1
|
Abu-Nejem R, Hannon TS. Insulin Dynamics and Pathophysiology in Youth-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:2411-2421. [PMID: 38963882 DOI: 10.1210/clinem/dgae463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024]
Abstract
Youth-onset type 2 diabetes (T2D) is increasing around the globe. The mounting disease burden of youth-onset T2D portends substantial consequences for the health outcomes of young people and for health care systems. The pathophysiology of this condition is characterized by insulin resistance and initial insulin hypersecretion ± an inherent insulin secretory defect, with progressive loss of stimulated insulin secretion leading to pancreatic β-cell failure. Research studies focusing on youth-onset T2D have illuminated key differences for youth- vs adult-onset T2D, with youth having more profound insulin resistance and quicker progression to loss of sufficient insulin secretion to maintain euglycemia. There is a need for therapies that are targeted to improve both insulin resistance and, importantly, maintain sufficient insulin secretory function over the lifespan in youth-onset T2D.
Collapse
Affiliation(s)
- Rozan Abu-Nejem
- Department of Pediatrics, Divisions of Pediatric Endocrinology and Diabetology and Pediatric Health Services Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tamara S Hannon
- Department of Pediatrics, Divisions of Pediatric Endocrinology and Diabetology and Pediatric Health Services Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Hernández-Gómez KG, Velázquez-Villegas LA, Granados-Portillo O, Avila-Nava A, González-Salazar LE, Serralde-Zúñiga AE, Palacios-González B, Pichardo-Ontiveros E, Guizar-Heredia R, López-Barradas AM, Sánchez-Tapia M, Larios-Serrato V, Olin-Sandoval V, Díaz-Villaseñor A, Medina-Vera I, Noriega LG, Alemán-Escondrillas G, Ortiz-Ortega VM, Torres N, Tovar AR, Guevara-Cruz M. Acute Effects of Dietary Protein Consumption on the Postprandial Metabolic Response, Amino Acid Levels and Circulating MicroRNAs in Patients with Obesity and Insulin Resistance. Int J Mol Sci 2024; 25:7716. [PMID: 39062958 PMCID: PMC11276941 DOI: 10.3390/ijms25147716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate). Glycaemic, insulinaemic, and glucagon responses, amino acid levels, and exosomal microRNAs isolated from plasma were analysed. Post-AP ingestion, the area under the curve (AUC) of insulin (p = 0.04) and the plasma concentrations of branched-chain (p = 0.007) and gluconeogenic (p = 0.01) amino acids increased. The effects of different types of proteins on the concentration of miRNAs were evaluated by measuring their plasma circulating levels. Compared with the baseline, the AP group presented increased circulating levels of miR-27a-3p, miR-29b-3p, and miR-122-5p (p < 0.05). Subsequent analysis over time at 0, 30, and 60 min revealed the same pattern and differences between treatments. We demonstrated that a single dose of dietary protein has acute effects on hormonal and metabolic regulation and increases exosomal miRNA expression in individuals with obesity and IR.
Collapse
Affiliation(s)
- Karla G. Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Laura A. Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, IMSS-Bienestar, Mérida 97130, Yucatán, Mexico
| | - Luis E. González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Aurora E. Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del INMEGEN en el Centro de Investigación Sobre el Envejecimiento, Mexico City 14330, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Rocio Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Adriana M. López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Violeta Larios-Serrato
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, Mexico
| | - Viridiana Olin-Sandoval
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City 04510, Mexico
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gabriela Alemán-Escondrillas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Victor M. Ortiz-Ortega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
3
|
Pixner T, Chaikouskaya T, Lauth W, Zimmermann G, Mörwald K, Lischka J, Furthner D, Awender E, Geiersberger S, Maruszczak K, Forslund A, Anderwald CH, Cadamuro J, Weghuber D, Bergsten P. Rise in fasting and dynamic glucagon levels in children and adolescents with obesity is moderate in subjects with impaired fasting glucose but accentuated in subjects with impaired glucose tolerance or type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1368570. [PMID: 39027470 PMCID: PMC11254805 DOI: 10.3389/fendo.2024.1368570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Fasting levels of glucagon are known to be elevated in youth and adults with type 2 diabetes mellitus (T2D). Children and adolescents with obesity were previously reported to show increasing fasting and post-glucose-challenge hyperglucagonemia across the spectrum of glucose tolerance, while no data are available in those with impaired fasting glucose (IFG). Materials and methods Individuals from the Beta-JUDO study population (Uppsala and Salzburg 2010-2016) (n=101, age 13.3 ± 2.8, m/f =50/51) were included (90 with overweight or obesity, 11 with normal weight). Standardized OGTT were performed and plasma glucose, glucagon and insulin concentrations assessed at baseline, 5, 10, 15, 30, 60, 90 and 120 minutes. Patients were grouped according to their glycemic state in six groups with normal glucose metabolism (NGM) and normal weight (NG-NW), NGM with obesity or overweight (NG-O), impaired glucose tolerance (IGT), impaired fasting glucose (IFG), IGT+IFG and T2D, and in two groups with NGM and impaired glucose metabolism (IGM), for statistical analysis. Results and conclusion Glucagon concentrations were elevated in young normoglycemic individuals with overweight or obesity (NG-O) compared to normoglycemic individuals with normal weight. Glucagon levels, fasting and dynamic, increased with progressing glycemic deterioration, except in IFG, where levels were comparable to those in NG-O. All glycemic groups showed an overall suppression of glucagon during OGTT. An initial increase of glucagon could be observed in T2D. In T2D, glucagon showed a strong direct linear correlation with plasma glucose levels during OGTT. Glucagon in adolescents, as in adults, may play a role in the disease progression of T2D.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Tatsiana Chaikouskaya
- Institut national supérieur des sciences agronomiques de l'alimentation et de l'environnement, Dijon, France
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wanda Lauth
- Biostatistics and Big Medical Data, Lab for Intelligent Data Analytics (IDA) Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Georg Zimmermann
- Biostatistics and Big Medical Data, Lab for Intelligent Data Analytics (IDA) Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Julia Lischka
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Elisabeth Awender
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sabine Geiersberger
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Clinical Research Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Christian-Heinz Anderwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Direction, Arnoldstein Healthcare Centre, Arnoldstein, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Stinson SE, Fernández de Retana Alzola I, Brünner Hovendal ED, Lund MAV, Fonvig CE, Holm LA, Jonsson AE, Frithioff-Bøjsøe C, Christiansen M, Pedersen O, Ängquist L, Sørensen TIA, Holst JJ, Hartmann B, Holm JC, Hansen T. Altered Glucagon and GLP-1 Responses to Oral Glucose in Children and Adolescents With Obesity and Insulin Resistance. J Clin Endocrinol Metab 2024; 109:1590-1600. [PMID: 38087928 PMCID: PMC11099488 DOI: 10.1210/clinem/dgad728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 05/18/2024]
Abstract
CONTEXT Pediatric obesity is characterized by insulin resistance, yet it remains unclear whether insulin resistance contributes to abnormalities in glucagon and incretin secretion. OBJECTIVE To examine whether fasting and stimulated glucagon, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) concentrations differ between children and adolescents with obesity and insulin resistance (OIR), obesity and normal insulin sensitivity (OIS), and controls with normal weight (NW). METHODS 80 (34 boys) children and adolescents, aged 7-17 years with OIR (n = 22), OIS (n = 22), and NW (n = 36) underwent an oral glucose tolerance test with measurements of serum insulin, plasma glucose, glucagon, total GLP-1, and total GIP. Homeostatic model assessment of insulin resistance (HOMA-IR), single point insulin sensitivity estimator (SPISE), Matsuda index, insulinogenic index (IGI), and oral disposition index (ODI) were calculated. RESULTS Fasting concentrations of glucagon and GLP-1 were higher in the OIR group, with no significant differences for GIP. The OIR group had higher glucagon total area under the curve (tAUC0-120) and lower GLP-1 incremental AUC (iAUC0-120), with no significant differences in GIP iAUC0-120. Higher fasting glucagon was associated with higher HOMA-IR, lower Matsuda index, lower SPISE, higher IGI, and higher plasma alanine transaminase, whereas higher fasting GLP-1 was associated with higher HOMA-IR, lower Matsuda index, and lower ODI. Higher glucagon tAUC0-120 was associated lower SPISE and lower Matsuda index, whereas lower GLP-1 iAUC0-120 was associated with a higher HOMA-IR, lower Matsuda index, and lower ODI. CONCLUSION Children and adolescents with OIR have elevated fasting concentrations of glucagon and GLP-1, higher glucagon and lower GLP-1 responses during an OGTT compared to those with OIS and NW. In contrast, individuals with OIS have similar hormone responses to those with NW.
Collapse
Affiliation(s)
- Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ierai Fernández de Retana Alzola
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Emilie Damgaard Brünner Hovendal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Morten Asp Vonsild Lund
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cilius Esmann Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Anna Elisabet Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Frithioff-Bøjsøe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Michael Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Herlev-Gentofte University Hospital, 2900 Copenhagen, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Serbis A, Giapros V, Tsamis K, Balomenou F, Galli-Tsinopoulou A, Siomou E. Beta Cell Dysfunction in Youth- and Adult-Onset Type 2 Diabetes: An Extensive Narrative Review with a Special Focus on the Role of Nutrients. Nutrients 2023; 15:2217. [PMID: 37432389 PMCID: PMC10180650 DOI: 10.3390/nu15092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
Traditionally a disease of adults, type 2 diabetes (T2D) has been increasingly diagnosed in youth, particularly among adolescents and young adults of minority ethnic groups. Especially, during the recent COVID-19 pandemic, obesity and prediabetes have surged not only in minority ethnic groups but also in the general population, further raising T2D risk. Regarding its pathogenesis, a gradually increasing insulin resistance due to central adiposity combined with a progressively defective β-cell function are the main culprits. Especially in youth-onset T2D, a rapid β-cell activity decline has been observed, leading to higher treatment failure rates, and early complications. In addition, it is well established that both the quantity and quality of food ingested by individuals play a key role in T2D pathogenesis. A chronic imbalance between caloric intake and expenditure together with impaired micronutrient intake can lead to obesity and insulin resistance on one hand, and β-cell failure and defective insulin production on the other. This review summarizes our evolving understanding of the pathophysiological mechanisms involved in defective insulin secretion by the pancreatic islets in youth- and adult-onset T2D and, further, of the role various micronutrients play in these pathomechanisms. This knowledge is essential if we are to curtail the serious long-term complications of T2D both in pediatric and adult populations.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| |
Collapse
|
6
|
Lat J, Caprio S. Understanding the Pathophysiology of Youth-Onset Type 2 Diabetes (T2D): Importance of Alpha-Cell Function. J Clin Endocrinol Metab 2022; 107:e3957-e3958. [PMID: 35512384 PMCID: PMC9387691 DOI: 10.1210/clinem/dgac273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Jessica Lat
- Department of Pediatrics, Division of Endocrinology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sonia Caprio
- Department of Pediatrics, Division of Endocrinology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
7
|
Stinson SE, Jonsson AE, de Retana Alzola IF, Lund MAV, Frithioff-Bøjsøe C, Aas Holm L, Fonvig CE, Pedersen O, Ängquist L, Sørensen TIA, Holst JJ, Christiansen M, Holm JC, Hartmann B, Hansen T. Hyperglucagonemia in Pediatric Adiposity Associates With Cardiometabolic Risk Factors but Not Hyperglycemia. J Clin Endocrinol Metab 2022; 107:1569-1576. [PMID: 35213713 PMCID: PMC9113783 DOI: 10.1210/clinem/dgac108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 01/18/2023]
Abstract
CONTEXT In adults, hyperglucagonemia is associated with type 2 diabetes, impaired glucose tolerance, and obesity. The role of glucagon in pediatric overweight/obesity remains unclear. OBJECTIVE We examined whether fasting concentrations of glucagon are elevated in youth with overweight/obesity and whether this associates with cardiometabolic risk profiles. METHODS Analyses were based on the cross-sectional HOLBAEK study, including children and adolescents 6 to 19 years of age, with overweight/obesity from an obesity clinic group (n = 2154) and with normal weight from a population-based group (n = 1858). Fasting concentrations of plasma glucagon and cardiometabolic risk outcomes were assessed, and multiple linear and logistic regressions models were performed. RESULTS The obesity clinic group had higher glucagon concentrations than the population-based group (P < 0.001). Glucagon positively associated with body mass index (BMI) standard deviation score (SDS), waist, body fat %, liver fat %, alanine transaminase (ALT), high-sensitivity C-reactive protein, homeostasis model assessment of insulin resistance, insulin, C-peptide, LDL-C, triglycerides, SDS of diastolic and systolic blood pressure, and was inversely associated with fasting glucose. The inverse relationship between glucagon and glucose was attenuated in individuals with high BMI SDS and high fasting insulin. Glucagon was associated with a higher prevalence of insulin resistance, increased ALT, dyslipidemia, and hypertension, but not with hyperglycemia. Glucagon was positively associated with fasting total glucagon-like peptide-1. CONCLUSION Compared with normal weight peers, children and adolescents with overweight/obesity had elevated concentrations of fasting glucagon, which corresponded to worsened cardiometabolic risk outcomes, except for hyperglycemia. This suggests hyperglucagonemia in youth may precede impairments in glucose regulation.
Collapse
Affiliation(s)
- Sara E Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ierai Fernández de Retana Alzola
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten A V Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
| | - Christine Frithioff-Bøjsøe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
| | - Cilius E Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
- Department of Pediatrics, Kolding Hospital a part of Lillebælt Hospital, Kolding, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, Holbæk, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Kahn SE, Mather KJ, Arslanian SA, Barengolts E, Buchanan TA, Caprio S, Ehrmann DA, Hannon TS, Marcovina S, Nadeau KJ, Utzschneider KM, Xiang AH, Edelstein SL. Hyperglucagonemia Does Not Explain the β-Cell Hyperresponsiveness and Insulin Resistance in Dysglycemic Youth Compared With Adults: Lessons From the RISE Study. Diabetes Care 2021; 44:1961-1969. [PMID: 34131047 PMCID: PMC8740916 DOI: 10.2337/dc21-0460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine whether β-cell hyperresponsiveness and insulin resistance in youth versus adults in the Restoring Insulin Secretion (RISE) Study are related to increased glucagon release. RESEARCH DESIGN AND METHODS In 66 youth and 350 adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes (drug naive), we performed hyperglycemic clamps and oral glucose tolerance tests (OGTTs). From clamps we quantified insulin sensitivity (M/I), plasma fasting glucagon and C-peptide, steady-state glucagon and C-peptide at glucose of 11.1 mmol/L, and arginine-stimulated glucagon (acute glucagon response [AGR]) and C-peptide (ACPRmax) responses at glucose >25 mmol/L. RESULTS Mean ± SD fasting glucagon (7.63 ± 3.47 vs. 8.55 ± 4.47 pmol/L; P = 0.063) and steady-state glucagon (2.24 ± 1.46 vs. 2.49 ± 1.96 pmol/L, P = 0.234) were not different in youth and adults, respectively, while AGR was lower in youth (14.1 ± 5.2 vs. 16.8 ± 8.8 pmol/L, P = 0.001). Significant age-group differences in insulin sensitivity, fasting C-peptide, steady-state C-peptide, and ACPRmax were not related to glucagon. Fasting glucose and glucagon were positively correlated in adults (r = 0.133, P = 0.012) and negatively correlated in youth (r = -0.143, P = 0.251). In both age-groups, higher fasting glucagon was associated with higher fasting C-peptide (youth r = 0.209, P = 0.091; adults r = 0.335, P < 0.001) and lower insulin sensitivity (youth r = -0.228, P = 0.066; adults r = -0.324, P < 0.001). With comparable fasting glucagon, youth had greater C-peptide and lower insulin sensitivity. OGTT suppression of glucagon was greater in youth. CONCLUSIONS Youth with IGT or recently diagnosed type 2 diabetes (drug naive) have hyperresponsive β-cells and lower insulin sensitivity, but their glucagon concentrations are not increased compared with those in adults. Thus, α-cell dysfunction does not appear to explain the difference in β-cell function and insulin sensitivity in youth versus adults.
Collapse
Affiliation(s)
- Steven E. Kahn
- VA Puget Sound Health Care System, Seattle, WA
- University of Washington, Seattle, WA
| | | | | | | | - Thomas A. Buchanan
- Keck School of Medicine of University of Southern California, Los Angeles, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Morita Y, Ohno H, Kobuke K, Oki K, Yoneda M. Variation in plasma glucagon levels according to obesity status in Japanese Americans with normal glucose tolerance. Endocr J 2021; 68:95-102. [PMID: 32908087 DOI: 10.1507/endocrj.ej20-0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Japanese Americans living in the United States are genetically identical to Japanese people, but have undergone a rapid and intense westernization of their lifestyle. This study investigated variability in glucagon secretion after glucose loading among Japanese Americans with normal glucose tolerance (NGT) according to obesity status. The 75-g oral glucose tolerance test (OGTT) was performed for 138 Japanese Americans (aged 40-75 years) living in Los Angeles. Plasma glucagon levels measured using the sandwich enzyme-linked immunosorbent assay were compared according to body mass index (BMI) categories among 119 individuals with NGT. The individuals were classified into three categories according to their BMI values: <22 kg/m2 (n = 37), 22-24.9 kg/m2 (n = 46), and ≥25 kg/m2 (n = 36). Fasting plasma glucagon levels and glucagon-area under the curve levels during the OGTT were the highest in the BMI ≥25 kg/m2 group. Fasting glucagon levels were correlated with BMI (r = 0.399, p < 0.001), fasting insulin levels (r = 0.275, p = 0.003) and the homeostasis model assessment-insulin resistance (r = 0.262, p = 0.004). In conclusion, our findings suggest that fasting hyperglucagonemia is associated with obesity and insulin resistance even during the NGT stage in the Japanese American population.
Collapse
Affiliation(s)
- Yoshimi Morita
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Haruya Ohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kazuhiro Kobuke
- Department of Preventive Medicine for Diabetes and Lifestyle-related Diseases, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masayasu Yoneda
- Department of Preventive Medicine for Diabetes and Lifestyle-related Diseases, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
10
|
Manell H, Kristinsson H, Kullberg J, Ubhayasekera SJK, Mörwald K, Staaf J, Cadamuro J, Zsoldos F, Göpel S, Sargsyan E, Ahlström H, Bergquist J, Weghuber D, Forslund A, Bergsten P. Hyperglucagonemia in youth is associated with high plasma free fatty acids, visceral adiposity, and impaired glucose tolerance. Pediatr Diabetes 2019; 20:880-891. [PMID: 31271247 DOI: 10.1111/pedi.12890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To delineate potential mechanisms for fasting hyperglucagonemia in childhood obesity by studying the associations between fasting plasma glucagon concentrations and plasma lipid parameters and fat compartments. METHODS Cross-sectional study of children and adolescents with obesity (n = 147) and lean controls (n = 43). Differences in free fatty acids (FFAs), triglycerides, insulin, and fat compartments (quantified by magnetic resonance imaging) across quartiles of fasting plasma glucagon concentration were analyzed. Differences in oral glucose tolerance test (OGTT) glucagon response was tested in high vs low FFAs, triglycerides, and insulin. Human islets of Langerhans were cultured at 5.5 mmol/L glucose and in the absence or presence of a FFA mixture with total FFA concentration of 0.5 mmol/L and glucagon secretion quantified. RESULTS In children with obesity, the quartile with the highest fasting glucagon had higher insulin (201 ± 174 vs 83 ± 39 pmol/L, P < .01), FFAs (383 ± 52 vs 338 ± 109 μmol/L, P = .02), triglycerides (1.5 ± 0.9 vs 1.0 ± 0.7 mmol/L, P < .01), visceral adipose tissue volume (1.9 ± 0.8 vs 1.2 ± 0.3 dm3 , P < .001), and a higher prevalence of impaired glucose tolerance (IGT; 41% vs 8%, P = .01) than the lowest quartile. During OGTT, children with obesity and high insulin had a worse suppression of glucagon during the first 10 minutes after glucose intake. Glucagon secretion was 2.6-fold higher in islets treated with FFAs than in those not treated with FFAs. CONCLUSIONS Hyperglucagonemia in childhood obesity is associated with hyperinsulinemia, high plasma FFAs, high plasma triglycerides, visceral adiposity, and IGT. The glucagonotropic effect of FFAs on isolated human islets provides a potential mechanism linking high fasting plasma FFAs and glucagon levels.
Collapse
Affiliation(s)
- Hannes Manell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | | | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Johan Staaf
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Fanni Zsoldos
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria.,Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Sven Göpel
- Cardiovascular and Metabolic Diseases (CVMD), Innovative Medicines and Early Development Biotech Unit (iMed), AstraZeneca AB, Mölndal, Sweden
| | - Ernest Sargsyan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry & Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Daniel Weghuber
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria.,Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Malone JI, Hansen BC. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr Diabetes 2019; 20:5-9. [PMID: 30311716 DOI: 10.1111/pedi.12787] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Obesity is believed to be a promoter of type 2 diabetes mellitus (T2DM). Reports indicate that severe obesity in childhood and adolescence increases the risk of T2DM in youth and young adults. T2DM, which is commonly asymptomatic, frequently is not recognized until random blood glucose is measured. Screening blood glucose levels measured in obese individuals are more effective for identifying undiagnosed persons, than screening the general population and therefore introduces a selection bias for discovery. The following commentary will indicate why these observations do not indicate that obesity is the cause of T2DM. Also, it will be shown that the insulin resistance of T2DM occurs primarily in the muscles of lean individuals predisposed to diabetes before they become obese. This insulin resistance is not secondary to, but instead, is the cause of the excessive fat accumulation associated with T2DM. Moreover, this early muscle insulin resistance is the etiology of the hyperlipidemia and excess fat accumulation characteristic of T2DM.
Collapse
Affiliation(s)
- John I Malone
- Department of Medicine, Morsani College of Medicine, University of South Florida, Florida
| | - Barbara C Hansen
- Department of Medicine, Morsani College of Medicine, University of South Florida, Florida
| |
Collapse
|
12
|
Arslanian S, Bacha F, Grey M, Marcus MD, White NH, Zeitler P. Evaluation and Management of Youth-Onset Type 2 Diabetes: A Position Statement by the American Diabetes Association. Diabetes Care 2018; 41:2648-2668. [PMID: 30425094 PMCID: PMC7732108 DOI: 10.2337/dci18-0052] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Silva Arslanian
- Division of Pediatric Endocrinology, Metabolism, and Diabetes Mellitus, University of Pittsburgh, Pittsburgh, PA
- Center for Pediatric Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Fida Bacha
- Children's Nutrition Research Center, Texas Children's Hospital and Baylor College of Medicine, Houston, TX
| | - Margaret Grey
- Yale School of Nursing, New Haven, CT
- Yale School of Medicine, New Haven, CT
| | | | - Neil H White
- Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Philip Zeitler
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
13
|
Gar C, Rottenkolber M, Sacco V, Moschko S, Banning F, Hesse N, Popp D, Hübener C, Seissler J, Lechner A. Patterns of Plasma Glucagon Dynamics Do Not Match Metabolic Phenotypes in Young Women. J Clin Endocrinol Metab 2018; 103:972-982. [PMID: 29244078 DOI: 10.1210/jc.2017-02014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023]
Abstract
CONTEXT The role of hyperglucagonemia in type 2 diabetes is still debated. OBJECTIVE We analyzed glucagon dynamics during oral glucose tolerance tests (oGTTs) in young women with one out of three metabolic phenotypes: healthy control (normoglycemic after a normoglycemic pregnancy), normoglycemic high-risk (normoglycemic after a pregnancy complicated by gestational diabetes), and prediabetes/screening-diagnosed type 2 diabetes. We asked if glucagon patterns were homogeneous within the metabolic phenotypes. DESIGN AND SETTING Five-point oGTT, sandwich enzyme-linked immunosorbent assay for glucagon, and functional data analysis with unsupervised clustering. PARTICIPANTS Cross-sectional analysis of 285 women from the monocenter observational study Prediction, Prevention, and Subclassification of gestational and type 2 Diabetes, recruited between November 2011 and May 2016. RESULTS We found four patterns of glucagon dynamics that did not match the metabolic phenotypes. Elevated fasting glucagon and delayed glucagon suppression was overrepresented with prediabetes/diabetes, but this was only detected in 21% of this group. It also occurred in 8% of the control group. CONCLUSIONS We conclude that hyperglucagonemia may contribute to type 2 diabetes in a subgroup of affected individuals but that it is not a sine qua non for the disease. This should be considered in future pathophysiological studies and when testing pharmacotherapies addressing glucagon signaling.
Collapse
Affiliation(s)
- Christina Gar
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Marietta Rottenkolber
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Vanessa Sacco
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sarah Moschko
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Friederike Banning
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nina Hesse
- Department of Clinical Radiology, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
| | - Daniel Popp
- Department of Clinical Radiology, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
| | - Christoph Hübener
- Department of Gynecology and Obstetrics, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
| | - Jochen Seissler
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Andreas Lechner
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
14
|
Pathogenesis of Insulin Resistance and Glucose Intolerance in Childhood Obesity. CONTEMPORARY ENDOCRINOLOGY 2018. [DOI: 10.1007/978-3-319-68192-4_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Abstract
Obesity has been estimated to decrease life expectancy by as little as 0.8 to as much as 7 years being the second leading cause of preventable death in the United States after smoking. Along with the increase in the prevalence of obesity, there has been a dramatic rise of the prevalence of prediabetes and type 2 diabetes among adolescents. Despite that, very little is known about the pathogenesis of these conditions in pediatrics and about how we could detect prediabetes in an early stage in order to prevent full blown diabetes. In this review we summarize the current knowledge on the pathophysiology of prediabetes and type 2 diabetes in adolescents and describe how biomarkers of beta-cell function might help identifying those individuals who are prone to progress from normal glucose tolerance towards prediabetes and overt type 2 diabetes. To better understand and fight this disease, we will need to explore and develop novel therapeutic strategies and individuate more sensitive and specific biomarkers that can allow an earlier detection of the disease.
Collapse
|
16
|
Trahair LG, Marathe CS, Standfield S, Rayner CK, Feinle-Bisset C, Horowitz M, Jones KL. Effects of small intestinal glucose on glycaemia, insulinaemia and incretin hormone release are load-dependent in obese subjects. Int J Obes (Lond) 2017; 41:225-232. [PMID: 27840416 DOI: 10.1038/ijo.2016.202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/10/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Studies concerning the glycaemic response to oral glucose, or meals in obesity have usually failed to account for gastric emptying. It has been suggested that the incretin effect may be diminished in obesity as a result of a reduction in glucagon-like peptide-1 (GLP-1) secretion. We sought to determine the effect of two different rates of intraduodenal glucose infusions on glycaemic, insulinaemic and incretin hormone responses in lean and obese subjects and compare the effects of oral and intraduodenal glucose in obese subjects. SUBJECTS/METHODS Eleven obese subjects (age 37.5±4.1 years, body mass index (BMI) 35.7±1.4 kg m-2) and 12 controls (age 34.7±4.0 years, BMI 23.9±0.7 kg m-2) received intraduodenal infusions of glucose at 1 or 3 kcal min-1, or saline for 60 min (t=0-60 min), followed by intraduodenal saline (t=60-120 min). In obese subjects, an oral glucose tolerance test was performed. Blood glucose, serum insulin, plasma total GLP-1 and total gastric inhibitory polypeptide (GIP) were measured. RESULTS In both the groups (P<0.001), the incremental areas under the curve (iAUC)0-60 min for glucose was greater with the 3 kcal min-1 than the 1 kcal min-1 infusion; the iAUC0-120 min for glucose during 3 kcal min-1 was greater (P<0.05), in the obese. Insulin responses to 1 kcal min-1 and, particularly, 3 kcal min-1 were greater (P<0.001) in the obese. Stimulation of GLP-1 and GIP were greater (P<0.001) in response to 3 kcal min-1, compared with 1 kcal min-1 and saline, without any difference between the groups. In the obese, glycaemic, insulinaemic and GIP, but not GLP-1, responses to oral and intraduodenal glucose were related (P<0.05). CONCLUSIONS The rate of duodenal glucose delivery is a major determinant of glycaemia, insulinaemia and incretin hormone release in obese subjects. Obesity is not apparently associated with impaired GLP-1 secretion.
Collapse
Affiliation(s)
- L G Trahair
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - C S Marathe
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - S Standfield
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - C K Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - C Feinle-Bisset
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - M Horowitz
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - K L Jones
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Amato A, Baldassano S, Mulè F. GLP2: an underestimated signal for improving glycaemic control and insulin sensitivity. J Endocrinol 2016; 229:R57-66. [PMID: 27048234 DOI: 10.1530/joe-16-0035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells and by a discrete population of neurons in the brainstem, which projects mainly to the hypothalamus. The main biological actions of GLP2 are related to the regulation of energy absorption and maintenance of mucosal morphology, function and integrity of the intestine; however, recent experimental data suggest that GLP2 exerts beneficial effects on glucose metabolism, especially in conditions related to increased uptake of energy, such as obesity, at least in the animal model. Indeed, mice lacking GLP2 receptor selectively in hypothalamic neurons that express proopiomelanocortin show impaired postprandial glucose tolerance and hepatic insulin resistance (by increased gluconeogenesis). Moreover, GLP2 acts as a beneficial factor for glucose metabolism in mice with high-fat diet-induced obesity. Thus, the aim of this review is to update and summarize current knowledge about the role of GLP2 in the control of glucose homeostasis and to discuss how this molecule could exert protective effects against the onset of related obesity type 2 diabetes.
Collapse
Affiliation(s)
- Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| | - Sara Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| |
Collapse
|
18
|
Manell H, Staaf J, Manukyan L, Kristinsson H, Cen J, Stenlid R, Ciba I, Forslund A, Bergsten P. Altered Plasma Levels of Glucagon, GLP-1 and Glicentin During OGTT in Adolescents With Obesity and Type 2 Diabetes. J Clin Endocrinol Metab 2016; 101:1181-9. [PMID: 26745255 DOI: 10.1210/jc.2015-3885] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
CONTEXT Proglucagon-derived hormones are important for glucose metabolism, but little is known about them in pediatric obesity and type 2 diabetes mellitus (T2DM). OBJECTIVE Fasting and postprandial levels of proglucagon-derived peptides glucagon, GLP-1, and glicentin in adolescents with obesity across the glucose tolerance spectrum were investigated. DESIGN This was a cross-sectional study with plasma hormone levels quantified at fasting and during an oral glucose tolerance test (OGTT). SETTING This study took place in a pediatric obesity clinic at Uppsala University Hospital, Sweden. PATIENTS AND PARTICIPANTS Adolescents with obesity, age 10-18 years, with normal glucose tolerance (NGT, n = 23), impaired glucose tolerance (IGT, n = 19), or T2DM (n = 4) and age-matched lean adolescents (n = 19) were included. MAIN OUTCOME MEASURES Outcome measures were fasting and OGTT plasma levels of insulin, glucagon, active GLP-1, and glicentin. RESULTS Adolescents with obesity and IGT had lower fasting GLP-1 and glicentin levels than those with NGT (0.25 vs 0.53 pM, P < .05; 18.2 vs 23.6 pM, P < .01) and adolescents with obesity and T2DM had higher fasting glucagon levels (18.1 vs 10.1 pM, P < .01) than those with NGT. During OGTT, glicentin/glucagon ratios were lower in adolescents with obesity and NGT than in lean adolescents (P < .01) and even lower in IGT (P < .05) and T2DM (P < .001). CONCLUSIONS Obese adolescents with IGT have lowered fasting GLP-1 and glicentin levels. In T2DM, fasting glucagon levels are elevated, whereas GLP-1 and glicentin levels are maintained low. During OGTT, adolescents with obesity have more products of pancreatically than intestinally cleaved proglucagon (ie, more glucagon and less GLP-1) in the plasma. This shift becomes more pronounced when glucose tolerance deteriorates.
Collapse
Affiliation(s)
- Hannes Manell
- Department of Medical Cell Biology (H.M., J.S., L.M., H.K., J.C., R.S., P.B.), Uppsala University, 75123 Uppsala, Sweden; Department of Women's and Children's Health (H.M., J.S., J.C., R.S., I.C., A.F.), Uppsala University Hospital, Uppsala, Sweden
| | - Johan Staaf
- Department of Medical Cell Biology (H.M., J.S., L.M., H.K., J.C., R.S., P.B.), Uppsala University, 75123 Uppsala, Sweden; Department of Women's and Children's Health (H.M., J.S., J.C., R.S., I.C., A.F.), Uppsala University Hospital, Uppsala, Sweden
| | - Levon Manukyan
- Department of Medical Cell Biology (H.M., J.S., L.M., H.K., J.C., R.S., P.B.), Uppsala University, 75123 Uppsala, Sweden; Department of Women's and Children's Health (H.M., J.S., J.C., R.S., I.C., A.F.), Uppsala University Hospital, Uppsala, Sweden
| | - Hjalti Kristinsson
- Department of Medical Cell Biology (H.M., J.S., L.M., H.K., J.C., R.S., P.B.), Uppsala University, 75123 Uppsala, Sweden; Department of Women's and Children's Health (H.M., J.S., J.C., R.S., I.C., A.F.), Uppsala University Hospital, Uppsala, Sweden
| | - Jing Cen
- Department of Medical Cell Biology (H.M., J.S., L.M., H.K., J.C., R.S., P.B.), Uppsala University, 75123 Uppsala, Sweden; Department of Women's and Children's Health (H.M., J.S., J.C., R.S., I.C., A.F.), Uppsala University Hospital, Uppsala, Sweden
| | - Rasmus Stenlid
- Department of Medical Cell Biology (H.M., J.S., L.M., H.K., J.C., R.S., P.B.), Uppsala University, 75123 Uppsala, Sweden; Department of Women's and Children's Health (H.M., J.S., J.C., R.S., I.C., A.F.), Uppsala University Hospital, Uppsala, Sweden
| | - Iris Ciba
- Department of Medical Cell Biology (H.M., J.S., L.M., H.K., J.C., R.S., P.B.), Uppsala University, 75123 Uppsala, Sweden; Department of Women's and Children's Health (H.M., J.S., J.C., R.S., I.C., A.F.), Uppsala University Hospital, Uppsala, Sweden
| | - Anders Forslund
- Department of Medical Cell Biology (H.M., J.S., L.M., H.K., J.C., R.S., P.B.), Uppsala University, 75123 Uppsala, Sweden; Department of Women's and Children's Health (H.M., J.S., J.C., R.S., I.C., A.F.), Uppsala University Hospital, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology (H.M., J.S., L.M., H.K., J.C., R.S., P.B.), Uppsala University, 75123 Uppsala, Sweden; Department of Women's and Children's Health (H.M., J.S., J.C., R.S., I.C., A.F.), Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
19
|
Hannon TS, Arslanian SA. The changing face of diabetes in youth: lessons learned from studies of type 2 diabetes. Ann N Y Acad Sci 2015; 1353:113-37. [PMID: 26448515 DOI: 10.1111/nyas.12939] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022]
Abstract
The incidence of youth type 2 diabetes (T2D), linked with obesity and declining physical activity in high-risk populations, is increasing. Recent multicenter studies have led to a number of advances in our understanding of the epidemiology, pathophysiology, diagnosis, treatment, and complications of this disease. As in adult T2D, youth T2D is associated with insulin resistance, together with progressive deterioration in β cell function and relative insulin deficiency in the absence of diabetes-related immune markers. In contrast to adult T2D, the decline in β cell function in youth T2D is three- to fourfold faster, and therapeutic failure rates are significantly higher in youth than in adults. Whether the more aggressive nature of youth T2D is driven by genetic heterogeneity or physiology/metabolic maladaptation is yet unknown. Besides metformin, the lack of approved pharmacotherapeutic agents for youth T2D that target the pathophysiological mechanisms is a major barrier to optimal diabetes management. There is a significant need for effective therapeutic options, in addition to increased prevention, to halt the projected fourfold increase in youth T2D by 2050 and the consequences of heightened diabetes-related morbidity and mortality at younger ages.
Collapse
Affiliation(s)
- Tamara S Hannon
- Indiana University School of Medicine, Department of Pediatrics, Sections of Pediatric Endocrinology & Diabetology and Pediatric Comparative Effectiveness Research, Indianapolis, Indiana
| | - Silva A Arslanian
- Children's Hospital of University of Pittsburgh Medical Center, Department of Pediatrics, Divisions of Weight Management and Pediatric Endocrinology, Metabolism and Diabetes Mellitus, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Pancreatic alpha-cells from female mice undergo morphofunctional changes during compensatory adaptations of the endocrine pancreas to diet-induced obesity. Sci Rep 2015; 5:11622. [PMID: 26108563 PMCID: PMC4650619 DOI: 10.1038/srep11622] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/02/2015] [Indexed: 01/28/2023] Open
Abstract
Obesity is frequently associated with insulin resistance. To compensate for this situation and maintain normoglycaemia, pancreatic beta-cells undergo several morphofunctional adaptations, which result in insulin hypersecretion and hyperinsulinaemia. However, no information exists about pancreatic alpha-cells during this compensatory stage of obesity. Here, we studied alpha-cells in mice fed a high-fat diet (HFD) for 12 weeks. These animals exhibited hyperinsulinaemia and normoglycaemia compared with control animals in addition to hypoglucagonaemia. While the in vivo response of glucagon to hypoglycaemia was preserved in the obese mice, the suppression of glucagon secretion during hyperglycaemia was impaired. Additionally, in vitro glucagon release at low glucose levels and glucagon content in isolated islets were decreased, while alpha-cell exocytosis remained unchanged. Assessment of morphological parameters revealed that alpha-cell area was reduced in the pancreas of the obese mice in association with alpha-cell hypotrophy, increased apoptosis and decreased proliferation. HFD feeding for 24 weeks led to significant deterioration in beta-cell function and glucose homeostasis. Under these conditions, the majority of alpha-cell changes were reversed and became comparable to controls. These findings indicate that pancreatic compensatory adaptations during obesity may also involve pancreatic alpha-cells. Additionally, defects in alpha-cell function during obesity may be implicated in progression to diabetes.
Collapse
|
21
|
Karlsson Videhult F, Andersson Y, Öhlund I, Stenlund H, Hernell O, West CE. Impact of probiotics during weaning on the metabolic and inflammatory profile: follow-up at school age. Int J Food Sci Nutr 2015; 66:686-91. [DOI: 10.3109/09637486.2015.1025717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Hashemi Z, Yang K, Yang H, Jin A, Ozga J, Chan CB. Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet-fed rats. Appl Physiol Nutr Metab 2015; 40:323-33. [PMID: 25794240 DOI: 10.1139/apnm-2014-0380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulses, including dried peas, are nutrient- and fibre-rich foods that improve glucose control in diabetic subjects compared with other fibre sources. We hypothesized feeding cooked pea seed coats to insulin-resistant rats would improve glucose tolerance by modifying gut responses to glucose and reducing stress on pancreatic islets. Glucose intolerance induced in male Sprague-Dawley rats with high-fat diet (HFD; 10% cellulose as fibre) was followed by 3 weeks of HFD with fibre (10%) provided by cellulose, raw-pea seed coat (RP), or cooked-pea seed coat (CP). A fourth group consumed low-fat diet with 10% cellulose. Oral and intraperitoneal glucose tolerance tests (oGTT, ipGTT) were done. CP rats had 30% and 50% lower glucose and insulin responses in oGTT, respectively, compared with the HFD group (P < 0.05) but ipGTT was not different. Plasma islet and incretin hormone concentrations were measured. α- and β-cell areas in the pancreas and density of K- and L-cells in jejunum and ileum were quantified. Jejunal expression of hexose transporters was measured. CP feeding increased fasting glucagon-like peptide 1 and glucose-stimulated gastric inhibitory polypeptide responses (P < 0.05), but K- and L-cells densities were comparable to HFD, as was abundance of SGLT1 and GLUT2 mRNA. No significant difference in β-cell area between diet groups was observed. α-cell area was significantly smaller in CP compared with RP rats (P < 0.05). Overall, our results demonstrate that CP feeding can reverse adverse effects of HFD on glucose homeostasis and is associated with enhanced incretin secretion and reduced α-cell abundance.
Collapse
Affiliation(s)
- Zohre Hashemi
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Michaliszyn SF, Mari A, Lee S, Bacha F, Tfayli H, Farchoukh L, Ferrannini E, Arslanian S. β-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to type 2 diabetes. Diabetes 2014; 63:3846-55. [PMID: 24947360 PMCID: PMC4207396 DOI: 10.2337/db13-1951] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/30/2014] [Indexed: 12/22/2022]
Abstract
Using the hyperglycemic and euglycemic clamp, we demonstrated impaired β-cell function in obese youth with increasing dysglycemia. Herein we describe oral glucose tolerance test (OGTT)-modeled β-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. β-Cell function parameters were derived from established mathematical models yielding β-cell glucose sensitivity (βCGS), rate sensitivity, and insulin sensitivity in 255 obese adolescents (173 with normal glucose tolerance [NGT], 48 with impaired glucose tolerance [IGT], and 34 with type 2 diabetes [T2D]). The incretin effect was calculated as the ratio of the OGTT-βCGS to the 2-h hyperglycemic clamp-βCGS. Incretin and glucagon concentrations were measured during the OGTT. Compared with NGT, βCGS was 30 and 65% lower in youth with IGT and T2D, respectively; rate sensitivity was 40% lower in T2D. Youth with IGT or T2D had 32 and 38% reduced incretin effect compared with NGT in the face of similar changes in GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) in response to oral glucose. We conclude that glucose sensitivity deteriorates progressively in obese youth across the spectrum of glucose tolerance in association with impairment in incretin effect without reduction in GLP-1 or GIP, similar to that seen in adult dysglycemia.
Collapse
Affiliation(s)
- Sara F Michaliszyn
- Division of Weight Management, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Andrea Mari
- CNR Institute of Biomedical Engineering, Padova, Italy
| | - SoJung Lee
- Division of Weight Management, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Fida Bacha
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Hala Tfayli
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lama Farchoukh
- Division of Weight Management, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ele Ferrannini
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| | - Silva Arslanian
- Division of Weight Management, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA Division of Pediatric Endocrinology, Diabetes and Metabolism, Children's Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
24
|
Geloneze B, Lima MMDO, Pareja JC, Barreto MRL, Magro DO. Association of insulin resistance and GLP-2 secretion in obesity: a pilot study. ACTA ACUST UNITED AC 2014; 57:632-5. [PMID: 24343632 DOI: 10.1590/s0004-27302013000800008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 08/01/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The objective of this pilot study was to determine whether glugagon-like peptide 2 (GLP-2) secretion relates to insulin sensitivity (IS) in obese subjects. SUBJECTS AND METHODS Twenty four obese subjects [body mass index (BMI) 40.0 ± 3.0 kg/m² (mean ± standard deviation)] were included, nine of which were male, age 43 ± 8 years. Twelve subjects had type 2 diabetes, all treated with oral anti-diabetic agents only. The subjects were submitted to standard meal tolerance test (MTT) for dosage of the curves: glucose, insulin, and GLP-2. Insulin sensitivity was measured by HOMA-IR, and OGIS was derived from the MTT. Spearman linear correlations and partial correlations were obtained. RESULTS There was an inverse relationship between the GLP-2 secretion and IS: HOMA-IR correlated with GLP-2 AUC (R = 0.504; p = 0.012), and OGIS correlated with GLP-2 incremental AUC (R = -0.54; p = 0.054). The correlation persisted after controlling for BMI. CONCLUSION We found an association of GLP-2 secretion and insulin resistance (IR). The understanding of the underlying mechanisms may provide future directions in the pharmacological manipulation of incretins, and in the treatment of obesity and related metabolic disorders.
Collapse
|
25
|
Chandler-Laney PC, Higgins PB, Granger W, Alvarez J, Casazza K, Fernandez JR, Man CD, Cobelli C, Gower BA. Use of a simple liquid meal test to evaluate insulin sensitivity and beta-cell function in children. Pediatr Obes 2014; 9:102-10. [PMID: 23447466 PMCID: PMC4120705 DOI: 10.1111/j.2047-6310.2013.00147.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/27/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
Abstract
Insulin sensitivity and β-cell function are useful indices of metabolic disease risk but are difficult to assess in young children because of the invasive nature of commonly used methodology. A meal-based method for assessing insulin sensitivity and β-cell function may at least partially alleviate concerns. The objectives of this study were to: (i) determine the association of insulin sensitivity assessed by liquid meal test with that determined by an insulin-modified frequently sampled intravenous glucose tolerance test (FSIGT); (ii) examine the association of insulin sensitivity derived from each test with measures of body composition, fat distribution and metabolic health (lipids, fasting insulin and glucose, and surrogate indices of insulin sensitivity); and (iii) examine the associations of indices of β-cell function derived from each test with total and regional adiposity. Forty-seven children (7-12 years) underwent both a liquid meal test and an FSIGT. The insulin sensitivity index derived from the meal test (SI-meal) was positively associated with that from the FSIGT (SI-FSIGT; r = 0.63; P < 0.001), and inversely with all measures of insulin secretion derived from the meal test. Both SI-meal and SI-FSIGT were associated with measures of total and regional adiposity. SI-meal, but not SI-FSIGT, was associated with triglycerides and fasting insulin, after adjusting for ethnicity, gender, pubertal stage and fat mass. Basal insulin secretion measured during the meal test was positively associated with all measures of adiposity, independent of insulin sensitivity. In conclusion, a liquid meal offers a valid and sensitive means of assessing insulin sensitivity and β-cell responsivity in young children.
Collapse
Affiliation(s)
| | - Paul B. Higgins
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Wesley Granger
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica Alvarez
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Krista Casazza
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Jose R. Fernandez
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Chiara Dalla Man
- Department of Information Engineering, Padova University, Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, Padova University, Padova, Italy
| | - Barbara A. Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
26
|
Weber DR, Levitt Katz LE, Zemel BS, Gallagher PR, Murphy KM, Dumser SM, Lipman TH. Anthropometric measures of abdominal adiposity for the identification of cardiometabolic risk factors in adolescents. Diabetes Res Clin Pract 2014; 103:e14-7. [PMID: 24552682 PMCID: PMC4384445 DOI: 10.1016/j.diabres.2013.12.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 08/15/2013] [Accepted: 12/27/2013] [Indexed: 02/05/2023]
Abstract
Sagittal abdominal diameter (SAD) was obtained in 65 adolescents referred for assessment of cardiometabolic risk. We found that SAD was associated with cardiometabolic risk factors independent of BMI in males, but that SAD was not superior to BMI or other measures of abdominal adiposity for the detection of metabolic syndrome.
Collapse
Affiliation(s)
- David R Weber
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lorraine E Levitt Katz
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Paul R Gallagher
- Clinical and Translational Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kathryn M Murphy
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, United States; University of Pennsylvania School of Nursing, Philadelphia, PA, United States
| | - Susan M Dumser
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Terri H Lipman
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, United States; University of Pennsylvania School of Nursing, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Guardado-Mendoza R, Jimenez-Ceja L, Majluf-Cruz A, Kamath S, Fiorentino TV, Casiraghi F, Velazquez AOC, DeFronzo RA, Dick E, Davalli A, Folli F. Impact of obesity severity and duration on pancreatic β- and α-cell dynamics in normoglycemic non-human primates. Int J Obes (Lond) 2013; 37:1071-8. [PMID: 23229736 PMCID: PMC3906680 DOI: 10.1038/ijo.2012.205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Obesity is associated with high insulin and glucagon plasma levels. Enhanced β-cell function and β-cell expansion are responsible for insulin hypersecretion. It is unknown whether hyperglucagonemia is due to α-cell hypersecretion or to an increase in α-cell mass. In this study, we investigated the dynamics of the β-cell and α-cell function and mass in pancreas of obese normoglycemic baboons. METHODS Pancreatic β- and α-cell volumes were measured in 51 normoglycemic baboons divided into six groups according to overweight severity or duration. Islets morphometric parameters were correlated to overweight and to diverse metabolic and laboratory parameters. RESULTS Relative α-cell volume (RαV) and relative islet α-cell volume (RIαV) increased significantly with both overweight duration and severity. Conversely, in spite of the induction of insulin resistance, overweight produced only modest effects on relative β-cell volume (RβV) and relative islet β-cell volume (RIβV). Of note, RIβV did not increase neither with overweight duration nor with overweight severity, supposedly because of the concomitant, greater increase in RIαV. Baboons' body weights correlated with serum levels of interleukin-6 and tumor necrosis factor-α soluble receptors, demonstrating that overweight induces abnormal activation of the signaling of two cytokines known to impact differently β- and α-cell viability and replication. CONCLUSION In conclusion, overweight and insulin resistance induce in baboons a significant increase in α-cell volumes (RαV, RIαV), whereas have minimal effects on the β cells. This study suggests that an increase in the α-cell mass may precede the loss of β cells and the transition to overt hyperglycemia and diabetes.
Collapse
Affiliation(s)
- R Guardado-Mendoza
- Department of Medicine, Diabetes Division, University of Texas Health Science Center at San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review focuses on recent literature on insulin resistance in youth with type 2 diabetes mellitus (T2DM). Insulin resistance is associated with a variety of cardiometabolic problems leading to increased morbidity and mortality across the lifespan. RECENT FINDINGS Functional pancreatic β-cell changes play a role in the transition from obesity to impaired glucose tolerance (IGT). Insulin resistance drives islet cell upregulation, manifested by elevated glucagon and c-peptide levels, early in the transition to IGT. Surrogate measurements of insulin resistance and insulin secretion exist but their accuracy compared to clamp data is imperfect. Recent large longitudinal studies provide detailed information on the progression from normoglycemia to T2DM and on the phenotype of T2DM youth. Defining prediabetes and T2DM remains a challenge in youth. Lifestyle interventions do not appear as effective in children as in adults. Metformin remains the only oral hypoglycemic agent approved for T2DM in youth. SUMMARY New insights exist regarding the conversion from insulin resistance to T2DM, measurement of insulin resistance and phenotypes of insulin resistance youth, but more information is needed. Surrogate measurements of insulin resistance, additional treatment options for insulin resistance and individualization of treatment options for T2DM adolescents in particular require further investigation.
Collapse
Affiliation(s)
- Kara Mizokami-Stout
- Division of Endocrinology, Department of Pediatrics, University of Colorado Denver and the Children's Hospital Colorado, Denver, Colorado, USA
| | | | | |
Collapse
|
29
|
Davalli AM, Perego C, Folli FB. The potential role of glutamate in the current diabetes epidemic. Acta Diabetol 2012; 49:167-83. [PMID: 22218826 DOI: 10.1007/s00592-011-0364-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/19/2011] [Indexed: 12/27/2022]
Abstract
In the present article, we propose the perspective that abnormal glutamate homeostasis might contribute to diabetes pathogenesis. Previous reports and our recent data indicate that chronically high extracellular glutamate levels exert direct and indirect effects that might participate in the progressive loss of β-cells occurring in both T1D and T2D. In addition, abnormal glutamate homeostasis may impact all the three accelerators of the "accelerator hypothesis" and could partially explain the rising frequency of T1D and T2D.
Collapse
Affiliation(s)
- Alberto M Davalli
- Diabetes and Endocrinology Unit, Department of Internal Medicine, San Raffaele Scientific Institute, 20132, Milan, Italy.
| | | | | |
Collapse
|
30
|
Stoll B, Puiman PJ, Cui L, Chang X, Benight NM, Bauchart-Thevret C, Hartmann B, Holst JJ, Burrin DG. Continuous parenteral and enteral nutrition induces metabolic dysfunction in neonatal pigs. JPEN J Parenter Enteral Nutr 2012; 36:538-50. [PMID: 22549765 DOI: 10.1177/0148607112444756] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND We previously showed that parenteral nutrition (PN) compared with formula feeding results in hepatic insulin resistance and steatosis in neonatal pigs. The current aim was to test whether the route of feeding (intravenous [IV] vs enteral) rather than other feeding modalities (diet, pattern) had contributed to the outcome. METHODS Neonatal pigs were fed enterally or parenterally for 14 days with 1 of 4 feeding modalities as follows: (1) enteral polymeric formula intermittently (FORM), (2) enteral elemental diet (ED) intermittently (IEN), (3) enteral ED continuously (CEN), and (4) parenteral ED continuously (PN). Subgroups of pigs underwent IV glucose tolerance tests (IVGTT) and hyperinsulinemic-euglycemic clamps (CLAMP). Following CLAMP, pigs were euthanized and tissues collected for further analysis. RESULTS Insulin secretion during IVGTT was significantly higher and glucose infusion rates during CLAMP were lower in CEN and PN than in FORM and IEN. Endogenous glucose production rate was suppressed to zero in all groups during CLAMP. In the fed state, plasma glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide (GLP)-1, and GLP-2 were different between feeding modalities. Insulin receptor phosphorylation in liver and muscle was decreased in IEN, CEN, and PN compared with FORM. Liver weight was highest in PN. Steatosis and myeloperoxidase (MPO) activity tended to be highest in PN and CEN. Enterally fed groups had higher plasma GLP-2 and jejunum weight compared with PN. CONCLUSIONS PN and enteral nutrition (EN) when given continuously as an elemental diet reduces insulin sensitivity and the secretion of key gut incretins. The intermittent vs continuous pattern of EN produced the optimal effect on metabolic function.
Collapse
Affiliation(s)
- Barbara Stoll
- USDA/ARS Children's Nutrition Research Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Aubert J, Begriche K, Knockaert L, Robin MA, Fromenty B. Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role. Clin Res Hepatol Gastroenterol 2011; 35:630-7. [PMID: 21664213 DOI: 10.1016/j.clinre.2011.04.015] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
Due to the worldwide surge in obesity and type 2 diabetes, the increased incidence of nonalcoholic fatty liver disease (NAFLD) is a major concern for the public health. Indeed, NAFLD encompasses a large spectrum of conditions ranging from fatty liver to nonalcoholic steatohepatitis (NASH), which can progress to cirrhosis in some patients. A better understanding of the mechanisms involved in fatty liver and its progression into NASH is important in order to develop efficient drugs able to alleviate these liver diseases. Although numerous investigations pointed to reactive oxygen species (ROS) as key players in the progression of fatty liver to NASH, their exact source is still uncertain. Besides the mitochondrial respiratory chain, cytochrome P450 2E1 (CYP2E1) has recently emerged as another potentially important cause of ROS overproduction. Indeed, higher hepatic CYP2E1 expression and activity have been frequently observed in the context of obesity and NAFLD. It is currently unknown why CYP2E1 is enhanced in these dysmetabolic diseases, although increased hepatic levels of fatty acids and insulin resistance might play a role. Nonetheless, higher hepatic CYP2E1 could play a significant role in the pathophysiology of NASH by inducing lipid peroxidation and oxidative damage of key cellular components. Moreover, CYP2E1-mediated overproduction of ROS could promote hepatic insulin resistance, which can further aggravate fatty liver. Since a significant amount of CYP2E1 can be located within liver mitochondria, higher levels of CYP2E1 in NAFLD could also have detrimental effects on mitochondrial function. Finally, increased CYP2E1 activity during NAFLD could enhance the susceptibility of some patients to the hepatotoxicity of different xenobiotics through the CYP2E1-mediated generation of harmful reactive metabolites.
Collapse
Affiliation(s)
- J Aubert
- Inserm, U991, Université de Rennes 1, 35000 Rennes, France
| | | | | | | | | |
Collapse
|