1
|
Yang S, Li X, Yan J, Jiang F, Fan X, Jin J, Zhang W, Zhong D, Li G. Disulfiram downregulates ferredoxin 1 to maintain copper homeostasis and inhibit inflammation in cerebral ischemia/reperfusion injury. Sci Rep 2024; 14:15175. [PMID: 38956251 PMCID: PMC11219760 DOI: 10.1038/s41598-024-64981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shuai Yang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xudong Li
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Jinhong Yan
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Fangchao Jiang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xuehui Fan
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Jing Jin
- Heilongjiang Provincial Hospital, Harbin, China
| | - Weihua Zhang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Di Zhong
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
| | - Guozhong Li
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
- Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
2
|
Wu Y, Wang X, Zhang J, Du S, Wang Z, Li J, Zhang W, Xiang J, Li R, Liu J, Bi X. Capsaicin combined with stem cells improved mitochondrial dysfunction in PIG3V cells, an immortalized human vitiligo melanocyte cell line, by inhibiting the HSP70/TLR4/mTOR/FAK signaling axis. Mol Biol Rep 2024; 51:650. [PMID: 38734811 DOI: 10.1007/s11033-024-09592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.
Collapse
Affiliation(s)
- Yifei Wu
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Xiaochuan Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jiayu Zhang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Sha Du
- Department of Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Zhiqiong Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jinrong Li
- Department of Dermatology, Traditional Chinese Medicine Hospital of Jinggu County, Pu'er, Yunnan, 666400, China
| | - Wenhe Zhang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jie Xiang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Renfu Li
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jing Liu
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Xin Bi
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
3
|
Yang M, Zhang C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J Pharm Anal 2024; 14:39-51. [PMID: 38352948 PMCID: PMC10859537 DOI: 10.1016/j.jpha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
Collapse
Affiliation(s)
- Min Yang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
4
|
Cai F, Chen W, Zhao R, Liu Y. The capacity of exosomes derived from adipose-derived stem cells to enhance wound healing in diabetes. Front Pharmacol 2023; 14:1063458. [PMID: 37808198 PMCID: PMC10551633 DOI: 10.3389/fphar.2023.1063458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The slow healing and nonhealing of diabetic wounds have long posed challenges for clinical practitioners. In the presence of elevated glucose levels, the body's regulatory mechanisms undergo alterations that impede normal wound healing processes, including cell proliferation, cytokine release, and growth factor activity. Consequently, the advancement of stem cell technology has sparked growing interest in utilizing stem cells and their derivatives as potential therapeutic agents to enhance diabetic wound healing. This paper aims to provide an academic review of the therapeutic effects of adipose-derived stem cell-EXOs (ADSC-EXOs) in diabetic wound healing. As a cell-free therapy, exosomes (EXOs) possess a multitude of proteins and growth factors that have been shown to be advantageous in promoting wound healing and mitigating the potential risks associated with stem cell therapy. By examining the current knowledge on ADSC-EXOs, this review seeks to offer insights and guidance for the potential application of EXOs in the treatment of diabetic wounds.
Collapse
Affiliation(s)
| | | | | | - Yi Liu
- Department of Burns and Plastic Surgery, and Wound Repair Surgery, The Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
6
|
Albumin-induced premature senescence in human renal proximal tubular cells and its relationship with intercellular fibrosis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:893-903. [PMID: 35713317 PMCID: PMC9828402 DOI: 10.3724/abbs.2022055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The presence of senescent cells is associated with renal fibrosis. This study aims to investigate the effect of albumin-induced premature senescence on tubulointerstitial fibrosis and its possible mechanism in vitro. Different concentrations of bovine serum albumim (BSA) with or without si-p21 are used to stimulate HK-2 cells for 72 h, and SA-β-gal activity, senescence-associated secretory phenotypes (SASPs), LaminB1 are used as markers of senescence. Immunofluorescence staining is performed to characterize the G2/M phase arrest between the control and BSA groups. Alterations in the DNA damage marker γ-H2AX, fibrogenesis, and associated proteins at the G2/M phase, such as p21, p-CDC25C and p-CDK1, are evaluated. Compared with those in the control group, the SA-β-gal activity, SASP, and γ-H2AX levels are increased in the BSA group, while the level of LaminB1 is decreased. Meanwhile, HK-2 cells blocked at the G2/M phase are significantly increased under the stimulation of BSA, and the levels of p21, p-CDC25C and p-CDK1, as well as fibrogenesis are also increased. When p21 expression is inhibited, the levels of p-CDC25C and p-CDK1 are decreased and the G2/M phase arrest is improved, which decreases the production of fibrogenesis. In conclusion, BSA induces renal tubular epithelial cell premature senescence, which regulates the G2/M phase through the CDC25C/CDK1 pathway, leading to tubulointerstitial fibrosis.
Collapse
|
7
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Kabasawa K, Hosojima M, Ito Y, Matsushima K, Tanaka J, Hara M, Nakamura K, Narita I, Saito A. Association of metabolic syndrome traits with urinary biomarkers in Japanese adults. Diabetol Metab Syndr 2022; 14:9. [PMID: 35033174 PMCID: PMC8760661 DOI: 10.1186/s13098-021-00779-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although metabolic syndrome traits are risk factors for chronic kidney disease, few studies have examined their association with urinary biomarkers. METHODS Urinary biomarkers, including A-megalin, C-megalin, podocalyxin, albumin, α1-microglobulin, β2-microglobulin, and N-acetyl-β-D-glucosaminidase, were cross-sectionally assessed in 347 individuals (52.7% men) with a urine albumin-to-creatinine ratio (ACR) < 300 mg/g in a health checkup. Metabolic syndrome traits were adopted from the National Cholesterol Education Program (third revision) of the Adult Treatment Panel criteria modified for Asians. RESULTS Participants had a mean body mass index, estimated glomerular filtration rate (eGFR), and median ACR of 23.0 kg/m2, 74.8 mL/min/1.73 m2, and 7.5 mg/g, respectively. In age- and sex-adjusted logistic regression analysis, A-megalin and albumin were significantly associated with the clustering number of metabolic syndrome traits (3 or more). After further adjustment with eGFR, higher quartiles of A-megalin and albumin were each independently associated with the clustering number of metabolic syndrome traits (adjusted odds ratio for A-megalin: 1.30 per quartile, 95% CI 1.03-1.64; albumin: 1.42 per quartile, 95% CI 1.12-1.79). CONCLUSIONS Both urinary A-megalin and albumin are associated with the clustering number of metabolic syndrome traits. Further research on urinary A-megalin is warranted to examine its role as a potential marker of kidney damage from metabolic risk factors.
Collapse
Affiliation(s)
- Keiko Kabasawa
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Michihiro Hosojima
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Ito
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Junta Tanaka
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Kazutoshi Nakamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiei Narita
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
9
|
Ding LX, Zhang J, Yang SS, Wu J, Su T, Wang WM. Heat Shock Proteins 70 Regulate Cell Motility and Invadopodia-Associated Proteins Expression in Oral Squamous Cell Carcinoma. Front Endocrinol (Lausanne) 2022; 13:890218. [PMID: 35957827 PMCID: PMC9362981 DOI: 10.3389/fendo.2022.890218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Many studies have shown that diabetes is often closely related to oral squamous cell carcinoma (OSCC) occurrence and metastasis. Heat shock protein 70 (Hsp70) is a molecular chaperone related to diabetes complications. This study aims to investigate the role of Hsp70 in OSCC in expression of invadopodia-associated proteins. METHODS The expressions and correlation of HSP70, Hif1α, MMP2, MMP14, and cortactin were examined using bioinformatics analysis and verified by OSCC tissue microarrays. Assay in vitro was performed to analyze cell migration capacity after treatment with or without the HSP70 inhibitor. RESULTS The expressions of invadopodia-associated proteins were enhanced in OSCC tissues compared with paracarcinoma tissues and partially correlated with HSP70. Inhibiting HSP70 significantly decreased the cell viability, proliferation, and migration of OSCC cells. CONCLUSIONS HSP70 may be involved in invadopodia-associated proteins in OSCC cells, which provides a promising method for treatment of OSCC metastasis.
Collapse
Affiliation(s)
- Le-Xi Ding
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| | - Jing Zhang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
| | - Si-Si Yang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Wu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wei-Ming Wang,
| |
Collapse
|
10
|
Salama A, Asaad GF, Shaheen A. Chrysin ameliorates STZ-induced diabetes in rats: possible impact of modulation of TLR4/NF-κβ pathway. Res Pharm Sci 2021; 17:1-11. [PMID: 34909039 PMCID: PMC8621845 DOI: 10.4103/1735-5362.329921] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/19/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background and purpose: Growing evidence advocates that upregulation of toll-like receptor 4 (TLR4) has been suggested as a causative influence in the development and complications of diabetes mellitus. We aimed to study the antidiabetic activity of chrysin against streptozotocin (STZ)-induced diabetes via down-regulation of TLR4/nuclear factor (NF-κβ)/heat shock protein 70 (HSP70) pathway as well as modulation of clusters of differentiation 4 (CD4+) in rats. Experimental approach: Fifty rats were divided into five groups (n = 10). Group I, normal rats received a single intraperitoneal injection of buffer citrate; group II, STZ-induced diabetic rats; groups III-V, diabetic rats received glimepiride (0.5 mg/kg; p.o.) or chrysin (40 and 80 mg/kg; p.o.) respectively, for 10 days. Serum samples were extracted to determine nitric oxide (NO), malondialdehyde (MDA), and reduced glutathione (GSH), insulin, CD4+, TLR4, and NF-κβ. Pancreatic tissue samples were extracted to determine glucose transporter 2 (GLUT2). Part of the pancreas was kept in formalin for pathological studies. Findings/Results: An elevation in blood glucose, NO, and MDA serum levels and a reduction of pancreatic GLUT2 content, insulin, and GSH serum levels were observed in diabetic rats. STZ injection, also, showed an increase in serum TLR4, NF-κβ, and HSP70 levels and a reduction in serum CD4+ levels with pancreatic cells necrosis. These biochemical and histological changes were reversed in glimepiride and chrysin groups. Conclusion and implications: The present study proved that chrysin has a potent anti-diabetic effect through the elevation of insulin and GLUT2 levels, the reduction of oxidative stress, and the inflammatory pathways TLR4/NF-κβ/HSP70 with the regulation of CD4+.
Collapse
Affiliation(s)
- Abeer Salama
- Department of Pharmacology, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Gihan F Asaad
- Department of Pharmacology, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Aya Shaheen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Egypt
| |
Collapse
|
11
|
Shi L, Meng J, Zhang B, Chen J, Chen J, Zhang J. Elevated Serum Levels of Carbohydrate Antigen 72-4 in Diabetic Kidney Disease. Exp Clin Endocrinol Diabetes 2021; 130:400-405. [PMID: 34607374 DOI: 10.1055/a-1532-4576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to determine whether carbohydrate antigen 72-4 (CA72-4) is elevated in diabetic kidney disease (DKD), and examine the association between urinary albumin-to-creatinine ratio (UACR) and CA72-4 in patients with type 2 diabetes mellitus (T2DM). Non-dialysis patients with T2DM (n=296) and 90 healthy controls were recruited in this study. CA72-4 level was measured by electrochemiluminescence immunoassay. DKD was defined as UACR≥ 30 mg/g in the absence of a urinary infection or other renal diseases. We found that patients with DKD had significantly higher serum CA72-4 levels compared to those with normoalbuminuria and healthy controls. Positive rates of CA72-4 increased gradually and markedly from normoalbuminuria to microalbuminuria and to macroalbuminuria in diabetic patients (7.5, 11.2, and 17.4%, respectively; P for trend< 0.05). CA72-4 also showed a positive correlation with UACR (r=0.288, P< 0.01). Logistic regression analysis revealed the association of increased UACR with an increased odds ratio of elevation of CA72-4 levels (P for trend< 0.05) after multivariable adjustment. In conclusion, serum levels of CA72-4 increase abnormally with the increase in urinary albumin excretion, which affects the specificity of diagnosis of malignancies. An appropriate interpretation of CA72-4 is essential to prevent unnecessary and even hazardous diagnostic procedures in patients with T2DM.
Collapse
Affiliation(s)
- Lei Shi
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiali Meng
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zhang
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiandong Chen
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzhong Chen
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Zhang
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Lundy J, Gearing LJ, Gao H, West AC, McLeod L, Deswaerte V, Yu L, Porazinski S, Pajic M, Hertzog PJ, Croagh D, Jenkins BJ. TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma. Oncogene 2021; 40:6007-6022. [PMID: 34400766 DOI: 10.1038/s41388-021-01992-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, and is plagued by a paucity of targeted treatment options and tumour resistance to chemotherapeutics. The causal link between chronic inflammation and PDAC suggests that molecular regulators of the immune system promote disease pathogenesis and/or therapeutic resistance, yet their identity is unclear. Here, we couple endoscopic ultrasound-guided fine-needle aspiration, which captures tumour biopsies from all stages, with whole transcriptome profiling of PDAC patient primary tumours to reveal enrichment of the innate immune Toll-like receptor 2 (TLR2) molecular pathway. Augmented TLR2 expression associated with a 4-gene "TLR2 activation" signature, and was prognostic for survival and predictive for gemcitabine-based chemoresistance. Furthermore, antibody-mediated anti-TLR2 therapy suppressed the growth of human PDAC tumour xenografts, independent of a functional immune system. Our results support TLR2-based therapeutic targeting for precision medicine in PDAC, with further clinical utility that TLR2 activation is prognostic and predictive for chemoresponsiveness.
Collapse
Affiliation(s)
- Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Hugh Gao
- Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, VIC, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Sean Porazinski
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Daniel Croagh
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, VIC, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
13
|
Tian L, Fu P, Zhou M, Qi J. Dandelion sterol improves diabetes mellitus-induced renal injury in in vitro and in vivo study. Food Sci Nutr 2021; 9:5183-5197. [PMID: 34532027 PMCID: PMC8441455 DOI: 10.1002/fsn3.2491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of our research was to evaluate Dandelion sterol's treatment effects on diabetes mellitus-induced renal injury in in vitro and in vivo study. The rats were divided into five groups as normal control (Ctrl), diabetic nephropathy model (Model), Dandelion sterol low-dose treated (Dan-Low), Dandelion sterol middle-dose treated (Dan-Middle), and Dandelion sterol high-dose treated (Dan-High). Measuring serum TNF-α, IL-1β, and IL-6 concentrations by Elisa assay, evaluate kidney pathology by HE staining, kidney cell apoptosis of TUNEL, TLR4, and NF-κB(p65) proteins expression by IHC assay, and relative gene expressions by RT-qPCR assay. In the following step, using HK-2 treated with high glucose to model DN cell model to discuss the relative mechanisms, evaluate TNF-α, IL-1β, and IL-6 concentrations by Elisa assay, evaluate cell apoptosis by flow cytometry, evaluate TLR4 and NF-κB(p65) proteins expression by WB assay, relative gene expression by RT-qPCR assay, and NF-κB(p65) nuclear volume by cellular immunofluorescence. Compared with Ctrl group, TNF-α, IL-1β, and IL-6 concentrations and apoptosis cell number were significantly increased, TLR4/NF-κB(p65) pathway was significantly stimulated in Model rats and cell groups. With Dan supplement, the diabetic-induced renal injury was significantly improved (p < .05, respectively). By cell experiment, Dan improved cell apoptosis and inflammatory factors via miR-140-5p. Dan improved diabetes mellitus-induced renal injury via regulation of miR-140-5p/TLR4 axis in in vitro and in vivo study.
Collapse
Affiliation(s)
- Lin Tian
- Department of PathologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Peng Fu
- Department of Nuclear MedicineThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Min Zhou
- Department of PathologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiping Qi
- Department of PathologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
14
|
Wan S, Wan S, Jiao X, Cao H, Gu Y, Yan L, Zheng Y, Niu P, Shao F. Advances in understanding the innate immune-associated diabetic kidney disease. FASEB J 2021; 35:e21367. [PMID: 33508160 DOI: 10.1096/fj.202002334r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022]
Abstract
Millions of human deaths occur annually due to chronic kidney disease, caused by diabetic kidney disease (DKD). Despite having effective drugs controlling the hyperglycemia and high blood pressure, the incidence of DKD is increasing, which indicates the need for the development of novel therapies to control DKD. In this article, we discussed the recent advancements in the basic innate immune mechanisms in renal tissues triggered under the diabetes environment, leading to the pathogenesis and progression of DKD. We also summarized the currently available innate immune molecules-targeting therapies tested against DKD in clinical and preclinical settings, and highlighted additional drug targets that could potentially be employed for the treatment of DKD. The improved understanding of the disease pathogenesis may open avenues for the development of novel therapies to rein in DKD, which consequently, can reduce morbidity and mortality in humans in the future.
Collapse
Affiliation(s)
- Shengfeng Wan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Shengkai Wan
- Department of Operations Management, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Yan Zheng
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Peiyuan Niu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| |
Collapse
|
15
|
Jafari Khataylou Y, Ahmadi Afshar S, Mirzakhani N. Betulinic acid reduces the complications of autoimmune diabetes on the body and kidney through effecting on inflammatory cytokines in C57BL/6 mice. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:203-210. [PMID: 34345387 PMCID: PMC8328255 DOI: 10.30466/vrf.2019.101178.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/08/2019] [Indexed: 11/09/2022]
Abstract
Autoimmune diabetes is one of the most common metabolic diseases with increasing prevalence in the past decades in which pancreatic Langerhans β cells are destroyed and lead to lack of insulin due to increased blood sugar. One of the consequences of diabetes is glomerular disease of the kidney, also called diabetes nephropathy. Different studies have been carried out on the effects of triterpenoids and their medicinal effects on diabetes mellitus. betulinic acid, a pentacyclic triterpenoid of Terpenes, is found in bushes and trees. Its medical effects are also approved by many studies. In this survey, we studied the effect of betulinic acid on diabetic inbred C57BL/6 male mice. They were randomly divided to three groups. Group A: Consisted of healthy mice which received citrate buffer. Group B: Diabetic mice without any treatment and group C: Treated diabetic mice with betulinic acid. The level of blood insulin level, fasting blood glucose, C-peptide, TNF-α, IFN-γ, and IL-1 cytokines were measured and pathologic studies of the kidney were performed. The results showed that betulinic acid could increase insulin and C-peptide, and decrease fasting blood sugar, kidney lesions and TNF-α, IFN-γ, IL-1 in the treated groups. The differences were significant except for IL-1. Betulinic acid through reduction of inflammatory cytokines could have positive effects on inflammatory and autoimmune disease including autoimmune diabetes.
Collapse
Affiliation(s)
- Yaser Jafari Khataylou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Somayyeh Ahmadi Afshar
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Navideh Mirzakhani
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
16
|
Cudrania tricuspidata Root Extract Prevents Methylglyoxal-Induced Inflammation and Oxidative Stress via Regulation of the PKC-NOX4 Pathway in Human Kidney Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5511881. [PMID: 33859775 PMCID: PMC8026309 DOI: 10.1155/2021/5511881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy is a microvascular complication induced by diabetes, and methylglyoxal (MGO) is a reactive carbonyl species causing oxidative stress that contributes to the induction of inflammatory response in kidney cells. Cudrania tricuspidata (CT), cultivated in Northeast Asia, has been used as traditional medicine for treating various diseases, including neuritis, liver damage, and cancer. In this study, we determined whether a CT root extract (CTRE) can prevent MGO-induced reactive oxygen species (ROS) production and inflammation and assessed underlying mechanisms using a kidney epithelial cell line, HK-2. We observed that CTRE inhibited MGO-induced ROS production. Additionally, CTRE ameliorated the activation of MGO-induced inflammatory signaling pathways such as p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and c-JUN N-terminal kinase (JNK). Consistent with these results, expressions of p-nuclear factor-kappa B (NFκB) and inflammatory cytokines, tumor necrosis factor-α, interleukin- (IL-) 1β, and IL-6, were decreased when compared with MGO-only exposed HK-2 cells. CTRE alleviated the MGO-induced decrease in nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and antioxidant enzyme mRNA expressions. MGO induced the expression of NADPH oxidase 4 (NOX4); CTRE pretreatment inhibited this induction. Further studies revealed that the NOX4 expression was inhibited owing to the suppression of MGO-induced protein kinase C (PKC) activation following CTRE treatment. Collectively, our data suggest that CTRE attenuates MGO-induced inflammation and oxidative stress via inhibition of PKC activation and NOX4 expression, as well as upregulating the Nrf2-antioxidant enzyme pathway in HK-2 cells.
Collapse
|
17
|
Chang J, Yan J, Li X, Liu N, Zheng R, Zhong Y. Update on the Mechanisms of Tubular Cell Injury in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:661076. [PMID: 33859992 PMCID: PMC8042139 DOI: 10.3389/fmed.2021.661076] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence supports a role of proximal tubular (PT) injury in the progression of diabetic kidney disease (DKD), in patients with or without proteinuria. Research on the mechanisms of the PT injury in DKD could help us to identify potential new biomarkers and drug targets for DKD. A high glucose transport state and mismatched local hypoxia in the PT of diabetes patients may be the initiating factors causing PT injury. Other mechanism such as mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, ER stress, and deficiency of autophagy interact with each other leading to more PT injury by forming a vicious circle. PT injury eventually leads to the development of tubulointerstitial inflammation and fibrosis in DKD. Many downstream signaling pathways have been demonstrated to mediate these diseased processes. This review focuses mostly on the novel mechanisms of proximal renal tubular injury in DKD and we believe such review could help us to better understand the pathogenesis of DKD and identify potential new therapies for this disease.
Collapse
Affiliation(s)
- Jingsheng Chang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Yan
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ni Liu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zheng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Nakatsuka A, Yamaguchi S, Eguchi J, Kakuta S, Iwakura Y, Sugiyama H, Wada J. A Vaspin-HSPA1L complex protects proximal tubular cells from organelle stress in diabetic kidney disease. Commun Biol 2021; 4:373. [PMID: 33742129 PMCID: PMC7979793 DOI: 10.1038/s42003-021-01902-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Proximal tubular cells (PTCs) are crucial for maintaining renal homeostasis, and tubular injuries contribute to progression of diabetic kidney disease (DKD). However, the roles of visceral adipose tissue-derived serine protease inhibitor (vaspin) in the development of DKD is not known. We found vaspin maintains PTCs through ameliorating ER stress, autophagy impairment, and lysosome dysfunction in DKD. Vaspin-/- obese mice showed enlarged and leaky lysosomes in PTCs associated with increased apoptosis, and these abnormalities were also observed in the patients with DKD. During internalization into PTCs, vaspin formed a complex with heat shock protein family A (Hsp70) member 1 like (HSPA1L) as well as 78 kDa glucose-regulated protein (GRP78). Both vaspin-partners bind to clathrin heavy chain and involve in the endocytosis. Notably, albumin-overload enhanced extracellular release of HSPA1L and overexpression of HSPA1L dissolved organelle stresses, especially autophagy impairment. Thus, vapsin/HSPA1L-mediated pathways play critical roles in maintaining organellar function of PTCs in DKD.
Collapse
Affiliation(s)
- Atsuko Nakatsuka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, 700-8558, Japan.
- Division of Kidney, Diabetes and Endocrine Diseases, Okayama University Hospital, Kita-ku, Okayama, 700-8558, Japan.
| | - Satoshi Yamaguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, 700-8558, Japan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, 700-8558, Japan
| | - Shigeru Kakuta
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, 278-0022, Japan
| | - Hitoshi Sugiyama
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, 700-8558, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
19
|
Pagotto MA, Roldán ML, Molinas SM, Raices T, Pisani GB, Pignataro OP, Monasterolo LA. Impairment of renal steroidogenesis at the onset of diabetes. Mol Cell Endocrinol 2021; 524:111170. [PMID: 33482284 DOI: 10.1016/j.mce.2021.111170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022]
Abstract
Accumulating evidence indicates the association between changes in circulating sex steroid hormone levels and the development of diabetic nephropathy. However, the renal synthesis of steroid hormones during diabetes is essentially unknown. Male Wistar rats were injected with streptozotocin (STZ) or vehicle. After one week, no changes in functional or structural parameters related to kidney damage were observed in STZ group; however, a higher renal expression of proinflammatory cytokines and HSP70 was found. Expression of Steroidogenic Acute Regulatory protein (StAR) and P450scc (CYP11A1) was decreased in STZ kidneys. Incubation of isolated mitochondria with 22R-hydroxycholesterol revealed a marked inhibition in CYP11A1 function at the medullary level in STZ group. The inhibition of these first steps of renal steroidogenesis in early STZ-induced diabetes led to a decreased local synthesis of pregnenolone and progesterone. These findings stimulate investigation of the probable role of nephrosteroids in kidney damage associated with diabetes.
Collapse
Affiliation(s)
- Melina A Pagotto
- Institute of Experimental Physiology, National Scientific and Technical Research Council (IFISE-CONICET), Suipacha 531, PC 2000, Rosario, Argentina.
| | - María L Roldán
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, PC 2000, Rosario, Argentina.
| | - Sara M Molinas
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, PC 2000, Rosario, Argentina; National Scientific and Technical Research Council (CONICET), Argentina.
| | - Trinidad Raices
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine (IBYME)- National Scientific and Technical Research Council (CONICET), PC C1428ADN, Buenos Aires, Argentina.
| | - Gerardo B Pisani
- Morphology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, PC 2000, Rosario, Argentina.
| | - Omar P Pignataro
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine (IBYME)- National Scientific and Technical Research Council (CONICET), PC C1428ADN, Buenos Aires, Argentina; Department of Biological Chemistry, School of Sciences, University of Buenos Aires (UBA), PC 1428, Buenos Aires, Argentina.
| | - Liliana A Monasterolo
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, PC 2000, Rosario, Argentina; National Scientific and Technical Research Council (CONICET), Argentina; Research Council of the National University of Rosario (CIC-UNR), Argentina.
| |
Collapse
|
20
|
Liu M, Zen K. Toll-Like Receptors Regulate the Development and Progression of Renal Diseases. KIDNEY DISEASES 2021; 7:14-23. [PMID: 33614730 DOI: 10.1159/000511947] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Background Stimulated by both microbial and endogenous ligands, toll-like receptors (TLRs) play an important role in the development and progression of renal diseases. Summary As a highly conserved large family, TLRs have 11 members in humans (TLR1∼TLR11) and 13 members in mouse (TLR1∼TLR13). It has been widely reported that TLR2 and TLR4 signaling, activated by both exogenous and endogenous ligands, promote disease progression in both renal ischemia-reperfusion injury and diabetic nephropathy. TLR4 also vitally functions in CKD and infection-associated renal diseases such as pyelonephritis induced by urinary tract infection. Stimulation of intracellular TLR7/8 and TLR9 by host-derived nucleic acids also plays a key role in systemic lupus erythematosus. Given that certain microRNAs with GU-rich sequence have recently been found to be able to serve as TLR7/8 ligands, these microRNAs may initiate pro-inflammatory signal via activating TLR signal. Moreover, as microRNAs can be transferred across different organs via cell-secreted exosomes or protein-RNA complex, the TLR signaling activated by the miRNAs released by other injured organs may also result in renal dysfunction. Key Messages In this review, we sum up the recent progress in the role of TLRs in various forms of glomerulonephritis and discuss the possible prevention or therapeutic strategies for clinic treatment to renal diseases.
Collapse
Affiliation(s)
- Minghui Liu
- School of Life Science and Technology, Chinese Pharmaceutical University, Nanjing, China
| | - Ke Zen
- School of Life Science and Technology, Chinese Pharmaceutical University, Nanjing, China.,School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Jha AK, Gairola S, Kundu S, Doye P, Syed AM, Ram C, Murty US, Naidu VGM, Sahu BD. Toll-like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sci 2021; 271:119155. [PMID: 33548286 DOI: 10.1016/j.lfs.2021.119155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Acute kidney injury (AKI) is a progressive renal complication which significantly affects the patient's life with huge economic burden. Untreated acute kidney injury eventually progresses to a chronic form and end-stage renal disease. Although significant breakthroughs have been made in recent years, there are still no effective pharmacological therapies for the treatment of acute kidney injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response plays a pivotal role in the pathogenesis of acute kidney injury. The expression of TLR4 has been seen in resident renal cells, including podocytes, mesangial cells, tubular epithelial cells and endothelial cells. Activation of TLR4 signaling regulates the transcription of numerous pro-inflammatory cytokines and chemokines, resulting in renal inflammation. Therefore, targeting TLR4 and its downstream effectors could serve as an effective therapeutic intervention to prevent renal inflammation and subsequent kidney damage. For the first time, this review summarizes the literature on acute kidney injury from the perspective of TLR4 from year 2010 to 2020. In the current review, the role of TLR4 signaling pathway in AKI with preclinical evidence is discussed. Furthermore, we have highlighted several compounds of natural and synthetic origin, which have the potential to avert the renal TLR4 signaling in preclinical AKI models and have shown protection against AKI. This scientific review provides new ideas for targeting TLR4 in the treatment of AKI and provides strategies for the drug development against AKI.
Collapse
Affiliation(s)
- Ankush Kumar Jha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Pakpi Doye
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India.
| |
Collapse
|
22
|
Duan S, Chen J, Wu L, Nie G, Sun L, Zhang C, Huang Z, Xing C, Zhang B, Yuan Y. Assessment of urinary NGAL for differential diagnosis and progression of diabetic kidney disease. J Diabetes Complications 2020; 34:107665. [PMID: 32653382 DOI: 10.1016/j.jdiacomp.2020.107665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/03/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Chronic kidney disease (CKD) related to diabetes has become more common than glomerulonephritis in recent years. Given the inefficient and difficult identification of diabetic kidney disease (DKD) from non-diabetic kidney disease (NDKD) as well as a result of emerging evidence supporting a role for tubular involvement in DKD, we aimed to investigate the utility of urinary neutrophil gelatinase-associated lipocalin (uNGAL) in the differential diagnosis and predictive value of DKD from NDKD. METHODS Data for 100 type 2 diabetic patients with CKD at our center from June 2016 to August 2019 were reviewed. All the patients were categorized into 2 groups by the renal biopsy results: DKD and NDKD. Urinary NGAL levels were normalized by urinary creatinine and calculated as uNGAL/creatinine ratios (uNCR). The independent factors of the occurrence of DKD and the diagnostic implications of uNCR were explored by logistic regression and receiver-operating characteristic (ROC) curve analysis. In addition, we analyzed the relationship between uNCR and proteinuria in patients with DKD by Pearson test and linear regression. Kaplan-Meier survival analysis was performed to assess the prospective association of uNCR with the renal outcome. RESULTS Significantly higher levels of uNCR were observed in patients with DKD when compared to those with NDKD (28.65 ng/mg vs 27.47 ng/mg, p< .001). uNCR was identified as an independent risk factor for the occurrence of DKD in diabetic patients with CKD (odds ratio [OR] = 1.020; 95%CI = [1.001-1.399], p = .042). The optimal cutoff value of uNCR for predicting DKD was 60.685 ng/mg with high specificity (90.5%) but relatively low sensitivity (55.7%). In Pearson test, uNCR was positively correlated with proteinuria, serum creatine, blood urea nitrogen, duration of diabetes, interstitial inflammation score and global sclerosis, whereas it was inversely correlated with eGFR, hemoglobin, serum albumin and 25-hydroxy vitamin D. Furthermore, in a fully adjusted model including eGFR, serum albumin and total cholesterol, the group with uNCR>60.685 ng/mg was associated with 7.595 times higher likelihood of nephrotic-range proteinuria compared to the group with uNCR≤60.685 ng/mg. In the Kaplan-Meier survival analysis, the event-free survival probability in patients with uNCR>60.685 ng/mg was significantly lower than those with uNCR≤60.685 ng/mg (p = .048). CONCLUSIONS uNCR might serve as a potential tool for identifying cases in which there was a high clinical suspicion of DKD and that in whom confirmatory biopsy could be considered, and the best predictive cutoff value of normalized uNCR for DKD diagnosis was 60.685 ng/mg. Type 2 diabetic patients with increased level of uNCR had higher risk to nephrotic-range proteinuria and worse renal outcome.
Collapse
Affiliation(s)
- Suyan Duan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiajia Chen
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Guangyan Nie
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lianqin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chengning Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhimin Huang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Bo Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
New Insights into the Mechanisms of Pyroptosis and Implications for Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21197057. [PMID: 32992874 PMCID: PMC7583981 DOI: 10.3390/ijms21197057] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Pyroptosis is one special type of lytic programmed cell death, featured in cell swelling, rupture, secretion of cell contents and remarkable proinflammation effect. In the process of pyroptosis, danger signalling and cellular events are detected by inflammasome, activating caspases and cleaving Gasdermin D (GSDMD), along with the secretion of IL-18 and IL-1β. Pyroptosis can be divided into canonical pathway and non-canonical pathway, and NLRP3 inflammasome is the most important initiator. Diabetic kidney disease (DKD) is one of the most serious microvascular complications in diabetes. Current evidence reported the stimulatory role of hyperglycaemia-induced cellular stress in renal cell pyroptosis, and different signalling pathways have been shown to regulate pyroptosis initiation. Additionally, the inflammation and cellular injury caused by pyroptosis are tightly implicated in DKD progression, aggravating renal fibrosis, glomerular sclerosis and tubular injury. Some registered hypoglycaemia agents exert suppressive activity in pyroptosis regulation pathway. Latest studies also reported some potential approaches to target the pyroptosis pathway, which effectively inhibits renal cell pyroptosis and alleviates DKD in in vivo or in vitro models. Therefore, comprehensively compiling the information associated with pyroptosis regulation in DKD is the main aim of this review, and we try to provide new insights for researchers to dig out more potential therapies of DKD.
Collapse
|
24
|
Mabuza LP, Gamede MW, Maikoo S, Booysen IN, Ngubane PS, Khathi A. Amelioration of risk factors associated with diabetic nephropathy in diet-induced pre-diabetic rats by an uracil-derived diimine ruthenium(II) compound. Biomed Pharmacother 2020; 129:110483. [PMID: 32768965 DOI: 10.1016/j.biopha.2020.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022] Open
Abstract
Diabetic renal injury advances through different stages of structural and functional changes in the glomerulus, therefore treatment during the pre-diabetic state could be used as therapeutic target in the management and prevention of diabetic nephropathy (DN). Once diagnosed, dietary interventions and pharmacological therapy have been recommended to manage DN and pre-diabetic related complications. However, poor patient compliance still results, therefore newer alternative drugs are required. High fat high carbohydrates (HFHC) diet was used to induce pre-diabetes for 20 weeks. After the induction, pre-diabetic rats were randomly allocated to respective treatment groups. Subcutaneous ruthenium(II) Schiff base complex injection (15 mg/kg) was administered to pre-diabetic rats in both the presence and absence of dietary intervention once a day every third day for 12 weeks. The administration of ruthenium(II) complex resulted in reduced blood glucose, aldosterone, fluid intake and urinary output which correlated with a restoration in plasma and urinary electrolytes along with plasma antioxidants concentration. Furthermore, there was a decrease in kidney injury molecule-1 (KIM-1) concentration, albumin excretion rate (AER) albumin creatinine ratio (ACR) and mRNA expression of podocin in urine in ruthenium-treated pre-diabetic rats. Ruthenium(II) Schiff base complex ameliorated renal function while preventing the progression of DN in prediabetic-treated rats.
Collapse
Affiliation(s)
- Lindokuhle Patience Mabuza
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Mlindeli Wilkinson Gamede
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Sanam Maikoo
- School of Chemistry and Physics, College of Engineering and Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Irvin Noel Booysen
- School of Chemistry and Physics, College of Engineering and Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Phikelelani Siphosethu Ngubane
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
25
|
Wang X, Antony V, Wang Y, Wu G, Liang G. Pattern recognition receptor‐mediated inflammation in diabetic vascular complications. Med Res Rev 2020; 40:2466-2484. [DOI: 10.1002/med.21711] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang China
| | - Victor Antony
- Chemical Biology Research Center, School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang China
- Zhuji Biomedical Institute, School of Pharmaceutical Sciences Wenzhou Medical University Zhuji Zhejiang China
| | - Gaojun Wu
- Department of Cardiology Wenzhou Medical University Wenzhou Zhejiang China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou Zhejiang China
- Zhuji Biomedical Institute, School of Pharmaceutical Sciences Wenzhou Medical University Zhuji Zhejiang China
| |
Collapse
|
26
|
An additional physiological role for HSP70: Assistance of vascular reactivity. Life Sci 2020; 256:117986. [PMID: 32585245 DOI: 10.1016/j.lfs.2020.117986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
AIMS HSP70, a molecular chaperone, helps to maintain proteostasis. In muscle biology, however, evidence suggests HSP70 to have a more versatile range of functions, as genetic deletion of its inducible genes impairs Ca2+ handling, and consequently, cardiac and skeletal muscle contractility. Still, it is unknown whether HSP70 is involved in vascular reactivity, an intrinsic physiological mechanism of blood vessels. Therefore, we designed this study to test the hypothesis that proper vascular reactivity requires the assistance of HSP70. MAIN METHODS We performed functional studies in a wire-myograph using thoracic aorta isolated from male Sprague Dawley rats. Experiments were conducted with and without an HSP70 inhibitor as well as in heat-stressed vessels. The expression levels of HSP70 were evaluated with Western blotting. NO and ROS levels were assessed with fluorescence microscopy. KEY FINDINGS We report that blockade of HSP70 weakens contraction in response to phenylephrine (dose-response) in the aorta. Additionally, we demonstrated that inhibition of HSP70 affects the amplitude of the fast and of the slow components of the time-force curve. Corroborating these findings, we found that inhibition of HSP70, in vessels over-expressing this protein, partly rescues the contractile phenotype of aortic rings. Furthermore, we show that blockade of HSP70 facilitates relaxation in response to acetylcholine and clonidine without affecting the basal levels of NO and ROS. SIGNIFICANCE Our work introduces an additional physiological role for HSP70, the assistance of vascular reactivity, which highlights this protein as a new player in vascular physiology, and therefore, uncovers a promising research avenue for vascular diseases.
Collapse
|
27
|
Zhang S, Xu L, Liang R, Yang C, Wang P. Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells. J Physiol Biochem 2020; 76:407-416. [PMID: 32500512 DOI: 10.1007/s13105-020-00747-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023]
Abstract
Renal fibrosis is a major pathological event in the development of diabetic nephropathy (DN). Baicalin is a flavonoid glycoside that possesses multiple pharmacological properties including anti-fibrotic activity. In the present study, the effects of baicalin on renal fibrosis along with related molecular basis were investigated in streptozotocin (STZ)-induced DN mouse model and high glucose (HG)-treated HK-2 human proximal tubule epithelial cell model. Renal injury was evaluated through blood urea nitrogen (BUN) and serum creatinine (Scr) levels and urine albumin creatine ratio (ACR). Renal fibrosis was assessed by type IV collagen (COLIV) and fibronectin (FN) protein expression and histopathologic analysis via Masson trichrome staining. Protein levels of COLIV, FN, NF-κB inhibitor alpha (IκBα), phosphorylated IκBα (p-IκBα), p65, phosphorylated p65 (p-p65), and toll-like receptor 4 (TLR4) were measured by western blot assay. MicroRNA-124 (miR-124) and TLR4 mRNA levels were detected by RT-qPCR assay. The interaction of miR-124 and TLR4 was examined by bioinformatics analysis, luciferase reporter assay, and RIP assay. Baicalin or miR-124 attenuated renal injury and fibrosis in STZ-induced DN mice. Baicalin inhibited the increase of COLIV and FN expression induced by HG through upregulating miR-124 in HK-2 cells. TLR4 was a target of miR-124. MiR-124 inhibited TLR4/NF-κB pathway activation and the inactivation of the NF-κB pathway hindered COLIV and FN expression in HG-stimulated HK-2 cells. Baicalin prevented renal fibrosis by increasing miR-124 and inactivating downstream TLR4/NF-κB pathway in DN, hinting the pivotal values of baicalin and miR-124 in the management of DN and renal fibrosis.
Collapse
Affiliation(s)
- Shefeng Zhang
- Henan Academy of Chinese Medicine, Zhengzhou, 450000, China
| | - Li Xu
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Ruifeng Liang
- Henan Academy of Chinese Medicine, Zhengzhou, 450000, China
| | - Chenhua Yang
- Henan Academy of Chinese Medicine, Zhengzhou, 450000, China
| | - Peiren Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Jinshui District, Zhengzhou, 450000, China.
| |
Collapse
|
28
|
Breglio AM, May LA, Barzik M, Welsh NC, Francis SP, Costain TQ, Wang L, Anderson DE, Petralia RS, Wang YX, Friedman TB, Wood MJ, Cunningham LL. Exosomes mediate sensory hair cell protection in the inner ear. J Clin Invest 2020; 130:2657-2672. [PMID: 32027617 PMCID: PMC7190999 DOI: 10.1172/jci128867] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hair cells, the mechanosensory receptors of the inner ear, are responsible for hearing and balance. Hair cell death and consequent hearing loss are common results of treatment with ototoxic drugs, including the widely used aminoglycoside antibiotics. Induction of heat shock proteins (HSPs) confers protection against aminoglycoside-induced hair cell death via paracrine signaling that requires extracellular heat shock 70-kDa protein (HSP70). We investigated the mechanisms underlying this non-cell-autonomous protective signaling in the inner ear. In response to heat stress, inner ear tissue releases exosomes that carry HSP70 in addition to canonical exosome markers and other proteins. Isolated exosomes from heat-shocked utricles were sufficient to improve survival of hair cells exposed to the aminoglycoside antibiotic neomycin, whereas inhibition or depletion of exosomes from the extracellular environment abolished the protective effect of heat shock. Hair cell-specific expression of the known HSP70 receptor TLR4 was required for the protective effect of exosomes, and exosomal HSP70 interacted with TLR4 on hair cells. Our results indicate that exosomes are a previously undescribed mechanism of intercellular communication in the inner ear that can mediate nonautonomous hair cell survival. Exosomes may hold potential as nanocarriers for delivery of therapeutics against hearing loss.
Collapse
Affiliation(s)
- Andrew M. Breglio
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- NIH Oxford-Cambridge Scholars Program, Bethesda, Maryland, USA
| | - Lindsey A. May
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Melanie Barzik
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Nora C. Welsh
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Shimon P. Francis
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Tucker Q. Costain
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Lizhen Wang
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - D. Eric Anderson
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Ronald S. Petralia
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Ya-Xian Wang
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Thomas B. Friedman
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Matthew J.A. Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Lisa L. Cunningham
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Jheng HF, Hayashi K, Matsumura Y, Kawada T, Seno S, Matsuda H, Inoue K, Nomura W, Takahashi H, Goto T. Anti-Inflammatory and Antioxidative Properties of Isoflavones Provide Renal Protective Effects Distinct from Those of Dietary Soy Proteins against Diabetic Nephropathy. Mol Nutr Food Res 2020; 64:e2000015. [PMID: 32281228 DOI: 10.1002/mnfr.202000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/25/2020] [Indexed: 01/29/2023]
Abstract
SCOPE Dietary soy reportedly protects from diabetic nephropathy (DN), but its active components and mechanism of action remain unknown. METHODS AND RESULTS In this study, KKAy mice are fed three types of diet: Dietary soy isoflavones with soy protein (Soy-IP) diet, reduced isoflavones soy protein (RisoP), and oral administration of isoflavones aglycones (IsoAgc). Albuminuria and glycosuria are decreased only in the soy-IP group. The risoP group show reduced expansion of mesangial matrix and renal fibrosis, the IsoAgc group show renal anti-fibrotic and anti-inflammatory effects; however, these renal pathological changes are repressed in the soy-IP group, suggesting the distinct protective roles of soy protein or isoflavones in DN. The isoflavone genistein has a better inhibitory effect on the inflammatory response and cellular interactions in both mouse tubular cells and macrophages when exposed to high glucose and albumin (HGA). Genistein also represses HGA-induced activator protein 1 activation and reactive oxidases stress generation, accompanied by reduced NADPH oxidase (NOX) gene expression. Finally, diabetic mice show a decrease in lipid peroxidation levels in both plasma and urine, along with lower NOXs gene expression. CONCLUSION The data elucidate the detailed mechanism by which isoflavones inhibit renal inflammation and provide a potential practical adjunct therapy to restrict DN progression.
Collapse
Affiliation(s)
- Huei-Fen Jheng
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Kanako Hayashi
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Yasuki Matsumura
- Division of Agronomy and Horticultural Science, Laboratory of Quality Analysis and Assessment, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, 565-0871, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| |
Collapse
|
30
|
Zhou ZF, Jiang L, Zhao Q, Wang Y, Zhou J, Chen QK, Lv JL. Roles of pattern recognition receptors in diabetic nephropathy. J Zhejiang Univ Sci B 2020; 21:192-203. [PMID: 32133797 DOI: 10.1631/jzus.b1900490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diabetic nephropathy (DN) is currently the most common complication of diabetes. It is considered to be one of the leading causes of end-stage renal disease (ESRD) and affects many diabetic patients. The pathogenesis of DN is extremely complex and has not yet been clarified; however, in recent years, increasing evidence has shown the important role of innate immunity in DN pathogenesis. Pattern recognition receptors (PRRs) are important components of the innate immune system and have a significant impact on the occurrence and development of DN. In this review, we classify PRRs into secretory, endocytic, and signal transduction PRRs according to the relationship between the PRRs and subcellular compartments. PRRs can recognize related pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), thus triggering a series of inflammatory responses, promoting renal fibrosis, and finally causing renal impairment. In this review, we describe the proposed role of each type of PRRs in the development and progression of DN.
Collapse
Affiliation(s)
- Zhi-Feng Zhou
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Lei Jiang
- Department of Nephrology, the First Affiliated Hospital of Nanchang University, Institute of Molecular Immunology of Kidney Disease of Nanchang University, Nanchang 330006, China
| | - Qing Zhao
- Department of Nephrology, the First Affiliated Hospital of Nanchang University, Institute of Molecular Immunology of Kidney Disease of Nanchang University, Nanchang 330006, China
| | - Yu Wang
- Department of Nephrology, the First Affiliated Hospital of Nanchang University, Institute of Molecular Immunology of Kidney Disease of Nanchang University, Nanchang 330006, China
| | - Jing Zhou
- Department of Nephrology, the First Affiliated Hospital of Nanchang University, Institute of Molecular Immunology of Kidney Disease of Nanchang University, Nanchang 330006, China
| | - Qin-Kai Chen
- Department of Nephrology, the First Affiliated Hospital of Nanchang University, Institute of Molecular Immunology of Kidney Disease of Nanchang University, Nanchang 330006, China
| | - Jin-Lei Lv
- Department of Nephrology, the First Affiliated Hospital of Nanchang University, Institute of Molecular Immunology of Kidney Disease of Nanchang University, Nanchang 330006, China
| |
Collapse
|
31
|
Wang D, Li Y, Wang N, Luo G, Wang J, Luo C, Yu W, Hao L. 1α,25-Dihydroxyvitamin D 3 prevents renal oxidative damage via the PARP1/SIRT1/NOX4 pathway in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 2020; 318:E343-E356. [PMID: 31891537 DOI: 10.1152/ajpendo.00270.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetic nephropathy (DN) is one of the most important renal complications associated with diabetes, and the mechanisms are yet to be fully understood. To date, few studies have shown the antioxidant effects of 1α,25-dihydroxyvitamin-D3 [1,25(OH)2D3] on hyperglycemia-induced renal injury. The aim of the present study was to explore the potential mechanism by which 1,25(OH)2D3 reduced oxidative stress in diabetic rat kidneys. In this study, we established a vitamin D-deficient spontaneous diabetes model: 5-6 wk of age Zucker diabetic fatty (ZDF) rats were treated with or without 1,25(OH)2D3 for 7 wk, age-matched Zucker lean rats served as control. Results showed that ZDF rats treated with 1,25(OH)2D3 had decreased body mass, food intake, water intake, and urine volume. 1,25(OH)2D3 ameliorated urine glucose, blood glucose and abnormal glucose tolerance. Additionally, 1,25(OH)2D3 significantly lowered microalbuminuria, decreased the glomerular basement membrane thickness, and in some degree inhibited glomerular hypertrophy, mesangial expansion, and tubular dilatation. Furthermore, 1,25(OH)2D3 attenuated renal oxidative damage, as reflected by the levels of malondialdehyde, reduced glutathione, 4-hydroxynonenal, 8-hydroxy-2'-deoxyguanosine, and reactive oxygen species production, and notably inhibited poly(ADP-ribose) polymerase-1 (PARP1), activated sirtuin 1 (SIRT1), and decreased the expression of NADPH oxidase 4 (NOX4). Of interest, the abovementioned proteins could be involved in the antioxidant mechanism of 1,25(OH)2D3 in diabetic rat kidneys. Our study showed that oxidative stress might be a major contributor to DN pathogenesis and uncovered the antioxidant role of 1,25(OH)2D3 in diabetic nephropathy that was associated with the PARP1/SIRT1/ NOX4 pathway.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Li
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Can Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yu
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
32
|
Lespedeza bicolor Extract Ameliorated Renal Inflammation by Regulation of NLRP3 Inflammasome-Associated Hyperinflammation in Type 2 Diabetic Mice. Antioxidants (Basel) 2020; 9:antiox9020148. [PMID: 32050658 PMCID: PMC7071116 DOI: 10.3390/antiox9020148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia. The chronic hyperglycemic condition causes hyperinflammation via activation of nucleotide-binding oligomerization domain-like pyrin domain containing receptor 3 (NLRP3) inflammasome and abnormally leads to morphological and functional changes in kidney. A previous study showed a protective effect of Lespedeza bicolor extract (LBE) on endothelial dysfunction induced by methylglyoxal glucotoxicity. We aimed to investigate whether LBE ameliorated renal damage through regulation of NLRP3 inflammasome-dependent hyper-inflammation in T2DM mice. After T2DM induction by a high fat diet and low dose of streptozotocin (30 mg/kg), the mice were administered with different dosages of LBE (100 or 250 mg/kg/day) by gavage for 12 weeks. LBE supplementation ameliorated kidney dysfunction demonstrated by urine albumin-creatinine at a low dose and plasma creatinine, blood urea nitrogen (BUN), and glomerular hypertrophy at a high dose. Furthermore, a high dose of LBE supplementation significantly attenuated renal hyper-inflammation associated with NLRP3 inflammasome and oxidative stress related to nuclear factor erythroid 2-related factor 2 (Nrf-2) in T2DM mice. Meanwhile, a low dose of LBE supplementation up-regulated energy metabolism demonstrated by phosphorylation of adenosine monophosphate kinase (AMPK) and Sirtuin (SIRT)-1 in T2DM mice. In conclusion, the current study suggested that LBE, in particular, at a high dose could be used as a beneficial therapeutic for hyperglycemia-induced renal damage in T2DM.
Collapse
|
33
|
Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H, Sanajou D. Sodium-glucose co-transporters and diabetic nephropathy: Is there a link with toll-like receptors? Clin Exp Pharmacol Physiol 2020; 47:919-926. [PMID: 31968131 DOI: 10.1111/1440-1681.13261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
Abstract
The incidence of diabetes mellitus (DM) has increased alarmingly over the last decades. Despite taking measures aimed at controlling hyperglycaemia and blood pressure, the rate of end-stage renal disease (ESRD) is continually growing. Upon increased amounts of advanced glycation end products (AGEs) and their correspondent receptors (RAGEs), AGE-RAGE axis is over-activated in DM, being the first step in the initiation and propagation of inflammatory cascades. Meanwhile, HMGB1, released from damaged cells in the diabetic kidneys, is the most notable ligand for the highly expressed toll-like receptors (TLRs) and RAGEs. TLRs play an indispensable role in the pathogenesis of diabetic nephropathy. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors are hypoglycaemic agents acting on the renal proximal tubules to prevent glucose reabsorption and therefore increase urinary glucose excretion. Besides improving glycaemic control, these hypoglycaemic agents possess direct renoprotective properties. Here, therefore, we review the most recent findings regarding interrelationship between SGLT2 inhibitors and HMGB1-TLR4 axis.
Collapse
Affiliation(s)
- Zahra Ashrafi Jigheh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbani Haghjo
- Biotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Argani
- Urology and Nephrology Research Centre, Beheshti University of Medical Sciences, Tehran, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, Tagua VG, Hernández-Carballo C, Ferri C, Rodríguez-Rodríguez AE, Mora-Fernández C, Navarro-González JF. Inflammatory Targets in Diabetic Nephropathy. J Clin Med 2020; 9:jcm9020458. [PMID: 32046074 PMCID: PMC7074396 DOI: 10.3390/jcm9020458] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
One of the most frequent complications in patients with diabetes mellitus is diabetic nephropathy (DN). At present, it constitutes the first cause of end stage renal disease, and the main cause of cardiovascular morbidity and mortality in these patients. Therefore, it is clear that new strategies are required to delay the development and the progression of this pathology. This new approach should look beyond the control of traditional risk factors such as hyperglycemia and hypertension. Currently, inflammation has been recognized as one of the underlying processes involved in the development and progression of kidney disease in the diabetic population. Understanding the cascade of signals and mechanisms that trigger this maladaptive immune response, which eventually leads to the development of DN, is crucial. This knowledge will allow the identification of new targets and facilitate the design of innovative therapeutic strategies. In this review, we focus on the pathogenesis of proinflammatory molecules and mechanisms related to the development and progression of DN, and discuss the potential utility of new strategies based on agents that target inflammation.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Desirée Luis-Rodríguez
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
| | | | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | | | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- Correspondence: ; Tel.: +34-922-602-389
| |
Collapse
|
35
|
Abstract
Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein-kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.
Collapse
|
36
|
Zhu H, Liu X, Zhang C, Li Q, An X, Liu S, Wu L, Zhang B, Yuan Y, Xing C. Association of urinary acidification function with the progression of diabetic kidney disease in patients with type 2 diabetes. J Diabetes Complications 2019; 33:107419. [PMID: 31473080 DOI: 10.1016/j.jdiacomp.2019.107419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Although diabetic kidney disease (DKD) has been considered as a glomerulocentric disease in the past few decades, growing evidence demonstrated that tubular damage was indispensable in its pathogenesis and progression. This study was designed to investigate the association of urinary acidification dysfunction with the progression of DKD in type 2 diabetic patients. METHODS Here the urinary acidification functions were measured from 80 participants with renal biopsy-proven DKD. The different kinds of renal tubular transportation dysfunction were analyzed, including the dysfunction of bicarbonate reabsorption, titratable acid secretion, and ammonium secretion. In addition, patients were followed up for 17 (interquartile range, 11-32) months to evaluate the effect of urinary acidification dysfunction in the progression of DKD. RESULTS The most common urinary acidification dysfunction was the disorder of ammonium secretion, accounting for 53.75%. The more proteinuria excretion and the lower glomerular filtration rate (GFR) were observed in the urinary titratable acid disorder group than the normal group, and the same results were obtained for ammonium secretion disorder. Urine titratable acid was positively correlated with eGFR whereas it was inversely correlated with proteinuria, serum creatinine, and BUN. Moreover, 24 h urine protein, serum creatinine, BUN and cystatin C increased from DKD stage II to stage IV, whereas the eGFR and urine titratable acid decreased in the same way. Furthermore, Kaplan-Meier analysis and Cox regression showed that the disorder of titratable acid was an independent risk factor for DKD progression. CONCLUSIONS The dysfunction of urinary titratable acid is a potential biomarker for the severity of proteinuria, eGFR and glomerular lesions in patients with DKD. Moreover, the titratable acid disorder is an independent risk factor of the DKD progression.
Collapse
MESH Headings
- Acidosis, Renal Tubular/complications
- Acidosis, Renal Tubular/diagnosis
- Acidosis, Renal Tubular/epidemiology
- Acidosis, Renal Tubular/etiology
- Acids/analysis
- Acids/metabolism
- Adult
- Aged
- Biomarkers/metabolism
- Biomarkers/urine
- Comorbidity
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/urine
- Diabetic Nephropathies/complications
- Diabetic Nephropathies/epidemiology
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/urine
- Disease Progression
- Female
- Glomerular Filtration Rate
- Humans
- Hydrogen-Ion Concentration
- Kidney/metabolism
- Kidney/physiopathology
- Kidney Failure, Chronic/diagnosis
- Kidney Failure, Chronic/epidemiology
- Kidney Failure, Chronic/physiopathology
- Kidney Failure, Chronic/urine
- Male
- Middle Aged
- Prognosis
- Proteinuria/epidemiology
- Proteinuria/etiology
- Proteinuria/urine
- Urine/chemistry
Collapse
Affiliation(s)
- Huanhuan Zhu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xi Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chengning Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Simeng Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bo Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
37
|
Jia Y, Zheng Z, Xue M, Zhang S, Hu F, Li Y, Yang Y, Zou M, Li S, Wang L, Guan M, Xue Y. Extracellular Vesicles from Albumin-Induced Tubular Epithelial Cells Promote the M1 Macrophage Phenotype by Targeting Klotho. Mol Ther 2019; 27:1452-1466. [PMID: 31208912 DOI: 10.1016/j.ymthe.2019.05.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Albumin absorbed by renal tubular epithelial cells induces inflammation and plays a key role in promoting diabetic kidney disease (DKD) progression. Macrophages are prominent inflammatory cells in the kidney, and their role there is dependent on their phenotypes. However, whether albuminuria influences macrophage phenotypes and underlying mechanisms during the development of DKD is still unclear. We found that M1 macrophage-related markers were increased in diabetes mellitus (DM) mouse renal tissues with the development of DKD, and coculture of extracellular vesicles (EVs) from human serum albumin (HSA)-induced HK-2 cells with macrophages induced macrophage M1 polarization in the presence of lipopolysaccharide (LPS). Through a bioinformatic analysis, miR-199a-5p was selected and found to be increased in EVs from HSA-induced HK-2 cells and in urinary EVs from DM patients with macroalbuminuria. Tail-vein injection of DM mice with EVs from HSA-induced HK-2 cells induced kidney macrophage M1 polarization and accelerated the progression of DKD through miR-199a-5p. miR-199a-5p exerted its effect by targeting Klotho, and Klotho induced macrophage M2 polarization through the Toll-like receptor 4 (TLR4) pathway both in vivo and in vitro. In summary, miR-199a-5p from HSA-stimulated HK-2 cell-derived EVs induces M1 polarization by targeting the Klotho/TLR4 pathway and further accelerates the progression of DKD.
Collapse
Affiliation(s)
- Yijie Jia
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongji Zheng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Shuting Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Hu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yang Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Yang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meina Zou
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuangshuang Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
38
|
Pasten C, Alvarado C, Rocco J, Contreras L, Aracena P, Liberona J, Suazo C, Michea L, Irarrázabal CE. l-NIL prevents the ischemia and reperfusion injury involving TLR-4, GST, clusterin, and NFAT-5 in mice. Am J Physiol Renal Physiol 2019; 316:F624-F634. [DOI: 10.1152/ajprenal.00398.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
On renal ischemia-reperfusion (I/R) injury, recruitment of neutrophils during the inflammatory process promotes local generation of oxygen and nitrogen reactive species, which, in turn, are likely to exacerbate tissue damage. The mechanism by which inducible nitric oxide synthase (iNOS) is involved in I/R has not been elucidated. In this work, the selective iNOS inhibitor l- N6-(1-iminoethyl)lysine (l-NIL) and the NOS substrate l-arginine were employed to understand the role of NOS activity on the expression of particular target genes and the oxidative stress elicited after a 30-min of bilateral renal ischemia, followed by 48-h reperfusion in Balb/c mice. The main findings of the present study were that pharmacological inhibition of iNOS with l-NIL during an I/R challenge of mice kidney decreased renal injury, prevented tissue loss of integrity, and improved renal function. Several novel findings regarding the molecular mechanism by which iNOS inhibition led to these protective effects are as follows: 1) a prevention of the I/R-related increase in expression of Toll-like receptor 4 (TLR-4), and its downstream target, IL-1β; 2) reduced oxidative stress following the I/R challenge; noteworthy, this study shows the first evidence of glutathione S-transferase (GST) inactivation following kidney I/R, a phenomenon fully prevented by iNOS inhibition; 3) increased expression of clusterin, a survival autophagy component; and 4) increased expression of nuclear factor of activated T cells 5 (NFAT-5) and its target gene aquaporin-1. In conclusion, prevention of renal damage following I/R by the pharmacological inhibition of iNOS with l-NIL was associated with the inactivation of proinflammatory pathway triggered by TLR-4, oxidative stress, renoprotection (autophagy inactivation), and NFAT-5 signaling pathway.
Collapse
Affiliation(s)
- Consuelo Pasten
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Cristóbal Alvarado
- School of Medicine and Science, Universidad San Sebastián, Concepción, Chile
- School of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Jocelyn Rocco
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Contreras
- Department of Pathological Anatomy, Clínica Universidad de los Andes, Santiago, Chile
| | - Paula Aracena
- School of Medicine and Science, Universidad San Sebastián, Concepción, Chile
| | - Jéssica Liberona
- Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Suazo
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Michea
- Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Carlos E. Irarrázabal
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
39
|
Donate-Correa J, Tagua VG, Ferri C, Martín-Núñez E, Hernández-Carballo C, Ureña-Torres P, Ruiz-Ortega M, Ortiz A, Mora-Fernández C, Navarro-González JF. Pentoxifylline for Renal Protection in Diabetic Kidney Disease. A Model of Old Drugs for New Horizons. J Clin Med 2019; 8:jcm8030287. [PMID: 30818852 PMCID: PMC6463074 DOI: 10.3390/jcm8030287] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
Diabetic kidney disease is one of the most relevant complications in diabetes mellitus patients, which constitutes the main cause of end-stage renal disease in the western world. Delaying the progression of this pathology requires new strategies that, in addition to the control of traditional risk factors (glycemia and blood pressure), specifically target the primary pathogenic mechanisms. Nowadays, inflammation is recognized as a critical novel pathogenic factor in the development and progression of renal injury in diabetes mellitus. Pentoxifylline is a nonspecific phosphodiesterase inhibitor with rheologic properties clinically used for more than 30 years in the treatment of peripheral vascular disease. In addition, this compound also exerts anti-inflammatory actions. In the context of diabetic kidney disease, pentoxifylline has shown significant antiproteinuric effects and a delay in the loss of estimated glomerular filtration rate, although at the present time there is no definitive evidence regarding renal outcomes. Moreover, recent studies have reported that this drug can be associated with a positive impact on new factors related to kidney health, such as Klotho. The use of pentoxifylline as renoprotective therapy for patients with diabetic kidney disease represents a new example of drug repositioning.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain.
| | - Víctor G Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
| | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain.
| | | | - Pablo Ureña-Torres
- Department of Dialyisis, AURA Nord, Saint Ouen, 93400 Paris, France.
- Department of Renal Physiology, Necker Hospital, University Paris Descartes, 75006 Paris, France.
| | - Marta Ruiz-Ortega
- Laboratorio de Biología Celular en Enfermedades Renales, Universidad Autónoma Madrid, IIS-Fundación Jiménez Díaz, Madrid, 28004, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0007), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Alberto Ortiz
- Departamento de Nefrología e Hipertensión, IIS-Fundación Jiménez Díaz y Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
40
|
Milanesi S, Verzola D, Cappadona F, Bonino B, Murugavel A, Pontremoli R, Garibotto G, Viazzi F. Uric acid and angiotensin II additively promote inflammation and oxidative stress in human proximal tubule cells by activation of toll-like receptor 4. J Cell Physiol 2018; 234:10868-10876. [PMID: 30536556 DOI: 10.1002/jcp.27929] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023]
Abstract
Renal proximal tubular cells (PTECs) participate in several mechanisms of innate immunity, express toll-like receptors (TLRs), and proinflammatory cytokines. Hyperuricemia may be a promoter of inflammation and renal damage. Angiotensin II (Ang II) modulate immune and inflammatory responses in renal tubular cells. With the aim to evaluate the effect of uric acid (UA) and Ang II on oxidative stress and inflammation mediated by toll-like receptor 4 (TLR4) activation in human PTECs, human kidney 2 (HK2) were incubated for 24 hr with UA (12 mg/dl) and Ang II (10 -7 M). HK2 were pretreated with an antagonist of TLR4 (TAK 242), valsartan or losartan. The genic expression of TLR4, monocyte chemoattractant protein-1 (MCP1), and Nox4 was quantified with reverse transcription polymerase chain reaction, proteins were evaluated with Western blot. The incubation of HK2 either with UA or with Ang II determines an increased expression of TLR4, production of proinflammatory cytokines as MCP1 and pro-oxidants as Nox4 ( p < 0.05). TAK 242 attenuates the expression of MCP1 induced both by UA and Ang II. Valsartan attenuated all the effects we described after exposure to Ang II but not those observed after UA exposure. At variance, pretreatment with losartan, which inhibits UA internalization, attenuates the expression of TLR4, MCP1, and Nox4 in cells previously treated with UA, Ang II, and UA plus Ang II. Proinflammatory pathways are induced in an additive manner by UA and Ang II ( p < 0.05) and might be mediated by TLR4 in PTECs. Renin-angiotensin-aldosterone system (RAAS) activation, hyperuricemia, and innate immunity interplay in the development of chronic tubular damage and the interaction of several nephrotoxic mechanisms blunt the protective effect of RAAS inhibition.
Collapse
Affiliation(s)
- Samantha Milanesi
- Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino-IST, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino-IST, Genova, Italy
| | - Francesca Cappadona
- Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino-IST, Genova, Italy
| | - Barbara Bonino
- Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino-IST, Genova, Italy
| | - Abitha Murugavel
- Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino-IST, Genova, Italy
| | - Roberto Pontremoli
- Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino-IST, Genova, Italy
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino-IST, Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino-IST, Genova, Italy
| |
Collapse
|
41
|
Wu HH, Huang CC, Chang CP, Lin MT, Niu KC, Tian YF. Heat Shock Protein 70 (HSP70) Reduces Hepatic Inflammatory and Oxidative Damage in a Rat Model of Liver Ischemia/Reperfusion Injury with Hyperbaric Oxygen Preconditioning. Med Sci Monit 2018; 24:8096-8104. [PMID: 30417859 PMCID: PMC6243869 DOI: 10.12659/msm.911641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Several clinical conditions can cause hepatic ischemia/reperfusion (I/R) injury. This study aimed to determine the mechanism of the protective effect of hyperbaric oxygen preconditioning (HBO2P) on hepatic ischemia/reperfusion (I/R) injury in a rat model, and to investigate the effects on HBO2P and I/R injury of blocking HSP70 using antibody (Ab) pretreatment. Material/Methods Male Sprague-Dawley rats underwent HBO2P for 60 min at 2.0 atmosphere absolute (ATA) pressure for five consecutive days before surgical hepatic I/R injury, performed by clamping the portal vein and hepatic lobe. Four groups studied included: the non-HBO2P+ non-I/R group, which underwent sham surgery (N=10); the non-HBO2P + I/R group (N=10); the HBO2P + I/R group (N=10); and the HBO2P + HSP70-Ab + I/R group (N=10) received one dose of HSP70 antibody one day before hepatic I/R injury. Serum lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and hepatic malondialdehyde (MDA) and myeloperoxidase (MPO) were measured biochemically. Rat liver tissues were examined histologically. Results In rats with hepatic I/R injury without HSP70 antibody pre-treatment, HBO2P significantly reduced hepatic injury and levels of LDH, AST, ALT, TNF-α, IL-6, MDA, and MPO levels; in comparison, the group pre-treated with an antibody to inhibit HSP70 (the HBO2P + HSP70-Ab + I/R group) showed significant reversal of the beneficial effects of HBO2P on hepatic I/R injury (p<0.05). Conclusions In a rat model of hepatic I/R injury with HBO2P, HSP70 reduced hepatic inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Hsing-Hsien Wu
- Department of Surgery, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
| | - Chien-Cheng Huang
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Senior Services, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Geriatrics and Gerontology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ko-Chi Niu
- Department of Hyperbaric Oxygen Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Feng Tian
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
42
|
Kozyraki R, Cases O. Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease. Curr Med Chem 2018; 27:3123-3150. [PMID: 30295181 DOI: 10.2174/0929867325666181008143945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Gp280/Intrinsic factor-vitamin B12 receptor/Cubilin (CUBN) is a large endocytic receptor serving multiple functions in vitamin B12 homeostasis, renal reabsorption of protein or toxic substances including albumin, vitamin D-binding protein or cadmium. Cubilin is a peripheral membrane protein consisting of 8 Epidermal Growth Factor (EGF)-like repeats and 27 CUB (defined as Complement C1r/C1s, Uegf, BMP1) domains. This structurally unique protein interacts with at least two molecular partners, Amnionless (AMN) and Lrp2/Megalin. AMN is involved in appropriate plasma membrane transport of Cubilin whereas Lrp2 is essential for efficient internalization of Cubilin and its ligands. Observations gleaned from animal models with Cubn deficiency or human diseases demonstrate the importance of this protein. In this review addressed to basic research and medical scientists, we summarize currently available data on Cubilin and its implication in renal and intestinal biology. We also discuss the role of Cubilin as a modulator of Fgf8 signaling during embryonic development and propose that the Cubilin-Fgf8 interaction may be relevant in human pathology, including in cancer progression, heart or neural tube defects. We finally provide experimental elements suggesting that some aspects of Cubilin physiology might be relevant in drug design.
Collapse
Affiliation(s)
- Renata Kozyraki
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| | - Olivier Cases
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| |
Collapse
|
43
|
Ji T, Wang Y, Zhu Y, Gao C, Li X, Li J, Bai F, Bai S. Long noncoding RNA Gm6135 functions as a competitive endogenous RNA to regulate toll‐like receptor 4 expression by sponging miR‐203‐3p in diabetic nephropathy. J Cell Physiol 2018; 234:6633-6641. [PMID: 30295314 DOI: 10.1002/jcp.27412] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ting‐Ting Ji
- Department of Nephrology Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Shanghai China
| | - Ya‐Kun Wang
- Department of Nephrology Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Shanghai China
| | - Ying‐Chun Zhu
- Department of Nephrology Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Shanghai China
| | - Cong‐Pu Gao
- Department of Nephrology Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Shanghai China
| | - Xiao‐Ying Li
- Department of Nephrology Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Shanghai China
| | - Ji Li
- Department of Nephrology Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Shanghai China
| | - Feng Bai
- Department of Endocrinology and Metabolism Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital Huai’an China
| | - Shou‐Jun Bai
- Department of Nephrology Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Shanghai China
| |
Collapse
|
44
|
Jia Y, Zheng Z, Yang Y, Zou M, Li J, Wang L, Guan M, Xue Y. MiR-4756 promotes albumin-induced renal tubular epithelial cell epithelial-to-mesenchymal transition and endoplasmic reticulum stress via targeting Sestrin2. J Cell Physiol 2018; 234:2905-2915. [PMID: 30145827 DOI: 10.1002/jcp.27107] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Abstract
Accumulating evidence indicates that proteinuria promotes the progression of diabetic kidney disease (DKD) and induces renal epithelial tubular cell epithelial-to-mesenchymal transition (EMT) and endoplasmic reticulum (ER) stress, but the mechanism remains unclear. In our previous research, we found that miR-4756 levels were increased in the urinary extracellular vesicles of type 2 diabetes mellitus patients with macroalbuminuria. In a preliminary study, we found that miR-4756 may be derived from renal tubular epithelial cells, but its role has not been elucidated. Albumin stimulation significantly increased miR-4756 levels in HK-2 cells. In addition, an miR-4756 mimic accelerated albumin-stimulated HK-2 cell EMT and ER stress, and an miR-4756 inhibitor suppressed these events. We then found that miR-4756 targeted the 3'-untranslated region (UTR) of Sestrin2 and directly suppressed Sestrin2 expression. Furthermore, the induction of EMT and ER stress by the overexpression of miR-4756 was abolished by Sestrin2 overexpression. Moreover, the overexpression of miR-4756 increased ERK1/2 activation and decreased 5' monophosphate-activated protein kinase activation. Thus, our study provides evidence that miR-4756 accelerates the process of DKD through Sestrin2, suggesting that targeting miR-4756 may be a novel strategy for DKD treatment.
Collapse
Affiliation(s)
- Yijie Jia
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meina Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jimin Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Caponegro MD, Torres LF, Rastegar C, Rath N, Anderson ME, Robinson JK, Tsirka SE. Pifithrin-μ modulates microglial activation and promotes histological recovery following spinal cord injury. CNS Neurosci Ther 2018; 25:200-214. [PMID: 29962076 DOI: 10.1111/cns.13000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Treatments immediately after spinal cord injury (SCI) are anticipated to decrease neuronal death, disruption of neuronal connections, demyelination, and inflammation, and to improve repair and functional recovery. Currently, little can be done to modify the acute phase, which extends to the first 48 hours post-injury. Efforts to intervene have focused on the subsequent phases - secondary (days to weeks) and chronic (months to years) - to both promote healing, prevent further damage, and support patients suffering from SCI. METHODS We used a contusion model of SCI in female mice, and delivered a small molecule reagent during the early phase of injury. Histological and behavioral outcomes were assessed and compared. RESULTS We find that the reagent Pifithrin-μ (PFT-μ) acts early and directly on microglia in vitro, attenuating their activation. When administered during the acute phase of SCI, PFT-μ resulted in reduced lesion size during the initial inflammatory phase, and reduced the numbers of pro-inflammatory microglia and macrophages. Treatment with PFT-μ during the early stage of injury maintained a stable anti-inflammatory environment. CONCLUSIONS Our results indicate that a small molecule reagent PFT-μ has sustained immunomodulatory effects following a single dose after injury.
Collapse
Affiliation(s)
- Michael D Caponegro
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Luisa F Torres
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Cyrus Rastegar
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Nisha Rath
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Maria E Anderson
- Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - John K Robinson
- Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Involved in innate immunity, toll-like receptors (TLRs) recognize pathogenic and endogenous ligands. Ligand binding initiates an inflammatory cascade which if sustained leads to fibrosis. This review summarizes the role of TLRs in diabetic kidney disease (DKD) with particular emphasis on TLR2 and TLR4. RECENT FINDINGS Collectively, preclinical evidence to date supports the causative role of TLR2 and TLR4 in both type I and type II DKD. The relative importance of each is still unclear. In experimental models, there are increased TLR2 and TLR4 ligands, expression and signalling. Functional studies using inhibitors or knockout animal models confirm causality. Clinical evidence also supports increased ligands and TLR2 and TLR4 expression in diabetes however there are no clinical studies examining whether interruption of these pathways confer renoprotection. SUMMARY Preclinical evidence to date supports the role of TLR2 and TLR4 in DKD. It will be useful to examine the value of interrupting these signalling pathways in clinical trials.
Collapse
|
47
|
Vourc'h M, Roquilly A, Asehnoune K. Trauma-Induced Damage-Associated Molecular Patterns-Mediated Remote Organ Injury and Immunosuppression in the Acutely Ill Patient. Front Immunol 2018; 9:1330. [PMID: 29963048 PMCID: PMC6013556 DOI: 10.3389/fimmu.2018.01330] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Trauma is one of the leading causes of death and disability in the world. Multiple trauma or isolated traumatic brain injury are both indicative of human tissue damage. In the early phase after trauma, damage-associated molecular patterns (DAMPs) are released and give rise to sterile systemic inflammatory response syndrome (SIRS) and organ failure. Later, protracted inflammation following sepsis will favor hospital-acquired infection and will worsen patient’s outcome through immunosuppression. Throughout medical care or surgical procedures, severe trauma patients will be subjected to endogenous or exogenous DAMPs. In this review, we summarize the current knowledge regarding DAMP-mediated SIRS or immunosuppression and the clinical consequences in terms of organ failure and infections.
Collapse
Affiliation(s)
- Mickael Vourc'h
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Antoine Roquilly
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| |
Collapse
|
48
|
All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-κB during initiation of diabetic nephropathy. J Nutr Biochem 2018; 60:47-60. [PMID: 30193155 DOI: 10.1016/j.jnutbio.2018.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023]
Abstract
Diabetic nephropathy (DN) is the leading cause of renal failure worldwide and its complications have become a public health problem. Inflammation, oxidative stress and fibrosis play central roles in the progression of DN that lead to renal failure. Potential deleterious effect of inflammation in early evolution of DN is not fully disclosed. Therefore, it is relevant to explore therapies that might modulate this process in order to reduce DN progression. We explored the beneficial effect of all-trans retinoic acid (ATRA) in early inflammation in glomeruli, proximal and distal tubules in streptozotocin (STZ)-induced diabetes. ATRA was administered (1 mg/kg daily by gavage) on days 3 to 21 after STZ administration. It was found that 21 days after STZ injection, diabetic rats exhibited proteinuria, increased natriuresis and loss of body weight. Besides, diabetes induced an increase in interleukins [IL-1β, IL-1α, IL-16, IL-13, IL-2; tumor necrosis factor alpha (TNF-α)] and transforming growth factor-beta 1 (TGF-β1), chemokines (CCL2, CCL20, CXCL5 and CXCL7), adhesion molecules (ICAM-1 and L-selectin) and growth factors (GM-CSF, VEGF, PDGF) in glomeruli and proximal tubules, whereas ATRA treatment remarkably ameliorated these alterations. To further explore the mechanisms through which ATRA decreased inflammatory response, the NF-κB/p65 signaling mediated by TLR4 was studied. We found that ATRA administration attenuates the TLR4/NF-κB inflammatory signaling and prevents NF-κB nuclear translocation in glomeruli and proximal tubules.
Collapse
|
49
|
Zhao Y, Huang W, Wang J, Chen Y, Huang W, Zhu Y. Taxifolin attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Am J Transl Res 2018; 10:1205-1210. [PMID: 29736213 PMCID: PMC5934579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The current study evaluates the effects of taxifolin (TA) on streptozotocin (STZ)-induced diabetic nephropathy in rats. We performed oral glucose tolerance tests (OGTTs) to determine blood glucose levels. We also measured the following biochemical parameters: uric acid, creatinine, and serum insulin. Kidney pathology was examined by staining sections with hematoxylin-eosin (H&E). The expression of Caveolin-1 and NF-κB was analyzed by qRT-PCR and western blotting. TA significantly reduced the concentrations of blood glucose, uric acid, creatinine, and serum insulin in STZ-induced diabetic rats.Pathological changes in kidneys of diabetes rats were alleviated by TA. Our data indicate that TA restored the levels of Caveolin-1/NF-κB signaling-related mRNA and proteins in diabetes rats. These combined results suggest that TA might mitigate the effects of STZ-induced diabetes.
Collapse
Affiliation(s)
- Yanling Zhao
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - Wenwen Huang
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - Jiali Wang
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - Wen Huang
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - Yonglin Zhu
- Department of Hematology, Wenzhou Municipal People’s HospitalWenzhou 32500, Zhejiang Province, China
| |
Collapse
|
50
|
Wan RJ, Li YH. MicroRNA‑146a/NAPDH oxidase4 decreases reactive oxygen species generation and inflammation in a diabetic nephropathy model. Mol Med Rep 2018; 17:4759-4766. [PMID: 29328400 DOI: 10.3892/mmr.2018.8407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the role of microRNA (miR)‑146a in a diabetic nephropathy (DN) model, and its molecular mechanism. DN mice were given intraperitoneal injections of streptozotocin (55 mg/kg/day) for 5 consecutive days as an in vivo DN model. The HK‑2 human kidney cell line were exposed to 45% D‑glucose as an in vitro DN model. Firstly, it was demonstrated that miR‑146a expression was inhibited and NAPDH oxidase 4 (Nox4) was increased in DN mice. In HK‑2 cells, overexpression of miR‑146a inhibited Nox4 protein expression and decreased reactive oxygen species (ROS) generation, oxidative stress and inflammation, and suppressed vascular cell adhesion molecule‑1 (VCAM‑1) and intracellular adhesion molecule‑1 (ICAM‑1) protein expression. Nacetylcysteine, a Nox4 inhibitor, was demonstrated to inhibit ROS generation, suppress VCAM‑1 and ICAM‑1 protein expression, and decrease oxidative stress and inflammation in HK‑2 cells following overexpression of miR‑146a. In conclusion, these results indicated that miR‑146a/Nox4 decreases ROS generation and inflammation and prevents DN. Therefore, miR‑146a may represent a novel anti‑inflammatory and ‑oxidative modulator of DN.
Collapse
Affiliation(s)
- Rong Jun Wan
- Department of Urology, Hospital of Tianjin Nankai, Nankai, Tianjin 300100, P.R. China
| | - Yue Hong Li
- Department of Urology, Hospital of Tianjin Nankai, Nankai, Tianjin 300100, P.R. China
| |
Collapse
|