1
|
Gray SL, Lam EK, Henao-Diaz LF, Jalabert C, Soma KK. Effect of a Territorial Challenge on the Steroid Profile of a Juvenile Songbird. Neuroscience 2024; 541:118-132. [PMID: 38301739 DOI: 10.1016/j.neuroscience.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17β-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.
Collapse
Affiliation(s)
- Sofia L Gray
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Emma K Lam
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - L Francisco Henao-Diaz
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia Jalabert
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Vallée M. Advances in steroid research from the pioneering neurosteroid concept to metabolomics: New insights into pregnenolone function. Front Neuroendocrinol 2024; 72:101113. [PMID: 37993022 DOI: 10.1016/j.yfrne.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Advances in neuroendocrinology have led to major discoveries since the 19th century, identifying adaptive loops for maintaining homeostasis. One of the most remarkable discoveries was the concept of neurosteroids, according to which the brain is not only a target but also a source of steroid production. The identification of new membrane steroid targets now underpins the neuromodulatory effects of neurosteroids such as pregnenolone, which is involved in functions mediated by the GPCR CB1 receptor. Structural analysis of steroids is a key feature of their interactions with the phospholipid membrane, receptors and resulting activity. Therefore, mass spectrometry-based methods have been developed to elucidate the metabolic pathways of steroids, the ultimate approach being metabolomics, which allows the identification of a large number of metabolites in a single sample. This approach should enable us to make progress in understanding the role of neurosteroids in the functioning of physiological and pathological processes.
Collapse
Affiliation(s)
- Monique Vallée
- University Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
3
|
Luchetti S, Liere P, Pianos A, Verwer RWH, Sluiter A, Huitinga I, Schumacher M, Swaab DF, Mason MRJ. Disease stage-dependent changes in brain levels and neuroprotective effects of neuroactive steroids in Parkinson's disease. Neurobiol Dis 2023:106169. [PMID: 37257664 DOI: 10.1016/j.nbd.2023.106169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Neuroactive steroids are known neuroprotective agents and neurotransmitter regulators. We previously found that expression of the enzymes synthesizing 5α-dihydroprogesterone (5α-DHP), allopregnanolone (ALLO), and dehydroepiandrosterone sulfate (DHEAS) were reduced in the substantia nigra (SN) of Parkinson's Disease (PD) brain. Here, concentrations of a comprehensive panel of steroids were measured in human post-mortem brains of PD patients and controls. Gas chromatography-mass spectrometry (GC/MS) was used to measure steroid levels in SN (involved in early symptoms) and prefrontal cortex (PFC) (involved later in the disease) of five control (CTR) and nine PD donors, divided into two groups: PD4 (PD-Braak stages 1-4) and PD6 (PD-Braak stages 5-6). In SN, ALLO was increased in PD4 compared to CTR and 5α-DHP and ALLO levels were diminished in PD6 compared to PD4. The ALLO metabolite 3α5α20α-hexahydroprogesterone (3α5α20α-HHP) was higher in PD4 compared to CTR. In PFC, 3α5α20α-HHP was higher in PD4 compared to both CTR and PD6. The effects of 5α-DHP, ALLO and DHEAS were tested on human post-mortem brain slices of patients and controls in culture. RNA expression of genes involved in neuroprotection, neuroinflammation and neurotransmission was analysed after 5 days of incubation with each steroid. In PD6 slices, both 5α-DHP and ALLO induced an increase of the glutamate reuptake effector GLAST1, while 5α-DHP also increased gene expression of the neuroprotective TGFB. In CTR slices, ALLO caused reduced expression of IGF1 and GLS, while DHEAS reduced the expression of p75 and the anti-apoptotic molecule APAF1. Together these data suggest that a potentially protective upregulation of ALLO occurs at early stages of PD, followed by a downregulation of progesterone metabolites at later stages that may exacerbate the pathological changes, especially in SN. Neuroprotective effects of neurosteroids are thus dependent on the neuropathological stage of the disease.
Collapse
Affiliation(s)
- Sabina Luchetti
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands; Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Philippe Liere
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Antoine Pianos
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Arja Sluiter
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Michael Schumacher
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Dick F Swaab
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | | |
Collapse
|
4
|
Liere P, Liu GJ, Pianos A, Middleton RJ, Banati RB, Akwa Y. The Comprehensive Steroidome in Complete TSPO/PBR Knockout Mice under Basal Conditions. Int J Mol Sci 2023; 24:ijms24032474. [PMID: 36768796 PMCID: PMC9916858 DOI: 10.3390/ijms24032474] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The 18 kDa translocator protein (TSPO/PBR) is a multifunctional evolutionary highly conserved outer mitochondrial membrane protein. Decades of research has reported an obligatory role of TSPO/PBR in both mitochondrial cholesterol transport and, thus, steroid production. However, the strict dependency of steroidogenesis on TSPO/PBR has remained controversial. The aim of this study was to provide insight into the steroid profile in complete C57BL/6-Tspotm1GuWu(GuwiyangWurra)-knockout male mice (TSPO-KO) under basal conditions. The steroidome in the brain, adrenal glands, testes and plasma was measured by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). We found that steroids present in wild-type (WT) mice were also detected in TSPO-KO mice, including pregnenolone (PREG), progestogens, mineralo-glucocorticosteroids and androgens. The concentrations of PREG and most metabolites were similar between genotypes, except a significant decrease in the levels of the 5α-reduced metabolites of progesterone (PROG) in adrenal glands and plasma and of the 5α-reduced metabolites of corticosterone (B) in plasma in TSPO-KO compared to WT animals, suggesting other regulatory functions for the TSPO/PBR. The expression levels of the voltage-dependent anion-selective channel (VDAC-1), CYP11A1 and 5α-reductase were not significantly different between both groups. Thus, the complete deletion of the tspo gene in male mice does not impair de novo steroidogenesis in vivo.
Collapse
Affiliation(s)
- Philippe Liere
- Disease and Hormones of the Nervous System, U1195 Inserm-Université Paris Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, Medical Imaging Sciences, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Antoine Pianos
- Disease and Hormones of the Nervous System, U1195 Inserm-Université Paris Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
| | - Richard B. Banati
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, Medical Imaging Sciences, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Yvette Akwa
- Disease and Hormones of the Nervous System, U1195 Inserm-Université Paris Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
- Correspondence: ; Tel.: +33-(0)1-49591878
| |
Collapse
|
5
|
Fernandez N, Petit A, Pianos A, Haddad L, Schumacher M, Liere P, Guennoun R. Aging Is Associated With Lower Neuroactive Steroids and Worsened Outcomes Following Cerebral Ischemia in Male Mice. Endocrinology 2022; 164:6779564. [PMID: 36306407 DOI: 10.1210/endocr/bqac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/16/2023]
Abstract
Ischemic stroke is a leading cause of disability and death, and aging is the main nonmodifiable risk factor. Following ischemia, neuroactive steroids have been shown to play a key role in cerebroprotection. Thus, brain steroid concentrations at the time of injury as well as their regulation after stroke are key factors to consider. Here, we investigated the effects of age and cerebral ischemia on steroid levels, behavioral outcomes, and neuronal degeneration in 3- and 18-month-old C57BL/6JRj male mice. Ischemia was induced by middle cerebral artery occlusion for 1 hour followed by reperfusion (MCAO/R) and analyses were performed at 6 hours after MCAO. Extended steroid profiles established by gas chromatography coupled with tandem mass spectrometry revealed that (1) brain and plasma concentrations of the main 5α-reduced metabolites of progesterone, 11-deoxycorticosterone, and corticosterone were lower in old than in young mice; (2) after MCAO/R, brain concentrations of progesterone, 5α-dihydroprogesterone, and corticosterone increased in young mice; and (3) after MCAO/R, brain concentrations of 5α-reduced metabolites of progesterone, 3α5α-tetrahydrodeoxycorticosterone, and 3β5α-tetrahydrodeoxycorticosterone were lower in old than in young mice. After ischemia, old mice showed increased sensori-motor deficits and more degenerating neurons in the striatum than young mice. Altogether, these findings strongly suggest that the decreased capacity of old mice to metabolize steroids toward the 5α-reduction pathway comparatively to young mice may contribute to the worsening of their stroke outcomes.
Collapse
Affiliation(s)
- Neïké Fernandez
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Anthony Petit
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Antoine Pianos
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Léna Haddad
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Téteau O, Liere P, Pianos A, Desmarchais A, Lasserre O, Papillier P, Vignault C, Lebachelier de la Riviere ME, Maillard V, Binet A, Uzbekova S, Saint-Dizier M, Elis S. Bisphenol S Alters the Steroidome in the Preovulatory Follicle, Oviduct Fluid and Plasma in Ewes With Contrasted Metabolic Status. Front Endocrinol (Lausanne) 2022; 13:892213. [PMID: 35685208 PMCID: PMC9172638 DOI: 10.3389/fendo.2022.892213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Philippe Liere
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Pianos
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | | | | | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
| | | | | | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Chirurgie pédiatrique viscérale, urologique, plastique et brûlés, CHRU de Tours, Tours, France
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
7
|
Bloms-Funke P, Schumacher M, Liu S, Su D, Li J, Liere P, Rupprecht R, Nothdurfter C, Bahrenberg G, Christoph T, Habermann C, Kneip C, Schröder W, Tzschentke TM, Saunders D. A novel dual mode-of-action anti-hyperalgesic compound in rats which is neuroprotective and promotes neuroregeneration. Eur J Pharmacol 2022; 923:174935. [PMID: 35378102 DOI: 10.1016/j.ejphar.2022.174935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022]
Abstract
Chronic neuropathic pain (CNP) can result from surgery or traumatic injury, but also from peripheral neuropathies caused by diseases, viral infections, or toxic treatments. Opioids, although very effective for acute pain, do not prevent the development of CNP, and are considered as insufficient treatment. Therefore, there is high need for effective and safe non-opioid options to treat, prevent and eventually reverse CNP. A more effective approach to alleviating CNP would constitute a treatment that acts concurrently on various mechanisms involved in relieving pain symptoms and preventing or reversing chronification by enhancing both neuroprotection and neuroregeneration. We have identified and characterized GRT-X (N-[(3-fluorophenyl)-methyl]-1-(2-methoxyethyl)-4-methyl-2-oxo-(7-trifluoromethyl)-1H-quinoline-3-caboxylic acid amide), a novel drug which is able to activate both voltage-gated potassium channels of the Kv7 family and the mitochondrial translocator protein 18 kDa (TSPO). The dual mode-of-action (MoA) of GRT-X was indicated in in vitro studies and in vivo in a rat model of diabetic neuropathy. In this model, mechanical hyperalgesia was dose-dependently inhibited. After severe crush lesion of cervical spinal nerves in rats, GRT-X promoted survival, speeded up regrowth of sensory and motor neurons, and accelerated recovery of behavioral and neuronal responses to heat, cold, mechanical and electrical stimuli. These properties may reduce the likelihood of chronification of acute pain, and even potentially relieve established CNP. The absence of a conditioned place preference in rats suggests lack of abuse potential. In conclusion, GRT-X offers a promising preclinical profile with a novel dual MoA.
Collapse
Affiliation(s)
- Petra Bloms-Funke
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078, Aachen, Germany.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 80, rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Song Liu
- U1195 Inserm and University Paris-Saclay, 80, rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Diya Su
- U1195 Inserm and University Paris-Saclay, 80, rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Jing Li
- U1195 Inserm and University Paris-Saclay, 80, rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 80, rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstraße 84, D-93053, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstraße 84, D-93053, Regensburg, Germany
| | - Gregor Bahrenberg
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078, Aachen, Germany
| | - Thomas Christoph
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078, Aachen, Germany
| | - Christopher Habermann
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078, Aachen, Germany
| | - Christa Kneip
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078, Aachen, Germany
| | - Wolfgang Schröder
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078, Aachen, Germany
| | - Thomas M Tzschentke
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078, Aachen, Germany
| | - Derek Saunders
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078, Aachen, Germany
| |
Collapse
|
8
|
Raux PL, Drutel G, Revest JM, Vallée M. New perspectives on the role of the neurosteroid pregnenolone as an endogenous regulator of type-1 cannabinoid receptor (CB1R) activity and function. J Neuroendocrinol 2022; 34:e13034. [PMID: 34486765 DOI: 10.1111/jne.13034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Pregnenolone is a steroid with specific characteristics, being the first steroid to be synthesised from cholesterol at all sites of steroidogenesis, including the brain. For many years, pregnenolone was defined as an inactive precursor of all steroids because no specific target had been discovered. However, over the last decade, it has become a steroid of interest because it has been recognised as being a biomarker for brain-related disorders through the development of metabolomic approaches and advanced analytical methods. In addition, physiological roles for pregnenolone emerged when specific targets were discovered. In this review, we highlight the discovery of the selective interaction of pregnenolone with the type-1 cannabinoid receptor (CB1R). After describing the specific characteristic of CB1Rs, we discuss the newly discovered mechanisms of their regulation by pregnenolone. In particular, we describe the action of pregnenolone as a negative allosteric modulator and a specific signalling inhibitor of the CB1R. These particular characteristics of pregnenolone provide a great strategic opportunity for therapeutic development in CB1-related disorders. Finally, we outline new perspectives using innovative genetic tools for the discovery of original regulatory mechanisms of pregnenolone on CB1-related functions.
Collapse
Affiliation(s)
- Pierre-Louis Raux
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Guillaume Drutel
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Jean-Michel Revest
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Bloms-Funke P, Bankstahl M, Bankstahl J, Kneip C, Schröder W, Löscher W. The novel dual-mechanism Kv7 potassium channel/TSPO receptor activator GRT-X is more effective than the Kv7 channel opener retigabine in the 6-Hz refractory seizure mouse model. Neuropharmacology 2022; 203:108884. [PMID: 34785163 DOI: 10.1016/j.neuropharm.2021.108884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy, one of the most common and most disabling neurological disorders, is characterized by spontaneous recurrent seizures, often associated with structural brain alterations and cognitive and psychiatric comorbidities. In about 30% of patients, the seizures are resistant to current treatments; so more effective treatments are urgently needed. Among the ∼30 clinically approved antiseizure drugs, retigabine (ezogabine) is the only drug that acts as a positive allosteric modulator (or opener) of voltage-gated Kv7 potassium channels, which is particularly interesting for some genetic forms of epilepsy. Here we describe a novel dual-mode-of-action compound, GRT-X (N-[(3-fluorophenyl)-methyl]-1-(2-methoxyethyl)-4-methyl-2-oxo-(7-trifluoromethyl)-1H-quinoline-3-carboxylic acid amide) that activates both Kv7 potassium channels and the mitochondrial translocator protein 18 kDa (TSPO), leading to increased synthesis of brain neurosteroids. TSPO activators are known to exert anti-inflammatory, neuroprotective, anxiolytic, and antidepressive effects, which, together with an antiseizure effect (mediated by Kv7 channels), would be highly relevant for the treatment of epilepsy. This prompted us to compare the antiseizure efficacy of retigabine and GRT-X in six mouse and rat models of epileptic seizures, including the 6-Hz model of difficult-to-treat focal seizures. Furthermore, the tolerability of the two compounds was compared in mice and rats. Potency comparisons were based on both doses and peak plasma concentrations. Overall, GRT-X was more effective than retigabine in three of the six seizure models used here, the most important difference being the high efficacy in the 6-Hz (32 mA) seizure model in mice. Based on drug plasma levels, GRT-X was at least 30 times more potent than retigabine in the latter model. These data indicate that GRT-X is a highly interesting novel anti-seizure drug with a unique (first-in-class) dual-mode mechanism of action.
Collapse
Affiliation(s)
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Jens Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | | | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
10
|
Vacher CM, Lacaille H, O'Reilly JJ, Salzbank J, Bakalar D, Sebaoui S, Liere P, Clarkson-Paredes C, Sasaki T, Sathyanesan A, Kratimenos P, Ellegood J, Lerch JP, Imamura Y, Popratiloff A, Hashimoto-Torii K, Gallo V, Schumacher M, Penn AA. Placental endocrine function shapes cerebellar development and social behavior. Nat Neurosci 2021; 24:1392-1401. [PMID: 34400844 PMCID: PMC8481124 DOI: 10.1038/s41593-021-00896-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Compromised placental function or premature loss has been linked to diverse neurodevelopmental disorders. Here we show that placenta allopregnanolone (ALLO), a progesterone-derived GABA-A receptor (GABAAR) modulator, reduction alters neurodevelopment in a sex-linked manner. A new conditional mouse model, in which the gene encoding ALLO's synthetic enzyme (akr1c14) is specifically deleted in trophoblasts, directly demonstrated that placental ALLO insufficiency led to cerebellar white matter abnormalities that correlated with autistic-like behavior only in male offspring. A single injection of ALLO or muscimol, a GABAAR agonist, during late gestation abolished these alterations. Comparison of male and female human preterm infant cerebellum also showed sex-linked myelination marker alteration, suggesting similarities between mouse placental ALLO insufficiency and human preterm brain development. This study reveals a new role for a placental hormone in shaping brain regions and behaviors in a sex-linked manner. Placental hormone replacement might offer novel therapeutic opportunities to prevent later neurobehavioral disorders.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA.
| | - Helene Lacaille
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Jiaqi J O'Reilly
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Jacquelyn Salzbank
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Dana Bakalar
- National Institutes of Health, Bethesda, MD, USA
| | - Sonia Sebaoui
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Philippe Liere
- U1195 INSERM, Paris-Saclay University, Le Kremlin-Bicêtre Cedex, France
| | | | - Toru Sasaki
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Aaron Sathyanesan
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
| | - Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Pediatrics, Washington, DC, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Yuka Imamura
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Pittsburgh, PA, USA
| | - Anastas Popratiloff
- The George Washington University, Nanofabrication and Imaging Center, Washington, DC, USA
- The George Washington University, SMHS, Anatomy & Cell Biology, Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Pediatrics, Washington, DC, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Health System, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Pediatrics, Washington, DC, USA
| | | | - Anna A Penn
- Department of Pediatrics, Columbia University, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA.
| |
Collapse
|
11
|
Junker J, Kamp F, Winkler E, Steiner H, Bracher F, Müller C. Effective sample preparation procedure for the analysis of free neutral steroids, free steroid acids and sterol sulfates in different tissues by GC-MS. J Steroid Biochem Mol Biol 2021; 211:105880. [PMID: 33757894 DOI: 10.1016/j.jsbmb.2021.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Steroids play an important role in cell regulation and homeostasis. Many diseases like Alzheimer's disease or Smith-Lemli-Opitz syndrome are known to be associated with deviations in the steroid profile. Most published methods only allow the analysis of small subgroups of steroids and cannot give an overview of the total steroid profile. We developed and validated a method that allows the analysis of free neutral steroids, including intermediates of cholesterol biosynthesis, free oxysterols, C19 and C21 steroids, free steroid acids, including bile acids, and sterol sulfates using gas chromatography-mass spectrometry. Samples were analyzed in scan mode for screening purposes and in dynamic multiple reaction monitoring mode for highly sensitive quantitative analysis. The method was validated for mouse brain and liver tissue and consists of sample homogenization, lipid extraction, steroid group separation, deconjugation, derivatization and gas chromatography-mass spectrometry analysis. We applied the method on brain and liver samples of mice (10 months and 3 weeks old) and cultured N2a cells and report the endogenous concentrations of 29 physiological steroids.
Collapse
Affiliation(s)
- Julia Junker
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Edith Winkler
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany.
| |
Collapse
|
12
|
Mancino DN, Leicaj ML, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF, Garay LI. Developmental expression of genes involved in progesterone synthesis, metabolism and action during the post-natal cerebellar myelination. J Steroid Biochem Mol Biol 2021; 207:105820. [PMID: 33465418 DOI: 10.1016/j.jsbmb.2021.105820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3β-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRβ, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable. PRKO mice showed similar MBP levels than wild type. Thus, these data suggests that progesterone and its neuroactive metabolites may play a role in postnatal cerebellar myelination.
Collapse
Affiliation(s)
- Dalila Nj Mancino
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - María Luz Leicaj
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Rachida Guennoun
- U1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
13
|
Goudet G, Prunier A, Nadal-Desbarats L, Grivault D, Ferchaud S, Pianos A, Haddad L, Montigny F, Douet C, Savoie J, Maupertuis F, Roinsard A, Boulot S, Liere P. Steroidome and metabolome analysis in gilt saliva to identify potential biomarkers of boar effect receptivity. Animal 2020; 15:100095. [PMID: 33573980 DOI: 10.1016/j.animal.2020.100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/29/2023] Open
Abstract
Optimal management of gilt reproduction requires oestrus synchronization. Hormonal treatments are used for this purpose, but there is a growing demand for non-hormonal alternatives, especially in organic farms. The boar effect is an important alternative opportunity to induce and synchronize oestrus without hormones. Before puberty, gilts exhibit a 'waiting period' during which boar exposure could induce and synchronize the first ovulation. We searched for salivary biomarkers of this period of boar effect receptivity to improve detection of the gilts to stimulate with the perspective of enhancing the efficacy of the boar effect. Saliva samples were collected from 30 Large-White×Landrace crossbred gilts between 140 and 175 days of age. Gilts were exposed twice a day to a boar and subjected to oestrus detection from 150 to 175 days of age. Among the 30 gilts, 10 were detected in oestrus 4 to 7 days after the first introduction of the boar and were considered receptive to the boar effect, 14 were detected in oestrus more than 8 days after first boar contact, and six did not show oestrus and were considered non-receptive. Saliva samples from six receptive and six non-receptive gilts were analyzed for steroidome and for metabolome using gas chromatography coupled to tandem mass spectrometry and 1H nuclear magnetic resonance spectroscopy, respectively. Four saliva samples per gilt were analyzed: 25 days and 11 days before boar introduction, the day of boar introduction, 3 days later for receptive gilts or 7 days later for non-receptive gilts. Twenty-nine steroids and 31 metabolites were detected in gilt saliva. Salivary concentrations of six steroids and three metabolites were significantly different between receptive and non-receptive gilts: progesterone and glycolate 25 days before boar introduction, 3α5β20α- and 3β5α20β-hexahydroprogesterone, dehydroepiandrosterone, androstenediol, succinate, and butyrate 11 days before boar introduction, and 3β5α-tetrahydroprogesterone on the day of boar introduction. Thus, nine potential salivary biomarkers of boar effect receptivity were identified in our experimental conditions. Further studies with higher numbers of gilts and salivary sampling points are necessary to ascertain their reliability.
Collapse
Affiliation(s)
- G Goudet
- PRC, INRAE, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
| | - A Prunier
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | | | | | | | - A Pianos
- U1195 INSERM Université Paris Saclay, 94276 Kremlin Bicêtre, France
| | - L Haddad
- U1195 INSERM Université Paris Saclay, 94276 Kremlin Bicêtre, France
| | - F Montigny
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France
| | - C Douet
- PRC, INRAE, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - J Savoie
- PAO, INRAE, 37380 Nouzilly, France
| | - F Maupertuis
- Chambre d'agriculture Pays de la Loire, 44150 Ancenis, France
| | | | - S Boulot
- IFIP Institut du Porc, 35650 Le Rheu, France
| | - P Liere
- U1195 INSERM Université Paris Saclay, 94276 Kremlin Bicêtre, France
| |
Collapse
|
14
|
Mast N, El-Darzi N, Petrov AM, Li Y, Pikuleva IA. CYP46A1-dependent and independent effects of efavirenz treatment. Brain Commun 2020; 2:fcaa180. [PMID: 33305262 PMCID: PMC7713991 DOI: 10.1093/braincomms/fcaa180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Cholesterol excess in the brain is mainly disposed via cholesterol 24-hydroxylation catalysed by cytochrome P450 46A1, a CNS-specific enzyme. Cytochrome P450 46A1 is emerging as a promising therapeutic target for various brain diseases with both enzyme activation and inhibition having therapeutic potential. The rate of cholesterol 24-hydroxylation determines the rate of brain cholesterol turnover and the rate of sterol flux through the plasma membranes. The latter was shown to affect membrane properties and thereby membrane proteins and membrane-dependent processes. Previously we found that treatment of 5XFAD mice, an Alzheimer's disease model, with a small dose of anti-HIV drug efavirenz allosterically activated cytochrome P450 46A1 in the brain and mitigated several disease manifestations. Herein, we generated Cyp46a1-/- 5XFAD mice and treated them, along with 5XFAD animals, with efavirenz to ascertain cytochrome P450 46A1-dependent and independent drug effects. Efavirenz-treated versus control Cyp46a1-/- 5XFAD and 5XFAD mice were compared for the brain sterol and steroid hormone content, amyloid β burden, protein and mRNA expression as well as synaptic ultrastructure. We found that the cytochrome P450 46A1-dependent efavirenz effects included changes in the levels of brain sterols, steroid hormones, and such proteins as glial fibrillary acidic protein, Iba1, Munc13-1, post-synaptic density-95, gephyrin, synaptophysin and synapsin-1. Changes in the expression of genes involved in neuroprotection, neurogenesis, synaptic function, inflammation, oxidative stress and apoptosis were also cytochrome P450 46A1-dependent. The total amyloid β load was the same in all groups of animals, except lack of cytochrome P450 46A1 decreased the production of the amyloid β40 species independent of treatment. In contrast, altered transcription of genes from cholinergic, monoaminergic, and peptidergic neurotransmission, steroid sulfation and production as well as vitamin D3 activation was the main CYP46A1-independent efavirenz effect. Collectively, the data obtained reveal that CYP46A1 controls cholesterol availability for the production of steroid hormones in the brain and the levels of biologically active neurosteroids. In addition, cytochrome P450 46A1 activity also seems to affect the levels of post-synaptic density-95, the main postsynaptic density protein, possibly by altering the calcium/calmodulin-dependent protein kinase II inhibitor 1 expression and activity of glycogen synthase kinase 3β. Even at a small dose, efavirenz likely acts as a transcriptional regulator, yet this regulation may not necessarily lead to functional effects. This study further confirmed that cytochrome P450 46A1 is a key enzyme for cholesterol homeostasis in the brain and that the therapeutic efavirenz effects on 5XFAD mice are likely realized via cytochrome P450 46A1 activation.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Young Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
15
|
Pregnane steroidogenesis is altered by HIV-1 Tat and morphine: Physiological allopregnanolone is protective against neurotoxic and psychomotor effects. Neurobiol Stress 2020; 12:100211. [PMID: 32258256 PMCID: PMC7109513 DOI: 10.1016/j.ynstr.2020.100211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pregnane steroids, particularly allopregnanolone (AlloP), are neuroprotective in response to central insult. While unexplored in vivo, AlloP may confer protection against the neurological dysfunction associated with human immunodeficiency virus type 1 (HIV-1). The HIV-1 regulatory protein, trans-activator of transcription (Tat), is neurotoxic and its expression in mice increases anxiety-like behavior; an effect that can be ameliorated by progesterone, but not when 5α-reduction is blocked. Given that Tat's neurotoxic effects involve mitochondrial dysfunction and can be worsened with opioid exposure, we hypothesized that Tat and/or combined morphine would perturb steroidogenesis in mice, promoting neuronal death, and that exogenous AlloP would rescue these effects. Like other models of neural injury, conditionally inducing HIV-1 Tat in transgenic mice significantly increased the central synthesis of pregnenolone and progesterone's 5α-reduced metabolites, including AlloP, while decreasing central deoxycorticosterone (independent of changes in plasma). Morphine significantly increased brain and plasma concentrations of several steroids (including progesterone, deoxycorticosterone, corticosterone, and their metabolites) likely via activation of the hypothalamic-pituitary-adrenal stress axis. Tat, but not morphine, caused glucocorticoid resistance in primary splenocytes. In neurons, Tat depolarized mitochondrial membrane potential and increased cell death. Physiological concentrations of AlloP (0.1, 1, or 10 nM) reversed these effects. High-concentration AlloP (100 nM) was neurotoxic in combination with morphine. Tat induction in transgenic mice potentiated the psychomotor effects of acute morphine, while exogenous AlloP (1.0 mg/kg, but not 0.5 mg/kg) was ameliorative. Data demonstrate that steroidogenesis is altered by HIV-1 Tat or morphine and that physiological AlloP attenuates resulting neurotoxic and psychomotor effects.
Collapse
|
16
|
Evolution of steroid concentrations in saliva from immature to pubertal gilts for the identification of biomarkers of gilts receptivity to boar effect. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Comparison of Strategies for the Determination of Sterol Sulfates via GC-MS Leading to a Novel Deconjugation-Derivatization Protocol. Molecules 2019; 24:molecules24132353. [PMID: 31247920 PMCID: PMC6651411 DOI: 10.3390/molecules24132353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 11/17/2022] Open
Abstract
Sulfoconjugates of sterols play important roles as neurosteroids, neurotransmitters, and ion channel ligands in health and disease. In most cases, sterol conjugate analysis is performed with liquid chromatography-mass spectrometry. This is a valuable tool for routine analytics with the advantage of direct sterol sulfates analysis without previous cleavage and/or derivatization. The complementary technique gas chromatography-mass spectrometry (GC-MS) is a preeminent discovery tool in the field of sterolomics, but the analysis of sterol sulfates is hampered by mandatory deconjugation and derivatization. Despite the difficulties in sample workup, GC-MS is an indispensable tool for untargeted analysis and steroid profiling. There are no general sample preparation protocols for sterol sulfate analysis using GC-MS. In this study we present a reinvestigation and evaluation of different deconjugation and derivatization procedures with a set of representative sterol sulfates. The advantages and disadvantages of trimethylsilyl (TMS), methyloxime-trimethylsilyl (MO-TMS), and trifluoroacetyl (TFA) derivatives were examined. Different published procedures of sterol sulfate deconjugation, including enzymatic and chemical cleavage, were reinvestigated and examined for diverse sterol sulfates. Finally, we present a new protocol for the chemical cleavage of sterol sulfates, allowing for simultaneous deconjugation and derivatization, simplifying GC-MS based sterol sulfate analysis.
Collapse
|
18
|
Liere P, Cornil CA, de Bournonville MP, Pianos A, Keller M, Schumacher M, Balthazart J. Steroid profiles in quail brain and serum: Sex and regional differences and effects of castration with steroid replacement. J Neuroendocrinol 2019; 31:e12681. [PMID: 30585662 PMCID: PMC6412023 DOI: 10.1111/jne.12681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/02/2023]
Abstract
Both systemic and local production contribute to the concentration of steroids measured in the brain. This idea was originally based on rodent studies and was later extended to other species, including humans and birds. In quail, a widely used model in behavioural neuroendocrinology, it was demonstrated that all enzymes needed to produce sex steroids from cholesterol are expressed and active in the brain, although the actual concentrations of steroids produced were never investigated. We carried out a steroid profiling in multiple brain regions and serum of sexually mature male and female quail by gas chromatography coupled with mass spectrometry. The concentrations of some steroids (eg, corticosterone, progesterone and testosterone) were in equilibrium between the brain and periphery, whereas other steroids (eg, pregnenolone (PREG), 5α/β-dihydroprogesterone and oestrogens) were more concentrated in the brain. In the brain regions investigated, PREG sulphate, progesterone and oestrogen concentrations were higher in the hypothalamus-preoptic area. Progesterone and its metabolites were more concentrated in the female than the male brain, whereas testosterone, its metabolites and dehydroepiandrosterone were more concentrated in males, suggesting that sex steroids present in quail brain mainly depend on their specific steroidogenic pathways in the ovaries and testes. However, the results of castration experiments suggested that sex steroids could also be produced in the brain independently of the peripheral source. Treatment with testosterone or oestradiol restored the concentrations of most androgens or oestrogens, respectively, although penetration of oestradiol in the brain appeared to be more limited. These studies illustrate the complex interaction between local brain synthesis and the supply from the periphery for the steroids present in the brain that are either directly active or represent the substrate of centrally located enzymes.
Collapse
Affiliation(s)
- Philippe Liere
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Charlotte A. Cornil
- University of Liège, GIGA Neurosciences, 1 Avenue de l’Hôpital (Bat. B36), 4000 Liège, Belgium
| | | | - Antoine Pianos
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université de Tours, Nouzilly, France
| | - Michael Schumacher
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Jacques Balthazart
- University of Liège, GIGA Neurosciences, 1 Avenue de l’Hôpital (Bat. B36), 4000 Liège, Belgium
| |
Collapse
|
19
|
Shevchouk OT, Ghorbanpoor S, Smith E, Liere P, Schumacher M, Ball GF, Cornil CA, Balthazart J. Behavioral evidence for sex steroids hypersensitivity in castrated male canaries. Horm Behav 2018; 103:80-96. [PMID: 29909262 DOI: 10.1016/j.yhbeh.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 12/30/2022]
Abstract
In seasonally breeding songbirds such as canaries, singing behavior is predominantly under the control of testosterone and its metabolites. Short daylengths in the fall that break photorefractoriness are followed by increasing daylengths in spring that activate singing via both photoperiodic and hormonal mechanisms. However, we observed in a group of castrated male Fife fancy canaries maintained for a long duration under a short day photoperiod a large proportion of subjects that sang at high rates. This singing rate was not correlated with variation in the low circulating concentrations of testosterone. Treatment of these actively singing castrated male canaries with a combination of an aromatase inhibitor (ATD) and an androgen receptor blocker (flutamide) only marginally decreased this singing activity as compared to control untreated birds and did not affect various measures of song quality. The volumes of HVC and of the medial preoptic nucleus (POM) were also unaffected by these treatments but were relatively large and similar to volumes in testosterone-treated males. In contrast, peripheral androgen-sensitive structures such as the cloacal protuberance and syrinx mass were small, similar to what is observed in castrates. Together these data suggest that after a long-term steroid deprivation singing behavior can be activated by very low concentrations of testosterone. Singing normally depends on the activation by testosterone and its metabolites of multiple downstream neurochemical systems such as catecholamines, nonapeptides or opioids. These transmitter systems might become hypersensitive to steroid action after long term castration as they probably are at the end of winter during the annual cycle in seasonally breeding temperate zone species.
Collapse
Affiliation(s)
| | | | - Ed Smith
- Department of Psychology, University of Maryland, College Park, MD 20742, United States of America
| | - Philippe Liere
- INSERM UMR 1195 and Université Paris Sud and University Paris-Saclay, Le Kremlin-Bicêtre Cedex, France
| | - Michael Schumacher
- INSERM UMR 1195 and Université Paris Sud and University Paris-Saclay, Le Kremlin-Bicêtre Cedex, France
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, United States of America
| | | | | |
Collapse
|
20
|
Schverer M, Lanfumey L, Baulieu EE, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacol Ther 2018; 191:190-206. [PMID: 29953900 DOI: 10.1016/j.pharmthera.2018.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurosteroids are neuroactive brain-born steroids. They can act through non-genomic and/or through genomic pathways. Genomic pathways are largely described for steroid hormones: the binding to nuclear receptors leads to transcription regulation. Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone have no corresponding nuclear receptor identified so far whereas some of their non-genomic targets have been identified. Neuroplasticity is the capacity that neuronal networks have to change their structure and function in response to biological and/or environmental signals; it is regulated by several mechanisms, including those that involve neurosteroids. In this review, after a description of their biosynthesis, the effects of Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone on their targets will be exposed. We then shall highlight that neurosteroids, by acting on these targets, can regulate neurogenesis, structural and functional plasticity. Finally, we will discuss the therapeutic potential of neurosteroids in the pathophysiology of neurological diseases in which alterations of neuroplasticity are associated with changes in neurosteroid levels.
Collapse
Affiliation(s)
- Marina Schverer
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France
| | - Laurence Lanfumey
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France.
| | - Etienne-Emile Baulieu
- MAPREG SAS, Le Kremlin-Bicêtre, France; Inserm UMR 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | |
Collapse
|
21
|
Arbo BD, Ribeiro FS, Ribeiro MF. Astrocyte Neuroprotection and Dehydroepiandrosterone. VITAMINS AND HORMONES 2018; 108:175-203. [PMID: 30029726 DOI: 10.1016/bs.vh.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) are the most abundant steroid hormones in the systemic circulation of humans. Due to their abundance and reduced production during aging, these hormones have been suggested to play a role in many aspects of health and have been used as drugs for a multiple range of therapeutic actions, including hormonal replacement and the improvement of aging-related diseases. In addition, several studies have shown that DHEA and DHEAS are neuroprotective under different experimental conditions, including models of ischemia, traumatic brain injury, spinal cord injury, glutamate excitotoxicity, and neurodegenerative diseases. Since astrocytes are responsible for the maintenance of neural tissue homeostasis and the control of neuronal energy supply, changes in astrocytic function have been associated with neuronal damage and the progression of different pathologies. Therefore, the aim of this chapter is to discuss the neuroprotective effects of DHEA against different types of brain and spinal cord injuries and how the modulation of astrocytic function by DHEA could represent an interesting therapeutic approach for the treatment of these conditions.
Collapse
Affiliation(s)
- Bruno D Arbo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Felipe S Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria F Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
22
|
Zhu X, Fréchou M, Liere P, Zhang S, Pianos A, Fernandez N, Denier C, Mattern C, Schumacher M, Guennoun R. A Role of Endogenous Progesterone in Stroke Cerebroprotection Revealed by the Neural-Specific Deletion of Its Intracellular Receptors. J Neurosci 2017; 37:10998-11020. [PMID: 28986464 PMCID: PMC6596486 DOI: 10.1523/jneurosci.3874-16.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes.SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the female brain. An important role of endogenous progesterone in cerebroprotection was demonstrated by the conditional inactivation of its receptor in neural cells. These results show the importance of endogenous progesterone, its metabolites, and neural progesterone receptors in acute cerebroprotection after stroke. This new concept could be exploited therapeutically by taking into account the progesterone status of patients and by supplementing and reinforcing endogenous progesterone signaling for attaining its full cerebroprotective potential.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Shaodong Zhang
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Antoine Pianos
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Neïké Fernandez
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Christian Denier
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
- Department of Neurology and Stroke Center, Bicêtre Hospital, 94276 Kremlin-Bicêtre, France, and
| | | | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France,
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France,
| |
Collapse
|
23
|
Differential effects of the 18-kDa translocator protein (TSPO) ligand etifoxine on steroidogenesis in rat brain, plasma and steroidogenic glands: Pharmacodynamic studies. Psychoneuroendocrinology 2017; 83:122-134. [PMID: 28609670 DOI: 10.1016/j.psyneuen.2017.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 11/20/2022]
Abstract
Etifoxine is indicated in humans for treating anxiety. In rodents, besides its anxiolytic-like properties, it has recently shown neuroprotective and neuroregenerative activities. It acts by enhancing GABAA receptor function and by stimulating acute steroid biosynthesis via the activation of the 18-kDa translocator protein. However, the regulatory action of etifoxine on steroid production is not well characterized. In this work, we performed dose-response, acute and chronic time-course experiments on the effects of intraperitoneal injections of etifoxine on steroid levels in adult male rat brain and plasma analyzed by gas chromatography-mass spectrometry. Concentrations of pregnenolone, progesterone and its 5α-reduced metabolites were significantly increased in both tissues in response to 25 and 50mg/kg of etifoxine, as compared with vehicle controls, and reached maximal values at 0.5-1h post-injection. Daily injections of etifoxine (50mg/kg, 15days) kept them increased at day 15. Comparisons between steroidogenic tissues revealed that 1h after 50mg/kg of etifoxine treatment, levels of pregnenolone, progesterone and corticosterone were highest in adrenal glands and markedly increased together with their reduced metabolites. They were also increased by etifoxine in brain and plasma, but not in testis except for corticosterone and its metabolites. In contrast, testosterone level was significantly decreased in testis while with its 5α-reduced metabolites, it was unchanged in brain. Results demonstrate that the modulation of steroid concentrations by etifoxine is dependent on the type of steroid and on the steroidogenic organ. They further suggest that adrenal steroids upregulated by etifoxine make an important contribution to the steroids present in brain. This work provides a precise and complete view of steroids regulated by etifoxine that could be useful in therapeutic research.
Collapse
|
24
|
Daftary S, Yon JM, Choi EK, Kim YB, Bice C, Kulikova A, Park J, Sherwood Brown E. Microtubule associated protein 2 in bipolar depression: Impact of pregnenolone. J Affect Disord 2017; 218:49-52. [PMID: 28458115 DOI: 10.1016/j.jad.2017.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/03/2017] [Accepted: 04/17/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Pregnenolone, and related neurosteroids, may have antidepressant properties. Preclinical research proposes that microtubule associated protein 2 (MAP2) binding may be a mechanism for antidepressant properties of pregnenolone. Thus, MAP2 might be a novel target for antidepressant therapy. This clinical study is the first to examine serum MAP2 levels in people with bipolar depression and controls, and whether pregnenolone treatment is associated with a change in MAP2 levels. METHODS Blood samples from a previously published clinical trial of pregnenolone for adult bipolar depression were analyzed at baseline and week 6 of treatment with pregnenolone or placebo for serum MAP2 levels using Western Blot. MAP2 levels from healthy controls were also obtained. RESULTS MAP2 levels in the bipolar depressed patients (n=11) tended to be higher than in controls (n=4) (p=0.062). MAP2 levels decreased non-significantly from baseline to week 6 in placebo (n=5) and pregnenolone-treated patients (n=6). MAP2 level changes correlated positively with change in self-reported depressive symptom scores in the pregnenolone group (r=0.771, p=0.072) but not in the placebo group (r=0.000, p=1.000). LIMITATIONS This study, exploring relationships between MAP-2 in humans with mood disorders, is limited by the small sample size. Thus, the findings must be viewed with great caution. CONCLUSION These findings suggest possible differences in serum MAP-2 levels between bipolar depressed persons and controls and a relationship between changes in depressive symptoms and MAP-2 levels during pregnenolone therapy. Findings suggest additional research is needed on MAP-2 in mood disorders.
Collapse
Affiliation(s)
- Shivani Daftary
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jung-Min Yon
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Ehn-Kyoung Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Collette Bice
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra Kulikova
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Vieira-Marques C, Arbo BD, Cozer AG, Hoefel AL, Cecconello AL, Zanini P, Niches G, Kucharski LC, Ribeiro MFM. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS. J Steroid Biochem Mol Biol 2017; 171:1-10. [PMID: 27871979 DOI: 10.1016/j.jsbmb.2016.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
Abstract
DHEA is a neuroactive steroid, due to its modulatory actions on the central nervous system (CNS). DHEA is able to regulate neurogenesis, neurotransmitter receptors and neuronal excitability, function, survival and metabolism. The levels of DHEA decrease gradually with advancing age, and this decline has been associated with age related neuronal dysfunction and degeneration, suggesting a neuroprotective effect of endogenous DHEA. There are significant sex differences in the pathophysiology, epidemiology and clinical manifestations of many neurological diseases. The aim of this study was to determine whether DHEA can alter glucose metabolism in different structures of the CNS from male and female rats, and if this effect is sex-specific. The results showed that DHEA decreased glucose uptake in some structures (cerebral cortex and olfactory bulb) in males, but did not affect glucose uptake in females. When compared, glucose uptake in males was higher than females. DHEA enhanced the glucose oxidation in both males (cerebral cortex, olfactory bulb, hippocampus and hypothalamus) and females (cerebral cortex and olfactory bulb), in a sex-dependent manner. In males, DHEA did not affect synthesis of glycogen, however, glycogen content was increased in the cerebral cortex and olfactory bulb. DHEA modulates glucose metabolism in a tissue-, dose- and sex-dependent manner to increase glucose oxidation, which could explain the previously described neuroprotective role of this hormone in some neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudia Vieira-Marques
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil; Laboratório de Metabolismo e Endocrinologia Comparada, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil.
| | - Bruno Dutra Arbo
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil
| | - Aline Gonçalves Cozer
- Laboratório de Metabolismo e Endocrinologia Comparada, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil
| | - Ana Lúcia Hoefel
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil; Laboratório de Metabolismo e Endocrinologia Comparada, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil
| | - Ana Lúcia Cecconello
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil
| | - Priscila Zanini
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil
| | - Gabriela Niches
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil
| | - Luiz Carlos Kucharski
- Laboratório de Metabolismo e Endocrinologia Comparada, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil
| | - Maria Flávia M Ribeiro
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre/RS, Brazil
| |
Collapse
|
26
|
Kumar N, Fagart J, Liere P, Mitchell SJ, Knibb AR, Petit-Topin I, Rame M, El-Etr M, Schumacher M, Lambert JJ, Rafestin-Oblin ME, Sitruk-Ware R. Nestorone® as a Novel Progestin for Nonoral Contraception: Structure-Activity Relationships and Brain Metabolism Studies. Endocrinology 2017; 158:170-182. [PMID: 27824503 PMCID: PMC5412978 DOI: 10.1210/en.2016-1426] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022]
Abstract
Nestorone® (NES) is a potent nonandrogenic progestin being developed for contraception. NES is a synthetic progestin that may possess neuroprotective and myelin regenerative potential as added health benefits. In receptor transactivation experiments, NES displayed greater potency than progesterone to transactivate the human progesterone receptor (PR). This was confirmed by docking experiments where NES adopts the same docking position within the PR ligand-binding domain (LBD) as progesterone and forms additional stabilizing contacts between 17α-acetoxy and 16-methylene groups and PR LBD, supporting its higher potency than progesterone. The analog 13-ethyl NES also establishes similar contacts as NES with Met909, leading to comparable potency as NES. In contrast, NES is not stabilized within the human androgen receptor LBD, leading to negligible androgen receptor transactivation. Because progesterone acts in the brain by both PR binding and indirectly via binding of the metabolite allopregnanolone to γ-aminobutyric acid type A receptor (GABAAR), we investigated if NES is metabolized to 3α, 5α-tetrahydronestorone (3α, 5α-THNES) in the brain and if this metabolite could interact with GABAAR. In female mice, low concentrations of reduced NES metabolites were identified by gas chromatography/mass spectrometry in both plasma and brain. Electrophysiological studies showed that 3α, 5α-THNES exhibited only limited activity to enhance GABAAR-evoked responses with WSS-1 cells and did not modulate synaptic GABAARs of mouse cortical neurons. Thus, the inability of reduced metabolite of NES (3α, 5α-THNES) to activate GABAAR suggests that the neuroprotective and myelin regenerative effects of NES are mediated via PR binding and not via its interaction with the GABAAR.
Collapse
Affiliation(s)
- Narender Kumar
- Population Council, Center for Biomedical Research, New York, New York 10065
| | | | - Philippe Liere
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Scott J. Mitchell
- Division of Neuroscience, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Alanah R. Knibb
- Division of Neuroscience, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | | | - Marion Rame
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Martine El-Etr
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Michael Schumacher
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Jeremy J. Lambert
- Division of Neuroscience, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | | | - Regine Sitruk-Ware
- Population Council, Center for Biomedical Research, New York, New York 10065
| |
Collapse
|
27
|
Gonzalez Deniselle MC, Liere P, Pianos A, Meyer M, Aprahamian F, Cambourg A, Di Giorgio NP, Schumacher M, De Nicola AF, Guennoun R. Steroid Profiling in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Endocrinology 2016; 157:4446-4460. [PMID: 27571131 DOI: 10.1210/en.2016-1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Wobbler mouse is an animal model for human motoneuron diseases, especially amyotrophic lateral sclerosis (ALS), used in the investigation of both pathology and therapeutic treatment. ALS is a fatal neurodegenerative disease, characterized by the selective and progressive death of motoneurons, leading to progressive paralysis. Previous limited studies have reported steroidal hormone dysregulation in Wobbler mouse and in ALS patients, suggesting endocrine dysfunctions which may be involved in the pathogenesis of the disease. In this study, we established a steroid profiling in brain, spinal cord, plasma, adrenal glands, and testes in 2-month-old male Wobbler mice and their littermates by gas chromatography coupled to mass spectrometry. Our results show in Wobbler mice the following: 1) a marked up-regulation of corticosterone levels in adrenal glands, plasma, spinal cord regions (cervical, thoracic, lumbar) and brain; 2) a strong decrease in T levels in the testis, plasma, spinal cord, and brain; and 3) increased levels of progesterone and especially of its reduced metabolites 5α-dihydroprogesterone, allopregnanolone, and 20α-dihydroprogesterone in the brain, spinal cord, and adrenal glands. Furthermore, Wobbler mice showed a hypothalamic-pituitary-gonadal hypoactivity. Interestingly, plasma concentrations of corticosterone and T correlate well with their respective levels in cervical spinal cord in both control and Wobbler mice. T down-regulation is probably the consequence of adrenal hyperactivity, and the up-regulation of progesterone and its reduced metabolites may correspond to an endogenous protective mechanism in response to motoneuron degeneration. Our findings suggest that increased levels of corticosterone and decreased levels of T in plasma could be a signature of motoneuron degeneration.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Philippe Liere
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Antoine Pianos
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Maria Meyer
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Fanny Aprahamian
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Annie Cambourg
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Michael Schumacher
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Rachida Guennoun
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| |
Collapse
|
28
|
Arbo BD, Benetti F, Ribeiro MF. Astrocytes as a target for neuroprotection: Modulation by progesterone and dehydroepiandrosterone. Prog Neurobiol 2016; 144:27-47. [DOI: 10.1016/j.pneurobio.2016.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023]
|
29
|
Vallée M. Neurosteroids and potential therapeutics: Focus on pregnenolone. J Steroid Biochem Mol Biol 2016; 160:78-87. [PMID: 26433186 DOI: 10.1016/j.jsbmb.2015.09.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022]
Abstract
Considerable evidence from preclinical and clinical studies shows that steroids and in particular neurosteroids are important endogenous modulators of several brain-related functions. In this context, it remains to be elucidated whether neurosteroids may serve as biomarkers in the diagnosis of disorders and might have therapeutic potential for the treatment of these disorders. Pregnenolone (PREG) is the main steroid synthesized from cholesterol in mammals and invertebrates. PREG has three main sources of synthesis, the gonads, adrenal glands and brain and is submitted to various metabolizing pathways which are modulated depending on various factors including species, steroidogenic tissues and steroidogenic enzymes. Looking at the whole picture of steroids, PREG is often known as the precursor to other steroids and not as an active steroid per se. Actually, physiological and brain functions have been studied mainly for steroids that are very active either binding to specific intracellular receptors, or modulating with high affinity the abundant membrane receptors, GABAA or NMDA receptors. However, when high sensitive and specific methodological approaches were available to analyze low concentrations of steroids and then match endogenous levels of different steroid metabolomes, several studies have reported more significant alterations in PREG than in other steroids in extraphysiological or pathological conditions, suggesting that PREG could play a functional role as well. Additionally, several molecular targets of PREG were revealed in the mammalian brain and beneficial effects of PREG have been demonstrated in preclinical and clinical studies. On this basis, this review will be divided into three parts. The first provides a brief overview of the molecular targets of PREG and the pharmacological effects observed in animal and human studies. The second will focus on the possible functional role of PREG with an outline of the modulation of PREG levels in animal and in human research. Finally, the review will highlight the possible therapeutic uses of PREG that point towards the development of pregnenolone-like molecules.
Collapse
Affiliation(s)
- Monique Vallée
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux F33077, France; Université de Bordeaux, Bordeaux F33077, France.
| |
Collapse
|
30
|
Lamy J, Liere P, Pianos A, Aprahamian F, Mermillod P, Saint-Dizier M. Steroid hormones in bovine oviductal fluid during the estrous cycle. Theriogenology 2016; 86:1409-1420. [PMID: 27262884 DOI: 10.1016/j.theriogenology.2016.04.086] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 01/17/2023]
Abstract
Ovarian steroid hormones are major regulators of the physiology of the oviduct and reproductive events occurring within the oviduct. To establish a whole steroid profiling of the bovine oviductal fluid (OF) during the estrous cycle, contralateral and ipsilateral (to the corpus luteum or preovulatory follicle) oviducts were classified into four stages of the estrous cycle (n = 18-27 cows per stage): postovulatory (Post-ov), mid-luteal (Mid-lut), late luteal (Late-lut), and preovulatory on the basis of the ovarian morphology and intrafollicular steroid concentrations. Steroids were extracted from pools of 150 to 200 μL OF (three to 10 cows per pool; three to four pools per "stage × side" group), purified, fractioned by high-performance liquid chromatography, and analyzed by gas chromatography coupled with tandem mass spectrometry. The concentrations of progesterone (P4) in ipsilateral OF increased from Post-ov (56.9 ± 13.4 ng/mL) to Mid-lut (120.3 ± 34.3 ng/mL), then decreased from Late-lut (76.7 ± 1.8 ng/mL) to Pre-ov (6.3 ± 1.7 ng/mL), and were four to 16 times higher than in contralateral OF. Most P4 metabolites followed similar patterns of variation. Concentrations of 17beta-estradiol (E2) were significantly higher at Pre-ov (290.5 ± 63.2 pg/mL) compared with all other stages (<118.3 pg/mL), with no difference regarding the side of ovulation. Concentrations of androstenedione displayed a pattern similar to that of E2, whereas other androgens, estrone, and corticoids did not vary between stages or sides. In conclusion, a highly concentrated and fluctuating hormonal environment was evidenced in the bovine OF. These results could be useful to improve media for IVF, embryo development, and culture of oviductal cells.
Collapse
Affiliation(s)
- Julie Lamy
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Philippe Liere
- UMR 1195 INSERM, Petites molécules de neuroprotection, neurorégénération et remyélinisation, Université Paris-Saclay, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Antoine Pianos
- UMR 1195 INSERM, Petites molécules de neuroprotection, neurorégénération et remyélinisation, Université Paris-Saclay, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Fanny Aprahamian
- UMR 1195 INSERM, Petites molécules de neuroprotection, neurorégénération et remyélinisation, Université Paris-Saclay, Université Paris-Sud, Le Kremlin-Bicêtre, France
| | | | - Marie Saint-Dizier
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France; UFR Sciences et Techniques, Université François Rabelais de Tours, Tours, France.
| |
Collapse
|
31
|
Ravikumar B, Crawford D, Dellovade T, Savinainen A, Graham D, Liere P, Oudinet JP, Webb M, Hering H. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis. Neuropharmacology 2016; 108:229-37. [PMID: 27039042 DOI: 10.1016/j.neuropharm.2016.03.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022]
Abstract
Neurosteroids such as progesterone and allopregnanolone have been shown to exert neuroprotective effects under a variety of pathological or insult conditions, and there is evidence that the neurosteroid system is perturbed in Multiple Sclerosis (MS) patients. Neurosteroids are synthesized in the central nervous system (CNS) through a series of metabolic transformations, beginning with a rate-limiting step of cholesterol transport through the outer mitochondrial membrane via the transporter translocator protein (TSPO). We examined the effects of etifoxine and XBD-173, two different brain penetrant TSPO agonists, for their ability to ameliorate clinical signs in two different experimental autoimmune encephalitis (EAE) models. Etifoxine, as previously reported, was efficacious in EAE, while XBD-173 was not. Surprisingly, XBD-173, but not etifoxine elevated relevant neurosteroids in brain of female rats and differed in its ability to exert anti-inflammatory and direct neuroprotective effects in vitro as compared to etifoxine. We conclude that the neurosteroid elevations produced in brain by XBD-173 are not sufficient to ameliorate EAE and suggest that etifoxine may have additional mechanisms of action that provide therapeutic benefit in this model system.
Collapse
Affiliation(s)
- Brinda Ravikumar
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Dan Crawford
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Tammy Dellovade
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Anneli Savinainen
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Danielle Graham
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Philippe Liere
- U1195 Inserm & University Paris-Sud, 80, rue du Général Leclerc, 94276 Kremlin-Bicetre, France
| | - Jean-Paul Oudinet
- U1195 Inserm & University Paris-Sud, 80, rue du Général Leclerc, 94276 Kremlin-Bicetre, France
| | - Mike Webb
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Heike Hering
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA.
| |
Collapse
|
32
|
Schumacher M, Guennoun R, Mattern C, Oudinet JP, Labombarda F, De Nicola AF, Liere P. Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system. Steroids 2015; 103:42-57. [PMID: 26301525 DOI: 10.1016/j.steroids.2015.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Levels of steroids in the adult central nervous system (CNS) show marked changes in response to stress, degenerative disorders and injury. However, their analysis in complex matrices such as fatty brain and spinal cord tissues, and even in plasma, requires accurate and precise analytical methods. Radioimmunoassays (RIA) and enzyme-linked immunosorbent assays, even with prepurification steps, do not provide sufficient specificity, and they are at the origin of many inconsistent results in the literature. The analysis of steroids by mass spectrometric methods has become the gold standard for accurate and sensitive steroid analysis. However, these technologies involve multiple purification steps prone to errors, and they only provide accurate reference values when combined with careful sample workup. In addition, the interpretation of changes in CNS steroid levels is not an easy task because of their multiple sources: the endocrine glands and the local synthesis by neural cells. In the CNS, decreased steroid levels may reflect alterations of their biosynthesis, as observed in the case of chronic stress, post-traumatic stress disorders or depressive episodes. In such cases, return to normalization by administering exogenous hormones or by stimulating their endogenous production may have beneficial effects. On the other hand, increases in CNS steroids in response to acute stress, degenerative processes or injury may be part of endogenous protective or rescue programs, contributing to the resistance of neural cells to stress and insults. The aim of this review is to encourage a more critical reading of the literature reporting steroid measures, and to draw attention to the absolute need for well-validated methods. We discuss reported findings concerning changing steroid levels in the nervous system by insisting on methodological issues. An important message is that even recent mass spectrometric methods have their limits, and they only become reliable tools if combined with careful sample preparation.
Collapse
Affiliation(s)
| | | | | | | | - Florencia Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
33
|
Fréchou M, Zhang S, Liere P, Delespierre B, Soyed N, Pianos A, Schumacher M, Mattern C, Guennoun R. Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology 2015; 97:394-403. [DOI: 10.1016/j.neuropharm.2015.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023]
|
34
|
Abstract
Steroid hormones are small molecules (MW around 300 Da) characterized by a large range of polarity and their analysis has always presented a serious challenge. Persistent problems with the specificity of conventional immunological methods are the cause of inconsistent results in the literature, a particularly problematic situation for healthcare decisions. At present, mass spectrometric methods have become the gold standard for accurate steroid profiling, and their advent will require the re-analysis of previously published data. However, it is a common misconception to consider the use of theses sophisticated technologies as a guarantee for accurate measures. Steroid analysis, especially in nervous tissues, indeed requires well-validated purification and separation steps before mass spectrometry, only then will mass spectrometric analysis be the absolute reference methodology.
Collapse
Affiliation(s)
- Philippe Liere
- a 1 Neuroregenerative and Remyelinating Small Molecules, U1195 Inserm and University Paris-Sud, 94276 Kremlin-Bicêtre, France
| | - Michael Schumacher
- b 2 Neuroprotective, Neuroregenerative and Remyelinating Small Molecules, U1195 Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| |
Collapse
|
35
|
MacKenzie G, Maguire J. Neurosteroids and GABAergic signaling in health and disease. Biomol Concepts 2015; 4:29-42. [PMID: 25436563 DOI: 10.1515/bmc-2012-0033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/12/2012] [Indexed: 11/15/2022] Open
Abstract
Endogenous neurosteroids such as allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are synthesized either de novo in the brain from cholesterol or are generated from the local metabolism of peripherally derived progesterone or corticosterone. Fluctuations in neurosteroid concentrations are important in the regulation of a number of physiological responses including anxiety and stress, reproductive, and sexual behaviors. These effects are mediated in part by the direct binding of neurosteroids to γ-aminobutyric acid type-A receptors (GABAARs), resulting in the potentiation of GABAAR-mediated currents. Extrasynaptic GABAARs containing the δ subunit, which contribute to the tonic conductance, are particularly sensitive to low nanomolar concentrations of neurosteroids and are likely their preferential target. Considering the large charge transfer generated by these persistently open channels, even subtle changes in neurosteroid concentrations can have a major impact on neuronal excitability. Consequently, aberrant levels of neurosteroids have been implicated in numerous disorders, including, but not limited to, anxiety, neurodegenerative diseases, alcohol abuse, epilepsy, and depression. Here we review the modulation of GABAAR by neurosteroids and the consequences for health and disease.
Collapse
|
36
|
Bertin J, Dury AY, Ke Y, Ouellet J, Labrie F. Accurate and sensitive liquid chromatography/tandem mass spectrometry simultaneous assay of seven steroids in monkey brain. Steroids 2015; 98:37-48. [PMID: 25697058 DOI: 10.1016/j.steroids.2015.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Following its secretion mainly by the adrenal glands, dehydroepiandrosterone (DHEA) acts primarily in the cells/tissues which express the enzymes catalyzing its intracellular conversion into sex steroids by the mechanisms of intracrinology. Although reliable assays of endogenous serum steroids are now available using mass spectrometry (MS)-based technology, sample preparation from tissue matrices remains a challenge. This is especially the case with high lipid-containing tissues such as the brain. With the combination of a UPLC system with a sensitive tandem MS, it is now possible to measure endogenous unconjugated steroids in monkey brain tissue. METHODS A Shimadzu UPLC LC-30AD system coupled to a tandem MS AB Sciex Qtrap 6500 system was used. RESULTS The lower limits of quantifications are achieved at 250 pg/mL for DHEA, 200 pg/mL for 5-androstenediol (5-diol), 12 pg/mL for androstenedione (4-dione), 50 pg/mL for testosterone (Testo), 10 pg/mL for dihydrotestosterone (DHT), 4 pg/mL for estrone (E1) and 1 pg/mL for estradiol (E2). The linearity and accuracy of quality controls (QCs) and endogenous quality controls (EndoQCs) are according to the guidelines of the regulatory agencies for all seven compounds. CONCLUSION We describe a highly sensitive, specific and robust LC-MS/MS method for the simultaneous measurement of seven unconjugated steroids in monkey brain tissue. The single and small amount of sample required using a relatively simple preparation method should be useful for steroid assays in various peripheral tissues and thus help analysis of the role of locally-made sex steroids in the regulation of specific physiological functions.
Collapse
Affiliation(s)
- Jonathan Bertin
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Alain Y Dury
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Yuyong Ke
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Johanne Ouellet
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Fernand Labrie
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada.
| |
Collapse
|
37
|
Emnett CM, Eisenman LN, Mohan J, Taylor AA, Doherty JJ, Paul SM, Zorumski CF, Mennerick S. Interaction between positive allosteric modulators and trapping blockers of the NMDA receptor channel. Br J Pharmacol 2015; 172:1333-47. [PMID: 25377730 DOI: 10.1111/bph.13007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Memantine and ketamine are clinically used, open-channel blockers of NMDA receptors exhibiting remarkable pharmacodynamic similarities despite strikingly different clinical profiles. Although NMDA channel gating constitutes an important difference between memantine and ketamine, it is unclear how positive allosteric modulators (PAMs) might affect the pharmacodynamics of these NMDA blockers. EXPERIMENTAL APPROACH We used two different PAMs: SGE-201, an analogue of an endogenous oxysterol, 24S-hydroxycholesterol, along with pregnenolone sulphate (PS), to test on memantine and ketamine responses in single cells (oocytes and cultured neurons) and networks (hippocampal slices), using standard electrophysiological techniques. KEY RESULTS SGE-201 and PS had no effect on steady-state block or voltage dependence of a channel blocker. However, both PAMs increased the actions of memantine and ketamine on phasic excitatory post-synaptic currents, but neither revealed underlying pharmacodynamic differences. SGE-201 accelerated the re-equilibration of blockers during voltage jumps. SGE-201 also unmasked differences among the blockers in neuronal networks - measured either by suppression of activity in multi-electrode arrays or by neuroprotection against a mild excitotoxic insult. Either potentiating NMDA receptors while maintaining the basal activity level or increasing activity/depolarization without potentiating NMDA receptor function is sufficient to expose pharmacodynamic blocker differences in suppressing network function and in neuroprotection. CONCLUSIONS AND IMPLICATIONS Positive modulation revealed no pharmacodynamic differences between NMDA receptor blockers at a constant voltage, but did expose differences during spontaneous network activity. Endogenous modulator tone of NMDA receptors in different brain regions may underlie differences in the effects of NMDA receptor blockers on behaviour.
Collapse
Affiliation(s)
- Christine M Emnett
- Graduate Program in Neuroscience, Washington University, St Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Smith CC, Gibbs TT, Farb DH. Pregnenolone sulfate as a modulator of synaptic plasticity. Psychopharmacology (Berl) 2014; 231:3537-56. [PMID: 24997854 PMCID: PMC4625978 DOI: 10.1007/s00213-014-3643-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/24/2014] [Indexed: 12/22/2022]
Abstract
RATIONALE The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years. OBJECTIVES New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update. RESULTS Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca(2+)- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~ 2 pM) direct enhancement of intracellular Ca(2+) levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed. CONCLUSIONS PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification.
Collapse
Affiliation(s)
- Conor C. Smith
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - Terrell T. Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - David H. Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| |
Collapse
|
39
|
Smith CC, Martin SC, Sugunan K, Russek SJ, Gibbs TT, Farb DH. A role for picomolar concentrations of pregnenolone sulfate in synaptic activity-dependent Ca2+ signaling and CREB activation. Mol Pharmacol 2014; 86:390-8. [PMID: 25057049 DOI: 10.1124/mol.114.094128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fast excitatory synaptic transmission that is contingent upon N-methyl d-aspartate receptor (NMDAR) function contributes to core information flow in the central nervous system and to the plasticity of neural circuits that underlie cognition. Hypoactivity of excitatory NMDAR-mediated neurotransmission is hypothesized to underlie the pathophysiology of schizophrenia, including the associated cognitive deficits. The neurosteroid pregnenolone (PREG) and its metabolites pregnenolone sulfate (PregS) and allopregnanolone in serum are inversely associated with cognitive improvements after oral PREG therapy, raising the possibility that brain neurosteroid levels may be modulated therapeutically. PregS is derived from PREG, the precursor of all neurosteroids, via a single sulfation step and is present at low nanomolar concentrations in the central nervous system. PregS, but not PREG, augments long-term potentiation and cognitive performance in animal models of learning and memory. In this report, we communicate the first observation that PregS, but not PREG, is a potent (EC50 ∼2 pM) enhancer of intracellular Ca(2+) that is contingent upon neuronal activity, NMDAR-mediated synaptic activity, and L-type Ca(2+) channel activity. Low picomolar PregS similarly activates cAMP response element-binding protein (CREB) phosphorylation (within 10 minutes), an essential memory molecule, via an extracellular-signal-regulated kinase/mitogen-activated protein kinase signal transduction pathway. Taken together, the results are consistent with a novel biologic role for the neurosteroid PregS that acts at picomolar concentrations to intensify the intracellular response to glutamatergic signaling at synaptic but not extrasynaptic, NMDARs by differentially augmenting CREB activation. This provides a genomic signal transduction mechanism by which PregS could participate in memory consolidation of relevance to cognitive function.
Collapse
Affiliation(s)
- Conor C Smith
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - Stella C Martin
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - Kavitha Sugunan
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - Shelley J Russek
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - Terrell T Gibbs
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| | - David H Farb
- Laboratory of Molecular Neurobiology (C.C.S., S.C.M., K.S., T.T.G., D.H.F.), Department of Pharmacology & Experimental Therapeutics, Laboratory of Translational Epilepsy (S.J.R.), Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
40
|
Sripada RK, Welsh RC, Marx CE, Liberzon I. The neurosteroids allopregnanolone and dehydroepiandrosterone modulate resting-state amygdala connectivity. Hum Brain Mapp 2013; 35:3249-61. [PMID: 24302681 DOI: 10.1002/hbm.22399] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/18/2013] [Accepted: 08/19/2013] [Indexed: 02/01/2023] Open
Abstract
The neurosteroids allopregnanolone and dehydroepiandrosterone (DHEA) are integral components of the stress response and exert positive modulatory effects on emotion in both human and animal studies. Although these antidepressant and anxiolytic effects have been well established, to date, little research has examined their neural correlates, and no research has been conducted into the effects of neurosteroids on large-scale networks at rest. To investigate the neurosteroid impact on intrinsic connectivity networks, participants were administered 400 mg of pregnenolone (N = 16), 400 mg of DHEA (N = 14), or placebo (N = 15) and underwent 3T fMRI. Resting-state brain connectivity was measured using amygdala as a seed region. When compared with placebo, pregnenolone administration reduced connectivity between amygdala and dorsal medial prefrontal cortex, between amygdala and precuneus, and between amygdala and hippocampus. DHEA reduced connectivity between amygdala and periamygdala and between amygdala and insula. Reductions in amygdala to precuneus connectivity were associated with less self-reported negative affect. These results demonstrate that neurosteroids modulate amygdala functional connectivity during resting state and may be a target for pharmacological intervention. Additionally, allopregnanolone and DHEA may shift the balance between salience network and default network, a finding that could provide insight into the neurocircuitry of anxiety psychopathology.
Collapse
Affiliation(s)
- Rebecca K Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Ann Arbor VA Medical Center, Ann Arbor, Michigan
| | | | | | | |
Collapse
|
41
|
El Hiba O, Gamrani H, Chatoui H, Ahboucha S. Loss of tyrosine hydroxylase expression within the nigro-striato-cortical pathways in the cirrhotic rat: the possible restorative effect of the neurosteroid dehydroepiandrosterone sulfate. Acta Histochem 2013; 115:637-45. [PMID: 23453752 DOI: 10.1016/j.acthis.2013.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 12/25/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disorder occurring as a consequence of both acute and chronic liver failure. Advanced HE is generally accompanied with extrapyramidal symptoms including rigidity and tremor, which may reflect alterations of the dopaminergic system. Recently we reported a beneficial effect of the neuroactive steroid dehydroepiandrosterone sulfate (DHEAS) in cirrhotic rats, however the mechanisms of such an effect by DHEAS were not addressed. In the present study, we describe the changes of the dopaminergic system occurring in the cirrhotic rats and concomitantly we investigated the effect of DHEAS on this system in Sprague-Dawley rats using the expression of tyrosine hydroxylase (TH) as a neuronal marker. Rats were submitted to bile duct ligation (BDL) surgery and TH immunohistochemistry was assessed in the Substantia nigra pars compacta (SNc), striatum, ventral tegmental area (VTA) and the cortex. TH immunoreactivity showed a significant diminution in both SNc and VTA concomitantly with the cortical and the striatal outputs in the BDL rats vs. controls. Three daily injections of 5mg/kg of DHEAS to BDL rats significantly normalized TH expression decrease in both SNc and VTA as well as dopaminergic projections to the striatum and the cortex of BDL rats. The present data support an involvement of the dopaminergic system in mild HE and a possible beneficial effect of the neurosteroid DHEAS as a potential pharmacological treatment of mild HE.
Collapse
Affiliation(s)
- Omar El Hiba
- Neurosciences, Pharmacology and Environment Unit, Faculty of Sciences Semlalia, Cadi University Ayyad, Marrakesh, Morocco
| | | | | | | |
Collapse
|
42
|
Shackleford G, Makoukji J, Grenier J, Liere P, Meffre D, Massaad C. Differential regulation of Wnt/beta-catenin signaling by Liver X Receptors in Schwann cells and oligodendrocytes. Biochem Pharmacol 2013; 86:106-14. [DOI: 10.1016/j.bcp.2013.02.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
|
43
|
Kostakis E, Smith C, Jang MK, Martin SC, Richards KG, Russek SJ, Gibbs TT, Farb DH. The neuroactive steroid pregnenolone sulfate stimulates trafficking of functional N-methyl D-aspartate receptors to the cell surface via a noncanonical, G protein, and Ca2+-dependent mechanism. Mol Pharmacol 2013; 84:261-74. [PMID: 23716622 DOI: 10.1124/mol.113.085696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
N-methyl D-aspartate (NMDA) receptors (NMDARs) mediate fast excitatory synaptic transmission and play a critical role in synaptic plasticity associated with learning and memory. NMDAR hypoactivity has been implicated in the pathophysiology of schizophrenia, and clinical studies have revealed reduced negative symptoms of schizophrenia with a dose of pregnenolone that elevates serum levels of the neuroactive steroid pregnenolone sulfate (PregS). This report describes a novel process of delayed-onset potentiation whereby PregS approximately doubles the cell's response to NMDA via a mechanism that is pharmacologically and kinetically distinct from rapid positive allosteric modulation by PregS. The number of functional cell-surface NMDARs in cortical neurons increases 60-100% within 10 minutes of exposure to PregS, as shown by surface biotinylation and affinity purification. Delayed-onset potentiation is reversible and selective for expressed receptors containing the NMDAR subunit subtype 2A (NR2A) or NR2B, but not the NR2C or NR2D, subunits. Moreover, substitution of NR2B J/K helices and M4 domain with the corresponding region of NR2D ablates rapid allosteric potentiation of the NMDA response by PregS but not delayed-onset potentiation. This demonstrates that the initial phase of rapid positive allosteric modulation is not a first step in NMDAR upregulation. Delayed-onset potentiation by PregS occurs via a noncanonical, pertussis toxin-sensitive, G protein-coupled, and Ca(2+)-dependent mechanism that is independent of NMDAR ion channel activation. Further investigation into the sequelae for PregS-stimulated trafficking of NMDARs to the neuronal cell surface may uncover a new target for the pharmacological treatment of disorders in which NMDAR hypofunction has been implicated.
Collapse
Affiliation(s)
- Emmanuel Kostakis
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Gender effect on the relationship between stress hormones and panic-agoraphobic spectrum dimensions in healthy subjects. CNS Spectr 2012; 17:214-20. [PMID: 23253196 DOI: 10.1017/s1092852912000685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Alterations of the hypothalamic-pituitary-adrenal (HPA) axis and of its peripheral indices have been reported in both normal and pathological anxiety with controversial findings. The aim of the present study was to investigate the possible correlations between serum cortisol and dehydroepiandrosterone-sulfate (DHEA-S) levels and DHEA-S/cortisol ratio, and panic-agoraphobic spectrum dimensions in a sample of healthy subjects. METHODS Forty-two healthy subjects of both sexes, with no current or lifetime psychiatric disorders, were assessed by means of the Structured Clinical Interview for DSM-IV (SCID-I/P) and the so-called Panic Agoraphobic Spectrum-Self Report lifetime version (PAS-SR). RESULTS Significant, negative correlations were found between cortisol levels and the total score of the separation sensitivity, panic-like symptoms, and medication/substance sensitivity PAS-SR domains. The PAS-SR total and the panic-like symptoms domain scores were positively related to the DHEAS/cortisol ratio. When the sample was divided in women and men, these correlations were present in women only. DISCUSSION These findings, while indicating the presence of significant relationships between panic-agoraphobic traits and some indices of HPA axis functioning in healthy women, would suggest this as one of the factors explaining the greater vulnerability of women to cross the line between normal and pathological anxiety. CONCLUSIONS Further studies are needed to explore gender differences in the relationships between HPA axis alterations and the panic-agoraphobic spectrum dimensions.
Collapse
|
46
|
Maeda N, Tanaka E, Suzuki T, Okumura K, Nomura S, Miyasho T, Haeno S, Yokota H. Accurate determination of tissue steroid hormones, precursors and conjugates in adult male rat. J Biochem 2012; 153:63-71. [PMID: 23055536 DOI: 10.1093/jb/mvs121] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The actual levels of steroid hormones in organs are vital for endocrine, reproductive and neuronal health and disorders. We developed an accurate method to determine the levels of steroid hormones and steroid conjugates in various organs by an efficient preparation using a solid-phase-extraction cartridge. Each steroid was identified by the precursor ion spectra using liquid chromatography-electrospray ionization time-of-flight mass spectrometry, and the respective steroids were quantitatively analysed in the selected reaction monitoring mode by liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS). The data showed that significant levels of testosterone, corticosterone and precursors of both hormones were detected in all organs except liver. The glucuronide conjugates of steroid hormones and the precursors were detected in all organs except liver, but sulfate conjugates of these steroids were observed only in the target organs of the hormones and kidney. Interestingly, these steroids and the conjugates were not observed in the liver except pregnenolone. In conclusion, an accurate determination of tissue steroids was developed using LC-MS analysis. Biosynthesis of steroid hormones from the precursors was estimated even in the target organs, and the delivery of these steroid conjugates was also suggested via the circulation without any significant hepatic participation.
Collapse
Affiliation(s)
- Naoyuki Maeda
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ooishi Y, Kawato S, Hojo Y, Hatanaka Y, Higo S, Murakami G, Komatsuzaki Y, Ogiue-Ikeda M, Kimoto T, Mukai H. Modulation of synaptic plasticity in the hippocampus by hippocampus-derived estrogen and androgen. J Steroid Biochem Mol Biol 2012; 131:37-51. [PMID: 22075082 DOI: 10.1016/j.jsbmb.2011.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/27/2011] [Accepted: 10/12/2011] [Indexed: 12/29/2022]
Abstract
The hippocampus synthesizes estrogen and androgen in addition to the circulating sex steroids. Synaptic modulation by hippocampus-derived estrogen or androgen is essential to maintain healthy memory processes. Rapid actions (1-2h) of 17β-estradiol (17β-E2) occur via synapse-localized receptors (ERα or ERβ), while slow genomic E2 actions (6-48h) occur via classical nuclear receptors (ERα or ERβ). The long-term potentiation (LTP), induced by strong tetanus or theta-burst stimulation, is not further enhanced by E2 perfusion in adult rats. Interestingly, E2 perfusion can rescue corticosterone (stress hormone)-induced suppression of LTP. The long-term depression is modulated rapidly by E2 perfusion. Elevation of the E2 concentration changes rapidly the density and head structure of spines in neurons. ERα, but not ERβ, drives this enhancement of spinogenesis. Kinase networks are involved downstream of ERα. Testosterone (T) or dihydrotestosterone (DHT) also rapidly modulates spinogenesis. Newly developed Spiso-3D mathematical analysis is used to distinguish these complex effects by sex steroids and kinases. It has been doubted that the level of hippocampus-derived estrogen and androgen may not be high enough to modulate synaptic plasticity. Determination of the accurate concentration of E2, T or DHT in the hippocampus is enabled by mass-spectrometric analysis in combination with new steroid-derivatization methods. The E2 level in the hippocampus is approximately 8nM for the male and 0.5-2nM for the female, which is much higher than that in circulation. The level of T and DHT is also higher than that in circulation. Taken together, hippocampus-derived E2, T, and DHT play a major role in modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Yuuki Ooishi
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu A, Margaill I, Zhang S, Labombarda F, Coqueran B, Delespierre B, Liere P, Marchand-Leroux C, O'Malley BW, Lydon JP, De Nicola AF, Sitruk-Ware R, Mattern C, Plotkine M, Schumacher M, Guennoun R. Progesterone receptors: a key for neuroprotection in experimental stroke. Endocrinology 2012; 153:3747-57. [PMID: 22635678 PMCID: PMC3979171 DOI: 10.1210/en.2012-1138] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progesterone receptors (PR) are expressed throughout the brain. However, their functional significance remains understudied. Here we report a novel role of PR as crucial mediators of neuroprotection using a model of transient middle cerebral artery occlusion and PR knockout mice. Six hours after ischemia, we observed a rapid increase in progesterone and 5α-dihydroprogesterone, the endogenous PR ligands, a process that may be a part of the natural neuroprotective mechanisms. PR deficiency, and even haploinsufficiency, increases the susceptibility of the brain to stroke damage. Within a time window of 24 h, PR-dependent signaling of endogenous brain progesterone limits the extent of tissue damage and the impairment of motor functions. Longer-term improvement requires additional treatment with exogenous progesterone and is also PR dependent. The potent and selective PR agonist Nestorone is also effective. In contrast to progesterone, levels of the neurosteroid allopregnanolone, which modulates γ-aminobutyric acid type A receptors, did not increase after stroke, but its administration protected both wild-type and PR-deficient mice against ischemic damage. These results show that 1) PR are linked to signaling pathways that influence susceptibility to stroke, and 2) PR are direct key targets for both endogenous neuroprotection and for therapeutic strategies after stroke, and they suggest a novel indication for synthetic progestins already validated for contraception. Although allopregnanolone may not be an endogenous neuroprotective agent, its administration protects the brain against ischemic damage by signaling mechanisms not involving PR. Collectively, our data clarify the relative roles of PR and allopregnanolone in neuroprotection after stroke.
Collapse
Affiliation(s)
- Ailing Liu
- Unité Mixte de Recherche 788 Institut National de la Santé et de la Recherche Médicale and University Paris-Sud, 80, rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rogers MA, Liu J, Kushnir MM, Bryleva E, Rockwood AL, Meikle AW, Shapiro D, Vaisman BL, Remaley AT, Chang CCY, Chang TY. Cellular pregnenolone esterification by acyl-CoA:cholesterol acyltransferase. J Biol Chem 2012; 287:17483-17492. [PMID: 22474282 PMCID: PMC3366839 DOI: 10.1074/jbc.m111.331306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/28/2012] [Indexed: 11/06/2022] Open
Abstract
Pregnenolone (PREG) can be converted to PREG esters (PE) by the plasma enzyme lecithin: cholesterol acyltransferase (LCAT), and by other enzyme(s) with unknown identity. Acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2) convert various sterols to steryl esters; their activities are activated by cholesterol. PREG is a sterol-like molecule, with 3-β-hydroxy moiety at steroid ring A, but with much shorter side chain at steroid ring D. Here we show that without cholesterol, PREG is a poor ACAT substrate; with cholesterol, the V(max) for PREG esterification increases by 100-fold. The binding affinity of ACAT1 for PREG is 30-50-fold stronger than that for cholesterol; however, PREG is only a substrate but not an activator, while cholesterol is both a substrate and an activator. These results indicate that the sterol substrate site in ACAT1 does not involve significant sterol-phospholipid interaction, while the sterol activator site does. Studies utilizing small molecule ACAT inhibitors show that ACAT plays a key role in PREG esterification in various cell types examined. Mice lacking ACAT1 or ACAT2 do not have decreased PREG ester contents in adrenals, nor do they have altered levels of the three major secreted adrenal steroids in serum. Mice lacking LCAT have decreased levels of PREG esters in the adrenals. These results suggest LCAT along with ACAT1/ACAT2 contribute to control pregnenolone ester content in different cell types and tissues.
Collapse
Affiliation(s)
- Maximillian A Rogers
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Jay Liu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Mark M Kushnir
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah 84108; Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Elena Bryleva
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Alan L Rockwood
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah 84108; Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - A Wayne Meikle
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah 84108; Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - David Shapiro
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Boris L Vaisman
- Lipoprotein Metabolism Section,Cardiovascular-Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Alan T Remaley
- Lipoprotein Metabolism Section,Cardiovascular-Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Catherine C Y Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755.
| | - Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755.
| |
Collapse
|
50
|
Korinek M, Kapras V, Vyklicky V, Adamusova E, Borovska J, Vales K, Stuchlik A, Horak M, Chodounska H, Vyklicky L. Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects. Steroids 2011; 76:1409-18. [PMID: 21925193 DOI: 10.1016/j.steroids.2011.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 12/12/2022]
Abstract
Glutamate is the main neurotransmitter released at synapses in the central nervous system of vertebrates. Its excitatory role is mediated through activation of specific glutamatergic ionotropic receptors, among which the N-methyl-D-aspartate (NMDA) receptor subtype has attracted considerable attention in recent years. Substantial progress has been made in elucidating the roles these receptors play under physiological and pathological conditions and in our understanding of the functional, structural, and pharmacological properties of NMDA receptors. Many pharmacological compounds have been identified that affect the activity of NMDA receptors, including neurosteroids. This review summarizes our knowledge about molecular mechanisms underlying the neurosteroid action at NMDA receptors as well as about the action of neurosteroids in animal models of human diseases.
Collapse
Affiliation(s)
- Miloslav Korinek
- Institute of Physiology, Academy of Sciences of the Czech Republic, vvi Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|