Ruminants at the Wildlife-Livestock Interface in the Northern Albertine Rift and Nile Basin, East Africa. Viruses 2020; 12:v12030293. [PMID: 32156067 PMCID: PMC7150925 DOI: 10.3390/v12030293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1970] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
In the recent past, peste des petits ruminants (PPR) emerged in East Africa causing outbreaks in small livestock across different countries, with evidences of spillover to wildlife. In order to understand better PPR at the wildlife-livestock interface, we investigated patterns of peste des petits ruminants virus (PPRV) exposure, disease outbreaks, and viral sequences in the northern Albertine Rift. PPRV antibodies indicated a widespread exposure in apparently healthy wildlife from South Sudan (2013) and Uganda (2015, 2017). African buffaloes and Uganda kobs <1-year-old from Queen Elizabeth National Park (2015) had antibodies against PPRV N-antigen and local serosurvey captured a subsequent spread of PPRV in livestock. Outbreaks with PPR-like syndrome in sheep and goats were recorded around the Greater Virunga Landscape in Kasese (2016), Kisoro and Kabale (2017) from western Uganda, and in North Kivu (2017) from eastern Democratic Republic of the Congo (DRC). This landscape would not be considered typical for PPR persistence as it is a mixed forest-savannah ecosystem with mostly sedentary livestock. PPRV sequences from DRC (2017) were identical to strains from Burundi (2018) and confirmed a transboundary spread of PPRV. Our results indicate an epidemiological linkage between epizootic cycles in livestock and exposure in wildlife, denoting the importance of PPR surveillance on wild artiodactyls for both conservation and eradication programs.
Collapse
Affiliation(s)
- Xavier Fernandez Aguilar
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK, (M.B.); (N.M.); (R.K.)
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB T2N 4Z6, Canada
- Correspondence:
| | - Mana Mahapatra
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK, (M.M.); (K.P.); (S.P.)
| | - Mattia Begovoeva
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK, (M.B.); (N.M.); (R.K.)
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Gladys Kalema-Zikusoka
- Conservation Through Public Health, Plot 3 Mapera Lane, Uring Crescent, P.O. Box 75298 Entebbe, Uganda;
| | - Margaret Driciru
- Uganda Wildlife Authority (UWA), Plot 7 Kira Road, P.O. Box 3530 Kampala, Uganda;
| | - Chrisostom Ayebazibwe
- NADDEC Ministry of Agriculture, Animal Industries and Fisheries, P.O. Box 102 Entebbe, Uganda;
| | - David Solomon Adwok
- Central Veterinary Diagnostic Laboratories, Ministry of Animal Resources and Fisheries, P.O. Box 126 Juba, South Sudan;
| | - Michael Kock
- Consultant Field Veterinary Programme, Formerly: Wildlife Conservation Society, 2300 Southern Boulevard Bronx, NY 10460, USA;
| | - Jean-Paul Kabemba Lukusa
- Regional Gorilla Conservation Employees Health Program, MGVP Inc., Goma 00243, Democratic Republic of the Congo;
| | - Jesus Muro
- Daktari, La Solana 35, AD700 Escaldes, Andorra;
| | - Ignasi Marco
- Servei d’Ecopatologia de Fauna Salvatge (Sefas) and Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (I.M.); (A.C.-C.); (J.E.)
| | - Andreu Colom-Cadena
- Servei d’Ecopatologia de Fauna Salvatge (Sefas) and Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (I.M.); (A.C.-C.); (J.E.)
| | - Johan Espunyes
- Servei d’Ecopatologia de Fauna Salvatge (Sefas) and Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (I.M.); (A.C.-C.); (J.E.)
- Research and Conservation Department, Zoo de Barcelona. Parc de la Ciutadella s/n, 08003 Barcelona, Spain
| | - Natascha Meunier
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK, (M.B.); (N.M.); (R.K.)
| | - Oscar Cabezón
- Servei d’Ecopatologia de Fauna Salvatge (Sefas) and Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (I.M.); (A.C.-C.); (J.E.)
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alexandre Caron
- CIRAD, UMR ASTRE, F–34398 Montpellier, France; (A.C.); (A.B.); (G.L.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
- Veterinary Faculty, Eduardo Mondlane University, Maputo 1102, Mozambique
| | - Arnaud Bataille
- CIRAD, UMR ASTRE, F–34398 Montpellier, France; (A.C.); (A.B.); (G.L.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Genevieve Libeau
- CIRAD, UMR ASTRE, F–34398 Montpellier, France; (A.C.); (A.B.); (G.L.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Krupali Parekh
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK, (M.M.); (K.P.); (S.P.)
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK, (M.M.); (K.P.); (S.P.)
| | - Richard Kock
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK, (M.B.); (N.M.); (R.K.)
| |
Collapse
|
44
|
Delogu M, Cotti C, Lelli D, Sozzi E, Trogu T, Lavazza A, Garuti G, Castrucci MR, Vaccari G, De Marco MA, Moreno A. Eco-Virological Preliminary Study of Potentially Emerging Pathogens in Hedgehogs ( Erinaceus europaeus) Recovered at a Wildlife Treatment and Rehabilitation Center in Northern Italy. Animals (Basel) 2020; 10:E407. [PMID: 32121543 PMCID: PMC7143230 DOI: 10.3390/ani10030407] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 11/16/2022] Open
Abstract
The Western European Hedgehog (Erinaceus europaeus) is one of the four hedgehog species belonging to the genus Erinaceus. Among them, E. amurensis is extant in East Asia's areas only, whereas E. europaeus, E. roumanicus and E. concolor are mainly found in Europe. E. europaeus is endemically distributed from western to central and southern Europe, including Italy. Western European hedgehogs' ecological and feeding habits, along with their high population densities, notable synanthropic attitudes, frequent contacts with sympatric wild and domestic species, including humans, implicate the possible involvement of E. europaeus in the ecology of potentially emerging viruses, such as coronaviruses, influenza A and influenza D viruses, canine distemper virus, pestiviruses and Aujeszky's disease virus. We examined 24 E. europaeus individuals found injured in urban and rural areas of Northern Italy. Of the 24 fecal samples collected and tested for the above-mentioned pathogens by both PCR-based and virus isolation methods, 14 were found PCR-positive for betacoronaviruses belonging to lineage C and related to the known Erinaceus coronaviruses (EriCoVs), as determined by partial sequencing of the virus genome. Our findings suggest that hedgehogs could be considered natural reservoirs of CoVs, and also act as chronic shedding carriers of these potentially emerging RNA viruses.
Collapse
Affiliation(s)
- Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 50 Via Tolara di Sopra, 40064 Ozzano dell’Emilia (BO), Italy; (M.D.); (C.C.); (G.G.)
| | - Claudia Cotti
- Department of Veterinary Medical Sciences, University of Bologna, 50 Via Tolara di Sopra, 40064 Ozzano dell’Emilia (BO), Italy; (M.D.); (C.C.); (G.G.)
| | - Davide Lelli
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 7/9 Via Bianchi, 25124 Brescia, Italy; (D.L.); (E.S.); (T.T.); (A.L.); (A.M.)
| | - Enrica Sozzi
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 7/9 Via Bianchi, 25124 Brescia, Italy; (D.L.); (E.S.); (T.T.); (A.L.); (A.M.)
| | - Tiziana Trogu
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 7/9 Via Bianchi, 25124 Brescia, Italy; (D.L.); (E.S.); (T.T.); (A.L.); (A.M.)
| | - Antonio Lavazza
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 7/9 Via Bianchi, 25124 Brescia, Italy; (D.L.); (E.S.); (T.T.); (A.L.); (A.M.)
| | - Giacomo Garuti
- Department of Veterinary Medical Sciences, University of Bologna, 50 Via Tolara di Sopra, 40064 Ozzano dell’Emilia (BO), Italy; (M.D.); (C.C.); (G.G.)
| | - Maria Rita Castrucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 299 Viale Regina Elena, 00161 Rome, Italy;
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 299 Viale Regina Elena, 00161 Rome, Italy;
| | - Maria Alessandra De Marco
- Wildlife Service, Institute for Environmental Protection and Research (ISPRA), 9 Via Ca’ Fornacetta, 40064 Ozzano dell’Emilia (BO), Italy
| | - Ana Moreno
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 7/9 Via Bianchi, 25124 Brescia, Italy; (D.L.); (E.S.); (T.T.); (A.L.); (A.M.)
| |
Collapse
|
45
|
Roberts MG, Heesterbeek JAP. Characterizing reservoirs of infection and the maintenance of pathogens in ecosystems. J R Soc Interface 2020; 17:20190540. [PMID: 31937232 DOI: 10.1098/rsif.2019.0540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We use a previously published compartmental model of the dynamics of pathogens in ecosystems to define and explore the concepts of maintenance host, maintenance community and reservoir of infection in a full ecological context of interacting host and non-host species. We show that, contrary to their current use in the literature, these concepts can only be characterized relative to the ecosystem in which the host species are embedded, and are not 'life-history traits' of (groups of) species. We give a number of examples to demonstrate that the same (group of) host species can lose or gain maintenance or reservoir capability as a result of a changing ecosystem context, even when these changes primarily affect non-hosts. One therefore has to be careful in designating host species as either maintenance or reservoir in absolute terms.
Collapse
Affiliation(s)
- M G Roberts
- School of Natural and Computational Sciences, New Zealand Institute for Advanced Study and the Infectious Disease Research Centre, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | - J A P Heesterbeek
- Department of Farm Animal Health, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
46
|
Abstract
During recent years, serological evidence has shown that a number of peridomestic mammals (e.g., those commonly found in or around human structures) are naturally exposed to influenza A viruses (IAVs). In addition, experimental studies have demonstrated that many of these species can successfully replicate several different IAVs, including IAVs of high consequence to public or agricultural health. The replication of some IAVs within this group of mammals could have implications for biosecurity associated with poultry production and live bird markets in some regions of the world. Given this evidence, the need for further study and understanding of the role that peridomestic mammals may play in IAV dynamics is increasingly being recognized. This chapter will provide a general overview on IAV associations in peridomestic mammals, especially as they pertain to avian IAVs, and provide some general views and guidelines for sampling these species in various situations.
Collapse
|
47
|
Fine AE, Pruvot M, Benfield CTO, Caron A, Cattoli G, Chardonnet P, Dioli M, Dulu T, Gilbert M, Kock R, Lubroth J, Mariner JC, Ostrowski S, Parida S, Fereidouni S, Shiilegdamba E, Sleeman JM, Schulz C, Soula JJ, Van der Stede Y, Tekola BG, Walzer C, Zuther S, Njeumi F. Eradication of Peste des Petits Ruminants Virus and the Wildlife-Livestock Interface. Front Vet Sci 2020; 7:50. [PMID: 32232059 PMCID: PMC7082352 DOI: 10.3389/fvets.2020.00050] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/21/2020] [Indexed: 01/08/2023] Open
Abstract
Growing evidence suggests that multiple wildlife species can be infected with peste des petits ruminants virus (PPRV), with important consequences for the potential maintenance of PPRV in communities of susceptible hosts, and the threat that PPRV may pose to the conservation of wildlife populations and resilience of ecosystems. Significant knowledge gaps in the epidemiology of PPRV across the ruminant community (wildlife and domestic), and the understanding of infection in wildlife and other atypical host species groups (e.g., camelidae, suidae, and bovinae) hinder our ability to apply necessary integrated disease control and management interventions at the wildlife-livestock interface. Similarly, knowledge gaps limit the inclusion of wildlife in the FAO/OIE Global Strategy for the Control and Eradication of PPR, and the framework of activities in the PPR Global Eradication Programme that lays the foundation for eradicating PPR through national and regional efforts. This article reports on the first international meeting on, "Controlling PPR at the livestock-wildlife interface," held in Rome, Italy, March 27-29, 2019. A large group representing national and international institutions discussed recent advances in our understanding of PPRV in wildlife, identified knowledge gaps and research priorities, and formulated recommendations. The need for a better understanding of PPRV epidemiology at the wildlife-livestock interface to support the integration of wildlife into PPR eradication efforts was highlighted by meeting participants along with the reminder that PPR eradication and wildlife conservation need not be viewed as competing priorities, but instead constitute two requisites of healthy socio-ecological systems.
Collapse
Affiliation(s)
- Amanda E Fine
- Wildlife Conservation Society, Health Program, Bronx, NY, United States
| | - Mathieu Pruvot
- Wildlife Conservation Society, Health Program, Bronx, NY, United States
| | | | - Alexandre Caron
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France.,Veterinary Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division for Nuclear Applications in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Philippe Chardonnet
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France.,Antelope Specialist Group, International Union for Conservation of Nature, Species Survival Commission, Gland, Switzerland
| | | | - Thomas Dulu
- State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Martin Gilbert
- Department of Population Medicine and Diagnostic Services, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Richard Kock
- Royal Veterinary College, University of London, London, United Kingdom
| | - Juan Lubroth
- Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Jeffrey C Mariner
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | | | - Satya Parida
- Vaccine Differentiation Department, Pirbright Institute, Woking, United Kingdom
| | - Sasan Fereidouni
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | | | - Jonathan M Sleeman
- US Geological Survey, National Wildlife Health Center, Madison, WI, United States.,Working Group on Wildlife, Office International des Epizooties/World Organisation for Animal Health, Paris, France
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Jean-Jacques Soula
- FAO-OIE GEP PPR Secretariat, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Berhe G Tekola
- Office of the Director, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Chris Walzer
- Wildlife Conservation Society, Health Program, Bronx, NY, United States.,Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Steffen Zuther
- Association for the Conservation of Biodiversity of Kazakhstan, Nur-Sultan, Kazakhstan.,Frankfurt Zoological Society, Frankfurt, Germany
| | - Felix Njeumi
- FAO-OIE GEP PPR Secretariat, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | |
Collapse
|
48
|
Abstract
While many viruses of wild mammals are capable of infecting humans, our understanding of zoonotic potential is incomplete. Viruses vary in their degree of generalism, characterized by the phylogenetic relationships of their hosts. Among the dimensions of this phylogenetic landscape, phylogenetic aggregation, which is largely overlooked in studies of parasite host range, emerges in this study as a key predictor of zoonotic status of viruses. Plausibly, viruses that exhibit aggregation, typified by discrete clusters of related host species, may (i) have been able to close the phylogenetic distance to humans, (ii) have subsequently acquired an epidemiologically relevant host and (iii) exhibit relatively high fitness in realized host communities, which are frequently phylogenetically aggregated. These mechanisms associated with phylogenetic aggregation may help explain why correlated fundamental traits, such as the ability of viruses to replicate in the cytoplasm, are associated with zoonoses.
Collapse
Affiliation(s)
- Andrew W Park
- Odum School of Ecology, Center for the Ecology of Infectious Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
49
|
Camelids and Cattle Are Dead-End Hosts for Peste-des-Petits-Ruminants Virus. Viruses 2019; 11:v11121133. [PMID: 31817946 PMCID: PMC6950723 DOI: 10.3390/v11121133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Peste-des-petits-ruminants virus (PPRV) causes a severe respiratory disease in small ruminants. The possible impact of different atypical host species in the spread and planed worldwide eradication of PPRV remains to be clarified. Recent transmission trials with the virulent PPRV lineage IV (LIV)-strain Kurdistan/2011 revealed that pigs and wild boar are possible sources of PPRV-infection. We therefore investigated the role of cattle, llamas, alpacas, and dromedary camels in transmission trials using the Kurdistan/2011 strain for intranasal infection and integrated a literature review for a proper evaluation of their host traits and role in PPRV-transmission. Cattle and camelids developed no clinical signs, no viremia, shed no or only low PPRV-RNA loads in swab samples and did not transmit any PPRV to the contact animals. The distribution of PPRV-RNA or antigen in lymphoid organs was similar in cattle and camelids although generally lower compared to suids and small ruminants. In the typical small ruminant hosts, the tissue tropism, pathogenesis and disease expression after PPRV-infection is associated with infection of immune and epithelial cells via SLAM and nectin-4 receptors, respectively. We therefore suggest a different pathogenesis in cattle and camelids and both as dead-end hosts for PPRV.
Collapse
|
50
|
Gamble A, Bazire R, Delord K, Barbraud C, Jaeger A, Gantelet H, Thibault E, Lebarbenchon C, Lagadec E, Tortosa P, Weimerskirch H, Thiebot J, Garnier R, Tornos J, Boulinier T. Predator and scavenger movements among and within endangered seabird colonies: Opportunities for pathogen spread. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amandine Gamble
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE) UMR CNRS 5175University of MontpellierEPHEUniversity Paul Valéry Montpellier 3IRD Montpellier France
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - Romain Bazire
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE) UMR CNRS 5175University of MontpellierEPHEUniversity Paul Valéry Montpellier 3IRD Montpellier France
| | - Karine Delord
- Centre d'Études Biologiques de Chizé (CEBC) UMR CNRS 7372Université La Rochelle Villiers en Bois France
| | - Christophe Barbraud
- Centre d'Études Biologiques de Chizé (CEBC) UMR CNRS 7372Université La Rochelle Villiers en Bois France
| | - Audrey Jaeger
- Université de la RéunionUMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT)CNRSGIP CYROI Saint Denis La Réunion France
- Université de la RéunionÉcologie Marine Tropicale des Océans Pacifique et Indien (ENTROPIE)UMR UR‐IRD‐CNRS Saint Denis La Réunion France
| | | | | | - Camille Lebarbenchon
- Université de la RéunionUMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT)CNRSGIP CYROI Saint Denis La Réunion France
| | - Erwan Lagadec
- Université de la RéunionUMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT)CNRSGIP CYROI Saint Denis La Réunion France
- Réserve Naturelle Nationale des Terres Australes Française La Réunion France
| | - Pablo Tortosa
- Université de la RéunionUMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT)CNRSGIP CYROI Saint Denis La Réunion France
| | - Henri Weimerskirch
- Centre d'Études Biologiques de Chizé (CEBC) UMR CNRS 7372Université La Rochelle Villiers en Bois France
| | - Jean‐Baptiste Thiebot
- Centre d'Études Biologiques de Chizé (CEBC) UMR CNRS 7372Université La Rochelle Villiers en Bois France
- Réserve Naturelle Nationale des Terres Australes Française La Réunion France
- National Institute of Polar Research Tachikawa Tokyo Japan
| | - Romain Garnier
- Department of Biology Georgetown University Washington D.C. USA
| | - Jérémy Tornos
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE) UMR CNRS 5175University of MontpellierEPHEUniversity Paul Valéry Montpellier 3IRD Montpellier France
- Ceva Biovac Beaucouzé France
| | - Thierry Boulinier
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE) UMR CNRS 5175University of MontpellierEPHEUniversity Paul Valéry Montpellier 3IRD Montpellier France
| |
Collapse
|