1
|
Puliani G, Sbardella E, Cozzolino A, Sada V, Tozzi R, Andreoli C, Fiorelli M, Di Biasi C, Corallino D, Balla A, Paganini AM, Venneri MA, Lenzi A, Lubrano C, Isidori AM. Pituitary T1 signal intensity at magnetic resonance imaging is reduced in patients with obesity: results from the CHIASM study. Int J Obes (Lond) 2023; 47:948-955. [PMID: 37479795 PMCID: PMC10511316 DOI: 10.1038/s41366-023-01338-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Despite obesity being well known to be associated with several pituitary hormone imbalances, pituitary appearance in magnetic resonance imaging (MRI) in patients with obesity is understudied. OBJECTIVE To evaluate the pituitary volume and signal intensity at MRI in patients with obesity. METHODS This is a prospective study performed in an endocrine Italian referral center (ClinicalTrial.gov Identifier: NCT03458533). Sixty-nine patients with obesity (BMI > 30 kg/m2) and twenty-five subjects without obesity were enrolled. Thirty-three patients with obesity were re-evaluated after 3 years of diet and lifestyle changes, of whom 17 (51.5%) achieved a > 5% loss of their initial body weight, whereas the remaining 16 (48.5%) had maintained or gained weight. Evaluations included metabolic and hormone assessments, DEXA scan, and pituitary MRI. Pituitary signal intensity was quantified by measuring the pixel density using ImageJ software. RESULTS At baseline, no difference in pituitary volume was observed between the obese and non-obese cohorts. At the 3-year follow-up, pituitary volume was significantly reduced (p = 0.011) only in participants with stable-increased body weight. Furthermore, a significant difference was noted in the mean pituitary intensity of T1-weighted plain and contrast-enhanced sequences between the obese and non-obese cohorts at baseline (p = 0.006; p = 0.002), and a significant decrease in signal intensity was observed in the subgroup of participants who had not lost weight (p = 0.012; p = 0.017). Insulin-like growth factor-1 levels, following correction for BMI, were correlated with pituitary volume (p = 0.001) and intensity (p = 0.049), whereas morning cortisol levels were correlated with pituitary intensity (p = 0.007). The T1-weighted pituitary intensity was negatively correlated with truncal fat (p = 0.006) and fibrinogen (p = 0.018). CONCLUSIONS The CHIASM study describes a quantitative reduction in pituitary intensity in T1-weighted sequences in patients with obesity. These alterations could be explained by changes in the pituitary stromal tissue, correlated with low-grade inflammation.
Collapse
Affiliation(s)
- Giulia Puliani
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessia Cozzolino
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Valentina Sada
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Rossella Tozzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Chiara Andreoli
- Unit of Emergency Radiology, Department of Radiological, Oncological and Pathological Sciences, Umberto I University Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Claudio Di Biasi
- Unit of Emergency Radiology, Department of Radiological, Oncological and Pathological Sciences, Umberto I University Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Diletta Corallino
- Bariatric Surgery Unit, Department of General Surgery and Surgical Specialties "Paride Stefanini" Sapienza University of Rome, Umberto I University Hospital, Viale del Policlinico 155, 00161, Rome, Italy
| | - Andrea Balla
- Bariatric Surgery Unit, Department of General Surgery and Surgical Specialties "Paride Stefanini" Sapienza University of Rome, Umberto I University Hospital, Viale del Policlinico 155, 00161, Rome, Italy
| | - Alessandro M Paganini
- Bariatric Surgery Unit, Department of General Surgery and Surgical Specialties "Paride Stefanini" Sapienza University of Rome, Umberto I University Hospital, Viale del Policlinico 155, 00161, Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
2
|
Cappola AR, Auchus RJ, El-Hajj Fuleihan G, Handelsman DJ, Kalyani RR, McClung M, Stuenkel CA, Thorner MO, Verbalis JG. Hormones and Aging: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2023; 108:1835-1874. [PMID: 37326526 PMCID: PMC11491666 DOI: 10.1210/clinem/dgad225] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Multiple changes occur across various endocrine systems as an individual ages. The understanding of the factors that cause age-related changes and how they should be managed clinically is evolving. This statement reviews the current state of research in the growth hormone, adrenal, ovarian, testicular, and thyroid axes, as well as in osteoporosis, vitamin D deficiency, type 2 diabetes, and water metabolism, with a specific focus on older individuals. Each section describes the natural history and observational data in older individuals, available therapies, clinical trial data on efficacy and safety in older individuals, key points, and scientific gaps. The goal of this statement is to inform future research that refines prevention and treatment strategies in age-associated endocrine conditions, with the goal of improving the health of older individuals.
Collapse
Affiliation(s)
- Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J Auchus
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Endocrinology and Metabolism Section, Medical Service, LTC Charles S. Kettles Veteran Affairs Medical Center, Ann Arbor, MI 48015, USA
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, Division of Endocrinology, Department of Internal Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney and Andrology Department, Concord Repatriation General Hospital, Sydney 2139, Australia
| | - Rita R Kalyani
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael McClung
- Oregon Osteoporosis Center, Portland, OR 97213, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Cynthia A Stuenkel
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Michael O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joseph G Verbalis
- Division of Endocrinology and Metabolism, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
3
|
Gancheva S, Kahl S, Herder C, Strassburger K, Sarabhai T, Pafili K, Szendroedi J, Schlensak M, Roden M. Metabolic surgery-induced changes of the growth hormone system relate to improved adipose tissue function. Int J Obes (Lond) 2023; 47:505-511. [PMID: 36959287 DOI: 10.1038/s41366-023-01292-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
AIMS Body weight loss improves insulin resistance and growth hormone secretion in obesity, which may be regulated by leptin according to preclinical studies. How changes in leptin, lipids and insulin sensitivity after bariatric (metabolic) surgery affect the human growth hormone system is yet unclear. PARTICIPANTS AND METHODS People with obesity (OBE, n = 79, BMI 50.8 ± 6.3 kg/m2) were studied before, 2, 12, 24 and 52 weeks after metabolic surgery and compared to lean healthy humans (control; CON, n = 24, BMI 24.3 ± 3.1 kg/m2). Tissue-specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps with D-[6,6-2H2]glucose. Fasting leptin, growth hormone (GH), insulin-like growth factor 1 (IGF-1) and IGF-binding proteins (IGFBP1, IGFBP3) were measured using ELISA. RESULTS At baseline, OBE exhibited higher glycemia and leptinemia as well as pronounced peripheral, adipose tissue and hepatic insulin resistance compared to CON. GH and IGFBP1 were lower, while IGF1 was comparable between groups. At 52 weeks, OBE had lost 33% body weight and doubled their peripheral insulin sensitivity, which was paralleled by continuous increases in GH, IGF-1 and IGFBP1 as well as decrease in leptin. The rise in GH correlated with reductions in free fatty acids, adipose tissue insulin resistance and insulinemia, but not with changes in body weight, peripheral insulin sensitivity, glycemia or leptinemia. The rise in IGF-1 correlated with reduction in high-sensitive C-reactive protein. CONCLUSION Reversal of alterations of the GH-IGF-1 axis after surgically-induced weight loss is unlikely related to improved leptin secretion and/or insulin sensitivity, but is rather associated with restored adipose tissue function and reduced low-grade inflammation.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Munich-Neuherberg, Düsseldorf, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Munich-Neuherberg, Düsseldorf, Germany
| | - Christian Herder
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Munich-Neuherberg, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Munich-Neuherberg, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Theresia Sarabhai
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Munich-Neuherberg, Düsseldorf, Germany
| | - Kalliopi Pafili
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Munich-Neuherberg, Düsseldorf, Germany
| | - Julia Szendroedi
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Munich-Neuherberg, Düsseldorf, Germany
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany.
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Munich-Neuherberg, Düsseldorf, Germany.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Canonical growth hormone (GH)-dependent signaling is essential for growth and counterregulatory responses to hypoglycemia, but also may contribute to glucose homeostasis (even in the absence of hypoglycemia) via its impact on metabolism of carbohydrates, lipids and proteins, body composition, and cardiovascular risk profile. The aim of this review is to summarize recent data implicating GH action in metabolic control, including both IGF-1-dependent and -independent pathways, and its potential role as target for T2D therapy. RECENT FINDINGS Experimental blockade of the GHR can modulate glucose metabolism. Moreover, the soluble form of the GH receptor (GHR, or GHBP) was recently identified as a mediator of improvement in glycemic control in patients with T2D randomized to bariatric surgery vs. medical therapy. Reductions in GHR were accompanied by increases in plasma GH, but unchanged levels of both total and free IGF-1. Likewise, hepatic GHR expression is reduced following both RYGB and VSG in rodents. Emerging data indicate that GH signaling is important for regulation of long-term glucose metabolism in T2D. Future studies will be required to dissect tissue-specific GH signaling and sensitivity and their contributions to systemic glucose metabolism.
Collapse
Affiliation(s)
- Xuehong Dong
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Endocrinology, Diabetes & Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Su
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Haque N, Tischkau SA. Sexual Dimorphism in Adipose-Hypothalamic Crosstalk and the Contribution of Aryl Hydrocarbon Receptor to Regulate Energy Homeostasis. Int J Mol Sci 2022; 23:ijms23147679. [PMID: 35887027 PMCID: PMC9322714 DOI: 10.3390/ijms23147679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. This review summarizes how adipose tissue crosstalk with homeostatic network control systems in the brain, which includes energy regulatory regions and the hypothalamic–pituitary axis, contribute to energy regulation in a sex-specific manner. Moreover, development of obesity is contingent upon diet and environmental factors. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is currently being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors, and hence, one of the objectives of this review is to explain why investigating sex differences while examining this receptor is crucial. Overall, this review summarizes sex differences in the regulation of energy homeostasis imparted by the adipose–hypothalamic axis and examines how this axis can be affected by xenobiotics that signal through AhR.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence:
| |
Collapse
|
6
|
Ruiz S, Vázquez F, Pellitero S, Puig-Domingo M. ENDOCRINE OBESITY: Pituitary dysfunction in obesity. Eur J Endocrinol 2022; 186:R79-R92. [PMID: 35333754 DOI: 10.1530/eje-21-0899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
Obesity, the growing pandemic of the 21st century, is associated with multiple organ dysfunction, either by a direct increase in fatty organ content or by indirect modifications related to general metabolic changes driven by a specific increase in biologic products. The pituitary gland is not protected against such a situation. Different hypothalamic-pituitary axes experience functional modifications initially oriented to an adaptive situation that, with years of obesity, turn to maladaptive dynamics that contribute to perpetuating obesity and specific symptoms of their hormonal nature. This paper reviews the recent knowledge on obesity-related pituitary dysfunction and its pathogenic mechanisms and discusses potential therapeutic actions aimed at contributing to ameliorating the complex treatment of severe cases of obesity.
Collapse
Affiliation(s)
- Sabina Ruiz
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| | - Federico Vázquez
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| | - Silvia Pellitero
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| |
Collapse
|
7
|
Wang W, Huang Z, Huang L, Gao L, Cui L, Cowley M, Guo L, Chen C. Time-Restricted Feeding Restored Insulin-Growth Hormone Balance and Improved Substrate and Energy Metabolism in MC4RKO Obese Mice. Neuroendocrinology 2022; 112:174-185. [PMID: 33735897 DOI: 10.1159/000515960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dysregulation of metabolic regulatory hormones often occurs during the progress of obesity. Key regulatory hormone insulin-growth hormone (GH) balance has recently been proposed to maintain metabolism profiles. Time-restricted feeding (TRF) is an effective strategy against obesity without detailed research on pulsatile GH releasing patterns. METHODS TRF was performed in an over-eating melanocortin 4 receptor-knockout (MC4RKO) obese mouse model using normal food. Body weight and food intake were measured. Series of blood samples were collected for 6-h pulsatile GH profile, glucose tolerance test, and insulin tolerance test at 5, 8, and 9 weeks of TRF, respectively. Indirect calorimetric recordings were performed by the Phenomaster system at 6 weeks for 1 week, and body composition was measured by nuclear magnetic resonance spectroscopy (NMR). Substrate- and energy metabolism-related gene expressions were measured in terminal liver and subcutaneous white adipose tissues. RESULTS TRF increased pulsatile GH secretion in dark phase and suppressed hyperinsulinemia in MC4RKO obese mice to reach a reduced insulin/GH ratio. This was accompanied by the improvement in insulin sensitivity, metabolic flexibility, glucose tolerance, and decreased glucose fluctuation, together with appropriate modification of gene expression involved in substrate metabolism and adipose tissue browning. NMR measurement showed that TRF decreased fat mass but increased lean mass. Indirect calorimeter recording indicated that TRF decreased the respiratory exchange ratio (RER) reflecting consumption of more fatty acid in energy production in light phase and increased the oxygen consumption during activities in dark phase. CONCLUSIONS TRF effectively decreases hyperinsulinemia and restores pulsatile GH secretion in the overeating obese mice with significant improvement in substrate and energy metabolism and body composition without reducing total caloric intake.
Collapse
Affiliation(s)
- Weihao Wang
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Lyn Gao
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ling Cui
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Michael Cowley
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Herman-Bonert VS, Melmed S. Growth Hormone. THE PITUITARY 2022:91-129. [DOI: 10.1016/b978-0-323-99899-4.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Beghini M, Wagner T, Luca AC, Metz M, Kaltenecker D, Spirk K, Hackl MT, Haybaeck J, Moriggl R, Kautzky-Willer A, Scherer T, Fürnsinn C. Adipocyte STAT5 deficiency does not affect blood glucose homeostasis in obese mice. PLoS One 2021; 16:e0260501. [PMID: 34818373 PMCID: PMC8612524 DOI: 10.1371/journal.pone.0260501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate whether the lack of signal transducer and activator of transcription 5 (STAT5) in mature adipocytes of obese mice (Stat5Adipoq mice) improves glucose and lipid metabolism as previously observed in lean mice. Male Stat5Adipoq mice and their wild type (WT) littermates were fed high-fat diet (HFD). Effects of adipocyte STAT5 deficiency on adiposity as well as on glucose and lipid metabolism were determined under ad libitum feeding and after weight loss induced by calorie restriction. Compared to WT mice, obese Stat5Adipoq mice showed modestly accelerated weight gain and blunted depletion of fat stores under calorie restriction (reduction in % body fat after 3 weeks: WT, -9.3±1.1, vs Stat5Adipoq, -5.9±0.8, p = 0.04). No differences were observed between Stat5Adipoq and WT mice with regard to parameters of glucose and lipid metabolism including basal glycaemia, glucose tolerance, and plasma triglycerides. In conclusion, STAT5 deficiency in the adipocyte of HFD-fed obese mice was associated with increased fat accumulation. In contrast to previous findings in lean mice, however, lipid accumulation was not associated with any improvement in glucose and lipid metabolism. Our results do not support adipocyte STAT5 as a promising target for the treatment of obesity-associated metabolic derangements.
Collapse
Affiliation(s)
- Marianna Beghini
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Theresia Wagner
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreea Corina Luca
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthäus Metz
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Doris Kaltenecker
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katrin Spirk
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Theresa Hackl
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Huang L, Gao L, Chen C. Role of Medium-Chain Fatty Acids in Healthy Metabolism: A Clinical Perspective. Trends Endocrinol Metab 2021; 32:351-366. [PMID: 33832826 DOI: 10.1016/j.tem.2021.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Medium-chain fatty acids (MCFAs) serve not only as an energy source but also regulate glucose and lipid metabolism. The unique transport and rapid metabolism of MCFAs provide additional clinical benefits over other substrates such as long-chain fatty acids (LCFAs) and have prompted interest in the use of MCFAs for treating metabolic and neurological disorders. This review focuses on the metabolic role of MCFAs in modulating cellular signaling and regulating key circulating metabolites and hormones. The potential of MCFAs in treating various metabolic diseases in a clinical setting has also been analyzed.
Collapse
Affiliation(s)
- Lili Huang
- School of Biomedical Science and Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Lin Gao
- School of Biomedical Science and Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Science and Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
11
|
Zini E, Salesov E, Willing A, Palizzotto C, Lutz TA, Reusch CE. Serum insulin-like growth factor-1 concentrations in healthy cats before and after weight gain and weight loss. J Vet Intern Med 2021; 35:1274-1278. [PMID: 33830548 PMCID: PMC8163131 DOI: 10.1111/jvim.16119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Measurement of serum concentrations of insulin‐like growth factor (IGF)‐1 is used to diagnose acromegaly in cats. Hypothesis Changes of body weight do not affect serum concentrations of IGF‐1 in cats. Animals Ten healthy purpose‐bred cats. Methods Prospective study. In lean cats, food availability was stepwise increased during the first week and given ad libitum for a total of 40 weeks to increase their body weight. From week 41 to week 60, food access was limited to reach a weight loss of 1% to 2% each week. Measurement of IGF‐1 was performed at week 0, 16, 40, and 60. Insulin‐like growth factor‐1 was measured by radioimmunoassay. Body weight and IGF‐1 were compared among the 4 time points. Results Body weight increased by 44% from week 0 (4.5 ± 0.4 kg) to week 40 (6.5 ± 1.2 kg) (P < .001) and decreased by 25% from week 40 to week 60 (4.9 ± 0.7 kg) (P < .001). Serum IGF‐1 concentrations did not differ during the study period (week 0, 16, 40, 60: 500 ± 188, 479 ± 247, 470 ± 184, 435 ± 154 ng/mL, respectively; P = .38). Correlations with body weight were not observed. Conclusions and Clinical Importance Insulin‐like growth factor‐1 might not be influenced by changes of body weight in healthy cats, possibly suggesting that the latter is unimportant when interpreting IGF‐1 results in this species.
Collapse
Affiliation(s)
- Eric Zini
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy.,AniCura Istituto Veterinario Novara, Granozzo con Monticello (NO), Italy
| | - Elena Salesov
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anke Willing
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Granozzo con Monticello (NO), Italy
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claudia E Reusch
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Huang Z, Huang L, Waters MJ, Chen C. Insulin and Growth Hormone Balance: Implications for Obesity. Trends Endocrinol Metab 2020; 31:642-654. [PMID: 32416957 DOI: 10.1016/j.tem.2020.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Disruption of endocrine hormonal balance (i.e., increased levels of insulin, and reduced levels of growth hormone, GH) often occurs in pre-obesity and obesity. Using distinct intracellular signaling pathways to control cell and body metabolism, GH and insulin also regulate each other's secretion to maintain overall metabolic homeostasis. Therefore, a comprehensive understanding of insulin and GH balance is essential for understanding endocrine hormonal contributions to energy storage and utilization. In this review we summarize the actions of, and interactions between, insulin and GH at the cellular level, and highlight the association between the insulin/GH ratio and energy metabolism, as well as fat accumulation. Use of the [insulin]:[GH] ratio as a biomarker for predicting the development of obesity is proposed.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
13
|
Altered GH-IGF-1 Axis in Severe Obese Subjects is Reversed after Bariatric Surgery-Induced Weight Loss and Related with Low-Grade Chronic Inflammation. J Clin Med 2020; 9:jcm9082614. [PMID: 32806629 PMCID: PMC7463679 DOI: 10.3390/jcm9082614] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Endocrine disorders are common in obesity, including altered somatotropic axis. Obesity is characterized by reduced growth hormone (GH) secretion, although the insulin-like growth factor-1 (IGF-1) values are controversial. The aim of this study was to evaluate the effect of weight loss after bariatric surgery in the GH–IGF-1 axis in extreme obesity, in order to investigate IGF-1 values and the mechanism responsible for the alteration of the GH–IGF-1 axis in obesity. We performed an interventional trial in morbidly obese patients who underwent bariatric surgery. We included 116 patients (97 women) and 41 controls (30 women). The primary endpoint was circulating GH and IGF-1 values. Circulating IGF-1 values were lower in the obese patients than in the controls. Circulating GH and IGF-1 values increased significantly over time after surgery. Post-surgery changes in IGF-1 and GH values were significantly negatively correlated with changes in C-reactive protein (CRP) and free T4 values. After adjusting for preoperative body mass index (BMI), free T4 and CRP in a multivariate model, only CRP was independently associated with IGF-1 values in the follow-up. In summary, severe obesity is characterized by a functional hyposomatotropism at central and peripheral level that is progressively reversible with weight loss, and low-grade chronic inflammation could be the principal mediator.
Collapse
|
14
|
Elkarow MH, Hamdy A. A Suggested Role of Human Growth Hormone in Control of the COVID-19 Pandemic. Front Endocrinol (Lausanne) 2020; 11:569633. [PMID: 33240216 PMCID: PMC7680968 DOI: 10.3389/fendo.2020.569633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Covid19 is a worldwide pandemic challenge that started in Wuhan, China and spread to almost all countries on the planet within a few months. The causative virus was found to be highly contagious and, until now, considerably difficult to contain. A look at the epidemiological distribution of the disease over the planet has raised a number of questions whose answers could help us understand the behavior of the virus and consequently leads us to possible means of limitation of its spread or even flattening of the curve of morbidity and mortality. After the third decade of life, there is a progressive decline of growth hormone (GH) secretion by approximately 15% for every decade of adult life. The data from highly affected countries suggest a more aggressive course in the elderly, a double-time affection of males more than females, and the vulnerability of some risk groups of patients. Our observation is that GH deficiency is a common factor in all vulnerable patient groups. We think that there is a need for studying the role of growth hormone in the unique epidemiological pattern of Covid-19 so that it might help in the early detection and management of the high-risk groups as appropriate.
Collapse
Affiliation(s)
- Mohamed Hamdy Elkarow
- Department of General Surgery, Ain Shams University, Cairo, Egypt
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
- *Correspondence: Mohamed Hamdy Elkarow,
| | - Amr Hamdy
- Department of Obstetrics & Gynecology, Shoubra General Hospital, Ministry of Health and Population, Cairo, Egypt
| |
Collapse
|
15
|
Glad CAM, Svensson PA, Nystrom FH, Jacobson P, Carlsson LMS, Johannsson G, Andersson-Assarsson JC. Expression of GHR and Downstream Signaling Genes in Human Adipose Tissue-Relation to Obesity and Weight Change. J Clin Endocrinol Metab 2019; 104:1459-1470. [PMID: 30541116 DOI: 10.1210/jc.2018-01036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/07/2018] [Indexed: 01/05/2023]
Abstract
CONTEXT GH is a strong regulator of metabolism. In obesity, both GH secretion and adipose tissue GHR gene expression are decreased. More detailed information on the regulation of GHR, STAT3/5, and downstream-regulated genes in human adipose tissue during diet-induced weight loss and weight gain is lacking. OBJECTIVE The aim of the present study was to investigate the gene expression patterns of GHR and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway (JAK2, STAT3, STAT5A, and STAT5B) in human subcutaneous adipose tissue in relation to energy restriction and overfeeding. DESIGN, PATIENTS, AND INTERVENTIONS Tissue distribution was analyzed in a data set generated by RNA sequencing containing information on global expression in human tissues. Subcutaneous adipose tissue or adipocyte gene expression (measured by DNA microarrays) was investigated in the following settings: (i) individuals with obesity vs individuals with normal weight; (ii) energy restriction; and (iii) overfeeding. RESULTS GHR expression was decreased in subjects with obesity compared with subjects with normal weight (P < 0.001). It was increased in response to energy restriction and decreased in response to overfeeding (P = 0.015 and P = 0.030, respectively). STAT3 expression was increased in subjects with obesity (P < 0.001). It was decreased during energy restriction and increased during overfeeding (P = 0.004 and P = 0.006, respectively). STAT3-regulated genes showed an overall view of overexpression in obesity. CONCLUSIONS The results of the present study have shown that GHR, STAT3, and STAT3-regulated genes are dynamically, and reciprocally, regulated at the tissue level in response to energy restriction and overfeeding, suggesting that GH signaling is perturbed in obesity.
Collapse
Affiliation(s)
- Camilla A M Glad
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Health and Care Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik H Nystrom
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Jacobson
- Department of Molecular and Clinical Medicine, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena M S Carlsson
- Department of Molecular and Clinical Medicine, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gudmundur Johannsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna C Andersson-Assarsson
- Department of Molecular and Clinical Medicine, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Monteleone P, Mascagni G, Giannini A, Genazzani AR, Simoncini T. Symptoms of menopause - global prevalence, physiology and implications. Nat Rev Endocrinol 2018; 14:199-215. [PMID: 29393299 DOI: 10.1038/nrendo.2017.180] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The symptoms of menopause can be distressing, particularly as they occur at a time when women have important roles in society, within the family and at the workplace. Hormonal changes that begin during the menopausal transition affect many biological systems. Accordingly, the signs and symptoms of menopause include central nervous system-related disorders; metabolic, weight, cardiovascular and musculoskeletal changes; urogenital and skin atrophy; and sexual dysfunction. The physiological basis of these manifestations is emerging as complex and related, but not limited to, oestrogen deprivation. Findings generated mainly from longitudinal population studies have shown that ethnic, geographical and individual factors affect symptom prevalence and severity. Moreover, and of great importance to clinical practice, the latest research has highlighted how certain menopausal symptoms can be associated with the onset of other disorders and might therefore serve as predictors of future health risks in postmenopausal women. The goal of this Review is to describe in a timely manner new research findings on the global prevalence and physiology of menopausal symptoms and their impact on future health.
Collapse
Affiliation(s)
- Patrizia Monteleone
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, Pisa 56126, Italy
| | - Giulia Mascagni
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, Pisa 56126, Italy
| | - Andrea Giannini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, Pisa 56126, Italy
| | - Andrea R Genazzani
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, Pisa 56126, Italy
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, Pisa 56126, Italy
| |
Collapse
|
17
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Delitala AP, Capobianco G, Delitala G, Cherchi PL, Dessole S. Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Arch Gynecol Obstet 2017. [DOI: 10.1007/s00404-017-4429-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Lewitt MS. The Role of the Growth Hormone/Insulin-Like Growth Factor System in Visceral Adiposity. BIOCHEMISTRY INSIGHTS 2017; 10:1178626417703995. [PMID: 28469442 PMCID: PMC5404904 DOI: 10.1177/1178626417703995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/19/2017] [Indexed: 12/18/2022]
Abstract
There is substantial evidence that the growth hormone (GH)/insulin-like growth factor (IGF) system is involved in the pathophysiology of obesity. Both GH and IGF-I have direct effects on adipocyte proliferation and differentiation, and this system is involved in the cross-talk between adipose tissue, liver, and pituitary. Transgenic animal models have been of importance in identifying mechanisms underlying these interactions. It emerges that this system has key roles in visceral adiposity, and there is a rationale for targeting this system in the treatment of visceral obesity associated with GH deficiency, metabolic syndrome, and lipodystrophies. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health, Nursing & Midwifery, University of the West of Scotland, Paisley, UK
| |
Collapse
|
20
|
Abstract
Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
21
|
Abstract
Treatment with highly active antiretroviral drugs (HAART) is associated with several endocrine and metabolic comorbidities. Pituitary growth hormone (GH) secretion seems to be altered in human immunodeficiency virus (HIV) infection, and about one-third of patients have biochemical GH deficiency (GHD). We undertake a historical review of the functioning of the GH/insulin-like growth factor-1 (IGF-1) axis in patients with acquired immunodeficiency syndrome, and provide an overview of the main changes of the GH/IGF-1 axis occurring today in patients with HIV. Both spontaneous GH secretion and GH response to provocative stimuli are reduced in patients with HIV infection, especially in those with HIV-related lipodystrophy. The role of fat accumulation on flattened GH secretion is discussed, together with all factors able to potentially interfere with the pituitary secretion of GH. Several factors contribute to the development of GHD, but the pathophysiologic mechanisms involved in the genesis of GHD are complex and not yet fully elucidated owing to the difficulty in separating the effects of HIV infection from those of HAART, comorbidities and body changes. An update on the putative mechanisms involved in the pathogenesis of altered GH secretion in these patients is provided, together with an overview on the therapeutic strategies targeting the GH/IGF-1 axis to counteract fat redistribution associated with HIV-related lipodystrophy. The clinical significance of GHD in the context of HIV infection is discussed. The administration of tesamorelin, a GH releasing hormone analogue, is effective in reducing visceral fat in HIV-infected patients with lipodystrophy. This treatment is promising and safer than treatment with high doses of recombinant human growth hormone, which has several side-effects.
Collapse
Affiliation(s)
- Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda USL of Modena, Modena, Italy.
| | - Giovanni Guaraldi
- HIV Metabolic Clinic, Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences for Adults and Children, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
|
23
|
Tan HY, Steyn FJ, Huang L, Cowley M, Veldhuis JD, Chen C. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone. J Physiol 2016; 594:7309-7326. [PMID: 27558671 DOI: 10.1113/jp272770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. ABSTRACT Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a consequence of hyperphagia-associated hyperinsulinaemia. It is proposed that physiological responses essential to maintain energy flux (hyperinsulinaemia and the suppression of GH release) override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Implications of these findings are likely to extend beyond individuals with defects in MC4R signalling, encompassing physiological changes central to mechanisms of growth and energy homeostasis universal to hyperphagia-associated childhood-onset obesity.
Collapse
Affiliation(s)
- H Y Tan
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - F J Steyn
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.,The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - L Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - M Cowley
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - J D Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN, USA
| | - C Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Barja-Fernandez S, Folgueira C, Castelao C, Leis R, Crujeiras AB, Casanueva FF, Seoane LM. Regulation of Growth Hormone by the Splanchnic Area. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 138:41-60. [DOI: 10.1016/bs.pmbts.2015.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Roelfsema F, Veldhuis JD. Growth Hormone Dynamics in Healthy Adults Are Related to Age and Sex and Strongly Dependent on Body Mass Index. Neuroendocrinology 2016; 103:335-44. [PMID: 26228064 PMCID: PMC4731317 DOI: 10.1159/000438904] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Studies on 24-hour growth hormone (GH) secretion are rare. The influences of sex, age, and adiposity are well recognized but generally derived from specific, selected subject groups, not spanning sexes, many age decades, and a range of body weights. OBJECTIVE Our goal was to investigate GH dynamics in a group of 130 healthy adult subjects, both men and women, across 5 age decades as well as a 2.5-fold range of body mass index (BMI) values. METHODS GH was measured by a sensitive immunofluorometric assay. Secretion parameters were quantified by automated deconvolution and relative pattern randomness by approximate entropy (ApEn). RESULTS The median age was 40 years (range 20-77). The median BMI was 26 (range 18.3-49.8). Pulsatile 24-hour GH secretion was negatively correlated with age (p = 0.002) and BMI (p < 0.0001). Basal GH secretion negatively correlated with BMI (p = 0.003) but not with age. The sex- dependent GH secretion (greater in women) was no longer detectable after 50 years of age. Insulin-like growth factor (IGF)-1 levels were lower in women over 50 years of age compared with men of a similar age. ApEn showed an age-related increase in both sexes and was higher in premenopausal and postmenopausal women than in men of comparable age (p < 0.0001). A single fasting GH measurement is not informative of 24-hour GH secretion. CONCLUSIONS BMI dominates the negative regulation of 24-hour GH secretion across 5 decades of age in this up till now largest cohort of healthy adults who underwent 24-hour blood sampling. Sex also impacts GH secretion before the age of 50 years as well as its regularity at all ages. Differences in serum IGF-1 partly depend on the pre- or postmenopausal state. Finally, a single GH measurement is not informative of 24-hour GH secretion.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, the Netherlands
| | - Johannes D. Veldhuis
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Xie TY, Ngo ST, Veldhuis JD, Jeffery PL, Chopin LK, Tschöp M, Waters MJ, Tolle V, Epelbaum J, Chen C, Steyn FJ. Effect of Deletion of Ghrelin-O-Acyltransferase on the Pulsatile Release of Growth Hormone in Mice. J Neuroendocrinol 2015; 27:872-86. [PMID: 26442444 DOI: 10.1111/jne.12327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat(-/-) mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat(-/-) mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat(-/-) mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat(-/-) mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat(-/-) mice.
Collapse
Affiliation(s)
- T Y Xie
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - S T Ngo
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- The Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| | - J D Veldhuis
- Endocrine Research Unit, Department of Medicine, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN, USA
| | - P L Jeffery
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - L K Chopin
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - M Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - M J Waters
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - V Tolle
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - J Epelbaum
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - F J Steyn
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
27
|
Veldhuis JD, Olson TP, Takahashi PY, Miles JM, Joyner MJ, Yang RJ, Wigham J. Multipathway modulation of exercise and glucose stress effects upon GH secretion in healthy men. Metabolism 2015; 64:1022-30. [PMID: 26028283 PMCID: PMC4546548 DOI: 10.1016/j.metabol.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/21/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Exercise evokes pulsatile GH release followed by autonegative feedback, whereas glucose suppresses GH release followed by rebound-like GH release (feedforward escape). Here we test the hypothesis that age, sex steroids, insulin, body composition and physical power jointly determine these dynamic GH responses. METHODS This was a prospectively randomized glucose-blinded study conducted in the Mayo Center for Advancing Translational Sciences in healthy men ages 19-77 years (N=23). Three conditions, fasting/rest/saline, fasting/exercise/saline and fasting/rest/iv glucose infusions, were used to drive GH dynamics during 10-min blood sampling for 6h. Linear correlation analysis was applied to relate peak/nadir GH dynamics to age, sex steroids, insulin, CT-estimated abdominal fat and physical power (work per unit time). RESULTS Compared with the fasting/rest/saline (control) day, fasting/exercise/saline infusion evoked peak GH within 1h, followed by negative feedback 3-5h later. The dynamic GH excursion was strongly (R(2)=0.634) influenced by (i) insulin negatively (P=0.011), (ii) power positively (P=0.0008), and (iii) E2 positively (P=0.001). Dynamic glucose-modulated GH release was determined by insulin negatively (P=0.0039) and power positively (P=0.0034) (R(2)=0.454). Under rest/saline, power (P=0.031) and total abdominal fat (P=0.012) (R(2)=0.267) were the dominant correlates of GH excursions. CONCLUSION In healthy men, dynamic GH perturbations induced by exercise and glucose are strongly related to physical power, insulin, estradiol, and body composition, thus suggesting a network of regulatory pathways.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Mayo Clinic College of Medicine, Center for Translational Science Activities.
| | - Thomas P Olson
- Cardiovascular Research, Mayo Clinic, Rochester, MN 55905
| | - Paul Y Takahashi
- Primary Care Internal Medicine, Mayo Clinic, Rochester, MN 55905
| | - John M Miles
- Endocrine Research Unit, Mayo Clinic College of Medicine, Center for Translational Science Activities
| | | | - Rebecca J Yang
- Endocrine Research Unit, Mayo Clinic College of Medicine, Center for Translational Science Activities
| | - Jean Wigham
- Endocrine Research Unit, Mayo Clinic College of Medicine, Center for Translational Science Activities
| |
Collapse
|
28
|
Pena-Bello L, Pertega-Diaz S, Outeiriño-Blanco E, Garcia-Buela J, Tovar S, Sangiao-Alvarellos S, Dieguez C, Cordido F. Effect of oral glucose administration on rebound growth hormone release in normal and obese women: the role of adiposity, insulin sensitivity and ghrelin. PLoS One 2015; 10:e0121087. [PMID: 25782001 PMCID: PMC4363632 DOI: 10.1371/journal.pone.0121087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/30/2015] [Indexed: 12/17/2022] Open
Abstract
Context Metabolic substrates and nutritional status play a major role in growth hormone (GH) secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG) administration in normal and obese patients is a pending issue. Objective The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity. Participants and Methods We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC) were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed. Results The AUC of GH (μg/L•min) was lower in obese (249.8±41.8) than in healthy women (490.4±74.6), P=0.001. The AUC of total ghrelin (pg/mL•min) was lower in obese (240995.5±11094.2) than in healthy women (340797.5±37757.5), P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH.
Collapse
Affiliation(s)
- Lara Pena-Bello
- Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain
- Instituto de Investigación Biomedica (INIBIC), University Hospital A Coruña, A Coruña, Spain
| | - Sonia Pertega-Diaz
- Clinical Epidemiology and Biostatistics Unit, University Hospital A Coruña, A Coruña, Spain
| | | | - Jesus Garcia-Buela
- Instituto de Investigación Biomedica (INIBIC), University Hospital A Coruña, A Coruña, Spain
| | - Sulay Tovar
- Department of Physiology (CIMUS), School of Medicine-Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Susana Sangiao-Alvarellos
- Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain
- Instituto de Investigación Biomedica (INIBIC), University Hospital A Coruña, A Coruña, Spain
| | - Carlos Dieguez
- Department of Physiology (CIMUS), School of Medicine-Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Fernando Cordido
- Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain
- Instituto de Investigación Biomedica (INIBIC), University Hospital A Coruña, A Coruña, Spain
- Department of Endocrinology, University Hospital A Coruña, A Coruña, Spain
- * E-mail:
| |
Collapse
|
29
|
Fornari R, Francomano D, Greco EA, Marocco C, Lubrano C, Wannenes F, Papa V, Bimonte VM, Donini LM, Lenzi A, Aversa A, Migliaccio S. Lean mass in obese adult subjects correlates with higher levels of vitamin D, insulin sensitivity and lower inflammation. J Endocrinol Invest 2015; 38:367-72. [PMID: 25352234 DOI: 10.1007/s40618-014-0189-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/03/2014] [Indexed: 12/20/2022]
Abstract
AIM Several chronic metabolic alterations are present in obese subjects. While it is well known about the detrimental effect of abdominal adipose tissue on chronic metabolic clinical condition, less is known on the role of lean mass in obese subjects. Thus, the aim of our study was to evaluate the potential correlation of muscle mass, metabolic condition and inflammation status in obese individuals. METHODS The study included 426 obese subjects (86 men and 340 female; mean age 44.8 ± 14 years; BMI: 34.9 ± 6.1 kg/m(2)). Exclusion criteria were chronic medical conditions or use of medications affecting bone metabolism, alterations of hormonal and nutritional status, vitamin D supplementation, recent weight loss and prior bariatric surgery. Patients underwent measurements of bone mineral density (lumbar and hip) and body composition (lean mass, total and trunk fat mass) by dual X-ray absorptiometry and were evaluated for hormonal and metabolic profile and inflammatory markers. RESULTS Higher lean body mass (LM%) was inversely correlated with homeostasis model assessment of insulin resistance (p < 0.0091; r(2) 0.03938) and associated with lower fibrinogen levels (p < 0.0001; r(2) 0.1263). Interestingly, in obese subjects, LM% was associated with higher levels of vitamin D (p < 0.0001, r(2) 0.1140), osteocalcin (p < 0.0001, r(2) 0.2401) and insulin-like growth factor-1 (IGF-1) (p < 0.0002, r(2) 0.1367). CONCLUSION Our results show for the first time that in obese patients, higher amounts of lean mass are directly linked to a lower inflammatory profile and to better insulin sensitivity, but also to the presence of higher level of vitamin D and IGF-1. Moreover, these data suggest that higher levels of lean mass in obese people correlate with a better metabolic profile and, thus, strongly suggest the need to develop programs to facilitate an increase in physical activity in obese people.
Collapse
Affiliation(s)
- R Fornari
- Department Experimental Medicine, Section Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza" of Rome, Rome, Italy
| | - D Francomano
- Department Experimental Medicine, Section Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza" of Rome, Rome, Italy
| | - E A Greco
- Department Experimental Medicine, Section Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza" of Rome, Rome, Italy
- LiSa Laboratory, Azienda Ospedaliera-Universitaria "Policlinico Vittorio Emanuele", University of Catania, Catania, Italy
| | - C Marocco
- Department Experimental Medicine, Section Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza" of Rome, Rome, Italy
| | - C Lubrano
- Department Experimental Medicine, Section Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza" of Rome, Rome, Italy
| | - F Wannenes
- LiSa Laboratory, Azienda Ospedaliera-Universitaria "Policlinico Vittorio Emanuele", University of Catania, Catania, Italy
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University "Foro Italico" of Rome, Largo Lauro De Bosis 15, 00195, Rome, Italy
| | - V Papa
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University "Foro Italico" of Rome, Largo Lauro De Bosis 15, 00195, Rome, Italy
| | - V M Bimonte
- LiSa Laboratory, Azienda Ospedaliera-Universitaria "Policlinico Vittorio Emanuele", University of Catania, Catania, Italy
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University "Foro Italico" of Rome, Largo Lauro De Bosis 15, 00195, Rome, Italy
| | - L M Donini
- Department Experimental Medicine, Section Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza" of Rome, Rome, Italy
| | - A Lenzi
- Department Experimental Medicine, Section Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza" of Rome, Rome, Italy
| | - A Aversa
- Department Experimental Medicine, Section Medical Pathophysiology, Endocrinology and Nutrition, University "Sapienza" of Rome, Rome, Italy
- LiSa Laboratory, Azienda Ospedaliera-Universitaria "Policlinico Vittorio Emanuele", University of Catania, Catania, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University "Foro Italico" of Rome, Largo Lauro De Bosis 15, 00195, Rome, Italy.
| |
Collapse
|
30
|
Abstract
GH secretion is controlled by hypothalamic as well as intrapituitary and peripheral signals, all of which converge upon the somatotroph, resulting in integrated GH synthesis and secretion. Enabling an accurate diagnosis of idiopathic adult GH deficiency (IAGHD) is challenged by the pulsatility of GH secretion, provocative test result variability, and suboptimal GH assay standardization. The spectrum between attenuated GH secretion associated with the normal aging process and with obesity and truly well-defined IAGHD is not distinct and may mislead the diagnosis. Adult-onset GHD is mainly caused by an acquired pituitary deficiency, commonly including prior head/neck irradiation, or an expanding pituitary mass causing functional somatotroph compression. To what extent rare cryptic causes account for those patients seemingly classified as IAGHD is unclear. About 15% of patients with adult GHD and receiving GH replacement in open-label surveillance studies are reported as being due to an idiopathic cause. These patients may also reflect a pool of subjects with an as yet to be determined occult defect, or those with unclear or incomplete medical histories (including forgotten past sports head injury or motor vehicle accident). Therefore, submaximal diagnostic evaluation likely leads to an inadvertent diagnosis of IAGHD. In these latter cases, adherence to rigorous biochemical diagnostic criteria and etiology exclusion may result in reclassification of a subset of these patients to a distinct known acquired etiology, or as GH-replete. Accordingly, rigorously verified IAGHD likely comprises less than 10% of adult GHD patients, an already rare disorder. Regardless of etiology, patients with adult GHD, including those with IAGHD, exhibit a well-defined clinical phenotype including increased fat mass, loss of lean muscle mass, decreased bone mass, and enhanced cardiac morbidity. Definition of unique efficacy and dosing parameters for GH replacement and resultant therapeutic efficacy markers in true IAGHD requires prospective study.
Collapse
Affiliation(s)
- Shlomo Melmed
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA.
| |
Collapse
|
31
|
Berryman DE, Glad CAM, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol 2013; 9:346-56. [PMID: 23568441 DOI: 10.1038/nrendo.2013.64] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity has become one of the most common medical problems in developed countries, and this disorder is associated with high incidences of hypertension, dyslipidaemia, cardiovascular disease, type 2 diabetes mellitus and specific cancers. Growth hormone (GH) stimulates the production of insulin-like growth factor 1 in most tissues, and together GH and insulin-like growth factor 1 exert powerful collective actions on fat, protein and glucose metabolism. Clinical trials assessing the effects of GH treatment in patients with obesity have shown consistent reductions in total adipose tissue mass, in particular abdominal and visceral adipose tissue depots. Moreover, studies in patients with abdominal obesity demonstrate a marked effect of GH therapy on body composition and on lipid and glucose homeostasis. Therefore, administration of recombinant human GH or activation of endogenous GH production has great potential to influence the onset and metabolic consequences of obesity. However, the clinical use of GH is not without controversy, given conflicting results regarding its effects on glucose metabolism. This Review provides an introduction to the role of GH in obesity and summarizes clinical and preclinical data that describe how GH can influence the obese state.
Collapse
Affiliation(s)
- Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Excess intra-abdominal adipose tissue accumulation, often termed visceral obesity, is part of a phenotype including dysfunctional subcutaneous adipose tissue expansion and ectopic triglyceride storage closely related to clustering cardiometabolic risk factors. Hypertriglyceridemia; increased free fatty acid availability; adipose tissue release of proinflammatory cytokines; liver insulin resistance and inflammation; increased liver VLDL synthesis and secretion; reduced clearance of triglyceride-rich lipoproteins; presence of small, dense LDL particles; and reduced HDL cholesterol levels are among the many metabolic alterations closely related to this condition. Age, gender, genetics, and ethnicity are broad etiological factors contributing to variation in visceral adipose tissue accumulation. Specific mechanisms responsible for proportionally increased visceral fat storage when facing positive energy balance and weight gain may involve sex hormones, local cortisol production in abdominal adipose tissues, endocannabinoids, growth hormone, and dietary fructose. Physiological characteristics of abdominal adipose tissues such as adipocyte size and number, lipolytic responsiveness, lipid storage capacity, and inflammatory cytokine production are significant correlates and even possible determinants of the increased cardiometabolic risk associated with visceral obesity. Thiazolidinediones, estrogen replacement in postmenopausal women, and testosterone replacement in androgen-deficient men have been shown to favorably modulate body fat distribution and cardiometabolic risk to various degrees. However, some of these therapies must now be considered in the context of their serious side effects. Lifestyle interventions leading to weight loss generally induce preferential mobilization of visceral fat. In clinical practice, measuring waist circumference in addition to the body mass index could be helpful for the identification and management of a subgroup of overweight or obese patients at high cardiometabolic risk.
Collapse
Affiliation(s)
- André Tchernof
- Endocrinology and Genomics Axis, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | |
Collapse
|
33
|
Huang L, Steyn FJ, Tan HY, Xie TY, Veldhuis JD, Ngo ST, Chen C. The decline in pulsatile GH secretion throughout early adulthood in mice is exacerbated by dietary-induced weight gain. Endocrinology 2012; 153:4380-8. [PMID: 22802464 DOI: 10.1210/en.2012-1178] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transition between puberty and adulthood is accompanied by a slowing in linear growth. Although GH is a key factor that drives somatic development into adulthood, early adulthood coincides with a reduction in circulating levels of GH. To this extent, a pathological decline in postpubertal GH secretion is detrimental to attainment of peak lean muscle mass and bone mass and promotes adiposity and increases susceptibility to the development of obesity in adulthood. Here we characterized pulsatile GH secretion in C57BL/6J mice at 12 and 16 wk of age. Deconvolution analysis of these measures reveals a reduction in pulsatile GH secretion between 12 and 16 wk of age. Dietary intervention with high-fat feeding at 8 wk of age results in a significant increase in adiposity, the development of glucose intolerance, and hyperinsulinemia. We show the exacerbation of the age-associated decline in pulsatile GH secretion in high-fat-fed mice after 4 wk of dietary intervention (at 12 wk of age), and a further suppression of pulsatile GH secretion by 8 wk of dietary intervention (at 16 wk of age). Suppressed pulsatile secretion of GH did not coincide with an elevation in circulating free fatty acids. Rather, we observed increased hepatic triglyceride content and an eventual decrease in circulating levels of IGF-I. Given the established role of GH in maintaining healthy aging, we anticipate that an advancing of the age-associated decline in pulsatile GH secretion as a consequence of dietary-induced weight gain may have long-term ramifications on adult health.
Collapse
Affiliation(s)
- L Huang
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Giannoulis MG, Martin FC, Nair KS, Umpleby AM, Sonksen P. Hormone replacement therapy and physical function in healthy older men. Time to talk hormones? Endocr Rev 2012; 33:314-77. [PMID: 22433122 PMCID: PMC5393154 DOI: 10.1210/er.2012-1002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Improving physical function and mobility in a continuously expanding elderly population emerges as a high priority of medicine today. Muscle mass, strength/power, and maximal exercise capacity are major determinants of physical function, and all decline with aging. This contributes to the incidence of frailty and disability observed in older men. Furthermore, it facilitates the accumulation of body fat and development of insulin resistance. Muscle adaptation to exercise is strongly influenced by anabolic endocrine hormones and local load-sensitive autocrine/paracrine growth factors. GH, IGF-I, and testosterone (T) are directly involved in muscle adaptation to exercise because they promote muscle protein synthesis, whereas T and locally expressed IGF-I have been reported to activate muscle stem cells. Although exercise programs improve physical function, in the long-term most older men fail to comply. The GH/IGF-I axis and T levels decline markedly with aging, whereas accumulating evidence supports their indispensable role in maintaining physical function integrity. Several studies have reported that the administration of T improves lean body mass and maximal voluntary strength in healthy older men. On the other hand, most studies have shown that administration of GH alone failed to improve muscle strength despite amelioration of the detrimental somatic changes of aging. Both GH and T are anabolic agents that promote muscle protein synthesis and hypertrophy but work through separate mechanisms, and the combined administration of GH and T, albeit in only a few studies, has resulted in greater efficacy than either hormone alone. Although it is clear that this combined approach is effective, this review concludes that further studies are needed to assess the long-term efficacy and safety of combined hormone replacement therapy in older men before the medical rationale of prescribing hormone replacement therapy for combating the sarcopenia of aging can be established.
Collapse
Affiliation(s)
| | - Finbarr C. Martin
- Guy's and St. Thomas' National Health Service Foundation Trust (F.C.M.), and Institute of Gerontology (F.C.M.), King's College, London WC2R 2LS, United Kingdom
| | | | - A. Margot Umpleby
- Department of Human Metabolism, Diabetes, and Metabolic Medicine (A.M.U.), Postgraduate Medical School, University of Surrey, Guildford GU2 7WG, United Kingdom
| | - Peter Sonksen
- St. Thomas' Hospital and King's College (P.S.), London SE1 7EW, United Kingdom; and Southampton University (P.S.), SO17 1BJ, Southampton, United Kingdom
| |
Collapse
|
35
|
Andersen M, Brixen K, Hagen C, Frystyk J, Nielsen TL. Positive associations between serum levels of IGF-I and subcutaneous fat depots in young men. The Odense Androgen Study. Growth Horm IGF Res 2012; 22:139-145. [PMID: 22591999 DOI: 10.1016/j.ghir.2012.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/21/2012] [Accepted: 04/21/2012] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Serum levels of IGF-I are of growing interest due to the associations with morbidity and mortality. Despite markedly suppressed GH secretion, total IGF-I levels are often within normal range in obese adults. AIM To study associations between IGF-I and estimated muscle mass in the Odense Androgen Study population and secondly to investigate associations between serum IGF-I and regional fat depots. METHOD The Odense Androgen Study is a population-based, cross-sectional study of 776 randomly selected men aged 20-29 years. Regional lean and fat mass were measured by dual-energy X-ray absorptiometry, whereas regional muscle and fat areas were assessed by magnetic resonance imaging. RESULTS Age-adjusted IGF-I levels correlated significantly with different estimates of muscle mass (r-values between 0.15 and 0.19; p<0.001). Using multiple linear regression, serum IGF-I correlated positively with subcutaneous adipose tissue on the abdomen (SAT) after controlling for visceral adipose tissue (VAT) in the whole group and in the subgroup of men with normal waist circumference (r-values between 0.13 and 0.15; p<0.03). In addition, IGF-I correlated positively with subcutaneous thigh fat area (TFA) after controlling for intramyocellular lipid (imcl) r=0.18; p<0.004) and IGF-I correlated negatively with TFAimcl in the whole group and in the subgroup of men with normal waist circumference. CONCLUSION SAT and subcutaneous TFAs were positively associated with IGF-I in regression analyses. Conversely, imcl of the thigh was inversely associated with IGF-I levels. These findings emphasize the differential associations between IGF-I and regional fat deposits. Future studies may provide further insight regarding the interplay between circulating IGF-I levels and regional muscle and fat mass.
Collapse
Affiliation(s)
- M Andersen
- Department of Endocrinology, Odense University Hospital, 5000 Odense C, Denmark.
| | | | | | | | | |
Collapse
|
36
|
Nass R, Gaylinn BD, Thorner MO. The role of ghrelin in GH secretion and GH disorders. Mol Cell Endocrinol 2011; 340:10-4. [PMID: 21459126 PMCID: PMC4205082 DOI: 10.1016/j.mce.2011.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/03/2023]
Abstract
In humans, growth hormone (GH) is secreted from the anterior pituitary in a pulsatile pattern. The traditional view is that this secretory pattern is driven by two counter regulatory neurohormones, GHRH and somatostatin. Ghrelin, the natural ligand for the growth hormone (GH)-secretagogue receptor (GHS-R), is produced in the stomach. Ghrelin is the strongest GH secretagogue known to date, but the role of endogenous ghrelin in the regulation of circulating GH levels remains controversial. The following review examines the evidence suggesting that endogenous ghrelin may be a key regulator of GH peak amplitude and discusses studies of diseases with altered GH levels, where it is found that in these states GH and ghrelin levels change in a similar way.
Collapse
Affiliation(s)
| | | | - Michael O. Thorner
- Corresponding author at: Michael O. Thorner, David C. Harrison Medical Teaching Professor of Internal Medicine, Endocrinology and Metabolism, Box 801411, Charlottesville, VA 22908, United States. Tel.: +1 434 982 3297; fax: +1 434 982 0147. (M.O. Thorner)
| |
Collapse
|
37
|
Jürimäe J, Mäestu J, Jürimäe T, Mangus B, von Duvillard SP. Peripheral signals of energy homeostasis as possible markers of training stress in athletes: a review. Metabolism 2011; 60:335-50. [PMID: 20304442 DOI: 10.1016/j.metabol.2010.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 01/24/2010] [Accepted: 02/09/2010] [Indexed: 11/26/2022]
Abstract
The importance of physical exercise in regulating energy balance and ultimately body mass is widely recognized. There have been several investigative efforts in describing the regulation of the energy homeostasis. Important in this regulatory system is the existence of several peripheral signals that communicate the status of body energy stores to the hypothalamus including leptin, adiponectin, ghrelin, interleukin-6, interleukin-1β, and tumor necrosis factor-α--different cytokines and other peptides that affect energy homeostasis. In certain circumstances, all these peripheral signals may be used to reveal the condition of the athlete as the result of several months of prolonged exercise training. These hormone and cytokine concentrations characterize a physical stress condition in which different hormone and cytokine responses are apparently linked to changes in physical performance. The possibility to use these peripheral signals as markers of training stress (and possible overreaching/overtraining) in elite athletes should be considered. These measured hormone and cytokine levels could also be used to characterize the physical stress of single exercise session, as the hormone and cytokine response to exercise may actually be a response to the concurrent energy deficit. In summary, different peripheral signals of energy homeostasis may be sensitive to changes in specific training stress and may be useful for predicting the onset of possible overreaching/overtraining in athletes.
Collapse
Affiliation(s)
- Jaak Jürimäe
- Institute of Sport Pedagogy and Coaching Sciences, Center for Behavioral and Health Sciences, University of Tartu, Tartu, Estonia
| | | | | | | | | |
Collapse
|
38
|
Rasmussen MH, Juul A, Main KM, Hilsted J. Normal sweat secretion despite impaired growth hormone-insulin-like growth factor-I axis in obese subjects. Int J Endocrinol 2011; 2011:493840. [PMID: 21826141 PMCID: PMC3150143 DOI: 10.1155/2011/493840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/26/2011] [Indexed: 11/25/2022] Open
Abstract
Adults with GH deficiency are known to exhibit reduced sweating. Whether sweating capacity is impacted in obese subjects with impaired GH secretion have not previously been investigated. The main objective was to investigate sweat secretion rate and the GH-IGF-I axis in obese subjects before and after weight loss. Sixteen severely obese women (BMI, 40.6 ± 1.1 kg/m(2)) were investigated before and after a diet-induced weight loss. Sixteen age-matched nonobese women served as controls. The obese subjects presented the characteristic decreased GH release, hyperinsulinaemia, increased FFA levels, and impaired insulin sensitivity, which all were normalised after diet-induced weight loss of 30 ± 5 kg. Sweat secretion rates were similar comparing obese and nonobese subjects (78 ± 10 versus 82 ± 9 mg/30 minutes) and sweat secretion did not change after a diet-induced weight loss in obese subjects. We conclude that although obese subjects have markedly reduced GH release and impaired IGF-I levels, sweat secretion rate is found to be normal.
Collapse
Affiliation(s)
- Michael Højby Rasmussen
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, 2650 Copenhagen, Denmark
- *Michael Højby Rasmussen:
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Katharina M. Main
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jannik Hilsted
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, 2650 Copenhagen, Denmark
| |
Collapse
|
39
|
Johannsson G. Diagnosis: a reappraisal of the diagnosis of growth hormone deficiency. Nat Rev Endocrinol 2010; 6:190-1. [PMID: 20336163 DOI: 10.1038/nrendo.2010.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Redman LM, Veldhuis JD, Rood J, Smith SR, Williamson D, Ravussin E. The effect of caloric restriction interventions on growth hormone secretion in nonobese men and women. Aging Cell 2010; 9:32-9. [PMID: 19878147 DOI: 10.1111/j.1474-9726.2009.00530.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lifespan in rodents is prolonged by caloric restriction (CR) and by mutations affecting the somatotropic axis. It is not known if CR can alter the age-associated decline in growth hormone (GH), insulin-like growth factor (IGF)-1 and GH secretion. To evaluate the effect of CR on GH secretory dynamics; forty-three young (36.8 +/- 1.0 years), overweight (BMI 27.8 +/- 0.7) men (n = 20) and women (n = 23) were randomized into four groups; control = 100% of energy requirements; CR = 25% caloric restriction; CR + EX = 12.5% CR + 12.5% increase in energy expenditure by structured exercise; LCD = low calorie diet until 15% weight reduction followed by weight maintenance. At baseline and after 6 months, body composition (DXA), abdominal visceral fat (CT) 11 h GH secretion (blood sampling every 10 min for 11 h; 21:00-08:00 hours) and deconvolution analysis were measured. After 6 months, weight (control: -1 +/- 1%, CR: -10 +/- 1%, CR + EX: -10 +/- 1%, LCD: -14 +/- 1%), fat mass (control: -2 +/- 3%, CR: -24 +/- 3%, CR + EX: -25 +/- 3%, LCD: -31 +/- 2%) and visceral fat (control: -2 +/- 4%, CR: -28 +/- 4%, CR + EX: -27 +/- 3%, LCD: -36 +/- 2%) were significantly (P < 0.001) reduced in the three intervention groups compared to control. Mean 11 h GH concentrations were not changed in CR or control but increased in CR + EX (P < 0.0001) and LCD (P < 0.0001) because of increased secretory burst mass (CR + EX: 34 +/- 13%, LCD: 27 +/- 22%, P < 0.05) and amplitude (CR + EX: 34 +/- 14%, LCD: 30 +/- 20%, P < 0.05) but not to changes in secretory burst frequency or GH half-life. Fasting ghrelin was significantly increased from baseline in all three intervention groups; however, total IGF-1 concentrations were increased only in CR + EX (10 +/- 7%, P < 0.05) and LCD (19 +/- 4%, P < 0.001). A 25% CR diet for 6 months does not change GH, GH secretion or IGF-1 in nonobese men and women.
Collapse
Affiliation(s)
- Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | | | | | | | | | | |
Collapse
|
41
|
The decreased growth hormone response to growth hormone releasing hormone in obesity is associated to cardiometabolic risk factors. Mediators Inflamm 2010; 2010:434562. [PMID: 20150954 PMCID: PMC2817384 DOI: 10.1155/2010/434562] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/04/2009] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to evaluate the relationship between GHRH-induced GH secretion in obese premenopausal women and cardiovascular risk markers or insulin resistance.
Premenopausal obese women, aged 35–52 years, were studied. GH secretion, IGF-I, serum cardiovascular risk markers, insulin, leptin, mid-waist and hip circumference, total body fat, and truncal fat were measured. Subjects were classified as meeting the criteria for GH deficiency (GHD) when peak GH after stimulation with GHRH was ≤3 μg/L. Mean total and LDL cholesterol, fasting insulin, and HOMA-IR were all higher, in subjects who would have been classified as GH-deficient compared with GH-sufficient. Peak GH secretion after stimulation was inversely associated with fasting insulin (R = −0.650, P = .012), HOMA-IR (R = −0.846, P = .001), total cholesterol (R = −0.532, P = .034), and LDL cholesterol (R = −0.692, P = .006) and positively associated with HDL cholesterol (R = 0.561, P = .037).
These data strongly suggest a role for insulin resistance in the decreased GH secretion of obesity and that the blunted GH secretion of central obesity could be the pituitary expression of the metabolic syndrome.
Collapse
|
42
|
Irving BA, Weltman JY, Patrie JT, Davis CK, Brock DW, Swift D, Barrett EJ, Gaesser GA, Weltman A. Effects of exercise training intensity on nocturnal growth hormone secretion in obese adults with the metabolic syndrome. J Clin Endocrinol Metab 2009; 94:1979-86. [PMID: 19318453 PMCID: PMC2690422 DOI: 10.1210/jc.2008-2256] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Abdominal adiposity is associated with reduced spontaneous GH secretion, and an increased incidence of the metabolic syndrome, type 2 diabetes, and cardiovascular disease. Exercise training increases GH secretion, induces abdominal visceral fat loss, and has been shown to improve the cardiometabolic risk factor profile. However, little is known about the effects of endurance training intensity on spontaneous GH release in obese individuals. OBJECTIVE Our objective was to examine the effects of 16 wk endurance training on spontaneous 12-h overnight GH secretion in adults with the metabolic syndrome. DESIGN AND SETTING This randomized, controlled exercise intervention was conducted at the University of Virginia. PARTICIPANTS A total of 34 adults with the metabolic syndrome (mean +/- sem: age: 49.1 +/- 1.8 yr) participated. INTERVENTION Participants were randomized to one of three groups for 16 wk: no exercise training (control), low-intensity exercise training, or high-intensity training. MAIN OUTCOME MEASURE Change in nocturnal integrated GH area under the curve (AUC) was calculated. RESULTS Both exercise training conditions augmented within-group nocturnal GH AUC pretrain to post-training (low-intensity exercise training approximately (upward arrow) 49%, P < 0.05; and high-intensity training approximately (upward arrow) 65%, P < 0.01), and these changes were also greater than the changes in the control group (P < 0.01). The change in nocturnal GH AUC was inversely associated with the change in fat mass across the entire sample (r = -0.34; P = 0.051; n=34) but was not significantly associated with the change in abdominal visceral fat (r = 0.02; P = 0.920; n = 34). CONCLUSIONS Sixteen wk of supervised exercise training in adults with the metabolic syndrome increases spontaneous nocturnal GH secretion independent of exercise training intensity.
Collapse
Affiliation(s)
- Brian A Irving
- Department of Human Services, Center for the Study of Complementary and Alternative Therapies, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mihai CM, Catrinoiu D, Toringhibel M, Stoicescu RM, Ticuta NP, Anca H. Impaired IGF1-GH axis and new therapeutic options in Alström Syndrome patients: a case series. CASES JOURNAL 2009; 2:19. [PMID: 19128470 PMCID: PMC2648950 DOI: 10.1186/1757-1626-2-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 01/07/2009] [Indexed: 01/26/2023]
Abstract
Background Defects of the primary cilium and its anchoring structure, the basal body, cause a number of human genetic disorders, collectively termed ciliopathies: primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Alström syndrome, Meckel-Gruber syndrome and some forms of retinal degeneration. Alström syndrome is an extremely rare, autosomal recessive genetic disorder characterized by a group of signs and symptoms including infantile onset dilated cardiomyopathy, blindness, hearing impairment/loss, obesity, diabetes, hepatic and renal dysfunction. Because adult growth hormone deficiency and Alström Syndrome share some clinical and metabolic features, we studied the GH-IGF1 axis, using MRI techniques and dynamic tests in 3 unrelated patients with Alström syndrome. Case presentation The patients were hospitalized and the growth hormone stimulatory tests were made, as well as brain MRI. Insulin provocative test revealed a severe GH deficiency in these patients, defined by a peak response to insulin-induced hypoglycemia less than 3 ng/dl and IGF1 concentrations less than – 2SDS. We didn't find multiple pituitary hormone deficiency and we noticed only a severe GH deficiency in all three patients. The MRI study of the diencephalic and pituitary region was suggestive for the diagnosis of empty sella in one patient. One patient received Recombinant-GH replacement for one year with very good results, one underwent a gastric sleeve with a satisfactory outcome, one patient died due to the progression of the cardiac myopathy. Conclusion Future studies are needed to assses if the substitution therapy with Recombinant Growth hormone is cost-effective and without risk in such patients with Alström Syndrome and severe insulin resistance, despite our good results in one patient. Also, careful clinical and genetic studies can contribute to a better understanding of the evolution after different therapeutical attempt in the complex disorders such as Alström Syndrome.
Collapse
Affiliation(s)
- Cristina Maria Mihai
- "Ovidius" University Constanta, Faculty of Medicine, Constanta County Emergency Hospital, 145 Tomis Blvd, 900591, Constanta, Romania.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Children with perinatal HIV infection may present with clinical features of endocrine dysfunction such as growth failure and pubertal delay. Pediatric care providers and pediatric endocrinologists should implement appropriate preventive, screening, and therapeutic strategies to maximize survival and quality of life in these children. Growth and pubertal delay can be exacerbated by a variety of treatable infectious, endocrine, nutritional, and immunological disorders. Timely diagnosis and appropriate treatment of these conditions may lead to improvement or even normalization of growth and puberty. HIV-infected children with advanced disease should undergo periodic growth evaluation, including GH levels, IGF-I, IGF binding protein 3 and androgens, in order to identify subclinical endocrine dysfunction. However, little is known about the association between HIV infection and endocrine dysfunction in children. Highly active antiretroviral therapy may also be associated with endocrine dysfunction with consequences on growth and puberty. Growth retardation and pubertal delay are always seen in children with advanced HIV infection and are often related to the proinflammatory milieu found in advanced AIDS. Growth and pubertal impairment are markers of advanced disease and require proper evaluation. A dysregulation of the hypothalamic-pituitary axis, toxic or allergic drug reactions may play a role in growth and pubertal delay of HIV-infected children. These dysfunctions require careful monitoring, in order to assess metabolic alterations that may be important in regulation of growth among HIV infected children. Better understanding of the mechanisms leading to impairment of growth and puberty in children with perinatal HIV-1 infection might lead to appropriate treatment when required.
Collapse
Affiliation(s)
- E S Majaliwa
- Department of Paediatrics, University of Chieti, 66100 Chieti, Italy.
| | | | | |
Collapse
|
45
|
Bredella MA, Utz AL, Torriani M, Thomas B, Schoenfeld DA, Miller KK. Anthropometry, CT, and DXA as predictors of GH deficiency in premenopausal women: ROC curve analysis. J Appl Physiol (1985) 2008; 106:418-22. [PMID: 19095751 DOI: 10.1152/japplphysiol.90998.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visceral adiposity is a strong determinant of growth hormone (GH) secretion, and states of GH deficiency are associated with increased visceral adiposity and decreased lean body mass. The purpose of our study was to determine the sensitivity and specificity of different methods of assessing body composition [anthropometry, dual-energy X-ray absorptiometry (DXA), and computed tomography (CT)] to predict GH deficiency in premenopausal women and threshold values for each technique to predict GH deficiency, using receiver operator characteristic (ROC) curve analysis. We studied a group of 45 healthy lean, overweight, and obese premenopausal women who underwent anthropometric measurements (body mass index, waist and hip circumferences, skin fold thickness), DXA, CT, and a GH-releasing hormone-arginine stimulation test. ROC curve analysis was used to determine cutoff values for each method to identify GH deficiency. Visceral adiposity measured by CT showed the highest sensitivity and specificity for identifying subjects with GH deficiency with a cutoff of >9,962 mm(2) [area under the curve (AUC), 0.95; sensitivity, 100%; specificity, 77.8%; P = 0.0001]. Largest waist circumference showed high sensitivity and specificity with a cutoff of >101.7 cm (AUC, 0.89; sensitivity, 88.9%; specificity, 75%; P = 0.0001). When the ROC curves of visceral fat measured by CT and largest waist circumference were compared, the difference between the two methods was not statistically significant (P = 0.36). Our study showed that the largest waist circumference predicts the presence of GH deficiency in healthy premenopausal women with high sensitivity and specificity and nearly as well as CT measurement of visceral adiposity. It can be used to identify women in whom GH deficiency is likely and therefore in whom formal GH stimulation testing might be indicated.
Collapse
Affiliation(s)
- Miriam A Bredella
- Department of Radiology, Massachusetts General Hospita, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Moderate obesity is known to be associated with multiple endocrine abnormalities. Less information is available on the hormonal status of patients with morbid obesity and on the effects of major weight loss. We studied 16 severely obese (BMI 40.6-69.9 kg/m(2)) nondiabetic patients and 7 nonobese (BMI range 24.6-27.7 kg/m(2)), sex- and age-matched healthy volunteers. During 24 h in a metabolic ward, four meals were administered and hourly blood samples were drawn from a central venous catheter for the measurement of glucose, insulin, leptin, thyrotropic hormone (TSH), growth hormone (GH) and prolactin. Insulin sensitivity was measured by a euglycaemic hyperinsulinaemic clamp. Studies were repeated 6 months after biliopancreatic diversion, a mainly malabsorptive surgical approach, which caused an average weight loss of 35+/-4 kg (or 26+/-2% of initial weight). Compared with controls, patients were hyperinsulinaemic (290+/-31 vs 88+/-4 pmol l(-1), P=0.0002), insulin resistant (23.5+/-2.8 vs 52.9+/-4.9 micromol min(-1) kg(FFM)(-1), P=0.0006) and hyperleptinaemic (52.5+/-5.8 vs 10.9+/-3 ng ml(-1), P=0.0002). Plasma TSH levels were increased throughout the day-night cycle (averaging 2.02+/-0.18 vs 1.09+/-0.19 muU ml(-1) of controls, P=0.01), whereas serum GH levels were suppressed (0.46+/-0.10 vs 3.01+/-1.15, P=0.002). Following surgery, the hyperinsulinaemia and insulin resistance were fully normalized; in concomitance with a major drop in leptin levels (to 14.4+/-2.7 ng ml(-1), P=0.02), TSH decreased and GH increased to near-normal levels. In the whole dataset, mean 24-h leptin levels were directly related to mean 24-h TSH levels after controlling for confounders this relationship was lost only after adjusting for fat mass. We conclude that in morbid obesity leptin is a determinant of changes in pituitary function.
Collapse
|
47
|
Weltman A, Weltman JY, Watson Winfield DD, Frick K, Patrie J, Kok P, Keenan DM, Gaesser GA, Veldhuis JD. Effects of continuous versus intermittent exercise, obesity, and gender on growth hormone secretion. J Clin Endocrinol Metab 2008; 93:4711-20. [PMID: 18782875 PMCID: PMC2626448 DOI: 10.1210/jc.2008-0998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity attenuates spontaneous GH secretion and the GH response to exercise. Obese individuals often have low fitness levels, limiting their ability to complete a typical 30-min bout of continuous exercise. An alternative regimen in obese subjects may be shorter bouts of exercise interspersed throughout the day. OBJECTIVE The objective of the study was to examine whether intermittent and continuous exercise interventions evoke similar patterns of 24-h GH secretion and whether responses are attenuated in obese subjects or affected by gender. DESIGN This was a repeated-measures design in which each subject served as their own control. SETTING This study was conducted at the University of Virginia General Clinical Research Center. SUBJECTS Subjects were healthy nonobese (n = 15) and obese (n = 14) young adults. INTERVENTIONS Subjects were studied over 24 h at the General Clinical Research Center on three occasions: control, one 30-min bout of exercise, and three 10-min bouts of exercise. MAIN OUTCOME MEASURES Twenty-four hour GH secretion was measured. RESULTS Compared with unstimulated 24-h GH secretion, both intermittent and continuous exercise, at constant exercise intensity, resulted in severalfold elevation of 24-h integrated serum GH concentrations in young adults. Basal and pulsatile modes of GH secretion were attenuated both at rest and during exercise in obese subjects. CONCLUSIONS The present data suggest that continuous and intermittent exercise training should be comparably effective in increasing 24-h GH secretion.
Collapse
Affiliation(s)
- Arthur Weltman
- Department of Human Services, University of Virginia, Charlottesville, Virginia 22904, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Johannsson G. Central adiposity as an important confounder in the diagnosis of adult growth hormone deficiency. J Clin Endocrinol Metab 2008; 93:4221-3. [PMID: 18987280 DOI: 10.1210/jc.2008-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Utz AL, Yamamoto A, Sluss P, Breu J, Miller KK. Androgens may mediate a relative preservation of IGF-I levels in overweight and obese women despite reduced growth hormone secretion. J Clin Endocrinol Metab 2008; 93:4033-40. [PMID: 18647804 PMCID: PMC2579641 DOI: 10.1210/jc.2008-0930] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity is characterized by reduced GH secretion, but data regarding IGF-I levels and their determinants are conflicting. OBJECTIVES The objectives were to determine whether IGF-I levels are reduced and to investigate determinants of GH and IGF-I in healthy overweight and obese women. DESIGN A cross-sectional study was performed. SETTING The study was conducted at a General Clinical Research Center. STUDY PARTICIPANTS Thirty-four healthy women without pituitary/hypothalamic disease participated, including 11 lean [body mass index (BMI) <25 kg/m(2)], 12 overweight (BMI > or =25 kg/m(2) and <30 kg/m(2)), and 11 obese (BMI > or =30 kg/m(2)) women of comparable age (overall mean age, 30.7 +/- 7.8 yr). INTERVENTION There was no intervention. MAIN OUTCOME MEASURES The main outcome measures were frequent sampling (every 10 min for 24 h) for GH, peak GH after GHRH-arginine stimulation, IGF-I, IGF binding protein-3, estrone, estradiol, testosterone, free testosterone, SHBG, homeostasis model assessment of insulin resistance, and abdominal fat. RESULTS Mean 24-h GH and peak stimulated GH were lower in overweight than lean women and lowest in obese women. Mean IGF-I levels trended lower in obese, but not overweight, compared with lean women. Free testosterone was positively associated with IGF-I (R = 0.36, P = 0.04) but not with GH measures. Visceral fat was the only determinant of mean 24-h GH (R(2) = 0.66, P < 0.0001) and of peak stimulated GH (R(2) = 0.63, P < 0.0001), and mean 24-h GH accounted for 39% of the variability of IGF-I (P = 0.0002), with an additional 28% (P < 0.0001) attributable to free testosterone levels. CONCLUSIONS Despite a linear decrease in GH secretion and peak stimulated GH levels with increasing BMI in healthy overweight and obese women, IGF-I levels were not commensurately reduced. Androgens may contribute to this relative preservation of IGF-I secretion in overweight and obese women despite reduced GH secretion.
Collapse
Affiliation(s)
- A L Utz
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
50
|
|