1
|
Flesher K, Mathew A, Borovskiy Y, Laudanski K. Examination of Postoperative Changes in Lipid Profile and Glycemic Markers After Coronary Artery Bypass Graft, Percutaneous Intervention Vs Aortic Valve Replacement Demonstrated a Shift in Risk Factors for Coronary Artery Disease. J Multidiscip Healthc 2024; 17:4559-4569. [PMID: 39371402 PMCID: PMC11453132 DOI: 10.2147/jmdh.s470819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Surgery-related stress may affect the metabolome, leading to abnormal lipid profiles and ineffective glycemic control. Here, we gauge these changes as they may accelerate atherosclerosis, limiting the benefits of interventions aimed at improving coronary artery disease (CAD) progression. Patients and Methods Electronic medical records were queried to identify patients undergoing coronary artery bypass grafting (CABG), percutaneous coronary intervention (PCI), or aortic valve replacement (AVR). 7573 records denoted lipid profile (cholesterol, LDL, HDL, VLDL, triglycerides) and glucose metabolism impairment (HbA1c). Pre-procedure lipid and glucose laboratory values were compared with periods representing acute periprocedural inflammation (1-3 months), resolution of acute inflammation (3-6 months), convalescence (6-12 months), and medium- (1-2 years), and long-term periods (2-5 years). Results Baseline values differed between groups (AVR: Cholesterol↑↓, LDL↓↑, HDL↓, Triglycerides↑, HbA1c↓; CABG: Cholesterol↓, LDL↓, HDL↓, Triglycerides↓, HbA1c↓; PCI: Cholesterol↑↓, LDL↑↓, HDL↑↓, Triglycerides↓, HbA1c↓). Interestingly, total cholesterol and LDL had opposite trajectories after CABG vs AVR even five years after surgical procedure and the effects were moderate as denoted by d-Cohen statistics. HDL declined acutely after CABG and AVR but not after PCI. Triglycerides were elevated for 2 years after AVR but depressed after CABG and PCI. HbA1c remained depressed for up to 5 years after any studied procedure. Conclusion Our data suggest surgical procedures result in prolonged lipid profile and glycemic metabolism disturbances, particularly after aortic valve replacement, indicating more aggressive post-surgical treatment of these metabolic abnormalities may be warranted.
Collapse
Affiliation(s)
- Kelley Flesher
- Department of Neurology, Division of Neurocritical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Amal Mathew
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Yuliya Borovskiy
- Corporate Informational Service, Penn Medicine, Philadelphia, PA, USA
- Data Analytics Core, Penn Medicine, Philadelphia, PA, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
3
|
Yundung Y, Mohammed S, Paneni F, Reutersberg B, Rössler F, Zimmermann A, Pelisek J. Transcriptomics analysis of long non-coding RNAs in smooth muscle cells from patients with peripheral artery disease and diabetes mellitus. Sci Rep 2024; 14:8615. [PMID: 38616192 PMCID: PMC11016542 DOI: 10.1038/s41598-024-59164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for peripheral arterial disease (PAD), and PAD is an independent predictor of cardiovascular disorders (CVDs). Growing evidence suggests that long non-coding RNAs (lncRNAs) significantly contribute to disease development and underlying complications, particularly affecting smooth muscle cells (SMCs). So far, no study has focused on transcriptome analysis of lncRNAs in PAD patients with and without DM. Tissue samples were obtained from our Vascular Biobank. Due to the sample's heterogeneity, expression analysis of lncRNAs in whole tissue detected only ACTA2-AS1 with a 4.9-fold increase in PAD patients with DM. In contrast, transcriptomics of SMCs revealed 28 lncRNAs significantly differentially expressed between PAD with and without DM (FDR < 0.1). Sixteen lncRNAs were of unknown function, six were described in cancer, one connected with macrophages polarisation, and four were associated with CVDs, mainly with SMC function and phenotypic switch (NEAT1, MIR100HG, HIF1A-AS3, and MRI29B2CHG). The enrichment analysis detected additional lncRNAs H19, CARMN, FTX, and MEG3 linked with DM. Our study revealed several lncRNAs in diabetic PAD patients associated with the physiological function of SMCs. These lncRNAs might serve as potential therapeutic targets to improve the function of SMCs within the diseased tissue and, thus, the clinical outcome.
Collapse
Affiliation(s)
- Yankey Yundung
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Shafeeq Mohammed
- Department of Cardiology/Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Francesco Paneni
- Department of Cardiology/Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Benedikt Reutersberg
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Fabian Rössler
- Department of Surgery and Transplantation, University Hospital Zurich, Zürich, Switzerland
| | - Alexander Zimmermann
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Jaroslav Pelisek
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
4
|
Gumede N, Khathi A. The role of fibrinolysis in the development of prediabetes-associated coronary heart disease: a focus on the plasminogen activator inhibitor -1 and its potential use as a predictive marker in diet-induced prediabetes. Front Nutr 2023; 10:1256427. [PMID: 38024366 PMCID: PMC10652797 DOI: 10.3389/fnut.2023.1256427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular diseases (CVD). However, the onset of T2DM is preceded by prediabetes, which is associated with sedentary lifestyles and consumption of high-calorie diets. Studies have shown that impaired glucose homeostasis creates an environment for developing T2DM-related complications. Using a high-fat-high-carbohydrate diet-induced prediabetes animal model, this study sought to assess the risk factors of coronary heart disease (CHD) in diet-induced prediabetes and identify biomarkers that can be used for early detection of prediabetes-associated CHD. Methods Male Sprague Dawley rats were randomly grouped into two groups and were kept on different diets for 20 weeks (n = 6 in each group). One group was fed standard rat chow to serve as a non-prediabetes (NPD) control, while the other group consumed a high-fat-high-carbohydrate diet to induce prediabetes (PD). Post induction, the homeostasis model assessment- insulin resistance (HOMA-IR) and glycated haemoglobin (HbA1c) was used to test for insulin resistance. Body weight, mean arterial pressure (MAP), resting heart rate (HR), inflammatory cytokines (C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6)), lipids (total cholesterol (TC), triglyceride (TG), lipoproteins (HDL, LDL, VLDL)), endothelial function (endothelial nitric oxide (eNOS), endothelin -1 (ET-1)), fibrinolysis (plasminogen activator inhibitor-1 (PAI-1)) were all measured to assess the risk of CHD. All data were expressed as means ± S.E.M. Statistical comparisons were performed with Graph Pad. Instat Software using Student's two-sided t-test. The Pearson correlation coefficient and linear regression were calculated to assess the association. The value of p < 0.05 was considered statistically significant. Results There was significant insulin resistance accompanied by significantly increased HbA1c and body weight in PD compared to NPD. Simultaneously, there was a significant increase in inflammatory cytokines in PD compared to NPD. This was accompanied by significantly increased TG and VLDL and endothelial dysfunction in PD. The association between HOMA-IR and PAI-1 was insignificantly positive in NPD, whereas a significantly strong positive association was observed in PD. Conclusion There is a positive correlation between insulin resistance and PAI-1 during prediabetes; therefore, suggesting that prediabetes increases the risk of developing vascular thrombosis. The current therefore study warrants further investigation on PAI-1 and other markers of fibrinolysis for the early detection of thrombosis and risk of CHD in prediabetes.
Collapse
Affiliation(s)
- Nompumelelo Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
5
|
Tripathy KC, Siddharth A, Bhandari A. Image-based insilico investigation of hemodynamics and biomechanics in healthy and diabetic human retinas. Microvasc Res 2023; 150:104594. [PMID: 37579814 DOI: 10.1016/j.mvr.2023.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Retinal hemodynamics and biomechanics play a significant role in understanding the pathophysiology of several ocular diseases. However, these parameters are significantly affected due to changed blood vessel morphology ascribed to pathological conditions, particularly diabetes. In this study, an image-based computational fluid dynamics (CFD) model is applied to examine the effects of changed vascular morphology due to diabetes on blood flow velocity, vorticity, wall shear stress (WSS), and oxygen distribution and compare it with healthy. The 3D patient-specific vascular architecture of diabetic and healthy retina is extracted from Optical Coherence Tomography Angiography (OCTA) images and fundus to extract the capillary level information. Further, Fluid-structure interaction (FSI) simulations have been performed to compare the induced tissue stresses in diabetic and healthy conditions. Results illustrate that most arterioles possess higher velocity, vorticity, WSS, and lesser oxygen concentration than arteries for healthy and diabetic cases. However, an opposite trend is observed for venules and veins. Comparisons show that, on average, the blood flow velocity in the healthy case decreases by 42 % in arteries and 21 % in veins, respectively, compared to diabetic. In addition, the WSS and von Mises stress (VMS) in healthy case decrease by 49 % and 72 % in arteries and by 6 % and 28 % in veins, respectively, when compared with diabetic, making diabetic blood vessels more susceptible to wall rupture and tissue damage. The in-silico results may help predict the possible abnormalities region early, helping the ophthalmologists use these estimates as prognostic tools and tailor patient-specific treatment plans.
Collapse
Affiliation(s)
- Kartika Chandra Tripathy
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Ashish Siddharth
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
| |
Collapse
|
6
|
Corbacho-Alonso N, Sastre-Oliva T, López-Almodovar LF, Solis J, Padial LR, Tejerina T, Carrascal M, Mourino-Alvarez L, Barderas MG. Diabetes mellitus and aortic stenosis head to head: toward personalized medicine in patients with both pathologies. Transl Res 2023; 259:35-45. [PMID: 37085047 DOI: 10.1016/j.trsl.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Diabetes mellitus (DM) and calcific aortic stenosis (CAS) are common morbidities in the elderly, which are both chronic, progressive and often concomitant diseases. Several studies revealed that DM increases the risk of developing severe CAS, yet clear information about the relationship between both these diseases and the influence of DM on the progression of CAS is currently lacking. To evaluate the effect of DM on aortic valves and on the process of calcification, and to achieve better patient management in daily clinical practice, we analysed calcified and noncalcified valve tissue from patients with severe CAS, with or without DM. A proteomic strategy using isobaric tags was adopted and the plasma concentrations of nine proteins were studied using 3 orthogonal methods and in a separate cell model. The differentially expressed proteins identified are implicated in biological processes like endopeptidase activity, lipid metabolism, coagulation, and fibrinolysis. The results obtained provide evidence that DM provokes changes in the proteome of aortic valves, affecting valve calcification. This finding may help enhance our understanding of the pathogenesis of CAS and how DM affects the evolution of this condition, an important step in identifying targets to personalize the treatment of these patients.
Collapse
Affiliation(s)
- Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | | | - Jorge Solis
- Department of Cardiology, Hospital Universitario 12 de Octubre and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; AtriaClinic, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis R Padial
- Department of Cardiology, Hospital General Universitario de Toledo, SESCAM, Toledo, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Barcelona, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| |
Collapse
|
7
|
Khanal S, Bhavnani N, Mathias A, Lallo J, Gupta S, Ohanyan V, Ferrell JM, Raman P. Deletion of Smooth Muscle O-GlcNAc Transferase Prevents Development of Atherosclerosis in Western Diet-Fed Hyperglycemic ApoE -/- Mice In Vivo. Int J Mol Sci 2023; 24:7899. [PMID: 37175604 PMCID: PMC10178779 DOI: 10.3390/ijms24097899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Accumulating evidence highlights protein O-GlcNAcylation as a putative pathogenic contributor of diabetic vascular complications. We previously reported that elevated protein O-GlcNAcylation correlates with increased atherosclerotic lesion formation and VSMC proliferation in response to hyperglycemia. However, the role of O-GlcNAc transferase (OGT), regulator of O-GlcNAc signaling, in the evolution of diabetic atherosclerosis remains elusive. The goal of this study was to determine whether smooth muscle OGT (smOGT) plays a direct role in hyperglycemia-induced atherosclerotic lesion formation and SMC de-differentiation. Using tamoxifen-inducible Myh11-CreERT2 and Ogtfl/fl mice, we generated smOGTWT and smOGTKO mice, with and without ApoE-null backgrounds. Following STZ-induced hyperglycemia, smOGTWT and smOGTKO mice were kept on a standard laboratory diet for the study duration. In a parallel study, smOGTWTApoE-/- and smOGTKOApoE-/- were initiated on Western diet at 8-wks-age. Animals harvested at 14-16-wks-age were used for plasma and tissue collection. Loss of smOGT augmented SM contractile marker expression in aortic vessels of STZ-induced hyperglycemic smOGTKO mice. Consistently, smOGT deletion attenuated atherosclerotic lesion lipid burden (Oil red O), plaque area (H&E), leukocyte (CD45) and smooth muscle cell (ACTA2) abundance in Western diet-fed hyperglycemic smOGTKOApoE-/- mice. This was accompanied by increased SM contractile markers and reduced inflammatory and proliferative marker expression. Further, smOGT deletion attenuated YY1 and SRF expression (transcriptional regulators of SM contractile genes) in hyperglycemic smOGTKOApoE-/- and smOGTKO mice. These data uncover an athero-protective outcome of smOGT loss-of-function and suggest a direct regulatory role of OGT-mediated O-GlcNAcylation in VSMC de-differentiation in hyperglycemia.
Collapse
Affiliation(s)
- Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Neha Bhavnani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
| | - Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
8
|
Wasniewska M, Pepe G, Aversa T, Bellone S, de Sanctis L, Di Bonito P, Faienza MF, Improda N, Licenziati MR, Maffeis C, Maguolo A, Patti G, Predieri B, Salerno M, Stagi S, Street ME, Valerio G, Corica D, Calcaterra V. Skeptical Look at the Clinical Implication of Metabolic Syndrome in Childhood Obesity. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10040735. [PMID: 37189984 DOI: 10.3390/children10040735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Metabolic syndrome (MetS) is defined by a cluster of several cardio-metabolic risk factors, specifically visceral obesity, hypertension, dyslipidemia, and impaired glucose metabolism, which together increase risks of developing future cardiovascular disease (CVD) and type 2 diabetes mellitus (T2D). This article is a narrative review of the literature and a summary of the main observations, conclusions, and perspectives raised in the literature and the study projects of the Working Group of Childhood Obesity (WGChO) of the Italian Society of Paediatric Endocrinology and Diabetology (ISPED) on MetS in childhood obesity. Although there is an agreement on the distinctive features of MetS, no international diagnostic criteria in a pediatric population exist. Moreover, to date, the prevalence of MetS in childhood is not certain and thus the true value of diagnosis of MetS in youth as well as its clinical implications, is unclear. The aim of this narrative review is to summarize the pathogenesis and current role of MetS in children and adolescents with particular reference to applicability in clinical practice in childhood obesity.
Collapse
Affiliation(s)
- Malgorzata Wasniewska
- Division of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, 98121 Messina, Italy
| | - Giorgia Pepe
- Division of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, 98121 Messina, Italy
| | - Tommaso Aversa
- Division of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, 98121 Messina, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Luisa de Sanctis
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Procolo Di Bonito
- Department of Internal Medicine, "Santa Maria delle Grazie" Hospital, 80078 Pozzuoli, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Nicola Improda
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, 80122 Napoli, Italy
| | - Maria Rosaria Licenziati
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, 80122 Napoli, Italy
| | - Claudio Maffeis
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy
| | - Alice Maguolo
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy
| | - Giuseppina Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, 16128 Genova, Italy
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41124 Modena, Italy
| | - Mariacarolina Salerno
- Pediatric Endocrinology Unit, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Stefano Stagi
- Health Sciences Department, University of Florence and Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Maria Elisabeth Street
- Unit of Paediatrics, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy
| | - Giuliana Valerio
- Department of Movement Sciences and Wellbeing, University of Napoli "Parthenope", 80133 Napoli, Italy
| | - Domenico Corica
- Division of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, 98121 Messina, Italy
| | - Valeria Calcaterra
- Department of Pediatrics, "Vittore Buzzi" Children's Hospital, 20157 Milano, Italy
| |
Collapse
|
9
|
Li K, Xu J, Zhao M, Wu J, Mei Y, Zhou Q, Zhao J, Li Y, Yang M, Xu Q. Serum cystatin C and mild cognitive impairment: The mediating role of glucose homeostasis. Front Aging Neurosci 2023; 15:1102762. [PMID: 37056689 PMCID: PMC10086181 DOI: 10.3389/fnagi.2023.1102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundThis study explored the mediating role of glucose homeostasis indicators in the relationship between serum cystatin C and mild cognitive impairment (MCI).MethodsThe present study used a cross-sectional design and included 514 participants aged ≥50 years in Beijing, China. The Mini-Mental State Examination was used to assess cognitive function. Serum cystatin C and a comprehensive set of glucose homeostasis indicators were detected, including fasting blood glucose (FBG), glycosylated albumin percentage (GAP), glycated hemoglobin (HbAlc), insulin, and homeostatic model assessment of insulin resistance (HOMA-IR), and beta cell function (HOMA-β). Generalized linear models were used to investigate the associations among cystatin C, glucose homeostasis indicators, and cognitive function. Mediation analysis was conducted to explore potential mediator variables.ResultsIn this study of 514 participants, 76 (14.8%) had MCI. Those with cystatin C levels ≥1.09 mg/L had a 1.98-fold higher risk of MCI than those with levels <1.09 mg/L (95% CI, 1.05–3.69). FBG, GAP, and HbA1c increased the risk of MCI, while HOMA-β decreased the risk. Notably, the associations between MCI risk and cystatin C or glucose homeostasis were only founded in diabetes patients. Serum cystatin C was found to be positively associated with HOMA-β (beta (95% CI): 0.20 [0.06, 0.34]), HOMA-IR (0.23 [0.09, 0.36]), and insulin (0.22 [0.09, 0.34]) levels. Moreover, HOMA-β was identified as playing a negative mediating role (proportion mediated: −16%) in the relationship between cystatin C and MCI.ConclusionElevated levels of cystatin C are associated with an increased risk of MCI. The glucose homeostasis indicator, HOMA-β, plays a negative mediating role in the relationship between cystatin C and MCI risk.
Collapse
Affiliation(s)
- Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Qun Xu,
| |
Collapse
|
10
|
Takeuchi H, Kawashima R. Nutrients and Dementia: Prospective Study. Nutrients 2023; 15:842. [PMID: 36839199 PMCID: PMC9960559 DOI: 10.3390/nu15040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The association of diet and nutrients with dementia risk is an interesting research topic. Middle-aged and older Europeans not diagnosed with dementia within two years of baseline were followed up and their data were analysed until 2021. The association between the nutrient quintiles measured by the web-based 24 h dietary and the risk of developing dementia was examined using a Cox proportional hazard model after adjusting for potential confounding factors. Approximately 160,000 subjects and 1200 cases were included in the analysis of each nutrient. A greater risk of dementia was associated with (a) no alcohol intake (compared with moderate to higher intake), (b) higher intake of total sugars and carbohydrates (compared with lower intake), (c) highest or lowest fat intake (compared with moderate intake), (d) quintiles of highest or lowest magnesium intake (compared with the quintile of the second highest intake), and (e) highest protein intake (compared with moderate intake). Overall, the present results are congruent with the importance of a moderate intake of certain nutrients.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Smart Aging Research Center, Tohoku University, Sendai 980-8575, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
11
|
Gupta S, Khanal S, Bhavnani N, Mathias A, Lallo J, Kiriakou A, Ferrell J, Raman P. Sex-specific differences in atherosclerosis, thrombospondin-1, and smooth muscle cell differentiation in metabolic syndrome versus non-metabolic syndrome mice. Front Cardiovasc Med 2022; 9:1020006. [PMID: 36505365 PMCID: PMC9727198 DOI: 10.3389/fcvm.2022.1020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Metabolic syndrome (MetS) amplifies the risks of atherosclerosis. Despite well-known sexual dimorphism in atherosclerosis, underlying mechanisms are poorly understood. Our previous findings highlight a proatherogenic protein, thrombospondin-1 (TSP-1), in hyperglycemia- or hyperleptinemia (mimicking obesity)-induced atherosclerosis. However, the role of TSP-1 in the development of atherosclerosis prompted by co-existing hyperglycemia and obesity, characteristic of MetS, is unknown. The goal of this study was to examine sex-specific differences in lesion progression in a model of combined MetS and atherosclerosis (KKAyApoE) and interrogate how these differences relate to TSP-1 expression. Methods Male and female KKAy+/-ApoE-/- (with ectopic agouti gene expression) and age-matched non-agouti KKAy-/-ApoE-/- littermates were placed on a standard laboratory diet from 4 to 24 weeks age followed by blood and tissue harvests for biochemical, molecular, and aortic root morphometric studies. Results Metabolic profiling confirmed MetS phenotype of KKAy+/-ApoE-/-; however, only male genotypes were glucose intolerant with elevated VLDL-cholesterol and VLDL-triglyceride levels. Aortic root morphometry demonstrated profound lipid-filled lesions, increased plaque area, and augmented inflammatory and SMC abundance in MetS vs non-MetS males. This increase in lesion burden was accompanied with elevated TSP-1 and attenuated LMOD-1 (SM contractile marker) and SRF (transcriptional activator of SM differentiation) expression in male MetS aortic vessels. In contrast, while lipid burden, plaque area, and TSP-1 expression increased in MetS and non-MetS female mice, there was no significant difference between these genotypes. Increased collagen content was noted in MetS and non-MetS genotypes, specific to female mice. Measurement of plasma testosterone revealed a link between the atherogenic phenotype and abnormally high or low testosterone levels. To interrogate whether TSP-1 plays a direct role in SMC de-differentiation in MetS, we generated KKAy+/- mice with and without global TSP-1 deletion. Immunoblotting showed increased SM contractile markers in male KKAy+/-TSP-1-/- aortic vessels vs male KKAy+/-TSP-1+/ +. In contrast, TSP-1 deletion had no effect on SM contractile marker expression in female genotypes. Conclusion Together, the current study implicates a role of plasma testosterone in sex-specific differences in atherosclerosis and TSP-1 expression in MetS vs non-MetS mice. Our data suggest a sex-dependent differential role of TSP-1 on SMC de-differentiation in MetS. Collectively, these findings underscore a fundamental link between TSP-1 and VSMC phenotypic transformation in MetS.
Collapse
Affiliation(s)
- Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Neha Bhavnani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ariana Kiriakou
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Jessica Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States,School of Biomedical Sciences, Kent State University, Kent, OH, United States,*Correspondence: Priya Raman,
| |
Collapse
|
12
|
Al-Hakeim HK, Al-Kaabi QJ, Maes M. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus. Growth Factors 2022; 40:240-253. [PMID: 36165005 DOI: 10.1080/08977194.2022.2126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
Collapse
Affiliation(s)
| | | | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
13
|
Bornfeldt KE. The Remnant Lipoprotein Hypothesis of Diabetes-Associated Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2022; 42:819-830. [PMID: 35616031 DOI: 10.1161/atvbaha.122.317163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both type 1 and type 2 diabetes are associated with an increased risk of atherosclerotic cardiovascular disease (CVD). Research based on human-first or bedside-to-bench approaches has provided new insights into likely mechanisms behind this increased risk. Although both forms of diabetes are associated with hyperglycemia, it is becoming increasingly clear that altered lipoprotein metabolism also plays a critical role in predicting CVD risk in people with diabetes. This review examines recent findings indicating that increased levels of circulating remnant lipoproteins could be a missing link between diabetes and CVD. Although CVD risk associated with diabetes is clearly multifactorial in nature, these findings suggest that we should increase efforts in evaluating whether remnant lipoproteins or the proteins that govern their metabolism are biomarkers of incident CVD in people living with diabetes and whether reducing remnant lipoproteins will prevent the increased CVD risk associated with diabetes.
Collapse
Affiliation(s)
- Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition and Department of Laboratory Medicine and Pathology, University of Washington Medicine Diabetes Institute, Seattle
| |
Collapse
|
14
|
High glucose-induced ROS-accumulation in embryo-larval stages of zebrafish leads to mitochondria-mediated apoptosis. Apoptosis 2022; 27:509-520. [PMID: 35596834 DOI: 10.1007/s10495-022-01731-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 12/30/2022]
Abstract
In recent decades, diabetes mellitus has become a major chronic disease threatening human health worldwide, and the age of patients tends to be younger; however, the pathogenesis remains unclear, resulting in many difficulties in its treatment. As an ideal model animal, zebrafish can simulate the processes of human diabetes well. In this study, we successfully established a model of diabetic zebrafish larvae in a previous work. Furthermore, transcriptome analysis was completed, and the results suggested that 10.59% of differentially expressed genes (DEGs) related to the apoptosis pathway need to be considered. Then, glucose-induced developmental toxicity, reactive oxygen species (ROS) accumulation, antioxidant system function, apoptosis and mitochondrial dysfunction were measured in zebrafish larvae. We hope that this study will provide valuable reference information for type 2 juvenile diabetes treatment.
Collapse
|
15
|
Sauriasari R, Zulfa AI, Sekar AP, Azmi NU, Tan XW, Matsuura E. Role of urinary H2O2, 8-iso-PGF2α, and serum oxLDL/β2GP1 complex in the diabetic kidney disease. PLoS One 2022; 17:e0263113. [PMID: 35381015 PMCID: PMC8982868 DOI: 10.1371/journal.pone.0263113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Oxidant species is reported as a major determinant in the pathophysiology of diabetic kidney disease. However, reactive oxygen species (ROS) formation in the initial phase and progressing phase of diabetic kidney disease remains unclear. Therefore, we conducted this study to find out what ROS and their modified product are associated with eGFR in type 2 diabetes mellitus (T2DM) patients. A cross-sectional study was performed on 227 T2DM patients. The study subjects were divided into three groups based on their eGFR stage (Group 1, eGFR > 89 ml/min/1.73 m2; Group 2, eGFR = 60-89 ml/min/1.73 m2; and Group 3, eGFR < 60 ml/min/1.73 m2). Enzyme-linked immunosorbent assay (ELISA) was used to measure serum oxLDL/β2GPI complex and urinary 8-iso-PGF2α, while ferrous ion oxidation xylenol orange method 1 (FOX-1) was used to measure urinary hydrogen peroxide (H2O2). H2O2 significantly decreased across the groups, whereas OxLDL/β2GPI complex increased, but not significant, and there was no trend for 8-iso-PGF2α. Consistently, in the total study population, only H2O2 showed correlation with eGFR (r = 0.161, p = 0.015). Multiple linear regression analysis showed that significant factors for increased eGFR were H2O2, diastolic blood pressure, and female. Whereas increased systolic blood pressure and age were significant factors affecting the decrease of eGFR. We also found that urinary H2O2 had correlation with serum oxLDL/β2GPI complex in total population. This finding could lead to further research on urinary H2O2 for early detection and research on novel therapies of diabetic kidney disease.
Collapse
Affiliation(s)
- Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
- * E-mail:
| | | | | | | | - Xian Wen Tan
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiji Matsuura
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| |
Collapse
|
16
|
Zerumbone suppresses high glucose and LPS-induced inflammation in THP-1-derived macrophages by inhibiting the NF-κB/TLR signaling pathway. Nutr Res 2022; 100:58-69. [DOI: 10.1016/j.nutres.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
|
17
|
Kirvalidze M, Hodkinson A, Storman D, Fairchild TJ, Bała M, Beridze G, Zuriaga A, Brudasc NI, Brini S. The role of glucose on cognition, risk of dementia, and related biomarkers in individuals without type 2 diabetes mellitus or the metabolic syndrome: a systematic review of observational studies. Neurosci Biobehav Rev 2022; 135:104551. [DOI: 10.1016/j.neubiorev.2022.104551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/14/2023]
|
18
|
Bompada P, Goncalves I, Wu C, Gao R, Sun J, Mir BA, Luan C, Renström E, Groop L, Weng J, Hansson O, Edsfeldt A, De Marinis Y. Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease. Biomedicines 2021; 9:biomedicines9121908. [PMID: 34944721 PMCID: PMC8698994 DOI: 10.3390/biomedicines9121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
There is emerging evidence of an association between epigenetic modifications, glycemic control and atherosclerosis risk. In this study, we mapped genome-wide epigenetic changes in patients with type 2 diabetes (T2D) and advanced atherosclerotic disease. We performed chromatin immunoprecipitation sequencing (ChIP-seq) using a histone 3 lysine 9 acetylation (H3K9ac) mark in peripheral blood mononuclear cells from patients with atherosclerosis with T2D (n = 8) or without T2D (ND, n = 10). We mapped epigenome changes and identified 23,394 and 13,133 peaks in ND and T2D individuals, respectively. Out of all the peaks, 753 domains near the transcription start site (TSS) were unique to T2D. We found that T2D in atherosclerosis leads to an H3K9ac increase in 118, and loss in 63 genomic regions. Furthermore, we discovered an association between the genomic locations of significant H3K9ac changes with genetic variants identified in previous T2D GWAS. The transcription factor 7-like 2 (TCF7L2) rs7903146, together with several human leukocyte antigen (HLA) variants, were among the domains with the most dramatic changes of H3K9ac enrichments. Pathway analysis revealed multiple activated pathways involved in immunity, including type 1 diabetes. Our results present novel evidence on the interaction between genetics and epigenetics, as well as epigenetic changes related to immunity in patients with T2D and advanced atherosclerotic disease.
Collapse
Affiliation(s)
- Pradeep Bompada
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; (P.B.); (C.W.); (B.A.M.); (C.L.); (E.R.); (L.G.); (O.H.)
| | - Isabel Goncalves
- Cardiovascular Research-Translational Studies, Institution of Clinical Science Malmö, Lund University, 20502 Malmö, Sweden; (I.G.); (J.S.); (A.E.)
- Department of Cardiology, Skåne University Hospital, 20502 Malmö, Sweden
| | - Chuanyan Wu
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; (P.B.); (C.W.); (B.A.M.); (C.L.); (E.R.); (L.G.); (O.H.)
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
- School of Intelligent Engineering, Shandong Management University, Jinan 250100, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
- Correspondence: (R.G.); (Y.D.M.); Tel.: +86-135-0531-8418 (R.G.); +46-760-384-868 (Y.D.M.)
| | - Jiangming Sun
- Cardiovascular Research-Translational Studies, Institution of Clinical Science Malmö, Lund University, 20502 Malmö, Sweden; (I.G.); (J.S.); (A.E.)
| | - Bilal Ahmad Mir
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; (P.B.); (C.W.); (B.A.M.); (C.L.); (E.R.); (L.G.); (O.H.)
| | - Cheng Luan
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; (P.B.); (C.W.); (B.A.M.); (C.L.); (E.R.); (L.G.); (O.H.)
| | - Erik Renström
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; (P.B.); (C.W.); (B.A.M.); (C.L.); (E.R.); (L.G.); (O.H.)
| | - Leif Groop
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; (P.B.); (C.W.); (B.A.M.); (C.L.); (E.R.); (L.G.); (O.H.)
- Finnish Institute for Molecular Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Jianping Weng
- Clinical Research Hospital, Chinese Academy of Sciences, Hefei 230001, China;
- Department of Endocrinology and Metabolism, Division of Life Sciences of Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ola Hansson
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; (P.B.); (C.W.); (B.A.M.); (C.L.); (E.R.); (L.G.); (O.H.)
- Institute for Molecular Medicine Finland (FIMM), Helsinki University, 00290 Helsinki, Finland
| | - Andreas Edsfeldt
- Cardiovascular Research-Translational Studies, Institution of Clinical Science Malmö, Lund University, 20502 Malmö, Sweden; (I.G.); (J.S.); (A.E.)
- Department of Cardiology, Skåne University Hospital, 20502 Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 20502 Malmö, Sweden
| | - Yang De Marinis
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; (P.B.); (C.W.); (B.A.M.); (C.L.); (E.R.); (L.G.); (O.H.)
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
- Clinical Research Hospital, Chinese Academy of Sciences, Hefei 230001, China;
- Department of Endocrinology and Metabolism, Division of Life Sciences of Medicine, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (R.G.); (Y.D.M.); Tel.: +86-135-0531-8418 (R.G.); +46-760-384-868 (Y.D.M.)
| |
Collapse
|
19
|
Gurzeler E, Ruotsalainen AK, Laine A, Valkama T, Kettunen S, Laakso M, Ylä-Herttuala S. SUR1-E1506K mutation impairs glucose tolerance and promotes vulnerable atherosclerotic plaque phenotype in hypercholesterolemic mice. PLoS One 2021; 16:e0258408. [PMID: 34767557 PMCID: PMC8589160 DOI: 10.1371/journal.pone.0258408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Diabetes is a major risk factor of atherosclerosis and its complications. The loss-of-function mutation E1506K in the sulfonylurea receptor 1 (SUR1-E1506K) induces hyperinsulinemia in infancy, leading to impaired glucose tolerance and increased risk of type 2 diabetes. In this study, we investigate the effect of SUR1-E1506K mutation on atherogenesis in hypercholesterolemic LDLR-/- mice. METHODS SUR1-E1506K mutated mice were cross-bred with LDLR-/- mice (SUR1Δ/LDLR-/-), 6 months old mice were fed a western-diet (WD) for 6 months to induce advanced atherosclerotic plaques. At the age of 12 months, atherosclerosis and plaque morphology were analyzed and mRNA gene expression were measured from aortic sections and macrophages. Glucose metabolism was characterized before and after WD. Results were compared to age-matched LDLR-/- mice. RESULTS Advanced atherosclerotic plaques did not differ in size between the two strains. However, in SUR1Δ/LDLR-/- mice, plaque necrotic area was increased and smooth muscle cell number was reduced, resulting in higher plaque vulnerability index in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice. SUR1Δ/LDLR-/- mice exhibited impaired glucose tolerance and elevated fasting glucose after WD. The positive staining area of IL-1β and NLRP3 inflammasome were increased in aortic sections in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice, and IL-18 plasma level was elevated in SUR1Δ/LDLR-/- mice. Finally, the mRNA expression of IL-1β and IL-18 were increased in SUR1Δ/LDLR-/- bone marrow derived macrophages in comparison to LDLR-/- macrophages in response to LPS. CONCLUSIONS SUR1-E1506K mutation impairs glucose tolerance and increases arterial inflammation, which promotes a vulnerable atherosclerotic plaque phenotype in LDLR-/- mice.
Collapse
MESH Headings
- Animals
- Aorta/pathology
- Aortic Diseases/blood
- Aortic Diseases/etiology
- Aortic Diseases/genetics
- Atherosclerosis/blood
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Blood Glucose/metabolism
- Cells, Cultured
- Diet, Western/adverse effects
- Disease Models, Animal
- Gene Expression
- Glucose Intolerance/genetics
- Hypercholesterolemia/blood
- Hypercholesterolemia/etiology
- Hypercholesterolemia/genetics
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Necrosis
- Phenotype
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- RNA, Messenger/genetics
- Receptors, LDL/genetics
- Sulfonylurea Receptors/genetics
Collapse
Affiliation(s)
- Erika Gurzeler
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Anssi Laine
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Teemu Valkama
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Sanna Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| |
Collapse
|
20
|
Dokollari A, Sá MP, Sicouri S, Ramlawi B, Torregrossa G, Bonacchi M. Commentary: Osteogenic Metaplasia of the Aortic Valve. Do Bacteria, Diabetes, and Dyslipidemia Play a Role? Semin Thorac Cardiovasc Surg 2021; 34:1178-1179. [PMID: 34774769 DOI: 10.1053/j.semtcvs.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/11/2022]
Affiliation(s)
| | - Michel Pompeu Sá
- Department of Cardiac Surgery, Lankenau Heart Institute, Wynnewood, Pennsylvania; Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Serge Sicouri
- Department of Cardiac Surgery, Lankenau Heart Institute, Wynnewood, Pennsylvania; Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Basel Ramlawi
- Department of Cardiac Surgery, Lankenau Heart Institute, Wynnewood, Pennsylvania; Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Gianluca Torregrossa
- Department of Cardiac Surgery, Lankenau Heart Institute, Wynnewood, Pennsylvania; Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Massimo Bonacchi
- Cardiac Surgery Unit, Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| |
Collapse
|
21
|
Jiang Y, Rodgers B, Damiris K, Choi C, Ahlawat S. The effects of diabetes mellitus on clinical outcomes of hospitalized patients with acute diverticulitis. Eur J Gastroenterol Hepatol 2021; 33:1354-1360. [PMID: 32796358 DOI: 10.1097/meg.0000000000001895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Acute diverticulitis is a common gastrointestinal illness due to diverticular inflammation and focal necrosis. Diabetes mellitus has been reported to influence the outcomes of patients with diverticular disease. Our study aimed to examine the inpatient outcomes and complications of patients with acute diverticulitis and coexisting diabetes mellitus. METHODS The Nationwide Inpatient Sample was used to identify adult patients in 2014 admitted for acute diverticulitis. Primary outcomes were mortality, length of stay (LOS), and total hospitalization charges. Secondary outcomes were complications of acute diverticulitis and interventions. RESULTS In total, 44 330 of patients with acute diverticulitis and diabetes mellitus were included in the analysis. Acute diverticulitis patients with diabetes mellitus had a higher rate of diverticular bleeding (P < 0.0001), but lower rates of abscess (P < 0.0001), obstruction (P < 0.0001) and colectomy (P < 0.0001) when compared to acute diverticulitis patients without diabetes mellitus. Complicated diabetes mellitus was associated with a longer LOS (P = 0.00003) and greater total hospitalization charges (P = 0.0021) compared to uncomplicated diabetes mellitus when coexisting with acute diverticulitis. CONCLUSIONS Acute diverticulitis with diabetes mellitus is associated with a higher rate of diverticular bleeding, lower rates of abscess, obstruction, and colectomy compared to acute diverticulitis without diabetes mellitus. When coexisting with acute diverticulitis, complicated diabetes mellitus is not associated with higher rates of mortality or diverticulitis-related complications compared to uncomplicated diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | - Sushil Ahlawat
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
22
|
Raju K, Taylor GW, Tahir P, Hyde S. Association of tooth loss with morbidity and mortality by diabetes status in older adults: a systematic review. BMC Endocr Disord 2021; 21:205. [PMID: 34663281 PMCID: PMC8524900 DOI: 10.1186/s12902-021-00830-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/27/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE This systematic review assesses the association of tooth loss (TL), as the exposure, with morbidity and mortality by diabetes mellitus (DM) status, as the outcome, in older adults. BACKGROUND Individuals with DM have higher prevalence of severe TL and increased risk of developing morbidities and mortality. No systematic review has evaluated the association between TL with morbidity and mortality by DM status. MATERIAL AND METHODS Comprehensive searches used multiple publication databases containing reports published between 01/01/2000 and 04/21/2021. Two authors independently evaluated included studies for quality and risk of bias using the Critical Appraisal Skills Programme (CASP) checklist for cohort and Center for Evidence-Based Medicine (CEBM) critical appraisal sheet for cross-sectional studies, while a third author arbitrated decisions to resolve disagreements. RESULTS Thirteen studies met the inclusion criteria: eight cross-sectional and five cohort. Qualitative review of the included studies indicated TL is associated with increased incidence and prevalence of DM. TL is also associated with DM-related morbidities including greater prevalence of heart disease, diabetic retinopathy, metabolic syndrome; poorer health-related quality of life; poorer survival of participants with chronic kidney disease; and increased medical expenditure. Overall, the quality of the evidence reviewed was medium, as per the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. CONCLUSIONS/PRACTICAL IMPLICATIONS This review found significant associations of TL with prevalence and incidence of DM and adverse DM-related outcomes. An interprofessional team-care approach that includes an oral health component could benefit the prevention and management of DM.
Collapse
Affiliation(s)
- Karen Raju
- Department of Preventive and Restorative Dental Sciences, Division of Oral Epidemiology and Dental Public Health, School of Dentistry, University of California, 707 Parnassus Avenue, Box 0758, San Francisco, CA 94143-0758 USA
| | - George W. Taylor
- Department of Preventive and Restorative Dental Sciences, Division of Oral Epidemiology and Dental Public Health, School of Dentistry, University of California, 707 Parnassus Avenue, Box 0758, San Francisco, CA 94143-0758 USA
| | - Peggy Tahir
- University of California, UCSF Library, 530 Parnassus Ave, San Francisco, CA 94143-0840 USA
| | - Susan Hyde
- Department of Preventive and Restorative Dental Sciences, Division of Oral Epidemiology and Dental Public Health, School of Dentistry, University of California, 707 Parnassus Avenue, Box 0758, San Francisco, CA 94143-0758 USA
| |
Collapse
|
23
|
Morris S, Cholan PM, Britton WJ, Oehlers SH. Glucose inhibits haemostasis and accelerates diet-induced hyperlipidaemia in zebrafish larvae. Sci Rep 2021; 11:19049. [PMID: 34561530 PMCID: PMC8463691 DOI: 10.1038/s41598-021-98566-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperglycaemia damages the microvasculature in part through the reduced recruitment of immune cells and interference with platelet signalling, leading to poor wound healing and accelerated lipid deposition in mammals. We investigated the utility of zebrafish larvae to model the effect of exogenous glucose on neutrophil and macrophage recruitment to a tail wound, wound-induced haemostasis, and chicken egg yolk feed challenge-induced hyperlipidaemia by supplementing larvae with exogenous glucose by immersion or injection. Neither method of glucose supplementation affected the recruitment of neutrophils and macrophages following tail transection. Glucose injection reduced thrombocyte retention and fibrin plug formation while only thrombocyte retention was reduced by glucose immersion following tail transection. We observed accelerated lipid accumulation in glucose-injected larvae challenged with high fat chicken egg yolk feeding. Our study identifies conserved and divergent effects of high glucose on inflammation, haemostasis, and hyperlipidaemia in zebrafish larvae compared to mammals.
Collapse
Affiliation(s)
- Simone Morris
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Pradeep Manuneedhi Cholan
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
- Discipline of Infectious Diseases and Immunology and Marie Bashir Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
24
|
Prasad K. Current Status of Primary, Secondary, and Tertiary Prevention of Coronary Artery Disease. Int J Angiol 2021; 30:177-186. [PMID: 34776817 PMCID: PMC8580611 DOI: 10.1055/s-0041-1731273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Fifty percent of all death from cardiovascular diseases is due to coronary artery disease (CAD). This is avoidable if early identification is made. Preventive health care has a major role in the fight against CAD. Atherosclerosis and atherosclerotic plaque rupture are involved in the development of CAD. Modifiable risk factors for CAD are dyslipidemia, diabetes, hypertension, cigarette smoking, obesity, chronic renal disease, chronic infection, high C-reactive protein, and hyperhomocysteinemia. CAD can be prevented by modification of risk factors. This paper defines the primary, secondary, and tertiary prevention of CAD. It discusses the mechanism of risk factor-induced atherosclerosis. This paper describes the CAD risk score and its use in the selection of individuals for primary prevention of CAD. Guidelines for primary, secondary, and tertiary prevention of CAD have been described. Modification of risk factors and use of guidelines for prevention of CAD would prevent, regress, and slow down the progression of CAD, improve the quality of life of patient, and reduce the health care cost.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Pandey RK, Pandey RK, Shukla SS, Pandey P. A review on corona virus and treatment approaches with Allium sativam. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:159. [PMID: 34395639 PMCID: PMC8353433 DOI: 10.1186/s43094-021-00310-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Recently reported cases of Covid-19 globally remind us that new diseases are coming while we are unable to provide the treatment for the same. The entire world is facing this viral attack; deaths are increasing day by day as well as infected patients too. Today, in the period of this disease, can we go to the shelter of our
traditional medicines? Main body In this article, we have taken medicines related to corona and conceptualized their mechanism, which gave us a chance to understand Garlic's mechanism of action, how Garlic can be a weapon in the lane with this disease. This article also tells how we can treat new diseases with our traditional herbs if no modern medicine has been discovered yet. Conclusion The present review is based on the structure of the virus and the targeted site for the drug discovery process with important constituents of Allium sativam. The review work also explains the allicin chemical constituent of Allium sativam which has targeted therapeutic sites related to Covid-19.
Collapse
Affiliation(s)
- Rupesh Kumar Pandey
- Department of Pharmacology KSCP, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh India
| | | | | | - Priyanka Pandey
- Swami Vivekanand College of Pharmacy, Indore, Madhya Pradesh India
| |
Collapse
|
26
|
Yan Y, Li T, Li Z, He M, Wang D, Xu Y, Yang X, Bai Y, Lao Y, Zhang Z, Wu W. Metformin Suppresses the Progress of Diabetes-Accelerated Atherosclerosis by Inhibition of Vascular Smooth Muscle Cell Migration Through AMPK-Pdlim5 Pathway. Front Cardiovasc Med 2021; 8:690627. [PMID: 34368251 PMCID: PMC8342753 DOI: 10.3389/fcvm.2021.690627] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Backgrounds: Our previous work revealed that AMP-activated protein kinase (AMPK) activation inhibits vascular smooth muscle cell migration in vitro by phosphorylating PDZ and LIM domain 5 (Pdlim5). As metformin is an AMPK activator, we used a mouse vascular smooth muscle cell (VSMC) line and a Myh11-cre-EGFP mice to investigate whether metformin could inhibit the migration of VSMCs in vitro and in a wire-injury model in vivo. It is recognized that VSMCs contribute to the major composition of atherosclerotic plaques. In order to investigate whether the AMPK–Pdlim5 pathway is involved in the protective function of metformin against atherosclerosis, we utilized ApoE−/− male mice to investigate whether metformin could suppress diabetes-accelerated atherosclerosis by inhibition of VSMC migration via the AMPK–Pdlim5 pathway. Methods: The mouse VSMC cell line was exogenously transfected wild type, phosphomimetic, or unphosphorylatable Pdlim5 mutant before metformin exposure. Myh11-cre-EGFP mice were treated with saline solution or metformin after these were subjected to wire injury in the carotid artery to study whether metformin could inhibit the migration of medial VSMCs into the neo-intima. In order to investigate whether the AMPK–Pdlim5 pathway is involved in the protective function of metformin against atherosclerosis, ApoE−/− male mice were divided randomly into control, streptozocin (STZ), and high-fat diet (HFD)-induced diabetes mellitus; STZ+HFD together with metformin or Pdlim5 mutant carried the adenovirus treatment groups. Results: It was found that metformin could induce the phosphorylation of Pdlim5 and inhibit cell migration as a result. The exogenous expression of phosphomimetic S177D-Pdlim5 inhibits lamellipodia formation and migration in VSMCs. It was also demonstrated that VSMCs contribute to the major composition of injury-induced neointimal lesions, while metformin could alleviate the occlusion of the carotid artery. The data of ApoE−/− mice showed that increased plasma lipids and aggravated vascular smooth muscle cell infiltration into the atherosclerotic lesion in diabetic mice were observed Metformin alleviated diabetes-induced metabolic disorders and atherosclerosis and also reduced VSMC infiltration in atherosclerotic plaques, while the Pdlim5 phospho-abolished mutant that carried adenovirus S177A-Pdlim5 undermines the protective function of metformin. Conclusions: The activation of the AMPK–Pdlim5 pathway by metformin could interrupt the migratory machine of VSMCs and inhibit cell migration in vitro and in vivo. The maintenance of AMPK activity by metformin is beneficial for suppressing diabetes-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Yi Yan
- Department of Cardiology, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Ting Li
- Department of Cardiology, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Zhonghao Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China
| | - Mingyuan He
- Department of Cardiology, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Dejiang Wang
- Department of Cardiology, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingyi Xu
- Department of Cardiology, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuewen Yang
- Department of Cardiology, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Bai
- Guangzhou First People's Hospital, Guangzhou, China
| | - Yi Lao
- Department of Cardiology, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Zhiyong Zhang
- Department of Cardiology, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wu
- Department of Cardiology, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Magnesium Sulfate Administration in Moderate Coronary Artery Disease Patients Improves Atherosclerotic Risk Factors: A Double-Blind Clinical Trial Study. J Cardiovasc Pharmacol 2021; 76:321-328. [PMID: 32618829 DOI: 10.1097/fjc.0000000000000874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnesium (Mg) deficiency is known to promote vascular and cardiac dysfunctions such as atherosclerosis. This study investigated the effect of oral MgSO4 therapy to improve lipid profile and serum oxidized LDL level and its receptor (LOX1) in moderate coronary atherosclerotic patients. In this randomized double-blind placebo-controlled clinical trial study, 64 patients with moderate coronary artery disease were selected according to angiography findings. Participants were divided into 2 groups including Mg-treated (n = 32) and placebo (n = 32) The patients received either placebo or MgSO4 supplement capsule, containing 300 mg MgSO4 for 6 months on a daily basis. Lipid profile, HbA1c, 2h postprandial (2hpp) blood glucose, fasting blood sugar, serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), oxidized low-density lipoprotein, and lectin-like ox-LDL receptor 1 (LOX1) concentrations were measured at baseline and every 3 months. HbA1c, serum LOX1, and oxidized low-density lipoprotein concentrations were significantly lower in the Mg-treated group than the placebo group 3 months after MgSO4 administration. 2hpp, serum low-density lipoprotein cholesterol, SGPT, SGOT levels, and HbA1c levels significantly improved in the Mg-treated group compared with the placebo-received group. Overall, the results of this study showed that magnesium treatment improved some of the major risk factors of atherosclerosis. According to the results of liver function tests (SGOT and SGPT), magnesium therapy seems to be safe in patients with moderate atherosclerotic plaque. Therefore, it is suggested that magnesium to be used along with other atherosclerosis control drugs.
Collapse
|
28
|
Sp N, Kang DY, Kim HD, Rugamba A, Jo ES, Park JC, Bae SW, Lee JM, Jang KJ. Natural Sulfurs Inhibit LPS-Induced Inflammatory Responses through NF-κB Signaling in CCD-986Sk Skin Fibroblasts. Life (Basel) 2021; 11:life11050427. [PMID: 34068523 PMCID: PMC8151259 DOI: 10.3390/life11050427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced inflammatory response leads to serious damage, up to and including tumorigenesis. Natural mineral sulfur, non-toxic sulfur (NTS), and methylsulfonylmethane (MSM) have anti-inflammatory activity that may inhibit LPS-induced inflammation. We hypothesized that sulfur compounds could inhibit LPS-induced inflammatory responses in CCD-986Sk skin fibroblasts. We used Western blotting and real-time PCR to analyze molecular signaling in treated and untreated cultures. We also used flow cytometry for cell surface receptor analysis, comet assays to evaluate DNA damage, and ELISA-based cytokine detection. LPS induced TLR4 activation and NF-κB signaling via canonical and protein kinase C (PKC)-dependent pathways, while NTS and MSM downregulated that response. NTS and MSM also inhibited LPS-induced nuclear accumulation and binding of NF-κB to proinflammatory cytokines COX-2, IL-1β, and IL-6. Finally, the sulfur compounds suppressed LPS-induced ROS accumulation and DNA damage in CCD-986Sk cells. These results suggest that natural sulfur compounds could be used to treat inflammation and may be useful in the development of cosmetics.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Hyoung Do Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Alexis Rugamba
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jong-Chan Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea;
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
- Correspondence: ; Tel.: +82-2-2030-7812
| |
Collapse
|
29
|
Salma B, Janhavi P, Muthaiah S, Veeresh P, Santhepete Nanjundaiah M, Divyashree S, Serva Peddha M. Ameliorative Efficacy of the Cassia auriculata Root Against High-Fat-Diet + STZ-Induced Type-2 Diabetes in C57BL/6 Mice. ACS OMEGA 2021; 6:492-504. [PMID: 33458501 PMCID: PMC7807783 DOI: 10.1021/acsomega.0c04940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 05/10/2023]
Abstract
Diabetes mellitus is a major metabolic disorder worldwide. Several herbs are being tested for the management of diabetes. Cassia auriculata is one of those herbs known for its nutritional value and health benefits. However, limited scientific evidence has been shown on the elucidation of its root bioactives as well as biological activity. This study attempted to identify and characterize phenolic compounds from the potent root extract and to evaluate its antioxidant as well as antidiabetic properties in both in vitro and in vivo models. The results revealed that the total polyphenol and flavonoid contents were highest in the methanolic extract. The methanolic extract of the C. auriculata root showed the highest antioxidant and antidiabetic activities in vitro than other extracts. These biological activities may be because the extract is rich in coumaric acid and -OH groups as revealed by high-performance liquid chromatography and Fourier-transform infrared spectroscopy analyses, respectively. Further, the antidiabetic activity of the methanolic extract was studied in a diet-induced type-2 diabetes mellitus (T2DM) C57BL/6 mouse model. A significant increase in fasting blood glucose and decreased plasma insulin levels in T2DM mice confirmed the development of the diabetic condition. In addition, the T2DM mice showed oxidative stress in the plasma as well as muscle tissue and significant alterations in the plasma biochemistry, viz., lipid profile, liver, and renal function tests. However, the administration of the ethanolic extract of the C. auriculata root (150 mg/kg body weight) to T2DM mice normalized the condition comparable to that of control mice. Thus, the extract can be used as a potent antioxidant and antidiabetic agent in pharmaceutical companies.
Collapse
Affiliation(s)
- Babu Salma
- Department of Pharmacology,
JSS College of Pharmacy, JSS Academy of
Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Prakash Janhavi
- Department of Biochemistry, CSIR-CFTRI, Mysuru 570020, Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saravanan Muthaiah
- Department of Biochemistry, CSIR-CFTRI, Mysuru 570020, Karnataka, India
- Vipragen Biosciences
Private Limited, Hootagalli, Mysuru 570018, Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pattar Veeresh
- PG Wing of SBRR Mahajana First Grade College, Pooja Bhagavat Memorial Mahajana Education Centre, Metagalli, Mysuru 570016, Karnataka, India
| | - Manjula Santhepete Nanjundaiah
- Department of Pharmacology,
JSS College of Pharmacy, JSS Academy of
Higher Education & Research, Mysuru 570015, Karnataka, India
| | | | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR-CFTRI, Mysuru 570020, Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Grover A, Sharma K, Gautam S, Gautam S, Gulati M, Singh SK. Diabetes and Its Complications: Therapies Available, Anticipated and Aspired. Curr Diabetes Rev 2021; 17:397-420. [PMID: 33143627 DOI: 10.2174/1573399816666201103144231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
Abstract
Worldwide, diabetes ranks among the ten leading causes of mortality. Prevalence of diabetes is growing rapidly in low and middle income countries. It is a progressive disease leading to serious co-morbidities, which results in increased cost of treatment and over-all health system of the country. Pathophysiological alterations in Type 2 Diabetes (T2D) progressed from a simple disturbance in the functioning of the pancreas to triumvirate to ominous octet to egregious eleven to dirty dozen model. Due to complex interplay of multiple hormones in T2D, there may be multifaceted approach in its management. The 'long-term secondary complications' in uncontrolled diabetes may affect almost every organ of the body, and finally may lead to multi-organ dysfunction. Available therapies are inconsistent in maintaining long term glycemic control and their long term use may be associated with adverse effects. There is need for newer drugs, not only for glycemic control but also for prevention or mitigation of secondary microvascular and macrovascular complications. Increased knowledge of the pathophysiology of diabetes has contributed to the development of novel treatments. Several new agents like Glucagon Like Peptide - 1 (GLP-1) agonists, Dipeptidyl Peptidase IV (DPP-4) inhibitors, amylin analogues, Sodium-Glucose transport -2 (SGLT- 2) inhibitors and dual Peroxisome Proliferator-Activated Receptor (PPAR) agonists are available or will be available soon, thus extending the range of therapy for T2D, thereby preventing its long term complications. The article discusses the pathophysiology of diabetes along with its comorbidities, with a focus on existing and novel upcoming antidiabetic drugs which are under investigation. It also dives deep to deliberate upon the novel therapies that are in various stages of development. Adding new options with new mechanisms of action to the treatment armamentarium of diabetes may eventually help improve outcomes and reduce its economic burden.
Collapse
Affiliation(s)
- Anu Grover
- Ipca Laboratories, Mumbai - 400063, India
| | - Komal Sharma
- Bhupal Nobles' Institute of Pharmaceutical Sciences, Udaipur, India
| | - Suresh Gautam
- Department of Biochemistry, Pacific Institute of Medical Sciences, Udaipur, India
| | - Srishti Gautam
- Ravinder Nath Tagore Medical College and Maharana Bhupal Govt. Hospital, Udaipur, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411, India
| |
Collapse
|
31
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
32
|
Gáll T, Pethő D, Nagy A, Balla G, Balla J. Therapeutic Potential of Carbon Monoxide (CO) and Hydrogen Sulfide (H 2S) in Hemolytic and Hemorrhagic Vascular Disorders-Interaction between the Heme Oxygenase and H 2S-Producing Systems. Int J Mol Sci 2020; 22:ijms22010047. [PMID: 33374506 PMCID: PMC7793096 DOI: 10.3390/ijms22010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past decades, substantial work has established that hemoglobin oxidation and heme release play a pivotal role in hemolytic/hemorrhagic disorders. Recent reports have shown that oxidized hemoglobins, globin-derived peptides, and heme trigger diverse biological responses, such as toll-like receptor 4 activation with inflammatory response, reprogramming of cellular metabolism, differentiation, stress, and even death. Here, we discuss these cellular responses with particular focus on their mechanisms that are linked to the pathological consequences of hemorrhage and hemolysis. In recent years, endogenous gasotransmitters, such as carbon monoxide (CO) and hydrogen sulfide (H2S), have gained a lot of interest in connection with various human pathologies. Thus, many CO and H2S-releasing molecules have been developed and applied in various human disorders, including hemolytic and hemorrhagic diseases. Here, we discuss our current understanding of oxidized hemoglobin and heme-induced cell and tissue damage with particular focus on inflammation, cellular metabolism and differentiation, and endoplasmic reticulum stress in hemolytic/hemorrhagic human diseases, and the potential beneficial role of CO and H2S in these pathologies. More detailed mechanistic insights into the complex pathology of hemolytic/hemorrhagic diseases through heme oxygenase-1/CO as well as H2S pathways would reveal new therapeutic approaches that can be exploited for clinical benefit.
Collapse
Affiliation(s)
- Tamás Gáll
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| | - Dávid Pethő
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- Faculty of Medicine, University of Debrecen, Kálmán Laki Doctoral School, 4032 Debrecen, Hungary
| | - Annamária Nagy
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- Faculty of Medicine, University of Debrecen, Kálmán Laki Doctoral School, 4032 Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.G.); (D.P.); (A.N.)
- Correspondence: ; Tel.: +36-52-255-500/55004
| |
Collapse
|
33
|
Salvatore T, Pafundi PC, Galiero R, Rinaldi L, Caturano A, Vetrano E, Aprea C, Albanese G, Di Martino A, Ricozzi C, Imbriani S, Sasso FC. Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects? Biomedicines 2020; 9:biomedicines9010003. [PMID: 33375185 PMCID: PMC7822116 DOI: 10.3390/biomedicines9010003] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular mortality is a major cause of death among in type 2 diabetes (T2DM). Endothelial dysfunction (ED) is a well-known important risk factor for the development of diabetes cardiovascular complications. Therefore, the prevention of diabetic macroangiopathies by preserving endothelial function represents a major therapeutic concern for all National Health Systems. Several complex mechanisms support ED in diabetic patients, frequently cross-talking each other: uncoupling of eNOS with impaired endothelium-dependent vascular response, increased ROS production, mitochondrial dysfunction, activation of polyol pathway, generation of advanced glycation end-products (AGEs), activation of protein kinase C (PKC), endothelial inflammation, endothelial apoptosis and senescence, and dysregulation of microRNAs (miRNAs). Metformin is a milestone in T2DM treatment. To date, according to most recent EASD/ADA guidelines, it still represents the first-choice drug in these patients. Intriguingly, several extraglycemic effects of metformin have been recently observed, among which large preclinical and clinical evidence support metformin’s efficacy against ED in T2DM. Metformin seems effective thanks to its favorable action on all the aforementioned pathophysiological ED mechanisms. AMPK pharmacological activation plays a key role, with metformin inhibiting inflammation and improving ED. Therefore, aim of this review is to assess metformin’s beneficial effects on endothelial dysfunction in T2DM, which could preempt development of atherosclerosis.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Concetta Aprea
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
34
|
Zhu X, Chen Z, Yang P, Liu L, Wu L, Wang Y. The association of subclinical atherosclerosis with prediabetes is stronger in people with dyslipidaemia than in those with normoglycaemia: A cross-sectional study in Chinese adults. Prim Care Diabetes 2020; 14:760-767. [PMID: 32739221 DOI: 10.1016/j.pcd.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/08/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prediabetes is associated with a high risk of cardiovascular disease (CVD) and often occurs with dyslipidaemia. The present study investigated the association between subclinical atherosclerosis profiles and prediabetes with and without dyslipidaemia. METHODS This cross-sectional analysis included 4786 participants (1441 subjects with prediabetes and 3345 healthy controls). Prediabetes was defined by fasting plasma glucose (FPG) 5.6-6.9mmol/L or HbA1c 5.7-6.4% without antidiabetic drugs. Different markers of subclinical atherosclerosis were analysed: the carotid intima-media thickness (CIMT), carotid plaques (CP), and brachial-ankle pulse wave velocity (baPWV). RESULTS Subclinical atherosclerosis was significantly more prevalent in prediabetic subjects than in normoglycaemic subjects (P<0.001). Only individuals with prediabetes in the dyslipidaemic group had significantly elevated adjusted odds ratios for subclinical atherosclerosis profiles. When stratified by FPG-only, HbA1c-only or both, the three subcategories in combination with dyslipidaemia shared a similarly increased risk of subclinical atherosclerosis compared to normoglycaemia without dyslipidaemia (P<0.05). The risk profile increased directionally from FPG-only to HbA1c-only to both overall. CONCLUSION Our data suggest that subclinical atherosclerotic changes in the prediabetic state are mainly seen in dyslipidaemic subjects. Thus, strategies to prevent atherogenic changes might focus on persons with prediabetes combined with dyslipidaemia, especially for the prediabetes-both subcategory, because of potential effects on CVD risk.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhiheng Chen
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Health Management Research Center, Central South University, Changsha, Hunan, China.
| | - Pingting Yang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Health Management Research Center, Central South University, Changsha, Hunan, China.
| | - Lei Liu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Health Management Research Center, Central South University, Changsha, Hunan, China.
| | - Liuxin Wu
- Health Management Research Center, Central South University, Changsha, Hunan, China; Zhongguancun Xinzhiyuan Health Management Institute, Beijing, China.
| | - Yaqin Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Health Management Research Center, Central South University, Changsha, Hunan, China.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is a complicated cardiovascular disease characterized by unbalanced lipid metabolism and unresolved inflammation that occurred inside of arteries. The transcytosis of LDL across the endothelium and its accumulation in the arterial wall is the initial step of atherosclerosis. Here, we summarize recent research into the understanding of the regulatory mechanisms of endothelial LDL transcytosis and its relevance in the development of atherosclerosis. RECENT FINDINGS A number of recent studies have revealed the contribution of caveolae, activin-like kinase 1 (ALK1) or scavenger receptor B1 (SR-B1) in endothelial LDL transcytosis and the progression of atherosclerosis. Caveolin-1 (Cav-1), the major protein component in caveolae, is required for the formation of caveolae and caveolae-mediated LDL uptake and transcytosis across the endothelium. SR-B1 and ALK1 directly bind LDL and facilitate the transport of LDL through the endothelial cells. The change in expression of caveolae-associated proteins and SR-B1 regulates endothelial LDL transcytosis and the pathogenesis of atherosclerosis. SUMMARY Caveolae, ALK1 and SR-B1 are identified as key regulators in the LDL transcytosis across the endothelium. Endothelial LDL transcytosis might be a potential therapeutic approach to limit the initiation of early atherosclerosis and treat the atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Corresponding authors: Carlos Fernández-Hernando, PhD. 10 Amistad Street, Amistad Research Building, Room 337C, New Haven, CT 06510. Yale University School of Medicine. Tel: (203) 737-4615. Fax: (203) 737-2290. , Xinbo Zhang, MD, PhD. 10 Amistad Street, Amistad Research Building, Room 320, New Haven, CT 06510. Yale University School of Medicine. Tel: (203) 737-3300. Fax: (203) 737-2290.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Corresponding authors: Carlos Fernández-Hernando, PhD. 10 Amistad Street, Amistad Research Building, Room 337C, New Haven, CT 06510. Yale University School of Medicine. Tel: (203) 737-4615. Fax: (203) 737-2290. , Xinbo Zhang, MD, PhD. 10 Amistad Street, Amistad Research Building, Room 320, New Haven, CT 06510. Yale University School of Medicine. Tel: (203) 737-3300. Fax: (203) 737-2290.
| |
Collapse
|
36
|
Wang X, Wang Y, Antony V, Sun H, Liang G. Metabolism-Associated Molecular Patterns (MAMPs). Trends Endocrinol Metab 2020; 31:712-724. [PMID: 32807598 DOI: 10.1016/j.tem.2020.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Metabolic diseases pose a tremendous health threat in both developed and developing countries. The pathophysiology of metabolic diseases is complex but has been shown to be closely associated with sterile inflammation, which is initiated by various danger molecules derived from metabolic overload, such as oxidized low-density lipoproteins (OxLDLs), free fatty acids (FFAs), glucose, advanced glycation end products (AGEs), and cholesterol. These danger signals are sensed by pattern recognition receptors (PRRs) to activate proinflammatory signaling pathways and promote the release of proinflammatory mediators, leading to chronic low-grade inflammation. Although these harmful metabolic stimuli are generally regarded as damage-associated molecular patterns (DAMPs), a more specific definition and accurate classification for these DAMPs is still missing. In this opinion, we classify the harmful metabolic stimuli that can incite inflammatory responses and tissue damage via instigating PRRs as metabolism-associated molecular patterns (MAMPs), and we summarize their roles in metaflammation-mediated metabolic diseases.
Collapse
Affiliation(s)
- Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Victor Antony
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhuji Biomedical Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang 311800, China.
| |
Collapse
|
37
|
Wang H, Li Y, Zhang X, Xu Z, Zhou J, Shang W. DPP-4 Inhibitor Linagliptin Ameliorates Oxidized LDL-Induced THP-1 Macrophage Foam Cell Formation and Inflammation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3929-3940. [PMID: 33061298 PMCID: PMC7524190 DOI: 10.2147/dddt.s249846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Introduction Atherosclerosis is one of the major causes of cardiovascular diseases. Lipid uptake and accumulation in macrophages play a major role in atherosclerotic plaque formation from its initiation to advanced atheroma formation. The dipeptidyl peptidase-4 (DPP-4) inhibitor Linagliptin is commonly used to lower blood glucose in type 2 diabetes patients. Recent studies report that Linagliptin has cardiovascular protective and anti-inflammatory effects. Methods THP-1 macrophage cells were treated with 100 nM PMA for 72 hour to induce foam cell formation. The differentiated cells were exposed to 100 μg/mL ox-LDL in the presence or absence of the DPP-4 inhibitor Linagliptin. The expression levels of DPP-4 and inflammatory cytokines were detected by RT-PCR, ELISA, and Western blot experiments. The cellular ROS level was measured by staining the cells with the fluorescent probe DCFH-DA. The separation of lipoprotein fractions was achieved by high-performance liquid chromatography (HPLC). The cells were labeled with fluorescent-labeled cholesterol to measure cholesterol efflux, and lipid droplets were revealed by Nile red staining. Results The presence of Linagliptin significantly reduced ox-LDL-induced cytokine production (IL-1β and IL-6) and ROS production. Linagliptin ameliorated ox-LDL-induced lipid accumulation and impaired cholesterol efflux in macrophages. Mechanistically, this study showed that Linagliptin mitigated ox-LDL-induced expression of the scavenger receptors CD36 and LOX-1, but not SRA. Furthermore, Linagliptin increased the expression of the cholesterol transporter ABCG1, but not ABCA1. Conclusion Linagliptin possesses a potent inhibitory effect on THP-1 macrophage-derived foam cell formation in response to ox-LDL. This effect could be mediated through a decrease in the expression of CD36 and LOX-1 on macrophages and an increase in the expression of the cholesterol transporter ABCG1. This study indicates that the DPP-4 inhibitor Linagliptin plays a critical role in preventing foam cell formation in vitro. However, future research using an atherosclerotic animal model is necessary to determine its effectiveness and to prove its potential implication in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Endocrinology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| | - Yue Li
- Department of Cardiology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| | - Xiaoliang Zhang
- Department of Cardiology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| | - Zhonglin Xu
- Department of Cardiology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| | - Jianzhong Zhou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400700, People's Republic of China
| | - Wei Shang
- Department of Cardiology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China
| |
Collapse
|
38
|
Mokgalaboni K, Dludla PV, Nkambule BB. The prophylactic effects of vitamin K supplementation on coagulopathies associated with type 2 diabetes mellitus: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21143. [PMID: 32871982 PMCID: PMC7437854 DOI: 10.1097/md.0000000000021143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The impact of vitamin K in ameliorating diabetes-associated complications, especially those linked with platelet activation and coagulation remains unclear. The current study aims to systematically explore and discuss the available evidence on the impact of vitamin K on the diabetes-cardiovascular disease (CVD)-associated complications. METHODS A systematic review of studies published on the MEDLINE (PubMed), EMBASE, and Google Scholar electronic database will be conducted. The review will include studies published from inception until May 25, 2020, reporting on the effect of vitamin K on CVD-related markers, especially coagulation factors and platelet activation in type 2 diabetes mellitus. Before the full-text screening, all studies will be screened by title, abstract, and keywords. The Downs and Black checklist will be used to assess the quality of the studies. Additionally, the Cochrane collaboration tool will also be used to evaluate the risk of bias across the included studies. Kappa Cohen's calculator will be used to assess the level of agreement between the authors. DISCUSSIONS This systematic review will not require ethical approval, and the results will be distributed through conference and peer-reviewed publications. Our results will assist current and future research scientists on the potential use of vitamin K as a protective therapy against CVD-related complications. SYSTEMATIC REVIEW REGISTRATION This protocol is registered on the International Prospective Register of Systematic Reviews (PROSPERO) registration number: CRD42020151667.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban
| |
Collapse
|
39
|
Serbis A, Giapros V, Galli-Tsinopoulou A, Siomou E. Metabolic Syndrome in Children and Adolescents: Is There a Universally Accepted Definition? Does it Matter? Metab Syndr Relat Disord 2020; 18:462-470. [PMID: 32795106 DOI: 10.1089/met.2020.0076] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The concept of metabolic syndrome (MetS) as a cluster of cardiovascular risk factors (obesity, altered glucose metabolism, dyslipidemia, and hypertension) has been around for more than 30 years. It is considered to be the result of complex interactions between centrally located fat, insulin resistance, subclinical inflammation, and other factors in genetically predisposed individuals. MetS diagnosis in adults has been linked to increased risk for cardiovascular disease (CVD) and type 2 diabetes mellitus (T2D). However, MetS in children and adolescents remains a controversial issue despite the extensive research in the field. It is still uncertain which definition should be used for its diagnosis in this age group, what is the clinical significance of such a diagnosis, and how reliably it can predict the future risk of developing CVD and T2D. Even if a child is diagnosed with MetS, management includes addressing each of the syndrome's components individually with weight loss and lifestyle modifications as the basic approach. Co-morbid conditions, such as nonalcoholic fatty liver disease, obstructive sleep apnea, and polycystic ovary syndrome should also be considered. It seems that MetS in children and adolescents should be used clinically as a conceptual framework for the identification of risk factors clustered around obesity and insulin resistance rather than a syndrome that needs to be diagnosed by measuring absolute "all-or-none" criteria.
Collapse
Affiliation(s)
- Anastasios Serbis
- Child Health Department, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Vasileios Giapros
- Child Health Department, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - Ekaterini Siomou
- Child Health Department, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
40
|
Eating right for a healthier heart: Food choice contributes to cardiometabolic benefits and reduction of carotid intima-media thickness. Nutrition 2020; 78:110892. [PMID: 32721768 DOI: 10.1016/j.nut.2020.110892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Diets may alter an individual's metabolism and inflammation, collectively leading to the modulation of cardiovascular health and disease process. The aim of this study was to investigate the effects of diets and diet-associated metabolites on metabolic profiles, inflammatory status, and severity of atherosclerosis. METHODS A cross-sectional study was conducted with 81 healthy adults in Taiwan. A food frequency questionnaire was obtained for evaluating dietary intake. Carotid intima-media thickness (CIMT), a relevant marker of subclinical atherosclerosis, was measured by ultrasound. RESULTS Consumption of instant noodles and sugary beverages was associated with worse metabolic profiles. In contrast, the intake of fresh fruit and green vegetables was correlated with better metabolic parameters. Sugary beverages were dose-dependently correlated with higher expressions of toll-like receptor (TLR)2 and TLR4 on monocytes, whereas fresh fruit intake was associated with lower TLRs. Furthermore, consumption of green vegetables, brown rice, and >2000 mL/d of water was inversely correlated with CIMT. The diet-associated metabolites including trimethylamine N-oxide and S-adenosyl-l-homocysteine, were positively associated with CIMT, whereas l-lysine and l-carnitine were associated with decreased CIMT. Interestingly, intake of strict vegetarian foods resulted in lower serum total cholesterol levels without a detectable effect on inflammatory status or CIMT. CONCLUSIONS Independent of the pattern of strict vegetarian foods, individuals who consumed more vegetables, fresh fruit, and water showed better cardiovascular health as evidenced by their metabolic and inflammatory status and CIMT results.
Collapse
|
41
|
Voisin M, Gage MC, Becares N, Shrestha E, Fisher EA, Pineda-Torra I, Garabedian MJ. LXRα Phosphorylation in Cardiometabolic Disease: Insight From Mouse Models. Endocrinology 2020; 161:bqaa089. [PMID: 32496563 PMCID: PMC7324054 DOI: 10.1210/endocr/bqaa089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/29/2020] [Indexed: 01/12/2023]
Abstract
Posttranslational modifications, such as phosphorylation, are a powerful means by which the activity and function of nuclear receptors such as LXRα can be altered. However, despite the established importance of nuclear receptors in maintaining metabolic homeostasis, our understanding of how phosphorylation affects metabolic diseases is limited. The physiological consequences of LXRα phosphorylation have, until recently, been studied only in vitro or nonspecifically in animal models by pharmacologically or genetically altering the enzymes enhancing or inhibiting these modifications. Here we review recent reports on the physiological consequences of modifying LXRα phosphorylation at serine 196 (S196) in cardiometabolic disease, including nonalcoholic fatty liver disease, atherosclerosis, and obesity. A unifying theme from these studies is that LXRα S196 phosphorylation rewires the LXR-modulated transcriptome, which in turn alters physiological response to environmental signals, and that this is largely distinct from the LXR-ligand-dependent action.
Collapse
Affiliation(s)
- Maud Voisin
- Department of Microbiology, New York University School of Medicine, New York, New York, US
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Natalia Becares
- Centre of Clinical Pharmacology, Division of Medicine, University College of London, London, UK
| | - Elina Shrestha
- Department of Microbiology, New York University School of Medicine, New York, New York, US
| | - Edward A Fisher
- Department of Microbiology, New York University School of Medicine, New York, New York, US
- Department of Medicine, New York University School of Medicine, New York, New York, US
| | - Ines Pineda-Torra
- Centre of Cardiometabolic and Vascular Science, Division of Medicine, University College of London, London, UK
| | - Michael J Garabedian
- Department of Microbiology, New York University School of Medicine, New York, New York, US
| |
Collapse
|
42
|
Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 2020; 34:101517. [PMID: 32535544 PMCID: PMC7296337 DOI: 10.1016/j.redox.2020.101517] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a very prevalent, multisystemic, chronic metabolic disorder closely related to atherosclerosis and cardiovascular diseases. It is characterised by mitochondrial dysfunction and the presence of oxidative stress. Metformin is one of the safest and most effective anti-hyperglycaemic agents currently employed as first-line oral therapy for T2D. It has demonstrated additional beneficial effects, unrelated to its hypoglycaemic action, on weight loss and several diseases, such as cancer, cardiovascular disorders and metabolic diseases, including thyroid diseases. Despite the vast clinical experience gained over several decades of use, the mechanism of action of metformin is still not fully understood. This review provides an overview of the existing literature concerning the beneficial mitochondrial and vascular effects of metformin, which it exerts by diminishing oxidative stress and reducing leukocyte-endothelium interactions. Specifically, we describe the molecular mechanisms involved in metformin's effect on gluconeogenesis, its capacity to interfere with major metabolic pathways (AMPK and mTORC1), its action on mitochondria and its antioxidant effects. We also discuss potential targets for therapeutic intervention based on these molecular actions.
Collapse
Affiliation(s)
- Nadezda Apostolova
- Department of Pharmacology, University of Valencia - FISABIO (Foundation for the Promotion of Health and Biomedical Research in the Valencian Region), Valencia, Spain; CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain.
| | - Francesca Iannantuoni
- Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Aleksandra Gruevska
- Department of Pharmacology, University of Valencia - FISABIO (Foundation for the Promotion of Health and Biomedical Research in the Valencian Region), Valencia, Spain
| | - Jordi Muntane
- Institute of Biomedicine of Seville (IBiS), University Hospital "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Milagros Rocha
- CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain; Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Victor M Victor
- CIBERehd (Biomedical Research Networking Centre on Hepatic and Digestive Diseases), Valencia, Spain; Service of Endocrinology and Nutrition. University Hospital Doctor Peset, FISABIO, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
43
|
Ye D, Lou GH, Li AC, Dong FQ, Chen GP, Xu WW, Liu YN, Hu SJ. MicroRNA‑125a‑mediated regulation of the mevalonate signaling pathway contributes to high glucose‑induced proliferation and migration of vascular smooth muscle cells. Mol Med Rep 2020; 22:165-174. [PMID: 32319638 PMCID: PMC7248521 DOI: 10.3892/mmr.2020.11077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/11/2020] [Indexed: 01/14/2023] Open
Abstract
Hyperglycemia contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMC), which are closely associated with atherosclerosis. MicroRNAs (miRNAs/miRs) constitute a novel class of gene regulators, which have important roles in various pathological conditions. The aim of the present study was to identify miRNAs involved in the high glucose (HG)‑induced VSMC phenotype switch, and to investigate the underlying mechanism. miRNA sequencing and reverse transcription‑quantitative PCR results indicated that inhibition of miR‑125a expression increased the migration and proliferation of VSMCs following HG exposure, whereas the overexpression of miR‑125a abrogated this effect. Furthermore, dual‑luciferase reporter assay results identified that 3‑hydroxy‑3-methyglutaryl‑coA reductase (HMGCR), one of the key enzymes in the mevalonate signaling pathway, is a target of miR‑125a. Moreover, HMGCR knockdown, similarly to miR‑125a overexpression, suppressed HG‑induced VSMC proliferation and migration. These results were consistent with those from the miRNA target prediction programs. Using a rat model of streptozotocin‑induced diabetes mellitus, it was demonstrated that miR‑125a expression was gradually downregulated, and that the expressions of key enzymes in the mevalonate signaling pathway in the aortic media were dysregulated after several weeks. In addition, it was found that HG‑induced excessive activation of the mevalonate signaling pathway in VSMCs was suppressed following transfection with a miR‑125a mimic. Therefore, the present results suggest that decreased miR‑125a expression contributed to HG‑induced VSMC proliferation and migration via the upregulation of HMGCR expression. Thus, miR‑125a‑mediated regulation of the mevalonate signaling pathway may be associated with atherosclerosis.
Collapse
Affiliation(s)
- Dan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guo-Hua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ai-Chun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng-Qin Dong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guo-Ping Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei-Wei Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yan-Ning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shen-Jiang Hu
- Institute of Cardiology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
44
|
Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM. Melatonin inhibits high glucose-induced ox-LDL/LDL expression and apoptosis in human umbilical endothelial cells. Horm Mol Biol Clin Investig 2020; 41:/j/hmbci.ahead-of-print/hmbci-2020-0009/hmbci-2020-0009.xml. [PMID: 32598308 DOI: 10.1515/hmbci-2020-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is one of the major cause of mortality in diabetic patients. Evidence suggests that hyperglycemia in diabetic patients contributes to increased risk of CVD. This study is to investigate the therapeutic effects of melatonin on glucose-treated human umbilical vein endothelial cells (HUVEC) and provide insights on the underlying mechanisms. MATERIALS AND METHODS Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) and membrane potential was detected using 2',7'-dichlorofluorescein diacetate and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) dye staining, respectively. While, cell apoptosis was determined by Annexin-V staining and protein expression was measured using Western blot. RESULTS Our results suggested that melatonin inhibited glucose-induced ROS elevation, mitochondria dysfunction and apoptosis on HUVEC. Melatonin inhibited glucose-induced HUVEC apoptosis via PI3K/Akt signaling pathway. Activation of Akt further activated BcL-2 pathway through upregulation of Mcl-1 expression and downregulation Bax expression in order to inhibit glucose-induced HUVEC apoptosis. Besides that, melatonin promoted downregulation of oxLDL/LOX-1 in order to inhibit glucose-induced HUVEC apoptosis. CONCLUSIONS In conclusion, our results suggested that melatonin exerted vasculoprotective effects against glucose-induced apoptosis in HUVEC through PI3K/Akt, Bcl-2 and oxLDL/LOX-1 signaling pathways.
Collapse
Affiliation(s)
- Yee Lian Tiong
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- School of Health Science, Division of Biomedical Science and Biotechnology, International Medical University, 57000 Kuala Lumpur, Malaysia
| | | | - Soi Moi Chye
- School of Health Science, Division of Biomedical Science and Biotechnology, International Medical University, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Flora GD, Nayak MK. A Brief Review of Cardiovascular Diseases, Associated Risk Factors and Current Treatment Regimes. Curr Pharm Des 2020; 25:4063-4084. [PMID: 31553287 DOI: 10.2174/1381612825666190925163827] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature death and disability in humans and their incidence is on the rise globally. Given their substantial contribution towards the escalating costs of health care, CVDs also generate a high socio-economic burden in the general population. The underlying pathogenesis and progression associated with nearly all CVDs are predominantly of atherosclerotic origin that leads to the development of coronary artery disease, cerebrovascular disease, venous thromboembolism and, peripheral vascular disease, subsequently causing myocardial infarction, cardiac arrhythmias or stroke. The aetiological risk factors leading to the onset of CVDs are well recognized and include hyperlipidaemia, hypertension, diabetes, obesity, smoking and, lack of physical activity. They collectively represent more than 90% of the CVD risks in all epidemiological studies. Despite high fatality rate of CVDs, the identification and careful prevention of the underlying risk factors can significantly reduce the global epidemic of CVDs. Beside making favorable lifestyle modifications, primary regimes for the prevention and treatment of CVDs include lipid-lowering drugs, antihypertensives, antiplatelet and anticoagulation therapies. Despite their effectiveness, significant gaps in the treatment of CVDs remain. In this review, we discuss the epidemiology and pathology of the major CVDs that are prevalent globally. We also determine the contribution of well-recognized risk factors towards the development of CVDs and the prevention strategies. In the end, therapies for the control and treatment of CVDs are discussed.
Collapse
Affiliation(s)
- Gagan D Flora
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Manasa K Nayak
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
46
|
Castelblanco E, Sanjurjo L, Barranco-Altirriba M, Falguera M, Hernández M, Soldevila B, Sarrias MR, Franch-Nadal J, Arroyo JA, Fernandez-Real JM, Alonso N, Mauricio D. The Circulating Fatty Acid Transporter Soluble CD36 Is Not Associated with Carotid Atherosclerosis in Subjects with Type 1 and Type 2 Diabetes Mellitus. J Clin Med 2020; 9:jcm9061700. [PMID: 32498389 PMCID: PMC7355534 DOI: 10.3390/jcm9061700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to determine the association of fatty acid transporter plasma soluble cluster of differentiation 36 (sCD36) with subclinical carotid atherosclerosis (SCA). A cross-sectional study was conducted in 1023 subjects, 225 with type 1 diabetes (T1D), 276 with type 2 diabetes (T2D) and 522 who were nondiabetic. Carotid atherosclerotic plaque (CAP) presence was determined using B-mode carotid ultrasound imaging. sCD36 were analysed by ELISA, and CD36 surface receptor and mRNA expression were measured by flow cytometry and real-time PCR. Logistic regression models were used to evaluate sCD36 as a biomarker of SCA. Up to 376 (36.75%) participants had at least one CAP, 76 T1D, 164 T2D and 136 without diabetes, while the remaining 647 (63.25%) did not have any CAP. There were no differences in sCD36 between patients with and without CAP in T1D (p = 0.287) or T2D (p = 0.513). Although nondiabetic subjects with plaques had lower sCD36 levels than those without (p = 0.023), the multivariate models revealed no association of sCD36 with CAP in any of the three study groups. No differences were found in surface CD36 or CD36 mRNA expression between the patients with and without CAP. sCD36 is not associated with SCA in type 1 or type 2 diabetic or in nondiabetic subjects.
Collapse
Affiliation(s)
- Esmeralda Castelblanco
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (E.C.); (M.B.-A.)
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
| | - Lucía Sanjurjo
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (L.S.); (M.-R.S.)
| | - Maria Barranco-Altirriba
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (E.C.); (M.B.-A.)
| | - Mireia Falguera
- Biomedical Research Institute of Lleida, University of Lleida, 25198 Lleida, Spain; (M.F.); (M.H.)
- Primary Health Care Centre Cervera, Gerència d’Atenció Primaria, Institut Català de la Salut, 25200 Cervera, Spain
| | - Marta Hernández
- Biomedical Research Institute of Lleida, University of Lleida, 25198 Lleida, Spain; (M.F.); (M.H.)
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLleida, 25198 Lleida, Spain
| | - Berta Soldevila
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
- Department of Endocrinology & Nutrition, University Hospital Germans Trias i Pujol, IGTP, 08916 Badalona, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (L.S.); (M.-R.S.)
- Centre for Biomedical Research on Liver and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Josep Franch-Nadal
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
| | - Juan Antonio Arroyo
- Department of Internal Medicine, Hypertension and Vascular Risk Unit, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Department of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - José-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology & Nutrition, Hospital Dr Josep Trueta, IDIBGI, 17007 Girona, Spain;
- Centre for Biomedical Research on Physiopathology of Obesity and Nutrition (CIBEROBN), 17007 Girona, Spain
| | - Nuria Alonso
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLleida, 25198 Lleida, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Correspondence: (N.A.); (D.M.); Tel.: +34-934-978-860 (N.A.); +34-935-565-661 (D.M.)
| | - Didac Mauricio
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (E.C.); (M.B.-A.)
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), 08907 Barcelona, Spain; (B.S.); (J.F.-N.)
- Department of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Correspondence: (N.A.); (D.M.); Tel.: +34-934-978-860 (N.A.); +34-935-565-661 (D.M.)
| |
Collapse
|
47
|
Exploring bulky natural and natural-like periphery in the design of p-(benzyloxy)phenylpropionic acid agonists of free fatty acid receptor 1 (GPR40). Bioorg Chem 2020; 99:103830. [DOI: 10.1016/j.bioorg.2020.103830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
|
48
|
Sulfur Compounds Inhibit High Glucose-Induced Inflammation by Regulating NF-κB Signaling in Human Monocytes. Molecules 2020; 25:molecules25102342. [PMID: 32429534 PMCID: PMC7287819 DOI: 10.3390/molecules25102342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/26/2023] Open
Abstract
High glucose-induced inflammation leads to atherosclerosis, which is considered a major cause of death in type 1 and type 2 diabetic patients. Nuclear factor-kappa B (NF-κB) plays a central role in high glucose-induced inflammation and is activated through toll-like receptors (TLRs) as well as canonical and protein kinase C-dependent (PKC) pathways. Non-toxic sulfur (NTS) and methylsulfonylmethane (MSM) are two sulfur-containing natural compounds that can induce anti-inflammation. Using Western blotting, real-time polymerase chain reaction, and flow cytometry, we found that high glucose-induced inflammation occurs through activation of TLRs. An effect of NTS and MSM on canonical and PKC-dependent NF-κB pathways was also demonstrated by western blotting. The effects of proinflammatory cytokines were investigated using a chromatin immunoprecipitation assay and enzyme-linked immunosorbent assay. Our results showed inhibition of the glucose-induced expression of TLR2 and TLR4 by NTS and MSM. These sulfur compounds also inhibited NF-κB activity through reactive oxygen species (ROS)-mediated canonical and PKC-dependent pathways. Finally, NTS and MSM inhibited the high glucose-induced expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and binding of NF-κB protein to the DNA of proinflammatory cytokines. Together, these results suggest that NTS and MSM may be potential drug candidates for anti-inflammation therapy.
Collapse
|
49
|
Interferon-γ and high glucose-induced opening of Cx43 hemichannels causes endothelial cell dysfunction and damage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118720. [PMID: 32302669 DOI: 10.1016/j.bbamcr.2020.118720] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022]
Abstract
Both IFN-γ or high glucose have been linked to systemic inflammatory imbalance with serious repercussions not only for endothelial function but also for the formation of the atherosclerotic plaque. Although the uncontrolled opening of connexin hemichannels underpins the progression of various diseases, whether they are implicated in endothelial cell dysfunction and damage evoked by IFN-γ plus high glucose remains to be fully elucidated. In this study, by using live cell imaging and biochemical approaches, we demonstrate that IFN-γ plus high glucose augment endothelial connexin43 hemichannel activity, resulting in the increase of ATP release, ATP-mediated Ca2+ dynamics and production of nitric oxide and superoxide anion, as well as impaired insulin-mediated uptake and intercellular diffusion of glucose and cell survival. Based on our results, we propose that connexin 43 hemichannel inhibition could serve as a new approach for tackling the activation of detrimental signaling resulting in endothelial cell dysfunction and death caused by inflammatory mediators during atherosclerosis secondary to diabetes mellitus.
Collapse
|
50
|
Kanter JE, Hsu CC, Bornfeldt KE. Monocytes and Macrophages as Protagonists in Vascular Complications of Diabetes. Front Cardiovasc Med 2020; 7:10. [PMID: 32118048 PMCID: PMC7033616 DOI: 10.3389/fcvm.2020.00010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
With the increasing prevalence of diabetes worldwide, vascular complications of diabetes are also on the rise. Diabetes results in an increased risk of macrovascular complications, with atherosclerotic cardiovascular disease (CVD) being the leading cause of death in adults with diabetes. The exact mechanisms for how diabetes promotes CVD risk are still unclear, although it is evident that monocytes and macrophages are key players in all stages of atherosclerosis both in the absence and presence of diabetes, and that phenotypes of these cells are altered by the diabetic environment. Evidence suggests that at least five pro-atherogenic mechanisms involving monocytes and macrophages contribute to the accelerated atherosclerotic lesion progression and hampered lesion regression associated with diabetes. These changes include (1) increased monocyte recruitment to lesions; (2) increased inflammatory activation; (3) altered macrophage lipid accumulation and metabolism; (4) increased macrophage cell death; and (5) reduced efferocytosis. Monocyte and macrophage phenotypes and mechanisms have been revealed mostly by different animal models of diabetes. The roles of specific changes in monocytes and macrophages in humans with diabetes remain largely unknown. There is an ongoing debate on whether the changes in monocytes and macrophages are caused by altered glucose levels, insulin deficiency or insulin resistance, lipid abnormalities, or combinations of these factors. Current research in humans and mouse models suggests that reduced clearance of triglyceride-rich lipoproteins and their remnants is one important mechanism whereby diabetes adversely affects macrophages and promotes atherosclerosis and CVD risk. Although monocytes and macrophages readily respond to the diabetic environment and can be seen as protagonists in diabetes-accelerated atherosclerosis, they are likely not instigators of the increased CVD risk.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Cheng-Chieh Hsu
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|