1
|
Hajjar R, Hatoum S, Mattar S, Moawad G, Ayoubi JM, Feki A, Ghulmiyyah L. Endocrine Disruptors in Pregnancy: Effects on Mothers and Fetuses-A Review. J Clin Med 2024; 13:5549. [PMID: 39337036 PMCID: PMC11432155 DOI: 10.3390/jcm13185549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Endocrine disruptors are ubiquitous agents in the environment and are present in everyday consumer products. These agents can interfere with the endocrine system, and subsequently the reproductive system, especially in pregnancy. An increasing number of studies have been conducted to discover and describe the health effects of these agents on humans, including pregnant women, their fetuses, and the placenta. This review discusses prenatal exposure to various endocrine disruptors, focusing on bisphenols, phthalates, organophosphates, and perfluoroalkyl substances, and their effects on pregnancy and fetal development. Methods: We reviewed the literature via the PubMed and EBSCO databases and included the most relevant studies. Results: Our findings revealed that several negative health outcomes were linked to endocrine disruptors. However, despite the seriousness of this topic and the abundance of research on these agents, it remains challenging to draw strong conclusions about their effects from the available studies. This does not allow for strong, universal guidelines and might result in poor patient counseling and heterogeneous approaches to regulating endocrine disruptors. Conclusions: The seriousness of this matter calls for urgent efforts, and more studies are needed in this realm, to protect pregnant patients, and ultimately, in the long term, society.
Collapse
Affiliation(s)
- Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Serge Mattar
- Fertility & IVF Clinic, Dubai P.O. Box 72960, United Arab Emirates
| | - Gaby Moawad
- Department of Obstetrics and Gynecology, The George Washington University Hospital, Washington, DC 20037, USA
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hôpital Foch-Faculté de Médecine, Suresnes, 92150 Paris, France
| | - Anis Feki
- Department of Obstetrics and Gynecology and Reproductive Medicine, HFR-Hopital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| | - Labib Ghulmiyyah
- Women's Specialty Care of Florida, Pediatrix Medical Group, Fort Lauderdale, FL 33316, USA
| |
Collapse
|
2
|
Hu JMY, Arbuckle TE, Janssen PA, Lanphear BP, Alampi JD, Braun JM, MacFarlane AJ, Chen A, McCandless LC. Gestational exposure to organochlorine compounds and metals and infant birth weight: effect modification by maternal hardships. Environ Health 2024; 23:60. [PMID: 38951908 PMCID: PMC11218229 DOI: 10.1186/s12940-024-01095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Gestational exposure to toxic environmental chemicals and maternal social hardships are individually associated with impaired fetal growth, but it is unclear whether the effects of environmental chemical exposure on infant birth weight are modified by maternal hardships. METHODS We used data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a pan-Canadian cohort of 1982 pregnant females enrolled between 2008 and 2011. We quantified eleven environmental chemical concentrations from two chemical classes - six organochlorine compounds (OCs) and five metals - that were detected in ≥ 70% of blood samples collected during the first trimester. We examined fetal growth using birth weight adjusted for gestational age and assessed nine maternal hardships by questionnaire. Each maternal hardship variable was dichotomized to indicate whether the females experienced the hardship. In our analysis, we used elastic net to select the environmental chemicals, maternal hardships, and 2-way interactions between maternal hardships and environmental chemicals that were most predictive of birth weight. Next, we obtained effect estimates using multiple linear regression, and plotted the relationships by hardship status for visual interpretation. RESULTS Elastic net selected trans-nonachlor, lead, low educational status, racially minoritized background, and low supplemental folic acid intake. All were inversely associated with birth weight. Elastic net also selected interaction terms. Among those with increasing environmental chemical exposures and reported hardships, we observed stronger negative associations and a few positive associations. For example, every two-fold increase in lead concentrations was more strongly associated with reduced infant birth weight among participants with low educational status (β = -100 g (g); 95% confidence interval (CI): -215, 16), than those with higher educational status (β = -34 g; 95% CI: -63, -3). In contrast, every two-fold increase in mercury concentrations was associated with slightly higher birth weight among participants with low educational status (β = 23 g; 95% CI: -25, 71) compared to those with higher educational status (β = -9 g; 95% CI: -24, 6). CONCLUSIONS Our findings suggest that maternal hardships can modify the associations of gestational exposure to some OCs and metals with infant birth weight.
Collapse
Affiliation(s)
- Janice M Y Hu
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 101 Tunney's Pasture Driveway, Ottawa, ON, K1A 0K9, Canada.
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 101 Tunney's Pasture Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Patricia A Janssen
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Joshua D Alampi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Amanda J MacFarlane
- Texas A&M Agriculture, Food and Nutrition Evidence Center, Fort Worth, TX, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
3
|
Malacarne IT, Alpire MES, Malinverni ACDM, Ribeiro DA. The use of micronucleus assay in oral mucosa cells as a suitable biomarker in children exposed to environmental mutagens: theoretical concepts, guidelines and future directions. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:191-197. [PMID: 36367315 DOI: 10.1515/reveh-2022-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In the last decades, the micronucleus assay has been recognized as a suitable biomarker for monitoring populations exposed to many different occupational factors, lifestyle, environmental conditions, radiation exposure, and deleterious effects of pesticides. The objective of this work is to direct the design of future field studies in the assessment of the risk of children exposed to environmental mutagens, radiation, and pesticides. This review sought available information on the analysis of micronuclei in oral cells in children. A literature search for papers investigating DNA damage, genetic damage, oral cells, buccal cells, genotoxicity, mutagenicity and micronucleus was begun in 2000 and is scheduled to be concluded in May, 2022. Briefly, a search of PubMed, MEDLINE, and Google Scholar for a variety of articles was performed. The results showed that there are still few studies that addressed micronuclei of oral cells in children exposed to the most diverse environmental conditions. Only environmental pollution was associated with damage to the genome of oral cells in children. Therefore, researchers need to be calibrated in cell analysis, standardization of field study protocols and the development of new research in the evaluation of children using the micronucleus test as a tool in child biomonitoring.
Collapse
Affiliation(s)
- Ingra Tais Malacarne
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Maria Esther Suarez Alpire
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | | | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| |
Collapse
|
4
|
Birolli WG, Lanças FM, dos Santos Neto ÁJ, Silveira HCS. Determination of pesticide residues in urine by chromatography-mass spectrometry: methods and applications. Front Public Health 2024; 12:1336014. [PMID: 38932775 PMCID: PMC11199415 DOI: 10.3389/fpubh.2024.1336014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
5
|
Santacruz-Márquez R, Neff AM, Mourikes VE, Fletcher EJ, Flaws JA. The effects of inhaled pollutants on reproduction in marginalized communities: a contemporary review. Inhal Toxicol 2024; 36:286-303. [PMID: 37075037 PMCID: PMC10584991 DOI: 10.1080/08958378.2023.2197941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/25/2023] [Indexed: 04/20/2023]
Abstract
Important differences in health that are closely linked with social disadvantage exist within and between countries. According to the World Health Organization, life expectancy and good health continue to increase in many parts of the world, but fail to improve in other parts of the world, indicating that differences in life expectancy and health arise due to the circumstances in which people grow, live, work, and age, and the systems put in place to deal with illness. Marginalized communities experience higher rates of certain diseases and more deaths compared to the general population, indicating a profound disparity in health status. Although several factors place marginalized communities at high risk for poor health outcomes, one important factor is exposure to air pollutants. Marginalized communities and minorities are exposed to higher levels of air pollutants than the majority population. Interestingly, a link exists between air pollutant exposure and adverse reproductive outcomes, suggesting that marginalized communities may have increased reproductive disorders due to increased exposure to air pollutants compared to the general population. This review summarizes different studies showing that marginalized communities have higher exposure to air pollutants, the types of air pollutants present in our environment, and the associations between air pollution and adverse reproductive outcomes, focusing on marginalized communities.
Collapse
Affiliation(s)
| | - Alison M. Neff
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | | | - Endia J. Fletcher
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| |
Collapse
|
6
|
van Wendel de Joode B, Peñaloza-Castañeda J, Mora AM, Corrales-Vargas A, Eskenazi B, Hoppin JA, Lindh CH. Pesticide exposure, birth size, and gestational age in the ISA birth cohort, Costa Rica. Environ Epidemiol 2024; 8:e290. [PMID: 38617432 PMCID: PMC11008631 DOI: 10.1097/ee9.0000000000000290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024] Open
Abstract
Purpose To examine associations of prenatal biomarkers of pesticide exposure with birth size measures and length of gestation among newborns from the Infants' Environmental Health (ISA) birth cohort, Costa Rica. Methods We included 386 singleton liveborn newborns with data on birth size measures, length of gestation, and maternal urinary biomarkers of chlorpyrifos, synthetic pyrethroids, mancozeb, pyrimethanil, and 2, 4-D during pregnancy. We associated biomarkers of exposure with birth outcomes using multivariate linear regression and generalized additive models. Results Concentrations were highest for ethylene thiourea (ETU, metabolite of mancozeb), median = 3.40; p10-90 = 1.90-6.79 µg/L, followed by 3,5,6-trichloro-2-pyridinol (TCP, metabolite of chlorpyrifos) p50 = 1.76 p10-90 = 0.97-4.36 µg/L, and lowest for 2,4-D (p50 = 0.33 p10-90 = 0.18-1.07 µg/L). Among term newborns (≥37 weeks), higher prenatal TCP was associated with lower birth weight and smaller head circumference (e.g., β per 10-fold-increase) during the second half of pregnancy = -129.6 (95% confidence interval [CI] = -255.8, -3.5) grams, and -0.61 (95% CI = -1.05, -0.17) centimeters, respectively. Also, among term newborns, prenatal 2,4-D was associated with lower birth weight (β per 10-fold-increase = -125.1; 95% CI = -228.8, -21.5), smaller head circumference (β = -0.41; 95% CI = -0.78, -0.03), and, during the second half of pregnancy, with shorter body length (β = -0.58; 95% CI = -1.09, -0.07). Furthermore, ETU was nonlinearly associated with head circumference during the second half of pregnancy. Biomarkers of pyrethroids and pyrimethanil were not associated with birth size, and none of the biomarkers explained the length of gestation. Conclusions Prenatal exposure to chlorpyrifos and 2,4-D, and, possibly, mancozeb/ETU, may impair fetal growth.
Collapse
Affiliation(s)
- Berna van Wendel de Joode
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Jorge Peñaloza-Castañeda
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Ana M. Mora
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
- Center for Environmental Research and Community Health (CERCH), University of California at Berkeley
| | - Andrea Corrales-Vargas
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), University of California at Berkeley
| | - Jane A. Hoppin
- Center for Human Health and the Environment, North Carolina State University, North Carolina
- Department of Biological Sciences, North Carolina State University, North Carolina
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Sweden
| |
Collapse
|
7
|
Neves AP, Rosa ACS, Larentis AL, da Silva Rodrigues Vidal PJ, Gonçalves ES, da Silveira GR, Dos Santos MVC, de Carvalho LVB, Alves SR. Urinary dialkylphosphate metabolites in the assessment of exposure to organophosphate pesticides: from 2000 to 2022. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:10. [PMID: 38049584 DOI: 10.1007/s10661-023-12184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
The general population and workers are exposed to organophosphate insecticides, one of the leading chemical classes of pesticides used in rural and urban areas, in the control of arboviruses and agriculture. These pesticides cause environmental/occupational exposure and associated risks to human and environmental health. The objective of this study was to carry out an integrative review of epidemiological studies that identified and quantified dialkylphosphate metabolites in the urine of exposed populations, focusing on the vector control workers, discussing the application and the results found. Searches utilized the Pubmed, Scielo, and the Brazilian Digital Library of Theses and Dissertations (BDTD) databases between 2000 and 2021. From the 194 selected studies, 75 (39%) were with children/adolescents, 48 (24%) with rural workers, 36 (19%) with the general population, 27 (14%) with pregnant women, and 9 (4%) with vector control workers. The total dialkylphosphate concentrations found in the occupationally exposed population were higher than in the general population. Studies demonstrate that dialkylphosphates are sensitive and representative exposure biomarkers for environmental and occupational organophosphate exposure. The work revealed a lack of studies with vector control workers and a lack of studies in developing countries.
Collapse
Affiliation(s)
- Ana Paula Neves
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil.
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH) - Rua Leopoldo Bulhões, nº. 1480 - Manguinhos, Rio de Janeiro, RJ, 21041-210, Brasil.
| | - Ana Cristina Simões Rosa
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
| | - Ariane Leites Larentis
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
| | - Priscila Jeronimo da Silva Rodrigues Vidal
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil
| | - Eline Simões Gonçalves
- Postgraduate Program in Geochemistry, Institute of Chemistry, Federal Fluminense University (UFF), Niterói, Brazil
| | - Gabriel Rodrigues da Silveira
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil
| | - Marcus Vinicius Corrêa Dos Santos
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil
| | - Leandro Vargas Barreto de Carvalho
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
| | - Sergio Rabello Alves
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
- General Superintendence of Technical and Scientific Police/Department of Civilian Police of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Freisthler M, Winchester PW, Young HA, Haas DM. Perinatal health effects of herbicides exposures in the United States: the Heartland Study, a Midwestern birth cohort study. BMC Public Health 2023; 23:2308. [PMID: 37993831 PMCID: PMC10664386 DOI: 10.1186/s12889-023-17171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The objective of the Heartland Study is to address major knowledge gaps concerning the health effects of herbicides on maternal and infant health. To achieve this goal, a two-phased, prospective longitudinal cohort study is being conducted. Phase 1 is designed to evaluate associations between biomarkers of herbicide concentration and pregnancy/childbirth outcomes. Phase 2 is designed to evaluate potential associations between herbicide biomarkers and early childhood neurological development. METHODS People (target enrollment of 2,000) who are seeking prenatal care, are ages 18 or older, and are ≤ 20 + 6 weeks gestation will be eligible for recruitment. The Heartland Study will utilize a combination of questionnaire data and biospecimen collections to meet the study objectives. One prenatal urine and buccal sample will be collected per trimester to assess the impact of herbicide concentration levels on pregnancy outcomes. Infant buccal specimens will be collected post-delivery. All questionnaires will be collected by trained study staff and clinic staff will remain blinded to all individual level research data. All data will be stored in a secure REDCap database. Hospitals in the agriculturally intensive states in the Midwestern region will be recruited as study sites. Currently participating clinical sites include Indiana University School of Medicine- affiliated Hospitals in Indianapolis, Indiana; Franciscan Health Center in Indianapolis, Indiana; Gundersen Lutheran Medical Center in La Crosse, Wisconsin, and University of Iowa in Iowa City, Iowa. An anticipated 30% of the total enrollment will be recruited from rural areas to evaluate herbicide concentrations among those pregnant people residing in the rural Midwest. Perinatal outcomes (e.g. birth outcomes, preterm birth, preeclampsia, etc.) will be extracted by trained study teams and analyzed for their relationship to herbicide concentration levels using appropriate multivariable models. DISCUSSION Though decades of study have shown that environmental chemicals may have important impacts on the health of parents and infants, there is a paucity of prospective longitudinal data on reproductive impacts of herbicides. The recent, rapid increases in herbicide use across agricultural regions of the United States necessitate further research into the human health effects of these chemicals, particularly in pregnant people. The Heartland Study provides an invaluable opportunity to evaluate health impacts of herbicides during pregnancy and beyond. TRIAL REGISTRATION The study is registered at clinicaltrials.gov, NCT05492708 with initial registration and release 05 August, 2022.
Collapse
Affiliation(s)
- Marlaina Freisthler
- Department of Environmental and Occupational Health, Milken Institute of Public Health, George Washington University, 950 New Hampshire Ave NW #2, Washington, DC, 20052, USA
| | - Paul W Winchester
- Neonatal-Perinatal Medicine, Riley Children's Hospital, Indiana University School of Medicine, 699 Riley Hospital Dr RR 208, Indianapolis, IN, 46202, USA
- Franciscan Health, Indianapolis, 8111 South Emerson Avenue, Indianapolis, IN, 46237, USA
| | - Heather A Young
- Department of Epidemiology, Milken Institute for Public Health, George Washington University, 950 New Hampshire Ave NW #2, Washington, DC, 20052, USA
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 550 N. University Blvd, Indianapolis, IN, UH2440, USA.
| |
Collapse
|
9
|
Parra KL, Harris RB, Farland LV, Beamer P, Furlong M. Associations of Prenatal Agricultural Farm Work with Fetal Overgrowth and Pregnancy Complications in State of Arizona Birth Records. J Occup Environ Med 2023; 65:635-642. [PMID: 37167931 PMCID: PMC10523987 DOI: 10.1097/jom.0000000000002877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
OBJECTIVE The purpose of this study is to examine fetal growth outcomes from agricultural worker households. METHODS Using Arizona 2006 to 2013 birth certificates with parental occupation, we identified N = 623,185 live births by agricultural household status. Logistic regression models estimated adjusted odds ratios (aORs) for macrosomia (>4000 g), postterm birth (>41 weeks), low birth weight (<2500 g), preterm birth (<37 weeks), large for GA, small for GA, and 5-minute APGAR (<7). RESULTS Newborns of agricultural households (n = 6371) had a higher risk of macrosomia (aOR, 1.15; 95% CI, 1.05-1.26), large for GA (aOR, 1.12; 95% CI, 1.03-1.22), postterm birth (aOR, 1.20; 95% CI, 1.09-1.33), and low 5-minute APGAR (aOR, 1.39; 95% CI, 1.07-1.81), whereas low birth weight (aOR, 0.85; 95% CI, 0.76-0.96) and preterm birth (aOR, 0.82; 95% CI, 0.74-0.92) were inversely related. CONCLUSIONS Having an agriculture working parent increased the likelihood of fetal overgrowth and low APGAR.
Collapse
Affiliation(s)
- Kimberly L. Parra
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Robin B. Harris
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Leslie V. Farland
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
- Department of Obstetrics and Gynecology, College of Medicine-Tucson, University of Arizona, Tucson, Arizona, USA
| | - Paloma Beamer
- Environmental Health Sciences, Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Melissa Furlong
- Environmental Health Sciences, Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Gimenez-Asensio MJ, Hernandez AF, Romero-Molina D, Gonzalez-Alzaga B, Pérez-Luzardo O, Henríquez-Hernández LA, Boada LD, García-Cortés H, Lopez-Flores I, Sanchez-Piedra MD, Aguilar-Garduño C, Lacasaña M. Effect of prenatal exposure to organophosphates and pyrethroid pesticides on neonatal anthropometric measures and gestational age. ENVIRONMENTAL RESEARCH 2023:116410. [PMID: 37315756 DOI: 10.1016/j.envres.2023.116410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Several studies have examined the association between prenatal exposure to organophosphate and pyrethroid pesticides and their impact on foetal growth and newborn anthropometry; however, the available evidence is limited and inconclusive. This study examined whether prenatal organophosphate and pyrethroid pesticide exposure was associated with anthropometric measures at birth (weight, length, head circumference), ponderal index, gestational age, and prematurity in 537 mother-child pairs. These were randomly selected from the 800 pairs participating in the prospective birth cohort GENEIDA (Genetics, early life environmental exposures and infant development in Andalusia). Six non-specific organophosphate metabolites (dialkylphosphates, DAPs), one metabolite relatively specific to chlorpyrifos (3,5,6-trichloro-2-pyridinol, TCPy) and a common metabolite to several pyrethroids (3-phenoxybenzoic acid, 3-PBA) were measured in maternal urine from the 1st and 3rd pregnancy trimesters. Information on anthropometric measures at birth, gestational age and prematurity was retrieved from medical records. The sum on a molar basis of DAPs with methyl (ƩDMs) and ethyl (ƩDEs) moieties and the sum of the 6 DAPs metabolites (ƩDAPs) was calculated for both trimesters of pregnancy. High urinary levels of dimethyl phosphate (DMP) during the 3rd trimester were associated with a decrease in birth weight (β = -0.24; 95% CI: 0.41; -0.06) and birth length (β = -0.20; 95% CI: 0.41; 0.02). Likewise, ΣDMs during 3rd trimester were near-significantly associated with decreased birth weight (β = -0.18; 95% CI: 0.37; 0.01). In turn, increased urinary TCPy during 1st trimester was associated with a decreased head circumference (β = -0.31; 95% CI: 0.57; -0.06). Finally, an increase in 3-PBA in the 1st trimester was associated with a decreased gestational age (β = -0.36 95% CI: 0.65-0.08), whereas increased 3-PBA at 1st and 3rd trimester was associated with prematurity. These results indicate that prenatal exposure to organophosphate and pyrethroid insecticides could affect normal foetal growth, shorten gestational age and alter anthropometric measures at birth.
Collapse
Affiliation(s)
- María José Gimenez-Asensio
- Andalusian School of Public Health, Granada, Spain; Fundación para La Investigación Biosanitaria de Andalucía Oriental (FIBAO), Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain
| | - Antonio F Hernandez
- Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Desire Romero-Molina
- Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; Statistics and Operations Research Department, Faculty of Sciences, University of Granada, Granada, Spain
| | - Beatriz Gonzalez-Alzaga
- Andalusian School of Public Health, Granada, Spain; Fundación para La Investigación Biosanitaria de Andalucía Oriental (FIBAO), Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Octavio Pérez-Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, Spain
| | - Luis Alberto Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, Spain
| | - Luis D Boada
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, Spain
| | - Helena García-Cortés
- Andalusian School of Public Health, Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain
| | - Inmaculada Lopez-Flores
- Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | | | | | - Marina Lacasaña
- Andalusian School of Public Health, Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain; Andalusian Health and Environment Observatory (OSMAN), Granada, Spain.
| |
Collapse
|
11
|
Arcury TA, Chen H, Quandt SA, Talton JW, Anderson KA, Scott RP, Summers P, Laurienti PJ. Pesticide Exposure among Latinx Children in Rural Farmworker and Urban Non-Farmworker Communities: Associations with Locality and Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5647. [PMID: 37174167 PMCID: PMC10178580 DOI: 10.3390/ijerph20095647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
This study uses repeated measures to document the pesticide exposure of rural and urban Latinx children (age eight at baseline), and to compare these children in terms of the frequency and concentration of their exposure to a large set of pesticides, accounting for season. We used silicone wristbands worn for one week up to ten times at quarterly intervals from 2018 to 2022 to assess pesticide exposure in children from rural farmworker (n = 75) and urban non-farmworker (n = 61) families. We determined the detection and concentrations (ng/g) of 72 pesticides and pesticide degradation products in the wristbands using gas chromatography electron capture detection and gas chromatography mass spectrometry. The most frequently detected pesticide classes were organochlorines, pyrethroids, and organophosphates. Controlling for season, organochlorine or phenylpyrazole detections were less likely for rural children than for urban children. Detections of organochlorines, pyrethroids, or organophosphates were lower in spring and summer versus winter. Controlling for season, urban children had greater concentrations of organochlorines, while rural children had greater concentrations of pyrethroids and Chlorpyrifos. Pesticide concentrations were lower in winter and spring compared with summer and fall. These results further document that pesticides are ubiquitous in the living environment for children in vulnerable, immigrant communities.
Collapse
Affiliation(s)
- Thomas A. Arcury
- Department of Family and Community Medicine, and Center for Worker Health, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Haiying Chen
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, and Center for Worker Health, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jennifer W. Talton
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Phillip Summers
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
12
|
Lee Y, Choi S, Kim KW. Dithianon exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114752. [PMID: 36924561 DOI: 10.1016/j.ecoenv.2023.114752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Dithianon is a conventional broad-spectrum protectant fungicide widely used in agriculture, but its potential neurotoxic risk to animals remains largely unknown. In this study, neurotoxic effects of Dithianon and its underlying cellular and molecular mechanisms were investigated using the nematode, Caenorhabditis elegans, as a model system. Upon chronic exposure of C. elegans to Dithianon, dopaminergic neurons were found to be vulnerable, with significant degeneration in terms of structure and function in a concentration-dependent manner. In examining toxicity mechanisms, we observed significant Dithianon-induced increases in oxidative stress and mitochondrial fragmentation, both of which are often associated with cellular stress. The present study suggests that Dithianon exposure causes dopaminergic neurotoxicity in C. elegans, by inducing oxidative stress and mitochondrial dysfunction. These findings contribute to a better understanding of Dithianon's neurotoxic potential.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea
| | - Sooji Choi
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea
| | - Kyung Won Kim
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea; Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
13
|
Jaacks L. Invited Perspective: Can Eating a Healthy Diet during Pregnancy Attenuate the Obesogenic Effects of Persistent Organic Pollutants? ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:31306. [PMID: 36927188 PMCID: PMC10019502 DOI: 10.1289/ehp12193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Lindsay Jaacks
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Midlothian, UK
| |
Collapse
|
14
|
Kalantzi OI, Castorina R, Gunier RB, Kogut K, Holland N, Eskenazi B, Bradman A. Determinants of organophosphorus pesticide urinary metabolite levels in pregnant women from the CHAMACOS cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158551. [PMID: 36075406 DOI: 10.1016/j.scitotenv.2022.158551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Organophosphosphorus pesticides (OPs) are widely used as insecticides in agriculture. Human exposure to OPs has been linked to adverse effects including poorer child neurodevelopment, reduced birth weight, altered serum hormone levels, and reduced semen quality. We measured six OP dialkyl phosphate (DAP) metabolites [three dimethyl alkylphosphates (DMs) and three diethyl alkylphosphates (DEs)] in urine samples collected two times during pregnancy (~13 and ~26 weeks gestation) from 594 women participating in the CHAMACOS birth cohort study and resided in an agricultural community in the United States (U.S.) between 1999 and 2000. Previous studies have shown these women have higher OP exposures compared with the general U.S. population. We examined bivariate associations between prenatal DAP metabolite levels and exposure determinants such as age, season, years living in the US, housing characteristics, fruit and vegetable consumption, occupation and residential proximity to agricultural fields. Final multivariable models indicated that season of urine collection was significantly associated (p < 0.01) with specific gravity-adjusted DM, DE and total DAP metabolites; samples collected in fall and winter had higher concentrations than those collected in spring-summer. Specific gravity-adjusted levels of DM and total DAP metabolites were significantly higher in women who had resided in the U.S. for 5 years or less (p < 0.05). Levels of DM metabolites also increased with daily fruit and vegetable servings (p < 0.01), and levels of DE metabolites were higher in residences with poorer housekeeping quality (p < 0.01) and in mothers that worked in agriculture (p < 0.05). These findings suggest that there are multiple determinants of OP exposure in pregnant women.
Collapse
Affiliation(s)
- O I Kalantzi
- Department of Environment, University of the Aegean, Mytilene 81100, Greece; Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States.
| | - R Castorina
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - R B Gunier
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - K Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - N Holland
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - B Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - A Bradman
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States; Department of Public Health, University of California, Merced, CA, United States
| |
Collapse
|
15
|
Liang D, Batross J, Fiedler N, Prapamontol T, Suttiwan P, Panuwet P, Naksen W, Baumert BO, Yakimavets V, Tan Y, D'Souza P, Mangklabruks A, Sittiwang S, Kaewthit K, Kohsuwan K, Promkam N, Pingwong S, Ryan PB, Barr DB. Metabolome-wide association study of the relationship between chlorpyrifos exposure and first trimester serum metabolite levels in pregnant Thai farmworkers. ENVIRONMENTAL RESEARCH 2022; 215:114319. [PMID: 36108722 PMCID: PMC9909724 DOI: 10.1016/j.envres.2022.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Organophosphate (OP) insecticides, including chlorpyrifos, have been linked with numerous harmful health effects on maternal and child health. Limited data are available on the biological mechanisms and endogenous pathways underlying the toxicity of chlorpyrifos exposures on pregnancy and birth outcomes. In this study, we measured a urinary chlorpyrifos metabolite and used high-resolution metabolomics (HRM) to identify biological perturbations associated with chlorpyrifos exposure among pregnant women in Thailand, who are disparately exposed to high levels of OP insecticides. METHODS This study included 50 participants from the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE). We used liquid chromatography-high resolution mass spectrometry to conduct metabolic profiling on first trimester serum samples collected from participants to evaluate metabolic perturbations in relation to chlorpyrifos exposures. We measured 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of chlorpyrifos and chlorpyrifos-methyl, in first trimester urine samples to assess the levels of exposures. Following an untargeted metabolome-wide association study workflow, we used generalized linear models, pathway enrichment analyses, and chemical annotation to identify significant metabolites and pathways associated with urinary TCPy levels. RESULTS In the 50 SAWASDEE participants, the median urinary TCPy level was 4.36 μg TCPy/g creatinine. In total, 691 unique metabolic features were found significantly associated with TCPy levels (p < 0.05) after controlling for confounding factors. Pathway analysis of metabolic features associated with TCPy indicated perturbations in 24 metabolic pathways, most closely linked to the production of reactive oxygen species and cellular damage. These pathways include tryptophan metabolism, fatty acid oxidation and peroxisome metabolism, cytochromes P450 metabolism, glutathione metabolism, and vitamin B3 metabolism. We confirmed the chemical identities of 25 metabolites associated with TCPy levels, including glutathione, cystine, arachidic acid, itaconate, and nicotinamide adenine dinucleotide. DISCUSSION The metabolic perturbations associated with TCPy levels were related to oxidative stress, cellular damage and repair, and systemic inflammation, which could ultimately contribute to health outcomes, including neurodevelopmental deficits in the child. These findings support the future development of sensitive biomarkers to investigate the metabolic underpinnings related to pesticide exposure during pregnancy and to understand its link to adverse outcomes in children.
Collapse
Affiliation(s)
- Donghai Liang
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA.
| | - Jonathan Batross
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Nancy Fiedler
- Rutgers University, Environmental and Occupational Health Science Institute, Piscataway, NJ, USA
| | - Tippawan Prapamontol
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Panrapee Suttiwan
- Chulalongkorn University, Faculty of Psychology, LIFE Di Center, Bangkok, Thailand
| | - Parinya Panuwet
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Warangkana Naksen
- Chiang Mai University, Faculty of Public Health, Chiang Mai, Thailand
| | - Brittney O Baumert
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Volha Yakimavets
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Youran Tan
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Priya D'Souza
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Ampica Mangklabruks
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Supattra Sittiwang
- Chulalongkorn University, Faculty of Psychology, LIFE Di Center, Bangkok, Thailand
| | | | - Kanyapak Kohsuwan
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Nattawadee Promkam
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Sureewan Pingwong
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - P Barry Ryan
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA.
| |
Collapse
|
16
|
Roh ME, Mpimbaza A, Oundo B, Irish A, Murphy M, Wu SL, White JS, Shiboski S, Glymour MM, Gosling R, Dorsey G, Sturrock H. Association between indoor residual spraying and pregnancy outcomes: a quasi-experimental study from Uganda. Int J Epidemiol 2022; 51:1489-1501. [PMID: 35301532 PMCID: PMC9557839 DOI: 10.1093/ije/dyac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Malaria is a risk factor for adverse pregnancy outcomes. Indoor residual spraying with insecticide (IRS) reduces malaria infections, yet the effects of IRS on pregnancy outcomes are not well established. We evaluated the impact of a large-scale IRS campaign on pregnancy outcomes in Eastern Uganda. METHODS Birth records (n = 59 992) were obtained from routine surveillance data at 25 health facilities from five districts that were part of the IRS campaign and six neighbouring control districts ∼27 months before and ∼24 months after the start of the campaign (January 2013-May 2017). Campaign effects on low birthweight (LBW) and stillbirth incidence were estimated using the matrix completion method (MC-NNM), a machine-learning approach to estimating potential outcomes, and compared with the difference-in-differences (DiD) estimator. Subgroup analyses were conducted by HIV and gravidity. RESULTS MC-NNM estimates indicated that the campaign was associated with a 33% reduction in LBW incidence: incidence rate ratio (IRR) = 0.67 [95% confidence interval (CI): 0.49-0.93)]. DiD estimates were similar to MC-NNM [IRR = 0.69 (0.47-1.01)], despite a parallel trends violation during the pre-IRS period. The campaign was not associated with substantial reductions in stillbirth incidence [IRRMC-NNM = 0.94 (0.50-1.77)]. HIV status modified the effects of the IRS campaign on LBW [βIRSxHIV = 0.42 (0.05-0.78)], whereby HIV-negative women appeared to benefit from the campaign [IRR = 0.70 (0.61-0.81)], but not HIV-positive women [IRR = 1.12 (0.59-2.12)]. CONCLUSIONS Our results support the effectiveness of the campaign in Eastern Uganda based on its benefit to LBW prevention, though HIV-positive women may require additional interventions. The IRS campaign was not associated with a substantively lower stillbirth incidence, warranting further research.
Collapse
Affiliation(s)
- Michelle E Roh
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco, CA, USA
| | - Arthur Mpimbaza
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Brenda Oundo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Amanda Irish
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco, CA, USA
| | - Maxwell Murphy
- Department of Biostatistics, University of California, Berkeley, CA, USA
| | - Sean L Wu
- Department of Biostatistics, University of California, Berkeley, CA, USA
| | - Justin S White
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Stephen Shiboski
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - M Maria Glymour
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Roly Gosling
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco, CA, USA
| | - Grant Dorsey
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Hugh Sturrock
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
17
|
Kuiper JR, O’Brien KM, Welch BM, Barrett ES, Nguyen RH, Sathyanarayana S, Milne GL, Swan SH, Ferguson KK, Buckley JP. Combining Urinary Biomarker Data From Studies With Different Measures of Urinary Dilution. Epidemiology 2022; 33:533-540. [PMID: 35473917 PMCID: PMC9585883 DOI: 10.1097/ede.0000000000001496] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Guidance is lacking for how to combine urinary biomarker data across studies that use different measures of urinary dilution, that is, creatinine or specific gravity. METHODS Among 741 pregnant participants from four sites of The Infant Development and Environment Study (TIDES) cohort, we assessed the relation of maternal urinary di-2-ethylhexyl phthalate (DEHP) concentrations with preterm birth. We compared scenarios in which all sites measured either urinary creatinine or specific gravity, or where measure of dilution differed by site. In addition to a scenario with no dilution adjustment, we applied and compared three dilution-adjustment approaches: a standard regression-based approach for creatinine, a standard approach for specific gravity (Boeniger method), and a more recently developed approach that has been applied to both (covariate-adjusted standardization method). For each scenario and dilution-adjustment method, we estimated the association between a doubling in the molar sum of DEHP (∑DEHP) and odds of preterm birth using logistic regression. RESULTS All dilution-adjustment approaches yielded comparable associations (odds ratio [OR]) that were larger in magnitude than when we did not perform dilution adjustment. A doubling of ∑DEHP was associated with 9% greater odds of preterm birth (OR = 1.09, 95% confidence interval [CI] = 0.91, 1.30) when applying no dilution-adjustment method, whereas dilution-adjusted point estimates were higher, and similar across all scenarios and methods: 1.13-1.20 (regression-based), 1.15-1.18 (Boeniger), and 1.14-1.21 (covariate-adjusted standardization). CONCLUSIONS In our applied example, we demonstrate that it is possible and straightforward to combine urinary biomarker data across studies when measures of dilution differ.
Collapse
Affiliation(s)
- Jordan R. Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Barrett M. Welch
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ
| | - Ruby H.N. Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington and Seattle Children’s Research Institute, Seattle, WA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
18
|
Iqbal S, Ali S, Ali I. Maternal pesticide exposure and its relation to childhood cancer: an umbrella review of meta-analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1609-1627. [PMID: 33745400 DOI: 10.1080/09603123.2021.1900550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
This umbrella review summarizes the available meta-analyses elucidating the effects of maternal pesticide exposure on adverse health outcomes in children particularly the risk of childhood cancer. A literature search was conducted on PubMed and Scopus with 10-years temporal restriction and with search terms of ('pesticides') and ('maternal' or 'pregnancy' or 'gestational' or 'perinatal' or 'children' or 'infants' or 'birth weight' or 'gestational age' or 'cancer' or 'tumor' or 'malignancy' or 'carcinoma') and ('meta-analysis' or 'systematic review'). Using relative risk estimates, e.g., odds ratio (OR), relative risk (RR), ß coefficients, and 95% confidence interval (CI) as a prerequisite for inclusion/exclusion criteria a total of 19 eligible meta-analyses were included. The results showed that maternal domestic/occupational pesticide exposure increases the risk for childhood leukaemia. The overall OR regarding the risk of pesticide exposure and leukaemia was 1.23 to 1.57 with heterogeneity I2 values that varied between 12.9% and 73%. Some studies found that exposure to dichlorodiphenyldichloroethylene (p,p´-DDE) and polychlorinated biphenyls (PCB-153) pesticides appears to decrease infant birth weight to some extent [p,p´-DDE (ß = -0.007 to -0.008)] and [PCB-153 (ß = -0.15 to -0.17)]Needing more studies on this relationship, our study found that pesticide exposure is a risk factor for leukaemia in children.
Collapse
Affiliation(s)
- Sehar Iqbal
- Department of Environmental Health, Centre for Public Health, Medical University of Vienna, Vienna, Austria
- Department of Nutrition and Dietetics, National University of Medical Sciences, Rawalpindi, Islamabad
| | - Shahbaz Ali
- Department of Anthropology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | - Inayat Ali
- Department of Social and Cultural Anthropology, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Donley N, Bullard RD, Economos J, Figueroa I, Lee J, Liebman AK, Martinez DN, Shafiei F. Pesticides and environmental injustice in the USA: root causes, current regulatory reinforcement and a path forward. BMC Public Health 2022; 22:708. [PMID: 35436924 PMCID: PMC9017009 DOI: 10.1186/s12889-022-13057-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
Many environmental pollutants are known to have disproportionate effects on Black, Indigenous and People of Color (BIPOC) as well as communities of low-income and wealth. The reasons for these disproportionate effects are complex and involve hundreds of years of systematic oppression kept in place through structural racism and classism in the USA. Here we analyze the available literature and existing datasets to determine the extent to which disparities in exposure and harm exist for one of the most widespread pollutants in the world – pesticides. Our objective was to identify and discuss not only the historical injustices that have led to these disparities, but also the current laws, policies and regulatory practices that perpetuate them to this day with the ultimate goal of proposing achievable solutions. Disparities in exposures and harms from pesticides are widespread, impacting BIPOC and low-income communities in both rural and urban settings and occurring throughout the entire lifecycle of the pesticide from production to end-use. These disparities are being perpetuated by current laws and regulations through 1) a pesticide safety double standard, 2) inadequate worker protections, and 3) export of dangerous pesticides to developing countries. Racial, ethnic and income disparities are also maintained through policies and regulatory practices that 4) fail to implement environmental justice Executive Orders, 5) fail to account for unintended pesticide use or provide adequate training and support, 6) fail to effectively monitor and follow-up with vulnerable communities post-approval, and 7) fail to implement essential protections for children. Here we’ve identified federal laws, regulations, policies, and practices that allow for disparities in pesticide exposure and harm to remain entrenched in everyday life for environmental justice communities. This is not simply a pesticides issue, but a broader public health and civil rights issue. The true fix is to shift the USA to a more just system based on the Precautionary Principle to prevent harmful pollution exposure to everyone, regardless of skin tone or income. However, there are actions that can be taken within our existing framework in the short term to make our unjust regulatory system work better for everyone.
Collapse
|
20
|
Arcury TA, Smith SA, Talton JW, Quandt SA. The Abysmal Organization of Work and Work Safety Culture Experienced by North Carolina Latinx Women in Farmworker Families. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4516. [PMID: 35457383 PMCID: PMC9029169 DOI: 10.3390/ijerph19084516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
The occupational health of immigrant workers in the United States is a major concern. This analysis describes two domains, organization of work and work safety culture, important to the occupational health of Latinx women in farmworker families. Sixty-seven Latinx women in North Carolina farmworker families completed a baseline and five follow-up questionnaires in 2019 through 2021. Fifty-nine of the women were employed in the year prior to the Follow-Up 5 Questionnaire. These women experienced an abysmal organization of work and work safety culture. They experienced significant job churn, with most changing employment several times during the 18-month period. Most of their jobs were seasonal, paid less than $10.00 per hour, piece-rate, and almost all without benefits. The women's jobs had little skill variety (mean 1.5) or decision latitude (mean 1.1), but had high psychological demands (mean 2.0). Work safety climate was very low (mean 13.7), with 76.3% of women noting that their supervisors were "only interested in doing the job fast and cheaply" rather than safely. Women employed as farmworkers versus those in other jobs had few differences. Further research and intervention are needed on the organization of work and work safety culture of Latinx women manual workers.
Collapse
Affiliation(s)
- Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sydney A. Smith
- Department of Biostatistics and Data Science, Division of Public Health Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (S.A.S.); (J.W.T.)
| | - Jennifer W. Talton
- Department of Biostatistics and Data Science, Division of Public Health Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (S.A.S.); (J.W.T.)
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| |
Collapse
|
21
|
Yusà V, F Fernández S, Dualde P, López A, Lacomba I, Coscollà C. Exposure to non-persistent pesticides in the Spanish population using biomonitoring: A review. ENVIRONMENTAL RESEARCH 2022; 205:112437. [PMID: 34838757 DOI: 10.1016/j.envres.2021.112437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Although Spain does not have a regular national human biomonitoring program yet, different research groups are active in evaluating the exposure of children and adults to chemicals. In the last seven years, several studies in Spain have evaluated the internal exposure of the population to currently used pesticides. The present review analyzes the scope of these studies, the employed analytical methods and the main results of the exposure and risk, mainly for children and mothers. The frequency of exposure to biomarkers of exposure to organophosphate pesticides is high. Some non-specific dialkyl phosphate metabolites (DAPs), such as the diethyl phosphate (DEP), present Detection Frequencies (DFs) in the range of 65-92% in various studies. Also, the specific biomarker of the chlorpyrifos (3,5,6-trichloro-2-pyridinol, TCPy), achieves Detection Frequencies between 74% and 100% in many studies. For pyrethroids, the metabolite 3-phenoxybenzoic acid (PBA) is present, in general, in more than the 65% of the studied samples. Highly polar herbicides were only assessed in one study and both glyphosate and its metabolite aminomethylphosphonic acid showed Detection Frequencies around 60%. However, putting the biomonitoring data in a risk assessment context, the mean Hazard Quotient (HQ), used as a metric for the individual risk, ranges from 0.0006 (glyphosate) to 0.93 in farm workers (parathion), which means that is unlike that the exposure poses a health concern (HQ < 1).
Collapse
Affiliation(s)
- Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain.
| | - Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Iñaki Lacomba
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| |
Collapse
|
22
|
Corbett GA, Lee S, Woodruff TJ, Hanson M, Hod M, Charlesworth AM, Giudice L, Conry J, McAuliffe FM. Nutritional interventions to ameliorate the effect of endocrine disruptors on human reproductive health: A semi-structured review from FIGO. Int J Gynaecol Obstet 2022; 157:489-501. [PMID: 35122246 PMCID: PMC9305939 DOI: 10.1002/ijgo.14126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Background Endocrine disrupting chemicals have harmful effects on reproductive, perinatal, and obstetric outcomes. Objective To analyze the evidence on nutritional interventions to reduce the negative effects of endocrine disruptors on reproductive, perinatal, and obstetric outcomes. Search strategy A search of MEDLINE (PubMed), Allied Health Literature (CINAHL), EMBASE, Web of Science, and the Cochrane Database was conducted from inception to May 2021. Selection criteria Experimental studies on human populations. Data collection and analysis Data were collected from eligible studies. Risk of bias assessment was completed using the Cochrane risk of bias tool and the ROBINS‐I Tool. Results Database searches yielded 15 362 articles. Removing 11 181 duplicates, 4181 articles underwent abstract screening, 26 articles were eligible for full manuscript review, and 16 met full inclusion criteria. Several interventions were found to be effective in reducing exposure to endocrine disruptors: avoidance of plastic containers, bottles, and packaging; avoidance of canned food/beverages; consumption of fresh and organic food; avoidance of fast/processed foods; and supplementation with vitamin C, iodine, and folic acid. There were some interventional studies examining therapies to improve clinical outcomes related to endocrine disruptors. Conclusion Dietary alterations can reduce exposure to endocrine disruptors, with limited data on interventions to improve endocrine‐disruptor–related clinical outcomes. This review provides useful instruction to women, their families, healthcare providers, and regulatory bodies. Nutritional interventions shown to reduce exposure to endocrine disruptors include avoidance of canned/processed or plastic‐packaged foods. Consumption of fresh/organic foods and vitamin C, iodine, and folic acid also reduce exposure.
Collapse
Affiliation(s)
- Gillian A Corbett
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Sadhbh Lee
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Tracey J Woodruff
- Program on Reproductive Health and Environment, Department of Obstetrics and Gynecology, Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Mark Hanson
- International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health.,Institute of Developmental Sciences and NIHR Biomedical Research Centre, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Moshe Hod
- International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health.,Mor Comprehensive Women's Health Care Centre, Tel Aviv, Israel
| | - Anne Marie Charlesworth
- Program on Reproductive Health and Environment, Department of Obstetrics and Gynecology, Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Linda Giudice
- International Federation of Gynecology and Obstetrics (FIGO) Committee on Climate Change and Toxic Environmental Exposures.,Centre for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Jeanne Conry
- Environmental Health and Leadership Foundation, United States
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland.,International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health
| | | |
Collapse
|
23
|
Baumert BO, Fiedler N, Prapamontol T, Naksen W, Panuwet P, Hongsibsong S, Wongkampaun A, Thongjan N, Lee G, Sittiwang S, Dokjunyam C, Promkam N, Pingwong S, Suttiwan P, Siriwong W, Barry Ryan P, Boyd Barr D. Urinary Concentrations of Dialkylphosphate Metabolites of Organophosphate pesticides in the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE). ENVIRONMENT INTERNATIONAL 2022; 158:106884. [PMID: 34583095 PMCID: PMC8688265 DOI: 10.1016/j.envint.2021.106884] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Measurements of urinary dialkyl phosphate (DAP) metabolites are often used to characterize exposures to organophosphate (OP) insecticides; however, some challenges to using urinary DAP metabolites as an exposure measure exist. OP insecticides have short biological half-lives with measurement in a single urine sample typically only reflecting recent exposure within the last few days. Because of the field staff and participant burden of longitudinal sample collection and the high cost of multiple measurements, typically only one or two urine samples have been used to evaluate OP insecticide exposure during pregnancy, which is unlikely to capture an accurate picture of prenatal exposure. METHODS We recruited pregnant farmworker women in Chom Thong and Fang, two districts of Chiang Mai province in northern Thailand (N = 330) into the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE) from 2017 to 2019. We collected up to 6 serial urine samples per participant during gestation and composited the samples to represent early, mid, and late pregnancy. We measured concentrations of urinary DAP metabolites in the composited urine samples and evaluated the within- and between-participant variability of these levels. We also investigated predictors of OP insecticide exposure. RESULTS DAP metabolite concentrations in serial composite samples were weakly to moderately correlated. Spearman correlations indicated that composite urine samples were more highly correlated in Fang participants than in Chom Thong participants. The within-person variances (0.064-0.65) exceeded the between-person variances for DETP, DEP, ∑DEAP, DMP, DMTP, ∑DMAP, ∑DAP. The intraclass correlations (ICCs) for the volume-based individual metabolite levels (ng/mL) ranged from 0.10 to 0.66. For ∑DEAP, ∑DMAP, and ∑DAP the ICCs were, 0.47, 0.17, 0.45 respectively. We observed significant differences between participants from Fang compared to those from Chom Thong both in demographic and exposure characteristics. Spearman correlations of composite samples from Fang participants ranged from 0.55 to 0.66 for the ∑DEAP metabolite concentrations in Fang indicating moderate correlation between pregnancy periods. The ICCs were higher for samples from Fang participants, which drove the overall ICCs. CONCLUSIONS Collecting multiple (∼6) urine samples during pregnancy rather than just 1 or 2 improved our ability to accurately assess exposure during the prenatal period. By compositing the samples, we were able to still obtain trimester-specific information on exposure while keeping the analytic costs and laboratory burden low. This analysis also helped to inform how to best conduct future analyses within the SAWASDEE study. We observed two different exposure profiles in participants in which the concentrations and variability in data were highly linked to the residential location of the participants.
Collapse
Affiliation(s)
- Brittney O Baumert
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Nancy Fiedler
- Rutgers University, Environmental and Occupational Health Science Institute, Piscataway, NJ, USA
| | - Tippawan Prapamontol
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Warangkana Naksen
- Chiang Mai University, Faculty of Public Health, Chiang Mai, Thailand
| | - Parinya Panuwet
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Surat Hongsibsong
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Anchalee Wongkampaun
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Nathaporn Thongjan
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Grace Lee
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | | | - Chayada Dokjunyam
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Nattawadee Promkam
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Sureewan Pingwong
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | | | - Wattasit Siriwong
- Chulalongkorn University, College of Public Health Sciences, Bangkok, Thailand
| | - P Barry Ryan
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA.
| |
Collapse
|
24
|
van den Dries MA, Keil AP, Tiemeier H, Pronk A, Spaan S, Santos S, Asimakopoulos AG, Kannan K, Gaillard R, Guxens M, Trasande L, Jaddoe VWV, Ferguson KK. Prenatal Exposure to Nonpersistent Chemical Mixtures and Fetal Growth: A Population-Based Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117008. [PMID: 34817287 PMCID: PMC8612241 DOI: 10.1289/ehp9178] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Prenatal exposure to mixtures of nonpersistent chemicals is universal. Most studies examining these chemicals in association with fetal growth have been restricted to single exposure models, ignoring their potentially cumulative impact. OBJECTIVE We aimed to assess the association between prenatal exposure to a mixture of phthalates, bisphenols, and organophosphate (OP) pesticides and fetal measures of head circumference, femur length, and weight. METHODS Within the Generation R Study, a population-based cohort in Netherlands (n=776), urinary concentrations of 11 phthalate metabolites, 3 bisphenols, and 5 dialkylphosphate (DAP) metabolites were measured at <18, 18-25, and >25 weeks of gestation and averaged. Ultrasound measures of head circumference, femur length, and estimated fetal weight (EFW) were taken at 18-25 and >25 weeks of gestation, and measurements of head circumference, length, and weight were performed at delivery. We estimated the difference in each fetal measurement per quartile increase in all exposures within the mixture with quantile g-computation. RESULTS The average EFW at 18-25 wk and >25wk was 369 and 1,626g, respectively, and the average birth weight was 3,451g. Higher exposure was associated with smaller fetal and newborn growth parameters in a nonlinear fashion. At 18-25 wk, fetuses in the second, third, and fourth quartiles of exposure (Q2-Q4) had 26g [95% confidence intervals (CI):-38, -13], 35g (95% CI: -55, -15), and 27g (95% CI: -54, 1) lower EFW compared with those in the first quartile (Q1). A similar dose-response pattern was observed at >25wk, but all effect sizes were smaller, and no association was observed comparing Q4 to Q1. At birth, we observed no differences in weight between Q1-Q2 or Q1-Q3. However, fetuses in Q4 had 91g (95% CI: -258, 76) lower birth weight in comparison with those in Q1. Results observed at 18-25 and >25wk were similar for femur length; however, no differences were observed at birth. No associations were observed for head circumference. DISCUSSION Higher exposure to a mixture of phthalates, bisphenols, and OP pesticides was associated with lower EFW in the midpregnancy period. In late pregnancy, these differences were similar but less pronounced. At birth, the only associations observed appeared when comparing individuals from Q1 and Q4. This finding suggests that even low levels of exposure may be sufficient to influence growth in early pregnancy, whereas higher levels may be necessary to affect birth weight. Joint exposure to nonpersistent chemicals may adversely impact fetal growth, and because these exposures are widespread, this impact could be substantial. https://doi.org/10.1289/EHP9178.
Collapse
Affiliation(s)
- Michiel A van den Dries
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anjoeka Pronk
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Suzanne Spaan
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
- Robert F. Wagner School of Public Service, New York University, New York, New York, USA
- School of Global Public Health, New York University, New York, New York, USA
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| |
Collapse
|
25
|
Balalian AA, Liu X, Herbstman JB, Daniel S, Whyatt R, Rauh V, Calafat AM, Wapner R, Factor-Litvak P. Prenatal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-dichlorophenoxyacetic acid and size at birth in urban pregnant women. ENVIRONMENTAL RESEARCH 2021; 201:111539. [PMID: 34174256 PMCID: PMC8478820 DOI: 10.1016/j.envres.2021.111539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Organophosphate insecticides and the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) are used to protect crops or control weeds. Pyrethroids are used to manage pests both in agriculture and in residences, and to reduce the transmission of insect-borne diseases. Several studies have reported inverse associations between exposure to organophosphates (as a larger class) and birth outcomes but these associations have not been conclusive for pyrethroids or 2,4-D, specifically. We aimed to investigate the association between birth outcomes and urinary biomarkers of pyrethroids, organophosphates and 2,4-D among healthy pregnant women living in New York City. METHODS We quantified urinary biomarkers of 2,4-D and of organophosphate and pyrethroid insecticides from 269 women from two cohorts: a) Thyroid Disruption And Infant Development (TDID) and b) Sibling/Hermanos cohort (S/H). We used weighted quantile sum regression and multivariable linear regression models to evaluate the associations between a mixture of urinary creatinine-adjusted biomarker concentrations and birth outcomes of length, birthweight and head circumference, controlling for covariates. We also used linear regression models and further classified biomarkers concentrations into three categories (i: non-detectable; ii: between the limit of detection and median; and iii: above the median) to investigate single pesticides' association with these birth outcomes. Covariates considered were delivery mode, ethnicity, marital status, education, income, employment status, gestational age, maternal age and pre-pregnancy BMI. Analyses were conducted separately for each cohort and stratified by child sex within each cohort. RESULTS In TDID cohort, we found a significant inverse association between weighted quantile sum of mixture of pesticides and head circumference among boys. We found that the urinary biomarkers of organophosphate chlorpyrifos, TCPy, and 2,4-D had the largest contribution to the overall mixture effect in the TDID cohort among boys (b = -0.57, 95%CI: -0.92, -0.22) (weights = 0.81 and 0.16 respectively) but not among girls. In the multivariable linear regression models, we found that among boys, for each log unit increase in 3,5,6-trichloro-2-pyridinol (TCPy, metabolite of organophosphate chlorpyrifos) in maternal urine, there was a -0.56 cm decrease in head circumference (95%CI: -0.92, -0.19). Among boys in the TDID cohort, 2,4-D was associated with smaller head circumference in the second (b = -1.57; 95%CI: -2.74, -0.39) and third (b = -1.74, 95%CI: -2.98, -0.49) concentration categories compared to the first. No associations between pyrethroid and organophosphate biomarkers and birth outcomes were observed in girls analyzed in WQS regression or individually in linear regression models in TDID cohort. In the S/H cohort, head circumference increased with higher concentrations of 3-phenoxybenzoic acid (3-PBA, a biomarker of several pyrethroids) (b = 0.53, 95%CI: 0.03, 1.04) among boys and head circumference was lower among girls in the high compared to low category of 2,4-D (b = -2.27, 95%CI: - 3.98, -0.56). Birth length was also positively associated with the highest concentration of 2,4-D compared to the lowest among boys (b = 4.01, 95%CI: 0.02,8.00). CONCLUSIONS Weighted quantile sum of pesticides was negatively associated with head circumference among boys in one cohort. Nonetheless, due to directional homogeneity assumption in WQS no positive associations were detected. In linear regression models with individual pesticides, concentrations of TCPy were inversely associated with head circumference in boys and higher concentrations of 2,4-D was inversely associated with head circumference among girls; 2,4-D concentrations were also associated with higher birth length among boys. Concentrations of 3-PBA was positively associated with head circumference among boys.
Collapse
Affiliation(s)
- Arin A Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sharon Daniel
- Department of Public Health, Israel; Department of Pediatrics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Soroka University Medical Center, Beer-Sheva, Israel; Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Robin Whyatt
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Álvarez-Silvares E, Rubio-Cid P, González-Gómez X, Domínguez-Vigo P, Fernández-Cruz T, Seoane-Pillado T, Martínez-Carballo E. Determination of organic pollutants in meconium and its relationship with fetal growth. Case control study in Northwestern Spain. J Perinat Med 2021; 49:884-896. [PMID: 33856139 DOI: 10.1515/jpm-2020-0324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 03/14/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Antenatal exposure to organic pollutants is a leading public health problem. Meconium is a unique matrix to perform prenatal studies because it enables us to retrospectively evaluate fetal exposure accumulated during the second and third trimester. The aim of the present study was to evaluate associations between organic pollutant levels in meconium and birth weight in NW Spain. METHODS In this study, we quantify the concentrations of 50 organic pollutants together with the total values of the most important chemical groups in meconium using gas chromatography coupled to tandem mass spectrometry. RESULTS Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers were detected with the highest levels in meconium from small for gestational age newborns. It was estimated that several congeners were statistically significant (p<0.05). However, organophosphorus pesticides attained higher concentrations in newborns with an appropriate weight. CONCLUSIONS The occurrence of transplacental transfer can be confirmed. Prenatal exposure to organic pollutants was associated with a decrease in birth weight and, therefore, organic pollutants could have an impact on fetal growth. Nevertheless, these results need validation in larger sample sized studies.
Collapse
Affiliation(s)
- Esther Álvarez-Silvares
- Obstetrics and Gynaecology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Paula Rubio-Cid
- Obstetrics and Gynaecology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Xiana González-Gómez
- Analytical and Food Chemistry Department, Nutrition and Bromatology Group, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, Ourense, Spain
| | - Paula Domínguez-Vigo
- Obstetrics and Gynaecology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Tania Fernández-Cruz
- Analytical and Food Chemistry Department, Nutrition and Bromatology Group, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, Ourense, Spain
| | | | - Elena Martínez-Carballo
- Analytical and Food Chemistry Department, Nutrition and Bromatology Group, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, Ourense, Spain
| |
Collapse
|
27
|
Zhuang LH, Chen A, Braun JM, Lanphear BP, Hu JMY, Yolton K, McCandless LC. Effects of gestational exposures to chemical mixtures on birth weight using Bayesian factor analysis in the Health Outcome and Measures of Environment (HOME) Study. Environ Epidemiol 2021; 5:e159. [PMID: 34131620 PMCID: PMC8196215 DOI: 10.1097/ee9.0000000000000159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/30/2021] [Indexed: 01/04/2023] Open
Abstract
Studying the effects of gestational exposures to chemical mixtures on infant birth weight is inconclusive due to several challenges. One of the challenges is which statistical methods to rely on. Bayesian factor analysis (BFA), which has not been utilized for chemical mixtures, has advantages in variance reduction and model interpretation. METHODS We analyzed data from a cohort of 384 pregnant women and their newborns using urinary biomarkers of phthalates, phenols, and organophosphate pesticides (OPs) and serum biomarkers of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), perfluoroalkyl substances (PFAS), and organochlorine pesticides (OCPs). We examined the association between exposure to chemical mixtures and birth weight using BFA and compared with multiple linear regression (MLR) and Bayesian kernel regression models (BKMR). RESULTS For BFA, a 10-fold increase in the concentrations of PCB and PFAS mixtures was associated with an 81 g (95% confidence intervals [CI] = -132 to -31 g) and 57 g (95% CI = -105 to -10 g) reduction in birth weight, respectively. BKMR results confirmed the direction of effect. However, the 95% credible intervals all contained the null. For single-pollutant MLR, a 10-fold increases in the concentrations of multiple chemicals were associated with reduced birth weight, yet the 95% CI all contained the null. Variance inflation from MLR was apparent for models that adjusted for copollutants, resulting in less precise confidence intervals. CONCLUSION We demonstrated the merits of BFA on mixture analysis in terms of precision and interpretation compared with MLR and BKMR. We also identified the association between exposure to PCBs and PFAS and lower birth weight.
Collapse
Affiliation(s)
- Liheng H. Zhuang
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia
| | - Janice M. Y. Hu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | |
Collapse
|
28
|
Arcury TA, Chen H, Quandt SA, Talton JW, Anderson KA, Scott RP, Jensen A, Laurienti PJ. Pesticide exposure among Latinx children: Comparison of children in rural, farmworker and urban, non-farmworker communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144233. [PMID: 33385842 PMCID: PMC7855950 DOI: 10.1016/j.scitotenv.2020.144233] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
Personal pesticide exposure is not well characterized among children in vulnerable, immigrant communities. We used silicone wristbands in 2018-2019 to assess pesticide exposure in 8 year old Latinx boys and girls in rural, farmworker families (n = 73) and urban, non-farmworker families (n = 60) living in North Carolina who were enrolled in the PACE5 Study, a community-based participatory research study. We determined the detection and concentrations (ng/g) of 75 pesticides and pesticide degradation products in the silicone wristbands worn for one week using gas chromatography electron capture detection and employed gas chromatography mass spectrometry. Differences by personal and family characteristics were tested using analysis of variance or Wilcoxon Rank Sum tests when necessary. Pesticide concentrations above the limit of detection were analyzed, and reported as geometric means and 95% confidence intervals (CI). The most frequently detected pesticide classes were organochlorines (85.7%), pyrethroids (65.4%), and organophosphates (59.4%), with the most frequently detected specific pesticides being alpha-chlordane (69.2%), trans-nonachlor (67.7%), gamma-chlordane (66.2%), chlorpyrifos (54.9%), cypermethrin (49.6%), and trans-permethrin (39.1%). More of those children in urban, non-farmworker families had detections of organochlorines (93.3% vs. 79.5, p = 0.0228) and pyrethroids (75.0% vs. 57.5%, p = 0.0351) than did those in rural, farmworker families; more children in rural, farmworker families had detections for organophosphates (71.2% vs. 45.0%, p= 0.0022). Children in urban, non-farmworker families had greater concentrations of alpha-chlordane (geometric mean (GM) 18.98, 95% CI 14.14, 25.47 vs. 10.25, 95% CI 7.49, 14.03; p= 0.0055) and dieldrin (GM 17.38, 95% CI 12.78 23.62 vs. 8.10, 95% CI 5.47, 12.00; p= 0.0034) than did children in rural, farmworker families. These results support the position that pesticides are ubiquitous in the living environment for children in vulnerable, immigrant communities, and argue for greater effort in documenting the widespread nature of pesticide exposure among children, with greater effort to reduce pesticide exposure.
Collapse
Affiliation(s)
- Thomas A Arcury
- Department of Family and Community Medicine, Center for Worker Health, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Haiying Chen
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Sara A Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Center for Worker Health, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Jennifer W Talton
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Anna Jensen
- North Carolina Farmworkers Project, 1238 NC Highway 50 S, Benson, NC 27504, USA.
| | - Paul J Laurienti
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
29
|
Hu JMY, Arbuckle TE, Janssen P, Lanphear BP, Zhuang LH, Braun JM, Chen A, McCandless LC. Prenatal exposure to endocrine disrupting chemical mixtures and infant birth weight: A Bayesian analysis using kernel machine regression. ENVIRONMENTAL RESEARCH 2021; 195:110749. [PMID: 33465343 DOI: 10.1016/j.envres.2021.110749] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pregnant women are regularly exposed to a multitude of endocrine disrupting chemicals (EDCs). EDC exposures, both individually and as mixtures, may affect fetal growth. The relationship of EDC mixtures with infant birth weight, however, remains poorly understood. We examined the relations between prenatal exposure to EDC mixtures and infant birth weight. METHODS We used data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a pan-Canadian cohort of 1857 pregnant women enrolled between 2008 and 2011. We quantified twenty-one chemical concentrations from five EDC classes, including organochlorine compounds (OCs), metals, perfluoroalkyl substances (PFAS), phenols and phthalate metabolites that were detected in >70% of urine or blood samples collected during the first trimester. In our primary analysis, we used Bayesian kernel machine regression (BKMR) models to assess variable importance, explore EDC mixture effects, and identify any interactions among EDCs. Our secondary analysis used traditional linear regression to compare the results with those of BKMR and to quantify the changes in mean birth weight in relation to prenatal EDC exposures. RESULTS We found evidence that mixtures of OCs and metals were associated with monotonic decreases in mean birth weight across the whole range of exposure. trans-Nonachlor from the OC mixture and lead (Pb) from the metal mixture had the greatest impact on birth weight. Our linear regression analysis corroborated the BKMR results and found that a 2-fold increase in trans-nonachlor and Pb concentrations reduced mean birth weight by -38 g (95% confidence interval (CI): -67, -10) and -39 g (95% CI: -69, -9), respectively. A sex-specific association for OC mixture was observed among female infants. PFAS, phenols and phthalates were not associated with birth weight. No interactions were observed among the EDCs. CONCLUSIONS Using BKMR, we observed that both OC and metal mixtures were associated with decreased birth weight in the MIREC Study. trans-Nonachlor from the OC mixture and Pb from the metal mixture contributed most to the adverse effects.
Collapse
Affiliation(s)
- Janice M Y Hu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Tye E Arbuckle
- Population Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Patricia Janssen
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Liheng H Zhuang
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
30
|
Nuseir KQ, Tahaineh L, Al-Mehaisen LM, Al-Kuran O, Ayoub NM, Mukattash TL, Al-Rawi N. Organophosphate pesticide exposure prenatally influence on pregnancy outcomes. J Matern Fetal Neonatal Med 2021; 35:4841-4846. [PMID: 33522334 DOI: 10.1080/14767058.2020.1869719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Organophosphorus (OP) pesticides are widely used worldwide. The effect of OP exposure during pregnancy on the offspring is inconsistent in the current literature. Moreover, similar studies in the Middle East are lacking. PURPOSE To examine the effects of OP exposure in utero on the outcome of pregnancies in an agricultural region in Jordan. METHOD A prospective study, employing a questionnaire to collect women demographic data. Hospital records were collected for newborns' birth data. In addition, urine samples during the third trimester were collected from pregnant women and then analyzed for six OP metabolites to measure exposure. RESULTS One of the metabolites, DEDTP, was negatively correlated with gestational age and Apgar scores 1 and 5. There were no other significant associations. CONCLUSIONS Exposure to OP during pregnancy is not highly associated with any negative anthropometric characteristics of the newborns; it is probably offset by other factors.
Collapse
Affiliation(s)
- Khawla Q Nuseir
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Linda Tahaineh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | | | - Oqba Al-Kuran
- Department of Obstetrics and Gynecology, College of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Tareq L Mukattash
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Naseer Al-Rawi
- Faculty of Pharmacy, Amman Al Ahliyya University, Amman, Jordan
| |
Collapse
|
31
|
Prahl M, Odorizzi P, Gingrich D, Muhindo M, McIntyre T, Budker R, Jagannathan P, Farrington L, Nalubega M, Nankya F, Sikyomu E, Musinguzi K, Naluwu K, Auma A, Kakuru A, Kamya MR, Dorsey G, Aweeka F, Feeney ME. Exposure to pesticides in utero impacts the fetal immune system and response to vaccination in infancy. Nat Commun 2021; 12:132. [PMID: 33420104 PMCID: PMC7794579 DOI: 10.1038/s41467-020-20475-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
The use of pesticides to reduce mosquito vector populations is a cornerstone of global malaria control efforts, but the biological impact of most pesticides on human populations, including pregnant women and infants, is not known. Some pesticides, including carbamates, have been shown to perturb the human immune system. We measure the systemic absorption and immunologic effects of bendiocarb, a commonly used carbamate pesticide, following household spraying in a cohort of pregnant Ugandan women and their infants. We find that bendiocarb is present at high levels in maternal, umbilical cord, and infant plasma of individuals exposed during pregnancy, indicating that it is systemically absorbed and trans-placentally transferred to the fetus. Moreover, bendiocarb exposure is associated with numerous changes in fetal immune cell homeostasis and function, including a dose-dependent decrease in regulatory CD4 T cells, increased cytokine production, and inhibition of antigen-driven proliferation. Additionally, prenatal bendiocarb exposure is associated with higher post-vaccination measles titers at one year of age, suggesting that its impact on functional immunity may persist for many months after birth. These data indicate that in utero bendiocarb exposure has multiple previously unrecognized biological effects on the fetal immune system.
Collapse
Affiliation(s)
- Mary Prahl
- Department of Pediatrics, University of California San Francisco, San Francisco, 94143, USA
| | - Pamela Odorizzi
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | - David Gingrich
- Department of Clinical Pharmacy, University of California San Francisco, Drug Research Unit, San Francisco, CA, 94143, USA
| | - Mary Muhindo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Tara McIntyre
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | - Rachel Budker
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | | | - Lila Farrington
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | | | | | - Esther Sikyomu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Kate Naluwu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Ann Auma
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA
| | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California San Francisco, Drug Research Unit, San Francisco, CA, 94143, USA
| | - Margaret E Feeney
- Department of Pediatrics, University of California San Francisco, San Francisco, 94143, USA. .,Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, 94143, USA.
| |
Collapse
|
32
|
Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139626. [PMID: 32535459 DOI: 10.1016/j.scitotenv.2020.139626] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to widespread environmental toxicants is detrimental to maternal health and fetal development. The effects of environmental toxicants on maternal and fetal metabolic profile changes have not yet been summarized. This systematic review aims to summarize the current studies exploring the association between prenatal exposure to environmental toxicants and metabolic profile alterations in mother and fetus. We searched the MEDLINE (PubMed) electronic database for relevant literature conducted up to September 18, 2019 with some key terms. From the initial 155 articles, 15 articles met the inclusion and exclusion criteria, and consist of highly heterogeneous research methods. Seven studies assessed the effects of multiple environmental pollutants (metals, organic pollutants, nicotine, air pollutants) on the maternal urine and blood metabolomic profile; five studies evaluated the effects of arsenic, polychlorinated biphenyls (PCBs), nicotine, and ambient fine particulate matter (PM2.5) on the cord blood metabolomic profile; and one study assessed the effects of smoking exposure on the amniotic fluid metabolomic profile. The alteration of metabolic pathways in these studies mainly involve energy metabolism, hormone metabolism, oxidative stress and inflammation. No population study investigated the association between environmental toxicants and placental metabolomics. This systematic review provides evidence that prenatal exposure to a variety of environmental pollutants can affect maternal and fetal metabolomic characteristics. Integration of environmental toxicant exposure and metabolomics data in maternal-fetal samples is helpful to understand the interaction between toxicants and metabolites, so as to reveal the pathogenesis of fetal disease or diseases of fetal origin.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
33
|
Gilden R, Friedmann E, Holmes K, Yolton K, Xu Y, Lanphear B, Chen A, Braun J, Spanier A. Gestational Pesticide Exposure and Child Respiratory Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7165. [PMID: 33007939 PMCID: PMC7579149 DOI: 10.3390/ijerph17197165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Childhood wheeze may be related to pesticide exposure, and diet and genetics (Paroxonase; PON1) may modify the effects of exposure. METHODS We analyzed data from the HOME Study, a prospective pregnancy and birth cohort, to examine the association of gestational urinary organophosphate (OP) and pyrethroid (3PBA) metabolite concentrations with child wheeze, forced expiratory volume in one second (FEV1) at ages 4 and 5 years, and wheeze trajectory patterns through age 8 years. RESULTS Among 367 singletons, the frequency of wheeze ranged from 10.6% to 24.1% at each measurement age. OP and 3PBA metabolite concentrations were not associated with wheeze at 8 years or from birth to 8 years, but there were three significant interactions: (1) maternal daily fruit and vegetable consumption (less than daily consumption and increasing 3PBA was associated with wheeze at age 8 years, OR = 1.40), (2) maternal PON1-108 allele (CT/TT genotypes and high DE was associated with wheeze at age 8 years, OR = 2.13, 2.74) and (3) PON1192 alleles (QR/RR genotypes with higher diethylphosphate (DE) and dialkyl phosphate (DAP) were associated with wheeze at age 8 years, OR = 3.84). Pesticide metabolites were not consistently related to FEV1 or wheeze trajectory. CONCLUSIONS Gestational OP and 3PBA metabolites were associated with child respiratory outcomes in participants with maternal dietary and genetic susceptibility.
Collapse
Affiliation(s)
- Robyn Gilden
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA
| | - Erika Friedmann
- Office of Research and Scholarship, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (E.F.); (K.H.)
| | - Katie Holmes
- Office of Research and Scholarship, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (E.F.); (K.H.)
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (K.Y.); (Y.X.)
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (K.Y.); (Y.X.)
| | - Bruce Lanphear
- Department of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Joseph Braun
- Department of Epidemiology, Brown University, Providence, RI 02912, USA;
| | - Adam Spanier
- Department of Pediatrics, Division of General Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
34
|
Etzel TM, Engel SM, Quirós-Alcalá L, Chen J, Barr DB, Wolff MS, Buckley JP. Prenatal maternal organophosphorus pesticide exposures, paraoxonase 1, and childhood adiposity in the Mount Sinai Children's Environmental Health Study. ENVIRONMENT INTERNATIONAL 2020; 142:105858. [PMID: 32599353 PMCID: PMC7340581 DOI: 10.1016/j.envint.2020.105858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Animal studies suggest that organophosphorus pesticides (OPs) may be environmental obesogens. While prenatal OP exposures have been associated with altered infant glucose metabolism, associations with pediatric adiposity remain unknown. METHODS We summed concentrations of three dimethylphosphate (∑DMP) and three diethylphosphate (∑DEP) metabolites of OPs measured in third trimester spot urine samples collected from pregnant women enrolled in New York City, 1998-2002. We measured percent fat mass using bio-electrical impedance analysis and calculated age- and sex-standardized body mass index (BMI) z-scores from anthropometric measurements collected at approximately 4, 6, and 7-9 years of age (166 children, 333 observations). We assessed covariate-adjusted associations of OPs with repeated adiposity measures using linear mixed models and evaluated effect measure modification (EMM) by sex and paroxonase (PON) 1 -108C/T and Q192R polymorphisms measured in maternal peripheral blood samples. RESULTS The geometric mean urinary concentration of ∑DMP metabolites (29.9 nmol/L, IQR: 105.2 nmol/L) was higher than ∑DEP metabolites (8.8 nmol/L, IQR: 31.2 nmol/L). Adjusted associations were null, with differences in fat mass per 10-fold increase in prenatal ∑DMP and ∑DEP concentrations of 0.7% (95% CI: -0.6, 2.0) and 0.8% (95% CI: -0.4, 2.0), respectively. Maternal PON1-108C/T polymorphisms modified relationships of prenatal ∑DMP with percent fat mass (EMM p-value = 0.18) and ∑DEP with BMI z-scores (EMM p-value = 0.12). For example, ∑DMP was modestly associated with increased percent fat mass among children of mothers with the at-risk CT or TT genotype (β = 1.2%, 95% CI: -0.6, 3.0) but not among those whose mothers had the CC genotype (β = -0.4%, 95% CI: -2.4, 1.5). Associations were not modified by sex or maternal PON1 Q192R polymorphisms. CONCLUSIONS We observed little evidence of a relationship between prenatal OP exposures and child adiposity, although there was some suggestion of increased risk among offspring of mothers who were slow OP metabolizers. Larger studies are warranted to further evaluate possible associations of prenatal OP exposures with child adiposity and differences by maternal PON1 genotype, which regulates OP metabolism and may increase susceptibility to exposure.
Collapse
Affiliation(s)
- Taylor M Etzel
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Stephanie M Engel
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Chapel Hill, NC, USA.
| | | | - Jia Chen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Dana B Barr
- Emory University Rollins School of Public Health, Atlanta, GA, USA.
| | - Mary S Wolff
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jessie P Buckley
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
35
|
Khoshhali M, Davoodi S, Ebrahimpour K, Shoshtari-Yeganeh B, Kelishadi R. The association between maternal exposure to organophosphate pesticides and neonatal anthropometric measures: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:79. [PMID: 33088316 PMCID: PMC7554421 DOI: 10.4103/jrms.jrms_919_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/25/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Background: This study aimed to evaluate the epidemiological studies on the relationship between organophosphate (OP) pesticide exposure during pregnancy and neonatal anthropometric measures. Materials and Methods: In this systematic review and meta analyses, a comprehensive search of the literature for the association of maternal exposure to OP pesticides and birth outcome including birth weight, birth length, and head circumference was conducted from scientific databases of MEDLINE, Scopus, Web of Science, and Cochrane library until the end of April 2019. We used the following keyword to identify the relevant studies: “birth weight,” “birth length,” “pregnancy outcome,“”birth outcome,” “organophosphate pesticides,” and “organophosphate metabolites.” Only English language studies investigating the relationship between pregnant mothers' exposure to OP metabolites and birth outcomes were examined. Results: Of the 10 articles reviewed, eight studies used to assess the association with birth weight, as well as five, and six studies were used in meta analysis to determine the association between OP exposure and birth length and head circumference. Pooled estimates were performed using a fixed effects model or random effects model. No significant association was observed between maternal exposure to OPs and birth weight (β = 1.520;95% confidence interval [CI] [−10.781, 13.820]), birth length (β = −0.011; [−0.132, 0.109]), and head circumference (β =0.022; 95%CI [−0.06, 0.103]). Conclusion: Although the effect of maternal exposure to OP on the birth outcome is not completely clear, strategies should be adopted to control the use of these substances.
Collapse
Affiliation(s)
- Mehri Khoshhali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheila Davoodi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Braun JM, Buckley JP, Cecil KM, Chen A, Kalkwarf HJ, Lanphear BP, Xu Y, Woeste A, Yolton K. Adolescent follow-up in the Health Outcomes and Measures of the Environment (HOME) Study: cohort profile. BMJ Open 2020; 10:e034838. [PMID: 32385062 PMCID: PMC7228515 DOI: 10.1136/bmjopen-2019-034838] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Environmental chemical exposures may adversely affect an array of adolescent health outcomes. Thus, we used the Health Outcomes and Measures of the Environment (HOME) study, a prospective cohort that recruited pregnant women and conducted longitudinal follow-up on children over the first 12 years of life, to determine if and when chemical exposures affect adolescent health. PARTICIPANTS We recruited 468 pregnant women (age range: 18-45 years) from the Cincinnati, Ohio region to participate in a cohort study between March 2003 and January 2006. Follow-up included two clinic and one home visits during pregnancy, a delivery hospital visit, and four home and six clinic visits when children were aged 4 weeks and 1, 2, 3, 4, 5 and 8 years. Of 441 children available for follow-up, 396 (90%) completed at least one follow-up and 256 (58%) completed the most recent follow-up at 12 years of age (range: 11-14). FINDINGS TO DATE Our new measures include maternal/child report of internalising symptoms, neuroimaging, dual-energy X-ray absorptiometry-derived estimates of lean/adipose tissue and bone mineral density, and cardiometabolic risk biomarkers. We assessed adolescent exposure to perfluoroalkyl substances, phenols, phthalates and flame retardants. Participants completing follow-up at 12 years of age were similar to the original cohort in terms of baseline factors. Most children had typical and expected values for this age on measures of internalising symptoms, body composition, bone density and cardiometabolic risk markers. Notably, 36% and 11% of children had scores indicative of potential anxiety and depressive disorders, respectively. Approximately 35% of children were overweight or obese, with higher prevalence among girls. Thirty-three per cent of children had borderline or high triglyceride concentrations (>90 mg/dL). FUTURE PLANS We will examine associations of early life environmental chemical exposures with adolescent health measures while considering potential periods of heightened susceptibility and mixture effects. TRIAL REGISTRATION NUMBER NCT00129324.
Collapse
Affiliation(s)
- Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anastasia Woeste
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Buckley JP, Barrett ES, Beamer PI, Bennett DH, Bloom MS, Fennell TR, Fry RC, Funk WE, Hamra GB, Hecht SS, Kannan K, Iyer R, Karagas MR, Lyall K, Parsons PJ, Pellizzari ED, Signes-Pastor AJ, Starling AP, Wang A, Watkins DJ, Zhang M, Woodruff TJ. Opportunities for evaluating chemical exposures and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) Program. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:397-419. [PMID: 32066883 PMCID: PMC7183426 DOI: 10.1038/s41370-020-0211-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 05/18/2023]
Abstract
The Environmental Influences on Child Health Outcomes (ECHO) Program will evaluate environmental factors affecting children's health (perinatal, neurodevelopmental, obesity, respiratory, and positive health outcomes) by pooling cohorts composed of >50,000 children in the largest US study of its kind. Our objective was to identify opportunities for studying chemicals and child health using existing or future ECHO chemical exposure data. We described chemical-related information collected by ECHO cohorts and reviewed ECHO-relevant literature on exposure routes, sources, and environmental and human monitoring. Fifty-six ECHO cohorts have existing or planned chemical biomonitoring data for mothers or children. Environmental phenols/parabens, phthalates, metals/metalloids, and tobacco biomarkers are each being measured by ≥15 cohorts, predominantly during pregnancy and childhood, indicating ample opportunities to study child health outcomes. Cohorts are collecting questionnaire data on multiple exposure sources and conducting environmental monitoring including air, dust, and water sample collection that could be used for exposure assessment studies. To supplement existing chemical data, we recommend biomonitoring of emerging chemicals, nontargeted analysis to identify novel chemicals, and expanded measurement of chemicals in alternative biological matrices and dust samples. ECHO's rich data and samples represent an unprecedented opportunity to accelerate environmental chemical research to improve the health of US children.
Collapse
Affiliation(s)
- Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Paloma I Beamer
- Department of Community, Environment and Policy, Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology & Biostatistics, University at Albany, State University of New York, Albany, NY, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, Research Triangle Park, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - William E Funk
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Ramsunder Iyer
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Patrick J Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Edo D Pellizzari
- Fellows Program, RTI International, Research Triangle Park, NC, USA
| | | | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aolin Wang
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
38
|
Fernández SF, Pardo O, Adam-Cervera I, Montesinos L, Corpas-Burgos F, Roca M, Pastor A, Vento M, Cernada M, Yusà V. Biomonitoring of non-persistent pesticides in urine from lactating mothers: Exposure and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134385. [PMID: 31678881 DOI: 10.1016/j.scitotenv.2019.134385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to assess the exposure to pesticides in urine from Spanish lactating mothers (n = 116). Six nonspecific (dialkyl phosphates) and 20 specific metabolites of organophosphate pesticides (OPs), herbicides and pyrethroids were analyzed. The most frequently detected biomarkers were diethyl phosphate, p-nitrophenol, 3,5,6-trichloro-2-pyridinol and 3-phenoxybenzoic acid, whose geometric means were 1.9 ng·mL-1, 0.8 ng·mL-1, 1.5 ng·mL-1 and 1.4 ng·mL-1, respectively. Herbicide metabolites were the least frequently detected biomarkers with detection frequencies between 0% (2,4,5-Trichlorophenoxyacetic acid) and 22% (2,4-Dichlorophenoxyacetic acid). Multiple regression analyses showed that the closeness to a farming activity, the place of residence and the presence of garden/plants at home were some of the most important contributors to urinary levels of pesticide metabolites. Estimated daily intake (EDI), hazard quotient (HQ) and hazard index (HI) were obtained in order to interpret urinary levels of the most frequently detected pesticide metabolites in a risk assessment context. The highest EDIs were obtained for chlorpyrifos (0.40-1.14 μg·kg bw-1·day-1) and deltamethrin (0.34-4.73 μg·kg bw-1·day-1). The calculated HQ for chlorpyrifos, dimethoate, parathion and deltamethrin ranged from 0.01 to 0.47, and HI for OPs ranged from 0.09 to 0.33 showing that apparently there were low health risks due to the exposure to these pesticides in this group of Spanish breastfeeding women.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain.
| | - Inés Adam-Cervera
- Institute of Materials Science of the University of Valencia (ICMUV), University of Valencia, Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Lidia Montesinos
- Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| | - Marta Roca
- Analytical Unit, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| | - Agustín Pastor
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| | - María Cernada
- Neonatal Research Group, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain; Analytical Unit, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| |
Collapse
|
39
|
Jaacks LM, Diao N, Calafat AM, Ospina M, Mazumdar M, Ibne Hasan MOS, Wright R, Quamruzzaman Q, Christiani DC. Association of prenatal pesticide exposures with adverse pregnancy outcomes and stunting in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2019; 133:105243. [PMID: 31675560 PMCID: PMC6863610 DOI: 10.1016/j.envint.2019.105243] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 10/03/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Pesticide exposure during pregnancy is thought to adversely affect fetal growth, which in turn may impact child growth, but results have been inconsistent across studies and few have explored these effects in developing countries. OBJECTIVES To quantify urinary concentrations of pesticide biomarkers in early pregnancy (<16 weeks' gestation), and to estimate the association of these concentrations with preterm birth, low birth weight, small for gestational age, and stunting at ~1 and 2 years of age. METHODS Eight pesticide biomarkers were quantified in urine collected from 289 pregnant women (aged 18-40 years) participating in a birth cohort study in Bangladesh. Anthropometry measurements were conducted on the index child at birth and approximately 1 and 2 years of age. A directed acyclic graph was used to identify minimal sufficient adjustment sets. Log-binomial regression was used to estimate the relative risk (RR) with 95% confidence intervals (CI). RESULTS 3,5,6-trichloro-2-pyridinol (TCPY), a metabolite of chlorpyrifos and chlorpyrifos methyl, and 4-nitrophenol, a metabolite of parathion and methyl parathion, were detected in nearly all women with geometric mean (95% CI) values of 3.17 (2.82-3.56) and 18.66 (17.03-20.46) µg/g creatinine, respectively. 3-phenoxybenzoic acid (3-PBA), a non-specific metabolite of several pyrethroids, and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPY), a diazinon metabolite, were detected in 19.8% and 16.1% of women, respectively. The remaining four pesticide biomarkers were detected in <10% of women. Women in the highest quartile of 4-nitrophenol were more than 3 times more likely to deliver preterm than women in the lowest quartile: unadjusted RR (95% CI), 3.57 (1.65, 7.73). Women in the highest quartile of 4-nitrophenol were also at increased risk of having a child born small for gestational age: RR (95% CI) adjusted for household income, maternal education, and maternal total energy and meat intake, 3.81 (1.10, 13.21). Women with detectable concentrations of IMPY were at increased risk of having a child born with low birth weight compared to women with non-detectable concentrations: adjusted RR (95% CI), 2.13 (1.12, 4.08). We observed no association between any of the pesticide biomarkers and stunting at 1 or 2 years of age. DISCUSSION Exposure to the insecticides parathion and diazinon during early pregnancy may increase the risk of adverse birth outcomes.
Collapse
Affiliation(s)
- Lindsay M Jaacks
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Nancy Diao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Robert Wright
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
40
|
Béranger R, Hardy EM, Binter AC, Charles MA, Zaros C, Appenzeller BMR, Chevrier C. Multiple pesticides in mothers' hair samples and children's measurements at birth: Results from the French national birth cohort (ELFE). Int J Hyg Environ Health 2019; 223:22-33. [PMID: 31708466 DOI: 10.1016/j.ijheh.2019.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND A growing body of studies now suggests that the general population is continuously and ubiquitously exposed to numerous pesticides. However, studies investigating the possible role of environmental exposure to pesticides on fetal growth have focused on a limited set of substances, despite the hundreds of modern pesticides currently available. AIM To explore the relation between maternal hair concentrations of 64 pesticides and metabolites and their newborns' measurements at birth, with data from the ELFE French nationwide birth cohort. METHODS We measured 64 compounds (10-100% detection) in bundles of hair 9 cm long collected at birth from 311 women who gave birth in France in 2011. We assessed their associations with birth weight, length, and head circumference, adjusted for potential confounders, and used elastic net regularization to simultaneously select the strongest predictors of measurements at birth. Selected variables were multiply imputed for missing values, and unpenalized estimators were assessed by standard linear regression. RESULTS We observed statistically significant associations between maternal hair concentrations of seven pesticides or pesticide metabolites and birth measurements (weight: fipronil sulfone; length: TCPy, bitertanol, DEP, and isoproturon; head circumference: tebuconazole and prochloraz). Analyses restricted to boys identified 12 additional compounds: 8 independently associated with birth weight (3Me4NP, DCPMU, DMST, fipronil, mecoprop, propoxur, fenhexamid, and thiabendazole), 2 with birth length (dieldrin and β-endosulfan), and 6 with head circumference (β-endosulfan, β-HCH, fenuron, DCPMU, propoxur, and thiabendazole). CONCLUSION Our results suggest that prenatal exposure to 19 pesticides or metabolites from various chemical families may influence measurements at birth. As with any exploratory research findings, results should be interpreted cautiously, until they are replicated or verified by further epidemiological or mechanistic studies.
Collapse
Affiliation(s)
- Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| | - Emilie M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Anne-Claire Binter
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | | | - Cécile Zaros
- Ined, Inserm, EFS, ELFE Joint Unit, Paris, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
41
|
Mulder TA, van den Dries MA, Korevaar TIM, Ferguson KK, Peeters RP, Tiemeier H. Organophosphate pesticides exposure in pregnant women and maternal and cord blood thyroid hormone concentrations. ENVIRONMENT INTERNATIONAL 2019; 132:105124. [PMID: 31479957 PMCID: PMC6827719 DOI: 10.1016/j.envint.2019.105124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Animal studies suggest that organophosphate (OP) pesticides exposure affects thyroid function, but evidence in humans remains sparse and inconclusive. Gestational exposure is of particular interest, since thyroid hormone is essential for fetal brain development. OP pesticides are able to cross the placental and blood-brain barrier and may interfere with fetal development processes regulated by thyroid hormone. OBJECTIVE To investigate the association of gestational OP pesticides exposure during pregnancy with maternal and cord blood thyroid hormone concentrations. METHODS This study was embedded within Generation R (Rotterdam, the Netherlands), a prospective population-based birth cohort. Mother-child pairs with OP pesticides assessment and maternal (N = 715) or cord blood (N = 482) thyroid hormone measurements were included. OP pesticides exposure was assessed at <18, 18-25, and >25 weeks gestation by measuring six urinary dialkylphosphate (DAP) metabolites. Thyroid stimulating hormone (TSH) and free thyroxine (FT4) were measured in maternal and cord blood. Maternal measures also included total thyroxine (TT4) and TPO antibodies (TPOAbs). To study the association of creatinine-adjusted DAP metabolite concentrations with thyroid function and TPO antibodies, multivariable linear regression models including relevant confounders were used. RESULTS There was no association of DAP metabolites with maternal TSH, FT4, TT4 or TPOAb concentrations during pregnancy. Similarly, there was no association of DAP metabolites with cord blood TSH or FT4. Results did not change when DAP concentrations were analyzed at individual time points or as mean gestational exposure. CONCLUSION Gestational OP pesticides exposure, as assessed by repeatedly measured urinary DAP metabolite concentrations in an urban population, was not associated with maternal or cord blood thyroid hormone concentrations. These findings do not support a mediating role for serum thyroid hormone availability in the relation of early life exposure to low levels of OP pesticides with child neurodevelopment. However, disruption of the thyroid system at tissue level cannot be excluded. In addition, this is one of the first studies on this subject and measurement error in DAP metabolites might have resulted in imprecise estimates. Future studies should use more urine samples to increase precision and should investigate specific OP pesticide metabolites.
Collapse
Affiliation(s)
- Tessa A Mulder
- Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michiel A van den Dries
- Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tim I M Korevaar
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Robin P Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, USA.
| |
Collapse
|
42
|
Ferguson KK, van den Dries MA, Gaillard R, Pronk A, Spaan S, Tiemeier H, Jaddoe VWV. Organophosphate Pesticide Exposure in Pregnancy in Association with Ultrasound and Delivery Measures of Fetal Growth. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87005. [PMID: 31419153 PMCID: PMC6792347 DOI: 10.1289/ehp4858] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Perturbations in fetal growth may have adverse consequences for childhood and later life health. Organophosphate pesticide (OP) exposure has been associated with reduced birth weight at delivery but results are not consistent. We investigated this question by utilizing ultrasound measures of size in utero in combination with measures from delivery. METHODS Within Generation R, a population-based prospective cohort conducted between 2002 and 2006 in Rotterdam, Netherlands, we measured dialkyl phosphates (DAPs), OP metabolites, in urine samples from early, middle, and late pregnancy and created a subject-specific average to estimate OP exposure ([Formula: see text]). Ultrasound measures of head circumference, femur length, and estimated fetal weight from middle and late pregnancy and delivery measures were converted to standard deviation scores (SDS). Associations with DAP average were examined in linear mixed effects models that included an interaction term between gestational age at measurement and DAP average to investigate whether the relationship differed over time. Windows of vulnerability to exposure were assessed by modeling urinary DAPs from each visit in relation to growth measurements. RESULTS A 10-fold increase in average DAPs was associated with a [Formula: see text] SDS decrease in fetal length (95% [Formula: see text], [Formula: see text]) and a [Formula: see text] SDS decrease in estimated fetal weight (95% [Formula: see text], [Formula: see text]) at 20 weeks of gestation. These differences corresponded to 5% and 6% decreases relative to the mean. Effect estimates were greatest in magnitude for DAP concentrations measured early in pregnancy. Associations between average DAPs and growth measures at delivery were positive but not significant for head circumference and length and were null for weight. CONCLUSIONS Maternal urinary DAPs were associated with decreased fetal weight and length measured during mid-pregnancy, but not at delivery. https://doi.org/10.1289/EHP4858.
Collapse
Affiliation(s)
- Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Generation R Study Group, Erasmus University Medical Center MC (Erasmus MC), Rotterdam, Netherlands
| | - Michiel A. van den Dries
- Generation R Study Group, Erasmus University Medical Center MC (Erasmus MC), Rotterdam, Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
| | - Romy Gaillard
- Generation R Study Group, Erasmus University Medical Center MC (Erasmus MC), Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, Netherlands
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Vincent W. V. Jaddoe
- Generation R Study Group, Erasmus University Medical Center MC (Erasmus MC), Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
43
|
Kamai EM, McElrath TF, Ferguson KK. Fetal growth in environmental epidemiology: mechanisms, limitations, and a review of associations with biomarkers of non-persistent chemical exposures during pregnancy. Environ Health 2019; 18:43. [PMID: 31068204 PMCID: PMC6505101 DOI: 10.1186/s12940-019-0480-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-persistent chemicals, such as phthalates, environmental phenols, organophosphate pesticides, and others, are challenging to study because of their ubiquity in the environment, diverse exposure routes, and high temporal variability of biomarkers. Nonetheless, there is interest in understanding how gestational exposure to these chemicals may affect fetal growth, as perturbations to normal fetal growth are related to a plethora of adverse health outcomes in childhood and adulthood. METHODS The purpose of this review is to describe the state of the science on this topic. We searched PubMed for studies that included both 1) biomarkers of non-persistent chemicals collected during pregnancy and 2) fetal growth outcomes measured at birth (e.g., birth weight) or by ultrasound in utero (e.g., estimated fetal weight). RESULTS The bulk of the literature we found uses biomarkers measured at a single time point in pregnancy and birth weight as the primary measure of fetal growth. There is a small, but growing, body of research that uses ultrasound measures to assess fetal growth during pregnancy. In addition to summarizing the findings of the publications we identified, we describe inconsistencies in methodology, areas for improvement, and gaps in existing knowledge that can be targeted for improvement in future work. This literature is characterized by variability in methodology, likely contributing to the inconsistency of results reported. We further discuss maternal, placental, and fetal pathways by which these classes of chemicals may affect fetal growth. CONCLUSIONS To improve understanding of how everyday chemical exposures affect fetal growth, and ultimately lifelong health outcomes, mechanisms of toxicant action should be considered alongside improved study designs for future hypothesis-driven research.
Collapse
Affiliation(s)
- Elizabeth M. Kamai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kelly K. Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
44
|
Impaired innate and conditioned social behavior in adult C57Bl6/J mice prenatally exposed to chlorpyrifos. Behav Brain Funct 2019; 15:2. [PMID: 30823929 PMCID: PMC6397466 DOI: 10.1186/s12993-019-0153-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/19/2019] [Indexed: 01/15/2023] Open
Abstract
Background Signs of pervasive developmental disorder and social deficits were reported in toddlers and children whose mothers were exposed to organophosphate pesticides during pregnancy. Deficits in social preference were reported in adult male mice exposed to chlorpyrifos on gestational days 12–15. This study aimed (a) to test the hypothesis that adult female and male mice that were exposed prenatally to subtoxic doses of chlorpyrifos would be impaired in social behavior and (b) to determine if prenatal chlorpyrifos altered the expression of transcripts for oxytocin in the hypothalamus. Pregnant mice were treated by gavage with corn oil vehicle or 2.5 mg/kg or 5 mg/kg of CPF on gestational days 12–15. Social preference, social and non-social conditioned place preference tasks were tested in adults. Expression of oxytocin transcripts in hypothalamus was measured by qPCR. Results Chlorpyrifos (5 mg/kg on GD 12–15) reduced the innate preference for a conspecific in a dose and sex dependent manner. Adult males exposed prenatally to 5 mg/kg CPF showed a reduction in social preference. Socially conditioned place preference was impaired in offspring of dams treated with either dose of CPF. Non-social appetitive place conditioning was impaired in offspring of dams exposed to 2.5 mg/kg, but not to 5 mg/kg chlorpyrifos. Prenatal chlorpyrifos treatment did not alter the expression of the oxytocin mRNA in the hypothalamus, although expression was significantly lower in females. Conclusions Prenatal chlorpyrifos induced innate and learned social deficits and non-specific conditioning deficits in adult mice in a sex-dependent manner. Males showed specific social deficits following the higher dose whereas both males and females showed a more generalized conditioning deficit following the intermediate dose.
Collapse
|
45
|
Larsen AE, Patton M, Martin EA. High highs and low lows: Elucidating striking seasonal variability in pesticide use and its environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:828-837. [PMID: 30253365 DOI: 10.1016/j.scitotenv.2018.09.206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Despite substantial public and scientific concern regarding unintended environmental and health consequences of agricultural pesticide use, identifying when and where high levels of use occur is stymied by a dearth of data at biologically relevant spatial or temporal scales. Here we investigate intra-annual patterns in pesticide use by crop and by pesticide type using unique pesticide use data from agriculturally diverse croplands of California, USA. We find that timing and type of pesticide use is strongly crop-dependent, and that for many high pesticide use crops, monthly application rates are highly consistent from year-to-year. Further, while pesticide use hotspots are concentrated in early summer, regions with very high use occur throughout the year with spatial distributions varying therein. The enormity of intra-annual variation in pesticide use, as well as the consistency in those patterns through time, suggests opportunities for crop-specific pest management and region-specific mitigation approaches to limit environmental and human health hazards from agricultural pesticide use.
Collapse
Affiliation(s)
- Ashley E Larsen
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States of America.
| | - Michael Patton
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States of America
| | - Emily A Martin
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
46
|
Curtis SW, Cobb DO, Kilaru V, Terrell ML, Kennedy EM, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Exposure to polybrominated biphenyl (PBB) associates with genome-wide DNA methylation differences in peripheral blood. Epigenetics 2019; 14:52-66. [PMID: 30676242 DOI: 10.1080/15592294.2019.1565590] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In 1973, Michigan residents were exposed to polybrominated biphenyl (PBB) when it was accidentally added to farm animal feed. Highly exposed individuals and their children have experienced endocrine-related health problems, though the underlying mechanism behind these remains unknown. We investigated whether PBB exposure is associated with variation in DNA methylation in peripheral blood samples from 658 participants of the Michigan PBB registry using the MethylationEPIC BeadChip, as well as investigated what the potential function of the affected regions are and whether these epigenetic marks are known to associate with endocrine system pathways. After multiple test correction (FDR <0.05), 1890 CpG sites associated with total PBB levels. These CpGs were not enriched in any particular biological pathway, but were enriched in enhancer and insulator regions, and depleted in regions near the transcription start site or in CpG islands (p < 0.05). They were also more likely to be in ARNT and ESR2 transcription factor binding sites (p = 3.27e-23 and p = 1.62e-6, respectively), and there was significant overlap between CpGs associated with PBB and CpGs associated with estrogen (p < 2.2e-16). PBB-associated CpGs were also enriched for CpGs known to be associated with gene expression in blood (eQTMs) (p < 0.05). These eQTMs were enriched for pathways related to immune function and endocrine-related autoimmune disease (FDR <0.05). These results indicate that exposure to PBB is associated with differences in epigenetic marks that suggest that it is acting similarly to estrogen and is associated with dysregulated immune system pathways.
Collapse
Affiliation(s)
- Sarah W Curtis
- a Genetics and Molecular Biology Program, Laney Graduate SchoolLaney Graduate School , Emory University School of Medicine , Atlanta , GA , USA
| | - Dawayland O Cobb
- b Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Varun Kilaru
- b Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Metrecia L Terrell
- c Department of Epidemiology , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Elizabeth M Kennedy
- d Department of Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - M Elizabeth Marder
- d Department of Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Dana Boyd Barr
- d Department of Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Carmen J Marsit
- d Department of Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Michele Marcus
- e Departments of Epidemiology, Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA.,f Department of Pediatrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Karen N Conneely
- g Department of Human Genetics , Emory University School of Medicine , Atlanta , GA , USA
| | - Alicia K Smith
- a Genetics and Molecular Biology Program, Laney Graduate SchoolLaney Graduate School , Emory University School of Medicine , Atlanta , GA , USA.,b Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA.,h Department of Psychiatry and Behavioral Science , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
47
|
Katsikantami I, Colosio C, Alegakis A, Tzatzarakis MN, Vakonaki E, Rizos AK, Sarigiannis DA, Tsatsakis AM. Estimation of daily intake and risk assessment of organophosphorus pesticides based on biomonitoring data - The internal exposure approach. Food Chem Toxicol 2018; 123:57-71. [PMID: 30352298 DOI: 10.1016/j.fct.2018.10.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
Human exposure to pesticides can be estimated through different approaches. The approach adopted in this study is based on internal dose measures. Studies published during 2001 and 2017 were collected from PubMed and Scopus databases, filtered and organized. The intake of parent compounds is estimated based on the urinary excretion of different OP metabolites applying a mathematical model previously used for similar purposes. Once defined an Estimated Daily Intake (EDI), risk assessment is performed through comparison with specific guideline values and hazard index (HI) is calculated to assess cumulative health risk. The EDI was expressed as malathion, diazinon, parathion, phorate and dimethoate equivalents. Differences in exposure between pregnant women, general population, children and farmers are highlighted and exposures are presented by country and sampling year. Higher exposure to OPs was calculated for farmers, followed by children whereas pregnant women were less exposed. Median HQ values for children ranged between 0.016 and 0.618, for pregnant women 0.005-0.151, for general population 0.008-0.206 and for farmers 0.009-0.979. Combined exposure to dimethoate and phorate was the worst-case scenario. The annual distribution of the urinary DAPs showed that exposure to OPs since 1998 tends to be stable for both children and adults.
Collapse
Affiliation(s)
- Ioanna Katsikantami
- Department of Chemistry, University of Crete, Foundation for Research and Technology-Hellas, FORTH-IESL, GR-71003, Heraklion, Crete, Greece; Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | - Claudio Colosio
- Department of Occupational and Environmental Health of the University of Milan, International Centre for Rural Health of the University Hospital San Paolo, S. Paolo Hospital Unit, Via San Vigilio 43, 20142 Milan, Italy
| | - Athanasios Alegakis
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | - Manolis N Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | - Apostolos K Rizos
- Department of Chemistry, University of Crete, Foundation for Research and Technology-Hellas, FORTH-IESL, GR-71003, Heraklion, Crete, Greece
| | - Dimosthenis A Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Centre for Interdisciplinary Research and Innovation (KEDEK), Aristotle University of Thessaloniki, Greece; Environmental Health Engineering, Institute for Advanced Study IUSS, Pavia, Italy
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece.
| |
Collapse
|
48
|
Chiu YH, Williams PL, Gillman MW, Hauser R, Rifas-Shiman SL, Bellavia A, Fleisch AF, Oken E, Chavarro JE. Maternal intake of pesticide residues from fruits and vegetables in relation to fetal growth. ENVIRONMENT INTERNATIONAL 2018; 119:421-428. [PMID: 30029096 PMCID: PMC6169789 DOI: 10.1016/j.envint.2018.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/31/2018] [Accepted: 07/06/2018] [Indexed: 05/21/2023]
Abstract
OBJECTIVES To examine the associations of maternal intake of fruits and vegetables (FVs), considering pesticide residue levels, with fetal growth. METHODS We studied 1777 mothers (1275 white, 502 non-white) and their infants from Project Viva, a prospective pre-birth cohort (1999-2002). We categorized FVs as containing high or low pesticide residues using data from the US Department of Agriculture. We then used a food frequency questionnaire to estimate each participant's intake of high and low pesticide residue FVs in the first and second trimester. The primary outcomes were small-for-gestational-age (SGA; <10th percentile in birth-weight-for-gestational-age), large-for-gestational-age (LGA; ≥10th percentile in birth-weight-for-gestational-age) and preterm birth (gestational age <37 weeks). We also evaluated whether the associations between high pesticide residue FV intake and birth outcomes were modified by race/ethnicity. RESULTS 5.5% of newborns were SGA, 13.7% were LGA, and 7.3% were preterm. Intakes of high or low pesticide residue FVs, regardless of pregnancy trimester, were not associated with risks of SGA, LGA, or preterm birth. In addition, the associations of high pesticide FV intake with SGA and LGA were not modified by race/ethnicity. However, we observed heterogeneity in the relationship between first trimester high pesticide FV intake and risk of preterm birth by race/ethnicity (P value for interaction = 0.01), although this relationship did not persist after correction for multiple comparisons (Bonferroni corrected level of significance: P < 2.8 × 10-3). CONCLUSIONS There were no clear associations between high or low pesticide FV intake during pregnancy with SGA, LGA or preterm birth.
Collapse
Affiliation(s)
- Yu-Han Chiu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew W Gillman
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Boston, MA 02215, USA; Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Russ Hauser
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Boston, MA 02215, USA; Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andrea Bellavia
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Abby F Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME 04101, USA; Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Emily Oken
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Boston, MA 02215, USA; Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Sagiv SK, Harris MH, Gunier RB, Kogut KR, Harley KG, Deardorff J, Bradman A, Holland N, Eskenazi B. Prenatal Organophosphate Pesticide Exposure and Traits Related to Autism Spectrum Disorders in a Population Living in Proximity to Agriculture. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047012. [PMID: 29701446 PMCID: PMC6071837 DOI: 10.1289/ehp2580] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Prenatal exposure to organophosphate (OP) pesticides has been linked with poorer neurodevelopment and behaviors related to autism spectrum disorders (ASD) in previous studies, including in the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a birth cohort living in the agricultural Salinas Valley in California. OBJECTIVES To investigate the association of prenatal exposure to OP pesticides with traits related to ASD, in childhood and adolescents in CHAMACOS. METHODS We assessed OP exposure during pregnancy with measurements of dialkyl phosphates (DAP) metabolites in urine, and residential proximity to OP use during pregnancy using California's Pesticide Use Reporting (PUR) data and estimated associations with ASD-related traits using linear regression models. We measured traits reported by parents and teachers as well as the child's performance on tests that evaluate the ability to use facial expressions to recognize the mental state of others at 7, 101/2, and 14 years of age. RESULTS Prenatal DAPs were associated with poorer parent and teacher reported social behavior [e.g., a 10-fold DAP increase was associated with a 2.7-point increase (95% confidence interval (CI): 0.9, 4.5) in parent-reported Social Responsiveness Scale, Version 2, T-scores at age 14]. We did not find clear evidence of associations between residential proximity to OP use during pregnancy and ASD-related traits. CONCLUSIONS These findings contribute mixed evidence linking OP pesticide exposures with traits related to developmental disorders like ASD. Subtle pesticide-related effects on ASD-related traits among a population with ubiquitous exposure could result in a rise in cases of clinically diagnosed disorders like ASD. https://doi.org/10.1289/EHP2580.
Collapse
Affiliation(s)
- Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Maria H Harris
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Robert B Gunier
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Katherine R Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
50
|
Organophosphate Pesticide Urinary Metabolites Among Latino Immigrants: North Carolina Farmworkers and Non-farmworkers Compared. J Occup Environ Med 2018; 58:1079-1086. [PMID: 27820757 DOI: 10.1097/jom.0000000000000875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND This analysis documents detections and concentrations of the six dialkylphosphate (DAP) urinary metabolite of organophosphorus (OP) pesticides among North Carolina Latino migrant farmworkers, with comparison to non-farmworker Latino immigrants. METHODS Participants provided up to four urine samples during the 2012 and 2013 agricultural seasons. Composite urine samples for each year were analyzed. RESULTS DAP urinary metabolite detections were similar in farmworkers and non-farmworker; for example, for 2012, 75.4% of farmworkers and 67.4% of non-farmworkers and, for 2013, 89.3% of farmworkers and 89.7% of non-farmworkers had dimethylthiophosphate detections. DAP geometric mean concentrations were high; for example, dimethylphosphate concentrations among farmworkers were 11.39 μg/g creatinine for 2012 and 4.49 μg/g creatinine for 2013, while they were 10.49 μg/g creatinine for 2012 and 1.97 μg/g creatinine for 2013 for non-farmworkers CONCLUSIONS:: Research to reduce pesticide exposure among Latino farmworkers and non-farmworkers is needed.
Collapse
|