1
|
Dimasi CG, Darby JRT, Cho SKS, Saini BS, Holman SL, Meakin AS, Wiese MD, Macgowan CK, Seed M, Morrison JL. Reduced in utero substrate supply decreases mitochondrial abundance and alters the expression of metabolic signalling molecules in the fetal sheep heart. J Physiol 2024; 602:5901-5922. [PMID: 37996982 DOI: 10.1113/jp285572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Babies born with fetal growth restriction (FGR) are at higher risk of developing cardiometabolic diseases across the life course. The reduction in substrate supply to the developing fetus that causes FGR not only alters cardiac growth and structure but may have deleterious effects on metabolism and function. Using a sheep model of placental restriction to induce FGR, we investigated key cardiac metabolic and functional markers that may be altered in FGR. We also employed phase-contrast magnetic resonance imaging MRI to assess left ventricular cardiac output (LVCO) as a measure of cardiac function. We hypothesized that signalling molecules involved in cardiac fatty acid utilisation and contractility would be impaired by FGR and that this would have a negative impact on LVCO in the late gestation fetus. Key glucose (GLUT4 protein) and fatty acid (FATP, CD36 gene expression) substrate transporters were significantly reduced in the hearts of FGR fetuses. We also found reduced mitochondrial numbers as well as abundance of electron transport chain complexes (complexes II and IV). These data suggest that FGR diminishes metabolic and mitochondrial capacity in the fetal heart; however, alterations were not correlated with fetal LVCO. Overall, these data show that FGR alters fetal cardiac metabolism in late gestation. If sustained ex utero, this altered metabolic profile may contribute to poor cardiac outcomes in FGR-born individuals after birth. KEY POINTS: Around the time of birth, substrate utilisation in the fetal heart switches from carbohydrates to fatty acids. However, the effect of fetal growth restriction (FGR) on this switch, and thus the ability of the fetal heart to effectively metabolise fatty acids, is not fully understood. Using a sheep model of early onset FGR, we observed significant downregulation in mRNA expression of fatty acid receptors CD36 and FABP in the fetal heart. FGR fetuses also had significantly lower cardiac mitochondrial abundance than controls. There was a reduction in abundance of complexes II and IV within the electron transport chain of the FGR fetal heart, suggesting altered ATP production. This indicates reduced fatty acid metabolism and mitochondrial function in the heart of the FGR fetus, which may have detrimental long-term implications and contribute to increased risk of cardiovascular disease later in life.
Collapse
Affiliation(s)
- Catherine G Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Steven K S Cho
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Brahmdeep S Saini
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michael D Wiese
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Salas-Lucia F, Stan MN, James H, Rajwani A, Liao XH, Dumitrescu AM, Refetoff S. Effect of the Fetal THRB Genotype on the Placenta. J Clin Endocrinol Metab 2023; 108:e944-e948. [PMID: 37149816 PMCID: PMC10505537 DOI: 10.1210/clinem/dgad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
CONTEXT Pregnant women with mutations in the thyroid hormone receptor beta (THRB) gene expose their fetuses to high thyroid hormone (TH) levels shown to be detrimental to a normal fetus (NlFe) but not to an affected fetus (AfFe). However, no information is available about differences in placental TH regulators. OBJECTIVE To investigate whether there are differences in placentas associated with a NlFe compared with an AfFe, we had the unique opportunity to study placentas from 2 pregnancies of the same woman with THRB mutation G307D. One placenta supported a NlFe while the other an AfFe. METHODS Sections of placentas were collected and frozen at -80 °C after term delivery of a NlFe and an AfFe. Two placentas from healthy women of similar gestational age were also obtained. The fetal origin of the placental tissues was established by gDNA quantitation of genes on the X and Y chromosomes and THRB gene. Expression and enzymatic activity of deiodinases 2 and 3 were measured. Expression of following genes was also quantitated: MCT10, MCT8, LAT1, LAT2, THRB, THRA. RESULTS The placenta carrying the AfFe exhibited a significant reduction of deiodinase 2 and 3 activities as well as the expression of the TH transporters MCT10, LAT1 and LAT2, and THRA. CONCLUSION We present the first study of the effect of the fetal THRB genotype on the placenta. Though limited by virtue of the rarity of THRB mutations and sample availability, we show that the fetal THRB genotype influences the levels of TH regulators in the placenta.
Collapse
Affiliation(s)
| | - Marius N Stan
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haleigh James
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aadil Rajwani
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiao-Hui Liao
- Departments of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Alexandra M Dumitrescu
- Departments of Medicine, University of Chicago, Chicago, IL 60637, USA
- Departments of Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Samuel Refetoff
- Departments of Medicine, University of Chicago, Chicago, IL 60637, USA
- Departments of Pediatrics, University of Chicago, Chicago, IL 60637
- Departments of Committees on Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Page L, Younge N, Freemark M. Hormonal Determinants of Growth and Weight Gain in the Human Fetus and Preterm Infant. Nutrients 2023; 15:4041. [PMID: 37764824 PMCID: PMC10537367 DOI: 10.3390/nu15184041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The factors controlling linear growth and weight gain in the human fetus and newborn infant are poorly understood. We review here the changes in linear growth, weight gain, lean body mass, and fat mass during mid- and late gestation and the early postnatal period in the context of changes in the secretion and action of maternal, placental, fetal, and neonatal hormones, growth factors, and adipocytokines. We assess the effects of hormonal determinants on placental nutrient delivery and the impact of preterm delivery on hormone expression and postnatal growth and metabolic function. We then discuss the effects of various maternal disorders and nutritional and pharmacologic interventions on fetal and perinatal hormone and growth factor production, growth, and fat deposition and consider important unresolved questions in the field.
Collapse
Affiliation(s)
- Laura Page
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Noelle Younge
- Neonatology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
- The Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
5
|
Young R, Lewandowska D, Long E, Wooding FBP, De Blasio MJ, Davies KL, Camm EJ, Sangild PT, Fowden AL, Forhead AJ. Hypothyroidism impairs development of the gastrointestinal tract in the ovine fetus. Front Physiol 2023; 14:1124938. [PMID: 36935746 PMCID: PMC10020222 DOI: 10.3389/fphys.2023.1124938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Growth and maturation of the fetal gastrointestinal tract near term prepares the offspring for the onset of enteral nutrition at birth. Structural and functional changes are regulated by the prepartum rise in cortisol in the fetal circulation, although the role of the coincident rise in plasma tri-iodothyronine (T3) is unknown. This study examined the effect of hypothyroidism on the structural development of the gastrointestinal tract and the activity of brush-border digestive enzymes in the ovine fetus near term. In intact fetuses studied between 100 and 144 days of gestation (dGA; term ∼145 days), plasma concentrations of T3, cortisol and gastrin; the mucosal thickness in the abomasum, duodenum, jejunum and ileum; and intestinal villus height and crypt depth increased with gestational age. Removal of the fetal thyroid gland at 105-110 dGA suppressed plasma thyroxine (T4) and T3 concentrations to the limit of assay detection in fetuses studied at 130 and 144 dGA, and decreased plasma cortisol and gastrin near term, compared to age-matched intact fetuses. Hypothyroidism was associated with reductions in the relative weights of the stomach compartments and small intestines, the outer perimeter of the intestines, the thickness of the gastric and intestinal mucosa, villus height and width, and crypt depth. The thickness of the mucosal epithelial cell layer and muscularis propria in the small intestines were not affected by gestational age or treatment. Activities of the brush border enzymes varied with gestational age in a manner that depended on the enzyme and region of the small intestines studied. In the ileum, maltase and dipeptidyl peptidase IV (DPPIV) activities were lower, and aminopeptidase N (ApN) were higher, in the hypothyroid compared to intact fetuses near term. These findings highlight the importance of thyroid hormones in the structural and functional development of the gastrointestinal tract near term, and indicate how hypothyroidism in utero may impair the transition to enteral nutrition and increase the risk of gastrointestinal disorders in the neonate.
Collapse
Affiliation(s)
- Rhian Young
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dominika Lewandowska
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Emily Long
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - F. B. Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Miles J. De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie L. Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Per T. Sangild
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
6
|
Kotsopoulou I, Vyas AK, Cory MJ, Chan CS, Jagarapu J, Gill S, Mudduluru M, Angelis D. Developmental changes of the fetal and neonatal thyroid gland and functional consequences on the cardiovascular system. J Perinatol 2022; 42:1576-1586. [PMID: 36376450 DOI: 10.1038/s41372-022-01559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Thyroid hormones play an important role in the development and function of the cardiac myocyte. Dysregulation of the thyroid hormone milieu affects the fetal cardiac cells via complex molecular mechanisms, either by altering gene expression or directly by affecting post-translational processes. This review offers a comprehensive summary of the effects of thyroid hormones on the developing cardiovascular system and its adaptation. Furthermore, we will highlight the gaps in knowledge and provide suggestions for future research.
Collapse
Affiliation(s)
- Ioanna Kotsopoulou
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arpita K Vyas
- Division of Pediatrics and Endocrinology, College of Medicine, California Northstate University, Elk Grove, CA, USA
| | - Melinda J Cory
- Division of Cardiology, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina S Chan
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jawahar Jagarapu
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shamaila Gill
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Manjula Mudduluru
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dimitrios Angelis
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Rigolet M, Buisine N, Scharwatt M, Duvernois-Berthet E, Buchholz DR, Sachs LM. Crosstalk between Thyroid Hormone and Corticosteroid Signaling Targets Cell Proliferation in Xenopus tropicalis Tadpole Liver. Int J Mol Sci 2022; 23:ijms232213715. [PMID: 36430192 PMCID: PMC9692397 DOI: 10.3390/ijms232213715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Thyroid hormones (TH) and glucocorticoids (GC) are involved in numerous developmental and physiological processes. The effects of individual hormones are well documented, but little is known about the joint actions of the two hormones. To decipher the crosstalk between these two hormonal pathways, we conducted a transcriptional analysis of genes regulated by TH, GC, or both hormones together in liver of Xenopus tropicalis tadpoles using RNA-Seq. Among the differentially expressed genes (DE), 70.5% were regulated by TH only, 0.87% by GC only, and 15% by crosstalk between the two hormones. Gene ontology analysis of the crosstalk-regulated genes identified terms referring to DNA replication, DNA repair, and cell-cycle regulation. Biological network analysis identified groups of genes targeted by the hormonal crosstalk and corroborated the gene ontology analysis. Specifically, we found two groups of functionally linked genes (chains) mainly composed of crosstalk-regulated hubs (highly interactive genes), and a large subnetwork centred around the crosstalk-regulated genes psmb6 and cdc7. Most of the genes in the chains are involved in cell-cycle regulation, as are psmb6 and cdc7, which regulate the G2/M transition. Thus, the biological action of these two hormonal pathways acting together in the liver targets cell-cycle regulation.
Collapse
Affiliation(s)
- Muriel Rigolet
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, 75005 Paris, France
| | - Nicolas Buisine
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, 75005 Paris, France
| | - Marylou Scharwatt
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, 75005 Paris, France
| | | | - Daniel R. Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Laurent M. Sachs
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, 75005 Paris, France
- UMR7221 CNRS, Muséum National d’Histoire Naturelle, CP32, 7 Rue Cuvier, CEDEX 05, 75231 Paris, France
- Correspondence: ; Tel.: +33-1-40-79-36-17
| |
Collapse
|
8
|
Sengul D, Sengul I, Soares Junior JM. Repercussion of thyroid dysfunctions in thyroidology on the reproductive system: Conditio sine qua non? Rev Assoc Med Bras (1992) 2022; 68:721-722. [PMID: 35766679 PMCID: PMC9575889 DOI: 10.1590/1806-9282.20220255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Demet Sengul
- Giresun University, School of Medicine, Department of Pathology - Giresun, Turkey
| | - Ilker Sengul
- Giresun University, School of Medicine, Division of Endocrine Surgery - Giresun, Turkey.,Giresun University, School of Medicine, Department of General Surgery - Giresun, Turkey
| | - José Maria Soares Junior
- Universidade Federal de São Paulo, Faculdade de Medicina, Endocrinologia Ginecológica - São Paulo (SP), Brazil
| |
Collapse
|
9
|
Davies KL, Smith DJ, El-Bacha T, Wooding PFP, Forhead AJ, Murray AJ, Fowden AL, Camm EJ. Cortisol Regulates Cerebral Mitochondrial Oxidative Phosphorylation and Morphology of the Brain in a Region-Specific Manner in the Ovine Fetus. Biomolecules 2022; 12:768. [PMID: 35740893 PMCID: PMC9220895 DOI: 10.3390/biom12060768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
In adults, glucocorticoids are stress hormones that act, partly, through actions on mitochondrial oxidative phosphorylation (OXPHOS) to increase energy availability. Before birth, glucocorticoids are primarily maturational signals that prepare the fetus for new postnatal challenges. However, the role of the normal prepartum glucocorticoid rise in preparing mitochondria for the increased postnatal energy demands remains largely unknown. This study examined the effect of physiological increases in the fetal cortisol concentration on cerebral mitochondrial OXPHOS capacity near term (~130 days gestation, term ~145 days gestation). Fetal sheep were infused with saline or cortisol for 5 days at ~0.8 of gestation before the mitochondrial content, respiratory rates, abundance of the electron transfer system proteins and OXPHOS efficiency were measured in their cortex and cerebellum. Cerebral morphology was assessed by immunohistochemistry and stereology. Cortisol treatment increased the mitochondrial content, while decreasing Complex I-linked respiration in the cerebellum. There was no effect on the cortical mitochondrial OXPHOS capacity. Cortisol infusion had regional effects on cerebral morphology, with increased myelination in the cerebrum. The findings demonstrate the importance of cortisol in regulating the cerebral mitochondrial OXPHOS capacity prenatally and have implications for infants born preterm or after glucocorticoid overexposure due to pregnancy complications or clinical treatment.
Collapse
Affiliation(s)
- Katie L. Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Danielle J. Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Tatiana El-Bacha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Peter F. P. Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| |
Collapse
|
10
|
Fowden AL, Vaughan OR, Murray AJ, Forhead AJ. Metabolic Consequences of Glucocorticoid Exposure before Birth. Nutrients 2022; 14:nu14112304. [PMID: 35684104 PMCID: PMC9182938 DOI: 10.3390/nu14112304] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids have an important role in development of the metabolic phenotype in utero. They act as environmental and maturational signals in adapting feto-placental metabolism to maximize the chances of survival both before and at birth. They influence placental nutrient handling and fetal metabolic processes to support fetal growth, fuel storage and energy production with respect to nutrient availability. More specifically, they regulate the transport, utilization and production of a range of nutrients by the feto-placental tissues that enables greater metabolic flexibility in utero while minimizing any further drain on maternal resources during periods of stress. Near term, the natural rise in fetal glucocorticoid concentrations also stimulates key metabolic adaptations that prepare tissues for the new energy demanding functions after birth. Glucocorticoids, therefore, have a central role in the metabolic communication between the mother, placenta and fetus that optimizes offspring metabolic phenotype for survival to reproductive age. This review discusses the effects of maternal and fetal glucocorticoids on the supply and utilization of nutrients by the feto-placental tissues with particular emphasis on studies using quantitative methods to assess metabolism in rodents and sheep in vivo during late pregnancy. It considers the routes of glucocorticoid overexposure in utero, including experimental administration of synthetic glucocorticoids, and the mechanisms by which these hormones control feto-placental metabolism at the molecular, cellular and systems levels. It also briefly examines the consequences of intrauterine glucocorticoid overexposure for postnatal metabolic health and the generational inheritance of metabolic phenotype.
Collapse
Affiliation(s)
- Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Correspondence:
| | - Owen R. Vaughan
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK;
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
11
|
Thyroid and Corticosteroid Signaling in Amphibian Metamorphosis. Cells 2022; 11:cells11101595. [PMID: 35626631 PMCID: PMC9139329 DOI: 10.3390/cells11101595] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/25/2023] Open
Abstract
In multicellular organisms, development is based in part on the integration of communication systems. Two neuroendocrine axes, the hypothalamic–pituitary–thyroid and the hypothalamic–pituitary–adrenal/interrenal axes, are central players in orchestrating body morphogenesis. In all vertebrates, the hypothalamic–pituitary–thyroid axis controls thyroid hormone production and release, whereas the hypothalamic–pituitary–adrenal/interrenal axis regulates the production and release of corticosteroids. One of the most salient effects of thyroid hormones and corticosteroids in post-embryonic developmental processes is their critical role in metamorphosis in anuran amphibians. Metamorphosis involves modifications to the morphological and biochemical characteristics of all larval tissues to enable the transition from one life stage to the next life stage that coincides with an ecological niche switch. This transition in amphibians is an example of a widespread phenomenon among vertebrates, where thyroid hormones and corticosteroids coordinate a post-embryonic developmental transition. The review addresses the functions and interactions of thyroid hormone and corticosteroid signaling in amphibian development (metamorphosis) as well as the developmental roles of these two pathways in vertebrate evolution.
Collapse
|
12
|
Thambirajah AA, Wade MG, Verreault J, Buisine N, Alves VA, Langlois VS, Helbing CC. Disruption by stealth - Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. ENVIRONMENTAL RESEARCH 2022; 203:111906. [PMID: 34418447 DOI: 10.1016/j.envres.2021.111906] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de l'environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Verônica A Alves
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
13
|
Fowden AL, Forhead AJ. Endocrine regulation of fetal metabolism towards term. Domest Anim Endocrinol 2022; 78:106657. [PMID: 34525421 DOI: 10.1016/j.domaniend.2021.106657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
Hormones have an important role in regulating fetal metabolism in relation to the prevailing nutritional conditions both in late gestation and during the prepartum period as the fetus prepares for birth. In particular, the pancreatic, thyroid and adrenal hormones all affect fetal uptake and utilization of nutrients for oxidative metabolism, tissue accretion and fuel storage. These hormones also influence the fetal metabolic preparations for the nutritional transition from intra- to extra-uterine life. This review discusses the role of insulin, glucagon, thyroxine, tri-iodothyronine, cortisol and the catecholamines in these processes during normal intrauterine conditions and in response to maternal undernutrition with particular emphasis on the sheep fetus. It also considers the metabolic interactions between these hormones and their role in the maturation of key tissues, such as the liver, skeletal muscle and adipose tissue, in readiness for their new metabolic functions after birth. Endocrine regulation of fetal metabolism is shown to be multifactorial and dynamic with a central role in optimizing metabolic fitness for survival both in utero and at birth.
Collapse
Affiliation(s)
- Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
14
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
15
|
Steinhauser CB, Askelson K, Hobbs KC, Bazer FW, Satterfield MC. Maternal nutrient restriction alters thyroid hormone dynamics in placentae of sheep having small for gestational age fetuses. Domest Anim Endocrinol 2021; 77:106632. [PMID: 34062290 PMCID: PMC8380679 DOI: 10.1016/j.domaniend.2021.106632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Thyroid hormones regulate a multitude of metabolic and cellular processes involved in placental and fetal growth, while maternal nutrient restriction (NR) has the potential to influence these processes. Those fetuses most impacted by NR, as categorized by weight, are termed small for gestational age (SGA), but the role of thyroid hormones in these pregnancies is not fully understood. Therefore, the aims of the present study were to determine effects of NR during pregnancy on maternal and fetal thyroid hormone concentrations, as well as temporal and cell-specific expression of mRNAs and proteins for placental thyroid hormone transporters, thyroid hormone receptors, and deiodinases in ewes having either SGA or normal weight fetuses. Ewes with singleton pregnancies were fed either a 100% NRC (n = 8) or 50% NRC (NR; n = 28) diet from Days 35 to 135 of pregnancy with a single placentome surgically collected on Day 70. Fetal weight at necropsy on Day 135 was used to designate the fetuses as NR NonSGA (n = 7; heaviest NR fetuses) or NR SGA (n = 7; lightest NR fetuses). Thyroid hormone levels were lower in NR SGA compared to NR NonSGA ewes, while all NR fetuses had lower concentrations of thyroxine at Day 135. Expression of mRNAs for thyroid hormone transporters SLC16A2, SLC16A10, SLCO1C1, and SLCO4A1 were altered by day, but not nutrient restriction. Expression of THRA mRNA and protein was dysregulated in NR SGA fetuses with protein localized to syncytial and stromal cells in placentomes in all groups. The ratio of deiodinases DIO2 and DIO3 was greater for NR SGA placentae at Day 70, while DIO3 protein was less abundant in placentae from NR SGA than 100% NRC ewes. These results identify mid-gestational modifications in thyroid hormone-associated proteins in placentomes of ewes having SGA fetuses, as well as a potential for placentomes from NonSGA pregnancies to adapt to, and overcome, nutritional restrictions during pregnancy.
Collapse
Affiliation(s)
- C B Steinhauser
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - K Askelson
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - K C Hobbs
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - F W Bazer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843.
| |
Collapse
|
16
|
Davies KL, Camm EJ, Smith DJ, Vaughan OR, Forhead AJ, Murray AJ, Fowden AL. Glucocorticoid maturation of mitochondrial respiratory capacity in skeletal muscle before birth. J Endocrinol 2021; 251:53-68. [PMID: 34321363 PMCID: PMC8428072 DOI: 10.1530/joe-21-0171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023]
Abstract
In adults, glucocorticoids act to match the supply and demand for energy during physiological challenges, partly through actions on tissue mitochondrial oxidative phosphorylation (OXPHOS) capacity. However, little is known about the role of the natural prepartum rise in fetal glucocorticoid concentrations in preparing tissues for the increased postnatal energy demands. This study examined the effect of manipulating cortisol concentrations in fetal sheep during late gestation on mitochondrial OXPHOS capacity of two skeletal muscles with different postnatal locomotive functions. Mitochondrial content, biogenesis markers, respiratory rates and expression of proteins and genes involved in the electron transfer system (ETS) and OXPHOS efficiency were measured in the biceps femoris (BF) and superficial digital flexor (SDF) of fetuses either infused with cortisol before the prepartum rise or adrenalectomised to prevent this increment. Cortisol infusion increased mitochondrial content, biogenesis markers, substrate-specific respiration rates and abundance of ETS complex I and adenine nucleotide translocator (ANT1) in a muscle-specific manner that was more pronounced in the SDF than BF. Adrenalectomy reduced mitochondrial content and expression of PGC1α and ANT1 in both muscles, and ETS complex IV abundance in the SDF near term. Uncoupling protein gene expression was unaffected by cortisol manipulations in both muscles. Gene expression of the myosin heavy chain isoform, MHCIIx, was increased by cortisol infusion and reduced by adrenalectomy in the BF alone. These findings show that cortisol has a muscle-specific role in prepartum maturation of mitochondrial OXPHOS capacity with important implications for the health of neonates born pre-term or after intrauterine glucocorticoid overexposure.
Collapse
Affiliation(s)
- K L Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - E J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - D J Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - O R Vaughan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Institute for Women’s Health, University College London, London, UK
| | - A J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - A J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Correspondence should be addressed to A L Fowden:
| |
Collapse
|
17
|
Davies KL, Smith DJ, El-Bacha T, Stewart ME, Easwaran A, Wooding PFP, Forhead AJ, Murray AJ, Fowden AL, Camm EJ. Development of cerebral mitochondrial respiratory function is impaired by thyroid hormone deficiency before birth in a region-specific manner. FASEB J 2021; 35:e21591. [PMID: 33891344 DOI: 10.1096/fj.202100075r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Thyroid hormones regulate adult metabolism partly through actions on mitochondrial oxidative phosphorylation (OXPHOS). They also affect neurological development of the brain, but their role in cerebral OXPHOS before birth remains largely unknown, despite the increase in cerebral energy demand during the neonatal period. Thus, this study examined prepartum development of cerebral OXPHOS in hypothyroid fetal sheep. Using respirometry, Complex I (CI), Complex II (CII), and combined CI&CII OXPHOS capacity were measured in the fetal cerebellum and cortex at 128 and 142 days of gestational age (dGA) after surgical thyroidectomy or sham operation at 105 dGA (term ~145 dGA). Mitochondrial electron transfer system (ETS) complexes, mRNA transcripts related to mitochondrial biogenesis and ATP production, and mitochondrial density were quantified using molecular techniques. Cerebral morphology was assessed by immunohistochemistry and stereology. In the cortex, hypothyroidism reduced CI-linked respiration and CI abundance at 128 dGA and 142 dGA, respectively, and caused upregulation of PGC1α (regulator of mitochondrial biogenesis) and thyroid hormone receptor β at 128 dGA and 142 dGA, respectively. In contrast, in the cerebellum, hypothyroidism reduced CI&II- and CII-linked respiration at 128 dGA, with no significant effect on the ETS complexes. In addition, cerebellar glucocorticoid hormone receptor and adenine nucleotide translocase (ANT1) were downregulated at 128 dGA and 142 dGA, respectively. These alterations in mitochondrial function were accompanied by reduced myelination. The findings demonstrate the importance of thyroid hormones in the prepartum maturation of cerebral mitochondria and have implications for the etiology and treatment of the neurodevelopmental abnormalities associated with human prematurity and congenital hypothyroidism.
Collapse
Affiliation(s)
- Katie L Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Danielle J Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tatiana El-Bacha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Max E Stewart
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Akshay Easwaran
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Peter F P Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Hanaoka S, Iwanaga K, Tomotaki S, Niwa F, Takita J, Kawai M. Antenatal corticosteroids for threatened labour facilitate thyroid maturation among preterm neonates. Clin Endocrinol (Oxf) 2020; 93:613-619. [PMID: 32589812 DOI: 10.1111/cen.14272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To examine the effect of antenatal corticosteroids (ANS) on the maturation of thyroid function in the preterm infants. CONTEXT ANS reduce mortality and morbidities in preterm neonates. Organ maturation by the glucocorticoids is the key, at least in part. However, the effect of ANS on thyroid is controversial. PATIENTS A study group of 99 very low birthweight neonates (<34 weeks' gestational age) with the exception of those born more than 7 days after ANS administration were divided into a complete group (n = 49) whose mothers completed two doses of betamethasone and who were born more than 24 hours after the completion of ANS administration, and an incomplete group (n = 50) who were not exposed to any ANS or were born within 24 hours after the completion of ANS administration. Serum-free thyroxine and thyroid-stimulating hormone (TSH) levels were measured, and thyrotropin-releasing hormone (TRH) stimulation tests were performed at about 2 weeks of age. RESULTS The incidence of hyperthyrotropinaemia (TSH > 15 mIU/L) in the complete group was significantly lower than in the incomplete group (6% vs 22%, P = .023). Exaggerated responses to TRH tests were more frequent in the incomplete group (17% vs 44%; P = .053). TSH30 was significantly lower in the complete group, (P = .046). Multivariate logistic regression analysis showed that the incidence of hyperthyrotropinaemia was associated with complete ANS administration (adjusted odds ratios 0.39). CONCLUSIONS ANS administration might facilitate thyroid maturation in preterm neonates.
Collapse
Affiliation(s)
- Shintaro Hanaoka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kogoro Iwanaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiichi Tomotaki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fusako Niwa
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res 2020; 117:712-726. [PMID: 32514522 DOI: 10.1093/cvr/cvaa159] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the molecular mechanisms regulating cardiomyocyte (CM) proliferation and differentiation has increased exponentially in recent years. Such insights together with the availability of more efficient protocols for generation of CMs from induced pluripotent stem cells (iPSCs) have raised expectations for new therapeutic strategies to treat congenital and non-congenital heart diseases. However, the poor regenerative potential of the postnatal heart and the incomplete maturation of iPSC-derived CMs represent important bottlenecks for such therapies in future years. CMs undergo dramatic changes at the doorstep between prenatal and postnatal life, including terminal cell cycle withdrawal, change in metabolism, and further specialization of the cellular machinery required for high-performance contraction. Here, we review recent insights into pre- and early postnatal developmental processes that regulate CM maturation, laying specific focus on genetic and metabolic pathways that control transition of CMs from the embryonic and perinatal to the fully mature adult CM state. We recapitulate the intrinsic features of CM maturation and highlight the importance of external factors, such as energy substrate availability and endocrine regulation in shaping postnatal CM development. We also address recent approaches to enhance maturation of iPSC-derived CMs in vitro, and summarize new discoveries that might provide useful tools for translational research on repair of the injured human heart.
Collapse
Affiliation(s)
- Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Rhein-Main, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
20
|
Harris SE, De Blasio MJ, Zhao X, Ma M, Davies K, Wooding FBP, Hamilton RS, Blache D, Meredith D, Murray AJ, Fowden AL, Forhead AJ. Thyroid Deficiency Before Birth Alters the Adipose Transcriptome to Promote Overgrowth of White Adipose Tissue and Impair Thermogenic Capacity. Thyroid 2020; 30:794-805. [PMID: 32070265 PMCID: PMC7286741 DOI: 10.1089/thy.2019.0749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: Development of adipose tissue before birth is essential for energy storage and thermoregulation in the neonate and for cardiometabolic health in later life. Thyroid hormones are important regulators of growth and maturation in fetal tissues. Offspring hypothyroid in utero are poorly adapted to regulate body temperature at birth and are at risk of becoming obese and insulin resistant in childhood. The mechanisms by which thyroid hormones regulate the growth and development of adipose tissue in the fetus, however, are unclear. Methods: This study examined the structure, transcriptome, and protein expression of perirenal adipose tissue (PAT) in a fetal sheep model of thyroid hormone deficiency during late gestation. Proportions of unilocular (UL) (white) and multilocular (ML) (brown) adipocytes, and UL adipocyte size, were assessed by histological and stereological techniques. Changes to the adipose transcriptome were investigated by RNA sequencing and bioinformatic analysis, and proteins of interest were quantified by Western blotting. Results: Hypothyroidism in utero resulted in elevated plasma insulin and leptin concentrations and overgrowth of PAT in the fetus, specifically due to hyperplasia and hypertrophy of UL adipocytes with no change in ML adipocyte mass. RNA sequencing and genomic analyses showed that thyroid deficiency affected 34% of the genes identified in fetal adipose tissue. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathways were associated with adipogenic, metabolic, and thermoregulatory processes, insulin resistance, and a range of endocrine and adipocytokine signaling pathways. Adipose protein levels of signaling molecules, including phosphorylated S6-kinase (pS6K), glucose transporter isoform 4 (GLUT4), and peroxisome proliferator-activated receptor γ (PPARγ), were increased by fetal hypothyroidism. Fetal thyroid deficiency decreased uncoupling protein 1 (UCP1) protein and mRNA content, and UCP1 thermogenic capacity without any change in ML adipocyte mass. Conclusions: Growth and development of adipose tissue before birth is sensitive to thyroid hormone status in utero. Changes to the adipose transcriptome and phenotype observed in the hypothyroid fetus may have consequences for neonatal survival and the risk of obesity and metabolic dysfunction in later life.
Collapse
Affiliation(s)
- Shelley E Harris
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Miles J De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Marcella Ma
- Genomics-Transcriptomics Core, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Katie Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - FB Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Russell S Hamilton
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Dominique Blache
- Genomics-Transcriptomics Core, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David Meredith
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Alison J Forhead
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Corresponding author: Dr Alison J Forhead, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK; +44 1223 333853;
| |
Collapse
|
21
|
Silva JF, Ocarino NM, Serakides R. Thyroid hormones and female reproduction. Biol Reprod 2019; 99:907-921. [PMID: 29767691 DOI: 10.1093/biolre/ioy115] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/13/2018] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones are vital for the proper functioning of the female reproductive system, since they modulate the metabolism and development of ovarian, uterine, and placental tissues. Therefore, hypo- and hyperthyroidism may result in subfertility or infertility in both women and animals. Other well-documented sequelae of maternal thyroid dysfunctions include menstrual/estral irregularity, anovulation, abortion, preterm delivery, preeclampsia, intrauterine growth restriction, postpartum thyroiditis, and mental retardation in children. Several studies have been carried out involving prospective and retrospective studies of women with thyroid dysfunction, as well as in vivo and in vitro assays of hypo- and hyperthyroidism using experimental animal models and/or ovarian, uterine, and placental cell culture. These studies have sought to elucidate the mechanisms by which thyroid hormones influence reproduction to better understand the physiology of the reproductive system and to provide better therapeutic tools for reproductive dysfunctions that originate from thyroid dysfunctions. Therefore, this review aims to summarize and update the available information related to the role of thyroid hormones in the morphophysiology of the ovary, uterus, and placenta in women and animals and the effects of hypo- and hyperthyroidism on the female reproductive system.
Collapse
Affiliation(s)
- Juneo F Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Natália M Ocarino
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
22
|
Chattergoon NN. Thyroid hormone signaling and consequences for cardiac development. J Endocrinol 2019; 242:T145-T160. [PMID: 31117055 PMCID: PMC6613780 DOI: 10.1530/joe-18-0704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
The fetal heart undergoes its own growth and maturation stages all while supplying blood and nutrients to the growing fetus and its organs. Immature contractile cardiomyocytes proliferate to rapidly increase and establish cardiomyocyte endowment in the perinatal period. Maturational changes in cellular maturation, size and biochemical capabilities occur, and require, a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. Thyroid hormone has long been known to be important for neuronal development, but also for fetal size and survival. Fetal circulating 3,5,3'-triiodothyronine (T3) levels surge near term in mammals and are responsible for maturation of several organ systems, including the heart. Growth factors like insulin-like growth factor-1 stimulate proliferation of fetal cardiomyocytes, while thyroid hormone has been shown to inhibit proliferation and drive maturation of the cells. Several cell signaling pathways appear to be involved in this complicated and coordinated process. The aim of this review was to discuss the foundational studies of thyroid hormone physiology and the mechanisms responsible for its actions as we speculate on potential fetal programming effects for cardiovascular health.
Collapse
Affiliation(s)
- Natasha N Chattergoon
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
23
|
Chattergoon NN, Louey S, Scanlan T, Lindgren I, Giraud GD, Thornburg KL. Thyroid hormone receptor function in maturing ovine cardiomyocytes. J Physiol 2019; 597:2163-2176. [PMID: 30770568 PMCID: PMC6462488 DOI: 10.1113/jp276874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Plasma thyroid hormone (tri-iodo-l-thyronine; T3 ) concentrations rise near the end of gestation and is known to inhibit proliferation and stimulate maturation of cardiomyocytes before birth. Thyroid hormone receptors are required for the action of thyroid hormone in fetal cardiomyocytes. Loss of thyroid hormone receptor (TR)α1 abolishes T3 signalling via extracellular signal-related kinase and Akt in fetal cardiomyocytes. The expression of TRα1 and TRβ1 in ovine fetal myocardium increases with age, although TRα1 levels always remain higher than those of TRβ1. Near term fetal cardiac myocytes are more sensitive than younger myocytes to thyroid receptor blockade by antagonist, NH3, and to the effects of TRα1/α2 short interfering RNA. Although T3 is known to abrogate ovine cardiomyocyte proliferation stimulated by insulin-like growth factor 1, this effect is mediated via the genomic action of thyroid hormone receptors, with little evidence for non-genomic mechanisms. ABSTRACT We have previously shown that the late-term rise in tri-iodo-l-thyronine (T3 ) in fetal sheep leads to the inhibition of proliferation and promotion of maturation in cardiomyocytes. The present study was designed to determine whether these T3 -induced changes are mediated via thyroid hormone receptors (TRs) or by non-genomic mechanisms. Fetal cardiomyocytes were isolated from 102 ± 3 and 135 ± 1 days of gestational age (dGA) sheep (n = 7 per age; term ∼145 dGA). Cells were treated with T3 (1.5 nm), insulin-like growth factor (IGF)-1 (1 μg mL-1 ) or a combination in the presence of TR antagonist NH3 (100 nm) or following short interfering RNA (siRNA) knockdown of TRα1/α2. Proliferation was quantified by 5-bromo-2'-deoxyuridine (BrdU) uptake (10 μm). Western blots measured protein levels of extracellular signal-related kinase (ERK), Akt, TRα1/β1 and p21. Age specific levels of TRα1/β1 were measured in normal hearts from fetuses [95 dGA (n = 8), 135 dGA (n = 7)], neonates (n = 8) and adult ewes (n = 7). TRα1 protein levels were consistently >50% more than TRβ1 at each gestational age (P < 0.05). T3 reduced IGF-1 stimulated proliferation by ∼50% in 100 dGA and by ∼75% in 135 dGA cardiomyocytes (P < 0.05). NH3 blocked the T3 + IGF-1 reduction of BrdU uptake without altering the phosphorylation of ERK or Akt at both ages. NH3 did not suppress T3 -induced p21 expression in 100 dGA cardiomyocytes in 135 dGA cardiomyocytes, NH3 alone reduced BrdU uptake (-28%, P < 0.05), as well as T3 -induced p21 (-75%, P < 0.05). In both ages, siRNA knockdown of TRα1/α2 blocked the T3 + IGF-1 reduction of BrdU uptake and dramatically reduced ERK and Akt signalling in 135 dGA cardiomyocytes. In conclusion, TRs are required for normal proliferation and T3 signalling in fetal ovine cardiomyocytes, with the sensitivity to TR blockade being age-dependent.
Collapse
Affiliation(s)
- Natasha N. Chattergoon
- Center for Developmental Health
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
| | - Samantha Louey
- Center for Developmental Health
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
| | | | - Isa Lindgren
- Center for Developmental Health
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
| | - George D. Giraud
- Center for Developmental Health
- Department of Physiology and Pharmacology
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
- VA Portland Health Care System PortlandORUSA
| | - Kent L. Thornburg
- Center for Developmental Health
- Department of Physiology and Pharmacology
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
| |
Collapse
|
24
|
Eerdekens A, Verhaeghe J, Darras V, Naulaers G, Van den Berghe G, Langouche L, Vanhole C. The placenta in fetal thyroid hormone delivery: from normal physiology to adaptive mechanisms in complicated pregnancies. J Matern Fetal Neonatal Med 2019; 33:3857-3866. [PMID: 30821546 DOI: 10.1080/14767058.2019.1586875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Context: Thyroid hormones are indispensable for normal fetal development. Since the fetus depends to a large extent on maternal thyroid hormone supply through the placenta, this challenges maternal thyroid economy. Several molecular mechanisms are involved in placental thyroid hormone transport and metabolism. Chronic pregnancy complications, associated with utero-placental hypoxia, trigger the development of accelerated placental maturation in order to improve fetal-placental exchange to strengthen the offspring's chance of survival. This review provides an overview of normal maternal-fetal thyroid hormone supply and explores the presence of placental adaptive mechanisms in complicated pregnancies with chronical utero-placental hypoxia to improve the thyroid hormone supply to the fetus under pressure, to end with reflections about the long term health consequences.Evidence acquisition: This work is based on a comprehensive literature review of the PubMed and Embase database, including relevant articles from 1969 to June 2018.Conclusions: The placenta is actively involved in fetal thyroid hormone delivery through a combination of stimulatory and inhibitory mechanisms. Parallel with histological adaptations to improve transplacental fetal-maternal exchange, there are indications of placental adaptive mechanisms in thyroid hormone transport and metabolism in case of complicated pregnancies, from animal models and in-vitro experiments. Evidence from human in-vivo studies is limited due to heterogeneity in study populations, small study samples, and technical limitations. Further research is necessary to reveal the role of the placenta in pathological circumstances. The placenta might thus be considered as the infants' black box of pregnancy. Results will contribute to more insights in the concept of fetal programming, which lays the foundations of optimum health, growth, and neurodevelopment across the lifespan.
Collapse
Affiliation(s)
- An Eerdekens
- Neonatology, Universitaire Ziekenhuizen Leuven, Leuven, Belgium
| | - Johan Verhaeghe
- Obstetrics and Gynaecology, Universitaire Ziekenhuizen Leuven, Leuven, Belgium
| | - Veerle Darras
- Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Gunnar Naulaers
- Department of Neonatology, University Hospitals Leuven, Leuven, Belgium
| | | | - Lies Langouche
- Laboratory of Intensive Care Medicine, Catholic University Leuven, Leuven, Belgium
| | - Christine Vanhole
- Department of Neonatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Stinckens E, Vergauwen L, Ankley GT, Blust R, Darras VM, Villeneuve DL, Witters H, Volz DC, Knapen D. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:1-12. [PMID: 29702435 PMCID: PMC6002951 DOI: 10.1016/j.aquatox.2018.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 05/20/2023]
Abstract
The adverse outcome pathway (AOP) framework can be used to help support the development of alternative testing strategies aimed at predicting adverse outcomes caused by triggering specific toxicity pathways. In this paper, we present a case-study demonstrating the selection of alternative in chemico assays targeting the molecular initiating events of established AOPs, and evaluate use of the resulting data to predict higher level biological endpoints. Based on two AOPs linking inhibition of the deiodinase (DIO) enzymes to impaired posterior swim bladder inflation in fish, we used in chemico enzyme inhibition assays to measure the molecular initiating events for an array of 51 chemicals. Zebrafish embryos were then exposed to 14 compounds with different measured inhibition potentials. Effects on posterior swim bladder inflation, predicted based on the information captured by the AOPs, were evaluated. By linking the two datasets and setting thresholds, we were able to demonstrate that the in chemico dataset can be used to predict biological effects on posterior chamber inflation, with only two outliers out of the 14 tested compounds. Our results show how information organized using the AOP framework can be employed to develop or select alternative assays, and successfully forecast downstream key events along the AOP. In general, such in chemico assays could serve as a first-tier high-throughput system to screen and prioritize chemicals for subsequent acute and chronic fish testing, potentially reducing the need for long-term and costly toxicity tests requiring large numbers of animals.
Collapse
Affiliation(s)
- Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gerald T Ankley
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Hilda Witters
- Applied Bio & Molecular Systems (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - David C Volz
- Department of Environmental Sciences, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
26
|
Thornburg KL, Chattergoon NN. Thyroid hormone and pancreas development: diabetes culprit or innocent bystander? J Physiol 2017; 595:3261. [PMID: 28338230 DOI: 10.1113/jp274090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Natasha N Chattergoon
- Center for Developmental Health, Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
27
|
Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 2017; 342:68-100. [PMID: 26434624 PMCID: PMC4819012 DOI: 10.1016/j.neuroscience.2015.09.070] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Thyroid hormones (THs) play an obligatory role in many fundamental processes underlying brain development and maturation. The developing embryo/fetus is dependent on maternal supply of TH. The fetal thyroid gland does not commence TH synthesis until mid gestation, and the adverse consequences of severe maternal TH deficiency on offspring neurodevelopment are well established. Recent evidence suggests that even more moderate forms of maternal thyroid dysfunction, particularly during early gestation, may have a long-lasting influence on child cognitive development and risk of neurodevelopmental disorders. Moreover, these observed alterations appear to be largely irreversible after birth. It is, therefore, important to gain a better understanding of the role of maternal thyroid dysfunction on offspring neurodevelopment in terms of the nature, magnitude, time-specificity, and context-specificity of its effects. With respect to the issue of context specificity, it is possible that maternal stress and stress-related biological processes during pregnancy may modulate maternal thyroid function. The possibility of an interaction between the thyroid and stress systems in the context of fetal brain development has, however, not been addressed to date. We begin this review with a brief overview of TH biology during pregnancy and a summary of the literature on its effect on the developing brain. Next, we consider and discuss whether and how processes related to maternal stress and stress biology may interact with and modify the effects of maternal thyroid function on offspring brain development. We synthesize several research areas and identify important knowledge gaps that may warrant further study. The scientific and public health relevance of this review relates to achieving a better understanding of the timing, mechanisms and contexts of thyroid programing of brain development, with implications for early identification of risk, primary prevention and intervention.
Collapse
Affiliation(s)
- N K Moog
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany
| | - S Entringer
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA
| | - C Heim
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; Department of Biobehavioral Health, Pennsylvania State University, College of Health and Human Development, 219 Biobehavioral Health Building, University Park, PA 16802, USA
| | - P D Wadhwa
- University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Obstetrics and Gynecology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Epidemiology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA
| | - N Kathmann
- Department of Clinical Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - C Buss
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA.
| |
Collapse
|
28
|
Watanabe Y, Grommen SVH, De Groef B. Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions? Gen Comp Endocrinol 2016; 228:60-68. [PMID: 26874222 DOI: 10.1016/j.ygcen.2016.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/10/2023]
Abstract
Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions.
Collapse
Affiliation(s)
- Yugo Watanabe
- Department of Anatomy, Physiology and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Sylvia V H Grommen
- Department of Anatomy, Physiology and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Bert De Groef
- Department of Anatomy, Physiology and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
29
|
Jonker SS, Louey S. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J Endocrinol 2016; 228:R1-18. [PMID: 26432905 PMCID: PMC4677998 DOI: 10.1530/joe-15-0309] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 01/09/2023]
Abstract
Immature contractile cardiomyocytes proliferate to rapidly increase cell number, establishing cardiomyocyte endowment in the perinatal period. Developmental changes in cellular maturation, size and attrition further contribute to cardiac anatomy. These physiological processes occur concomitant with a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. There are complex interactions between endocrine, hemodynamic and nutritional regulators of cardiac development. Birth has been long assumed to be the trigger for major differences between the fetal and postnatal cardiomyocyte growth patterns, but investigations in normally growing sheep and rodents suggest this may not be entirely true; in sheep, these differences are initiated before birth, while in rodents they occur after birth. The aim of this review is to draw together our understanding of the temporal regulation of these signals and cardiomyocyte responses relative to birth. Further, we consider how these dynamics are altered in stressed and suboptimal intrauterine environments.
Collapse
Affiliation(s)
- S S Jonker
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| | - S Louey
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
30
|
More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology. Dev Biol 2015; 408:188-95. [DOI: 10.1016/j.ydbio.2015.02.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 11/21/2022]
|
31
|
De Blasio MJ, Boije M, Vaughan OR, Bernstein BS, Davies KL, Plein A, Kempster SL, Smith GCS, Charnock-Jones DS, Blache D, Wooding FBP, Giussani DA, Fowden AL, Forhead AJ. Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung. PLoS One 2015; 10:e0136115. [PMID: 26287800 PMCID: PMC4545393 DOI: 10.1371/journal.pone.0136115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/29/2015] [Indexed: 11/24/2022] Open
Abstract
The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth.
Collapse
Affiliation(s)
- Miles J. De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Maria Boije
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Owen R. Vaughan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Brett S. Bernstein
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Katie L. Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Alice Plein
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Sarah L. Kempster
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, United Kingdom
| | - Gordon C. S. Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, United Kingdom
| | - D. Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, United Kingdom
| | - Dominique Blache
- School of Animal Biology, University of Western Australia, Perth, Western Australia, Australia
| | - F. B. Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
32
|
Forhead AJ, Jellyman JK, De Blasio MJ, Johnson E, Giussani DA, Broughton Pipkin F, Fowden AL. Maternal Dexamethasone Treatment Alters Tissue and Circulating Components of the Renin-Angiotensin System in the Pregnant Ewe and Fetus. Endocrinology 2015; 156:3038-46. [PMID: 26039155 PMCID: PMC4511127 DOI: 10.1210/en.2015-1197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antenatal synthetic glucocorticoids promote fetal maturation in pregnant women at risk of preterm delivery and their mechanism of action may involve other endocrine systems. This study investigated the effect of maternal dexamethasone treatment, at clinically relevant doses, on components of the renin-angiotensin system (RAS) in the pregnant ewe and fetus. From 125 days of gestation (term, 145 ± 2 d), 10 ewes carrying single fetuses of mixed sex (3 female, 7 male) were injected twice im, at 10-11 pm, with dexamethasone (2 × 12 mg, n = 5) or saline (n = 5) at 24-hour intervals. At 10 hours after the second injection, maternal dexamethasone treatment increased angiotensin-converting enzyme (ACE) mRNA levels in the fetal lungs, kidneys, and heart and ACE concentration in the circulation and lungs, but not kidneys, of the fetuses. Fetal cardiac mRNA abundance of angiotensin II (AII) type 2 receptor decreased after maternal dexamethasone treatment. Between the two groups of fetuses, there were no significant differences in plasma angiotensinogen or renin concentrations; in transcript levels of renal renin, or AII type 1 or 2 receptors in the lungs and kidneys; or in pulmonary, renal or cardiac protein content of the AII receptors. In the pregnant ewes, dexamethasone administration increased pulmonary ACE and plasma angiotensinogen, and decreased plasma renin, concentrations. Some of the effects of dexamethasone treatment on the maternal and fetal RAS were associated with altered insulin and thyroid hormone activity. Changes in the local and circulating RAS induced by dexamethasone exposure in utero may contribute to the maturational and tissue-specific actions of antenatal glucocorticoid treatment.
Collapse
Affiliation(s)
- Alison J Forhead
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Juanita K Jellyman
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Miles J De Blasio
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Emma Johnson
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Fiona Broughton Pipkin
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| |
Collapse
|
33
|
Abstract
In spite of improving life expectancy over the course of the previous century, the health of the U.S. population is now worsening. Recent increasing rates of type 2 diabetes, obesity and uncontrolled high blood pressure predict a growing incidence of cardiovascular disease and shortened average lifespan. The daily >$1billion current price tag for cardiovascular disease in the United States is expected to double within the next decade or two. Other countries are seeing similar trends. Current popular explanations for these trends are inadequate. Rather, increasingly poor diets in young people and in women during pregnancy are a likely cause of declining health in the U.S. population through a process known as programming. The fetal cardiovascular system is sensitive to poor maternal nutritional conditions during the periconceptional period, in the womb and in early postnatal life. Developmental plasticity accommodates changes in organ systems that lead to endothelial dysfunction, small coronary arteries, stiffer vascular tree, fewer nephrons, fewer cardiomyocytes, coagulopathies and atherogenic blood lipid profiles in fetuses born at the extremes of birthweight. Of equal importance are epigenetic modifications to genes driving important growth regulatory processes. Changes in microRNA, DNA methylation patterns and histone structure have all been implicated in the cardiovascular disease vulnerabilities that cross-generations. Recent experiments offer hope that detrimental epigenetic changes can be prevented or reversed. The large number of studies that provide the foundational concepts for the developmental origins of disease can be traced to the brilliant discoveries of David J.P. Barker.
Collapse
|
34
|
Chattergoon NN, Louey S, Stork PJ, Giraud GD, Thornburg KL. Unexpected maturation of PI3K and MAPK-ERK signaling in fetal ovine cardiomyocytes. Am J Physiol Heart Circ Physiol 2014; 307:H1216-25. [PMID: 25128174 DOI: 10.1152/ajpheart.00833.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the first two-thirds of gestation, ovine fetal cardiomyocytes undergo mitosis to increase cardiac mass and accommodate fetal growth. Thereafter, some myocytes continue to proliferate while others mature and terminally differentiate into binucleated cells. At term (145 days gestational age; dGA) about 60% of cardiomyocytes become binucleated and exit the cell cycle under hormonal control. Rising thyroid hormone (T3) levels near term (135 dGA) inhibit proliferation and stimulate maturation. However, the degree to which intracellular signaling patterns change with age in response to T3 is unknown. We hypothesized that in vitro activation of ERK, Akt, and p70(S6K) by two regulators of cardiomyocyte cell cycle activity, T3 and insulin like growth factor-1 (IGF-1), would be similar in cardiomyocytes at gestational ages 100 and 135 dGA. IGF-1 and T3 each independently stimulated phosphorylation of ERK, Akt, and p70(S6K) in cells at both ages. In the younger mononucleated myocytes, the phosphorylation of ERK and Akt was reduced in the presence of IGF-1 and T3. However, the same hormone combination led to a dramatic twofold increase in the phosphorylation of these signaling proteins in the 135 dGA cardiomyocytes-even in cells that were not proliferating. In the older cells, both mono- and binucleated cells were affected. In conclusion, fetal ovine cardiomyocytes undergo profound maturation-related changes in signaling in response to T3 and IGF-1, but not to either factor alone. Differences in age-related response are likely to be related to milestones in fetal cardiac development as the myocardium prepares for ex utero life.
Collapse
Affiliation(s)
- N N Chattergoon
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon;
| | - S Louey
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - P J Stork
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Vollum Institute for Advanced Biomedical Research, Oregon Health and Science University, Portland, Oregon; and
| | - G D Giraud
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon; Portland Veterans Affairs Medical Center, Portland, Oregon
| | - K L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
35
|
Abstract
The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal growth and development of the fetus. Their bioavailability in utero depends on development of the fetal hypothalamic-pituitary-thyroid gland axis and the abundance of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and endocrine conditions in utero, and placental permeability to maternal thyroid hormones, which varies among species with placental morphology. Thyroid hormones are required for the general accretion of fetal mass and to trigger discrete developmental events in the fetal brain and somatic tissues from early in gestation. They also promote terminal differentiation of fetal tissues closer to term and are important in mediating the prepartum maturational effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly through anabolic effects on fetal metabolism and the stimulation of fetal oxygen consumption. They also act indirectly by controlling the bioavailability and effectiveness of other hormones and growth factors that influence fetal development such as the catecholamines and insulin-like growth factors (IGFs). By regulating tissue accretion and differentiation near term, fetal thyroid hormones ensure activation of physiological processes essential for survival at birth such as pulmonary gas exchange, thermogenesis, hepatic glucogenesis, and cardiac adaptations. This review examines the developmental control of fetal T4 and T3 bioavailability and discusses the role of these hormones in fetal growth and development with particular emphasis on maturation of somatic tissues critical for survival immediately at birth.
Collapse
Affiliation(s)
- A J Forhead
- Department of PhysiologyDevelopment and Neuroscience, University of Cambridge, Physiology Building, Downing Street, Cambridge CB2 3EG, UKDepartment of Biological and Medical SciencesOxford Brookes University, Oxford OX3 0BP, UKDepartment of PhysiologyDevelopment and Neuroscience, University of Cambridge, Physiology Building, Downing Street, Cambridge CB2 3EG, UKDepartment of Biological and Medical SciencesOxford Brookes University, Oxford OX3 0BP, UK
| | - A L Fowden
- Department of PhysiologyDevelopment and Neuroscience, University of Cambridge, Physiology Building, Downing Street, Cambridge CB2 3EG, UKDepartment of Biological and Medical SciencesOxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
36
|
Richards EM, Wood CE, Rabaglino MB, Antolic A, Keller-Wood M. Mechanisms for the adverse effects of late gestational increases in maternal cortisol on the heart revealed by transcriptomic analyses of the fetal septum. Physiol Genomics 2014; 46:547-59. [PMID: 24867915 DOI: 10.1152/physiolgenomics.00009.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously shown in sheep that 10 days of modest chronic increase in maternal cortisol resulting from maternal infusion of cortisol (1 mg/kg/day) caused fetal heart enlargement and Purkinje cell apoptosis. In subsequent studies we extended the cortisol infusion to term, finding a dramatic incidence of stillbirth in the pregnancies with chronically increased cortisol. To investigate effects of maternal cortisol on the heart, we performed transcriptomic analyses on the septa using ovine microarrays and Webgestalt and Cytoscape programs for pathway inference. Analyses of the transcriptomic effects of maternal cortisol infusion for 10 days (130 day cortisol vs 130 day control), or ∼25 days (140 day cortisol vs 140 day control) and of normal maturation (140 day control vs 130 day control) were performed. Gene ontology terms related to immune function and cytokine actions were significantly overrepresented as genes altered by both cortisol and maturation in the septa. After 10 days of cortisol, growth factor and muscle cell apoptosis pathways were significantly overrepresented, consistent with our previous histologic findings. In the term fetuses (∼25 days of cortisol) nutrient pathways were significantly overrepresented, consistent with altered metabolism and reduced mitochondria. Analysis of mitochondrial number by mitochondrial DNA expression confirmed a significant decrease in mitochondria. The metabolic pathways modeled as altered by cortisol treatment to term were different from those modeled during maturation of the heart to term, and thus changes in gene expression in these metabolic pathways may be indicative of the fetal heart pathophysiologies seen in pregnancies complicated by stillbirth, including gestational diabetes, Cushing's disease and chronic stress.
Collapse
Affiliation(s)
- Elaine M Richards
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida; and
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Maria Belen Rabaglino
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Andrew Antolic
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida; and
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida; and
| |
Collapse
|
37
|
Thornburg KL, Challis JR. How to build a healthy heart from scratch. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:205-16. [PMID: 25015813 PMCID: PMC7556319 DOI: 10.1007/978-1-4939-1031-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By any of several measures, the health of the American population has been worsening over the last two decades. Obesity, type 2 diabetes and heart failure have risen dramatically. All the while, the average birthweight at all gestational ages has declined. The relationship between robust growth in the womb and lifelong health is now well established. Likewise, babies born at the low end of the birthweight scale are known to have highly elevated risks for ischemic heart disease, hypertension, stroke and metabolic disease. The biological mechanisms by which developmental plasticity becomes a risk for cardiovascular disease are only now being understood. Translating from animal and human studies, low birthweight babies are likely to have endothelial dysfunction, fewer nephrons, fewer pancreatic beta cells, less vascular elastin, fewer cardiomyocytes, increased sympathetic tone and liver-derived dyslipidemias. Only in the past few years, however, has it become known that maternal and placenta phenotypes are associated with adult onset cardiovascular disease. Helsinki Birth Cohort studies have been especially important in the discovery of these relationships. Sudden cardiac death is associated with a thin placenta and heart failure is associated with a small placenta in short mothers. Coronary heart disease is associated with three combinations of maternal-placental phenotypes. Because the diet is important in providing nutrients for the development of the female body before pregnancy and for providing nutrients during pregnancy, there is increasing evidence that the western diet is an underlying cause for the increase in metabolic disease in the American population. A large segment of the American population suffers from high calorie malnutrition. Scientists in this field now have a responsibility to educate the public on the topic of nutrition and health. This chapter honors Lawrence Longo for decades of work in bringing health to pregnant women and their babies.
Collapse
Affiliation(s)
- Kent L.R. Thornburg
- Oregon Health and Science University, Dept. of Medicine, Knight Cardiovascular Institute & Moore Institute for Nutrition and Wellness
| | - John R.G. Challis
- University of Toronto, Dept. of Obstetrics and Gynecology and Physiology, Simon Fraser University, Faculty of Health Sciences and Dept. of Obstetrics and Gynecology, University of Western Australia
| |
Collapse
|
38
|
Foroughi MA, Dehghani H. Short communication: quantitative comparison of iodothyronine deiodinase I and II mRNA expression in ovine tissues. Res Vet Sci 2013; 95:891-3. [PMID: 23916591 DOI: 10.1016/j.rvsc.2013.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 06/23/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
Iodothyronine deiodinases I and II (DIO1 and DIO2) remove iodine from T4 to convert it to a more biologically active T3. The relative contribution of different tissue deiodinases to the establishment of a euthyroid state in sheep is not known. The objective of this study was to quantitate the amounts of transcription of DIO1 and DIO2 deiodinases in different ovine tissues. Using RT-qPCR, we found that DIO1 deiodinase is transcribed in skeletal muscle, kidney, and heart, more than thyroid, in diaphragm in quantities very similar to thyroid, and in liver, spleen, lung, and mammary gland lower than thyroid. We also found that the level of DIO2 transcription in all other tissues was lower than that in thyroid. In clinical settings, measurement of DIO1 and DIO2 expression in a given tissue may provide important clues on the intensity of selenium deficiency and its effects on the metabolism of thyroid hormones.
Collapse
Affiliation(s)
- Mohammad Ali Foroughi
- Department of Basic Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran.
| | | |
Collapse
|
39
|
Sferruzzi-Perri AN, Vaughan OR, Forhead AJ, Fowden AL. Hormonal and nutritional drivers of intrauterine growth. Curr Opin Clin Nutr Metab Care 2013; 16:298-309. [PMID: 23340010 DOI: 10.1097/mco.0b013e32835e3643] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW Size at birth is critical in determining life expectancy with both small and large neonates at risk of shortened life spans. This review examines the hormonal and nutritional drivers of intrauterine growth with emphasis on the role of foetal hormones as nutritional signals in utero. RECENT FINDINGS Nutrients drive intrauterine growth by providing substrate for tissue accretion, whereas hormones regulate nutrient distribution between foetal oxidative metabolism and mass accumulation. The main hormonal drivers of intrauterine growth are insulin, insulin-like growth factors and thyroid hormones. Together with leptin and cortisol, these hormones control cellular nutrient uptake and the balance between accretion and differentiation in regulating tissue growth. They also act indirectly via the placenta to alter the materno-foetal supply of nutrients and oxygen. By responding to nutrient and oxygen availability, foetal hormones optimize the survival and growth of the foetus with respect to its genetic potential, particularly during adverse conditions. However, changes in the intrauterine growth of individual tissues may alter their function permanently. SUMMARY In both normal and compromised pregnancies, intrauterine growth is determined by multiple hormonal and nutritional drivers which interact to produce a specific pattern of intrauterine development with potential lifelong consequences for health.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
40
|
Hombach-Klonisch S, Danescu A, Begum F, Amezaga MR, Rhind SM, Sharpe RM, Evans NP, Bellingham M, Cotinot C, Mandon-Pepin B, Fowler PA, Klonisch T. Peri-conceptional changes in maternal exposure to sewage sludge chemicals disturbs fetal thyroid gland development in sheep. Mol Cell Endocrinol 2013; 367:98-108. [PMID: 23291342 PMCID: PMC3581773 DOI: 10.1016/j.mce.2012.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 11/14/2012] [Accepted: 12/13/2012] [Indexed: 11/24/2022]
Abstract
Ewes were exposed to sewage sludge-fertilized pastures in a study designed investigate pre-conceptual and/or gestational exposure to environmental chemicals. The in utero impact on fetal thyroid morphology and function at day 110 (of 145) of pregnancy was then determined. Pre-conceptual exposure increased the relative thyroid organ weights in male fetuses. The number of thyroid follicles in thyroids of fetuses after pre-conceptual or gestational exposure was reduced. This correlated with an increase in Ki67 positive cells. Pre-conceptual exposure to sewage sludge reduced small blood vessels in fetal thyroids. Thyroid tissues of exposed fetuses contained regions where mature angio-follicular units were reduced exhibiting decreased immunostaining for sodium-iodide symporter (NIS). Fetal plasma levels of fT3 and fT4 in exposed animals, however, were not different from controls suggesting compensatory changes in the thyroid gland to maintain homeostasis in exposed fetuses. The regional aberrations in thyroid morphology may impact on the post-natal life of the exposed offspring.
Collapse
Key Words
- ecs, environmental chemicals
- edcs, endocrine-disrupting compounds
- nis, sodium-iodide symporter
- ft3, free triiodothyronine
- ft4, free thyroxine
- th, thyroid hormone
- tsh, thyroid stimulating hormone
- tr, thyroid hormone receptor
- ttr, transthyretin
- hpt, hypothalamic-pituitary-thyroid axis
- pcbs, polychlorinated biphenyls
- pbde, polybrominated diphenyl ether
- dehp, di(2-ethylhexyl) phthalate
- cv, coefficient of variation
- dab, 3,3′-diaminobenzidine tetrahydrochloride
- hrp, horseradish peroxidase
- rt, room temperature
- he, hematoxylin-eosin
- gnrh, gonadotropin releasing hormone
- gd, gestational day
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- endocrine disruptors
- thyroid gland
- sheep
- fetal
- sewage sludge
- development
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy & Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jellyman JK, Martin-Gronert MS, Cripps RL, Giussani DA, Ozanne SE, Shen QW, Du M, Fowden AL, Forhead AJ. Effects of cortisol and dexamethasone on insulin signalling pathways in skeletal muscle of the ovine fetus during late gestation. PLoS One 2012; 7:e52363. [PMID: 23300651 PMCID: PMC3530600 DOI: 10.1371/journal.pone.0052363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/16/2012] [Indexed: 01/22/2023] Open
Abstract
Before birth, glucocorticoids retard growth, although the extent to which this is mediated by changes in insulin signalling pathways in the skeletal muscle of the fetus is unknown. The current study determined the effects of endogenous and synthetic glucocorticoid exposure on insulin signalling proteins in skeletal muscle of fetal sheep during late gestation. Experimental manipulation of fetal plasma glucocorticoid concentration was achieved by fetal cortisol infusion and maternal dexamethasone treatment. Cortisol infusion significantly increased muscle protein levels of Akt2 and phosphorylated Akt at Ser473, and decreased protein levels of phosphorylated forms of mTOR at Ser2448 and S6K at Thr389. Muscle GLUT4 protein expression was significantly higher in fetuses whose mothers were treated with dexamethasone compared to those treated with saline. There were no significant effects of glucocorticoid exposure on muscle protein abundance of IR-β, IGF-1R, PKCζ, Akt1, calpastatin or muscle glycogen content. The present study demonstrated that components of the insulin signalling pathway in skeletal muscle of the ovine fetus are influenced differentially by naturally occurring and synthetic glucocorticoids. These findings may provide a mechanism by which elevated concentrations of endogenous glucocorticoids retard fetal growth.
Collapse
Affiliation(s)
- Juanita K. Jellyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Malgorzata S. Martin-Gronert
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Roselle L. Cripps
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Qingwu W. Shen
- Department of Animal Science, University of Wyoming, Laramie, United States of America
| | - Min Du
- Department of Animal Science, University of Wyoming, Laramie, United States of America
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Chattergoon NN, Louey S, Stork P, Giraud GD, Thornburg KL. Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. Reprod Sci 2012; 19:642-9. [PMID: 22421446 DOI: 10.1177/1933719111432860] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circulating fetal 3,3',5-tri-iodo-l-thyronine (T(3) ) is maintained at very low levels until a dramatic prepartum surge. 3,3',5-Tri-iodo-l-thyronine inhibits serum-stimulated proliferation in near-term ovine cardiomyocytes, but it is not known whether midgestation myocytes are also inhibited. Because early cessation of cardiomyocyte mitosis would result in an underendowed heart, we hypothesized that 0.67 gestation (100 of 145 days gestation) ovine cardiomyocytes would be insensitive to suppressive growth effects of T(3) . These younger cardiomyocytes were grown with T(3) in 10% serum-enriched media for 24 hours. Physiological (0.37, 0.75, and 1.5 nmol/L) concentrations of T(3) dramatically suppressed mitotic activity in cardiomyocytes (P < .001). 3,3',5-Tri-iodo-l-thyronine stimulated phosphorylation of extracellular signal-regulated kinase and AKT (also known as Protein Kinase B [PKB]) signaling pathways. Nevertheless, the protein content of the cell cycle suppressor, p21, increased 2-fold (P < .05), and promoter, cyclin D1, decreased by 50%. Contrary to our hypothesis, elevated levels of T(3) powerfully inhibit proliferation of midgestation fetal cardiomyocytes. Thus, midgestation maternal hyperthyroidism might lead to an underendowed fetal myocardium.
Collapse
|
43
|
FOWDEN AL, FORHEAD AJ, OUSEY JC. Endocrine adaptations in the foal over the perinatal period. Equine Vet J 2012:130-9. [DOI: 10.1111/j.2042-3306.2011.00505.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Chattergoon NN, Giraud GD, Louey S, Stork P, Fowden AL, Thornburg KL. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J 2011; 26:397-408. [PMID: 21974928 DOI: 10.1096/fj.10-179895] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tri-iodo-l-thyronine (T(3)) suppresses the proliferation of near-term serum-stimulated fetal ovine cardiomyocytes in vitro. Thus, we hypothesized that T(3) is a major stimulant of cardiomyocyte maturation in vivo. We studied 3 groups of sheep fetuses on gestational days 125-130 (term ∼145 d): a T(3)-infusion group, to mimic fetal term levels (plasma T(3) levels increased from ∼0.1 to ∼1.0 ng/ml; t(1/2)∼24 h); a thyroidectomized group, to produce low thyroid hormone levels; and a vehicle-infusion group, to serve as intact controls. At 130 d of gestation, sections of left ventricular freewall were harvested, and the remaining myocardium was enzymatically dissociated. Proteins involved in cell cycle regulation (p21, cyclin D1), proliferation (ERK), and hypertrophy (mTOR) were measured in left ventricular tissue. Evidence that elevated T(3) augmented the maturation rate of cardiomyocytes included 14% increased width, 31% increase in binucleation, 39% reduction in proliferation, 150% reduction in cyclin D1 protein, and 500% increase in p21 protein. Increased expression of phospho-mTOR, ANP, and SERCA2a also suggests that T(3) promotes maturation and hypertrophy of fetal cardiomyocytes. Thyroidectomized fetuses had reduced cell cycle activity and binucleation. These findings support the hypothesis that T(3) is a prime driver of prenatal cardiomyocyte maturation.
Collapse
|
45
|
Rupik W. Structural and ultrastructural differentiation of the thyroid gland during embryogenesis in the grass snake Natrix natrix L. (Lepidosauria, Serpentes). ZOOLOGY 2011; 114:284-97. [DOI: 10.1016/j.zool.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/07/2011] [Accepted: 05/04/2011] [Indexed: 01/21/2023]
|
46
|
Lanham SA, Fowden AL, Roberts C, Cooper C, Oreffo ROC, Forhead AJ. Effects of hypothyroidism on the structure and mechanical properties of bone in the ovine fetus. J Endocrinol 2011; 210:189-98. [PMID: 21642376 DOI: 10.1530/joe-11-0138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid hormones are important for normal bone growth and development in postnatal life. However, little is known about the role of thyroid hormones in the control of bone development in the fetus. Using computed tomography and mechanical testing, the structure and strength of metatarsal bones were measured in sheep fetuses in which thyroid hormone levels were altered by thyroidectomy or adrenalectomy. In intact fetuses, plasma concentrations of total calcium and the degradation products of C-terminal telopeptides of type I collagen increased between 100 and 144 days of gestation (term 145±2 days), in association with various indices of bone growth and development. Thyroid hormone deficiency induced by thyroidectomy at 105-110 days of gestation caused growth retardation of the fetus and significant changes in metatarsal bone structure and strength when analyzed at both 130 and 144 days of gestation. In hypothyroid fetuses, trabecular bone was stronger with thicker, more closely spaced trabeculae, despite lower bone mineral density. Plasma osteocalcin was reduced by fetal thyroidectomy. Removal of the fetal adrenal gland at 115-120 days of gestation, and prevention of the prepartum rises in cortisol and triiodothyronine, had no effect on bodyweight, limb lengths, metatarsal bone structure or strength, or circulating markers of bone metabolism in the fetuses studied near term. This study demonstrates that hypothyroidism in utero has significant effects on the structure and strength of bone, with different consequences for cortical and trabecular bone.
Collapse
Affiliation(s)
- S A Lanham
- Bone and Joint Research Group, Institute of Developmental Sciences, University of Southampton School of Medicine, Tremona Road, Southampton SO16 6YD, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Symonds ME, Budge H, Perkins AC, Lomax MA. Adipose tissue development – Impact of the early life environment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:300-6. [DOI: 10.1016/j.pbiomolbio.2010.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/18/2010] [Accepted: 11/26/2010] [Indexed: 12/21/2022]
|
48
|
Forhead AJ, Cutts S, Matthews PA, Fowden AL. Role of thyroid hormones in the developmental control of tissue glycogen in fetal sheep near term. Exp Physiol 2009; 94:1079-87. [DOI: 10.1113/expphysiol.2009.048751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
|
50
|
Abstract
Continuing advances in the care of premature infants has contributed to the increased survival of very low birth weight premature infants. These infants are characterized by a variety of organ and physiological systems immaturities predisposing to deficiencies of postnatal adaptation and a high prevalence of neonatal morbidities. These morbidities have a major impact on postnatal mental and neurological outcomes. Thyroid hormones play a critical role in central nervous system development and function, and thyroid system immaturities as well as morbidity-related thyroid dysfunction (the nonthyroidal illness syndrome) contribute to the transient hypothyroxinemia of premature infants (THOP). Several studies have demonstrated a correlation of THOP with subsequent low IQ and neurologic sequelae in very low birth weight premature infants, and there is suggestive evidence that thyroid hormone supplementation in very low birth weight infants can improve mental outcome. Here, we review normal fetal thyroid system development and the system immaturities contributing to THOP and predisposing to nonthyroidal illness in very low birth weight infants.
Collapse
|