1
|
Mashanov GI, Molloy JE. Single molecule dynamics in a virtual cell combining a 3-dimensional matrix model with random walks. Sci Rep 2024; 14:20032. [PMID: 39198682 PMCID: PMC11358523 DOI: 10.1038/s41598-024-70925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advances in light microscopy have enabled single molecules to be imaged and tracked within living cells and this approach is impacting our understanding of cell biology. Computer modeling and simulation are important adjuncts to the experimental cycle since they aid interpretation of experimental results and help refine, test and generate hypotheses. Object-oriented computer modeling is particularly well-suited for simulating random, thermal, movements of individual molecules as they interact with other molecules and subcellular structures, but current models are often limited to idealized systems consisting of unit volumes or planar surfaces. Here, a simulation tool is described that combines a 3-dimensional, voxelated, representation of the cell consisting of subcellular structures (e.g. nucleus, endoplasmic reticulum, cytoskeleton, vesicles, and filopodia) combined with numerical floating-point precision simulation of thousands of individual molecules moving and interacting within the 3-dimensional space. Simulations produce realistic time-series video sequences comprising single fluorophore intensities and realistic background noise which can be directly compared to experimental fluorescence video microscopy data sets.
Collapse
Affiliation(s)
| | - Justin E Molloy
- The Francis Crick Institute, London, NW1 1AT, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
2
|
Shi J, Wei L. ROCK1 deficiency preserves caveolar compartmentalization of signaling molecules and cell membrane integrity. FASEB Bioadv 2024; 6:85-102. [PMID: 38463696 PMCID: PMC10918988 DOI: 10.1096/fba.2024-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
In this study, we investigated the roles of ROCK1 in regulating structural and functional features of caveolae located at the cell membrane of cardiomyocytes, adipocytes, and mouse embryonic fibroblasts (MEFs) as well as related physiopathological effects. Caveolae are small bulb-shaped cell membrane invaginations, and their roles have been associated with disease conditions. One of the unique features of caveolae is that they are physically linked to the actin cytoskeleton that is well known to be regulated by RhoA/ROCKs pathway. In cardiomyocytes, we observed that ROCK1 deficiency is coincident with an increased caveolar density, clusters, and caveolar proteins including caveolin-1 and -3. In the mouse cardiomyopathy model with transgenic overexpressing Gαq in myocardium, we demonstrated the reduced caveolar density at cell membrane and reduced caveolar protein contents. Interestingly, coexisting ROCK1 deficiency in cardiomyocytes can rescue these defects and preserve caveolar compartmentalization of β-adrenergic signaling molecules including β1-adrenergic receptor and type V/VI adenylyl cyclase. In cardiomyocytes and adipocytes, we detected that ROCK1 deficiency increased insulin signaling with increased insulin receptor activation in caveolae. In MEFs, we identified that ROCK1 deficiency increased caveolar and total levels of caveolin-1 and cell membrane repair ability after mechanical or chemical disruptions. Together, these results demonstrate that ROCK1 can regulate caveolae plasticity and multiple functions including compartmentalization of signaling molecules and cell membrane repair following membrane disruption by mechanical force and oxidative damage. These findings provide possible molecular insights into the beneficial effects of ROCK1 deletion/inhibition in cardiomyocytes, adipocytes, and MEFs under certain diseased conditions.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
3
|
Tyagi K, Rai P, Gautam A, Kaur H, Kapoor S, Suttee A, Jaiswal PK, Sharma A, Singh G, Barnwal RP. Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders. Eur J Med Res 2023; 28:307. [PMID: 37649125 PMCID: PMC10469568 DOI: 10.1186/s40001-023-01293-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Coronaviruses such as Severe Acute Respiratory Syndrome coronavirus (SARS), Middle Eastern Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are associated with critical illnesses, including severe respiratory disorders. SARS-CoV-2 is the causative agent of the deadly COVID-19 illness, which has spread globally as a pandemic. SARS-CoV-2 may enter the human body through olfactory lobes and interact with the angiotensin-converting enzyme2 (ACE2) receptor, further facilitating cell binding and entry into the cells. Reports have shown that the virus can pass through the blood-brain barrier (BBB) and enter the central nervous system (CNS), resulting in various disorders. Cell entry by SARS-CoV-2 largely relies on TMPRSS2 and cathepsin L, which activate S protein. TMPRSS2 is found on the cell surface of respiratory, gastrointestinal and urogenital epithelium, while cathepsin-L is a part of endosomes. AIM The current review aims to provide information on how SARS-CoV-2 infection affects brain function.. Furthermore, CNS disorders associated with SARS-CoV-2 infection, including ischemic stroke, cerebral venous thrombosis, Guillain-Barré syndrome, multiple sclerosis, meningitis, and encephalitis, are discussed. The many probable mechanisms and paths involved in developing cerebrovascular problems in COVID patients are thoroughly detailed. MAIN BODY There have been reports that the SARS-CoV-2 virus can cross the blood-brain barrier (BBB) and enter the central nervous system (CNS), where it could cause a various illnesses. Patients suffering from COVID-19 experience a range of neurological complications, including sleep disorders, viral encephalitis, headaches, dysgeusia, and cognitive impairment. The presence of SARS-CoV-2 in the cerebrospinal fluid (CSF) of COVID-19 patients has been reported. Health experts also reported its presence in cortical neurons and human brain organoids. The possible mechanism of virus infiltration into the brain can be neurotropic, direct infiltration and cytokine storm-based pathways. The olfactory lobes could also be the primary pathway for the entrance of SARS-CoV-2 into the brain. CONCLUSIONS SARS-CoV-2 can lead to neurological complications, such as cerebrovascular manifestations, motor movement complications, and cognitive decline. COVID-19 infection can result in cerebrovascular symptoms and diseases, such as strokes and thrombosis. The virus can affect the neural system, disrupt cognitive function and cause neurological disorders. To combat the epidemic, it is crucial to repurpose drugs currently in use quickly and develop novel therapeutics.
Collapse
Affiliation(s)
- Kritika Tyagi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Prachi Rai
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Anuj Gautam
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Harjeet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Sumeet Kapoor
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX, 77843, USA
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | | |
Collapse
|
4
|
Acetylcholine exerts cytoprotection against hypoxia/reoxygenation-induced apoptosis, autophagy and mitochondrial impairment through both muscarinic and nicotinic receptors. Apoptosis 2022; 27:233-245. [DOI: 10.1007/s10495-022-01715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
|
5
|
Integration and Spatial Organization of Signaling by G Protein-Coupled Receptor Homo- and Heterodimers. Biomolecules 2021; 11:biom11121828. [PMID: 34944469 PMCID: PMC8698773 DOI: 10.3390/biom11121828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023] Open
Abstract
Information flow from a source to a receiver becomes informative when the recipient can process the signal into a meaningful form. Information exchange and interpretation is essential in biology and understanding how cells integrate signals from a variety of information-coding molecules into complex orchestrated responses is a major challenge for modern cell biology. In complex organisms, cell to cell communication occurs mostly through neurotransmitters and hormones, and receptors are responsible for signal recognition at the membrane level and information transduction inside the cell. The G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, with nearly 800 genes coding for these proteins. The recognition that GPCRs may physically interact with each other has led to the hypothesis that their dimeric state can provide the framework for temporal coincidence in signaling pathways. Furthermore, the formation of GPCRs higher order oligomers provides the structural basis for organizing distinct cell compartments along the plasma membrane where confined increases in second messengers may be perceived and discriminated. Here, we summarize evidence that supports these conjectures, fostering new ideas about the physiological role played by receptor homo- and hetero-oligomerization in cell biology.
Collapse
|
6
|
Truong ME, Bilekova S, Choksi SP, Li W, Bugaj LJ, Xu K, Reiter JF. Vertebrate cells differentially interpret ciliary and extraciliary cAMP. Cell 2021; 184:2911-2926.e18. [PMID: 33932338 DOI: 10.1016/j.cell.2021.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/08/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Hedgehog pathway components and select G protein-coupled receptors (GPCRs) localize to the primary cilium, an organelle specialized for signal transduction. We investigated whether cells distinguish between ciliary and extraciliary GPCR signaling. To test whether ciliary and extraciliary cyclic AMP (cAMP) convey different information, we engineered optogenetic and chemogenetic tools to control the subcellular site of cAMP generation. Generating equal amounts of ciliary and cytoplasmic cAMP in zebrafish and mammalian cells revealed that ciliary cAMP, but not cytoplasmic cAMP, inhibited Hedgehog signaling. Modeling suggested that the distinct geometries of the cilium and cell body differentially activate local effectors. The search for effectors identified a ciliary pool of protein kinase A (PKA). Blocking the function of ciliary PKA, but not extraciliary PKA, activated Hedgehog signal transduction and reversed the effects of ciliary cAMP. Therefore, cells distinguish ciliary and extraciliary cAMP using functionally and spatially distinct pools of PKA, and different subcellular pools of cAMP convey different information.
Collapse
Affiliation(s)
- Melissa E Truong
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sara Bilekova
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Wan Li
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Pavlaki N, De Jong KA, Geertz B, Nikolaev VO, Froese A. Cardiac Hypertrophy Changes Compartmentation of cAMP in Non-Raft Membrane Microdomains. Cells 2021; 10:cells10030535. [PMID: 33802377 PMCID: PMC8001844 DOI: 10.3390/cells10030535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
3′,5′-Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger which plays critical roles in cardiac function and disease. In adult mouse ventricular myocytes (AMVMs), several distinct functionally relevant microdomains with tightly compartmentalized cAMP signaling have been described. At least two types of microdomains reside in AMVM plasma membrane which are associated with caveolin-rich raft and non-raft sarcolemma, each with distinct cAMP dynamics and their differential regulation by receptors and cAMP degrading enzymes phosphodiesterases (PDEs). However, it is still unclear how cardiac disease such as hypertrophy leading to heart failure affects cAMP signals specifically in the non-raft membrane microdomains. To answer this question, we generated a novel transgenic mouse line expressing a highly sensitive Förster resonance energy transfer (FRET)-based biosensor E1-CAAX targeted to non-lipid raft membrane microdomains of AMVMs and subjected these mice to pressure overload induced cardiac hypertrophy. We could detect specific changes in PDE3-dependent compartmentation of β-adrenergic receptor induced cAMP in non-raft membrane microdomains which were clearly different from those occurring in caveolin-rich sarcolemma. This indicates differential regulation and distinct responses of these membrane microdomains to cardiac remodeling.
Collapse
Affiliation(s)
- Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.P.); (K.A.D.J.); (A.F.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany;
| | - Kirstie A. De Jong
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.P.); (K.A.D.J.); (A.F.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany;
| | - Birgit Geertz
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany;
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.P.); (K.A.D.J.); (A.F.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany;
- Correspondence: ; Tel.: +49-(0)40-7410-51391
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.P.); (K.A.D.J.); (A.F.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany;
| |
Collapse
|
8
|
Muralidharan K, Van Camp MM, Lyon AM. Structure and regulation of phospholipase Cβ and ε at the membrane. Chem Phys Lipids 2021; 235:105050. [PMID: 33422547 DOI: 10.1016/j.chemphyslip.2021.105050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Phospholipase C (PLC) β and ε enzymes hydrolyze phosphatidylinositol (PI) lipids in response to direct interactions with heterotrimeric G protein subunits and small GTPases, which are activated downstream of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). PI hydrolysis generates second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC), thereby regulating numerous physiological processes. PLCβ and PLCε share a highly conserved core required for lipase activity, but use different strategies and structural elements to autoinhibit basal activity, bind membranes, and engage G protein activators. In this review, we discuss recent structural insights into these enzymes and the implications for how they engage membranes alone or in complex with their G protein regulators.
Collapse
Affiliation(s)
- Kaushik Muralidharan
- Department of Biological Sciences, 560 Oval Drive, Purdue University, West Lafayette, IN, 47907, United States.
| | - Michelle M Van Camp
- Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, IN, 47907, United States.
| | - Angeline M Lyon
- Department of Biological Sciences, 560 Oval Drive, Purdue University, West Lafayette, IN, 47907, United States; Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
9
|
Rao BD, Sarkar P, Chattopadhyay A. Selectivity in agonist and antagonist binding to Serotonin 1A receptors via G-protein coupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183265. [PMID: 32156647 DOI: 10.1016/j.bbamem.2020.183265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins in higher eukaryotes, and facilitate information transfer from the extracellular environment to the cellular interior upon activation by ligands. Their role in diverse signaling processes makes them an attractive choice as drug targets. GPCRs are coupled to heterotrimeric G-proteins which represent an important interface through which signal transduction occurs across the plasma membrane upon activation by ligands. To obtain further insight into the molecular details of interaction of G-proteins with GPCRs, in this work, we explored the selectivity of binding of specific agonists and antagonists to the serotonin1A receptor under conditions of progressive G-protein inactivation. The serotonin1A receptor is an important neurotransmitter receptor belonging to the GPCR family and is a popular drug target. By use of a number of agents to inactivate G-proteins, we show here that the serotonin1A receptor displays differential discrimination between agonist and antagonist binding. Our results show a reduction in binding sites of the receptor upon treatment with G-protein inactivating agents. In addition, G-protein coupling efficiency was enhanced when G-proteins were inactivated using urea and alkaline pH. We envision that our results could be useful in achieving multiple signaling states of the receptor by fine tuning the conditions of G-protein inactivation and in structural biology of GPCRs bound to specific ligands.
Collapse
Affiliation(s)
- Bhagyashree D Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| |
Collapse
|
10
|
Torres M, Rosselló CA, Fernández-García P, Lladó V, Kakhlon O, Escribá PV. The Implications for Cells of the Lipid Switches Driven by Protein-Membrane Interactions and the Development of Membrane Lipid Therapy. Int J Mol Sci 2020; 21:ijms21072322. [PMID: 32230887 PMCID: PMC7177374 DOI: 10.3390/ijms21072322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
The cell membrane contains a variety of receptors that interact with signaling molecules. However, agonist-receptor interactions not always activate a signaling cascade. Amphitropic membrane proteins are required for signal propagation upon ligand-induced receptor activation. These proteins localize to the plasma membrane or internal compartments; however, they are only activated by ligand-receptor complexes when both come into physical contact in membranes. These interactions enable signal propagation. Thus, signals may not propagate into the cell if peripheral proteins do not co-localize with receptors even in the presence of messengers. As the translocation of an amphitropic protein greatly depends on the membrane's lipid composition, regulation of the lipid bilayer emerges as a novel therapeutic strategy. Some of the signals controlled by proteins non-permanently bound to membranes produce dramatic changes in the cell's physiology. Indeed, changes in membrane lipids induce translocation of dozens of peripheral signaling proteins from or to the plasma membrane, which controls how cells behave. We called these changes "lipid switches", as they alter the cell's status (e.g., proliferation, differentiation, death, etc.) in response to the modulation of membrane lipids. Indeed, this discovery enables therapeutic interventions that modify the bilayer's lipids, an approach known as membrane-lipid therapy (MLT) or melitherapy.
Collapse
Affiliation(s)
- Manuel Torres
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, 91120 Jerusalem, Israel;
| | - Pablo Vicente Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Correspondence:
| |
Collapse
|
11
|
Membrane cholesterol oxidation downregulates atrial β-adrenergic responses in ROS-dependent manner. Cell Signal 2020; 67:109503. [DOI: 10.1016/j.cellsig.2019.109503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 01/06/2023]
|
12
|
Agarwal SR, Fiore C, Miyashiro K, Ostrom RS, Harvey RD. Effect of Adenylyl Cyclase Type 6 on Localized Production of cAMP by β-2 Adrenoceptors in Human Airway Smooth-Muscle Cells. J Pharmacol Exp Ther 2019; 370:104-110. [PMID: 31068382 DOI: 10.1124/jpet.119.256594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
β 2-Adrenoceptors (β 2ARs) are concentrated in caveolar lipid raft domains of the plasma membrane in airway smooth-muscle (ASM) cells, along with adenylyl cyclase type 6 (AC6). This is believed to contribute to how these receptors can selectively regulate certain types of cAMP-dependent responses in these cells. The goal of the present study was to test the hypothesis that β 2AR production of cAMP is localized to specific subcellular compartments using fluorescence resonance energy transfer-based cAMP biosensors targeted to different microdomains in human ASM cells. Epac2-MyrPalm and Epac2-CAAX biosensors were used to measure responses associated with lipid raft and nonraft regions of the plasma membrane, respectively. Activation of β 2ARs with isoproterenol produced cAMP responses that are most readily detected in lipid raft domains. Furthermore, overexpression of AC6 somewhat paradoxically inhibited β 2AR production of cAMP in lipid raft domains without affecting β 2AR responses detected in other subcellular locations or cAMP responses to EP2 prostaglandin receptor activation, which were confined primarily to nonraft domains of the plasma membrane. The inhibitory effect of overexpressing AC6 was blocked by inhibition of phosphodiesterase type 4 (PDE4) activity with rolipram, inhibition of protein kinase A (PKA) activity with H89, and inhibition of A kinase anchoring protein (AKAP) interactions with the peptide inhibitor Ht31. These results support the idea that overexpression of AC6 leads to enhanced feedback activation of PDE4 via phosphorylation by PKA that is part of an AKAP-dependent signaling complex. This provides insight into the molecular basis for localized regulation of cAMP signaling in human ASM cells.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Chase Fiore
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Kathryn Miyashiro
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Rennolds S Ostrom
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| |
Collapse
|
13
|
Shaik FA, Medapati MR, Chelikani P. Cholesterol modulates the signaling of chemosensory bitter taste receptor T2R14 in human airway cells. Am J Physiol Lung Cell Mol Physiol 2019; 316:L45-L57. [PMID: 30358435 DOI: 10.1152/ajplung.00169.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bitter taste receptors (T2Rs) are a group of 25 chemosensory receptors expressed at significant levels in the human airways. In human airways, bitter taste receptor 14 (T2R14)-mediated physiological response in ameliorating obstructive airway disorders is an active area of investigation. Therefore, understanding various factors regulating the structure and function of T2R14 will be beneficial. We hypothesize that membrane lipids like cholesterol play a regulatory role in T2R14 signaling in airway cells. We confirmed the expression and signaling of T2R14 in primary human airway smooth muscle (HASM) cells and the human airway epithelial cell line (NuLi-1) using immunoblot analysis and intracellular calcium concentration mobilization experiments, respectively. Next, T2R14 signaling was examined in membrane cholesterol-altered environments by methyl-β-cyclodextrin or cholesterol oxidase treatments. In the cells analyzed, cholesterol depletion affected the agonist-induced T2R14 signaling, and cholesterol replenishment rescued its efficacy. An alternative approach for cholesterol depletion (with cholesterol oxidase pretreatment) also negatively affected the agonist potency at T2R14 in HASM cells. To understand the molecular mechanism of interaction between cholesterol and T2R14, we used site-directed mutagenesis coupled with functional assays and examined the role of putative cholesterol-binding motifs (CRAC and CARC) in T2R14. Functional characterization of wild-type and mutant T2R14 receptors suggests that amino acid residues K110, F236, and L239 are crucial in T2R14-cholesterol functional interaction. In conclusion, our results show that cholesterol influences the T2R14 signaling efficacy by forming direct interactions with the receptor and consequently plays a regulatory role in T2R14-mediated signaling in human airway cells.
Collapse
Affiliation(s)
- Feroz Ahmed Shaik
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| | - Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| |
Collapse
|
14
|
Wang H, Yuan X, Sun Y, Mao X, Meng C, Tan L, Song C, Qiu X, Ding C, Liao Y. Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology 2018; 528:118-136. [PMID: 30597347 PMCID: PMC7111473 DOI: 10.1016/j.virol.2018.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022]
Abstract
Although several reports suggest that the entry of infectious bronchitis virus (IBV) depends on lipid rafts and low pH, the endocytic route and intracellular trafficking are unclear. In this study, we aimed to shed greater light on early steps in IBV infection. By using chemical inhibitors, RNA interference, and dominant negative mutants, we observed that lipid rafts and low pH was indeed required for virus entry; IBV mainly utilized the clathrin mediated endocytosis (CME) for entry; GTPase dynamin 1 was involved in virus containing vesicle scission; and the penetration of IBV into cells led to active cytoskeleton rearrangement. By using R18 labeled virus, we found that virus particles moved along with the classical endosome/lysosome track. Functional inactivation of Rab5 and Rab7 significantly inhibited IBV infection. Finally, by using dual R18/DiOC labeled IBV, we observed that membrane fusion was induced after 1 h.p.i. in late endosome/lysosome. Intact lipid rafts is involved in IBV entry. Low pH in intracyplasmic vesicles is required for IBV entry. IBV penetrates cells via clathrin mediated endocytosis. IBV moves along with the classical endosome/lysosome track, finally fuses with late endosome/lysosome.
Collapse
Affiliation(s)
- Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiao Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiang Mao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
15
|
Tanaka S, Fujio Y, Nakayama H. Caveolae-Specific CaMKII Signaling in the Regulation of Voltage-Dependent Calcium Channel and Cardiac Hypertrophy. Front Physiol 2018; 9:1081. [PMID: 30131723 PMCID: PMC6090180 DOI: 10.3389/fphys.2018.01081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/19/2018] [Indexed: 02/04/2023] Open
Abstract
Cardiac hypertrophy is a major risk for the progression of heart failure; however, the underlying molecular mechanisms contributing to this process remain elusive. The caveolae microdomain plays pivotal roles in various cellular processes such as lipid homeostasis, signal transduction, and endocytosis, and also serves as a signaling platform. Although the caveolae microdomain has been postulated to have a major contribution to the development of cardiac pathologies, including cardiac hypertrophy, recent evidence has placed this role into question. Lack of direct evidence and appropriate methods for determining activation of caveolae-specific signaling has thus far limited the ability to obtain a definite answer to the question. In this review, we focus on the potential physiological and pathological roles of the multifunctional kinase Ca2+/calmodulin-dependent kinase II and voltage-dependent L-type calcium channel in the caveolae, toward gaining a better understanding of the contribution of caveolae-based signaling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Nakayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Singh H, Wray N, Schappi JM, Rasenick MM. Disruption of lipid-raft localized Gα s/tubulin complexes by antidepressants: a unique feature of HDAC6 inhibitors, SSRI and tricyclic compounds. Neuropsychopharmacology 2018; 43:1481-1491. [PMID: 29463911 PMCID: PMC5983546 DOI: 10.1038/s41386-018-0016-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
Abstract
Current antidepressant therapies meet with variable therapeutic success and there is increasing interest in therapeutic approaches not based on monoamine signaling. Histone deacetylase 6 (HDAC6), which also deacetylates α-tubulin shows altered expression in mood disorders and HDAC6 knockout mice mimic traditional antidepressant treatments. Nonetheless, a mechanistic understanding for HDAC6 inhibitors in the treatment of depression remains elusive. Previously, we have shown that sustained treatment of rats or glioma cells with several antidepressants translocates Gαs from lipid rafts toward increased association with adenylyl cyclase (AC). Concomitant with this is a sustained increase in cAMP production. While Gαs modifies microtubule dynamics, tubulin also acts as an anchor for Gαs in lipid-rafts. Since HDAC-6 inhibitors potentiate α-tubulin acetylation, we hypothesize that acetylation of α-tubulin disrupts tubulin-Gαs raft-anchoring, rendering Gαs free to activate AC. To test this, C6 Glioma (C6) cells were treated with the HDAC-6 inhibitor, tubastatin-A. Chronic treatment with tubastatin-A not only increased α-tubulin acetylation but also translocated Gαs from lipid-rafts, without changing total Gαs. Reciprocally, depletion of α-tubulin acetyl-transferase-1 ablated this phenomenon. While escitalopram and imipramine also disrupt Gαs/tubulin complexes and translocate Gαs from rafts, they evoke no change in tubulin acetylation. Finally, two indicators of downstream cAMP signaling, cAMP response element binding protein phosphorylation (pCREB) and expression of brain-derived-neurotrophic-factor (BDNF) were both elevated by tubastatin-A. These findings suggest HDAC6 inhibitors show a cellular profile resembling traditional antidepressants, but have a distinct mode of action. They also reinforce the validity of antidepressant-induced Gαs translocation from lipid-rafts as a biosignature for antidepressant response that may be useful in the development of new antidepressant compounds.
Collapse
Affiliation(s)
- Harinder Singh
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Nathan Wray
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jeffrey M Schappi
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VAMC, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Influence of omega-3 polyunsaturated fatty acids from fish oil or meal on the structure of lipid microdomains in bovine luteal cells. Anim Reprod Sci 2018; 193:40-57. [PMID: 29673917 DOI: 10.1016/j.anireprosci.2018.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/08/2018] [Accepted: 03/28/2018] [Indexed: 11/23/2022]
Abstract
Biological membranes are composed of a lipid bilayer and proteins that form lipid microdomains. This study examined the effects of fish byproducts on lipid-protein interactions within lipid microdomains of bovine luteal cells. In Exp. 1 and 2, luteal cells were prepared from corpora lutea (CL; n = 4 to 8) collected at an abattoir. Exp. 1 was conducted to optimize ultrasonication in a detergent-free protocol for isolation of lipid microdomains. A power setting of 10 to 20% was effective in isolating lipid microdomains from bulk lipid. In Exp. 2, cells were cultured in control medium or fish oil to determine influence of fish oil on distribution of lipid microdomain markers and prostaglandin F2α (FP) receptors. Cells treated with fish oil had a smaller percentage of microdomain markers and FP receptor in microdomains (P < 0.05). In Exp. 3 and 4, cells were prepared from mid-cycle CL obtained from cows supplemented with corn gluten meal (n = 4) or fish meal (n = 4). Exp. 3 examined effects of dietary supplementation on distribution of lipid microdomain markers and FP receptor and Exp. 4 on fatty acid composition within lipid microdomains. A smaller percentage of lipid microdomain markers and FP receptor was detected in microdomains of cells collected from fish meal supplemented animals (P < 0.05). In Exp. 4, a greater percentage of omega-3 polyunsaturated fatty acids was detected in bulk lipid from fish meal supplemented cows (P < 0.05). Results show that fish byproducts influence lipid-protein interactions in lipid microdomains in bovine luteal cells.
Collapse
|
18
|
Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:32. [PMID: 29430449 DOI: 10.21037/atm.2017.12.18] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Appearance of alveolar protein-rich edema is an early event in the development of acute respiratory distress syndrome (ARDS). Alveolar edema in ARDS results from a significant increase in the permeability of the alveolar epithelial barrier, and represents one of the main factors that contribute to the hypoxemia in these patients. Damage of the alveolar epithelium is considered a major mechanism responsible for the increased pulmonary permeability, which results in edema fluid containing high concentrations of extravasated macromolecules in the alveoli. The breakdown of the alveolar-epithelial barrier is a consequence of multiple factors that include dysregulated inflammation, intense leukocyte infiltration, activation of pro-coagulant processes, cell death and mechanical stretch. The disruption of tight junction (TJ) complexes at the lateral contact of epithelial cells, the loss of contact between epithelial cells and extracellular matrix (ECM), and relevant changes in the communication between epithelial and immune cells, are deleterious alterations that mediate the disruption of the alveolar epithelial barrier and thereby the formation of lung edema in ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain
| | - Gema Sanchez
- Department of Clinical Analysis, Hospital Universitario de Getafe, Madrid, Spain
| | - Jose Angel Lorente
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
20
|
Membrane-Associated Effects of Glucocorticoid on BACE1 Upregulation and Aβ Generation: Involvement of Lipid Raft-Mediated CREB Activation. J Neurosci 2017; 37:8459-8476. [PMID: 28855330 DOI: 10.1523/jneurosci.0074-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoid has been widely accepted to induce Alzheimer's disease, but the nongenomic effect of glucocorticoid on amyloid β (Aβ) generation has yet to be studied. Here, we investigated the effect of the nongenomic pathway induced by glucocorticoid on amyloid precursor protein processing enzymes as well as Aβ production using male ICR mice and human neuroblastoma SK-N-MC cells. Mice groups exposed to restraint stress or intracerebroventricular injection of Aβ showed impaired cognition, decreased intracellular glucocorticoid receptor (GR) level, but elevated level of membrane GR (mGR). In this respect, we identified the mGR-dependent pathway evoked by glucocorticoid using impermeable cortisol conjugated to BSA (cortisol-BSA) on SK-N-MC cells. Cortisol-BSA augmented the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), the level of C-terminal fragment β of amyloid precursor protein (C99) and Aβ production, which were maintained even after blocking intracellular GR. We also found that cortisol-BSA enhanced the interaction between mGR and Gαs, which colocalized in the lipid raft. The subsequently activated CREB by cortisol-BSA bound to the CRE site of the BACE1 promoter increasing its expression, which was downregulated by inhibiting CBP. Consistently, blocking CBP attenuated cognitive impairment and Aβ production induced by corticosterone treatment or intracerebroventricular injection of Aβ more efficiently than inhibiting intracellular GR in mice. In conclusion, glucocorticoid couples mGR with Gαs and triggers cAMP-PKA-CREB axis dependent on the lipid raft to stimulate BACE1 upregulation and Aβ generation.SIGNIFICANCE STATEMENT Patients with Alzheimer's disease (AD) have been growing sharply and stress is considered as the major environment factor of AD. Glucocorticoid is the primarily responsive factor to stress and is widely known to induce AD. However, most AD patients usually have impaired genomic pathway of glucocorticoid due to intracellular glucocorticoid receptor deficiency. In this respect, the genomic mechanism of glucocorticoid faces difficulties in explaining the consistent amyloid β (Aβ) production. Therefore, it is necessary to investigate the novel pathway of glucocorticoid on Aβ generation to find a more selective therapeutic approach to AD patients. In this study, we revealed the importance of nongenomic pathway induced by glucocorticoid where membrane glucocorticoid receptor plays an important role in Aβ formation.
Collapse
|
21
|
Bubb KJ, Birgisdottir AB, Tang O, Hansen T, Figtree GA. Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease. Free Radic Biol Med 2017; 109:61-74. [PMID: 28188926 DOI: 10.1016/j.freeradbiomed.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 02/05/2017] [Indexed: 02/07/2023]
Abstract
Rapid and coordinated release of a variety of reactive oxygen species (ROS) such as superoxide (O2.-), hydrogen peroxide (H2O2) and peroxynitrite, in specific microdomains, play a crucial role in cell signalling in the cardiovascular system. These reactions are mediated by reversible and functional modifications of a wide variety of key proteins. Dysregulation of this oxidative signalling occurs in almost all forms of cardiovascular disease (CVD), including at the very early phases. Despite the heavily publicized failure of "antioxidants" to improve CVD progression, pharmacotherapies such as those targeting the renin-angiotensin system, or statins, exert at least part of their large clinical benefit via modulating cellular redox signalling. Over 250 proteins, including receptors, ion channels and pumps, and signalling proteins are found in the caveolae. An increasing proportion of these are being recognized as redox regulated-proteins, that reside in the immediate vicinity of the two major cellular sources of ROS, nicotinamide adenine dinucleotide phosphate oxidase (Nox) and uncoupled endothelial nitric oxide synthase (eNOS). This review focuses on what is known about redox signalling within the caveolae, as well as endogenous protective mechanisms utilized by the cell, and new approaches to targeting dysregulated redox signalling in the caveolae as a therapeutic strategy in CVD.
Collapse
Affiliation(s)
- Kristen J Bubb
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Asa Birna Birgisdottir
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Owen Tang
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Thomas Hansen
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
22
|
Cuadrado I, Castejon B, Martin AM, Saura M, Reventun-Torralba P, Zamorano JL, Zaragoza C. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes. PLoS One 2016; 11:e0162912. [PMID: 27649573 PMCID: PMC5029905 DOI: 10.1371/journal.pone.0162912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.
Collapse
Affiliation(s)
- Irene Cuadrado
- Department of Systems Biology (Physiology), University of Alcalá, School of Medicine (IRYCIS), Ctra. Madrid Barcelona, Km 3,300, 28875, Alcalá de Henares, Madrid, Spain
| | - Borja Castejon
- Cardiology Department, University Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), Ctra. Colmenar Viejo, km. 9100, 28034, Madrid, Spain
| | - Ana M. Martin
- Cardiology Department, University Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), Ctra. Colmenar Viejo, km. 9100, 28034, Madrid, Spain
| | - Marta Saura
- Department of Systems Biology (Physiology), University of Alcalá, School of Medicine (IRYCIS), Ctra. Madrid Barcelona, Km 3,300, 28875, Alcalá de Henares, Madrid, Spain
| | - Paula Reventun-Torralba
- Department of Systems Biology (Physiology), University of Alcalá, School of Medicine (IRYCIS), Ctra. Madrid Barcelona, Km 3,300, 28875, Alcalá de Henares, Madrid, Spain
| | - Jose Luis Zamorano
- Cardiology Department, University Hospital Ramón y Cajal (IRYCIS), Ctra Colmenar Viejo, km. 9100, 28034, Madrid, Spain
| | - Carlos Zaragoza
- Cardiology Department, University Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), Ctra. Colmenar Viejo, km. 9100, 28034, Madrid, Spain
- * E-mail:
| |
Collapse
|
23
|
Xu S, Xue X, You K, Fu J. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res 2016; 17:50. [PMID: 27176222 PMCID: PMC4866358 DOI: 10.1186/s12931-016-0364-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 04/25/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common complication in preterm infants that involves the downregulation of tight junction (TJ) proteins. However, the mechanism underlying downregulation of the expression of TJ proteins during at the early stages of hyperoxia-induced BPD remains to be understood. Here, we aimed to identify the role of caveolin-1 (Cav-1) in hyperoxia-induced pulmonary epithelial barrier breakdown. METHODS First, we established an in vitro pulmonary epithelial barrier models using primary type II alveolar epithelial cells (AEC-II) from newborn rats. AEC-II was assigned to the hyperoxic (85 % O2/5 % CO2) or normoxic (21 % O2/5 % CO2) groups. Second, AEC-II was transfected with Cav-1-siRNA to downregulate Cav-1 under normoxic exposure. Third, AEC-II was transfected with a cDNA encoding Cav-1 to upregulate Cav-1 expression under hyperoxic exposure. Then, expression levels of Cav-1 and TJ proteins were examined by immunofluorescence staining, reverse transcription-polymerase chain reaction, and Western blotting. The TJ structures visualized using a transmission electron microscope, and transepithelial resistance and apparent permeability coefficient of fluorescein isothiocyanate-dextran, which are indicators of barrier function, were measured. RESULTS Our data showed that exposure to hyperoxia disrupted the structure and function of the pulmonary epithelial barrier and decreased the ZO-1, occludin, claudin-4, and Cav-1 expression levels. Moreover, Cav-1 knockdown attenuated the expression of the other three genes and disrupted pulmonary epithelial barrier structure and function under normoxic exposure. However, Cav-1 upregulation markedly antagonized the hyperoxia-induced pulmonary epithelial barrier destruction and TJ protein loss. CONCLUSIONS This is the first study to present evidence illustrating the novel role of Cav-1 downregulation-mediated TJ protein loss in pulmonary epithelial barrier destruction during BPD.
Collapse
Affiliation(s)
- Shuyan Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Kai You
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
24
|
Villar VAM, Cuevas S, Zheng X, Jose PA. Localization and signaling of GPCRs in lipid rafts. Methods Cell Biol 2016; 132:3-23. [DOI: 10.1016/bs.mcb.2015.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Froese A, Nikolaev VO. Imaging alterations of cardiomyocyte cAMP microdomains in disease. Front Pharmacol 2015; 6:172. [PMID: 26379548 PMCID: PMC4548481 DOI: 10.3389/fphar.2015.00172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/03/2015] [Indexed: 11/13/2022] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is an important second messenger which regulates heart function by acting in distinct subcellular microdomains. Recent years have provided deeper mechanistic insights into compartmentalized cAMP signaling and its link to cardiac disease. In this mini review, we summarize newest developments in this field achieved by cutting-edge biochemical and biophysical techniques. We further compile the data from different studies into a bigger picture of so far uncovered alterations in cardiomyocyte cAMP microdomains which occur in compensated cardiac hypertrophy and chronic heart failure. Finally, future research directions and translational perspectives are briefly discussed.
Collapse
Affiliation(s)
- Alexander Froese
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, Georg August University Medical Center , Göttingen, Germany
| | - Viacheslav O Nikolaev
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf , Hamburg, Germany ; Institute of Experimental Cardiovascular Research , Hamburg, Germany
| |
Collapse
|
26
|
Wieland T, Attwood PV. Alterations in reversible protein histidine phosphorylation as intracellular signals in cardiovascular disease. Front Pharmacol 2015; 6:173. [PMID: 26347652 PMCID: PMC4543942 DOI: 10.3389/fphar.2015.00173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/03/2015] [Indexed: 01/27/2023] Open
Abstract
Reversible phosphorylation of amino acid side chains in proteins is a frequently used mechanism in cellular signal transduction and alterations of such phosphorylation patterns are very common in cardiovascular diseases. They reflect changes in the activities of the protein kinases and phosphatases involving signaling pathways. Phosphorylation of serine, threonine, and tyrosine residues has been extensively investigated in vertebrates, whereas reversible histidine phosphorylation, a well-known regulatory signal in lower organisms, has been largely neglected as it has been generally assumed that histidine phosphorylation is of minor importance in vertebrates. More recently, it has become evident that the nucleoside diphosphate kinase isoform B (NDPK-B), an ubiquitously expressed enzyme involved in nucleotide metabolism, and a highly specific phosphohistidine phosphatase (PHP) form a regulatory histidine protein kinase/phosphatase system in mammals. At least three well defined substrates of NDPK-B are known: The β-subunit of heterotrimeric G-proteins (Gβ), the intermediate conductance potassium channel SK4 and the Ca(2+) conducting TRP channel family member, TRPV5. In each of these proteins the phosphorylation of a specific histidine residue regulates cellular signal transduction or channel activity. This article will therefore summarize our current knowledge on protein histidine phosphorylation and highlight its relevance for cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Thomas Wieland
- Institute for Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University , Mannheim, Germany
| | - Paul V Attwood
- School of Chemistry and Biochemistry, The University of Western Australia , Crawley, Australia
| |
Collapse
|
27
|
Abstract
A small library of truncated/lipid-conjugated neuromedin U (NmU) analogs was synthesized and tested in vitro using an intracellular calcium signaling assay. The selected, most active analogs were then tested in vivo, and showed potent anorexigenic effects in a diet-induced obese (DIO) mouse model. The most promising compound, NM4-C16 was effective in a once-weekly-dose regimen. Collectively, our findings suggest that short, lipidated analogs of NmU are suitable leads for the development of novel anti-obesity therapeutics.
Collapse
|
28
|
Lemaitre RN, Fretts AM, Sitlani CM, Biggs ML, Mukamal K, King IB, Song X, Djoussé L, Siscovick DS, McKnight B, Sotoodehnia N, Kizer JR, Mozaffarian D. Plasma phospholipid very-long-chain saturated fatty acids and incident diabetes in older adults: the Cardiovascular Health Study. Am J Clin Nutr 2015; 101:1047-54. [PMID: 25787996 PMCID: PMC4409688 DOI: 10.3945/ajcn.114.101857] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/20/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Circulating saturated fatty acids (SFAs) are integrated biomarkers of diet and metabolism that may influence the pathogenesis of diabetes. In epidemiologic studies, circulating levels of palmitic acid (16:0) are associated with diabetes; however, very-long-chain SFAs (VLSFAs), with 20 or more carbons, differ from palmitic acid in their biological activities, and little is known of the association of circulating VLSFA with diabetes. OBJECTIVE By using data from the Cardiovascular Health Study, we examined the associations of plasma phospholipid VLSFA levels measured at baseline with subsequent incident diabetes. DESIGN A total of 3179 older adults, with a mean age of 75 y at study baseline (1992-1993), were followed through 2011. We used multiple proportional hazards regression to examine the associations of arachidic acid (20:0), behenic acid (22:0), and lignoceric acid (24:0) with diabetes. RESULTS Baseline levels of each VLSFA were cross-sectionally associated with lower triglyceride levels and lower circulating palmitic acid. We identified 284 incident diabetes cases during follow-up. Compared with the lowest quartile, levels of arachidic acid in the highest quartile of the fatty acid distribution were associated with a 47% lower risk of diabetes (95% CI: 23%, 63%; P-trend: <0.001), after adjustment for demographics, lifestyle factors, and clinical conditions. In analogous comparisons, levels of behenic and lignoceric acid were similarly associated with 33% (95% CI: 6%, 53%; P-trend: 0.02) and 37% (95% CI: 11%, 55%; P-trend: 0.01) lower diabetes risk, respectively. Adjustment for triglycerides and palmitic acid attenuated the associations toward the null, and only the association of arachidic acid remained statistically significant (32% lower risk for fourth vs. first quartile; P-trend: 0.04). CONCLUSIONS These results suggest that circulating VLSFAs are associated with a lower risk of diabetes, and these associations may be mediated by lower triglycerides and palmitic acid. The study highlights the need to distinguish the effects of different SFAs and to explore determinants of circulating VLSFAs. This trial was registered at clinicaltrials.gov as NCT00005133.
Collapse
Affiliation(s)
- Rozenn N Lemaitre
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Amanda M Fretts
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Colleen M Sitlani
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Mary L Biggs
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Kenneth Mukamal
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Irena B King
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Xiaoling Song
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Luc Djoussé
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - David S Siscovick
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Barbara McKnight
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Nona Sotoodehnia
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Jorge R Kizer
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| | - Dariush Mozaffarian
- From the Cardiovascular Health Research Unit (RNL, AMF, CMS, and NS), Departments of Medicine (RNL, CMS, and NS), Epidemiology (AMF), and Biostatistics (MLB and BM), University of Washington, Seattle, WA; the Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (KM); the Department of Internal Medicine, University of New Mexico, Albuquerque, NM (IBK); Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (XS); the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LD); New York Academy of Medicine, New York, NY (DSS); the Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (JRK); and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (DM)
| |
Collapse
|
29
|
Trafficking of β-Adrenergic Receptors: Implications in Intracellular Receptor Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:151-88. [PMID: 26055058 DOI: 10.1016/bs.pmbts.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Adrenergic receptors (βARs), prototypical G-protein-coupled receptors, play a pivotal role in regulating neuronal and cardiovascular responses to catecholamines during stress. Agonist-induced receptor endocytosis is traditionally considered as a primary mechanism to turn off the receptor signaling (or receptor desensitization). However, recent progress suggests that intracellular trafficking of βAR presents a mean to translocate receptor signaling machinery to intracellular organelles/compartments while terminating the signaling at the cell surface. Moreover, the apparent multidimensionality of ligand efficacy in space and time in a cell has forecasted exciting pathophysiological implications, which are just beginning to be explored. As we begin to understand how these pathways impact downstream cellular programs, this will have significant implications for a number of pathophysiological conditions in heart and other systems, that in turn open up new therapeutic opportunities.
Collapse
|
30
|
Balycheva M, Faggian G, Glukhov AV, Gorelik J. Microdomain-specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys Rev 2015; 7:43-62. [PMID: 28509981 PMCID: PMC5425752 DOI: 10.1007/s12551-014-0159-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
Cardiac excitation involves the generation of action potential by individual cells and the subsequent conduction of the action potential from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type calcium ion (Ca2+) channels, thereby allowing a small amount of Ca2+ to enter the cell, which in turn triggers the release of a much greater amount of Ca2+ from the sarcoplasmic reticulum, the intracellular Ca2+ store, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. It has recently become evident that discrete clusters of different ion channels and regulatory receptors are present in the sarcolemma, where they form an interacting network and work together as a part of a macro-molecular signalling complex which in turn allows the specificity, reliability and accuracy of the autonomic modulation of the excitation-contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of ion channels and associated signalling proteins may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure and certain arrhythmias. Recent methodological advances have made it possible to routinely image the topography of live cardiomyocytes, allowing the study of clustering functional ion channels and receptors as well as their coupling within a specific microdomain. In this review we highlight the emerging understanding of the functionality of distinct subcellular microdomains in cardiac myocytes (e.g. T-tubules, lipid rafts/caveolae, costameres and intercalated discs) and their functional role in the accumulation and regulation of different subcellular populations of sodium, Ca2+ and potassium ion channels and their contributions to cellular signalling and cardiac pathology.
Collapse
Affiliation(s)
- Marina Balycheva
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Giuseppe Faggian
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Alexey V Glukhov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
31
|
Sun J, Nguyen T, Aponte AM, Menazza S, Kohr MJ, Roth DM, Patel HH, Murphy E, Steenbergen C. Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovasc Res 2015; 106:227-36. [PMID: 25694588 DOI: 10.1093/cvr/cvv044] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/08/2015] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) and protein S-nitrosylation (SNO) have been shown to play important roles in ischaemic preconditioning (IPC)-induced acute cardioprotection. The majority of proteins that show increased SNO following IPC are localized to the mitochondria, and our recent studies suggest that caveolae transduce acute NO/SNO cardioprotective signalling in IPC hearts. Due to the close association between subsarcolemmal mitochondria (SSM) and the sarcolemma/caveolae, we tested the hypothesis that SSM, rather than the interfibrillar mitochondria (IFM), are major targets for NO/SNO signalling derived from caveolae-associated eNOS. Following either control perfusion or IPC, SSM and IFM were isolated from Langendorff perfused mouse hearts, and SNO was analysed using a modified biotin switch method with fluorescent maleimide fluors. In perfusion control hearts, the SNO content was higher in SSM compared with IFM (1.33 ± 0.19, ratio of SNO content Perf-SSM vs. Perf-IFM), and following IPC SNO content significantly increased preferentially in SSM, but not in IFM (1.72 ± 0.17 and 1.07 ± 0.04, ratio of SNO content IPC-SSM vs. Perf-IFM, and IPC-IFM vs. Perf-IFM, respectively). Consistent with these findings, eNOS, caveolin-3, and connexin-43 were detected in SSM, but not in IFM, and IPC resulted in a further significant increase in eNOS/caveolin-3 levels in SSM. Interestingly, we did not observe an IPC-induced increase in SNO or eNOS/caveolin-3 in SSM isolated from caveolin-3(-/-) mouse hearts, which could not be protected with IPC. In conclusion, these results suggest that SSM may be the preferential target of sarcolemmal signalling-derived post-translational protein modification (caveolae-derived eNOS/NO/SNO), thus providing an important role in IPC-induced cardioprotection.
Collapse
Affiliation(s)
- Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bldg10/Rm8N206, Bethesda, MD 20892, USA
| | - Tiffany Nguyen
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bldg10/Rm8N206, Bethesda, MD 20892, USA
| | - Angel M Aponte
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bldg10/Rm8N206, Bethesda, MD 20892, USA Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Menazza
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bldg10/Rm8N206, Bethesda, MD 20892, USA
| | - Mark J Kohr
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bldg10/Rm8N206, Bethesda, MD 20892, USA Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - David M Roth
- Department of Anesthesiology, VA San Diego Healthcare System and University of California at San Diego, La Jolla, CA 92093, USA
| | - Hemal H Patel
- Department of Anesthesiology, VA San Diego Healthcare System and University of California at San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bldg10/Rm8N206, Bethesda, MD 20892, USA
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Israeli-Rosenberg S, Chen C, Li R, Deussen DN, Niesman IR, Okada H, Patel HH, Roth DM, Ross RS. Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J 2014; 29:374-84. [PMID: 25366344 DOI: 10.1096/fj.13-243139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
β1 integrins (β1) transduce mechanical signals in many cells, including cardiac myocytes (CM). Given their close localization, as well as their role in mechanotransduction and signaling, we hypothesized that caveolin (Cav) proteins might regulate integrins in the CM. β1 localization, complex formation, activation state, and signaling were analyzed using wild-type, Cav3 knockout, and Cav3 CM-specific transgenic heart and myocyte samples. Studies were performed under basal and mechanically loaded conditions. We found that: (1) β1 and Cav3 colocalize in CM and coimmunoprecipitate from CM protein lysates; (2) β1 is detected in a subset of caveolae; (3) loss of Cav3 caused reduction of β1D integrin isoform and active β1 integrin from the buoyant domains in the heart; (4) increased expression of myocyte Cav3 correlates with increased active β1 integrin in adult CM; (5) in vivo pressure overload of the wild-type heart results in increased activated integrin in buoyant membrane domains along with increased association between active integrin and Cav3; and (6) Cav3-deficient myocytes have perturbed basal and stretch mediated signaling responses. Thus, Cav3 protein can modify integrin function and mechanotransduction in the CM and intact heart.
Collapse
Affiliation(s)
- Sharon Israeli-Rosenberg
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Chao Chen
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Ruixia Li
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Daniel N Deussen
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Ingrid R Niesman
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Hideshi Okada
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Hemal H Patel
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - David M Roth
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| | - Robert S Ross
- *Department of Medicine and Department of Anesthesiology, University of California at San Diego, School of Medicine, San Diego, California, USA; U.S. Veterans Administration, San Diego Healthcare System, San Diego, California, USA; and Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
33
|
Exendin-4 ameliorates cardiac ischemia/reperfusion injury via caveolae and caveolins-3. Cardiovasc Diabetol 2014; 13:132. [PMID: 25194961 PMCID: PMC4172825 DOI: 10.1186/s12933-014-0132-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/30/2014] [Indexed: 12/25/2022] Open
Abstract
Background Exendin-4, an exogenous glucagon-like peptide-1 receptor (GLP-1R) agonist, protects the heart from ischemia/reperfusion injury. However, the mechanisms for this protection are poorly understood. Caveolae, sarcolemmal invaginations, and caveolins, scaffolding proteins in caveolae, localize molecules involved in cardiac protection. We tested the hypothesis that caveolae and caveolins are essential for exendin-4 induced cardiac protection using in vitro and in vivo studies in control and caveolin-3 (Cav-3) knockout mice (Cav-3 KO). Methods Myocytes were treated with exendin-4 and then incubated with methyl-β-cyclodextrin (MβCD) to disrupt caveolae formation. This was then followed by simulated ischemia/reperfusion (SI/R). In addition, cardiac protection in vivo was assessed by measuring infarct size and cardiac troponin levels. Results Exendin-4 protected cardiac myocytes (CM) from SI/R [35.6 ± 12.6% vs. 64.4 ± 18.0% cell death, P = 0.034] and apoptosis but this protection was abolished by MβCD (71.8 ± 10.8% cell death, P = 0.004). Furthermore, Cav-3/GLP-1R co-localization was observed and membrane fractionation by sucrose density gradient centrifugation of CM treated with MβCD + exendin-4 revealed that buoyant (caveolae enriched) fractions decreased Cav-3 compared to CM treated with exendin-4 exclusively. Furthermore, exendin-4 induced a reduction in infarct size and cardiac troponin relative to control (infarct size: 25.1 ± 8.2% vs. 41.4 ± 4.1%, P < 0.001; troponin: 36.9 ± 14.2 vs. 101.1 ± 22.3 ng/ml, P < 0.001). However, exendin-4 induced cardiac protection was abolished in Cav-3 KO mice (infarct size: 43.0 ± 6.4%, P < 0.001; troponin: 96.8 ± 26.6 ng/ml, P = 0.001). Conclusions We conclude that caveolae and caveolin-3 are critical for exendin-4 induced protection of the heart from ischemia/reperfusion injury.
Collapse
|
34
|
Corriden R, Kilpatrick LE, Kellam B, Briddon SJ, Hill SJ. Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism. FASEB J 2014; 28:4211-22. [PMID: 24970394 PMCID: PMC4202110 DOI: 10.1096/fj.13-247270] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor (R) conformations in membrane microdomains of individual cells. FCS analysis of CA200645-occupied A3ARs revealed 2 species, τD2 and τD3, that diffused at 2.29 ± 0.35 and 0.09 ± 0.03 μm(2)/s, respectively. FCS analysis of a green fluorescent protein (GFP)-tagged A3AR exhibited a single diffusing species (0.105 μm(2)/s). The binding of CA200645 to τD3 was antagonized by nanomolar concentrations of the A3 antagonist MRS 1220, but not by the agonist NECA (up to 300 nM), consistent with labeling of R. CA200645 normally dissociated slowly from the A3AR, but inclusion of xanthine amine congener (XAC) or VUF 5455 during washout markedly accelerated the reduction in the number of particles exhibiting τD3 characteristics. It is notable that this effect was accompanied by a significant increase in the number of particles with τD2 diffusion. These data show that FCS analysis of ligand-occupied receptors provides a unique means of monitoring ligand A3AR residence times that are significantly reduced as a consequence of allosteric interaction across the dimer interface
Collapse
Affiliation(s)
- Ross Corriden
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| | - Laura E Kilpatrick
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| | - Barrie Kellam
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| | - Stephen J Hill
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| |
Collapse
|
35
|
Geranylgeranylacetone and volatile anesthetic-induced cardiac protection synergism is dependent on caveolae and caveolin-3. J Anesth 2014; 28:733-9. [DOI: 10.1007/s00540-014-1816-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/26/2014] [Indexed: 11/25/2022]
|
36
|
Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:857504. [PMID: 24738074 PMCID: PMC3967716 DOI: 10.1155/2014/857504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/21/2014] [Indexed: 12/02/2022]
Abstract
Caveolae/lipid rafts are membrane-rich cholesterol domains endowed with several functions in signal transduction and caveolin-1 (Cav-1) has been reported to be implicated in regulating multiple cancer-associated processes, ranging from tumor growth to multidrug resistance and angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) and Cav-1 are frequently colocalized, suggesting an important role played by this interaction on cancer cell survival and proliferation. Thus, our attention was directed to a leukemia cell line (B1647) that constitutively produces VEGF and expresses the tyrosine-kinase receptor VEGFR-2. We investigated the presence of VEGFR-2 in caveolae/lipid rafts, focusing on the correlation between reactive oxygen species (ROS) production and glucose transport modulation induced by VEGF, peculiar features of tumor proliferation. In order to better understand the involvement of VEGF/VEGFR-2 in the redox signal transduction, we evaluated the effect of different compounds able to inhibit VEGF interaction with its receptor by different mechanisms, corroborating the obtained results by immunoprecipitation and fluorescence techniques. Results here reported showed that, in B1647 leukemia cells, VEGFR-2 is present in caveolae through association with Cav-1, demonstrating that caveolae/lipid rafts act as platforms for negative modulation of VEGF redox signal transduction cascades leading to glucose uptake and cell proliferation, suggesting therefore novel potential targets.
Collapse
|
37
|
Manglik A, Kobilka B. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Curr Opin Cell Biol 2014; 27:136-43. [PMID: 24534489 DOI: 10.1016/j.ceb.2014.01.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are versatile signaling proteins that mediate complex cellular responses to hormones and neurotransmitters. Recent advances in GPCR crystallography have provided inactive and active state structures for rhodopsin and the β2 adrenergic receptor (β2AR). Although these structures suggest a two-state 'on-off' mechanism of receptor activation, other biophysical studies and observed signaling versatility suggest that GPCRs are highly dynamic and exist in a multitude of functionally distinct conformations. To fully understand how GPCRs work, we must characterize these conformations and determine how ligands affect their energetics and rates of interconversion. This brief review will compare and contrast the dynamic properties of rhodopsin and β2AR that shed light on the role of structural dynamics in their distinct signaling behaviors.
Collapse
Affiliation(s)
- Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Brian Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Mika D, Richter W, Westenbroek RE, Catterall WA, Conti M. PDE4B mediates local feedback regulation of β₁-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes. J Cell Sci 2014; 127:1033-42. [PMID: 24413164 DOI: 10.1242/jcs.140251] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple cAMP phosphodiesterase (PDE) isoforms play divergent roles in cardiac homeostasis but the molecular basis for their non-redundant function remains poorly understood. Here, we report a novel role for the PDE4B isoform in β-adrenergic (βAR) signaling in the heart. Genetic ablation of PDE4B disrupted βAR-induced cAMP transients, as measured by FRET sensors, at the sarcolemma but not in the bulk cytosol of cardiomyocytes. This effect was further restricted to a subsarcolemmal compartment because PDE4B regulates β1AR-, but not β2AR- or PGE2-induced responses. The spatially restricted function of PDE4B was confirmed by its selective effects on PKA-mediated phosphorylation patterns. PDE4B limited the PKA-mediated phosphorylation of key players in excitation-contraction coupling that reside in the sarcolemmal compartment, including L-type Ca(2+) channels and ryanodine receptors, but not phosphorylation of distal cytosolic proteins. β1AR- but not β2AR-ligation induced PKA-dependent activation of PDE4B and interruption of this negative feedback with PKA inhibitors increased sarcolemmal cAMP. Thus, PDE4B mediates a crucial PKA-dependent feedback that controls β1AR-dependent cAMP signals in a restricted subsarcolemmal domain. Disruption of this feedback augments local cAMP/PKA signals, leading to an increased intracellular Ca(2+) level and contraction rate.
Collapse
Affiliation(s)
- Delphine Mika
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
39
|
Jaeger WC, Armstrong SP, Hill SJ, Pfleger KDG. Biophysical Detection of Diversity and Bias in GPCR Function. Front Endocrinol (Lausanne) 2014; 5:26. [PMID: 24634666 PMCID: PMC3943086 DOI: 10.3389/fendo.2014.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
Guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) function in complexes with a range of molecules and proteins including ligands, G proteins, arrestins, ubiquitin, and other receptors. Elements of these complexes may interact constitutively or dynamically, dependent upon factors such as ligand binding, phosphorylation, and dephosphorylation. They may also be allosterically modulated by other proteins in a manner that changes temporally and spatially within the cell. Elucidating how these complexes function has been greatly enhanced by biophysical technologies that are able to monitor proximity and/or binding, often in real time and in live cells. These include resonance energy transfer approaches such as bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET). Furthermore, the use of fluorescent ligands has enabled novel insights into allosteric interactions between GPCRs. Consequently, biophysical approaches are helping to unlock the amazing diversity and bias in G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Werner C. Jaeger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen P. Armstrong
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen J. Hill
- Cell Signalling Research Group, School of Life Sciences, Queen’s Medical Centre, University of Nottingham Medical School, Nottingham, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Dimerix Bioscience Pty Ltd, Perth, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, QQ Block, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia e-mail:
| |
Collapse
|
40
|
Sun J, Nguyen T, Kohr MJ, Murphy E. Cardioprotective Role of Caveolae in Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2013; 3. [PMID: 26989575 DOI: 10.4172/2161-1025.1000114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Caveolae are flask-like invaginations of the plasma membrane enriched in cholesterol, sphingolipids, the marker protein caveolin and the coat protein cavin. In cardiomyocytes, multiple signaling molecules are concentrated and organized within the caveolae to mediate signaling transduction. Recent studies suggest that caveolae and caveolae-associated signaling molecules play an important role in protecting the myocardium against ischemia-reperfusion injury. For example, cardiac-specific overexpression of caveolin-3 has been shown to lead to protection that mimics ischemic preconditioning, while the knockout of caveolin-3 abolished ischemic preconditioning. In this review, we discuss the molecular mechanisms and signaling pathways that are involved in caveolae-mediated cardioprotection, and examine the potential for caveolae as a therapeutic target for pharmaceutical intervention to treat cardiovascular disease.
Collapse
Affiliation(s)
- Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiffany Nguyen
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark J Kohr
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:532-45. [PMID: 23899502 DOI: 10.1016/j.bbamem.2013.07.018] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022]
Abstract
The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
42
|
Mahavadi S, Bhattacharya S, Kim J, Fayed S, Al-Shboul O, Grider JR, Murthy KS. Caveolae-dependent internalization and homologous desensitization of VIP/PACAP receptor, VPAC₂, in gastrointestinal smooth muscle. Peptides 2013; 43:137-45. [PMID: 23499767 PMCID: PMC4026926 DOI: 10.1016/j.peptides.2013.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 12/18/2022]
Abstract
The main membrane proteins of caveolae (caveolin-1, -2 and -3) oligomerize within lipid rich domains to form regular invaginations of smooth muscle plasma membrane and participate in receptor internalization and desensitization independent of clathrin-coated vesicle endocytosis. We have previously shown that Gs-coupled VIP/PACAP receptors, VPAC2, predominantly expressed in smooth muscle cells of the gut, are exclusively phosphorylated by GRK2 leading to receptor internalization and desensitization. Herein, we characterized the role of caveolin-1 in VPAC2 receptor internalization and desensitization in gastric smooth muscle using three approaches: (i) methyl β-cyclodextrin (MβCD) to deplete cholesterol and disrupt caveolae in dispersed muscle cells, (ii) caveolin-1 siRNA to suppress caveolin-1 expression in cultured muscle cells, and (iii) caveolin-1 knockout mice (caveolin-1(-/-)). Pretreatment of gastric muscle cells with VIP stimulated tyrosine phosphorylation of caveolin-1, and induced VPAC2 receptor internalization (measured as decrease in (125)I-VIP binding after pretreatment) and desensitization (measured as decrease in VIP-induced cAMP formation after pretreatment). Caveolin-1 phosphorylation, and VPAC2 receptor internalization and desensitization were blocked by disruption of caveolae with MβCD, suppression of caveolin-1 with caveolin-1 siRNA or inhibition of Src kinase activity by PP2. Pretreatment with VIP significantly inhibited adenylyl cyclase activity and muscle relaxation in response to subsequent addition of VIP in freshly dispersed muscle cells and in muscle strips isolated from wild type and caveolin-1(-/-) mice; however, the inhibition was significantly attenuated in caveolin-1(-/-) mice. These results suggest that caveolin-1 plays an important role in VPAC2 receptor internalization and desensitization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karnam S. Murthy
- Corresponding author at: Department of Physiology, Virginia Commonwealth University, Richmond, VA 23298-0551, United States. Tel.: +1 804 828 0029; fax: +1 804 827 0947. (K.S. Murthy)
| |
Collapse
|
43
|
Competition for Gβγ dimers mediates a specific cross-talk between stimulatory and inhibitory G protein α subunits of the adenylyl cyclase in cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:459-69. [PMID: 23615874 DOI: 10.1007/s00210-013-0876-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/17/2013] [Indexed: 12/20/2022]
Abstract
Heterotrimeric G proteins are key regulators of signaling pathways in mammalian cells. Beyond G protein-coupled receptors, the amount and mutual ratio of specific G protein α, β, and γ subunits determine the G protein signaling. However, little is known about mechanisms that regulate the concentration and composition of G protein subunits at the plasma membrane. Here, we show a novel cross-talk between stimulatory and inhibitory G protein α subunits (Gα) that is mediated by G protein βγ dimers and controls the abundance of specific Gα subunits at the plasma membrane. Firstly, we observed in heart tissue from constitutively Gαi2- and Gαi3-deficient mice that the loss of Gαi2 and Gαi3 was accompanied by a slight increase in the protein content of the nontargeted Gαi isoform. Therefore, we analyzed whether overexpression of selected Gα subunits conversely impairs endogenous G protein α and β subunit levels in cardiomyocytes. Integration of overexpressed Gαi2 subunits into heterotrimeric G proteins was verified by co-immunoprecipitation. Adenoviral expression of increasing amounts of Gαi2 led to a reduction of Gαi3 (up to 90 %) and Gαs (up to 75 %) protein levels. Likewise, increasing amounts of adenovirally expressed Gαs resulted in a linear 75 % decrease in both Gαi2 and Gαi3 protein levels. In contrast, overexpression of either Gαi or Gαs isoform did not influence the amount of Gαo and Gαq, both of which are not involved in the regulation of adenylyl cyclase activity. The mRNA expression of the disappearing endogenous Gα subunits was not affected, indicating a posttranslational mechanism. Interestingly, the amount of endogenous G protein βγ dimers was not altered by any Gα overexpression. However, the increase of Gβγ level by adenoviral expression prevented the loss of endogenous Gαs and Gαi3 in Gαi2 overexpressing cardiomyocytes. Thus, our results provide evidence for a novel mechanism cross-regulating adenylyl cyclase-modulating Gαi isoforms and Gαs proteins. The Gα subunits apparently compete for a limited amount of Gβγ dimers, which are required for G protein heterotrimer formation at the plasma membrane.
Collapse
|
44
|
Timofeyev V, Myers RE, Kim HJ, Woltz RL, Sirish P, Heiserman JP, Li N, Singapuri A, Tang T, Yarov-Yarovoy V, Yamoah EN, Hammond HK, Chiamvimonvat N. Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res 2013; 112:1567-76. [PMID: 23609114 DOI: 10.1161/circresaha.112.300370] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Adenylyl cyclase (AC) represents one of the principal molecules in the β-adrenergic receptor signaling pathway, responsible for the conversion of ATP to the second messenger, cAMP. AC types 5 (ACV) and 6 (ACVI) are the 2 main isoforms in the heart. Although highly homologous in sequence, these 2 proteins play different roles during the development of heart failure. Caveolin-3 is a scaffolding protein, integrating many intracellular signaling molecules in specialized areas called caveolae. In cardiomyocytes, caveolin is located predominantly along invaginations of the cell membrane known as t-tubules. OBJECTIVE We take advantage of ACV and ACVI knockout mouse models to test the hypothesis that there is distinct compartmentalization of these isoforms in ventricular myocytes. METHODS AND RESULTS We demonstrate that ACV and ACVI isoforms exhibit distinct subcellular localization. The ACVI isoform is localized in the plasma membrane outside the t-tubular region and is responsible for β1-adrenergic receptor signaling-mediated enhancement of the L-type Ca(2+) current (ICa,L) in ventricular myocytes. In contrast, the ACV isoform is localized mainly in the t-tubular region where its influence on ICa,L is restricted by phosphodiesterase. We further demonstrate that the interaction between caveolin-3 with ACV and phosphodiesterase is responsible for the compartmentalization of ACV signaling. CONCLUSIONS Our results provide new insights into the compartmentalization of the 2 AC isoforms in the regulation of ICa,L in ventricular myocytes. Because caveolae are found in most mammalian cells, the mechanism of β- adrenergic receptor and AC compartmentalization may also be important for β-adrenergic receptor signaling in other cell types.
Collapse
Affiliation(s)
- Valeriy Timofeyev
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
There is increasing evidence that G protein-coupled receptor (GPCR) signaling is regulated in lipid raft microdomains. GPCRs and GPCR-signaling molecules, including G proteins and protein kinases, have been reported to compartmentalize in these microdomains. Dopamine D(1)-like receptors (D(1)R and D(5)R) belong to a family of GPCRs that are important in the regulation of renal function. These receptors are not only localized and regulated in caveolae that contains caveolin-1 but are also distributed in non--caveolar lipid rafts which do not contain caveolin-1. This chapter describes detergent- and non-detergent-based methods to obtain lipid raft fractions from renal proximal tubule cells.
Collapse
|
46
|
Harvey RD, Hell JW. CaV1.2 signaling complexes in the heart. J Mol Cell Cardiol 2012; 58:143-52. [PMID: 23266596 DOI: 10.1016/j.yjmcc.2012.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023]
Abstract
L-type Ca(2+) channels (LTCCs) are essential for generation of the electrical and mechanical properties of cardiac muscle. Furthermore, regulation of LTCC activity plays a central role in mediating the effects of sympathetic stimulation on the heart. The primary mechanism responsible for this regulation involves β-adrenergic receptor (βAR) stimulation of cAMP production and subsequent activation of protein kinase A (PKA). Although it is well established that PKA-dependent phosphorylation regulates LTCC function, there is still much we do not understand. However, it has recently become clear that the interaction of the various signaling proteins involved is not left to completely stochastic events due to random diffusion. The primary LTCC expressed in cardiac muscle, CaV1.2, forms a supramolecular signaling complex that includes the β2AR, G proteins, adenylyl cyclases, phosphodiesterases, PKA, and protein phosphatases. In some cases, the protein interactions with CaV1.2 appear to be direct, in other cases they involve scaffolding proteins such as A kinase anchoring proteins and caveolin-3. Functional evidence also suggests that the targeting of these signaling proteins to specific membrane domains plays a critical role in maintaining the fidelity of receptor mediated LTCC regulation. This information helps explain the phenomenon of compartmentation, whereby different receptors, all linked to the production of a common diffusible second messenger, can vary in their ability to regulate LTCC activity. The purpose of this review is to examine our current understanding of the signaling complexes involved in cardiac LTCC regulation.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
47
|
Jiang X, Pan H, Nabhan JF, Krishnan R, Koziol-White C, Panettieri RA, Lu Q. A novel EST-derived RNAi screen reveals a critical role for farnesyl diphosphate synthase in β2-adrenergic receptor internalization and down-regulation. FASEB J 2012; 26:1995-2007. [PMID: 22278941 DOI: 10.1096/fj.11-193870] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The β2-adrenergic receptor (β2AR) plays important physiological roles in the heart and lung and is the primary target of β-agonists, the mainstay asthma drugs. Activation of β2AR by β-agonists is attenuated by receptor down-regulation, which ensures transient stimulation of the receptor but reduces the efficacy of β-agonists. Here we report the identification, through a functional genome-wide RNA interference (RNAi) screen, of new genes critically involved in β2AR down-regulation. We developed a lentivirus-based RNAi library consisting of 26-nt short-hairpin RNAs (shRNAs). The library was generated enzymatically from a large collection of expressed sequence tag (EST) DNAs corresponding to ∼20,000 human genes and contains on average ∼6 highly potent shRNAs (>75% knockdown efficiency) for each gene. Using this novel shRNA library, together with a robust cell model for β2AR expression, we performed fluorescence-activated cell sorting and isolated cells that, as a consequence of shRNA-mediated gene inactivation, exhibited defective agonist-induced down-regulation. The screen discovered several previously unrecognized β2AR regulators, including farnesyl diphosphate synthase (FDPS). We showed that inactivation of FDPS by shRNA, small interfering RNA, or the highly specific pharmaceutical inhibitor alendronate inhibited β2AR down-regulation. Notably, in human airway smooth muscle cells, the physiological target of β-agonists, alendronate treatment functionally reversed agonist-induced endogenous β2AR loss as indicated by an increase in cAMP production. FDPS inactivation interfered with β2AR internalization into endosomes through disrupting the membrane localization of the Rab5 small GTPase. Furthermore, Rab5 overexpression reversed the deficient receptor down-regulation induced by alendronate, suggesting that FDPS regulates receptor down-regulation in a Rab5-dependent manner. Together, our findings reveal a FDPS-dependent mechanism in the internalization and down-regulation of β2AR, identify FDPS as a potential target for improving the therapeutic efficacy of β-agonists, and demonstrate the utility of the unique EST-derived shRNA library for functional genetics studies.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Reeves VL, Thomas CM, Smart EJ. Lipid rafts, caveolae and GPI-linked proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:3-13. [PMID: 22411310 DOI: 10.1007/978-1-4614-1222-9_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipid rafts and caveolae are specialized membrane microdomains enriched in sphingolipids and cholesterol. They function in a variety of cellular processes including but not limited to endocytosis, transcytosis, signal transduction and receptor recycling. Here, we outline the similarities and differences between lipid rafts and caveolae as well as discuss important components and functions of each.
Collapse
|
49
|
Sun J, Kohr MJ, Nguyen T, Aponte AM, Connelly PS, Esfahani SG, Gucek M, Daniels MP, Steenbergen C, Murphy E. Disruption of caveolae blocks ischemic preconditioning-mediated S-nitrosylation of mitochondrial proteins. Antioxid Redox Signal 2012; 16:45-56. [PMID: 21834687 PMCID: PMC3218381 DOI: 10.1089/ars.2010.3844] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIMS Nitric oxide (NO) and protein S-nitrosylation (SNO) play important roles in ischemic preconditioning (IPC)-induced cardioprotection. Mitochondria are key regulators of preconditioning, and most proteins showing an increase in SNO with IPC are mitochondrial. The aim of this study was to address how IPC transduces NO/SNO signaling to mitochondria in the heart. RESULTS In this study using Langendorff perfused mouse hearts, we found that IPC-induced cardioprotection was blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor), ascorbic acid (a reducing agent to decompose SNO), or methyl-?-cyclodextrin (M?CD, a cholesterol sequestering agent to disrupt caveolae). IPC not only activated AKT/eNOS signaling but also led to translocation of eNOS to mitochondria. M?CD treatment disrupted caveolar structure, leading to dissociation of eNOS from caveolin-3 and blockade of IPC-induced activation of the AKT/eNOS signaling pathway. A significant increase in mitochondrial SNO was found in IPC hearts compared to perfusion control, and the disruption of caveolae by M?CD treatment not only abolished IPC-induced cardioprotection, but also blocked the IPC-induced increase in SNO. INNOVATION These results provide mechanistic insight into how caveolae/eNOS/NO/SNO signaling mediates cardioprotection induced by IPC. CONCLUSION Altogether these results suggest that caveolae transduce eNOS/NO/SNO cardioprotective signaling in the heart.
Collapse
Affiliation(s)
- Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Maurice P, Benleulmi-Chaachoua A, Jockers R. Differential assembly of GPCR signaling complexes determines signaling specificity. Subcell Biochem 2012; 63:225-40. [PMID: 23161141 DOI: 10.1007/978-94-007-4765-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent proteomic and biochemical evidence indicates that cellular -signaling is organized in protein modules. G protein-coupled receptors (GPCRs) are privileged entry points for extracellular signals that are transmitted through the plasma membrane into the cell. The adequate cellular response and signaling specificity is regulated by GPCR-associated protein modules. The composition of these modules is dynamic and might depend on receptor stimulation, the proteome of a given cellular context, the subcellular localization of receptor-associated modules, the formation of GPCR oligomers and the variation of expression levels of components of these modules under physiological, for example circadian rhythm, or pathological conditions. The current article will highlight the importance of GPCR-associated protein modules as a biochemical basis for signaling specificity.
Collapse
Affiliation(s)
- Pascal Maurice
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France
| | | | | |
Collapse
|