1
|
Mellor J, Kuznetsov D, Heller S, Gall MA, Rosilio M, Amiel SA, Ibberson M, McGurnaghan S, Blackbourn L, Berthon W, Salem A, Qu Y, McCrimmon RJ, de Galan BE, Pedersen-Bjergaard U, Leaviss J, McKeigue PM, Colhoun HM. Estimating risk of consequences following hypoglycaemia exposure using the Hypo-RESOLVE cohort: a secondary analysis of pooled data from insulin clinical trials. Diabetologia 2024; 67:2210-2224. [PMID: 39037602 PMCID: PMC11447089 DOI: 10.1007/s00125-024-06225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/23/2024]
Abstract
AIMS/HYPOTHESIS Whether hypoglycaemia increases the risk of other adverse outcomes in diabetes remains controversial, especially for hypoglycaemia episodes not requiring assistance from another person. An objective of the Hypoglycaemia REdefining SOLutions for better liVEs (Hypo-RESOLVE) project was to create and use a dataset of pooled clinical trials in people with type 1 or type 2 diabetes to examine the association of exposure to all hypoglycaemia episodes across the range of severity with incident event outcomes: death, CVD, neuropathy, kidney disease, retinal disorders and depression. We also examined the change in continuous outcomes that occurred following a hypoglycaemia episode: change in eGFR, HbA1c, blood glucose, blood glucose variability and weight. METHODS Data from 84 trials with 39,373 participants were pooled. For event outcomes, time-updated Cox regression models adjusted for age, sex, diabetes duration and HbA1c were fitted to assess association between: (1) outcome and cumulative exposure to hypoglycaemia episodes; and (2) outcomes where an acute effect might be expected (i.e. death, acute CVD, retinal disorders) and any hypoglycaemia exposure within the last 10 days. Exposures to any hypoglycaemia episode and to episodes of given severity (levels 1, 2 and 3) were examined. Further adjustment was then made for a wider set of potential confounders. The within-person change in continuous outcomes was also summarised (median of 40.4 weeks for type 1 diabetes and 26 weeks for type 2 diabetes). Analyses were conducted separately by type of diabetes. RESULTS The maximally adjusted association analysis for type 1 diabetes found that cumulative exposure to hypoglycaemia episodes of any level was associated with higher risks of neuropathy, kidney disease, retinal disorders and depression, with risk ratios ranging from 1.55 (p=0.002) to 2.81 (p=0.002). Associations of a similar direction were found when level 1 episodes were examined separately but were significant for depression only. For type 2 diabetes cumulative exposure to hypoglycaemia episodes of any level was associated with higher risks of death, acute CVD, kidney disease, retinal disorders and depression, with risk ratios ranging from 2.35 (p<0.0001) to 3.00 (p<0.0001). These associations remained significant when level 1 episodes were examined separately. There was evidence of an association between hypoglycaemia episodes of any kind in the previous 10 days and death, acute CVD and retinal disorders in both type 1 and type 2 diabetes, with rate ratios ranging from 1.32 (p=0.017) to 2.68 (p<0.0001). These associations varied in magnitude and significance when examined separately by hypoglycaemia level. Within the range of hypoglycaemia defined by levels 1, 2 and 3, we could not find any evidence of a threshold at which risk of these consequences suddenly became pronounced. CONCLUSIONS/INTERPRETATION These data are consistent with hypoglycaemia being associated with an increased risk of adverse events across several body systems in diabetes. These associations are not confined to severe hypoglycaemia requiring assistance.
Collapse
Affiliation(s)
- Joseph Mellor
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
| | | | - Simon Heller
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Mari-Anne Gall
- Medical & Science, Insulin, Clinical Drug Development, Novo Nordisk A/S, Soeberg, Denmark
| | - Myriam Rosilio
- Diabetes Medical Unit, Eli Lilly and Company, Neuilly-sur-Seine, France
| | - Stephanie A Amiel
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mark Ibberson
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stuart McGurnaghan
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Luke Blackbourn
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - William Berthon
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Adel Salem
- RW Data Assets, AI & Analytics(AIA), Novo Nordisk A/S, Soeberg, Denmark
| | - Yongming Qu
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Rory J McCrimmon
- Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Bastiaan E de Galan
- Division of Endocrinology and Metabolic Disease, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Joanna Leaviss
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Paul M McKeigue
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Helen M Colhoun
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Shen J, Pan J, Yu G, Cai H, Xu H, Yan H, Feng Y. Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis. J Cell Mol Med 2024; 28:e70045. [PMID: 39238070 PMCID: PMC11377178 DOI: 10.1111/jcmm.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome-wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High-Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two-sample Mendelian randomization analyses, analysis under the multiplicity-complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co-localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.
Collapse
Affiliation(s)
- Jing Shen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Julong Pan
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Gang Yu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hui Cai
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hua Xu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hanfei Yan
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Yu Feng
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- The University of New South Wales, Sydney, New South Wales, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Hu Y, Li Z, Li H, Xu Q, Xu C, Lin W, Ma X, Hao M, Kuang H. Severe hypoglycaemia-induced microglial inflammation damages microvascular endothelial cells, leading to retinal destruction. Diab Vasc Dis Res 2024; 21:14791641241278506. [PMID: 39187253 PMCID: PMC11348349 DOI: 10.1177/14791641241278506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Human microglia (HMC) are stress-induced inflammatory cells of the retina. It is unknown whether severe hypoglycaemia causes inflammation in microglia, affects the permeability of human retinal microvascular endothelial cells (HRMECs), and causes retinal damage. This study aimed to explore the effects of severe hypoglycaemia on retinal microglial inflammation and endothelial cell permeability and evaluate the damage caused by hypoglycaemia to the retina. The CCK-8 assay was used to measure cell viability. Western blotting was used to detect IL-1β, IL-6, TNF- α, claudin-1, and occludin expression. ELISA was used to detect IL-1β, IL-6, and TNF- α. Transmission electron microscopy (TEM) and haematoxylin and eosin staining were used to observe the retinal structure. Immunohistochemistry and immunofluorescence staining assays were also used to detect IL-1β, IL-6, TNF- α, claudin-1, and occludin expression. Severe hypoglycaemia promoted inflammation in HMC3 cells. Inflammation caused by hypoglycaemia leads to the decreased expression of tight junction proteins. In vivo, severe hypoglycaemia induced structural damage to the retina, increased the expression of inflammatory factors, and decreased the expression of tight junction proteins. Our results suggest that severe hypoglycaemia leads to acute retinal inflammation, affecting the permeability of HRMECs and causing retinal damage.
Collapse
Affiliation(s)
- Yuxin Hu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxue Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengye Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Ling SF, Yap CF, Nair N, Bluett J, Morgan AW, Isaacs JD, Wilson AG, Hyrich KL, Barton A, Plant D. A proteomics study of rheumatoid arthritis patients on etanercept identifies putative biomarkers associated with clinical outcome measures. Rheumatology (Oxford) 2024; 63:1015-1021. [PMID: 37389432 PMCID: PMC10986807 DOI: 10.1093/rheumatology/kead321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVES Biologic DMARDs (bDMARDs) are widely used in patients with RA, but response to bDMARDs is heterogeneous. The objective of this work was to identify pretreatment proteomic biomarkers associated with RA clinical outcome measures in patients starting bDMARDs. METHODS Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) was used to generate spectral maps of sera from patients with RA before and after 3 months of treatment with the bDMARD etanercept. Protein levels were regressed against RA clinical outcome measures, i.e. 28-joint DAS (DAS28) and its subcomponents and DAS28 <2.6 (i.e. remission). The proteins with the strongest evidence for association were analysed in an independent, replication dataset. Finally, subnetwork analysis was carried out using the Disease Module Detection algorithm and biological plausibility of identified proteins was assessed by enrichment analysis. RESULTS A total of 180 patients with RA were included in the discovery dataset and 58 in the validation dataset from a UK-based prospective multicentre study. Ten individual proteins were found to be significantly associated with RA clinical outcome measures. The association of T-complex protein 1 subunit η with DAS28 remission was replicated in an independent cohort. Subnetwork analysis of the 10 proteins from the regression analysis identified the ontological theme, with the strongest associations being with acute phase and acute inflammatory responses. CONCLUSION This longitudinal study of 180 patients with RA commencing etanercept has identified several putative protein biomarkers of treatment response to this drug, one of which was replicated in an independent cohort.
Collapse
Affiliation(s)
- Stephanie F Ling
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Chuan Fu Yap
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Nisha Nair
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - James Bluett
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ann W Morgan
- School of Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- NIHR In Vitro Diagnostic Co-operative, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Musculoskeletal Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Anthony G Wilson
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Kimme L Hyrich
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Darren Plant
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
5
|
Verhulst CEM, van Heck JIP, Fabricius TW, Stienstra R, Teerenstra S, McCrimmon RJ, Tack CJ, Pedersen-Bjergaard U, de Galan BE. The impact of prior exposure to hypoglycaemia on the inflammatory response to a subsequent hypoglycaemic episode. Cardiovasc Diabetol 2024; 23:55. [PMID: 38331900 PMCID: PMC10854178 DOI: 10.1186/s12933-023-02095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Hypoglycaemia has been shown to induce a systemic pro-inflammatory response, which may be driven, in part, by the adrenaline response. Prior exposure to hypoglycaemia attenuates counterregulatory hormone responses to subsequent hypoglycaemia, but whether this effect can be extrapolated to the pro-inflammatory response is unclear. Therefore, we investigated the effect of antecedent hypoglycaemia on inflammatory responses to subsequent hypoglycaemia in humans. METHODS Healthy participants (n = 32) were recruited and randomised to two 2-h episodes of either hypoglycaemia or normoglycaemia on day 1, followed by a hyperinsulinaemic hypoglycaemic (2.8 ± 0.1 mmol/L) glucose clamp on day 2. During normoglycaemia and hypoglycaemia, and after 24 h, 72 h and 1 week, blood was drawn to determine circulating immune cell composition, phenotype and function, and 93 circulating inflammatory proteins including hs-CRP. RESULTS In the group undergoing antecedent hypoglycaemia, the adrenaline response to next-day hypoglycaemia was lower compared to the control group (1.45 ± 1.24 vs 2.68 ± 1.41 nmol/l). In both groups, day 2 hypoglycaemia increased absolute numbers of circulating immune cells, of which lymphocytes and monocytes remained elevated for the whole week. Also, the proportion of pro-inflammatory CD16+-monocytes increased during hypoglycaemia. After ex vivo stimulation, monocytes released more TNF-α and IL-1β, and less IL-10 in response to hypoglycaemia, whereas levels of 19 circulating inflammatory proteins, including hs-CRP, increased for up to 1 week after the hypoglycaemic event. Most of the inflammatory responses were similar in the two groups, except the persistent pro-inflammatory protein changes were partly blunted in the group exposed to antecedent hypoglycaemia. We did not find a correlation between the adrenaline response and the inflammatory responses during hypoglycaemia. CONCLUSION Hypoglycaemia induces an acute and persistent pro-inflammatory response at multiple levels that occurs largely, but not completely, independent of prior exposure to hypoglycaemia. Clinical Trial information Clinicaltrials.gov no. NCT03976271 (registered 5 June 2019).
Collapse
Affiliation(s)
- Clementine E M Verhulst
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Julia I P van Heck
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Therese W Fabricius
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Steven Teerenstra
- Section Biostatistics, Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Hillerød, Denmark
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre, MUMC+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Krishna N, K P S, G K R. Identifying diseases associated with Post-COVID syndrome through an integrated network biology approach. J Biomol Struct Dyn 2024; 42:652-671. [PMID: 36995291 DOI: 10.1080/07391102.2023.2195003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
A growing body of research shows that COVID-19 is now recognized as a multi-organ disease with a wide range of manifestations that can have long-lasting repercussions, referred to as post-COVID-19 syndrome. It is unknown why the vast majority of COVID-19 patients develop post-COVID-19 syndrome, or why patients with pre-existing disorders are more likely to experience severe COVID-19. This study used an integrated network biology approach to obtain a comprehensive understanding of the relationship between COVID-19 and other disorders. The approach involved building a PPI network with COVID-19 genes and identifying highly interconnected regions. The molecular information contained within these subnetworks, as well as the pathway annotations, were used to reveal the link between COVID-19 and other disorders. Using Fisher's exact test and disease-specific gene information, significant COVID-19-disease associations were discovered. The study discovered diseases that affect multiple organs and organ systems, thus proving the theory of multiple organ damage caused by COVID-19. Cancers, neurological disorders, hepatic diseases, cardiac disorders, pulmonary diseases, and hypertensive diseases are just a few of the conditions linked to COVID-19. Pathway enrichment analysis of shared proteins revealed the shared molecular mechanism of COVID-19 and these diseases. The findings of the study shed new light on the major COVID-19-associated disease conditions and how their molecular mechanisms interact with COVID-19. The novelty of studying disease associations in the context of COVID-19 provides new insights into the management of rapidly evolving long-COVID and post-COVID syndromes, which have significant global implications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Navami Krishna
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Sijina K P
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Rajanikant G K
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
7
|
Verhulst CEM, van Heck JIP, Fabricius TW, Stienstra R, Teerenstra S, McCrimmon RJ, Tack CJ, Pedersen-Bjergaard U, de Galan BE. Hypoglycaemia induces a sustained pro-inflammatory response in people with type 1 diabetes and healthy controls. Diabetes Obes Metab 2023; 25:3114-3124. [PMID: 37485887 DOI: 10.1111/dom.15205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023]
Abstract
AIM To determine the duration and the extension of the pro-inflammatory response to hypoglycaemia both in people with type 1 diabetes and healthy controls. MATERIALS AND METHODS Adults with type 1 diabetes (n = 47) and matched controls (n = 16) underwent a hyperinsulinaemic-euglycaemic hypoglycaemic (2.8 ± 0.1 mmoL/L [49.9 ± 2.3 mg/dL]) glucose clamp. During euglycaemia, hypoglycaemia, and 1, 3 and 7 days later, blood was drawn to determine immune cell phenotype, monocyte function and circulating inflammatory markers. RESULTS Hypoglycaemia increased lymphocyte and monocyte counts, which remained elevated for 1 week. The proportion of CD16+ monocytes increased and the proportion of CD14+ monocytes decreased. During hypoglycaemia, monocytes released more tumour necrosis factor-α and interleukin-1β, and less interleukin-10, after ex vivo stimulation. Hypoglycaemia increased the levels of 19 circulating inflammatory proteins, including high sensitive C-reactive protein, most of which remained elevated for 1 week. The epinephrine peak in response to hypoglycaemia was positively correlated with immune cell number and phenotype, but not with the proteomic response. CONCLUSIONS Overall, despite differences in prior exposure to hypoglycaemia, the pattern of the inflammatory responses to hypoglycaemia did not differ between people with type 1 diabetes and healthy controls. In conclusion, hypoglycaemia induces a range of pro-inflammatory responses that are sustained for at least 1 week in people with type 1 diabetes and healthy controls.
Collapse
Affiliation(s)
- Clementine E M Verhulst
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Julia I P van Heck
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Therese W Fabricius
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital, Hillerød, Denmark
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Steven Teerenstra
- Section Biostatistics, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre, MUMC+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Chambers ME, Nuibe EH, Reno-Bernstein CM. Brain Regulation of Cardiac Function during Hypoglycemia. Metabolites 2023; 13:1089. [PMID: 37887414 PMCID: PMC10608630 DOI: 10.3390/metabo13101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Hypoglycemia occurs frequently in people with type 1 and type 2 diabetes. Hypoglycemia activates the counter-regulatory response. Besides peripheral glucose sensors located in the pancreas, mouth, gastrointestinal tract, portal vein, and carotid body, many brain regions also contain glucose-sensing neurons that detect this fall in glucose. The autonomic nervous system innervates the heart, and during hypoglycemia, can cause many changes. Clinical and animal studies have revealed changes in electrocardiograms during hypoglycemia. Cardiac repolarization defects (QTc prolongation) occur during moderate levels of hypoglycemia. When hypoglycemia is severe, it can be fatal. Cardiac arrhythmias are thought to be the major mediator of sudden death due to severe hypoglycemia. Both the sympathetic and parasympathetic nervous systems of the brain have been implicated in regulating these arrhythmias. Besides cardiac arrhythmias, hypoglycemia can have profound changes in the heart and most of these changes are exacerbated in the setting of diabetes. A better understanding of how the brain regulates cardiac changes during hypoglycemia will allow for better therapeutic intervention to prevent cardiovascular death associated with hypoglycemia in people with diabetes. The aim of this paper is to provide a narrative review of what is known in the field regarding how the brain regulates the heart during hypoglycemia.
Collapse
Affiliation(s)
| | | | - Candace M. Reno-Bernstein
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA (E.H.N.)
| |
Collapse
|
9
|
Komorowska J, Wątroba M, Bednarzak M, Grabowska AD, Szukiewicz D. The Role of Glucose Concentration and Resveratrol in Modulating Neuroinflammatory Cytokines: Insights from an In Vitro Blood-Brain Barrier Model. Med Sci Monit 2023; 29:e941044. [PMID: 37817396 PMCID: PMC10578643 DOI: 10.12659/msm.941044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The prevalence of type 2 diabetes mellitus is rising, presumably because of a coexisting pandemic of obesity. Since diabetic neuropathy and neuroinflammation are frequent and significant complications of both prolonged hyperglycemia and iatrogenic hypoglycemia, the effect of glucose concentration and resveratrol (RSV) supplementation on cytokine profile was assessed in an in vitro model of the blood-brain barrier (BBB). MATERIAL AND METHODS The in vitro model of BBB was formed of endothelial cells and astrocytes, which represented the microvascular and brain compartments (MC and BC, respectively). The BC concentrations of selected cytokines - IL-10, IL-12, IL-17A, TNF-alpha, IFN-γ, GM-CSF in response to different glucose concentrations in the MC were studied. The influence of LPS in the BC and RSV in the MC on the cytokine profile in the BC was examined. RESULTS Low glucose concentration (40 mg/dL) in the MC resulted in increased concentration of all the cytokines in the BC except TNF-alpha, compared to normoglycemia-imitating conditions (90 mg/dL) (P<0.05). High glucose concentration (450 mg/dL) in the MC elevated the concentration of all the cytokines in the BC (P<0.05). RSV decreased the level of all cytokines in the BC after 24 h following its administration for all glucose concentrations in the MC (P<0.02). The greatest decline was observed in normoglycemic conditions (P<0.05). CONCLUSIONS Both hypo- and hyperglycemia-simulating conditions impair the cytokine profile in BC, while RSV can normalize it, despite relatively poor penetration through the BBB. RSV exhibits anti-neuroinflammatory effects, especially in the group with normoglycemia-simulating conditions.
Collapse
|
10
|
Li G, Zhong S, Wang X, Zhuge F. Association of hypoglycaemia with the risks of arrhythmia and mortality in individuals with diabetes - a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1222409. [PMID: 37645418 PMCID: PMC10461564 DOI: 10.3389/fendo.2023.1222409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Background Hypoglycaemia has been linked to an increased risk of cardiac arrhythmias by causing autonomic and metabolic alterations, which may be associated with detrimental outcomes in individuals with diabetes(IWD), such as cardiovascular diseases (CVDs) and mortality, especially in multimorbid or frail people. However, such relationships in this population have not been thoroughly investigated. For this reason, we conducted a systematic review and meta-analysis. Methods Relevant papers published on PubMed, Embase, Cochrane, Web of Knowledge, Scopus, and CINHAL complete from inception to December 22, 2022 were routinely searched without regard for language. All of the selected articles included odds ratio, hazard ratio, or relative risk statistics, as well as data for estimating the connection of hypoglycaemia with cardiac arrhythmia, CVD-induced death, or total death in IWD. Regardless of the heterogeneity assessed by the I2 statistic, pooled relative risks (RRs) and 95% confidence intervals (CI) were obtained using random-effects models. Results After deleting duplicates and closely evaluating all screened citations, we chose 60 studies with totally 5,960,224 participants for this analysis. Fourteen studies were included in the arrhythmia risk analysis, and 50 in the analysis of all-cause mortality. Hypoglycaemic patients had significantly higher risks of arrhythmia occurrence (RR 1.42, 95%CI 1.21-1.68), CVD-induced death (RR 1.59, 95% CI 1.24-2.04), and all-cause mortality (RR 1.68, 95% CI 1.49-1.90) compared to euglycaemic patients with significant heterogeneity. Conclusion Hypoglycaemic individuals are more susceptible to develop cardiac arrhythmias and die, but evidence of potential causal linkages beyond statistical associations must await proof by additional specifically well planned research that controls for all potential remaining confounding factors.
Collapse
Affiliation(s)
- Gangfeng Li
- Clinical Laboratory Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Shuping Zhong
- Department of Hospital Management, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Xingmu Wang
- Clinical Laboratory Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Fuyuan Zhuge
- Department of Endocrine and Metabolism, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
11
|
Ali AAG, Niinuma SA, Moin ASM, Atkin SL, Butler AE. The Role of Platelets in Hypoglycemia-Induced Cardiovascular Disease: A Review of the Literature. Biomolecules 2023; 13:241. [PMID: 36830610 PMCID: PMC9953659 DOI: 10.3390/biom13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally as well as the leading cause of mortality and morbidity in type 2 diabetes (T2D) patients. Results from large interventional studies have suggested hyperglycemia and poor glycemic control to be largely responsible for the development of CVDs. However, the association between hypoglycemia and cardiovascular events is also a key pathophysiological factor in the development of CVDs. Hypoglycemia is especially prevalent in T2D patients treated with oral sulfonylurea agents or exogenous insulin, increasing the susceptibility of this population to cardiovascular events. The adverse cardiovascular risk of hypoglycemia can persist even after the blood glucose levels have been normalized. Hypoglycemia may lead to vascular disease through mechanisms such as enhanced coagulation, oxidative stress, vascular inflammation, endothelial dysfunction, and platelet activation. In the following review, we summarize the evidence for the role of hypoglycemia in platelet activation and the subsequent effects this may have on the development of CVD. In addition, we review current evidence for the effectiveness of therapies in reducing the risk of CVDs.
Collapse
Affiliation(s)
- Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Sara Anjum Niinuma
- School of Medicine, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
12
|
Iqbal A, Storey RF, Ajjan RA. Prolonged Inflammatory Response Post-Hypoglycemia: Mechanistic Insights Into the Relationship Between Low Glucose and Cardiovascular Risk. Diabetes 2022; 71:2483-2485. [PMID: 36409790 PMCID: PMC9862283 DOI: 10.2337/dbi22-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Ahmed Iqbal
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, U.K
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, U.K
| | - Robert F. Storey
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, U.K
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, U.K
| | - Ramzi A. Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, U.K
- Corresponding author: Ramzi Ajjan,
| |
Collapse
|
13
|
Verhulst CE, van Heck JI, Fabricius TW, Stienstra R, Teerenstra S, McCrimmon RJ, Tack CJ, Pedersen-Bjergaard U, de Galan BE. Sustained Proinflammatory Effects of Hypoglycemia in People With Type 2 Diabetes and in People Without Diabetes. Diabetes 2022; 71:2716-2727. [PMID: 35848804 PMCID: PMC9750956 DOI: 10.2337/db22-0246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/06/2022] [Indexed: 01/11/2023]
Abstract
Iatrogenic hypoglycemia activates the immune system and is associated with an increased risk for atherosclerotic disease. We determined acute and long-term effects of insulin-induced hypoglycemia on inflammatory markers in humans with or without type 2 diabetes. A total of 15 adults with type 2 diabetes and 16 matched control subjects (17 men and 14 women, age 59.6 ± 7.1 years, BMI 28.5 ± 4.3 kg/m2) underwent a hyperinsulinemic-euglycemic (5.31 ± 0.32 mmol/L) hypoglycemic (2.80 ± 0.12 mmol/L) glucose clamp. Blood was drawn during euglycemia and hypoglycemia and 1, 3, and 7 days later to determine circulating immune cell composition, function, and inflammatory proteins. In response to hypoglycemia, absolute numbers of circulating lymphocytes and monocytes significantly increased and remained elevated for 1 week. The proportion of CD16+ monocytes increased, and the proportion of CD14+ monocytes decreased, which was sustained for 1 week in people without diabetes. During hypoglycemia, ex vivo stimulated monocytes released more tumor necrosis factor-α and interleukin 1β, and less interleukin 10, particularly in people with diabetes. hs-CRP and 25 circulating inflammatory proteins increased, remaining significantly elevated 1 week after hypoglycemia. While levels at euglycemia differed, responses to hypoglycemia were broadly similar in people with or without type 2 diabetes. We conclude that hypoglycemia induces a proinflammatory response at the cellular and protein level that is sustained for 1 week in people with type 2 diabetes and control subjects.
Collapse
Affiliation(s)
| | - Julia I.P. van Heck
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Therese W. Fabricius
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Steven Teerenstra
- Section Biostatistics, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Cees J. Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bastiaan E. de Galan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
14
|
Gandecha H, Kaur A, Sanghera R, Preece J, Pillay T. Nutrition and Immunity in Perinatal Hypoxic-Ischemic Injury. Nutrients 2022; 14:nu14132747. [PMID: 35807927 PMCID: PMC9269416 DOI: 10.3390/nu14132747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Perinatal hypoxia ischaemia (PHI), acute and chronic, may be associated with considerable adverse outcomes in the foetus and neonate. The molecular and cellular mechanisms of injury and repair associated with PHI in the perinate are not completely understood. Increasing evidence is mounting for the role of nutrients and bioactive food components in immune development, function and repair in PHI. In this review, we explore current concepts around the neonatal immune response to PHI with a specific emphasis on the impact of nutrition in the mother, foetus and neonate.
Collapse
Affiliation(s)
- Hema Gandecha
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
- East Midlands Deanery, Health Education England, Leicester LE3 5DR, UK
| | - Avineet Kaur
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
- East Midlands Deanery, Health Education England, Leicester LE3 5DR, UK
| | - Ranveer Sanghera
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
- East Midlands Deanery, Health Education England, Leicester LE3 5DR, UK
| | - Joanna Preece
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
| | - Thillagavathie Pillay
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
- Faculty of Science and Engineering, Research Institute for Healthcare Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- College of Life Sciences, University of Leicester, Leicester LE5 4PW, UK
| |
Collapse
|
15
|
Sharma P, Behl T, Sharma N, Singh S, Grewal AS, Albarrati A, Albratty M, Meraya AM, Bungau S. COVID-19 and diabetes: Association intensify risk factors for morbidity and mortality. Biomed Pharmacother 2022; 151:113089. [PMID: 35569351 PMCID: PMC9080053 DOI: 10.1016/j.biopha.2022.113089] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023] Open
Abstract
Diabetes is a condition that affects a large percentage of the population and it is the leading cause of a wide range of costly complications. Diabetes is linked to a multi-fold increase in mortality and when compared to non-diabetics, the intensity and prevalence of COVID-19 ailment among diabetic individuals are more. Since its discovery in Wuhan, COVID-19 has grown rapidly and shown a wide range of severity. Temperature, lymphopenia, non-productive cough, dyspnoea, and tiredness are recognized as the characteristic of individuals infected with COVID-19 disease. In COVID-19 patients, diabetes and other related comorbidities are substantial predictors of disease and mortality. According to a recent study, SARS-CoV-2 (the virus responsible for covid-19 disease) may also lead to direct pancreatic harm, which could aggravate hyperglycemia and potentially cause the establishment of diabetes in formerly non-diabetic individuals. This bidirectional association of COVID-19 and diabetes load the burden on health care professionals throughout the world. It is recommended that gliptin medications be taken moderately, blood glucose levels must be kept under control, ACE inhibitors should be used in moderation, decrease the number of avoidable hospitalizations, nutritional considerations, and some other prevention measures, such as immunization, are highly recommended. SARS-CoV-2 may cause pleiotropic changes in glucose homeostasis, which could exacerbate the pathophysiology of pre-existing diabetes or result in new disease processes.
Collapse
Affiliation(s)
- Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India,Government Pharmacy College, Nagrota Bagwan, Kangra, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India,Corresponding author
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania,Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania,Corresponding author at: Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
16
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a global pandemic impacting 254 million people in 190 countries. Comorbidities, particularly cardiovascular disease, diabetes, and hypertension, increase the risk of infection and poor outcomes. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme-2 receptor, generating inflammation and cytokine storm, often resulting in multiorgan failure. The mechanisms and effects of COVID-19 on patients with high-risk diabetes are not yet completely understood. In this review, we discuss the variety of coronaviruses, structure of SARS-CoV-2, mutations in SARS-CoV-2 spike proteins, receptors associated with viral host entry, and disease progression. Furthermore, we focus on possible mechanisms of SARS-CoV-2 in diabetes, leading to inflammation and heart failure. Finally, we discuss existing therapeutic approaches, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
17
|
Heller SR, Geybels MS, Iqbal A, Liu L, Wagner L, Chow E. A higher non-severe hypoglycaemia rate is associated with an increased risk of subsequent severe hypoglycaemia and major adverse cardiovascular events in individuals with type 2 diabetes in the LEADER study. Diabetologia 2022; 65:55-64. [PMID: 34704120 PMCID: PMC8660716 DOI: 10.1007/s00125-021-05556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022]
Abstract
AIMS/HYPOTHESIS Hypoglycaemia is a common side effect of insulin and some other antihyperglycaemic agents used to treat diabetes. Severe hypoglycaemia has been associated with adverse cardiovascular events in trials of intensive glycaemic control in type 2 diabetes. The relationship between non-severe hypoglycaemic episodes (NSHEs) and severe hypoglycaemia in type 2 diabetes has been documented. However, an association between more frequent NSHEs and cardiovascular events has not been verified. This post hoc analysis of the LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results) trial aimed to confirm whether there is an association between NSHEs and severe hypoglycaemic episodes in individuals with type 2 diabetes. In addition, the possible association between NSHEs and major adverse cardiac events (MACE), cardiovascular death and all-cause mortality was investigated. METHODS LEADER was a double-blind, multicentre, placebo-controlled trial that found that liraglutide significantly reduced the risk of MACE compared with the placebo. In this post hoc analysis, we explored, in all LEADER participants, whether the annual rate of NSHEs (defined as self-measured plasma glucose <3.1 mmol/l [56 mg/dl]) was associated with time to first severe hypoglycaemic episode (defined as an episode requiring the assistance of another person), time to first MACE, time to cardiovascular death and time to all-cause mortality. Participants with <2 NSHEs per year were used as reference for HR estimates. Cox regression with a time-varying covariate was used. RESULTS We demonstrate that there is an association between NSHEs (2-11 NSHEs per year and ≥12 NSHEs per year) and severe hypoglycaemic episodes (unadjusted HRs 1.98 [95% CI 1.43, 2.75] and 5.01 [95% CI 2.84, 8.84], respectively), which was consistent when baseline characteristics were accounted for. Additionally, while no association was found between participants with 2-11 NSHEs per year and adverse cardiovascular outcomes, higher rates of NSHEs (≥12 episodes per year) were associated with higher risk of MACE (HR 1.50 [95% CI 1.01, 2.23]), cardiovascular death (HR 2.08 [95% CI 1.17, 3.70]) and overall death (HR 1.80 [95% CI 1.11, 2.92]). CONCLUSIONS/INTERPRETATION The analysis of data from the LEADER trial demonstrated that higher rates of NSHEs were associated with both a higher risk of severe hypoglycaemia and adverse cardiovascular outcomes in individuals with type 2 diabetes. Therefore, irrespective of the cause of this association, it is important that individuals with high rates of hypoglycaemia are identified so that the potentially increased risk of cardiovascular events can be managed and steps can be taken to reduce NSHEs. TRIAL REGISTRATION ClinicalTrials.gov (NCT01179048).
Collapse
Affiliation(s)
- Simon R Heller
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| | | | - Ahmed Iqbal
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Lei Liu
- Novo Nordisk A/S, Søborg, Denmark
| | | | - Elaine Chow
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Xie L, Zhang Z, Wang Q, Chen Y, Lu D, Wu W. COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting Enzyme 2, Mutual Effects and Pharmacotherapy. Front Endocrinol (Lausanne) 2021; 12:772865. [PMID: 34867819 PMCID: PMC8639866 DOI: 10.3389/fendo.2021.772865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
The potential relationship between diabetes and COVID-19 has been evaluated. However, new knowledge is rapidly emerging. In this study, we systematically reviewed the relationship between viral cell surface receptors (ACE2, AXL, CD147, DC-SIGN, L-SIGN and DPP4) and SARS-CoV-2 infection risk, and emphasized the implications of ACE2 on SARS-CoV-2 infection and COVID-19 pathogenesis. Besides, we updated on the two-way interactions between diabetes and COVID-19, as well as the treatment options for COVID-19 comorbid patients from the perspective of ACE2. The efficacies of various clinical chemotherapeutic options, including anti-diabetic drugs, renin-angiotensin-aldosterone system inhibitors, lipid-lowering drugs, anticoagulants, and glucocorticoids for COVID-19 positive diabetic patients were discussed. Moreover, we reviewed the significance of two different forms of ACE2 (mACE2 and sACE2) and gender on COVID-19 susceptibility and severity. This review summarizes COVID-19 pathophysiology and the best strategies for clinical management of diabetes patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihua Wu
- Department of Endocrinology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
19
|
Melanson B, Leri F. Effect of ketamine on the physiological responses to combined hypoglycemic and psychophysical stress. IBRO Neurosci Rep 2021; 11:81-87. [PMID: 34485972 PMCID: PMC8406162 DOI: 10.1016/j.ibneur.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 12/01/2022] Open
Abstract
There is evidence that hypoglycemic stress can interact with other stressors, and that ketamine can mitigate the impact of these stressors on behavior and physiology. The current study in male Sprague-Dawley rats investigated whether pre-treatment with 0, 10, or 20 mg/kg ketamine could modulate the interaction between hypoglycemia induced by 0 or 300 mg/kg 2-deoxy-D-glucose (2-DG) and the psychophysical stress of forced swimming (FSS; 6 sessions, 10 min/session) on serum concentrations of corticosterone (CORT) and the pro-inflammatory cytokine, tumor necrosis factor (TNF)-α. It was found that 2-DG enhanced the CORT response to an initial session of FSS, and this effect dissipated after multiple sessions. More importantly, animals displayed significantly higher levels of CORT and lower levels of TNF-α in response to a drug-free test swim conducted 1 week after exposure to the combined stressors, and these responses were not observed in rats that were pre-treated with ketamine. Overall, these findings indicate that ketamine has the potential to reduce the negative impact of interacting stressors on the biological reactivity of the hypothalamic-pituitary-adrenal axis and the immune system.
Collapse
Affiliation(s)
- Brett Melanson
- Department of Psychology and Collaborative Neuroscience, Program University of Guelph, Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience, Program University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Fahrmann ER, Adkins L, Driscoll HK. Modification of the Association Between Severe Hypoglycemia and Ischemic Heart Disease by Surrogates of Vascular Damage Severity in Type 1 Diabetes During ∼30 Years of Follow-up in the DCCT/EDIC Study. Diabetes Care 2021; 44:2132-2139. [PMID: 34233927 PMCID: PMC8740933 DOI: 10.2337/dc20-2757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/25/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Literature suggests that severe hypoglycemia (SH) may be linked to cardiovascular events only in older individuals with high cardiovascular risk score (CV-score). Whether a potential relationship between any-SH and cardiovascular disease exists and whether it is conditional on vascular damage severity in a young cohort with type 1 diabetes (T1D) without apparent macrovascular and no or mild-to-moderate microvascular complications at baseline is unknown. RESEARCH DESIGN AND METHODS We evaluated data of 1,441 Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study volunteers (diabetes duration 1-15 years) followed for ∼30 years. Time-dependent associations between any-SH and ischemic heart disease (IHD: death, silent/nonfatal myocardial infarct, revascularization, or confirmed angina) and associations between interactions of any-SH with surrogates of baseline micro-/macrovascular damage severity and IHD were analyzed. Diabetes duration, steps on DCCT Early Treatment Diabetic Retinopathy Study severity scale (DCCT-ETDRS), Diabetes Complications Severity Index (DCSI), and CV-scores were considered as surrogates of baseline micro-/macrovascular damage severity. RESULTS Without interactions, in the minimally adjusted model controlling for confounding bias by age and HbA1c, SH was a significant IHD factor (P = 0.003). SH remained a significant factor for IHD in fully adjusted models (P < 0.05). In models with interactions, interactions between SH and surrogates of microvascular complications severity, but not between SH and CV-score, were significant. Hazard ratios for IHD based on SH increased 1.19-fold, 1.32-fold, and 2.21-fold for each additional year of diabetes duration, DCCT-ETDRS unit, and DCSI unit, respectively. At time of IHD event, ∼15% of 110 participants with SH had high CV-scores. CONCLUSIONS In a young cohort with T1D with no baseline macrovascular complications, surrogates of baseline microvascular damage severity impact the effect of SH on IHD. Older age with high CV-score per se is not mandatory for an association of SH with IHD. However, the association is multifactorial.
Collapse
Affiliation(s)
- Elke R Fahrmann
- Internal Medicine/Endocrinology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Laura Adkins
- Department of Mathematics, Marshall University, Huntington, WV
| | - Henry K Driscoll
- Internal Medicine/Endocrinology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV.,VA Medical Center, Huntington, WV
| |
Collapse
|
21
|
Eberle C, James-Todd T, Stichling S. SARS-CoV-2 in diabetic pregnancies: a systematic scoping review. BMC Pregnancy Childbirth 2021; 21:573. [PMID: 34416856 PMCID: PMC8379032 DOI: 10.1186/s12884-021-03975-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently, we suffer from an increasing diabetes pandemic and on the other hand from the SARS-CoV-2 pandemic. Already at the beginning of the SARS-CoV-2 pandemic, it was quickly assumed that certain groups are at increased risk to suffer from a severe course of COVID-19. There are serious concerns regarding potential adverse effects on maternal, fetal, and neonatal outcomes. Diabetic pregnancies clearly need special care, but clinical implications as well as the complex interplay of diabetes and SARS-CoV-2 are currently unknown. We summarized the evidence on SARS-CoV-2 in diabetic pregnancies, including the identification of novel potential pathophysiological mechanisms and interactions as well as clinical outcomes and features, screening, and management approaches. METHODS We carried out a systematic scoping review in MEDLINE (PubMed), EMBASE, CINAHL, Cochrane Library, and Web of Science Core Collection in September 2020. RESULTS We found that the prognosis of pregnant women with diabetes mellitus and COVID-19 may be associated with potential underlying mechanisms such as a simplified viral uptake by ACE2, a higher basal value of pro-inflammatory cytokines, being hypoxemic as well as platelet activation, embolism, and preeclampsia. In the context of "trans-generational programming" and COVID-19, life-long consequences may be "programmed" during gestation by pro-inflammation, hypoxia, over- or under-expression of transporters and enzymes, and epigenetic modifications based on changes in the intra-uterine milieu. COVID-19 may cause new onset diabetes mellitus, and that vertical transmission from mother to baby might be possible. CONCLUSIONS Given the challenges in clinical management, the complex interplay between COVID-19 and diabetic pregnancies, evidence-based recommendations are urgently needed. Digital medicine is a future-oriented and effective approach in the context of clinical diabetes management. We anticipate our review to be a starting point to understand and analyze mechanisms and epidemiology to most effectively treat women with SARS-COV-2 and diabetes in pregnancy.
Collapse
Affiliation(s)
- Claudia Eberle
- Medicine with specialization in Internal Medicine and General Medicine, Hochschule Fulda - University of Applied Sciences, Fulda, Germany
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Stefanie Stichling
- Medicine with specialization in Internal Medicine and General Medicine, Hochschule Fulda - University of Applied Sciences, Fulda, Germany
| |
Collapse
|
22
|
|
23
|
Khanam R. Bidirectional Relationship between COVID-19 and Diabetes: Role of Renin-Angiotensin-Aldosterone System and Drugs Modulating It. J Pharm Bioallied Sci 2021; 13:149-154. [PMID: 34349473 PMCID: PMC8291120 DOI: 10.4103/jpbs.jpbs_508_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Numerous reports have suggested that diabetic patients are at high risk for the development of severe symptoms of coronavirus disease-2019 (COVID-19). However, a few studies have recently proposed that the relationship between diabetes and COVID-19 is bidirectional, as severe acute respiratory syndrome-coronavirus-2 also has the capability to induce diabetes. Various mechanisms have been identified and proposed to be involved in this binary association. In this review, the importance and impact of renin-angiotensin-aldosterone system (RAAS) in this two-way association of COVID-19 and diabetes has been summarized. The role and effect of drugs modulating RAAS directly or indirectly has also been discussed, as they can majorly impact the course of treatment in such patients. Further reports and data can present a clear picture of RAAS and its modulators in restoring the balance of dysregulated RAAS in COVID-19.
Collapse
Affiliation(s)
- Razia Khanam
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, UAE
| |
Collapse
|
24
|
Klimontov VV, Saik OV, Korbut AI. Glucose Variability: How Does It Work? Int J Mol Sci 2021; 22:ijms22157783. [PMID: 34360550 PMCID: PMC8346105 DOI: 10.3390/ijms22157783] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence points to the role of glucose variability (GV) in the development of the microvascular and macrovascular complications of diabetes. In this review, we summarize data on GV-induced biochemical, cellular and molecular events involved in the pathogenesis of diabetic complications. Current data indicate that the deteriorating effect of GV on target organs can be realized through oxidative stress, glycation, chronic low-grade inflammation, endothelial dysfunction, platelet activation, impaired angiogenesis and renal fibrosis. The effects of GV on oxidative stress, inflammation, endothelial dysfunction and hypercoagulability could be aggravated by hypoglycemia, associated with high GV. Oscillating hyperglycemia contributes to beta cell dysfunction, which leads to a further increase in GV and completes the vicious circle. In cells, the GV-induced cytotoxic effect includes mitochondrial dysfunction, endoplasmic reticulum stress and disturbances in autophagic flux, which are accompanied by reduced viability, activation of apoptosis and abnormalities in cell proliferation. These effects are realized through the up- and down-regulation of a large number of genes and the activity of signaling pathways such as PI3K/Akt, NF-κB, MAPK (ERK), JNK and TGF-β/Smad. Epigenetic modifications mediate the postponed effects of glucose fluctuations. The multiple deteriorative effects of GV provide further support for considering it as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
- Correspondence:
| | - Olga V. Saik
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
- Laboratory of Computer Proteomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia
| | - Anton I. Korbut
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
| |
Collapse
|
25
|
Abdelhafiz AH, Emmerton D, Sinclair AJ. Diabetes in COVID-19 pandemic-prevalence, patient characteristics and adverse outcomes. Int J Clin Pract 2021; 75:e14112. [PMID: 33630378 PMCID: PMC7995213 DOI: 10.1111/ijcp.14112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current literature on COVID-19 pandemic has identified diabetes as a common comorbidity in patients affected. However, the evidence that diabetes increases the risk of infection, effect of diabetes on outcomes and characteristics of patients at risk is not clear. OBJECTIVES To explore the prevalence of diabetes in COVID-19 pandemic, effect of diabetes on clinical outcomes and to characterise the patients with diabetes affected by COVID-19. METHODS A literature review of articles published in English language and reported outcomes on prevalence and effect of diabetes on outcomes and patients' characteristics. RESULTS The prevalence of diabetes in COVID-19 patients appears similar to that in the general population. The evidence of diabetes increasing the risk of severe infection and adverse outcomes is substantial. The progression of the disease into acute respiratory distress syndrome, the requirement for intensive care admission or mechanical ventilation and mortality all have been increased by the presence of diabetes. Patients with diabetes at risk of COVID-19 appear to be obese, of older age, have uncontrolled glycaemia and have coexisting comorbidities especially cardiovascular disease and hypertension. Tight glycaemic control on admission to hospital using insulin infusion has shown some beneficial effects; however, the role of hypoglycaemic medications in the management of these patients is not yet clear. CONCLUSION High risk group should be identified and prioritised in future vaccination programmes. Future research is required to optimise management of patients with diabetes and develop new ways to manage them via technological developments such as telecare.
Collapse
Affiliation(s)
| | - Demelza Emmerton
- Department of Geriatric MedicineRotherham General HospitalRotherhamUK
| | - Alan J. Sinclair
- Foundation for Diabetes Research in Older PeopleDiabetes Frail Ltd, Droitwich SpaUK
- Kings CollegeLondonUK
| |
Collapse
|
26
|
O'Connor KM, Ashoori M, Dias ML, Dempsey EM, O'Halloran KD, McDonald FB. Influence of innate immune activation on endocrine and metabolic pathways in infancy. Am J Physiol Endocrinol Metab 2021; 321:E24-E46. [PMID: 33900849 DOI: 10.1152/ajpendo.00542.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prematurity is the leading cause of neonatal morbidity and mortality worldwide. Premature infants often require extended hospital stays, with increased risk of developing infection compared with term infants. A picture is emerging of wide-ranging deleterious consequences resulting from innate immune system activation in the newborn infant. Those who survive infection have been exposed to a stimulus that can impose long-lasting alterations into later life. In this review, we discuss sepsis-driven alterations in integrated neuroendocrine and metabolic pathways and highlight current knowledge gaps in respect of neonatal sepsis. We review established biomarkers for sepsis and extend the discussion to examine emerging findings from human and animal models of neonatal sepsis that propose novel biomarkers for early identification of sepsis. Future research in this area is required to establish a greater understanding of the distinct neonatal signature of early and late-stage infection, to improve diagnosis, curtail inappropriate antibiotic use, and promote precision medicine through a biomarker-guided empirical and adjunctive treatment approach for neonatal sepsis. There is an unmet clinical need to decrease sepsis-induced morbidity in neonates, to limit and prevent adverse consequences in later life and decrease mortality.
Collapse
Affiliation(s)
- K M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - M Ashoori
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - M L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - E M Dempsey
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, School of Medicine, College of Medicine and Health, Cork University Hospital, Wilton, Cork, Ireland
| | - K D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - F B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Pal R, Bhadada SK, Gupta N, Behera A, Aggarwal N, Aggarwal A, Raviteja KV, Saikia UN, Kaur G, Arvindbhai SM, Walia R. Primary hyperparathyroidism in pregnancy: observations from the Indian PHPT registry. J Endocrinol Invest 2021; 44:1425-1435. [PMID: 33037580 DOI: 10.1007/s40618-020-01441-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE To present the data on primary hyperparathyroidism (PHPT) in pregnancy from India obtained from a large database maintained over 15 years. METHODS We retrieved data of all women with gestational PHPT from the Indian PHPT registry between July 2005 and January 2020, and compared their clinical, biochemical, and other characteristics with age-matched non-pregnant women with PHPT. RESULTS Out of 386 women, eight had gestational PHPT (2.1%). The common presenting manifestations were acute pancreatitis (50%) and renal stone disease (50%); two were asymptomatic. Five women (62.5%) had a history of prior miscarriages. Seven patients (88%) had preeclampsia during the present gestation. Serum calcium and intact parathyroid hormone (iPTH) were not statistically different from the age-matched non-pregnant PHPT group. Six patients with mild-to-moderate hypercalcemia were medically managed with hydration with/without cinacalcet while one patient underwent percutaneous ethanol ablation of the parathyroid adenoma; none underwent surgery during pregnancy. Mean serum calcium maintained from treatment initiation till delivery was 10.5 ± 0.4 mg/dl. One patient had spontaneous preterm delivery at 36 weeks; the remaining patients had normal vaginal delivery at term. None had severe preeclampsia/eclampsia. Fetal outcomes included low birth weight in three newborns (37.5%); two of them had hypocalcemic seizures. CONCLUSION The prevalence of gestational PHPT was 2.1% in this largest Indian PHPT cohort, which is higher than that reported from the West (< 1%). Gestational PHPT can lead to preeclampsia and miscarriage. Pregnant PHPT patients with mild-to-moderate hypercalcemia can be managed with hydration/cinacalcet; however, long-term safety data and large-scale randomized controlled trials are required.
Collapse
Affiliation(s)
- R Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - S K Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - N Gupta
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - A Behera
- Department of General Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - N Aggarwal
- Department of Gynecology and Obstetrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - A Aggarwal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - K V Raviteja
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - U N Saikia
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - G Kaur
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - S M Arvindbhai
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - R Walia
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
28
|
Dowey R, Iqbal A, Heller SR, Sabroe I, Prince LR. A Bittersweet Response to Infection in Diabetes; Targeting Neutrophils to Modify Inflammation and Improve Host Immunity. Front Immunol 2021; 12:678771. [PMID: 34149714 PMCID: PMC8209466 DOI: 10.3389/fimmu.2021.678771] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.
Collapse
Affiliation(s)
- Rebecca Dowey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ahmed Iqbal
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon R. Heller
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
29
|
Chávez-Reyes J, Escárcega-González CE, Chavira-Suárez E, León-Buitimea A, Vázquez-León P, Morones-Ramírez JR, Villalón CM, Quintanar-Stephano A, Marichal-Cancino BA. Susceptibility for Some Infectious Diseases in Patients With Diabetes: The Key Role of Glycemia. Front Public Health 2021; 9:559595. [PMID: 33665182 PMCID: PMC7921169 DOI: 10.3389/fpubh.2021.559595] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Uncontrolled diabetes results in several metabolic alterations including hyperglycemia. Indeed, several preclinical and clinical studies have suggested that this condition may induce susceptibility and the development of more aggressive infectious diseases, especially those caused by some bacteria (including Chlamydophila pneumoniae, Haemophilus influenzae, and Streptococcus pneumoniae, among others) and viruses [such as coronavirus 2 (CoV2), Influenza A virus, Hepatitis B, etc.]. Although the precise mechanisms that link glycemia to the exacerbated infections remain elusive, hyperglycemia is known to induce a wide array of changes in the immune system activity, including alterations in: (i) the microenvironment of immune cells (e.g., pH, blood viscosity and other biochemical parameters); (ii) the supply of energy to infectious bacteria; (iii) the inflammatory response; and (iv) oxidative stress as a result of bacterial proliferative metabolism. Consistent with this evidence, some bacterial infections are typical (and/or have a worse prognosis) in patients with hypercaloric diets and a stressful lifestyle (conditions that promote hyperglycemic episodes). On this basis, the present review is particularly focused on: (i) the role of diabetes in the development of some bacterial and viral infections by analyzing preclinical and clinical findings; (ii) discussing the possible mechanisms by which hyperglycemia may increase the susceptibility for developing infections; and (iii) further understanding the impact of hyperglycemia on the immune system.
Collapse
Affiliation(s)
- Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos E Escárcega-González
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Erika Chavira-Suárez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - José R Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| | - Andrés Quintanar-Stephano
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
30
|
Riahi S, Sombra LRS, Lo KB, Chacko SR, Neto AGM, Azmaiparashvili Z, Patarroyo-Aponte G, Rangaswami J, Anastasopoulou C. Insulin Use, Diabetes Control, and Outcomes in Patients with COVID-19. Endocr Res 2021; 46:45-50. [PMID: 33275067 DOI: 10.1080/07435800.2020.1856865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: The novel coronavirus (SARS CoV-2) has caused significant morbidity and mortality in patients with diabetes. However, the effects of diabetes control including insulin use remain uncertain in terms of clinical outcomes of patients with COVID-19.Methods: In this single-center, retrospective observational study, all adult patients admitted to Einstein Medical Center, Philadelphia, from March 1 through April 24, 2020 with a diagnosis of COVID-19 and diabetes were included. Demographic, clinical and laboratory data, insulin dose at home and at the hospital, other anti-hyperglycemic agents use, and outcomes were obtained. Multivariate logistic regression was used to evaluate the factors associated with diabetes control and mortality.Results: Patients who used insulin at home had higher mortality compared to those who did not (35% vs 18% p = .015), this was true even after adjustment for demographics, comorbidities and a1c OR 2.65 95% CI (1.23-5.71) p = .013. However, the mean a1c and the median home requirements of insulin did not significantly differ among patients who died compared to the ones that survived. Patients who died had significantly higher inpatient insulin requirements (highest day insulin requirement recorded in units during hospitalization) 36 (11-86) vs 21 (8-52) p = .043 despite similar baseline a1c and steroid doses received. After adjusting for demographics, comorbidities and a1c, peak insulin requirements remained significantly associated with inpatient mortality OR 1.022 95% CI (1.00-1.04) p = .044.Conclusion: Among diabetic patients infected with COVID-19, insulin therapy at home was significantly independently associated with increased mortality. Peak daily inpatient insulin requirements was also independently associated with increased inpatient mortality.
Collapse
Affiliation(s)
- Shayan Riahi
- Department of Medicine, Einstein Medical Center Philadelphia, PA, Philadelphia, USA
| | | | - Kevin Bryan Lo
- Department of Medicine, Einstein Medical Center Philadelphia, PA, Philadelphia, USA
| | - Shireen R Chacko
- Department of Medicine, Einstein Medical Center Philadelphia, PA, Philadelphia, USA
| | | | | | - Gabriel Patarroyo-Aponte
- Department of Medicine, Einstein Medical Center Philadelphia, PA, Philadelphia, USA
- Department of Medicine, Sidney Kimmel College of Thomas Jefferson University, Philadelphia, PA, USA
- Pulmonary, Critical Care and Sleep Medicine, Einstein Medical Center Philadelphia
| | - Janani Rangaswami
- Department of Medicine, Einstein Medical Center Philadelphia, PA, Philadelphia, USA
- Department of Medicine, Sidney Kimmel College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Catherine Anastasopoulou
- Department of Medicine, Einstein Medical Center Philadelphia, PA, Philadelphia, USA
- Department of Endocrinology, Einstein Medical Center Philadelphia
| |
Collapse
|
31
|
Belice T, Demir I. The gender differences as a risk factor in diabetic patients with COVID-19. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:625-628. [PMID: 33613918 PMCID: PMC7884270 DOI: 10.18502/ijm.v12i6.5038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Objectives: In a Turkish cohort study, we revealed first time in literature the gender differences in admission to hospital and rates of mortality for diabetic patients with COVID-19. Materials and Methods: The demographics, length of stay, mortality rates and concomitant chronic metabolic diseases of 152 patients diagnosed with COVID-19 were found in our hospital electronic document system (Probel) and recorded in excel files for further statistical analysis. Results: In the mortality group (n:22), the numbers of men and women were 9 (40.9%) and 4 (18.2%), respectively. Comparing gender rates in diabetic group, the mortality risk of diabetic men was higher and statistically significant (p<0.05, Pearson Chi-square value:7.246). Conclusion: We hope that the findings of this research will give scientists an idea of gender differences in viral pandemics for further studies.
Collapse
Affiliation(s)
- Tahir Belice
- Department of Internal Medicine, University of Health Sciences, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Ismail Demir
- Department of Internal Medicine, University of Health Sciences, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
32
|
Singer M, Rylko-Bauer B. The Syndemics and Structural Violence of the COVID Pandemic: Anthropological Insights on a Crisis. ACTA ACUST UNITED AC 2020. [DOI: 10.1515/opan-2020-0100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
This paper examines the COVID-19 pandemic in light of two key concepts in medical anthropology: syndemics and structural violence. Following a discussion of the nature of these two concepts, the paper addresses the direct and associated literatures on the syndemic and structural violence features of the COVID pandemic, with a specific focus on: 1) the importance of local socioenvironmental conditions/demographics and disease configurations in creating varying local syndemic expressions; 2) the ways that the pandemic has exposed the grave weaknesses in global health care investment; and 3) how the syndemic nature of the pandemic reveals the rising rate of noncommunicable diseases and their potential for interaction with current and future infectious disease. The paper concludes with a discussion on the role of anthropology in responding to COVID-19 from a syndemics perspective.
Collapse
Affiliation(s)
- Merrill Singer
- University of Connecticut , Department of Anthropology , 354 Mansfield Road, Unit 1176, Storrs, CT 06269-1176, United States
| | - Barbara Rylko-Bauer
- Michigan State University , Department of Anthropology , 655 Auditorium Drive – East Lansing, MI 48824, United States
| |
Collapse
|
33
|
Ugwueze CV, Ezeokpo BC, Nnolim BI, Agim EA, Anikpo NC, Onyekachi KE. COVID-19 and Diabetes Mellitus: The Link and Clinical Implications. DUBAI DIABETES AND ENDOCRINOLOGY JOURNAL 2020. [PMCID: PMC7649685 DOI: 10.1159/000511354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a pandemic viral infection that has ravaged the world in recent times, and the associated morbidity and mortality have been much more pronounced in those with noncommunicable disease. Diabetes mellitus is one of commonest noncommunicable diseases associated with worsening clinical status in COVID-19 patients. Summary The aim of this review was to evaluate the receptors and pathogenetic link between diabetes and COVID-19. Both disease conditions involve inflammation with the release of inflammatory markers. The roles of angiotensin-converting enzyme molecule and dipeptidyl peptidase were explored to show their involvement in COVID-19 and diabetes. Pathogenetic mechanisms such as impaired immunity, microangiopathy, and glycemic variability may explain the effect of diabetes on recovery of COVID-19 patients. The effect of glucocorticoids and catecholamines, invasion of the pancreatic islet cells, drugs used in the treatment of COVID-19, and the lockdown policy may impact negatively on glycemic control of diabetic patients. The outcome studies between diabetic and nondiabetic patients with COVID-19 were also reviewed. Some drug trials are still ongoing to determine the suitability or otherwise of some drugs used in diabetic patients with COVID-19, such as dapagliflozin trial and linagliptin trial.
Collapse
Affiliation(s)
- Chidiebere V. Ugwueze
- *Chidiebere V. Ugwueze, Endocrinology, Diabetes and Metabolism Unit, Internal Medicine Department, Alex Ekwueme Federal University Teaching Hospital Abakaliki, P. M. B 102, Ben Igwenyi Street 3, Abakaliki, Ebonyi (Nigeria),
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
In this commentary, I assess the adverse syndemic interactions between COVID-19 and diabetes mellitus. This syndemic is of major concern for a country like Mexico which has seen a steady rise in the percentage of its population suffering these diseases. Mexico now has one of the highest rates of diabetes in the world and a rapidly growing COVID-19 caseload.
Collapse
Affiliation(s)
- Merrill Singer
- Center for Health, Intervention and Prevention, Department of Anthropology, University of Connecticut , Storrs, Connecticut, USA
| |
Collapse
|
35
|
Gorini F, Chatzianagnostou K, Mazzone A, Bustaffa E, Esposito A, Berti S, Bianchi F, Vassalle C. "Acute Myocardial Infarction in the Time of COVID-19": A Review of Biological, Environmental, and Psychosocial Contributors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7371. [PMID: 33050220 PMCID: PMC7600622 DOI: 10.3390/ijerph17207371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has quickly become a worldwide health crisis.Although respiratory disease remains the main cause of morbidity and mortality in COVID patients,myocardial damage is a common finding. Many possible biological pathways may explain therelationship between COVID-19 and acute myocardial infarction (AMI). Increased immune andinflammatory responses, and procoagulant profile have characterized COVID patients. All theseresponses may induce endothelial dysfunction, myocardial injury, plaque instability, and AMI.Disease severity and mortality are increased by cardiovascular comorbidities. Moreover, COVID-19has been associated with air pollution, which may also represent an AMI risk factor. Nonetheless,a significant reduction in patient admissions following containment initiatives has been observed,including for AMI. The reasons for this phenomenon are largely unknown, although a real decreasein the incidence of cardiac events seems highly improbable. Instead, patients likely may presentdelayed time from symptoms onset and subsequent referral to emergency departments because offear of possible in-hospital infection, and as such, may present more complications. Here, we aim todiscuss available evidence about all these factors in the complex relationship between COVID-19and AMI, with particular focus on psychological distress and the need to increase awareness ofischemic symptoms.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (E.B.); (F.B.)
| | - Kyriazoula Chatzianagnostou
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Annamaria Mazzone
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Elisa Bustaffa
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (E.B.); (F.B.)
| | - Augusto Esposito
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Sergio Berti
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| | - Fabrizio Bianchi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (F.G.); (E.B.); (F.B.)
| | - Cristina Vassalle
- Ospedale del Cuore G Pasquinucci Fondazione Toscana Gabriele Monasterio di Massa, via Aurelia Sud, 54100 Massa, Italy; (K.C.); (A.M.); (A.E.); (S.B.)
| |
Collapse
|
36
|
Treatment of Multi-Drug Resistant Gram-Negative Bacterial Pathogenic Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The multidrug-resistant Gram-negative bacteria (MDR-GNB) infections in severely infected patients present numerous difficulties in terms of treatment failure where antibiotics cannot arrest such drug resistant bacteria. Based on the patient’s medical history and updated microbiological epidemiology data, an effective empirical treatment remains critical for optimal results to safeguard human health. The aim of this manuscript is to review management of MDR-Gram negative pathogenic bacterial infections. Quick diagnosis and narrow antimicrobial spectrum require rapid and timely diagnosis and effective laboratories in accordance with antimicrobial stewardship (AS) principles. Worldwide, there is an increased emergence of Carbapenem-resistant Enterobacteriaceae (CRE), Pseudomonas aeruginosa, and Acinetobacter baumannii. Recently, novel therapeutic options, such as meropenem/vaborbactam, ceftazidime/avibactam, ceftolozane/tazobactam, eravacycline and plazomicin became accessible to effectively counteract severe infections. Optimally using these delays the emergence of resistance to novel therapeutic agents. Further study is required, however, due to uncertainties in pharmacokinetic/pharmacodynamics optimization of dosages and therapeutic duration in severely ill patients. The novel agents should be verified for (i) action on carbapenem resistant Acinetobacter baumannii; (ii) action on CRE of β-lactam/β-lactamase inhibitors dependence on type of carbapenemase; (iii) emergence of resistance to novel antibacterials and dismiss selective pressure promoting development of resistance. Alternative treatments should be approached alike phage therapy or antibacterial peptides. The choice of empirical therapy is complicated by antibiotic resistance and can be combated by accurate antibiotic and their combinations usage, which is critical to patient survival. Noteworthy are local epidemiology, effective teamwork and antibiotic stewardship to guarantee that medications are utilized properly to counter the resistance.
Collapse
|
37
|
COVID-19 and the World with Co-Morbidities of Heart Disease, Hypertension and Diabetes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.01] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) pandemic has now spread across the globe in past few months while affecting 26 million people and leading to more than 0.85 million deaths as on 2nd September, 2020. Severity of SARS-CoV-2 infection increases in COVID-19 patients due to pre-existing health co-morbidities. This mini-review has focused on the three significant co-morbidities viz., heart disease, hypertension, and diabetes, which are posing high health concerns and increased mortality during this ongoing pandemic. The observed co-morbidities have been found to be associated with the increasing risk factors for SARS-CoV-2 infection and COVID-19 critical illness as well as to be associated positively with the worsening of the health condition of COVID-19 suffering individuals resulting in the high risk for mortality. SARS-CoV-2 enters host cell via angiotensin-converting enzyme 2 receptors. Regulation of crucial cardiovascular functions and metabolisms like blood pressure and sugar levels are being carried out by ACE2. This might be one of the reasons that contribute to the higher mortality in COVID-19 patients having co-morbidities. Clinical investigations have identified higher levels of creatinine, cardiac troponin I, alanine aminotransferase, NT-proBNP, creatine kinase, D-dimer, aspartate aminotransferase and lactate dehydrogenase in patients who have succumbed to death from COVID-19 as compared to recovered individuals. More investigations are required to identify the modes behind increased mortality in COVID-19 patients having co-morbidities of heart disease, hypertension, and diabetes. This will enable us to design and develop suitable therapeutic strategies for reducing the mortality. More attention and critical care need to be paid to such high risk patients suffering from co-morbidities during COVID-19 pandemic.
Collapse
|
38
|
Soliman AT, Prabhakaran Nair A, Al Masalamani MS, De Sanctis V, Abu Khattab MA, Alsaud AE, Sasi S, Ali EA, Ola A H, Iqbal FM, Nashwan AJ, Fahad J, El Madhoun I, Yassin MA. Prevalence, clinical manifestations, and biochemical data of type 2 diabetes mellitus versus nondiabetic symptomatic patients with COVID-19: A comparative study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020010. [PMID: 32921708 PMCID: PMC7716959 DOI: 10.23750/abm.v91i3.10214] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND There is a scarcity of data regarding the effect of Type 2 diabetes mellitus (T2DM) and associated comorbidities on the clinical presentation and outcome of symptomatic patients with -COVID-19 infection in comparison with non-diabetic patients. AIM OF THE STUDY We described and compared the clinical presentation and radiological and hematological data of a cohort of symptomatic COVID19 positive T2DM diabetic patients (n = 59) versus another cohort of non-diabetic symptomatic COVID19 positive patients (n =244) diagnosed at the same time from January 2020 to May 2020. Associated comorbidities were -assessed, and the Charlson Comorbidity Index was calculated. The outcomes including duration of hospitalization, duration of Intensive Care Unit (ICU) stay, duration of mechanical ventilation, and duration of O2 -supplementation were assessed. RESULTS Prevalence of T2DM in symptomatic COVID19 positive patients was 59/303 (=19.5%). Diabetic patients had higher prevalence of hypertension, chronic kidney disease (CKD) and cardiac dysfunction [coronary heart disease (CHD)], and congestive heart failure (CHF). Charlson Comorbidity score was significantly higher in the T2DM patients (2.4± 1.6) versus the non-diabetic -patients (0.28 ± 0.8; p: < 0.001). Clinically and radiologically, T2DM patients had significantly higher percentage of pneumonia, severe pneumonia and ARDS versus the non-diabetic patients. Hematologically, diabetic patients had significantly higher C-reactive protein (CRP), higher absolute neutrophilic count (ANC) and lower counts of lymphocytes and eosinophils compared to non-diabetic patients. They had significantly higher systolic and diastolic blood pressures, longer duration of hospitalization, ICU stay, mechanical ventilation and oxygen therapy. CRP was correlated significantly with the duration of stay in the ICU and the duration for oxygen supplementation (r = 0.37 and 0.42 respectively; p: <0.01). CONCLUSIONS T2DM patients showed higher inflammatory response to COVID 19 with higher absolute neutrophilic count (ANC) and CRP with lower lymphocytic and eosinophilic counts. Diabetic patients had more comorbidities and more aggressive course of the disease with higher rate of ICU admission and longer need for hospitalization and oxygen use.
Collapse
Affiliation(s)
- Ashraf T Soliman
- Pediatric and Endocrinology, Hamad General Hospital, Doha, Qatar .
| | | | - Muna S Al Masalamani
- Communicable Disease Center (CDC), Hamad Medical Corporation (HMC), Doha, Qatar.
| | | | | | - Arwa E Alsaud
- Department of Endocrinology and Diabetes, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Sreethish Sasi
- Internal Medicine Dept., Hamad General Hospital (HGH), Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Elrazi A Ali
- Internal Medicine Dept., Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Hassan Ola A
- Medical Resident, Family Medicine, Medical Education, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Fatima M Iqbal
- Infectious Diseases, Communicable Disease Center (CDC), Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Abdulqadir J Nashwan
- Hazm Mebaireek General Hospital (HMGH), Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Jesin Fahad
- Quality Management Data Analyst, Communicable Disease Center (CDC), Hamad Medical Corporation (HMC), Doha, Qatar.
| | | | | |
Collapse
|
39
|
Koliaki C, Tentolouris A, Eleftheriadou I, Melidonis A, Dimitriadis G, Tentolouris N. Clinical Management of Diabetes Mellitus in the Era of COVID-19: Practical Issues, Peculiarities and Concerns. J Clin Med 2020; 9:E2288. [PMID: 32708504 PMCID: PMC7408673 DOI: 10.3390/jcm9072288] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The management of patients with diabetes mellitus (DM) in the era of the COVID-19 pandemic can be challenging. Even if they are not infected, they are at risk of dysregulated glycemic control due to the restrictive measures which compromise and disrupt healthcare delivery. In the case of infection, people with DM have an increased risk of developing severe complications. The major principles of optimal care for mild outpatient cases include a patient-tailored therapeutic approach, regular glucose monitoring and adherence to medical recommendations regarding lifestyle measures and drug treatment. For critically ill hospitalized patients, tight monitoring of glucose, fluids, electrolytes, pH and blood ketones is of paramount importance to optimize outcomes. All patients with DM do not have an equally increased risk for severity and mortality due to COVID-19. Certain clinical and biological characteristics determine high-risk phenotypes within the DM population and such prognostic markers need to be characterized in future studies. Further research is needed to examine which subgroups of DM patients are expected to benefit the most from specific antiviral, immunomodulatory and other treatment strategies in the context of patient-tailored precision medicine, which emerges as an urgent priority in the era of COVID-19.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| | - Anastasios Tentolouris
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| | - Andreas Melidonis
- Hellenic Diabetes Association, 11528 Athens, Greece
- Cardiometabolic Department, Metropolitan Hospital, 18547 Neo Faliro, Greece
| | - George Dimitriadis
- Hellenic Diabetes Association, 11528 Athens, Greece
- Second Department of Internal Medicine and Research Institute, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Chaidari, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| |
Collapse
|
40
|
Pal R, Bhadada SK. COVID-19 and diabetes mellitus: An unholy interaction of two pandemics. Diabetes Metab Syndr 2020; 14:513-517. [PMID: 32388331 PMCID: PMC7202837 DOI: 10.1016/j.dsx.2020.04.049] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Diabetes mellitus is associated with poor prognosis in patients with COVID-19. On the other hand, COVID-19 contributes to worsening of dysglycemia in people with diabetes mellitus over and above that contributed by stress hyperglycemia. Herein, we have reviewed the two-way interactions between COVID-19 and diabetes mellitus. METHODS We have performed an extensive literature search for articles in PubMed, EMBASE and Google Scholar databases till April 25, 2020, with the following keywords: "COVID-19", "SARS-CoV-2", "diabetes", "diabetes mellitus", "SARS", "infection" and "management of diabetes mellitus" with interposition of the Boolean operator "AND". RESULTS Compromised innate immunity, pro-inflammatory cytokine milieu, reduced expression of ACE2 and use of renin-angiotensin-aldosterone system antagonists in people with diabetes mellitus contribute to poor prognosis in COVID-19. On the contrary, direct β-cell damage, cytokine-induced insulin resistance, hypokalemia and drugs used in the treatment of COVID-19 (like corticosteroids, lopinavir/ritonavir) can contribute to worsening of glucose control in people with diabetes mellitus. CONCLUSIONS The two-way interaction between COVID-19 and diabetes mellitus sets up a vicious cycle wherein COVID-19 leads to worsening of dysglycemia and diabetes mellitus, in turn, exacerbates the severity of COVID-19. Thus, it is imperative that people with diabetes mellitus take all necessary precautions and ensure good glycemic control amid the ongoing pandemic.
Collapse
Affiliation(s)
- Rimesh Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjay K Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
41
|
Barber TM. COVID-19 and diabetes mellitus: implications for prognosis and clinical management. Expert Rev Endocrinol Metab 2020; 15:227-236. [PMID: 32511033 DOI: 10.1080/17446651.2020.1774360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 is a novel coronavirus that emerged from Wuhan, China in December 2019, and within 3 months became a global pandemic. AREAS COVERED PubMed search of published data on COVID-19, respiratory infections, and diabetes mellitus (DM). DM associates with impairments of both cellular and humoral immunity. Early emergent global data reveal that severity of clinical outcome from COVID-19 infection (including hospitalization and admission to Intensive Care Unit [ICU]), associate with co-morbidities, prominently DM. The key principles of management of COVID-19 in patients with DM include ongoing focused outpatient management (remotely where necessary) and maintenance of good glycemic control. EXPERT OPINION We will remember the dawn of the third decade of the twenty-first century as a time when the world changed, the true scale and impact of which is hard for us to imagine. Like a phoenix from the ashes though, COVID-19 provides us with a great learning opportunity to renew insights into ourselves as individuals, our clinical teams, and the optimized provision of care for our patients. COVID-19 has re-shaped and re-focused our collective societal values, with a sea-changed shift from materialistic to human-centric, from self-centredness to altruism, ultimately for the betterment of patient care and the whole of society.
Collapse
Affiliation(s)
- Thomas M Barber
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
| |
Collapse
|
42
|
Ceriello A, Standl E, Catrinoiu D, Itzhak B, Lalic NM, Rahelic D, Schnell O, Škrha J, Valensi P. Issues of Cardiovascular Risk Management in People With Diabetes in the COVID-19 Era. Diabetes Care 2020; 43:1427-1432. [PMID: 32409501 DOI: 10.2337/dc20-0941] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/03/2023]
Abstract
People with diabetes compared with people without exhibit worse prognosis if affected by coronavirus disease 2019 (COVID-19) induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly when compromising metabolic control and concomitant cardiovascular disorders are present. This Perspective seeks to explore newly occurring cardio-renal-pulmonary organ damage induced or aggravated by the disease process of COVID-19 and its implications for the cardiovascular risk management of people with diabetes, especially taking into account potential interactions with mechanisms of cellular intrusion of SARS-CoV-2. Severe infection with SARS-CoV-2 can precipitate myocardial infarction, myocarditis, heart failure, and arrhythmias as well as an acute respiratory distress syndrome and renal failure. They may evolve along with multiorgan failure directly due to SARS-CoV-2-infected endothelial cells and resulting endotheliitis. This complex pathology may bear challenges for the use of most diabetes medications in terms of emerging contraindications that need close monitoring of all people with diabetes diagnosed with SARS-CoV-2 infection. Whenever possible, continuous glucose monitoring should be implemented to ensure stable metabolic compensation. Patients in the intensive care unit requiring therapy for glycemic control should be handled solely by intravenous insulin using exact dosing with a perfusion device. Although not only ACE inhibitors and angiotensin 2 receptor blockers but also SGLT2 inhibitors, GLP-1 receptor agonists, pioglitazone, and probably insulin seem to increase the number of ACE2 receptors on the cells utilized by SARS-CoV-2 for penetration, no evidence presently exists that shows this might be harmful in terms of acquiring or worsening COVID-19. In conclusion, COVID-19 and related cardio-renal-pulmonary damage can profoundly affect cardiovascular risk management of people with diabetes.
Collapse
Affiliation(s)
| | - Eberhard Standl
- Forschergruppe Diabetes e.V. at Munich Helmholtz Centre, Munich, Germany
| | - Doina Catrinoiu
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Baruch Itzhak
- Clalit Health Services and Technion Faculty of Medicine, Haifa, Israel
| | - Nebojsa M Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dario Rahelic
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia.,University of Zagreb School of Medicine, Zagreb, Croatia.,University of Osijek School of Medicine, Osijek, Croatia
| | - Oliver Schnell
- Forschergruppe Diabetes e.V. at Munich Helmholtz Centre, Munich, Germany
| | - Jan Škrha
- Department of Internal Medicine 3, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
43
|
Gentile S, Mambro A, Strollo F. Parallel epidemics, or nearly so: Certainties and uncertainties about SARS-CoV-2 in Italy. Diabetes Res Clin Pract 2020; 164:108195. [PMID: 32407747 PMCID: PMC7214347 DOI: 10.1016/j.diabres.2020.108195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Sandro Gentile
- Campania University "Luigi Vanvitelli, and Nefrocenter Research & Nyx Start-UP, Naples, Italy
| | - Andrea Mambro
- Anesthesiology and Resuscitation Unit, CTO, Andrea Alesini Hospital, Rome, Italy
| | - Felice Strollo
- Elle-Di and San Raffaele Research Institute, Rome, Italy.
| |
Collapse
|
44
|
Hamed MA. An overview on COVID-19: reality and expectation. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2020; 44:86. [PMID: 32514228 PMCID: PMC7266424 DOI: 10.1186/s42269-020-00341-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Recently, severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), commonly known as coronavirus disease-2019 (COVID-19) has rapidly spread across China and around the world. By the declaration of WHO, COVID-19 outbreak considered as a public health problem of international concern. The aim of this study is to provide a comprehensive view on COVID-19 and the future expectations to control virus progression. Patients with liver disease, diabetes, high blood pressure, and obesity are more susceptible to the incidence of COVID-19 infection. So, there is a rapid need for disease diagnosis, vaccine development, and drug discovery to detect, prevent, and treat this sudden and lethal virus. Real-time polymerase chain reaction (RT-PCR) is considered as a rapid, accurate, and specific tool for disease diagnosis. Under this emergency situation that the world facing against COVID-19, there are about 15 potential vaccine candidates tested globally based on messenger RNA, DNA-based, nanoparticle, synthetic, and modified virus-like particle. Certain drugs that are clinically approved for other diseases were tested against COVID-19 as chloroquine, hydroxychloroquine, ivermectin, favipiravir, ribavirin, and remdesivir. Convalescent plasma transfusion and traditional herbal medicine were also taken into consideration. Due to the absence of effective treatment or vaccines against COVID-19 so far, the precautionary measures according to WHO's strategic objectives are the only way to confront this crisis. Governments should adopt national medical care programs to reduce the risk of exposure to any future viral outbreaks especially to patients with pre-existing medical conditions.
Collapse
Affiliation(s)
- Manal A. Hamed
- Department of Therapeutic Chemistry, National Research Centre, El-Buhouth St., Dokki, Giza, Egypt
| |
Collapse
|
45
|
Jimeno C, Anonuevo-Cruz MC, Uy AB, Bacena AO, Francisco MD, Tiglao-Gica AL, Bruno R, Corpuz DG. UP Philippine General Hospital Division of Endocrinology, Diabetes & Metabolism Consensus Recommendations for In-Patient Management of Diabetes Mellitus among Persons with COVID-19. J ASEAN Fed Endocr Soc 2020; 35:14-25. [PMID: 33442164 PMCID: PMC7784188 DOI: 10.15605/jafes.035.01.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Diabetes mellitus (DM) is a known risk factor for morbidity and mortality among patients with COVID-19 based on recent studies. While there are many local and international guidelines on inpatient management of diabetes, the complicated pathology of the virus, the use of glucose-elevating drugs such as glucocorticoids, antivirals and even inotropes, and various other unique problems has made the management of in-hospital hyperglycemia among patients with COVID-19 much more difficult than in other infections. The objective of this guidance is to collate and integrate the best available evidence that has been published regarding in-patient management of diabetes among patients with COVID-19. A comprehensive review of literature was done and recommendations have been made through a consensus of expert endocrinologists from the University of the Philippines-Philippine General Hospital (UP-PGH) Division of Endocrinology, Diabetes and Metabolism. These recommendations are evolving as we continue to understand the pathology of the disease and how persons with diabetes are affected by this virus.
Collapse
Affiliation(s)
- Cecilia Jimeno
- Division of Endocrinology, Diabetes and Metabolism, University of the Philippines-Philippine General Hospital
| | - Ma Cecille Anonuevo-Cruz
- Division of Endocrinology, Diabetes and Metabolism, University of the Philippines-Philippine General Hospital
| | - Angelique Bea Uy
- Division of Endocrinology, Diabetes and Metabolism, University of the Philippines-Philippine General Hospital
| | - Adrian Oscar Bacena
- Division of Endocrinology, Diabetes and Metabolism, University of the Philippines-Philippine General Hospital
| | - Mark David Francisco
- Division of Endocrinology, Diabetes and Metabolism, University of the Philippines-Philippine General Hospital
| | - Angelique Love Tiglao-Gica
- Division of Endocrinology, Diabetes and Metabolism, University of the Philippines-Philippine General Hospital
| | - Racquel Bruno
- Division of Endocrinology, Diabetes and Metabolism, University of the Philippines-Philippine General Hospital
| | - Diane Grace Corpuz
- Division of Endocrinology, Diabetes and Metabolism, University of the Philippines-Philippine General Hospital
| |
Collapse
|
46
|
Abstract
AIMS We aimed to briefly review the general characteristics of the novel coronavirus (SARS-CoV-2) and provide a better understanding of the coronavirus disease (COVID-19) in people with diabetes, and its management. METHODS We searched for articles in PubMed and Google Scholar databases till 02 April 2020, with the following keywords: "SARS-CoV-2", "COVID-19", "infection", "pathogenesis", "incubation period", "transmission", "clinical features", "diagnosis", "treatment", "diabetes", with interposition of the Boolean operator "AND". RESULTS The clinical spectrum of COVID-19 is heterogeneous, ranging from mild flu-like symptoms to acute respiratory distress syndrome, multiple organ failure and death. Older age, diabetes and other comorbidities are reported as significant predictors of morbidity and mortality. Chronic inflammation, increased coagulation activity, immune response impairment, and potential direct pancreatic damage by SARS-CoV-2 might be among the underlying mechanisms of the association between diabetes and COVID-19. No conclusive evidence exists to support the discontinuation of angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers or thiazolidinediones because of COVID-19 in people with diabetes. Caution should be taken to potential hypoglycemic events with the use of chloroquine in these subjects. Patient tailored therapeutic strategies, rigorous glucose monitoring and careful consideration of drug interactions might reduce adverse outcomes. CONCLUSIONS Suggestions are made on the possible pathophysiological mechanisms of the relationship between diabetes and COVID-19, and its management. No definite conclusions can be made based on current limited evidence. Further research regarding this relationship and its clinical management is warranted.
Collapse
Affiliation(s)
- Akhtar Hussain
- Faculty of Health Sciences, Nord University, Bodø 8049, Norway; Faculty of Medicine, Federal University of Ceará (FAMED-UFC), Brazil; International Diabetes Federation (IDF), 166 Chaussee de La Hulpe, B - 1170 Brussels, Belgium; Diabetes Asian Study Group (DASG), Ambwadi, Ahmedabad 380015, Gujarat, India; Centre for Global Health Research, Diabetic Association of Bangladesh, Dhaka 1000, Bangladesh.
| | - Bishwajit Bhowmik
- Centre for Global Health Research, Diabetic Association of Bangladesh, Dhaka 1000, Bangladesh; Institute of Health and Society, Department of Community Medicine and Global Health, University of Oslo (UiO), Oslo 0318, Norway
| | - Nayla Cristina do Vale Moreira
- Faculty of Medicine, Federal University of Ceará (FAMED-UFC), Brazil; Institute of Health and Society, Department of Community Medicine and Global Health, University of Oslo (UiO), Oslo 0318, Norway
| |
Collapse
|
47
|
Gentile S, Strollo F, Ceriello A. COVID-19 infection in Italian people with diabetes: Lessons learned for our future (an experience to be used). Diabetes Res Clin Pract 2020; 162:108137. [PMID: 32259611 PMCID: PMC7270733 DOI: 10.1016/j.diabres.2020.108137] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Felice Strollo
- Elle-Di and San Raffaele Research Institute, Rome, Italy.
| | | |
Collapse
|
48
|
Ow KW, Parker WAE, Porter MM, Hanson J, Judge HM, Briffa NP, Thomas MR, Storey RF. Offset of ticagrelor prior to coronary artery bypass graft surgery for acute coronary syndromes: effects on platelet function and cellular adenosine uptake. Platelets 2020; 31:945-951. [PMID: 31893974 DOI: 10.1080/09537104.2019.1709631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ticagrelor is an antagonist of both platelet adenosine diphosphate (ADP) receptor P2Y12 and equilibrative nucleoside transporter-1. Optimal timing of ticagrelor cessation prior to coronary artery bypass grafting (CABG) remains unclear. We characterized the offset of ticagrelor's effects on platelets and cellular adenosine uptake in ticagrelor-treated patients (n = 13) awaiting CABG. Blood was drawn prior to CABG at multiple timepoints 2 to 120 (h) after the last dose of ticagrelor. Platelet function (n = 13) was assessed with multiple electrode aggregometry (MEA), expressed as arbitrary units (U) derived from area-under-the-curve (AUC) in response to ADP, and inhibition of adenosine uptake by high-performance liquid chromatography (n = 7). Mean±SD AUC was 20.3 ± 8.2 U (2 h post-ticagrelor), 33.0 ± 18.3U (24 h), 56.6 ± 30.6U (48 h), 61.4 ± 20.2U (72 h), 82.8 ± 24.2U (96 h) and 96.0 ± 15.3U (120 h). There was a significant difference between 72 h and 120 h (p = .007), but not between 96 h and 120 h (p > .99). By 96 h, all patients had AUC >31U, an accepted cutoff below which surgical bleeding risk is increased. Adenosine uptake showed no significant differences between the timepoints. These data suggest it takes 4 days for platelet reactivity to recover sufficiently after cessation of ticagrelor to avoid the excess risk of CABG-related bleeding. Discontinuing ticagrelor had no measurable effect on cellular adenosine uptake.
Collapse
Affiliation(s)
- Kok Weng Ow
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield , Sheffield, UK
| | - William A E Parker
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield , Sheffield, UK.,South Yorkshire Cardiothoracic Centre, Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust , Sheffield, UK
| | - Mark M Porter
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust , Manchester, UK
| | - Jessica Hanson
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield , Sheffield, UK
| | - Heather M Judge
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield , Sheffield, UK
| | - Norman P Briffa
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield , Sheffield, UK.,South Yorkshire Cardiothoracic Centre, Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust , Sheffield, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield , Sheffield, UK.,South Yorkshire Cardiothoracic Centre, Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust , Sheffield, UK
| |
Collapse
|