1
|
Yang M, Qin W, Dai Q, Wu S, Chen Y, Xie W, Jiang X, Song H, Lei Y, Zheng T, Wang Y, Ouyang S, Guan M, Huang G, Liu X. 18β-glycyrrhetinic acid mitigates lipotoxicity-induced premature senescence of tubular epithelial cells by activating SIRT1-TFEB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156846. [PMID: 40408942 DOI: 10.1016/j.phymed.2025.156846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/27/2025] [Accepted: 05/11/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Targeting metabolic disorders has emerged as a promising therapeutic strategy in the treatment of chronic kidney disease (CKD). 18β-glycyrrhetinic acid (18β-GA) is known for its metabolic regulatory and antioxidant effects in various diseases. However, the precise effects and underlying mechanisms of 18β-GA on CKD remain unclear. PURPOSE This study aims to evaluate the therapeutic efficacy of 18β-GA on CKD and to identify the molecular targets of 18β-GA with a particular emphasis on its role in metabolic regulation. STUDY DESIGN AND METHODS A high-fat diet-induced CKD model was established to investigate the influence of 18β-GA on lipid metabolic disorders, cellular senescence and fibrosis in the kidneys. Co-immunoprecipitation was performed to investigate the impact of 18β-GA on the interaction between transcription factor EB (TFEB) and sirtuin 1 (SIRT1). Additionally, network pharmacology and molecular docking analyses were conducted to identify the specific target proteins of 18β-GA. RESULTS 18β-GA alleviated renal lipid accumulation, tubular cell senescence and renal interstitial fibrosis in CKD mice. Treatment with 18β-GA largely restored mitochondrial function and attenuated intracellular lipotoxicity and associated cellular senescence by promoting lipophagy in renal tubular cells. Mechanistically, 18β-GA acting as a partial antagonist of peroxisome proliferator-activated receptor gamma (PPARγ) enhanced lipophagy through SIRT1-mediated nuclear translocation of TFEB which induced the expression of microtubule-associated protein light chain 3 (LC3). CONCLUSION Our findings demonstrate that 18β-GA, functioning as a partial antagonist of PPARγ, counteracts CKD progression by activating the SIRT1-TFEB-LC3 signaling axis-mediated lipophagy and thus uncover a novel mechanism by which 18β-GA improves renal lipid metabolism disorders and exerts renoprotective effects. These results highlight the potential of 18β-GA as a promising therapeutic agent for the treatment and prevention of CKD.
Collapse
Affiliation(s)
- Meng Yang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Weihong Qin
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Qihui Dai
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Shengquan Wu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Yuzhi Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Weiheng Xie
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Xiaoyun Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Haochang Song
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Yiting Lei
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Tingting Zheng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, PR China.
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China.
| |
Collapse
|
2
|
Peng H, Cheng Q, Chen J, Wang Y, Du M, Lin X, Zhao Q, Chen S, Zhang J, Wang X. Green Tea Epigallocatechin-3-gallate Ameliorates Lipid Accumulation and Obesity-Associated Metabolic Syndrome via Regulating Autophagy and Lipolysis in Preadipocytes and Adipose Tissue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12272-12291. [PMID: 40347183 DOI: 10.1021/acs.jafc.5c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Previous studies have shown that epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, demonstrates promising antiobesity effects. While autophagy mediates obesity via preadipocyte differentiation and lipogenesis, EGCG's potential autophagy-dependent antiobesity mechanism remains unclear. We used 3T3-L1 cells and high-fat-diet (HFD)-fed mice to examine how EGCG inhibits adipogenesis and lipogenesis via autophagy. EGCG (50 or 100 mg/kg) significantly attenuated HFD-induced weight gain, fat accumulation, hyperlipidemia, and glucose intolerance in mice. It also enhanced autophagy and lipolysis in white adipose tissue (WAT). EGCG profoundly inhibited terminal preadipocyte differentiation and lipid droplet formation in 3T3-L1 cells accompanied by reduced PPARγ, C/EBPα, and FASN expressions. Mechanistically, EGCG inhibited autophagy during the early stage of preadipocyte differentiation, as evidenced by increased autophagosome accumulation and impaired autophagic flux. The antiadipogenic effect of EGCG was further aggravated by the autophagy inhibitor chloroquine. Meanwhile, EGCG increased p38 and AMPK/ACC phosphorylation while inhibiting JNK phosphorylation in 3T3-L1 cells at an early stage of adipogenesis. Interestingly, EGCG reduced the expression of lipolytic enzymes HSL and ATGL, and it decreased glycerol contents in differentiated 3T3-L1 cells. These findings provide novel insights into the mechanism of using green tea EGCG in functional foods to combat obesity by targeting autophagy and lipolysis.
Collapse
Affiliation(s)
- He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Qi Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Ying Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Menghao Du
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, P. R. China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Jingsa Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
- School of Pharmaceutical Sciences & Institute of Advanced Studies, Taizhou University, Taizhou 318000, P. R. China
| |
Collapse
|
3
|
Wang BN, Du AY, Chen XH, Huang T, Mamun AA, Li P, Du ST, Feng YZ, Jiang LY, Xu J, Wang Y, Wang SS, Kim K, Zhou KL, Wu YQ, Hu SW, Xiao J. Inhibition of CD36 ameliorates mouse spinal cord injury by accelerating microglial lipophagy. Acta Pharmacol Sin 2025; 46:1205-1220. [PMID: 39880928 PMCID: PMC12032095 DOI: 10.1038/s41401-024-01463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases. Lipophagy, a selective type of autophagy, is involved in intracellular LDs degradation. Fatty acid translocase CD36, a multifunctional transmembrane protein that facilitates the uptake of long-chain fatty acids, is implicated in the progression of certain metabolic diseases, and negatively regulates autophagy. However, the precise mechanisms of LDs generation and degradation in SCI, as well as whether CD36 regulates SCI via lipophagy, remain unknown. In this study, we investigated the role of LDs accumulation in microglia for SCI, as well as the regulatory mechanism of CD36 in microglia lipophagy during LDs elimination in vivo and in vitro. SCI was induced in mice by applying moderate compression on spina cord at T9-T10 level. Locomotion recovery was evaluated at days 0, 1, 3, 7 and 14 following the injury. PA-stimulated BV2 cells was established as the in vitro lipid-loaded model. We observed a marked buildup of LDs in microglial cells at the site of injury post-SCI. More importantly, microglial cells with excessive LDs exhibited elevated activation and stimulated inflammatory response, which drastically triggered the pyroptosis of microglial cells. Furthermore, we found significantly increased CD36 expression, and the breakdown of lipophagy in microglia following SCI. Sulfo-N-succinimidyl oleate sodium (SSO), a CD36 inhibitor, has been shown to promote the lipophagy of microglial cells in SCI mice and PA-treated BV2 cells, which enhanced LDs degradation, ameliorated inflammatory levels and pyroptosis of microglial cells, and ultimately promoted SCI recovery. As expected, inhibition of lipophagy with Baf-A1 reversed the effects of SSO. We conclude that microglial lipophagy is essential for the removal of LDs during SCI recovery. Our research implies that CD36 could be a potential therapeutic target for the treatment and management of SCI.
Collapse
Affiliation(s)
- Bei-Ni Wang
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - An-Yu Du
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang-Hang Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ting Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Abdullah Al Mamun
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, 323000, China
| | - Ping Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Si-Ting Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan-Zheng Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lin-Yuan Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuang-Shuang Wang
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kai-Liang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yan-Qing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China.
| | - Si-Wang Hu
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China.
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
4
|
Li J, Wan X, Li Y, Wang P, Chen J, Jin W, Liu J. Anti-obesity functions of fucoidan conducted by bioinformatics and validation findings targeting of autophagy. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2025; 9:100609. [DOI: 10.1016/j.carpta.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
5
|
Bednarczyk M, Dąbrowska-Szeja N, Łętowski D, Dzięgielewska-Gęsiak S, Waniczek D, Muc-Wierzgoń M. Relationship Between Dietary Nutrient Intake and Autophagy-Related Genes in Obese Humans: A Narrative Review. Nutrients 2024; 16:4003. [PMID: 39683397 PMCID: PMC11643440 DOI: 10.3390/nu16234003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is one of the world's major public health challenges. Its pathogenesis and comorbid metabolic disorders share common mechanisms, such as mitochondrial or endoplasmic reticulum dysfunction or oxidative stress, gut dysbiosis, chronic inflammation and altered autophagy. Numerous pro-autophagy dietary interventions are being investigated for their potential obesity-preventing or therapeutic effects. We summarize current data on the relationship between autophagy and obesity, and discuss various dietary interventions as regulators of autophagy-related genes in the prevention and ultimate treatment of obesity in humans, as available in scientific databases and published through July 2024. Lifestyle modifications (such as calorie restriction, intermittent fasting, physical exercise), including following a diet rich in flavonoids, antioxidants, specific fatty acids, specific amino acids and others, have shown a beneficial role in the induction of this process. The activation of autophagy through various nutritional interventions tends to elicit a consistent response, characterized by the induction of certain kinases (including AMPK, IKK, JNK1, TAK1, ULK1, and VPS34) or the suppression of others (like mTORC1), the deacetylation of proteins, and the alleviation of inhibitory interactions between BECN1 and members of the Bcl-2 family. Significant health/translational properties of many nutrients (nutraceuticals) can affect chronic disease risk through various mechanisms that include the activation or inhibition of autophagy. The role of nutritional intervention in the regulation of autophagy in obesity and its comorbidities is not yet clear, especially in obese individuals.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Nicola Dąbrowska-Szeja
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Dariusz Łętowski
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Sylwia Dzięgielewska-Gęsiak
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
6
|
Yan K. Recent advances in the effect of adipose tissue inflammation on insulin resistance. Cell Signal 2024; 120:111229. [PMID: 38763181 DOI: 10.1016/j.cellsig.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Obesity is one of the major risk factors for diabetes. Excessive accumulation of fat leads to inflammation of adipose tissue, which can increase the risk of developing diabetes. Obesity-related chronic inflammation can result in anomalies in glucose-lipid metabolism and insulin resistance, and it is a major cause of β-cell dysfunction in diabetes mellitus. Thus, a long-term tissue inflammatory response is crucial for metabolic diseases, particularly type 2 diabetes. Chronic inflammation associated with obesity increases oxidative stress, secretes inflammatory factors, modifies endocrine variables, and interferes with insulin signalling pathways, all of which contribute to insulin resistance and glucose tolerance. Insulin resistance and diabetes are ultimately caused by chronic inflammation in the stomach, pancreas, liver, muscle, and fat tissues. In this article, we systematically summarize the latest research progress on the mechanisms of adipose tissue inflammation and insulin resistance, as well as the mechanisms of cross-talk between adipose tissue inflammation and insulin resistance, with a view to providing some meaningful therapeutic strategies for the treatment of insulin resistance by controlling adipose tissue inflammation.
Collapse
Affiliation(s)
- Kaiyi Yan
- The Second Clinical College of China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
7
|
Jakubek P, Pakula B, Rossmeisl M, Pinton P, Rimessi A, Wieckowski MR. Autophagy alterations in obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease: the evidence from human studies. Intern Emerg Med 2024; 19:1473-1491. [PMID: 38971910 PMCID: PMC11364608 DOI: 10.1007/s11739-024-03700-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Autophagy is an evolutionarily conserved process that plays a pivotal role in the maintenance of cellular homeostasis and its impairment has been implicated in the pathogenesis of various metabolic diseases including obesity, type 2 diabetes (T2D), and metabolic dysfunction-associated steatotic liver disease (MASLD). This review synthesizes the current evidence from human studies on autophagy alterations under these metabolic conditions. In obesity, most data point to autophagy upregulation during the initiation phase of autophagosome formation, potentially in response to proinflammatory conditions in the adipose tissue. Autophagosome formation appears to be enhanced under hyperglycemic or insulin-resistant conditions in patients with T2D, possibly acting as a compensatory mechanism to eliminate damaged organelles and proteins. Other studies have proposed that prolonged hyperglycemia and disrupted insulin signaling hinder autophagic flux, resulting in the accumulation of dysfunctional cellular components that can contribute to β-cell dysfunction. Evidence from patients with MASLD supports autophagy inhibition in disease progression. Nevertheless, given the available data, it is difficult to ascertain whether autophagy is enhanced or suppressed in these conditions because the levels of autophagy markers depend on the overall metabolism of specific organs, tissues, experimental conditions, or disease duration. Owing to these constraints, determining whether the observed shifts in autophagic activity precede or result from metabolic diseases remains challenging. Additionally, autophagy-modulating strategies are shortly discussed. To conclude, more studies investigating autophagy impairment are required to gain a more comprehensive understanding of its role in the pathogenesis of obesity, T2D, and MASLD and to unveil novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Barbara Pakula
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121, Ferrara, Italy
| | - Mariusz Roman Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
8
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
9
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Engelhardt PM, Veronese M, Eryiğit AA, Das A, Kaczmarek AT, Rugarli EI, Schmalz HG. A pH-Sensitive Double Chromophore Fluorescent Dye for Live-Tracking of Lipophagy. Chemistry 2024; 30:e202400808. [PMID: 38506349 DOI: 10.1002/chem.202400808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Lipid droplet (LD) degradation provides metabolic energy and important building blocks for various cellular processes. The two major LD degradation pathways include autophagy (lipophagy), which involves delivery of LDs to autolysosomes, and lipolysis, which is mediated by lipases. While abnormalities in LD degradation are associated with various pathological disorders, our understanding of lipophagy is still rudimentary. In this study, we describe the development of a lipophilic dye containing two fluorophores, one of which is pH-sensitive and the other pH-stable. We further demonstrate that this "Lipo-Fluddy" can be used to visualize and quantify lipophagy in living cells, in an easily applicable and protein label-free approach. After estimating the ability of compound candidates to penetrate LDs, we synthesized several BODIPY and (pH-switchable) rhodol dyes, whose fluorescence properties (incl. their photophysical compatibility) were analyzed. Of three Lipo-Fluddy dyes synthesized, one exhibited the desired properties and allowed observation of lipophagy by fluorescence microscopy. Also, this dye proved to be non-toxic and suitable for the examination of various cell lines. Moreover, a method was developed to quantify the lipophagy process using flow cytometry, which could be applied in the future in the identification of lipophagy-related genes or in the screening of potential drugs against lipophagy-related diseases.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Matteo Veronese
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alpay A Eryiğit
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Anushka Das
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander T Kaczmarek
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Elena I Rugarli
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| |
Collapse
|
11
|
Botella J, Shaw CS, Bishop DJ. Autophagy and Exercise: Current Insights and Future Research Directions. Int J Sports Med 2024; 45:171-182. [PMID: 37582398 DOI: 10.1055/a-2153-9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Autophagy is a cellular process by which proteins and organelles are degraded inside the lysosome. Exercise is known to influence the regulation of autophagy in skeletal muscle. However, as gold standard techniques to assess autophagy flux in vivo are restricted to animal research, important gaps remain in our understanding of how exercise influences autophagy activity in humans. Using available datasets, we show how the gene expression profile of autophagy receptors and ATG8 family members differ between human and mouse skeletal muscle, providing a potential explanation for their differing exercise-induced autophagy responses. Furthermore, we provide a comprehensive view of autophagy regulation following exercise in humans by summarizing human transcriptomic and phosphoproteomic datasets that provide novel targets of potential relevance. These newly identified phosphorylation sites may provide an explanation as to why both endurance and resistance exercise lead to an exercise-induced reduction in LC3B-II, while possibly divergently regulating autophagy receptors, and, potentially, autophagy flux. We also provide recommendations to use ex vivo autophagy flux assays to better understand the influence of exercise, and other stimuli, on autophagy regulation in humans. This review provides a critical overview of the field and directs researchers towards novel research areas that will improve our understanding of autophagy regulation following exercise in humans.
Collapse
Affiliation(s)
- Javier Botella
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, 3216, VIC, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
12
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Soileau LG, Nguyen A, Senthil A, Boullion JA, Talbot NC, Ahmadzadeh S, Shekoohi S, Kaye AD, Varrassi G. Bromocriptine and Colesevelam Hydrochloride: Novel Therapies for Type II Diabetes Mellitus. Cureus 2023; 15:e50138. [PMID: 38192911 PMCID: PMC10771968 DOI: 10.7759/cureus.50138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The increasing prevalence of type II diabetes mellitus (T2DM) is a worldwide healthcare concern. Over the years, our understanding of T2DM has grown considerably in uncovering the pathophysiology of the disease and, in turn, understanding how improved treatment methods can be used to slow disease progression. Some long-term complications that are responsible for most T2DM mortalities include cardiovascular disease, neurological decline, and renal failure. In treating T2DM, it is important that not only glycemic control be obtained but also control of associated complications. Bromocriptine and colesevelam hydrochloride have both been approved by the Food and Drug Administration (FDA) to treat T2DM but are not readily used in practice. These medications are known to treat glycemic dysregulation via unconventional mechanisms, which might contribute to their potential to provide protection against common diabetic complications such as cardiovascular disease. In order to ensure that these overlooked medications become more readily used, it is vital that more research be performed to further elucidate their efficacy in a clinical setting. Future studies should continue to provide clinicians a better understanding of the role these medications have on the treatment of T2DM such as their ability to be used in combination with other commonly used T2DM medications or as monotherapies.
Collapse
Affiliation(s)
- Lenise G Soileau
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Angela Nguyen
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Aarthi Senthil
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jolie A Boullion
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Norris C Talbot
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
14
|
Sadeghi A, Niknam M, Momeni-Moghaddam MA, Shabani M, Aria H, Bastin A, Teimouri M, Meshkani R, Akbari H. Crosstalk between autophagy and insulin resistance: evidence from different tissues. Eur J Med Res 2023; 28:456. [PMID: 37876013 PMCID: PMC10599071 DOI: 10.1186/s40001-023-01424-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Insulin is a critical hormone that promotes energy storage in various tissues, as well as anabolic functions. Insulin resistance significantly reduces these responses, resulting in pathological conditions, such as obesity and type 2 diabetes mellitus (T2DM). The management of insulin resistance requires better knowledge of its pathophysiological mechanisms to prevent secondary complications, such as cardiovascular diseases (CVDs). Recent evidence regarding the etiological mechanisms behind insulin resistance emphasizes the role of energy imbalance and neurohormonal dysregulation, both of which are closely regulated by autophagy. Autophagy is a conserved process that maintains homeostasis in cells. Accordingly, autophagy abnormalities have been linked to a variety of metabolic disorders, including insulin resistance, T2DM, obesity, and CVDs. Thus, there may be a link between autophagy and insulin resistance. Therefore, the interaction between autophagy and insulin function will be examined in this review, particularly in insulin-responsive tissues, such as adipose tissue, liver, and skeletal muscle.
Collapse
Affiliation(s)
- Asie Sadeghi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Bastin
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
15
|
Osorio-Conles Ó, Jiménez A, Ibarzabal A, Balibrea JM, de Hollanda A, Vidal J. Limited Bariatric Surgery-induced Weight Loss in Subjects With Type 2 Diabetes: Predictor Variables in Adipose Tissue. J Clin Endocrinol Metab 2023; 108:e1205-e1213. [PMID: 37249080 DOI: 10.1210/clinem/dgad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 05/31/2023]
Abstract
CONTEXT The impact of type 2 diabetes mellitus (T2D) at baseline on limited weight loss (WL) after bariatric surgery (BS) remains controversial, and the potential underlying mechanisms incompletely understood. OBJECTIVE We aimed at gaining further insight on this relationship and identifying novel associations between adipose tissue (AT) parameters and short-term WL outcomes in subjects with or without T2D undergoing BS. METHODS Mid-term WL trajectories after BS have been evaluated in a cohort of 1659 subjects (cohort 1) with (n = 543) and without T2D (n = 1116). Paired subcutaneous and visceral AT samples were obtained from a cohort of 48 pairs of subjects with and without T2D matched for age, sex, BMI, and type of BS (cohort 2). Differences in AT parameters between groups were evaluated and potential associations with WL response explored. RESULTS T2D was independently associated with a 5% lesser mid-term WL in cohort 1, while HbA1c, insulin treatment, and number of T2D medications prior to BS were only related to short-term WL outcomes. In cohort 2, a number of differentially expressed genes in AT were identified between groups, while fat cell size and fibrosis were comparable. Subcutaneous ATG7 expression was found as an independent predictor of limited WL 1 year after surgery (β: -12.21 ± 4.41, P = .008) and its addition to a clinical model significantly improved the amount of WL variability explained (R2 = 0.131 vs R2 = 0.248, F change P = .009). CONCLUSION Our results highlight the importance of T2D as determinant of limited WL following BS and suggest that dysregulated macroautophagy in subcutaneous AT may contribute to this association.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Amanda Jiménez
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - José María Balibrea
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
16
|
Chueh KS, Lu JH, Juan TJ, Chuang SM, Juan YS. The Molecular Mechanism and Therapeutic Application of Autophagy for Urological Disease. Int J Mol Sci 2023; 24:14887. [PMID: 37834333 PMCID: PMC10573233 DOI: 10.3390/ijms241914887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a lysosomal degradation process known as autophagic flux, involving the engulfment of damaged proteins and organelles by double-membrane autophagosomes. It comprises microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy. Macroautophagy consists of three stages: induction, autophagosome formation, and autolysosome formation. Atg8-family proteins are valuable for tracking autophagic structures and have been widely utilized for monitoring autophagy. The conversion of LC3 to its lipidated form, LC3-II, served as an indicator of autophagy. Autophagy is implicated in human pathophysiology, such as neurodegeneration, cancer, and immune disorders. Moreover, autophagy impacts urological diseases, such as interstitial cystitis /bladder pain syndrome (IC/BPS), ketamine-induced ulcerative cystitis (KIC), chemotherapy-induced cystitis (CIC), radiation cystitis (RC), erectile dysfunction (ED), bladder outlet obstruction (BOO), prostate cancer, bladder cancer, renal cancer, testicular cancer, and penile cancer. Autophagy plays a dual role in the management of urologic diseases, and the identification of potential biomarkers associated with autophagy is a crucial step towards a deeper understanding of its role in these diseases. Methods for monitoring autophagy include TEM, Western blot, immunofluorescence, flow cytometry, and genetic tools. Autophagosome and autolysosome structures are discerned via TEM. Western blot, immunofluorescence, northern blot, and RT-PCR assess protein/mRNA levels. Luciferase assay tracks flux; GFP-LC3 transgenic mice aid study. Knockdown methods (miRNA and RNAi) offer insights. This article extensively examines autophagy's molecular mechanism, pharmacological regulation, and therapeutic application involvement in urological diseases.
Collapse
Affiliation(s)
- Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jian-He Lu
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds (CAFEC), General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Tai-Jui Juan
- Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
17
|
Naguib M, Magdy M, Yousef OAE, Ibrahim W, Gharib DM. Circulating MicroRNA-30a, Beclin1 and Their Association with Different Variables in Females with Metabolically Healthy /Unhealthy Obesity. Diabetes Metab Syndr Obes 2023; 16:3065-3074. [PMID: 37810570 PMCID: PMC10559787 DOI: 10.2147/dmso.s428844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Background Obesity is associated with metabolic and cardiovascular co-morbidities. It is important to determine the factors associated with metabolic derangement in obesity. Autophagy plays a major role in the pathogenesis of metabolic syndrome. MicroRNA-30a targets beclin1, the main regulator of autophagy. Purpose We assess circulating microRNA-30a and serum beclin1 in women with metabolically unhealthy obesity (MUO), women with metabolically healthy obesity (MHO) and non-obese healthy control and determine their relationship with different clinical and metabolic variables in women with obesity. Patients and Methods This cross-sectional study included 34 women with MHO, 34 with MUO, and 20 healthy non-obese women. Blood pressure, body mass index (BMI), and waist circumference were recorded. Glycemic and lipid indices, urinary albumin-to-creatinine ratio, ALT, AST, microRNA-30a expression in serum were measured using real-time polymerase chain reaction and beclin1 by enzyme-linked immunosorbent assay were measured. Results The expression of microRNA-30a was significantly higher, and beclin1 level was significantly lower in women with MUO compared to those in women with MHO (P<0.001; for both). People with MUO were significantly older (P<0.001) and had higher TSH (P=0.006), HbA1c (P<0.001), triglyceride (P<0.001), and ALT (P<0.001) compared to women with MHO. However, there was no significant difference between the two groups in any anthropometric measurements, HDL-C or LDL-C. In univariate analyses, age, ALT, TSH, microRNA-30a, and beclin1 were significantly correlated with the MUO phenotype (P<0.001; for all). Significance was confirmed in the multivariate analysis for microRNA-30a (95% CI 1.317-28.252; P=0.021). Conclusion MicroRNA-30a, beclin1, age, and ALT and TSH levels were significantly associated with the MUO phenotype, among which microRNA-30a was the best indicator of metabolic syndrome in women with obesity.
Collapse
Affiliation(s)
- Mervat Naguib
- Diabetes and Endocrinology Unite, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Magdy
- Diabetes and Endocrinology Unite, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Walaa Ibrahim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa Mostafa Gharib
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
19
|
Verma J, Rai AK, Satija NK. Autophagy perturbation upon acute pyrethroid treatment impacts adipogenic commitment of mesenchymal stem cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105566. [PMID: 37666621 DOI: 10.1016/j.pestbp.2023.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
Environmental chemical exposure can cause dysregulation in adipogenesis that can result in metabolic syndrome, which includes insulin resistance, type 2 diabetes, cardiovascular disease, as well as excessive body weight. The role of autophagy in adipocyte differentiation is debatable since both positive and negative effects have been reported. Type-I and type-II synthetic pyrethroids α-cypermethrin (CPM) and permethrin (PER), respectively, are reported to increase adipogenesis in vitro and in vivo. However, it is not known how these pyrethroids affect mesenchymal stem cells (MSCs). Thus, this study focused on evaluating the effect of pyrethroids (CPM and PER) pre-treatment (24 h) on MSC commitment and the regulatory role of autophagy in adipogenic lineage commitment. The formation of adipocytes was observed through nile red staining, perilipin expression by immunoflourescence, and adipogenic markers PPARγ, C/EBPα, and FABP4 by western blotting. It was found that the adipogenic differentiation ability of MSCs was significantly increased upon CPM or PER pre-treatment at 100 μM concentration as evident by lipid accumulation and enhanced expression of adipogenic markers. To assess the involvement of autophagy, the expression of p62 and LC3II were evaluated following pre-treatment. Immunoblotting results revealed an increased expression of p62 and LC3II in CPM or PER pretreated MSCs suggesting CPM and PER mediated inhibition of autophagy at 24 h. Further, an increase was observed in adipogenesis upon CPM or PER pre-treatment in combination with chloroquine, while use of rapamycin during pre-treatment abrogated the effect of CPM and PER. Thus, this study concludes that CPM or PER pre-treatment increases the adipogenic differentiation of MSCs. Since chloroquine also demonstrated similar adipogenic response, it further highlights that 24 h pre-treatment with autophagy modulators to inhibit basal autophagy primes MSCs towards adipogenic lineage.
Collapse
Affiliation(s)
- Julee Verma
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajit Kumar Rai
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Satija
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Miceli C, Leri M, Stefani M, Bucciantini M. Autophagy-related proteins: Potential diagnostic and prognostic biomarkers of aging-related diseases. Ageing Res Rev 2023; 89:101967. [PMID: 37270146 DOI: 10.1016/j.arr.2023.101967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Autophagy plays a key role in cellular, tissue and organismal homeostasis and in the production of the energy load needed at critical times during development and in response to nutrient shortage. Autophagy is generally considered as a pro-survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy efficiency declines with age, thus contributing to many different pathophysiological conditions, such as cancer, cardiomyopathy, diabetes, liver disease, autoimmune diseases, infections, and neurodegeneration. Accordingly, it has been proposed that the maintenance of a proper autophagic activity contributes to the extension of the lifespan in different organisms. A better understanding of the interplay between autophagy and risk of age-related pathologies is important to propose nutritional and life-style habits favouring disease prevention as well as possible clinical applications aimed at promoting long-term health.
Collapse
Affiliation(s)
- Caterina Miceli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
21
|
Lei Y, Klionsky DJ. Transcriptional regulation of autophagy and its implications in human disease. Cell Death Differ 2023; 30:1416-1429. [PMID: 37045910 PMCID: PMC10244319 DOI: 10.1038/s41418-023-01162-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic pathway that is vital for maintaining cell homeostasis and promoting cell survival under stressful conditions. Dysregulation of autophagy is associated with a variety of human diseases, such as cancer, neurodegenerative diseases, and metabolic disorders. Therefore, this pathway must be precisely regulated at multiple levels, involving epigenetic, transcriptional, post-transcriptional, translational, and post-translational mechanisms, to prevent inappropriate autophagy activity. In this review, we focus on autophagy regulation at the transcriptional level, summarizing the transcription factors that control autophagy gene expression in both yeast and mammalian cells. Because the expression and/or subcellular localization of some autophagy transcription factors are altered in certain diseases, we also discuss how changes in transcriptional regulation of autophagy are associated with human pathophysiologies.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Song D, Zhang A, Hu X, Zeng M, Zhou H. Wen-Shen-Jian-Pi-Hua-Tan decoction protects against early obesity-related glomerulopathy by improving renal bile acid composition and suppressing lipogenesis, inflammation, and fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154861. [PMID: 37167823 DOI: 10.1016/j.phymed.2023.154861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Obesity is an independent predictor of chronic kidney disease (CKD) development and may directly lead to kidney lesions such as obesity-related glomerulopathy (ORG) which might play a vital pathogenic role in obese patients with CKD. Wen-Shen-Jian-Pi-Hua-Tan decoction (WSHT) has been clinically used for the treatment of obesity and obesity-related metabolic diseases for years. However, the renoprotective effects and potential mechanism of action of WSHT against ORG remain unknown. PURPOSE This study aimed to explore the potential effect of WSHT on ORG and reveal its mechanisms in high-fat diet (HFD)-induced obese rats. METHODS An animal model of early stage ORG was established using HFD-induced obese rats. After treatment with WSHT for 6 weeks, an integrated metabolomics and molecular biology strategy was utilized to illustrate the effects and mechanism of WSHT on ORG. First, UPLC-ESI-MS/MS-based targeted metabolomics was used to analyze renal bile acid (BA) levels. Biochemical, histological, and immunofluorescence assays; electron microscopy; and western blotting were performed to evaluate the efficacy of WSHT against ORG and its underlying mechanisms in vivo. RESULTS Our results showed that an HFD led to hyperlipidemia, proteinuria, renal lipid deposition, effacement of podocyte foot processes, and increased expression of proinflammatory factors and profibrotic growth factors in ORG rats. In addition, an HFD decreased the levels of renal BAs such as cholic acid, chenodeoxycholic acid, and lithocholic acid. After 6 weeks of treatment, WSHT markedly attenuated dyslipidemia and reduced body, kidney and epididymal fat weights in ORG rats. WSHT also significantly increased BA levels, suggesting that it altered BA composition; the effects of BAs are closely associated with farnesoid X receptor (FXR) activation. WSHT alleviated fat accumulation, podocyte loss and proteinuria, and reduced the expression of proinflammatory cytokines and profibrotic growth factors in the kidneys of ORG rats. Finally, WSHT remarkably upregulated the renal expression of FXR and salt-induced kinase 1 and blocked the renal expression of sterol regulatory element-binding protein-1c and its target genes. CONCLUSION WSHT attenuated early renal lesions in ORG rats by improving renal BA composition and suppressing lipogenesis, inflammation and fibrosis. This study develops a new way to alleviate obesity-induced renal damages.
Collapse
Affiliation(s)
- Daofei Song
- Department of Endocrinology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, China
| | - Aijie Zhang
- Department of Gynaecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430015, China
| | - Xu Hu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - MingXing Zeng
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Huimin Zhou
- Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
23
|
Taban Akça K, Çınar Ayan İ, Çetinkaya S, Miser Salihoğlu E, Süntar İ. Autophagic mechanisms in longevity intervention: role of natural active compounds. Expert Rev Mol Med 2023; 25:e13. [PMID: 36994671 PMCID: PMC10407225 DOI: 10.1017/erm.2023.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The term 'autophagy' literally translates to 'self-eating' and alterations to autophagy have been identified as one of the several molecular changes that occur with aging in a variety of species. Autophagy and aging, have a complicated and multifaceted relationship that has recently come to light thanks to breakthroughs in our understanding of the various substrates of autophagy on tissue homoeostasis. Several studies have been conducted to reveal the relationship between autophagy and age-related diseases. The present review looks at a few new aspects of autophagy and speculates on how they might be connected to both aging and the onset and progression of disease. Additionally, we go over the most recent preclinical data supporting the use of autophagy modulators as age-related illnesses including cancer, cardiovascular and neurodegenerative diseases, and metabolic dysfunction. It is crucial to discover important targets in the autophagy pathway in order to create innovative therapies that effectively target autophagy. Natural products have pharmacological properties that can be therapeutically advantageous for the treatment of several diseases and they also serve as valuable sources of inspiration for the development of possible new small-molecule drugs. Indeed, recent scientific studies have shown that several natural products including alkaloids, terpenoids, steroids, and phenolics, have the ability to alter a number of important autophagic signalling pathways and exert therapeutic effects, thus, a wide range of potential targets in various stages of autophagy have been discovered. In this review, we summarised the naturally occurring active compounds that may control the autophagic signalling pathways.
Collapse
Affiliation(s)
- Kevser Taban Akça
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İlknur Çınar Ayan
- Department of Medical Biology, Medical Faculty, Necmettin Erbakan University, Meram, Konya, Türkiye
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara, Türkiye
| | - Ece Miser Salihoğlu
- Biochemistry Department, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İpek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
24
|
Chen D, Li Y, Hu T, Gong C, Lu G, Ma X, Wang Y, Wang Y, Lin Y. PDZK1-Interacting Protein 1(PDZKIP1) Inhibits Goat Subcutaneous Preadipocyte Differentiation through Promoting Autophagy. Animals (Basel) 2023; 13:ani13061046. [PMID: 36978587 PMCID: PMC10044287 DOI: 10.3390/ani13061046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
PDZK1IP1 is highly expressed in tumor tissue and has been identified as a tumor biomarker. However, the role of PDZK1IP1 in goat subcutaneous preadipocyte differentiation remains largely unknown. The molecular mechanism of autophagy in regulating the differentiation of goat subcutaneous preadipocytes has not been clarified yet. In our study, PDZK1IP1 gain of function and loss of function were performed to reveal its functions in preadipocyte differentiation and autophagy. Our results showed that the overexpression of PDZK1IP1 inhibited the differentiation of goat subcutaneous preadipocytes, whereas it promoted autophagy. Consistently, the knockdown of PDZK1IP1 demonstrated the opposite tendency. Next, we investigated whether PDZK1IP1 inhibited the differentiation of goat preadipocytes by regulating autophagy. We found that inhibiting autophagy can rescue the PDZK1IP1-induced differentiation restraint in goat subcutaneous preadipocytes. In conclusion, PDZK1IP1 acts as a regulator of adipogenesis, and inhibits goat subcutaneous preadipocyte differentiation through promoting autophagy. Our results will contribute to further understanding the role and mechanism of PDZK1IP1 in controlling adipogenesis.
Collapse
Affiliation(s)
- Dingshuang Chen
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Tingting Hu
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Chengsi Gong
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Guangyu Lu
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China
| | - Xiaotong Ma
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
25
|
Wu R, Feng S, Li F, Shu G, Wang L, Gao P, Zhu X, Zhu C, Wang S, Jiang Q. Transcriptional and post-transcriptional control of autophagy and adipogenesis by YBX1. Cell Death Dis 2023; 14:29. [PMID: 36642732 PMCID: PMC9841012 DOI: 10.1038/s41419-023-05564-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
Obesity is strongly associated with metabolic diseases, which have become a global health problem. Exploring the underlying mechanism of adipogenesis is crucial for the treatment of excess white fat. Oncogene YBX1 is a multifunctional DNA- and RNA-binding protein that regulates brown adipogenesis. However, the role of YBX1 in white adipogenesis and adipose tissue expansion remains unknown. Here, we showed that YBX1 deficiency inhibited murine and porcine adipocyte differentiation. YBX1 positively regulated adipogenesis through promoting ULK1- and ULK2-mediated autophagy. Mechanistically, we identified YBX1 serves as a 5-methylcytosine (m5C)-binding protein directly targeting m5C-containing Ulk1 mRNA by using RNA immunoprecipitation. RNA decay assay further proved that YBX1 upregulated ULK1 expression though stabilizing its mRNA. Meanwhile, YBX1 promoted Ulk2 transcription and expression as a transcription factor, thereby enhancing autophagy and adipogenesis. Importantly, YBX1 overexpression in white fat enhanced ULK1/ULK2-mediated autophagy and promoted adipose tissue expansion in mice. Collectively, these findings unveil the post-transcriptional and transcriptional mechanism and functional importance of YBX1 in autophagy and adipogenesis regulation, providing an attractive molecular target for therapies of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ruifan Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shengchun Feng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
26
|
Bee Venom Triggers Autophagy-Induced Apoptosis in Human Lung Cancer Cells via the mTOR Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:8916464. [PMID: 36590307 PMCID: PMC9803572 DOI: 10.1155/2022/8916464] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
In oriental medicine, bee venom has long been used as a therapeutic agent against inflammatory diseases. Several studies have reported that isolated and purified bee venom components are effective in treating dementia, arthritis, inflammation, bacterial infections, and cancer. In previous studies, we reported that bee venom inhibits cell growth and induces apoptotic cell death in lung cancer cells. In the present study, we assessed whether bee venom affects autophagy and thereby induces apoptosis. Bee venom treatment increased the levels of autophagy-related proteins (Atg5, Beclin-1, and LC3-II) and the accumulation of LC3 puncta. We found that bee venom could induce autophagy by inhibiting the mTOR signaling pathway. In addition, we found that hydroxychloroquine (HCQ)- or si-ATG5-induced autophagy inhibition further demoted bee venom-induced apoptosis. Bee venom-induced autophagy promotes apoptosis in lung cancer cells and may become a new approach to cancer treatment.
Collapse
|
27
|
Javaid HMA, Lim H, Shin S, Huh JY. Inhibition of autophagy with chloroquine dysregulates mitochondrial quality control and energetics in adipocytes. Arch Pharm Res 2022; 45:731-742. [PMID: 36306017 PMCID: PMC9613452 DOI: 10.1007/s12272-022-01412-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/17/2022] [Indexed: 12/06/2022]
Abstract
Autophagy is a complex degradation pathway through which damaged or dysfunctional proteins and organelles are removed. Its pharmacological modulators have been extensively used in a wide range of basic research and preclinical studies. However, the effects of these inhibitors on metabolism, in addition to autophagy inhibition, are not fully elucidated. Chloroquine is a clinically relevant compound that inhibits autophagy by preventing the fusion of autophagosomes with lysosomes. In this study, we aimed to examine the effect of chloroquine on mitochondrial quality control and respiratory function by utilizing 3T3-L1 mouse adipocytes treated with chloroquine at various time points. We found that chloroquine could disturb genes related to mitochondrial fission, biogenesis, and mitophagy, leading to mitochondrial DNA damage. Although the inhibition of autophagy by chloroquine resulted in an increased prohibitin expression, respiratory function was downregulated in a time-dependent manner. Moreover, chloroquine treatment induced oxidative stress, apoptosis, and metabolic dysregulation. These data demonstrated that chloroquine significantly affected mitochondrial respiratory function and metabolism, which was consistent with impaired mitochondrial quality associated with autophagy inhibition.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad Javaid
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hwayeon Lim
- Department of Bioengineering and Biotechnology, College of Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Sooim Shin
- Department of Bioengineering and Biotechnology, College of Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186, Gwangju, Republic of Korea.
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
28
|
Effects of captopril on glucose metabolism and autophagy in liver and muscle from mice with type 1 diabetes and diet-induced obesity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166477. [PMID: 35780942 DOI: 10.1016/j.bbadis.2022.166477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022]
Abstract
Impaired metabolic functions underlie the pathophysiology of diabetes and obesity. The renin-angiotensin system (RAS) is one pathway related to the pathophysiology of both diseases. RAS activation in metabolically active tissues exerts pro-inflammatory effects via angiotensin II (Ang II), linked to dysfunction in cellular processes such as autophagy, which is associated with obesity and diabetes. Here, we determined whether RAS is involved in metabolic dysregulations in a Type 1 Diabetes (T1D) mouse model, treated with captopril, and in an obesity mouse model (Agt-Tg) that overexpresses angiotensinogen (Agt) in adipose tissue. T1D mice had lower plasma leptin, resistin and higher non-esterified fatty acids (NEFA) compared to wild type (Wt) mice, even under captopril treatment. Further, mRNA levels for Agt, At1, Insr, and Beclin1 were upregulated in muscle and liver of T1D mice with captopril compared to Wt. Moreover, autophagy markers LC3 and p62 proteins were decreased, regardless of captopril treatment in the liver from T1D mice. In obese Wt mice, captopril increased muscle Irs1 gene levels. Further, captopril reduced mRNA levels of At1, Insr, Ampk, Beclin1, Atg12, and Lc3 in the liver from both Wt and Agt-Tg mice, while Agt, At1, Insr, and Atg12 expression was reduced in Agt-Tg mice without captopril treatment. Irs1 expression was decreased in the liver from obese Wt mice treated with captopril. Our results suggest that captopril treatment upregulates components of RAS, insulin signaling, and autophagy in both muscle and liver, indicating potential utility of captopril in targeting both insulin sensitivity and autophagy in diabetes and obesity.
Collapse
|
29
|
Visceral Adipose Tissue E2F1-miRNA206/210 Pathway Associates with Type 2 Diabetes in Humans with Extreme Obesity. Cells 2022; 11:cells11193046. [PMID: 36231008 PMCID: PMC9562862 DOI: 10.3390/cells11193046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: Up-regulated expression of transcription-factor E2F1 in human visceral adipose tissue (VAT) characterizes a dysmetabolic obesity sub-phenotype. An E2F1-miRNA network has been described in multiple cancers. Here we investigated whether elevated VAT-E2F1 in obesity is associated with VAT-miRNA alterations similar to, or distinct from, those described in cancer. Furthermore, we assessed if E2F1-associated miRNA changes may contribute to the link between high- VAT-E2F1 and a dysmetabolic obesity phenotype. Methods: We assembled a cohort of patients with obesity and high-VAT-E2F1, matched by age, sex, ±BMI to patients with low-VAT-E2F1, with and without obesity (8 patients/groupX3 groups). We performed Nanostring©-based miRNA profiling of VAT samples from all 24 patients. Candidate E2F1-related miRNAs were validated by qPCR in an independent cohort of patients with extreme obesity, with or without type-2-diabetes (T2DM) (n = 20). Bioinformatic tools and manipulation of E2F1 expression in cells were used to establish the plausibility of the functional VAT-E2F1-miRNA network in obesity. Results: Among n = 798 identified miRNAs, 17 were differentially expressed in relation to E2F1 and not to obesity itself. No evidence for the cancer-related E2F1-miRNA network was identified in human VAT in obesity. In HEK293-cells, overexpression/downregulation of E2F1 correspondingly altered the expression of miRNA-206 and miRNA-210-5p, two miRNAs with reported metabolic functions consistent with those of E2F1. In VAT from both cohorts, the expression of both miRNA-206 and 210-5p intercorrelated, and correlated with the expression of E2F1. In cohort 1 we did not detect significant associations with biochemical parameters. In cohort 2 of patients with extreme obesity, all those with high VAT-E2F1 showed a diabetes-complicated obesity phenotype and higher expression of miRNA-206 and miRNA-210-5p, which also correlated with fasting glucose levels (both miRNAs) and fasting insulin (miRNA-210-5p). Conclusions: Whilst the previously described cancer-related E2F1-miRNA network does not appear to operate in VAT in obesity, miRNAs-206 and 210-5p may link high-E2F1 expression in VAT with diabetes-complicated extreme obesity phenotype.
Collapse
|
30
|
Changotra H, Kaur S, Yadav SS, Gupta GL, Parkash J, Duseja A. ATG5: A central autophagy regulator implicated in various human diseases. Cell Biochem Funct 2022; 40:650-667. [PMID: 36062813 DOI: 10.1002/cbf.3740] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Autophagy, an intracellular conserved degradative process, plays a central role in the renewal/recycling of a cell to maintain the homeostasis of nutrients and energy within the cell. ATG5, a key component of autophagy, regulates the formation of the autophagosome, a hallmark of autophagy. ATG5 binds with ATG12 and ATG16L1 resulting in E3 like ligase complex, which is necessary for autophagosome expansion. Available data suggest that ATG5 is indispensable for autophagy and has an imperative role in several essential biological processes. Moreover, ATG5 has also been demonstrated to possess autophagy-independent functions that magnify its significance and therapeutic potential. ATG5 interacts with various molecules for the execution of different processes implicated during physiological and pathological conditions. Furthermore, ATG5 genetic variants are associated with various ailments. This review discusses various autophagy-dependent and autophagy-independent roles of ATG5, highlights its various deleterious genetic variants reported until now, and various studies supporting it as a potential drug target.
Collapse
Affiliation(s)
- Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sargeet Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Suresh Singh Yadav
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University Punjab, Ghudda, Bathinda, Punjab, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
31
|
Macrophage Polarization Mediated by Mitochondrial Dysfunction Induces Adipose Tissue Inflammation in Obesity. Int J Mol Sci 2022; 23:ijms23169252. [PMID: 36012516 PMCID: PMC9409464 DOI: 10.3390/ijms23169252] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/06/2022] Open
Abstract
Obesity is one of the prominent global health issues, contributing to the growing prevalence of insulin resistance and type 2 diabetes. Chronic inflammation in adipose tissue is considered as a key risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. Macrophages are the most abundant immune cells in adipose tissue and play an important role in adipose tissue inflammation. Mitochondria are critical for regulating macrophage polarization, differentiation, and survival. Changes to mitochondrial metabolism and physiology induced by extracellular signals may underlie the corresponding state of macrophage activation. Macrophage mitochondrial dysfunction is a key mediator of obesity-induced macrophage inflammatory response and subsequent systemic insulin resistance. Mitochondrial dysfunction drives the activation of the NLRP3 inflammasome, which induces the release of IL-1β. IL-1β leads to decreased insulin sensitivity of insulin target cells via paracrine signaling or infiltration into the systemic circulation. In this review, we discuss the new findings on how obesity induces macrophage mitochondrial dysfunction and how mitochondrial dysfunction induces NLRP3 inflammasome activation. We also summarize therapeutic approaches targeting mitochondria for the treatment of diabetes.
Collapse
|
32
|
Rudnick DA, Huang J, Hidvegi T, Chu AS, Hale P, Munanairi A, Dietzen DJ, Cliften PF, Tycksen E, Lutkewitte AJ, Finck BN, Pak SC, Silverman GA, Perlmutter DH. Regulation of PGC1α Downstream of the Insulin Signaling Pathway Plays a Role in the Hepatic Proteotoxicity of Mutant α1-Antitrypsin Deficiency Variant Z. Gastroenterology 2022; 163:270-284. [PMID: 35301011 PMCID: PMC9232923 DOI: 10.1053/j.gastro.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Insulin signaling is known to regulate essential proteostasis mechanisms. METHODS The analyses here examined effects of insulin signaling in the PiZ mouse model of α1-antitrypsin deficiency in which hepatocellular accumulation and proteotoxicity of the misfolded α1-antitrypsin Z variant (ATZ) causes liver fibrosis and cancer. RESULTS We first studied the effects of breeding PiZ mice to liver-insulin-receptor knockout (LIRKO) mice (with hepatocyte-specific insulin-receptor gene disruption). The results showed decreased hepatic ATZ accumulation and liver fibrosis in PiZ x LIRKO vs PiZ mice, with reversal of those effects when we bred PiZ x LIRKO mice onto a FOXO1-deficient background. Increased intracellular degradation of ATZ mediated by autophagy was identified as the likely mechanism for diminished hepatic proteotoxicity in PiZ x LIRKO mice and the converse was responsible for enhanced toxicity in PiZ x LIRKO x FOXO1-KO animals. Transcriptomic studies showed major effects on oxidative phosphorylation and autophagy genes, and significant induction of peroxisome proliferator-activated-receptor-γ-coactivator-1α (PGC1α) expression in PiZ-LIRKO mice. Because PGC1α plays a key role in oxidative phosphorylation, we further investigated its effects on ATZ proteostasis in our ATZ-expressing mammalian cell model. The results showed PGC1α overexpression or activation enhances autophagic ATZ degradation. CONCLUSIONS These data implicate suppression of autophagic ATZ degradation by down-regulation of PGC1α as one mechanism by which insulin signaling exacerbates hepatic proteotoxicity in PiZ mice, and identify PGC1α as a novel target for development of new human α1-antitrypsin deficiency liver disease therapies.
Collapse
Affiliation(s)
- David A. Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Tunda Hidvegi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew S. Chu
- Department of Pediatrics, Baylor College of Medicine
| | - Pamela Hale
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Admire Munanairi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Dennis J. Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul F. Cliften
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110.,The Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric Tycksen
- The Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew J. Lutkewitte
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Gary A. Silverman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - David H. Perlmutter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110.,Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
33
|
Erfidan S, Dede S, Usta A, Yüksek V, Çetin S. The effect of quinoa (Chenopodium quinoa) on apoptotic, autophagic, antioxidant and inflammation markers in glucocorticoid-induced insulin resistance in rats. Mol Biol Rep 2022; 49:6509-6516. [PMID: 35618936 DOI: 10.1007/s11033-022-07479-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Insulin resistance plays an important role in predicting type 2 diabetes that may develops. This study was planned in order to investigate the beneficial effects of quinoa (Chenopodium quinoa) use in glucocorticoid induced-insulin resistance. METHODS AND RESULTS Forty-two rats were used as the material (experimental) groups: the control group (C), the quinoa-administered group (Q), the insulin resistance-created group (IR), the IR + metformin group (IM), the IR + quinoa for treatment group (IQ) and the quinoa + IR for prophylaxis group (QI). Blood glucose, insulin levels and HOMA-IR were found to be highest (p < 0.05) in the IR group (p < 0.05). Glucose levels decreased significantly with the administration of quinoa and approached the levels of the control, but the insulin levels and the HOMA-IR did not significantly change. It was also observed that other biochemical parameters (ALT, AST, ALP, total cholesterol, total protein, urea and creatinine) changed significantly in the IR group and approached the levels of the control group with the administration of quinoa. Apoptotic (BCL2 5, BAX 9, CAS 3), autophagic (SQSTM1 7, ATG5) and inflammation (IL-1β, TNF-α) genes were upregulated by 5-11-fold in the IR group. In the groups in which quinoa was administered for treatment and protection, all these genes were found to be upregulated to a lower extent than the IR group. Antioxidant genes (GPX1, SOD1) increased by nine to tenfold in the quinoa groups. CONCLUSION As a result, after administration of quinoa, it was determined that the glucose level increased due to experimental insulin resistance and the liver and kidney damage indicators decreased. It was determined that quinoa (Chenopodium quinoa) had significant beneficial effects on biochemical parameters and apoptotic, autophagic, antioxidant and inflammatory markers in experimental glucocorticoid-induced insulin resistance.
Collapse
Affiliation(s)
- Siber Erfidan
- Health Sciences Institute, Van Yuzuncu Yil University, Van, Turkey
| | - Semiha Dede
- Biochemistry Department, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Ayşe Usta
- Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| | - Veysel Yüksek
- Ozalp Regional High School, Van Yuzuncu Yil University, Van, Turkey
| | - Sedat Çetin
- Biochemistry Department, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
34
|
Ro SH, Bae J, Jang Y, Myers JF, Chung S, Yu J, Natarajan SK, Franco R, Song HS. Arsenic Toxicity on Metabolism and Autophagy in Adipose and Muscle Tissues. Antioxidants (Basel) 2022; 11:antiox11040689. [PMID: 35453374 PMCID: PMC9028583 DOI: 10.3390/antiox11040689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Arsenic, a naturally occurring metalloid derived from the environment, has been studied worldwide for its causative effects in various cancers. However, the effects of arsenic toxicity on the development and progression of metabolic syndrome, including obesity and diabetes, has received less attention. Many studies suggest that metabolic dysfunction and autophagy dysregulation of adipose and muscle tissues are closely related to the development of metabolic disease. In the USA, arsenic contamination has been reported in some ground water, soil and grain samples in major agricultural regions, but the effects on adipose and muscle tissue metabolism and autophagy have not been investigated much. Here, we highlight arsenic toxicity according to the species, dose and exposure time and the effects on adipose and muscle tissue metabolism and autophagy. Historically, arsenic was used as both a poison and medicine, depending on the dose and treatment time. In the modern era, arsenic intoxication has significantly increased due to exposure from water, soil and food, which could be a contributing factor in the development and progression of metabolic disease. From this review, a better understanding of the pathogenic mechanisms by which arsenic alters metabolism and autophagy regulation could become a cornerstone leading to the development of therapeutic strategies against arsenic-induced toxicity and metabolic disease.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.B.); (Y.J.); (J.F.M.)
- Correspondence: ; Tel.: +1-402-472-5424; Fax:+1-402-472-7842
| | - Jiyoung Bae
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.B.); (Y.J.); (J.F.M.)
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Yura Jang
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.B.); (Y.J.); (J.F.M.)
- Department of Neurology, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jacob F. Myers
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.B.); (Y.J.); (J.F.M.)
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Jefferson College of Life Sciences, MD-PhD Program, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts, Amherst, MA 01003, USA;
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (J.Y.); (S.K.N.)
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (J.Y.); (S.K.N.)
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
35
|
Shan Z, Fa WH, Tian CR, Yuan CS, Jie N. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment. Aging (Albany NY) 2022; 14:2902-2919. [PMID: 35332108 PMCID: PMC9004550 DOI: 10.18632/aging.203969] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
The prevalence of type 2 diabetes is associated with inflammatory bowels diseases, nonalcoholic steatohepatitis and even a spectrum of cancer such as colon cancer and liver cancer, resulting in a substantial healthcare burden on our society. Autophagy is a key regulator in metabolic homeostasis such as lipid metabolism, energy management and the balance of cellular mineral substances. Mitophagy is selective autophagy for clearing the damaged mitochondria and dysfunctional mitochondria. A myriad of evidence has demonstrated a major role of mitophagy in the regulation of type 2 diabetes and metabolic homeostasis. It is well established that defective mitophagy has been linked to the development of insulin resistance. Moreover, insulin resistance is further progressed to various diseases such as nephropathy, retinopathy and cardiovascular diseases. Concordantly, restoration of mitophagy will be a reliable and therapeutic target for type 2 diabetes. Recently, various phytochemicals have been proved to prevent dysfunctions of β-cells by mitophagy inductions during diabetes developments. In agreement with the above phenomenon, mitophagy inducers should be warranted as potential and novel therapeutic agents for treating diabetes. This review focuses on the role of mitophagy in type 2 diabetes relevant diseases and the pharmacological basis and therapeutic potential of autophagy regulators in type 2 diabetes.
Collapse
Affiliation(s)
- Zhao Shan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Wei Hong Fa
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Run Tian
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Shi Yuan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Ning Jie
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| |
Collapse
|
36
|
Liquiritigenin Inhibits Lipid Accumulation in 3T3-L1 Cells via mTOR-Mediated Regulation of the Autophagy Mechanism. Nutrients 2022; 14:nu14061287. [PMID: 35334944 PMCID: PMC8954126 DOI: 10.3390/nu14061287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Liquiritigenin (LQG) is a natural flavonoid from the herb Glycyrrhiza uralensis Fisch that exhibits multiple biological activities. However, its specific role in antiobesity and its related underlying molecular mechanisms remain unknown. The primary purpose of this study is to explore the effects and regulatory mechanisms of LQG on lipid accumulation in 3T3-L1 adipocytes. The results show that LQG significantly reduced triglyceride levels and downregulated the expression of transcription factors such as CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 adipocytes. Additionally, the expression of sterol-regulatory element-binding protein 1c (SREBP1c), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FASN) involved in lipogenesis was reduced by treatment with LQG. The protein expression levels of light chain 3B (LC3B), autophagy-related protein 7 (ATG7) and p62 were also modulated by LQG, leading to the suppression of autophagy. Further, LQG activated the phosphorylation of the mammalian target of rapamycin (mTOR), the inhibition of which was followed by the restored expression of autophagy-related proteins. Pretreatment with an mTOR inhibitor also reverted the expression of several genes or proteins involved in lipid synthesis. These results suggest that LQG inhibited lipid accumulation via mTOR-mediated autophagy in 3T3-L1 white adipocytes, indicating the role of LQG as a potential natural bioactive component for use in dietary supplements for preventing obesity.
Collapse
|
37
|
Xu Q, Mariman EC, Blaak EE, Jocken JW. Pharmacological agents targeting autophagy and their effects on lipolysis in human adipocytes. Mol Cell Endocrinol 2022; 544:111555. [PMID: 35031432 DOI: 10.1016/j.mce.2022.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/12/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
Adipose tissue of metabolically compromised humans with obesity is often characterized by impaired regulation of autophagy pathway. However, data on the role of autophagy in human adipocyte lipid catabolism is scarce. Therefore, we investigated the effect of pharmacological agents (including 3-methyladenine (3MA), bafilomycin A1 (BAF), chloroquine (CQ) and lalistat-2 (L-stat), that target different stages of the autophagy pathway on lipid hydrolysis in differentiated human multipotent adipose-derived stem cells (hMADs). Glycerol and fatty acid release were measured as marker of lipid hydrolysis following starvation and β-adrenergic stimulation. Microtubule-associated protein light chain 3 ratio (LC3II/LC3I) and HSL phosphorylation (pHSL) were analyzed by Western blot. Our data indicate that pharmacological inhibition of the autophagy pathway reduced lipid hydrolysis in human adipocytes, although to a limited extent (10-15%). However, further research is needed to reveal the exact mechanism of action of these pharmacological agents and their interplay with cytosolic lipid breakdown in human adipocytes.
Collapse
Affiliation(s)
- Qing Xu
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Edwin Cm Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Johan We Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre(+), Maastricht, the Netherlands.
| |
Collapse
|
38
|
Suau R, Pardina E, Domènech E, Lorén V, Manyé J. The Complex Relationship Between Microbiota, Immune Response and Creeping Fat in Crohn's Disease. J Crohns Colitis 2022; 16:472-489. [PMID: 34528668 DOI: 10.1093/ecco-jcc/jjab159] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last decade, there has been growing interest in the pathological involvement of hypertrophic mesenteric fat attached to the serosa of the inflamed intestinal segments involved in Crohn's disease [CD], known as creeping fat. In spite of its protective nature, creeping fat harbours an aberrant inflammatory activity which, in an already inflamed intestine, may explain why creeping fat is associated with a greater severity of CD. The transmural inflammation of CD facilitates the interaction of mesenteric fat with translocated intestinal microorganisms, contributing to activation of the immune response. This may be not the only way in which microorganisms alter the homeostasis of this fatty tissue: intestinal dysbiosis may also impair xenobiotic metabolism. All these CD-related alterations have a functional impact on nuclear receptors such as the farnesoid X receptor or the peroxisome proliferator-activated receptor γ, which are implicated in regulation of the immune response, adipogenesis and the maintenance of barrier function, as well as on creeping fat production of inflammatory-associated cells such as adipokines. The dysfunction of creeping fat worsens the inflammatory course of CD and may favour intestinal fibrosis and fistulizing complications. However, our current knowledge of the pathophysiology and pathogenic role of creeping fat is controversial and a better understanding might provide new therapeutic targets for CD. Here we aim to review and update the key cellular and molecular alterations involved in this inflammatory process that link the pathological components of CD with the development of creeping fat.
Collapse
Affiliation(s)
- Roger Suau
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Eva Pardina
- Biochemistry and Molecular Biomedicine Department, University of Barcelona, Barcelona (Catalonia), Spain
| | - Eugeni Domènech
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, 'Germans Trias i Pujol' University Hospital, Badalona (Catalonia), Spain
| | - Violeta Lorén
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Josep Manyé
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| |
Collapse
|
39
|
Abad-Jiménez Z, López-Domènech S, García-Gargallo C, Vezza T, Gómez-Abril SÁ, Morillas C, Díaz-Pozo P, Falcón R, Bañuls C, Víctor VM, Rocha M. Roux-en-Y Gastric Bypass Modulates AMPK, Autophagy and Inflammatory Response in Leukocytes of Obese Patients. Biomedicines 2022; 10:biomedicines10020430. [PMID: 35203639 PMCID: PMC8962362 DOI: 10.3390/biomedicines10020430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is characterized by low-grade chronic inflammation, metabolic overload, and impaired endothelial and cardiovascular function. Roux-en-Y gastric bypass (RYGB) results in amelioration of the pro-oxidant status of leukocytes and the metabolic profile. Nevertheless, little is known about the precise mechanism that drives systemic and metabolic improvements following bariatric surgery. In this cohort study, we investigated the effect of RYGB on molecular pathways involving energy homeostasis in leukocytes in 43 obese subjects one year after surgery. In addition to clinical and biochemical parameters, we determined protein expression of systemic proinflammatory cytokines by Luminex®, different markers of inflammation, endoplasmic reticulum (ER) stress, autophagy/mitophagy by western blot, and mitochondrial membrane potential by fluorescence imaging. Bariatric surgery induced an improvement in metabolic outcomes that was accompanied by a systemic drop in hsCRP, IL6, and IL1β levels, and a slowing down of intracellular inflammatory pathways in leukocytes (NF-κB and MCP-1), an increase in AMPK content, a reduction of ER stress (ATF6 and CHOP), augmented autophagy/mitophagy markers (Beclin 1, ATG5, LC3-I, LC3-II, NBR1, and PINK1), and a decrease of mitochondrial membrane potential. These findings shed light on the specific molecular mechanisms by which RYGB facilitates metabolic improvements, highlighting the relevance of pathways involving energy homeostasis as key mediators of these outcomes. In addition, since leukocytes are particularly exposed to physiological changes, they could be used in routine clinical practice as a good sensor of the whole body’s responses.
Collapse
Affiliation(s)
- Zaida Abad-Jiménez
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Sandra López-Domènech
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
- Correspondence: (S.L.-D.); (V.M.V.); (M.R.); Tel.: +34-96-318-91-32 (M.R.)
| | - Celia García-Gargallo
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Teresa Vezza
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Segundo Ángel Gómez-Abril
- Department of General and Digestive System Surgery, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain;
- Department of Surgery, Faculty of Medicine and Dentistry, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Carlos Morillas
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Pedro Díaz-Pozo
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Rosa Falcón
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Celia Bañuls
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
| | - Víctor M. Víctor
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
- CIBERehd-Department of Pharmacology, University of Valencia, Av Blasco Ibáñez 15, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
- Correspondence: (S.L.-D.); (V.M.V.); (M.R.); Tel.: +34-96-318-91-32 (M.R.)
| | - Milagros Rocha
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (C.G.-G.); (T.V.); (C.M.); (P.D.-P.); (R.F.); (C.B.)
- CIBERehd-Department of Pharmacology, University of Valencia, Av Blasco Ibáñez 15, 46010 Valencia, Spain
- Correspondence: (S.L.-D.); (V.M.V.); (M.R.); Tel.: +34-96-318-91-32 (M.R.)
| |
Collapse
|
40
|
Mechanisms of autophagic responses to altered nutritional status. J Nutr Biochem 2022; 103:108955. [PMID: 35134508 DOI: 10.1016/j.jnutbio.2022.108955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
|
41
|
Jia Z, Chen X, Chen J, Zhang L, Oprescu SN, Luo N, Xiong Y, Yue F, Kuang S. ACSS3 in brown fat drives propionate catabolism and its deficiency leads to autophagy and systemic metabolic dysfunction. Clin Transl Med 2022; 12:e665. [PMID: 35184387 PMCID: PMC8858619 DOI: 10.1002/ctm2.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
Propionate is a gut microbial metabolite that has been reported to have controversial effects on metabolic health. Here we show that propionate is activated by acyl-CoA synthetase short-chain family member 3 (ACSS3), located on the mitochondrial inner membrane in brown adipocytes. Knockout of Acss3 gene (Acss3-/- ) in mice reduces brown adipose tissue (BAT) mass but increases white adipose tissue (WAT) mass, leading to glucose intolerance and insulin resistance that are exacerbated by high-fat diet (HFD). Intriguingly, Acss3-/- or HFD feeding significantly elevates propionate levels in BAT and serum, and propionate supplementation induces autophagy in cultured brown and white adipocytes. The elevated levels of propionate in Acss3-/- mice similarly drive adipocyte autophagy, and pharmacological inhibition of autophagy using hydroxychloroquine ameliorates obesity, hepatic steatosis and insulin resistance of the Acss3-/- mice. These results establish ACSS3 as the key enzyme for propionate metabolism and demonstrate that accumulation of propionate promotes obesity and Type 2 diabetes through triggering adipocyte autophagy.
Collapse
Affiliation(s)
- Zhihao Jia
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Xiyue Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Jingjuan Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Lijia Zhang
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Stephanie N. Oprescu
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana
| | - Nanjian Luo
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Yan Xiong
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Feng Yue
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Shihuan Kuang
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
- Center for Cancer ResearchPurdue UniversityWest LafayetteIndiana
| |
Collapse
|
42
|
Sekar M, Thirumurugan K. Autophagy: a molecular switch to regulate adipogenesis and lipolysis. Mol Cell Biochem 2022; 477:727-742. [PMID: 35022960 DOI: 10.1007/s11010-021-04324-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022]
Abstract
Obesity is a complex epidemic disease caused by an imbalance of adipose tissue function that results in hyperglycemia, hyperlipidemia and insulin resistance which further develop into type 2 diabetes, cardiovascular disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Adipose tissue is responsible for fat storage; white adipose tissue stores excess energy as fat for availability during starvation, whereas brown adipose tissue regulates thermogenesis through fat oxidation using uncoupling protein 1. However, hypertrophic fat storage results in inflammation and increase the chances for obesity which triggers autophagy genes and lipolytic enzymes to regulate lipid metabolism. Autophagy degrades cargo molecule with the help of lysosome and redistributes the energy back to the cell. Autophagy regulates adipocyte differentiation by modulating master regulators of adipogenesis. Adipogenesis is the process which stores excessive energy in the form of lipid droplets. Lipid droplets (LD) are dynamic cellular organelles that store toxic free-fatty acids into neutral triglycerides in adipose tissue. LD activates both lipolysis and lipophagy to degrade excess triglycerides. In obese tissue, autophagy is activated via pro-inflammatory cytokines produced by surplus fat stored in the adipose tissue. This review focused on the process of autophagy and adipogenesis and the transcription factors that regulate lipogenesis and lipolysis in the adipose tissue. We have also discussed about the importance of autophagic regulation within adipose tissue which controls the onset of obesity and its associated diseases.
Collapse
Affiliation(s)
- Mouliganesh Sekar
- Structural Biology Lab, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
43
|
Zhu L, Liu L. New Insights Into the Interplay Among Autophagy, the NLRP3 Inflammasome and Inflammation in Adipose Tissue. Front Endocrinol (Lausanne) 2022; 13:739882. [PMID: 35432210 PMCID: PMC9008752 DOI: 10.3389/fendo.2022.739882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a feature of metabolic syndrome with chronic inflammation in obese subjects, characterized by adipose tissue (AT) expansion, proinflammatory factor overexpression, and macrophage infiltration. Autophagy modulates inflammation in the enlargement of AT as an essential step for maintaining the balance in energy metabolism and waste elimination. Signaling originating from dysfunctional AT, such as AT containing hypertrophic adipocytes and surrounding macrophages, activates NOD-like receptor family 3 (NLRP3) inflammasome. There are interactions about altered autophagy and NLRP3 inflammasome activation during the progress in obesity. We summarize the current studies and potential mechanisms associated with autophagy and NLRP3 inflammasome in AT inflammation and aim to provide further evidence for research on obesity and obesity-related complications.
Collapse
Affiliation(s)
- Liyuan Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, China
- *Correspondence: Ling Liu,
| |
Collapse
|
44
|
Ziegler DV, Huber K, Fajas L. The Intricate Interplay between Cell Cycle Regulators and Autophagy in Cancer. Cancers (Basel) 2021; 14:cancers14010153. [PMID: 35008317 PMCID: PMC8750274 DOI: 10.3390/cancers14010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Autophagy is an intracellular catabolic program regulated by multiple external and internal cues. A large amount of evidence unraveled that cell-cycle regulators are crucial in its control. This review highlights the interplay between cell-cycle regulators, including cyclin-dependent kinase inhibitors, cyclin-dependent kinases, and E2F factors, in the control of autophagy all along the cell cycle. Beyond the intimate link between cell cycle and autophagy, this review opens therapeutic perspectives in modulating together these two aspects to block cancer progression. Abstract In the past decade, cell cycle regulators have extended their canonical role in cell cycle progression to the regulation of various cellular processes, including cellular metabolism. The regulation of metabolism is intimately connected with the function of autophagy, a catabolic process that promotes the efficient recycling of endogenous components from both extrinsic stress, e.g., nutrient deprivation, and intrinsic sub-lethal damage. Mediating cellular homeostasis and cytoprotection, autophagy is found to be dysregulated in numerous pathophysiological contexts, such as cancer. As an adaptative advantage, the upregulation of autophagy allows tumor cells to integrate stress signals, escaping multiple cell death mechanisms. Nevertheless, the precise role of autophagy during tumor development and progression remains highly context-dependent. Recently, multiple articles has suggested the importance of various cell cycle regulators in the modulation of autophagic processes. Here, we review the current clues indicating that cell-cycle regulators, including cyclin-dependent kinase inhibitors (CKIs), cyclin-dependent kinases (CDKs), and E2F transcription factors, are intrinsically linked to the regulation of autophagy. As an increasing number of studies highlight the importance of autophagy in cancer progression, we finally evoke new perspectives in therapeutic avenues that may include both cell cycle inhibitors and autophagy modulators to synergize antitumor efficacy.
Collapse
|
45
|
Sex differences in white adipose tissue expansion: emerging molecular mechanisms. Clin Sci (Lond) 2021; 135:2691-2708. [PMID: 34908104 DOI: 10.1042/cs20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The escalating prevalence of individuals becoming overweight and obese is a rapidly rising global health problem, placing an enormous burden on health and economic systems worldwide. Whilst obesity has well described lifestyle drivers, there is also a significant and poorly understood component that is regulated by genetics. Furthermore, there is clear evidence for sexual dimorphism in obesity, where overall risk, degree, subtype and potential complications arising from obesity all differ between males and females. The molecular mechanisms that dictate these sex differences remain mostly uncharacterised. Many studies have demonstrated that this dimorphism is unable to be solely explained by changes in hormones and their nuclear receptors alone, and instead manifests from coordinated and highly regulated gene networks, both during development and throughout life. As we acquire more knowledge in this area from approaches such as large-scale genomic association studies, the more we appreciate the true complexity and heterogeneity of obesity. Nevertheless, over the past two decades, researchers have made enormous progress in this field, and some consistent and robust mechanisms continue to be established. In this review, we will discuss some of the proposed mechanisms underlying sexual dimorphism in obesity, and discuss some of the key regulators that influence this phenomenon.
Collapse
|
46
|
Wen X, Yang Y, Klionsky DJ. Moments in autophagy and disease: Past and present. Mol Aspects Med 2021; 82:100966. [PMID: 33931245 PMCID: PMC8548407 DOI: 10.1016/j.mam.2021.100966] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Over the past several decades, research on autophagy, a highly conserved lysosomal degradation pathway, has been advanced by studies in different model organisms, especially in the field of its molecular mechanism and regulation. The malfunction of autophagy is linked to various diseases, among which cancer and neurodegenerative diseases are the major focus. In this review, we cover some other important diseases, including cardiovascular diseases, infectious and inflammatory diseases, and metabolic disorders, as well as rare diseases, with a hope of providing a more complete understanding of the spectrum of autophagy's role in human health.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ying Yang
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Impact of Bariatric Surgery on Adipose Tissue Biology. J Clin Med 2021; 10:jcm10235516. [PMID: 34884217 PMCID: PMC8658722 DOI: 10.3390/jcm10235516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery (BS) procedures are actually the most effective intervention to help subjects with severe obesity achieve significant and sustained weight loss. White adipose tissue (WAT) is increasingly recognized as the largest endocrine organ. Unhealthy WAT expansion through adipocyte hypertrophy has pleiotropic effects on adipocyte function and promotes obesity-associated metabolic complications. WAT dysfunction in obesity encompasses an altered adipokine secretome, unresolved inflammation, dysregulated autophagy, inappropriate extracellular matrix remodeling and insufficient angiogenic potential. In the last 10 years, accumulating evidence suggests that BS can improve the WAT function beyond reducing the fat depot sizes. The causal relationships between improved WAT function and the health benefits of BS merits further investigation. This review summarizes the current knowledge on the short-, medium- and long-term outcomes of BS on the WAT composition and function.
Collapse
|
48
|
A Decade of Mighty Lipophagy: What We Know and What Facts We Need to Know? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5539161. [PMID: 34777688 PMCID: PMC8589519 DOI: 10.1155/2021/5539161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
Lipids are integral cellular components that act as substrates for energy provision, signaling molecules, and essential constituents of biological membranes along with a variety of other biological functions. Despite their significance, lipid accumulation may result in lipotoxicity, impair autophagy, and lysosomal function that may lead to certain diseases and metabolic syndromes like obesity and even cell death. Therefore, these lipids are continuously recycled and redistributed by the process of selective autophagy specifically termed as lipophagy. This selective form of autophagy employs lysosomes for the maintenance of cellular lipid homeostasis. In this review, we have reviewed the current literature about how lipid droplets (LDs) are recruited towards lysosomes, cross-talk between a variety of autophagy receptors present on LD surface and lysosomes, and lipid hydrolysis by lysosomal enzymes. In addition to it, we have tried to answer most of the possible questions related to lipophagy regulation at different levels. Moreover, in the last part of this review, we have discussed some of the pathological states due to the accumulation of these LDs and their possible treatments under the light of currently available findings.
Collapse
|
49
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
50
|
Abstract
Autophagy is an evolutionarily conserved, lysosome-dependent catabolic process whereby cytoplasmic components, including damaged organelles, protein aggregates and lipid droplets, are degraded and their components recycled. Autophagy has an essential role in maintaining cellular homeostasis in response to intracellular stress; however, the efficiency of autophagy declines with age and overnutrition can interfere with the autophagic process. Therefore, conditions such as sarcopenic obesity, insulin resistance and type 2 diabetes mellitus (T2DM) that are characterized by metabolic derangement and intracellular stresses (including oxidative stress, inflammation and endoplasmic reticulum stress) also involve the accumulation of damaged cellular components. These conditions are prevalent in ageing populations. For example, sarcopenia is an age-related loss of skeletal muscle mass and strength that is involved in the pathogenesis of both insulin resistance and T2DM, particularly in elderly people. Impairment of autophagy results in further aggravation of diabetes-related metabolic derangements in insulin target tissues, including the liver, skeletal muscle and adipose tissue, as well as in pancreatic β-cells. This Review summarizes the role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, and describes its potential as a therapeutic target.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
- Department of General Internal Medicine, Kusatsu General Hospital, Kusatsu, Shiga, Japan.
| |
Collapse
|