1
|
Liao J, Huang R, Jia X, He J, Li Q, Li X, Yuan J, Tan L. Impact of COVID-19 on temporal trends and health risks of urinary metal concentrations among residents of Guangzhou, China. ENVIRONMENTAL RESEARCH 2024; 261:119705. [PMID: 39084505 DOI: 10.1016/j.envres.2024.119705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Long-term biomonitoring of urinary metal ions is an essential tool for the epidemiological assessment of chronic exposure levels, enabling us to track changes in metal exposure over time and better understand its health implications. In this study, we evaluated the temporal trends of urinary metal ions among 1962 residents of Guangzhou, China, from 2018 to 2022. The total metal ion concentrations in the urine of the population did not change significantly between 2018 and 2019. With the onset of the COVID-19 pandemic in 2020, urinary total metal ion concentrations began to decline dramatically, reaching their lowest level in 2021. A rebound in concentrations was observed in 2022, which returned to the initial levels observed in 2018. Urine chromium and cadmium concentrations peaked in 2020, while urinary lead levels were the highest in 2021, and urinary nickel concentrations were the highest in 2022. Males consistently displayed higher urinary concentrations of lead and arsenic throughout each year of the study. Furthermore, minors consistently had higher urinary nickel levels than adults, whereas adults consistently had higher urinary cadmium concentrations than minors. Cluster analyses were conducted annually on urinary metal ions to examine the differences in their distribution and to evaluate changes in metal exposure patterns over time. The Monte Carlo simulations indicate that the whole population exhibits a high non-carcinogenic risk from arsenic exposure and significant carcinogenic risks associated with exposure to nickel, arsenic, chromium, and cadmium. The next two years were predicted by a gray prediction model, and the results are tested using mean absolute percentage error which demonstrating high accuracy.
Collapse
Affiliation(s)
- Jia Liao
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Rende Huang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Xiangyu Jia
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia He
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Qin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Xiaotong Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
2
|
Wang W, Sun B, Luo D, Chen X, Yao M, Zhang A. Neurotransmitter Metabolism in Arsenic Exposure-Induced Cognitive Impairment: Emerging Insights and Predictive Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19165-19177. [PMID: 39423902 DOI: 10.1021/acs.est.4c06269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Scholars have long been interested in the association between arsenic (As) exposure and neurological disorders; however, existing systematic epidemiological investigations are insufficient and lack the inclusion of diagnostic or predictive biological markers. This study sought to evaluate the association between As exposure and cognitive impairment and identify potential biomarkers by developing predictive models. Here, we found that logarithm (Ln)-transformed urinary As concentrations were negatively linearly related to the mini-mental state examination (MMSE) score exposure-response curves. Subsequently, we identified a unique plasma neurometabolite profile in subjects exposed to As compared with the reference group. Further analyses showed that tryptophan, tyrosine, dopamine, epinephrine, and homovanillic acid were all significantly associated with both urinary As concentrations and MMSE scores. Notably, the association between As exposure and MMSE scores was partly mediated by tryptophan, tyrosine, dopamine, and epinephrine. Importantly, an unprecedented prediction model utilizing neurotransmitters was established to assess the risk of cognitive impairment due to As exposure. A 91.1% consistency rate was found between the predicted and the actual probabilities. Additionally, machine learning models also produced highly accurate predictions. Overall, this study revealed a dose-dependent cognitive decline in As-exposed adults accompanied by a disturbance in the signature of neurotransmitter metabolites, offering new predictive insights.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Daopeng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
3
|
McGraw KE, Schilling K, Glabonjat RA, Galvez-Fernandez M, Domingo-Relloso A, Martinez-Morata I, Jones MR, Nigra A, Post WS, Kaufman J, Tellez-Plaza M, Valeri L, Brown ER, Kronmal RA, Barr RG, Shea S, Navas-Acien A, Sanchez TR. Urinary Metal Levels and Coronary Artery Calcification: Longitudinal Evidence in the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol 2024; 84:1545-1557. [PMID: 39297845 DOI: 10.1016/j.jacc.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Exposure to metals, a newly recognized risk factor for cardiovascular disease (CVD), could be related to atherosclerosis progression. OBJECTIVES The authors hypothesized that higher urinary levels of nonessential (cadmium, tungsten, uranium) and essential (cobalt, copper, zinc) metals previously associated with CVD would be associated with baseline and rate of change of coronary artery calcium (CAC) progression, a subclinical marker of CVD in MESA (Multi-Ethnic Study of Atherosclerosis). METHODS We analyzed data from 6,418 MESA participants with spot urinary metal levels at baseline (2000-2002) and 1 to 4 repeated, continuous measures of CAC over a 10-year period. We used linear mixed-effect models to assess the association of baseline urinary metal levels with baseline CAC and cumulative change in CAC over a 10-year period. Urinary metals (μg/g creatinine) and CAC were log transformed. Models were adjusted for baseline sociodemographic factors, estimated glomerular filtration rate, lifestyle factors, and clinical factors. RESULTS At baseline, the median CAC was 6.3 (Q1-Q3: 0.7-58.2). Comparing the highest to lowest quartile of urinary cadmium, CAC levels were 51% (95% CI: 32%, 74%) higher at baseline and 75% (95% CI: 47%, 107%) higher over the 10-year period. For urinary tungsten, uranium, and cobalt, the corresponding CAC levels over the 10-year period were 45% (95% CI: 23%, 71%), 39% (95% CI: 17%, 64%), and 47% (95% CI: 25%, 74%) higher, respectively, with no difference for models with and without adjustment for clinical factors. For copper and zinc, the corresponding estimates dropped from 55% to 33% and from 85% to 57%, respectively, after adjustment for clinical factors. The associations of metals with CAC were comparable in magnitude to those for classical CVD risk factors. CONCLUSIONS Exposure to metals was generally associated with extent of coronary calcification at baseline and follow-up. These findings support that metals are associated with the progression of atherosclerosis, potentially providing a novel strategy for the prevention and treatment of atherosclerosis progression.
Collapse
Affiliation(s)
- Katlyn E McGraw
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA.
| | - Kathrin Schilling
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Marta Galvez-Fernandez
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Arce Domingo-Relloso
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Miranda R Jones
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Nigra
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Wendy S Post
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joel Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Elizabeth R Brown
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Richard A Kronmal
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Steven Shea
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
4
|
Song J, Wang X, Wang X, Huang Q, Wei C, Wang B, Yang S, Liu Z, Cheng S, Guo X, Li J, Li Q, Wang J. Exposure to a mixture of metal(loid)s and sleep quality in pregnant women during early pregnancy: A cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116663. [PMID: 38964059 DOI: 10.1016/j.ecoenv.2024.116663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Biological characteristics of pregnant women during early pregnancy make them susceptible to both poor sleep quality and metal/metalloid exposure. However, the effects of metal(loid) exposure on sleep quality in pregnant women remain unknown and unexplored. We aimed to examine the relationship between exposure to a mixture of metal(loid)s and pregnant women's sleep quality during early pregnancy. We recruited 493 pregnant women in the first trimester from prenatal clinics in Jinan, Shandong Province, China, and collected their spot urine samples. All urine specimens were assessed for eight metal(loid)s: arsenic (As), cadmium (Cd), iron (Fe), zinc (Zn), molybdenum (Mo), lead (Pb), selenium (Se), and mercury (Hg). We used the Pittsburgh Sleep Quality Index (PSQI) to assess sleep quality. Linear regression, logistic regression, generalized additive models (GAMs), quantile g-computation, and Bayesian kernel machine regression (BKMR) were applied to investigate the relationships between metal(loid) exposure and sleep quality. The results from single metal(loid) models, quantile g-computation models, and BKMR models consistently suggested that Fe was positively related to women's sleep quality. Moreover, in the quantile g-computation models, As was the most critical contributor to the negative effects of the metal(loid) mixture on sleep quality. In addition, we found significant As by Fe interaction for scores of PSQI and habitual sleep efficiency, Pb by Fe interaction for PSQI and sleep latency, and Hg by Fe interaction for PSQI, suggesting the interactive effects of As and Fe, Pb and Fe, Hg and Fe on sleep quality and specific sleep components. Our study provided the first-hand evidence of the effects of metal(loid) exposure on pregnant women's sleep quality. The underlying mechanisms need to be explored in the future.
Collapse
Affiliation(s)
- Jiayi Song
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, China
| | - Xiaorong Wang
- Shandong First Medical University Jinan Central Hospital, Jinan, Shandong 250014, China
| | - Qichen Huang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Chuanling Wei
- Department of Gynecology, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, China
| | - Bufei Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, China
| | - Songbin Yang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, China
| | - Zhigang Liu
- Department of Pediatrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, China
| | - Shuang Cheng
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Guo
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Jiao Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Qi Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Ju Wang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Yang Y, Gu Y, Zhang Y, Zhou Q, Zhang S, Wang P, Yao Y. Spatial - temporal mapping of urine cadmium levels in China during 1980 - 2040: Dietary improvements lower exposure amid rising pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134693. [PMID: 38781855 DOI: 10.1016/j.jhazmat.2024.134693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Persistent cadmium exposure poses significant health risks to the Chinese population, underscored by its prevalence as an environmental contaminant. This study leverages a machine-learning model, fed with a comprehensive dataset of environmental and socio-economic factors, to delineate trends in cadmium exposure from 1980 to 2040. We uncovered that urinary cadmium levels peaked at 1.09 μg/g Cr in the mid-2000 s. Encouragingly, a decline is projected to 0.92 μg/g Cr by 2025, tapering further to 0.87 μg/g Cr by 2040. Despite this trend, regions heavily influenced by industrialization, such as Hunan and Guizhou, as well as industrial counties in Jilin, report stubbornly high levels of exposure. Our demographic analysis reveals a higher vulnerability among adults & adolescents over 14, with males displaying elevated cadmium concentrations. Alarmingly, the projected data suggests that by 2040, an estimated 41% of the population will endure exposure beyond the safety threshold set by the European Food Safety Authority. Our research indicates disproportionate cadmium exposure impacts, necessitating targeted interventions and policy reforms to protect vulnerable groups and public health in China.
Collapse
Affiliation(s)
- Yadi Yang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yi Gu
- Academy for Advanced Interdisciplinary Studies and College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyou Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Environment, Hohai University, Nanjing 210024, China
| | - Peng Wang
- Academy for Advanced Interdisciplinary Studies and College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yijun Yao
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Yang Y, Zhang Y, Zhou Q, Gu Y, Yao Y. Urinary cadmium levels in China (1982-2021): Regional trends and influential factors. ENVIRONMENTAL RESEARCH 2024; 251:118618. [PMID: 38442819 DOI: 10.1016/j.envres.2024.118618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Despite the significant threat of cadmium exposure in China, a national-level assessment has been conspicuously absent. This study bridges this critical gap by collecting, geospatial analyzing and multivariable regression analyzing published studies on urinary cadmium levels in Chinese from 1982 to 2021. Our research reveals a notable decline trend in cadmium exposure among Chinese populations. However, this trend varies by region, age and gender group, higher levels are seen in the South (1.04 μg/g cr) compared to the North (0.48 μg/g cr), and in adults (1.08 μg/g cr) relative to children (0.33 μg/g cr), with higher levels being more pronounced in females (6.17 μg/g cr). Urinary cadmium is significantly correlated with rice consumption (P < 0.001), while mining activities have been identified as the dominant factor for cadmium exposure in most regions of China, a trend that is evident both in past decades and is expected to continue into the next decade. These findings underscore the need for region-specific environmental and public health strategies, designed to effectively address the distinct cadmium exposure risks in various regions and among different population groups, thus enhancing protection against the adverse effects of cadmium.
Collapse
Affiliation(s)
- Yadi Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanni Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Gu
- Academy for Advanced Interdisciplinary Studies and College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yijun Yao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Al-Mendalawi MD. Relationship and Accuracy of Urine Lead as an Alternative to Blood Lead Biomarker among Panel Beaters in Enugu Metropolis: Nigeria. Indian J Occup Environ Med 2024; 28:172-173. [PMID: 39114105 PMCID: PMC11302541 DOI: 10.4103/ijoem.ijoem_11_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 03/23/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Mahmood D. Al-Mendalawi
- Department of Paediatrics, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
8
|
Yang L, Zhang T, Gao Y, Li D, Cui R, Gu C, Wang L, Sun H. Quantitative identification of the co-exposure effects of e-waste pollutants on human oxidative stress by explainable machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133560. [PMID: 38246054 DOI: 10.1016/j.jhazmat.2024.133560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Global electronic waste (e-waste) generation continues to grow. The various pollutants released during precarious e-waste disposal activities can contribute to human oxidative stress. This study encompassed 129 individuals residing near e-waste dismantling sites in China, with elevated urinary concentrations of e-waste-related pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), organophosphorus flame retardants (OPFRs), bisphenols (BPs), and phthalate esters (PAEs). Utilizing an explainable machine learning framework, the study quantified the co-exposure effects of these pollutants, finding that approximately 23% and 18% of the variance in oxidative DNA damage and lipid peroxidation, respectively, was attributable to these substances. Heavy metals emerged as the most critical factor in inducing oxidative stress, followed by PAHs and PAEs for oxidative DNA damage, and BPs, OPFRs, and PAEs for lipid peroxidation. The interactions between different pollutant classes were found to be weak, attributable to their disparate biological pathways. In contrast, the interactions among congeneric pollutants were strong, stemming from their shared pathways and resultant synergistic or additive effects on oxidative stress. An intelligent analysis system for e-waste pollutants was also developed, which enables more efficient processing of large-scale and dynamic datasets in evolving environments. This study offered an enticing peek into the intricacies of co-exposure effect of e-waste pollutants.
Collapse
Affiliation(s)
- Luhan Yang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dairui Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rui Cui
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Ji S, Qu Y, Sun Q, Zhao F, Qiu Y, Li Z, Li Y, Song H, Zhang M, Zhang W, Fu H, Cai J, Zhang Z, Zhu Y, Cao Z, Lv Y, Shi X. Mediating Role of Liver Dysfunction in the Association between Arsenic Exposure and Diabetes in Chinese Adults: A Nationwide Cross-Sectional Study of China National Human Biomonitoring (CNHBM) 2017-2018. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2693-2703. [PMID: 38285630 DOI: 10.1021/acs.est.3c08718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Inconsistent results have been reported regarding the association between low-to-moderate arsenic (As) exposure and diabetes. The effect of liver dysfunction on As-induced diabetes remains unclear. The cross-sectional study included 10,574 adults from 2017-2018 China National Human Biomonitoring. Urinary total As (TAs) levels were analyzed as markers of As exposure. Generalized linear mixed models and restricted cubic splines models were used to examine the relationships among TAs levels, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations, and diabetes prevalence. Mediating analysis was performed to assess whether liver dysfunction mediated the association between TAs and diabetes. Overall, the OR (95% CI) of diabetes in participants in the second, third, and fourth quartiles of TAs were 1.08 (0.88, 1.33), 1.17 (0.94, 1.45), and 1.52 (1.22, 1.90), respectively, in the fully adjusted models compared with those in the lowest quartile. Serum ALT was positively associated with TAs and diabetes. Additionally, mediation analyses showed that ALT mediated 4.32% of the association between TAs and diabetes in the overall population and 8.86% in the population without alcohol consumption in the past year. This study suggested that alleviating the hepatotoxicity of As could have implications for both diabetes and liver disease.
Collapse
Affiliation(s)
- Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yidan Qiu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhuona Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
10
|
Lin JJY, Koffman LJ, Tehrani MW, Chen R, Han SG, Sandler DP, Lawrence KG, Jackson WB, Dickerson AS, Ramachandran G, Engel LS, Rule AM. Reliability of low mass toenail samples as biomarkers of chronic metal exposure. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:945-953. [PMID: 37296232 PMCID: PMC10709526 DOI: 10.1038/s41370-023-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Toenails are a promising matrix for chronic metal exposure assessment, but there are currently no standard methods for collection and analysis. Questions remain about sample mass requirements and the extent to which metals measured in this matrix are representative of chronic body burden. OBJECTIVE This study proposes a method to maximize sample conservation for toenail metals analysis using inductively coupled plasma mass spectrometry (ICP-MS). We demonstrate the reliability of an ~25 mg toenail sample (typically 1-2 clippings) for metals analysis and evaluate the intra-individual variability of multiple metals in this matrix over time in men from the Gulf Long-term Follow-up (GuLF) Study. METHODS Toenail samples from 123 GuLF Study participants were collected at two visits 3 years apart and analyzed for 18 elements using ICP-MS. Participants with samples exceeding 200 mg at the first visit (n = 29) were selected for triplicate sub-sample analysis. Kendall's coefficient of concordance (W) was used to assess sub-sample reliability and Spearman's correlation coefficients (ρ) were used to evaluate fluctuations in elemental concentrations over time. RESULTS Results were not reported for Cd, Co, Mo, Sb, and V (detected in <60% of the samples). There was strong agreement among triplicate samples (Kendall's W: 0.72 (Cu)-0.90 (Cu)) across all elements evaluated, moderate correlations of elemental concentrations (Spearman's ρ: 0.21-0.42) over 3 years for As, Ca, Cr, Fe, Pb, Mn, and Zn, and strong correlations (>0.50) for Se, Cu, and Hg. IMPACT STATEMENT This toenail reliability study found that a low-mass (~25 mg) toenail sample (1-2 clippings) is suitable for the determination of most elements using ICP-MS and helps to increase the analytical capacity of limited toenail biospecimens collected in cohort studies. The results highlight differences in the suitability of toenails for chronic metal exposure assessment by element and underscore the need to consider intra-person variability, especially when comparing results across studies. We also provide recommendations for analytical standardization and the partitioning of the total collected toenail sample into multiple analytic sub-samples for future studies using toenail biospecimen for multiple assays.
Collapse
Affiliation(s)
- Joyce J Y Lin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Lily J Koffman
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mina W Tehrani
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Seok Gyu Han
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
11
|
Zheng M, Zhang X, Zhao Q, Chen S, Guo X, Wang C, Jonas JB, Wu S, Guo C. The impact of bilateral brachial-ankle pulse wave velocity difference on cardiovascular disease and all-cause mortality. Front Cardiovasc Med 2023; 10:1234325. [PMID: 37868781 PMCID: PMC10588177 DOI: 10.3389/fcvm.2023.1234325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Background This study aims to investigate the association between an elevated bilateral pulse wave velocity difference (BPWVD) and cardiovascular diseases (CVDs) and all-cause mortality. Methods This study included a total of 38,356 participants. A multivariable Cox proportional hazards regression was used to assess the association between high BPWVD and the increased risk of CVDs and all-cause mortality by calculating hazard ratios (HRs) with 95% confidence intervals. Results A total of 1,213 cases of CVDs were identified over a mean duration of 6.19 years, including 886 cases of cerebral infarction (CI), 105 cases of intracerebral hemorrhage (ICH), and 222 cases of myocardial infarction (MI), along with 1,182 cases of all-cause mortality. The median BPWVD was 42 cm/s (19-80 cm/s). After adjusting for all confounders and baseline brachial-ankle PWV (baPWV), our analysis revealed a significant correlation between a higher risk of CVDs, MI, and all-cause mortality with an increase in BPWVD per standard deviation. HRs (95% confidence interval) were found to be 1.06 (1.01-1.11), 1.11 (1.02-1.21), and 1.07 (1.04-1.10), respectively. Among the participants with higher baPWV on the left side, the HRs (95% confidence interval) were 1.08 (1.02-1.14) for CVDs, 1.27 (1.10-1.46) for incident ICH, 1.16 (1.00-1.24) for incident MI, and 1.10 (1.07-1.15) for all-cause mortality, for per standard deviation increase in BPWVD. Conclusions Our findings reveal a significant correlation between elevated BPWVD and the risks of developing CVDs and all-cause mortality. This highlights the importance of thoroughly evaluating BPWVD as a means of detecting individuals at risk for CVDs and mortality.
Collapse
Affiliation(s)
- Mengyi Zheng
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Quanhui Zhao
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Xinying Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chi Wang
- Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jost B. Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Li A, Yang M, Mei Y, Zhou Q, Zhao J, Li Y, Li K, Zhao M, Xu J, Xu Q. Quantitative analysis of the minimum days of dietary survey to estimate dietary pesticide exposure: Implications for dietary pesticide sampling strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121630. [PMID: 37062403 DOI: 10.1016/j.envpol.2023.121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Populations are exposed to pesticides through diet on a daily basis. However, there is no research guiding how to evaluate dietary pesticide exposure, and researchers used 1-day, 3-days, 7-days or even longer dietary survey to evaluate without any consensus. It is important for dietary pesticide evaluation to identify the minimum survey days. To increase knowledge of this, a data combination was applied between a two-wave consecutive repeated-measures study in Baoding City and the Fifth China Total Diet Study. Further policy consistency on pesticides were evaluated to explain its credibility. We computed the sensitivity and specificity to evaluate how well different days of dietary survey classify participants with high exposure, and calculated the minimum days required to estimate the participant-specific mean at different acceptable error range. With 1 day of dietary survey, the classification sensitivity was low (<0.6) for total HCH, endosulfan, chlordane, cyhalothrin, allethrin, and prallethrin; that for the other pesticides was high sensitivity (≥0.6). Sensitivity increased as the number of days increased, and the maximum marginal sensitivity increase (≥0.039) occurred from 1 to 2 days for all pesticides except phenothrin, whose maximum marginal sensitivity increase (0.042) occurred from 2 to 3 days. The specificity increased gradually from 0.8 to 0.9 from 1 to 7 days. Under the acceptable error range of 0.5%, 3-28 days were required for participant-specific mean estimation and 1-7 days were required when acceptable error range was shrunk in 1%. Only 1 day was enough if 5% error range was acceptable. In conclusion, 3 days in the study period was cost-effective to distinguish high exposure group, and it rose to 7 when estimating participant-specific mean from a conservative perspective. This study can serve as a reference to determine the minimum survey days for epidemiological studies employing dietary surveys.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
13
|
Cheek J, Fox SS, Lehmler HJ, Titcomb TJ. Environmental Nickel Exposure and Cardiovascular Disease in a Nationally Representative Sample of U.S. Adults. EXPOSURE AND HEALTH 2023:1-9. [PMID: 37360515 PMCID: PMC10249564 DOI: 10.1007/s12403-023-00579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Background Laboratory studies have linked nickel with the pathogenesis of cardiovascular disease (CVD); however, few observational studies in humans have confirmed this association. Objective This study aimed to use urinary nickel concentrations, as a biomarker of environmental nickel exposure, to evaluate the cross-sectional association between nickel exposure and CVD in a nationally representative sample of U.S. adults. Methods Data from a nationally representative sample (n = 2702) in the National Health and Nutrition Examination Survey 2017-20 were used. CVD (n = 326) was defined as self-reported physicians' diagnoses of coronary heart disease, angina, heart attack, or stroke. Urinary nickel concentrations were determined by inductively coupled plasma mass spectrometry. Logistic regression with sample weights was used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of CVD. Results Urinary nickel concentrations were higher in individuals with CVD (weighted median 1.34 μg/L) compared to those without CVD (1.08 μg/L). After adjustment for demographic, socioeconomic, lifestyle, and other risk factors for CVD, the ORs (95% CIs) for CVD compared with the lowest quartile of urinary nickel were 3.57 (1.73-7.36) for the second quartile, 3.61 (1.83-7.13) for the third quartile, and 2.40 (1.03-5.59) for the fourth quartile. Cubic spline regression revealed a non-monotonic, inverse U-shaped, association between urinary nickel and CVD (Pnonlinearity < 0.001). Conclusions Nickel exposure is associated with CVD in a non-monotonic manner among U.S. adults independent of well-known CVD risk factors. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00579-4.
Collapse
Affiliation(s)
- Joshua Cheek
- Department of Kinesiology, Central College, Pella, IA USA
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Room SE 232 GH, Iowa City, IA 52242 USA
| | | | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA USA
- Environmental Health Sciences Research Center, University of Iowa, Iowa City, IA USA
| | - Tyler J. Titcomb
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Room SE 232 GH, Iowa City, IA 52242 USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA USA
| |
Collapse
|
14
|
Liu W, Yu L, Zhou M, Ye Z, Liang R, Tan Q, Song J, Ma J, Wang D, Wang B, Chen W. Cross-sectional and Longitudinal Associations Between Propylene Oxide Exposure and Lung Function Among Chinese Community Residents: Roles of Oxidative DNA Damage, Lipid Peroxidation, and Protein Carbonylation. Chest 2023; 163:1395-1409. [PMID: 36528066 DOI: 10.1016/j.chest.2022.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Toxicologic studies have reported propylene oxide (PO) exposure may harm the respiratory system, but the association between PO exposure and lung function and potential mechanism remains unclear. RESEARCH QUESTION What is the association between PO exposure and lung function and potential mediating mechanism? STUDY DESIGN AND METHODS Urinary PO metabolite [N-Acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA)] as PO internal exposure biomarker and lung function were measured for 3,692 community residents at baseline and repeated at 3-year follow up. Cross-sectional and longitudinal associations between urinary 2HPMA and lung function were assessed by linear mixed model. Urinary 8-hydroxy-deoxyguanosine, urinary 8-iso-prostaglandin-F2α, and plasma protein carbonyls as biomarkers of oxidative DNA damage, lipid peroxidation, and protein carbonylation, respectively, were measured for all participants to explore their potential roles in 2HPMA-associated lung function decline by mediation analysis. RESULTS After adjustment for potential covariates, each threefold increase in urinary 2HPMA was cross sectionally associated with a 26.18 mL (95% CI, -50.55 to -1.81) and a 21.83 mL (95% CI, -42.71 to -0.95) decrease in FVC and FEV1, respectively, at baseline (all P < .05). After 3 years of follow up, 2HPMA was observed to be longitudinally associated with FEV1/FVC decline. No significant interaction effect of smoking or passive smoking was observed (Pinteraction > .05), and the associations between 2HPMA and lung function indexes were persistent among participants who were not smoking and those who were not passive smoking in both baseline and follow-up evaluations. We observed urinary 8-hydroxy-deoxyguanosine partially mediated the associations of 2HPMA with FVC (mediation proportion, 5.48%) and FEV1 (mediation proportion, 6.81%), and plasma protein carbonyl partially mediated the association between 2HPMA and FEV1 (mediation proportion, 3.44%). INTERPRETATION PO exposure was associated with lung function decline among community residents, and oxidative DNA damage and protein carbonylation partially mediated PO exposure-associated lung function decline. Further attention on respiratory damage caused by PO exposure is warranted.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiahao Song
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Ellingsen DG, Weinbruch S, Sallsten G, Berlinger B, Barregard L. The variability of arsenic in blood and urine of humans. J Trace Elem Med Biol 2023; 78:127179. [PMID: 37148695 DOI: 10.1016/j.jtemb.2023.127179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Humans are exposed to inorganic and organic arsenic. The total arsenic (As) concentration in urine is a commonly used biomarker of exposure. However, little is known about variability of As in biological fluids and the diurnal variation of As excretion. OBJECTIVES Main objectives were to assess the variability of As in urine, plasma (P-As), whole blood (B-As), and the blood cell fraction (C-As), and to assess diurnal variation of As excretion. METHODS Six urine samples were collected at fixed times during 24 h on two different days around one week apart among 29 men and 31 women. Blood samples were collected when the morning urine samples were delivered. The intra-class correlation coefficient (ICC) was calculated as the ratio of the between-individuals variance to the total observed variance. RESULTS Geometric mean (GM) 24 h urinary excretions of As (U-As24 h) were 41 and 39 µg/24 h on the two days of sampling. Concentrations of B-As, P-As and C-As were highly correlated with U-As24 h and As in first void morning urine. No statistically significant differences were observed for the urinary As excretion rate between the different sampling times. A high ICC was observed for As in the cellular blood fraction (0.803), while ICC for first morning urine corrected for creatine was low (0.316). CONCLUSIONS The study suggests that C-As is the most reliable biomarker for use in exposure assessment of individual exposure. Morning urine samples have low reliability for such use. No apparent diurnal variation was observed in the urinary As excretion rate.
Collapse
Affiliation(s)
- Dag G Ellingsen
- National Institute of Occupational Health, 0363 Oslo, Norway.
| | - Stephan Weinbruch
- National Institute of Occupational Health, 0363 Oslo, Norway; Technical University of Darmstadt, Institute of Applied Geosciences, 64287 Darmstadt, Germany
| | - Gerd Sallsten
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Sweden
| | | | - Lars Barregard
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Sweden
| |
Collapse
|
16
|
Li A, Li Y, Mei Y, Zhao J, Zhou Q, Li K, Zhao M, Xu J, Ge X, Xu Q. Associations of metals and metals mixture with lipid profiles: A repeated-measures study of older adults in Beijing. CHEMOSPHERE 2023; 319:137833. [PMID: 36693480 DOI: 10.1016/j.chemosphere.2023.137833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metals inevitably and easily enter into human bodies and can induce a series of pathophysiological changes, such as oxidative stress damage and lipid peroxidation, which then may further induce dyslipidemia. However, the effects of metals and metals mixture on the lipid profiles are still unclear, especially in older adults. A three-visits repeated measurement of 201 older adults in Beijing was conducted from November 2016 to January 2018. Linear Mixed Effects models and Bayesian kernel machine regression models were used to estimate associations of eight blood metals and metals mixture with lipid profiles, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), Castelli risk indexes I (CRI-1), Castelli risk indexes II (CRI-2), atherogenic coefficient (AC), and non-HDL cholesterol (NHC). Cesium (Cs) was positively associated with TG (βCs = 0.14; 95% CI: 0.02, 0.26) whereas copper (Cu) was inversely related to TG (βCu = -0.65; 95%CI: -1.14, -0.17) in adjusted models. Manganese (Mn) was mainly related to higher HDL-C (βMn = 0.14; 95% CI: 0.07, 0.21) whereas molybdenum showed opposite association. Metals mixture was marginally positive associated with HDL-C, among which Mn played a crucial role. Our findings suggest that the effects of single metal on lipid profiles may be counteracted in mixtures in the context of multiple metal exposures; however, future studies with large sample size are still needed to focus on the detrimental effects of single metals on lipid profiles as well as to identify key components.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
17
|
Claustre L, Bouchard M, Gasparyan L, Bosson-Rieutort D, Owens-Beek N, Caron-Beaudoin É, Verner MA. Assessing gestational exposure to trace elements in an area of unconventional oil and gas activity: comparison with reference populations and evaluation of variability. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:94-101. [PMID: 36564511 DOI: 10.1038/s41370-022-00508-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Located in Northeastern British Columbia, the Montney formation is an important area of unconventional oil and gas exploitation, which can release contaminants like trace elements. Gestational exposure to these contaminants may lead to deleterious developmental effects. OBJECTIVES Our study aimed to (1) assess gestational exposure to trace elements in women living in this region through repeated urinary measurements; (2) compare urinary concentrations to those from North American reference populations; (3) compare urinary concentrations between Indigenous and non-Indigenous participants; and (4) evaluate inter- and intra-individual variability in urinary levels. METHODS Eighty-five pregnant women participating in the Exposures in the Peace River Valley (EXPERIVA) study provided daily spot urine samples over 7 consecutive days. Samples were analyzed for 20 trace elements using inductively-coupled mass spectrometry (ICP-MS). Descriptive statistics were calculated, and inter- and intra-individual variability in urinary levels was evaluated through intraclass correlation coefficient (ICC) calculation for each trace element. RESULTS When compared with those from North American reference populations, median urinary levels were higher in our population for barium (~2 times), cobalt (~3 times) and strontium (~2 times). The 95th percentile of reference populations was exceeded at least 1 time by a substantial percentage of participants during the sampling week for barium (58%), cobalt (73%), copper (29%), manganese (28%), selenium (38%), strontium (60%) and vanadium (100%). We observed higher urinary manganese concentrations in self-identified Indigenous participants (median: 0.19 µg/g creatinine) compared to non-Indigenous participants (median: 0.15 µg/g of creatinine). ICCs varied from 0.288 to 0.722, indicating poor to moderate reliability depending on the trace element. SIGNIFICANCE Our results suggest that pregnant women living in this region may be more exposed to certain trace elements (barium, cobalt, copper, manganese, selenium, strontium, and vanadium), and that one urine spot sample could be insufficient to adequately characterize participants' exposure to certain trace elements. IMPACT STATEMENT Unconventional oil and gas (UOG) is an important industry in the Peace River Valley region (Northeastern British Columbia, Canada). Information on the impacts of this industry is limited, but recent literature emphasizes the risk of environmental contamination. The results presented in this paper highlight that pregnant women living near UOG wells in Northeastern British Columbia may be more exposed to some trace elements known to be related to this industry compared to reference populations. Furthermore, our results based on repeated urinary measurements show that one urine sample may be insufficient to adequately reflect long-term exposure to certain trace elements.
Collapse
Affiliation(s)
- Lucie Claustre
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Michèle Bouchard
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Lilit Gasparyan
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Delphine Bosson-Rieutort
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
- Deartment of Health Policy, Management and Evaluation, School of Public Health, Université de Montréal, Montreal, QC, Canada
| | | | - Élyse Caron-Beaudoin
- Department of Health and Society, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Center for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada.
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada.
| |
Collapse
|
18
|
Roggeman M, Gys C, Klimowska A, Bastiaensen M, Wielgomas B, Ait Bamai Y, Covaci A. Reviewing the variability in urinary concentrations of non-persistent organic chemicals: evaluation across classes, sampling strategies and dilution corrections. ENVIRONMENTAL RESEARCH 2022; 215:114332. [PMID: 36116496 DOI: 10.1016/j.envres.2022.114332] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Various biomonitoring studies have been carried out to investigate the exposure of populations by measuring non-persistent organic chemicals in urine. To accurately assess the exposure, study designs should be carefully developed to maximise reproducibility and achieve good characterization of the temporal variability. To test these parameters, the intraclass correlation coefficients (ICCs) are calculated from repeated measurements and range from poor (<0.4) to excellent (≥0.75). Several studies have reported ICCs based on diverse study designs, but an overview, including recommendations for future studies, was lacking. Therefore, this review aimed to collect studies describing ICCs of non-persistent organic chemicals, discuss variations due to study design and formulate recommendations for future studies. More than 60 studies were selected, considering various chemical classes: bisphenols, pyrethroids, parabens, phthalates, alternative plasticizers and phosphate flame retardants. The variation in ICCs for an individual chemical was high (e.g. ICC of propyl paraben = 0.28-0.91), showing the large impact of the study design and of the specific exposure sources. The highest ICCs were reported for parabens (median = 0.52), while lowest ICCs were for 3-phenoxybenzoic acid (median = 0.08) and bisphenol A (median = 0.20). Overall, chemicals that had an exposure source with high variation, such as the diet, showed lower ICCs than those with more stable exposure sources, such as indoor materials. Urine correction by specific gravity had an overall positive effect on reducing the variability of ICCs. However, this effect was mostly seen in the adult population, while specific compounds showed less variation with creatinine correction. Single samples might not accurately capture the exposure to most non-persistent organic chemicals, especially when small populations are sampled. Future studies that examine compounds with low ICCs should take adequate measures to improve accuracy, such as correcting dilution with specific gravity or collecting multiple samples for one participant.
Collapse
Affiliation(s)
- Maarten Roggeman
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Anna Klimowska
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Yu Ait Bamai
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku Sapporo, 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium.
| |
Collapse
|
19
|
Wang B, Fan L, Yang S, Zhou M, Mu G, Liu W, Yu L, Yang M, Cheng M, Wang X, Qiu W, Shi T, Chen W. Cross-sectional and longitudinal relationships between urinary 1-bromopropane metabolite and pulmonary function and underlying role of oxidative damage among urban adults in the Wuhan-Zhuhai cohort in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120147. [PMID: 36096263 DOI: 10.1016/j.envpol.2022.120147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
1-bromopropane is a US Environmental Protection Agency-identified significant hazardous air pollutant with concerned adverse respiratory effect. We aimed to investigate the relationship between 1-bromopropane exposure and pulmonary function and the underlying role of oxidative damage, which all remain unknown. Pulmonary function and urinary biomarkers of 1-bromopropane exposure (N-Acetyl-S-(n-propyl)-L-cysteine, BPMA) and oxidative damage to DNA (8-hydroxy-deoxyguanosine, 8-OHdG) and lipid (8-iso-prostaglandin-F2α, 8-iso-PGF2α) were measured for 3259 Chinese urban adults from the Wuhan-Zhuhai cohort. The cross-sectional relationship of BPMA with pulmonary function and the joint relationship of BPMA and 8-OHdG or 8-iso-PGF2α with pulmonary function were investigated by linear mixed models. The mediating roles of 8-OHdG and 8-iso-PGF2α were evaluated by mediation analysis. Additionally, a panel of 138 subjects was randomly convened from the same cohort to evaluate the stability of BPMA repeatedly measured in urine samples collected over consecutive three days and intervals of one, two, and three years, and to estimate the longitudinal relationship of BPMA with pulmonary function change in three years. We found each 3-fold increase in BPMA was cross-sectionally related to FVC and FEV1 reductions by 29.88-mL and 25.67-mL, respectively (all P < 0.05). Joint relationship of BPMA and 8-OHdG rather than 8-iso-PGF2α with reduced pulmonary function was observed. Moreover, 8-OHdG significantly mediated 9.44% of the BPMA-related FVC reduction. Findings from the panel revealed a fair to excellent stability (intraclass correlation coefficient: 0.43-0.79) of BPMA in repeated urines collected over a period of three years. Besides, BPMA was longitudinally related to pulmonary function reduction in three years: compared with subjects with persistently low BPMA level, those with persistently high BPMA level had 79.08-mL/year and 49.80-mL/year declines in FVC and FEV1, respectively (all P < 0.05). Conclusively, 1-bromopropane exposure might impair pulmonary function of urban adult population, and oxidative DNA damage might be a potential mechanism underlying 1-bromopropane impairing pulmonary function especially FVC.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Data Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430019, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tingming Shi
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
20
|
Liu Y, Yu L, Zhu M, Lin W, Liu Y, Li M, Zhang Y, Ji H, Wang J. Associations of exposure to multiple metals with blood pressure and hypertension: A cross-sectional study in Chinese preschool children. CHEMOSPHERE 2022; 307:135985. [PMID: 35964715 DOI: 10.1016/j.chemosphere.2022.135985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Exposure to metals might be a risk factor for hypertension, which contributes largely to the global burden of disease and mortality. However, relevant epidemiological studies of associations between metals exposure with hypertension among preschoolers are limited. This study aimed to explore the associations of urine metals with blood pressure and hypertension among Chinese preschoolers. A total of 1220 eligible participants who had urine metals measurement, blood pressure measurements, and relevant covariates were included in this cross-sectional study. Urine concentrations of metals were measured by inductively coupled plasma mass spectrometer. The single and multiple metals regression models were used to investigate the associations of urine metal with blood pressure and the risk of hypertension after adjusting for potential confounders. We observed urine concentrations of chromium, iron, and barium were negatively associated with levels of systolic blood pressure, diastolic blood pressure and the risk of hypertension in the single metal model (all P-FDR adjustment <0.05). Significant associations of urine chromium concentrations with systolic blood pressure, diastolic blood pressure and the risk of hypertension were found in the multi-metal model (β or OR (95% confidence interval) was -3.07 (-5.12, -1.02), -2.25 (-4.29, -0.22), and 0.51 (0.26, 0.97) for 3rd quartile, compared with 1st quartile, respectively). The same association was found for barium concentrations in the multi-metal model, while none of the associations among iron quartiles was significant. In addition, urine chromium, iron and barium may have joint effects on systolic blood pressure, diastolic blood pressure and hypertension. Children's age and body mass index could modify the associations of chromium, iron, and barium concentrations with blood pressure. Our findings suggested that exposure to chromium, iron, and barium was inversely associated with blood pressure and hypertension among preschool children. These findings need further validation in prospective studies.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Preventive Medicine, School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, China; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Lili Yu
- Dianjiang Traditional Chinese Medical Hospital, Chongqing, China; Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Meiqin Zhu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Wei Lin
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yang Liu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Mingzhu Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yao Zhang
- Department of Preventive Medicine, School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, China; Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Hongxian Ji
- Department of Child Health, Shiyan Maternal and Child Health Hospital, Shiyan, 44200, China
| | - Jing Wang
- Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, 44200, China; Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China.
| |
Collapse
|
21
|
Lv J, Guo L, Gu Y, Xu Y, Xue Q, Yang X, Wang QN, Meng XM, Xu DX, Pan XF, Xu S, Huang Y. National temporal trend for organophosphate pesticide DDT exposure and associations with chronic kidney disease using age-adapted eGFR model. ENVIRONMENT INTERNATIONAL 2022; 169:107499. [PMID: 36087379 DOI: 10.1016/j.envint.2022.107499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Whilst certain environmental organochlorine pesticide exposure may still pose significant burden, the associations between dichloro-diphenyl-trichloroethane (DDT) and chronic kidney disease (CKD) remain disputable notwithstanding the potentially inaccurate disease definition between age groups. National DDT exposure burden atlas was depicted from 92,061 participants by measuring their serum concentrations of DDT congeners and major metabolite in the US from 1999 to 2016. Temporal analyses of these toxicant exposure suggested that although serum DDT concentrations exhibited recent decline, the detection rates remain up to 99.8% every year, posing great concern for exposure risk. A total of 3,039 US adults were further included from these participants demonstrating the weighted CKD prevalence of 40.2% using the new age-adapted CKD-EPI40 model compared to 28.0% using the current CKD-EPI method. After adjustment for covariates, logistic regression model results showed individual metabolites and total DDT burden were positively, yet monotonically, associated with risk of CKD incidence (P-trend for all < 0.05), particularly among adults 40 years of age and older. Much heightened renal disease risk was also observed with high DDT exposure (OR, 1.55; 95 % CI, 1.11-2.15) in those who were hypertensive (P for heterogeneity < 0.001) but not with diabetes. The current high DDT exposure risk combined with elevated probability for CKD incidence call for health concerns and management for the environmentally persistent pollutants.
Collapse
Affiliation(s)
- Jia Lv
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lijuan Guo
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Ying Xu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingping Xue
- Department of Epidemiology and Biostatistics, Public School, Chengdu Medical College, Chengdu, China
| | - Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qu-Nan Wang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Wenjiang Institute of Women's and Children's Health, Wenjiang Maternal and Child Health Hospital, Chengdu, China.
| | - Shen Xu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
22
|
Nasser Eddine N, Noisel N, Dieme D, Asmar MK, Issa ST, Bouchard M. Multi-matrix biomonitoring approach to assess exposure to metals and trace elements in the Lebanese population and associations with drinking water consumption. ENVIRONMENTAL RESEARCH 2022; 214:113982. [PMID: 35952733 DOI: 10.1016/j.envres.2022.113982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This study is the first attempt to assess exposure to metals and trace elements in subgroups of the Lebanese population using a multi-matrix biomonitoring approach. Concentrations of 11 metals and trace elements (aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), selenium (Se), uranium (U), zinc (Zn)) were measured in urine, hair and toenails. Biological levels were compared according to age, sex, smoking status, socioeconomic status, geographical area and drinking water source. While most urinary and toenail concentrations of metals and trace elements were not different between males and females, measured concentrations of several elements in hair were higher in females compared to males. Urinary concentrations of some metals (Al, Cu, Se and Zn) were higher in children compared to teenagers and adults. Hair and toenail concentrations of several elements (As, Cd, Pb, Mn, Se in hair and toenails plus Al, Fe in toenails) were also significantly higher in children compared to teenagers and/or adults. Smoking status had no influence on metal and trace element concentrations. Levels of Cd, Pb and Mn were also higher in samples from subgroups with lower economic status (Cd and Pb in the three matrices and Mn in hair and toenails). Very few correlations were identified between sources of drinking water and urine, hair, and toenail concentrations of metals and trace elements. However, a correlation was observed between hair and toenails levels of As, Cd and Pb. Overall, results highlight that a special attention should be given to metal and trace element exposure in this population (including Pb, As, Cd, Mn, and Se). It could be relevant to scale up this kind of investigation with a large human biomonitoring initiative in the Lebanese population in order to generalize results, and assess trends over time.
Collapse
Affiliation(s)
- Nessrine Nasser Eddine
- Département de Santé Environnementale et Santé Au Travail, École de Santé Publique, Université de Montréal, 2375 Chemin de La Cote-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Nolwenn Noisel
- Département de Santé Environnementale et Santé Au Travail, École de Santé Publique, Université de Montréal, 2375 Chemin de La Cote-Sainte-Catherine, Montréal, QC H3T 1A8, Canada; Chaire d'analyse et de gestion des risques toxicologiques, Université de Montréal, 2900, Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Denis Dieme
- Département de Santé Environnementale et Santé Au Travail, École de Santé Publique, Université de Montréal, 2375 Chemin de La Cote-Sainte-Catherine, Montréal, QC H3T 1A8, Canada; Centre de Recherche en Santé Publique (CReSP), Université de Montréal, 7101, Avenue Du Parc, Montréal, QC H3N 1X7, Canada
| | - Michèle Kosremelli Asmar
- Institut Supérieur de Santé Publique, Faculté de Médecine, Université Saint-Joseph de Beyrouth, Lebanon
| | - Sahar T Issa
- Department of Environmental Health Sciences, Faculty of Communications, Arts and Sciences, Canadian University Dubai, United Arab Emirates
| | - Michèle Bouchard
- Département de Santé Environnementale et Santé Au Travail, École de Santé Publique, Université de Montréal, 2375 Chemin de La Cote-Sainte-Catherine, Montréal, QC H3T 1A8, Canada; Centre de Recherche en Santé Publique (CReSP), Université de Montréal, 7101, Avenue Du Parc, Montréal, QC H3N 1X7, Canada; Chaire d'analyse et de gestion des risques toxicologiques, Université de Montréal, 2900, Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
23
|
Wang B, Zhang W, Chen C, Chen Y, Xia F, Wang N, Lu Y. Lead exposure and impaired glucose homeostasis in Chinese adults: A repeated measures study with 5 years of follow-up. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113953. [PMID: 35961200 DOI: 10.1016/j.ecoenv.2022.113953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Experimental studies suggest the diabetogenic effects of lead, but relevant data in humans are limited and have been primarily based on cross-sectional study design. We aimed to prospectively examine the association between lead exposure and glucose homeostasis in general population using repeated measurements. This cohort study included 5505 Chinese adults free of glucose-lowering medication use at baseline in 2014 and followed up 5 years later. Blood lead and glucose metabolic traits including fasting plasma glucose (FPG), fasting serum insulin, the homeostasis model assessment of insulin resistance (HOMA-IR), and HOMA of beta-cell function (HOMA-B) were measured at baseline and follow-up. Linear mixed models and linear regression models were performed to evaluate the associations between blood lead and markers of glucose homeostasis. After full adjustment for confounders including BMI, an interquartile range (IQR) increase in blood lead levels was associated with a 2.26 % increase in FPG (95 % CI: 0.16 %, 4.39 %) and an 11.3 % decrease in HOMA-B (95 % CI: - 19.1 %, - 2.71 %) in women. The odds ratios of hyperglycemia and beta-cell dysfunction corresponding to an IQR increase in blood lead levels were 1.39 (95 % CI: 0.99, 1.95) and 1.74 (95 % CI: 1.00, 3.03), respectively. Similar results were found for 5-year changes of glucose metabolic markers. Compared with the first quartile of baseline lead levels, the highest lead quartile was associated with an additional 3.03 % increase in FPG (95 % CI: 0.84 %, 5.26 %) and an additional 13.3 % decrease in HOMA-B (95 % CI: - 20.4 %, - 5.53 %) in women during follow-up. We observed no overall associations between blood lead levels and glucose metabolic markers in men. Our findings provide suggestive evidence that environmental exposure to lead might contribute to sex-dependent disruption of glucose homeostasis in general adult population.
Collapse
Affiliation(s)
- Bin Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Department of Endocrinology and Metabolism, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Endocrinology and Metabolism, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Goerdten J, Yuan L, Huybrechts I, Neveu V, Nöthlings U, Ahrens W, Scalbert A, Floegel A. Reproducibility of the Blood and Urine Exposome: A Systematic Literature Review and Meta-Analysis. Cancer Epidemiol Biomarkers Prev 2022; 31:1683-1692. [PMID: 35732488 DOI: 10.1158/1055-9965.epi-22-0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Endogenous and exogenous metabolite concentrations may be susceptible to variation over time. This variability can lead to misclassification of exposure levels and in turn to biased results. To assess the reproducibility of metabolites, the intraclass correlation coefficient (ICC) is computed. A literature search in three databases from 2000 to May 2021 was conducted to identify studies reporting ICCs for blood and urine metabolites. This review includes 192 studies, of which 31 studies are included in the meta-analyses. The ICCs of 359 single metabolites are reported, and the ICCs of 10 metabolites were meta-analyzed. The reproducibility of the single metabolites ranges from poor to excellent and is highly compound-dependent. The reproducibility of bisphenol A (BPA), mono-ethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-2-ethylhexyl phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-benzyl phthalate (MBzP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), methylparaben, and propylparaben is poor to moderate (ICC median: 0.32; range: 0.15-0.49), and for 25-hydroxyvitamin D [25(OH)D], it is excellent (ICC: 0.95; 95% CI, 0.90-0.99). Pharmacokinetics, mainly the half-life of elimination and exposure patterns, can explain reproducibility. This review describes the reproducibility of the blood and urine exposome, provides a vast dataset of ICC estimates, and hence constitutes a valuable resource for future reproducibility and clinical epidemiologic studies.
Collapse
Affiliation(s)
- Jantje Goerdten
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Li Yuan
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Inge Huybrechts
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Vanessa Neveu
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Ute Nöthlings
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms - University Bonn, Bonn, Germany
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | | | - Anna Floegel
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
- Section of Dietetics, Faculty of Agriculture and Food Sciences, Hochschule Neubrandenburg - University of Applied Sciences, Neubrandenburg, Germany
| |
Collapse
|
25
|
Sallsten G, Ellingsen DG, Berlinger B, Weinbruch S, Barregard L. Variability of lead in urine and blood in healthy individuals. ENVIRONMENTAL RESEARCH 2022; 212:113412. [PMID: 35523277 DOI: 10.1016/j.envres.2022.113412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lead is a non-essential toxic trace element. Lead in blood (BPb) is the most common biomarker of lead exposure but lead in urine (UPb) has also been used. There is, however, limited data on the variability of UPb in the general population and the association with BPb. OBJECTIVES Our aims were to assess variability of lead in repeated blood and urine samples. The diurnal variation of UPb was also examined as well as associations with BPb. METHODS We established an openly available biobank including 60 healthy non-smoking individuals, 29 men and 31 women, 21-64 years of age (median 31 years), with repeated sampling of blood and urine. Timed urine samples were collected at six fixed time points in two 24 h periods, about one week apart, and adjusted for creatinine and specific gravity (SG). BPb and UPb were analyzed by inductively coupled plasma mass spectrometry. The within- and between-individual variabilities and intra-class correlation coefficients (ICCs; ratios of the between-individual to total observed variances) were calculated using mixed-effects models. RESULTS The ICCs for UPb samples were mostly above 0.5, when adjusted for creatinine or SG, and higher for overnight samples compared with daytime samples. The highest ICCs were obtained for BPb (ICC = 0.97) and for urine samples corrected for dilution by SG or creatinine. The ICC was 0.66 for overnight samples adjusted for creatinine. High correlations with BPb were found for 24 h UPb (rs = 0.77) and overnight samples, e.g. rs = 0.74 when adjusted for SG. There was diurnal variation of UPb with lowest excretion rate in overnight samples. There was also a significant association between the Pb excretion rate and urinary flow rate. CONCLUSIONS In addition to BPb, UPb adjusted for creatinine or SG seems to be a useful biomarker for exposure assessment in epidemiological studies.
Collapse
Affiliation(s)
- Gerd Sallsten
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Sweden.
| | | | - Balazs Berlinger
- National Institute of Occupational Health, Oslo, Norway; Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, István U. 2., H-1078, Budapest, Hungary
| | - Stephan Weinbruch
- National Institute of Occupational Health, Oslo, Norway; Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstr. 9, D-64287, Darmstadt, Germany
| | - Lars Barregard
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Sweden
| |
Collapse
|
26
|
Xu C, Ling H, Fan C, Xiang L, Zhang S, Li W, Yi C. Higher levels of nonylphenol were found in human urine and drinking water from rural areas as compared to metropolitan regions of Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66950-66959. [PMID: 35511329 PMCID: PMC9492561 DOI: 10.1007/s11356-022-20513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The suspected endocrine disruptor nonylphenol (NP) is closely associated with anthropogenic activities; therefore, studies on this compound have been clustered in urban areas. This study investigated the NP concentrations in drinking water sources (n = 8), terminal tap water (n = 36), and human urine samples (n = 127) collected from urban and rural areas in Wuhan, China. The mean concentrations of NP measured in drinking water sources in urban and rural areas were 92.3 ± 7.5 and 11.0 ± 0.8 ng/L (mean ± SD), respectively, whereas the mean levels in urban and rural tap waters were 5.0 ± 0.7 and 44.2 ± 2.6 ng/L (mean ± SD), respectively. Nevertheless, NP was detected in 74.1% and 75.4% of the human urine samples from urban and rural participants, with geometric mean concentrations of 0.19 ng/mL (0.26 µg/g creat) and 0.27 ng/mL (0.46 µg/g creat), respectively. Although the NP concentrations measured in the drinking water sources of urban areas were significantly higher than those in rural areas (P < 0.05), the tap water and urine NP concentrations measured in urban areas were unexpectedly lower than those of rural areas (P < 0.05). Additionally, this investigation showed that the materials comprising household water supply pipelines and drinking water treatment processes in the two areas were also different. Our results indicated that the levels of exposure to NP in drinking water and human urine in rural areas were not necessarily lower than those in urban areas. Thus, particular attention should be paid to rural areas in future studies of NP.
Collapse
Affiliation(s)
- Chunyan Xu
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Haibo Ling
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Chuangang Fan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, People's Republic of China
| | - Luojing Xiang
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Shu Zhang
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Weiwei Li
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Chuan Yi
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China.
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Zhu K, Liu Q, Xie X, Jiang Q, Feng Y, Xiao P, Wu X, Song R. The combined effect between BDNF genetic polymorphisms and exposure to metals on the risk of Chinese dyslexia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119640. [PMID: 35718045 DOI: 10.1016/j.envpol.2022.119640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BDNF gene has been implicated in the development of cognition and language. Meanwhile, exposure to metals might interact with BDNF gene to increase the risk of neurodevelopmental disorders. The present study aimed to explore the association between BDNF genetic polymorphisms and dyslexic risk and examine whether BDNF polymorphisms would interact with metal exposures, jointly contributing to dyslexia. Among a case-control study composed of 238 children with dyslexia and 228 healthy controls, the BDNF genetic polymorphisms were genotyped by the Sequenom MassARRAY system, and the exposure to eight metals, such as lead (Pb), mercury (Hg) and copper (Cu), were measured using an inductively coupled plasma-mass spectrometer (ICP-MS). Multivariable logistic regression models were used to assess the adjusted odds ratios (ORs) and 95% confidence interval (CI) of dyslexia. After multivariate adjustment, significant associations of dyslexic risk with rs6265 polymorphisms of the BDNF gene were observed (OR = 1.99; 95% CI: 1.15-3.44). Furthermore, exposure to Cu could interact with rs6265 to increase the risk of dyslexia (P interaction = 0.045). High-Cu children with the rs6265 TT genotype were more likely to have dyslexia compared with low-Cu children carrying CC + CT genotypes (OR = 3.19; 95% CI: 1.38-7.39). The findings of this study suggested that the polymorphism of rs6265 in BDNF gene could interact with Cu exposure to increase the occurrence of dyslexia.
Collapse
Affiliation(s)
- Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Wang B, Yu L, Liu W, Yang M, Fan L, Zhou M, Ma J, Wang X, Nie X, Cheng M, Qiu W, Ye Z, Song J, Chen W. Cross-sectional and longitudinal associations of acrolein exposure with pulmonary function alteration: Assessing the potential roles of oxidative DNA damage, inflammation, and pulmonary epithelium injury in a general adult population. ENVIRONMENT INTERNATIONAL 2022; 167:107401. [PMID: 35850081 DOI: 10.1016/j.envint.2022.107401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acrolein is a significant high priority hazardous air pollutant with pulmonary toxicity and the leading cause of most noncancer adverse respiratory effects among air toxics that draws great attention. Whether and how acrolein exposure impacts pulmonary function remain inconclusive. OBJECTIVES To assess the association of acrolein exposure with pulmonary function and the underlying roles of oxidative DNA damage, inflammation, and pulmonary epithelium integrity. METHODS Among 3,279 Chinese adults from the Wuhan-Zhuhai cohort, associations of urinary acrolein metabolites (N-Acetyl-S-(2-carboxyethyl)-L-cysteine, CEMA; N-Acetyl-S-(3-hydroxypropyl)-L-cysteine, 3HPMA) as credible biomarkers of acrolein exposure with pulmonary function were analyzed by linear mixed models. Joint effects of biomarkers of oxidative DNA damage (8-hydroxy-deoxyguanosine), inflammation (C-reactive protein, CRP), and pulmonary epithelium integrity (Club cell secretory protein, CC16) with acrolein metabolites on pulmonary function and the mediating roles of these biomarkers were assessed. Besides, a subgroup (N = 138) was randomly recruited from the cohort to assess the stabilities of acrolein metabolites and their longitudinal associations with pulmonary function change in three years. RESULTS Significant inverse dose-response relationships between acrolein metabolites and pulmonary function were found. Each 10-fold increment in CEMA, 3HPMA, or ΣUACLM (CEMA + 3HPMA) was cross-sectionally related to a 68.56-, 40.98-, or 46.02-ml reduction in FVC and a 61.54-, 43.10-, or 50.14-ml reduction in FEV1, respectively (P < 0.05). Furthermore, acrolein metabolites with fair to excellent stabilities were found to be longitudinally associated with pulmonary function decline in three years. Joint effects of acrolein metabolites with 8-hydroxy-deoxyguanosine, CRP, and CC16 on pulmonary function were identified. CRP significantly mediated 5.97% and 5.51% of CEMA-associated FVC and FEV1 reductions, respectively. 8-hydroxy-deoxyguanosine significantly mediated 6.78%, 6.88%, and 7.61% of CEMA-, 3HPMA-, and ΣUACLM-associated FVC reductions, respectively. CONCLUSIONS Acrolein exposure of general adults was cross-sectionally and longitudinally related to pulmonary function decline, which was aggravated and/or partly mediated by oxidative DNA damage, inflammation, and pulmonary epithelium injury.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430019, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuque Nie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
29
|
Rodríguez-Carrillo A, D'Cruz SC, Mustieles V, Suárez B, Smagulova F, David A, Peinado F, Artacho-Cordón F, López LC, Arrebola JP, Olea N, Fernández MF, Freire C. Exposure to non-persistent pesticides, BDNF, and behavioral function in adolescent males: Exploring a novel effect biomarker approach. ENVIRONMENTAL RESEARCH 2022; 211:113115. [PMID: 35292247 DOI: 10.1016/j.envres.2022.113115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Numerous contemporary non-persistent pesticides may elicit neurodevelopmental impairments. Brain-derived neurotrophic factor (BDNF) has been proposed as a novel effect biomarker of neurological function that could help to understand the biological responses of some environmental exposures. OBJECTIVES To investigate the relationship between exposure to various non-persistent pesticides, BDNF, and behavioral functioning among adolescents. METHODS The concentrations of organophosphate (OP) insecticide metabolites 3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy), malathion diacid (MDA), and diethyl thiophosphate (DETP); metabolites of pyrethroids 3-phenoxybenzoic acid (3-PBA) and dimethylcyclopropane carboxylic acid (DCCA), the metabolite of insecticide carbaryl 1-naphthol (1-N), and the metabolite of ethylene-bis-dithiocarbamate fungicides ethylene thiourea (ETU) were measured in spot urine samples, as well as serum BDNF protein levels and blood DNA methylation of Exon IV of BDNF gene in 15-17-year-old boys from the INMA-Granada cohort in Spain. Adolescents' behavior was reported by parents using the Child Behavior Check List (CBCL/6-18). This study included 140 adolescents of whom 118 had data on BDNF gene DNA methylation. Multivariable linear regression, weighted quantile sum (WQS) for mixture effects, and mediation models were fit. RESULTS IMPy, MDA, DCCA, and ETU were detected in more than 70% of urine samples, DETP in 53%, and TCPy, 3-PBA, and 1-N in less than 50% of samples. Higher levels of IMPy, TCPy, and ETU were significantly associated with more behavioral problems as social, thought problems, and rule-breaking symptoms. IMPy, MDA, DETP, and 1-N were significantly associated with decreased serum BDNF levels, while MDA, 3-PBA, and ETU were associated with higher DNA methylation percentages at several CpGs. WQS models suggest a mixture effect on more behavioral problems and BDNF DNA methylation at several CpGs. A mediated effect of serum BDNF within IMPy-thought and IMPy-rule breaking associations was suggested. CONCLUSION BDNF biomarkers measured at different levels of biological complexity provided novel information regarding the potential disruption of behavioral function due to contemporary pesticides, highlighting exposure to diazinon (IMPy) and the combined effect of IMPy, MDA, DCCA, and ETU. However, further research is warranted.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain
| | - Shereen C D'Cruz
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Fátima Smagulova
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Francisco Peinado
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain
| | - Francisco Artacho-Cordón
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Luis C López
- University of Granada, Department of Physiology, 18016, Granada, Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; University of Granada, Department of Preventive Medicine and Public Health, 18016, Granada, Spain
| | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
30
|
Mérida-Ortega Á, Rothenberg SJ, Cebrián ME, López-Carrillo L. Breast cancer and urinary metal mixtures in Mexican women. ENVIRONMENTAL RESEARCH 2022; 210:112905. [PMID: 35217012 DOI: 10.1016/j.envres.2022.112905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Humans are environmentally exposed to many metals throughout their lives. Simultaneous exposure to several metals could result in synergistic or antagonistic toxicological effects among them; however, the information on exposure to mixtures of metals and breast cancer (BC) is scarce. The objective of this report was to compare metals considered human carcinogens, individually and as mixtures, in women with and without BC. This is a secondary analysis of a population-based case-control study that was carried out from 2007 to 2011 in Northern Mexico. A total of 499 histologically confirmed BC cases and 499 controls were included. Information about sociodemographic, lifestyle and reproductive characteristics was obtained by in-person interviews. Urinary concentrations of aluminum (Al), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), antimony (Sb), cobalt (Co), molybdenum (Mo), tin (Sn), and vanadium (V) were determined by inductively coupled plasma triple quadrupole. Metal mixtures were identified by principal component analysis with creatinine-corrected metals. Over 90% of subjects had metal measurements above the detection limit except tin (86%) and antimony (78.4%). After adjusting by selected covariables, we observed that the individual urinary concentrations of V, Co, and Mo were lower among cases compared to controls; in contrast to Sn that had higher concentrations. We identified two principal component mixtures with opposite relationships with BC: Cr, Ni, Sb, Al, Pb and Sn (OR = 1.15; CI95% 1.06,1.25) and Mo and Co (OR = 0.56; CI95% 0.49,0.64). This is the first study that identified urinary metal mixtures that differed between women with and without BC. Our results warrant confirmation in further prospective epidemiological studies. In addition, the elucidation of underlying mechanisms of metal interactions on BC risk deserves further research.
Collapse
Affiliation(s)
- Ángel Mérida-Ortega
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, Morelos, C.P. 62100, Mexico
| | - Stephen J Rothenberg
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, Morelos, C.P. 62100, Mexico
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, C.P. 07360, Mexico
| | - Lizbeth López-Carrillo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, Morelos, C.P. 62100, Mexico.
| |
Collapse
|
31
|
Jia X, Jin Q, Fang J, Shi Y, Hou M, Dong H, Liu Y, Deng F, Zhou Y, Godri Pollitt KJ, Tang S, Shi X, Cai Y. Emerging and Legacy Per- and Polyfluoroalkyl Substances in an Elderly Population in Jinan, China: The Exposure Level, Short-Term Variation, and Intake Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7905-7916. [PMID: 35584234 DOI: 10.1021/acs.est.2c00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFASs) has gained worldwide attention due to their widespread presence in the environment and adverse health effects, but the exposure assessment in the elderly is still lacking. This study aimed to assess exposures to 3 emerging PFASs (chlorinated polyfluoroalkyl ether sulfonic acids, Cl-PFESAs) and 15 legacy PFASs. The temporal variability of internal exposures and intake amounts of these PFASs were evaluated among a population of 76 healthy elderly adults (age: 60-69) in Jinan, China over 5 consecutive months. Fifteen PFASs were detected in whole blood with the mean total concentration (ΣPFAS) at 20.1 ng/mL (range: 5.0-135.9 ng/mL) dominated by perfluorooctanoic acid (PFOA) (9.0 ng/mL), perfluorooctanesulfonic acid (PFOS) (5.3 ng/mL), and 6:2 Cl-PFESA (1.6 ng/mL). Across the 5 month assessment period, significant variation was only observed for short-chain (C4-C7) perfluoroalkyl carboxylic acids, and their variations ranged from 53 to 334%. The median intake of PFOA and PFOS was estimated to be 1.46 and 0.92 ng/kg bw/day, respectively. Regression analysis showed that dietary ingestion, especially fish, was likely an important exposure pathway for PFASs among the elderly adults. Various pathways (e.g., dietary, water, air, and dust) should thus be considered to fully understand human exposure to PFASs.
Collapse
Affiliation(s)
- Xuan Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yakun Zhou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
32
|
Li A, Zhou Q, Mei Y, Zhao J, Zhao M, Xu J, Ge X, Xu Q. Novel Strategies for Assessing Associations Between Selenium Biomarkers and Cardiometabolic Risk Factors: Concentration, Visit-to-Visit Variability, or Individual Mean? Evidence From a Repeated-Measures Study of Older Adults With High Selenium. Front Nutr 2022; 9:838613. [PMID: 35711534 PMCID: PMC9196882 DOI: 10.3389/fnut.2022.838613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
Background and Aims Previous studies have focused only on the cardiometabolic effects of selenium concentrations. We explored whether selenium levels and their visit-to-visit variability (VVV) and individual mean (IM) are independently associated with cardiometabolic risk factors. Methods A three-wave repeated-measures study of older adults with high selenium (n = 201) was conducted in Beijing from 2016 to 2018. Whole blood selenium and urinary selenium concentrations were measured. VVV and IM were used to profile the homeostasis of the selenium biomarkers. Four indicators, namely standard deviation, coefficient of variation, average real variability, and variability independent of the mean, were employed to characterize VVV. We considered 13 cardiometabolic factors: four lipid profile indicators, three blood pressure indices, glucose, uric acid, waistline, hipline, waist-hip ratio, and sex-specific metabolic syndrome score. Linear mixed-effects regression models with random intercepts for the participants were employed to explore the associations of the selenium concentrations, VVV, and IM with the cardiometabolic factors. Results The geometric mean whole blood and urinary selenium levels were 134.30 and 18.00 μg/L, respectively. Selenium concentrations were significantly associated with numerous cardiometabolic factors. Specifically, whole blood selenium was positively associated with total cholesterol [0.22, 95% confidence interval (CI): 0.12, 0.33], low-density lipoprotein cholesterol (LDL-C; 0.28, 95% CI: 0.13, 0.42), glucose (0.22, 95% CI: 0.10, 0.34), and uric acid (0.16, 95% CI: 0.04, 0.28). After adjustment for VVV, the IM of whole blood selenium was positively correlated with total cholesterol (0.002, 95% CI: 0.001, 0.004), triglycerides (0.007, 95% CI: 0.004, 0.011), and LDL-C (0.002, 95% CI: 0.000, 0.004). However, we did not observe any robust associations between the VVV of the selenium biomarkers and cardiometabolic risk factors after adjustment for IM. Conclusion Our findings suggest that selenium concentrations and their IMs are significantly associated with cardiometabolic risk factors among older adults with high selenium. Longer repeated-measures studies among the general population are required to validate our findings and elucidate the relevant underlying mechanisms.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Exposure variability and determining factors of urinary metals for schoolchildren in Taiwan. Int J Hyg Environ Health 2022; 243:113976. [DOI: 10.1016/j.ijheh.2022.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
|
34
|
Li A, Mei Y, Zhao M, Xu J, Zhao J, Zhou Q, Ge X, Xu Q. Do urinary metals associate with the homeostasis of inflammatory mediators? Results from the perspective of inflammatory signaling in middle-aged and older adults. ENVIRONMENT INTERNATIONAL 2022; 163:107237. [PMID: 35429917 DOI: 10.1016/j.envint.2022.107237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We aimed to investigate whether urinary metal mixtures are associated with the homeostasis of inflammatory mediators in middle-aged and older adults. METHODS A four-visit repeated-measures study was conducted with 98 middle-aged and older adults from five communities in Beijing, China. Only one person was lost to follow-up at the third visit. Ultimately, 391 observations were included in the analysis. The urinary concentrations of 10 metals were measured at each visit using inductively coupled plasma mass spectrometry (ICP-MS) with a limit of detection (LOD) ranging from 0.002 to 0.173 µg/L, and the detection rates were all above 84%. Similarly, 14 serum inflammatory mediators were measured using a Beckman Coulter analyzer and the Bio-Plex MAGPIX system. A linear mixed model (LMM), LMM with least absolute shrinkage and selection operator regularization (LMMLASSO), and Bayesian kernel machine regression (BKMR) were adopted to explore the effects of urinary metal mixtures on inflammatory mediators. RESULTS In LMM, a two-fold increase in urinary cesium (Cs) and chromium (Cr) was statistically associated with -35.22% (95% confidence interval [CI]: -53.17, -10.40) changes in interleukin 6 (IL-6) and -11.13% (95 %CI: -20.67, -0.44) in IL-8. Urinary copper (Cu) and selenium (Se) was statistically associated with IL-6 (88.10%, 95%CI: 34.92, 162.24) and tumor necrosis factor-alpha (TNF-α) (22.32%, 95%CI: 3.28, 44.12), respectively. Similar results were observed for the LMMLASSO and BKMR. Furthermore, Cr, Cs, Cu, and Se were significantly associated with other inflammatory regulatory network mediators. For example, urinary Cs was statistically associated with endothelin-1, and Cr was statistically associated with endothelin-1 and intercellular adhesion molecule 1 (ICAM-1). Finally, the interaction effects of Cu with various metals on inflammatory mediators were observed. CONCLUSION Our findings suggest that Cr, Cs, Cu, and Se may disrupt the homeostasis of inflammatory mediators, providing insight into the potential pathophysiological mechanisms of metal mixtures and chronic diseases.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
35
|
Pal VK, Li AJ, Zhu H, Kannan K. Diurnal variability in urinary volatile organic compound metabolites and its association with oxidative stress biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151704. [PMID: 34793803 PMCID: PMC8904290 DOI: 10.1016/j.scitotenv.2021.151704] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 05/26/2023]
Abstract
Volatile organic compounds (VOCs) are ubiquitous environmental pollutants that are associated with birth defects, leukemia, neurocognitive deficits, reproductive impairment and cancer in humans exposed to these compounds. Exposure to VOCs can be assessed by measuring their metabolites in urine. Little is known, however, about the temporal variability in urinary VOC metabolite (VOCM) concentrations within- and between-individuals. In this study, we determined the variability in the concentrations of 38 VOCMs in urine samples collected from 19 healthy individuals across a period of 44 days. We also measured seven biomarkers of oxidative stress (lipid, protein and DNA damage) in urine to assess the relationship of VOC exposure to oxidative stress. Seventeen VOCMs had detection frequencies (DFs) of >60% in urine, and we limited further data analysis to those compounds. The creatinine-adjusted geometric mean concentrations of VOCMs ranged from 2.70 μg/g to 327 μg/g in spot and 2.60 μg/g to 551 μg/g in first morning void (FMV) urine samples. Calculation of the intra-class correlation coefficients (ICCs) for 17 VOCM concentrations to assess their predictability and repeatability in urinary measurements showed ranges of 0.080-0.425 in spot and 0.050-0.749 in FMV urine samples, revealing notable within-individual variability. Our results suggest that taking only single measurements of VOCM concentrations in urine in epidemiological investigations may lead to exposure misclassification. In addition, VOCM concentrations were significantly and positively correlated with oxidative stress biomarkers. This study thus provides important information for formulating sampling strategies in the biomonitoring of VOC exposure in human populations.
Collapse
Affiliation(s)
- Vineet Kumar Pal
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, United States
| | - Adela Jing Li
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, United States
| | - Hongkai Zhu
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, United States; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
36
|
Zhang M, Liu C, Li WD, Xu XD, Cui FP, Chen PP, Deng YL, Miao Y, Luo Q, Zeng JY, Lu TT, Shi T, Zeng Q. Individual and mixtures of metal exposures in associations with biomarkers of oxidative stress and global DNA methylation among pregnant women. CHEMOSPHERE 2022; 293:133662. [PMID: 35063557 DOI: 10.1016/j.chemosphere.2022.133662] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to metals has been linked with adverse pregnancy outcomes. Oxidative stress and epigenetic changes are potential mechanisms of action. OBJECTIVES We aimed to examine the associations of individual and mixtures of metal exposures with oxidative stress and DNA methylation among pregnant women. METHODS We measured a panel of 16 metals and 3 oxidative stress biomarkers including 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) and 8-isoprostaglandin F2α (8-isoPGF2α) in urine from 113 pregnant women in a Chinese cohort. Biomarkers of global DNA methylation including Alu and long interspersed nucleotide element-1 (LINE-1) in cord blood were measured. Multivariable linear regression and Bayesian kernel machine regression (BKMR) models were separately applied to estimate the associations between individual and mixtures of metal exposures and biomarkers of oxidative stress and global DNA methylation. RESULTS In single-metal analyses, we observed positive associations between 11 metals [arsenic (As), cadmium (Cd), thallium (Tl), barium (Ba), nickel (Ni), vanadium (V), cobalt (Co), zinc (Zn), copper (Cu), selenium (Se) and molybdenum (Mo)] and at least one of oxidative stress biomarkers (all FDR-adjusted P-values < 0.05). In mixture analyses, we found positive overall associations of metal mixtures with 8-OHdG and 8-isoPGF2α, and Se was the most important predictor. There was no evidence on associations of urinary metals as individual chemicals and mixtures with Alu and LINE-1 methylation. CONCLUSION Urinary metals as individual chemicals and mixtures were associated with increased oxidative stress, especially Se.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Ding Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xue-Dan Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
37
|
Liu Y, Zhang C, Qin Z, Yang Q, Lei J, Tang X, Wang Q, Hong F. Analysis of Threshold Effect of Urinary Heavy Metal Elements on the High Prevalence of Nephrolithiasis in Men. Biol Trace Elem Res 2022; 200:1078-1088. [PMID: 34263420 DOI: 10.1007/s12011-021-02740-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Exposure to heavy metals in the environment exerts serious effects on kidney health. However, the effects of joint exposure on the kidneys have been rarely studied, particularly in non-occupational exposure high-risk populations. This study provided a reference threshold range of heavy metals in urine and explored the effect of joint exposure on nephrolithiasis in men. The data were obtained from the China Multi-Ethnic Cohort database, and 1502 men were included in the study. A two-piece-wise regression model was used to assess the dose-response relationship between heavy metal exposure and nephrolithiasis. The least absolute shrinkage and selection operator regression model was used to calculate the score of joint exposure to heavy metals. The threshold effect analysis revealed a linear relationship between the concentration of arsenic (As) in the urine and the prevalence of nephrolithiasis, whereas a nonlinear relationship was observed with cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb). In addition, As, Cd, Cr, Hg, and Pb may significantly affect the joint exposure effect. Moreover, the final risk of nephrolithiasis increased by 123% (P for trend < 0.001). This study found a threshold relationship between heavy metals (Cd, Cr, Hg, Pb) in male urine and the occurrence of nephrolithiasis. Joint exposure to heavy metals in urine caused a high-risk effect on nephrolithiasis. The study provided a reference threshold value of related studies and indicated that environmental pollution caused by heavy metals should be reduced.
Collapse
Affiliation(s)
- Yalan Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Cailiang Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zixiu Qin
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Qianyuan Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Juan Lei
- Guiyang City Center for Disease Control and Prevention, Guizhou, 550003, China
| | - Xuejie Tang
- University Town Hospital, Gui'an New District, Guizhou, 550025, China
| | - Qiaorong Wang
- University Town Hospital, Gui'an New District, Guizhou, 550025, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
38
|
Liu J, Ruan F, Cao S, Li Y, Xu S, Xia W. Associations between prenatal multiple metal exposure and preterm birth: Comparison of four statistical models. CHEMOSPHERE 2022; 289:133015. [PMID: 34822868 DOI: 10.1016/j.chemosphere.2021.133015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to some heavy metals has been demonstrated to be related to the risk of preterm birth (PTB). However, the effects of multi-metal mixture are seldom assessed. Thus, we aimed to investigate the associations of maternal exposure to metal mixture with PTB, and to identify the main contributors to PTB from the mixture. METHODS The population in the nested case-control study was from a prospective cohort enrolled in Wuhan, China between 2012 and 2014. Eighteen metals were measured in maternal urine collected before delivery. Logistic regression, elastic net regularization (ENET), weighted quantile sum regression (WQSR), and Bayesian kernel machine regression (BKMR) were used to estimate the overall effect and identify important mixture components that drive the associations with PTB. RESULTS Logistic regression found naturally log-transformed concentrations of 13 metals were positively associated with PTB after adjusting for the covariates, and only V, Zn, and Cr remained the significantly positive associations when additionally adjusting for the 13 metals together. ENET identified 11 important metals for PTB, and V (β = 0.23) had the strongest association. WQSR determined the positive combined effect of metal mixture on PTB (OR: 1.44, 95%CI: 1.32, 1.57), and selected Cr and V (weighted 0.41 and 0.32, respectively) as the most weighted metals. BKMR analysis confirmed the overall mixture was positively associated with PTB, and the independent effect of V was the most significant. Besides, BKMR showed the non-linear relationships of V and Cu with PTB, and the potential interaction between Zn and Cu. CONCLUSION Applying different statistical models, the study found that exposure to the metal mixture was associated with a higher risk of PTB, and V was identified as the most important risk factor among co-exposed metals for PTB.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Fengyu Ruan
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Shuting Cao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
39
|
Zeng H, Fang B, Hao K, Wang H, Zhang L, Wang M, Hao Y, Wang X, Wang Q, Yang W, Rong S. Combined effects of exposure to polycyclic aromatic hydrocarbons and metals on oxidative stress among healthy adults in Caofeidian, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113168. [PMID: 34999341 DOI: 10.1016/j.ecoenv.2022.113168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) and metals is associated with many adverse effects on human health, accompanied by oxidative stress. This study aimed to investigate the effects of co-exposure to PAHs and metals on oxidative stress in healthy adults. A preliminary longitudinal panel study was conducted between 2017 and 2018 in 45 healthy college students in Caofeidian, China. Six urinary monohydroxylated-PAHs (OH-PAHs), ten metals, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α) were measured. Linear mixed effects (LME) models and Bayesian kernel machine regression (BKMR) models were used to explore the associations of urinary OH-PAHs and metals with 8-OHdG and 8-iso-PGF2α. LME models showed that most urinary OH-PAHs and metals were positively associated with 8-OHdG and 8-iso-PGF2α. For example, a one-unit increase in the ln-transformed level of 1-hydroxypyrene (1-OHPyr) and vanadium (V) was associated with an increase of 143.8% (95% CI: 105.7 - 188.9%) and 105.8% (95% CI: 79.2-136.4%) in 8-OHdG; 8-iso-PGF2α increased by 118.9% (95% CI: 99.2-140.5%) and 83.9% (95% CI: 67.2-102.2%) with a one-unit increase in the ln-transformed level of 3-hydroxyphenanthrene (3-OHPhe) and aluminum (Al). BKMR models indicated the overall positive associations of the mixture of six OH-PAHs, ten metals, or six OH-PAHs and ten metals with 8-OHdG and 8-iso-PGF2α. Urinary 1-OHPyr and V were identified as the major contributors to the increased urinary 8-OHdG levels, while urinary 3-OHPhe and Al were the most vital contributors to the increased urinary 8-iso-PGF2α levels. The results revealed the longitudinal dose-response relationships of urinary OH-PAHs and metals with oxidative stress among healthy adults in Caofeidian; this finding serves as an evidence regarding the early health hazard caused by exposure to PAHs and metals and has implications for the environmental management of PAH and metal emissions in this area.
Collapse
Affiliation(s)
- Hao Zeng
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China; Affiliated Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Kelu Hao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Haotian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Lei Zhang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Xuesheng Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063000, China.
| | - Suying Rong
- Department of Clinical Medicine, Tangshan Vocational and Technical College, No. 120 Xinhua West Road, Tangshan 063000, China
| |
Collapse
|
40
|
Liu L, Li X, Wu M, Yu M, Wang L, Hu L, Li Y, Song L, Wang Y, Mei S. Individual and joint effects of metal exposure on metabolic syndrome among Chinese adults. CHEMOSPHERE 2022; 287:132295. [PMID: 34563779 DOI: 10.1016/j.chemosphere.2021.132295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence suggests that metal exposure contributes to metabolic syndrome (MetS), but little is known about the effects of combined exposure to metal mixtures. This cross-sectional study included 3748 adults who were recruited from the Medical Physical Examination Center of Tongji Hospital, Wuhan, China. The levels of 21 metal(loid)s in urine were measured by inductively coupled plasma mass spectrometry. MetS was diagnosed according to National Cholesterol Education Program's Adult Treatment Panel III recommendations. Multivariate logistic regression model was uesd to explore the effects of single-metal and multi-metal exposures. The elastic net (ENET) regularization with an environmental risk score (ERS) was performed to estimate the joint effects of exposure to metal mixtures. A total of 636 participants (17%) were diagnosed with MetS. In single metal models, MetS was positively associated with zinc (Zn) and negatively associated with nickel (Ni). In multiple metal models, the associations remained significant after adjusting for the other metals. In the joint association analysis, the ENET models selected Zn as the strongest predictor of MetS. Compared to the lowest quartile, the highest quartile of ERS was associated with an elevated risk of MetS (OR = 3.72; 95% CI: 2.77, 5.91; P-trend < 0.001). Overall, we identified that the combined effect of multiple metals was related to an increased MetS risk, with Zn being the major contributor. These findings need further validation in prospective studies.
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
41
|
Yang WJ, Wu HB, Zhang C, Zhong Q, Hu MJ, He JL, Li GA, Zhu ZY, Zhu JL, Zhao HH, Zhang HS, Huang F. Exposure to 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol and risk of thyroid cancer: a case-control study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61329-61343. [PMID: 34173948 DOI: 10.1007/s11356-021-14898-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Thyroid cancer (TC) has inflicted huge threats to the health of mankind. Chlorophenols (CPs) were persistent organic pollutant and can lead to adverse effects in human health, especially in thyroid. However, epidemiological studies have revealed a rare and inconsistent relationship between internal exposure to CPs and TC risk. The purpose of this study was to investigate the correlation between urinary CPs and TC risk in Chinese population. From June 2017 to September 2019, a total of 297 histologically confirmed TC cases were recruited. Age- and gender-matched controls were enrolled at the same time. Gas chromatography-mass spectrometry (GC-MS) was used to determine the levels of three CPs in urine. Conditional logistic regression models were adopted to assess the potential association. Restricted cubic spline function was used to explore the non-liner association. After adjusting for confounding factors, multivariate analysis showed that, compared with the first quartile, the fourth quartile concentrations of 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) were associated with TC risk (odds ratio (OR)2,4-DCP =2.28, 95% confidence interval (CI): 1.24-4.18; OR2,4,6-TCP =3.09, 95% CI: 1.66-5.77; ORPCP =3.30, 95% CI: 1.71-6.36, respectively), when CPs were included in the multivariate model and restricted cubic spline function as continuous variables, presenting significant dose-response relationships. Meanwhile, whether in the TC group with tumor diameter > 1 cm or metastatic TC, the changes of 2,4,6 TCP and PCP concentrations were positively correlated with the risk of TC. Our study suggests that higher concentrations of urinary CPs are associated with increased TC risks. Moreover, 2,4,6-TCP and PCP have certain effects on the invasiveness of thyroid cancer. Targeted public health policies should be formulated to reduce the CP pollution. These findings need further in-depth studies to confirm and relevant mechanism also needed to be clarified.
Collapse
Affiliation(s)
- Wan-Jun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Hua-Bing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Chi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Qi Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Ming-Jun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jia-Liu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Guo-Ao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Zhen-Yu Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jin-Liang Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huan-Huan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Han-Shuang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China.
| |
Collapse
|
42
|
Chen HG, Lu Q, Tu ZZ, Chen YJ, Sun B, Hou J, Xiong CL, Wang YX, Meng TQ, Pan A. Identifying windows of susceptibility to essential elements for semen quality among 1428 healthy men screened as potential sperm donors. ENVIRONMENT INTERNATIONAL 2021; 155:106586. [PMID: 33910075 DOI: 10.1016/j.envint.2021.106586] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Essential elements such as iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), selenium (Se), rubidium (Rb), strontium (Sr), and molybdenum (Mo) are necessary for reproductive health. However, their associations with human semen quality remain inconclusive. OBJECTIVES To investigate the associations of urinary Fe, Co, Cu, Zn, Se, Rb, Sr, and Mo concentrations with semen quality in healthy men screened as potential sperm donors and identify critical windows of susceptibility. METHODS 1428 healthy men provided 3766 urine and 6527 semen samples, which were measured for urinary essential element concentrations and sperm quality parameters, respectively. Linear mixed models and cubic spline curves were used to evaluate associations between urinary essential elements and semen quality. Multiple informant models were used to identify potential critical windows of susceptibility. RESULTS Linear mixed models and cubic spline curves showed positive dose-response relationships between urinary Zn and sperm concentration and total count and between urinary Mo and total sperm count [all False Discovery Rate (FDR) adjusted p-value for trend < 0.05]. In the multiple-element linear mixed models, the men in the highest versus lowest quartiles of urinary Zn and Mo had a higher sperm concentration of 17.5% (95% CI: 2.8%, 34.2%; p-value for trend = 0.006) and total sperm count of 18.3% (95% CI: 1.4%, 38.0%; p-value for trend = 0.027), respectively. Urinary Zn was also positively associated with total sperm count in a dose-dependent manner (p-value for trend = 0.036), though the percentile difference in total sperm count between men in the highest and lowest quartile was not statistically significant (16.4%, 95% CI: -1.7%, 37.9%). These associations appeared to be stronger when urinary Zn and Mo were measured at 0-9 days before the date of semen examination (i.e., corresponding to epididymal storage). CONCLUSIONS Higher urinary Zn and Mo, particularly during the period of epididymal storage, were associated with greater sperm production.
Collapse
Affiliation(s)
- Heng-Gui Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan 430030, Hubei Province, China
| | - Qi Lu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan 430030, Hubei Province, China
| | - Zhou-Zheng Tu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan 430030, Hubei Province, China
| | - Ying-Jun Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan 430030, Hubei Province, China
| | - Bin Sun
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan 430030, Hubei Province, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Cheng-Liang Xiong
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Hubei Province Human Sperm Bank, Wuhan, Hubei Province, China
| | - Yi-Xin Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan 430030, Hubei Province, China.
| | - Tian-Qing Meng
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Hubei Province Human Sperm Bank, Wuhan, Hubei Province, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
43
|
Fang X, Qu J, Huan S, Sun X, Li J, Liu Q, Jin S, Xia W, Xu S, Wu Y, Li J, Zheng T, Li Y. Associations of urine metals and metal mixtures during pregnancy with cord serum vitamin D Levels: A prospective cohort study with repeated measurements of maternal urinary metal concentrations. ENVIRONMENT INTERNATIONAL 2021; 155:106660. [PMID: 34052726 DOI: 10.1016/j.envint.2021.106660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Vitamin D deficiency has been associated with the increased risk of many diseases, especially during early life. Exposure to some toxic metals may decrease vitamin D levels in adults and children in previous studies. However, less is known about the associations of maternal metals exposure during pregnancy with newborns' vitamin D status. OBJECTIVE We conducted a prospective cohort study to investigate the relationships between urine metals and metal mixtures during pregnancy and newborns' vitamin D status. METHODS Urine samples of 598 pregnant women were collected in each trimester and cord blood samples of newborns were collected at delivery. The concentrations of 20 metals in urine and 25-hydroxyvitamin D [25(OH)D] in cord serum were quantified. Generalized linear models were used to estimate the associations between individual metals and cord serum total 25(OH)D. We applied Bayesian Kernel Machine Regression (BKMR) to evaluate the mixture and interaction effects of urine metals. RESULTS In individual metals analyses, we reported that a double increase in urine vanadium (V), cobalt (Co), and thallium (Tl) throughout pregnancy was associated with a 9.91% [95% confidence interval (CI): -18.58%, -0.30%], 11.42% (95% CI: -17.73%, -4.63%), and 12.64% (95% CI: -21.44%, -2.86%) decrease in cord serum total 25(OH)D, respectively. Exposures to the three metals during the whole pregnancy were also correlated to increased odds for newborns' vitamin D deficiency (<20 ng/mL) [odds ratio (95% CI): 1.80 (1.05, 3.10) for V, 1.88 (1.25, 2.82) for Co, and 1.90 (1.07, 3.38) for Tl]. BKMR analyses revealed a negative influence of metal mixtures (V+Co+Tl) on neonatal vitamin D status, as well as potential synergism between V and Co and between V and Tl. CONCLUSIONS Our study provides evidence of negative impacts of maternal exposure to V, Co, and Tl during pregnancy on cord serum vitamin D levels at delivery. Potential synergism between V and Co and between V and Tl existed in their associations with cord serum total 25(OH)D.
Collapse
Affiliation(s)
- Xingjie Fang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Qu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu Huan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Lum JTS, Chan YN, Leung KSY. Current applications and future perspectives on elemental analysis of non-invasive samples for human biomonitoring. Talanta 2021; 234:122683. [PMID: 34364482 DOI: 10.1016/j.talanta.2021.122683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/09/2022]
Abstract
Humans are continuously exposed to numerous environmental pollutants including potentially toxic elements. Essential elements play an important role in human health. Abnormal elemental levels in the body, in different forms that existed, have been reported to be correlated with different diseases and environmental exposure. Blood is the conventional biological sample used in human biomonitoring. However, blood samples can only reflect short-term exposure and require invasive sampling, which poses infection risk to individuals. In recent years, the number of research evaluating the effectiveness of non-invasive samples (hair, nails, urine, meconium, breast milk, placenta, cord blood, saliva and teeth) for human biomonitoring is increasing. These samples can be collected easily and provide extra information in addition to blood analysis. Yet, the correlation between the elemental concentration in non-invasive samples and in blood is not well established, which hinders the application of those samples in routine human biomonitoring. This review aims at providing a fundamental overview of analytical methods of non-invasive samples in human biomonitoring. The content covers the sample collection and pretreatment, sample preparation and instrumental analysis. The technical discussions are separated into solution analysis and solid analysis. In the last section, the authors highlight some of the perspectives on the future of elemental analysis in human biomonitoring.
Collapse
Affiliation(s)
- Judy Tsz-Shan Lum
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Yun-Nam Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
45
|
Wang LM, Luo D, Li X, Hu LQ, Chen JX, Tu ZZ, Sun B, Chen HG, Liu L, Yu M, Li YP, Pan A, Messerlian C, Mei SR, Wang YX. Temporal variability of organophosphate flame retardant metabolites in spot, first morning, and 24-h urine samples among healthy adults. ENVIRONMENTAL RESEARCH 2021; 196:110373. [PMID: 33190805 DOI: 10.1016/j.envres.2020.110373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 05/20/2023]
Abstract
A single measurement of organophosphate flame retardant (OPFR) metabolites in a spot sample is often used in epidemiological studies to estimate individual exposures. Over seven consecutive days, we collected 661 spot samples, including 127 first morning voids (FMVs) and 123 simulated 24-h collections, from 20 healthy adults and analyzed for eight OPFR metabolites. Intraclass correlation coefficients (ICCs) were calculated to evaluate the variability of the analyzed metabolites. In spot samples group, serial measurements of OPFR metabolites showed poor reproducibility (0.0422 ≤ ICC ≤ 0.349), and the within-day variability was the main contributor of the total variability. The estimated ICCs based on different correction methods for urine dilution (i.e., specific gravity-adjusted, creatinine-adjusted, and creatinine as a covariate) were similar, but varied according to gender and body mass index. Uniformly low sensitivities (0.417-0.633) were observed when using a single FMV or spot sample to predict the 1-week highly (top 33.0%) exposed volunteers. Therefore, using a single urinary measurement to predict chronic exposure to OPFRs can lead to a high degree of classification errors. When multiple urine samples are collected, considering the sampling type, the time of collection, and demographic characteristics may provide a more complete approach to assess exposure to diverse OPFRs.
Collapse
Affiliation(s)
- Li-Mei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Dan Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Qin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jun-Xiang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhou-Zheng Tu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Bin Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Heng-Gui Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ya-Ping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Carmen Messerlian
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Su-Rong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
46
|
Bi J, Wu M, Liu Y, Song L, Wang L, Liu Q, Chen K, Xiong C, Li Y, Xia W, Xu S, Zhou A, Wang Y. Association between maternal urinary manganese concentrations and newborn telomere length: Results from a birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112037. [PMID: 33609998 DOI: 10.1016/j.ecoenv.2021.112037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 05/25/2023]
Abstract
OBJECTIVE Telomere length (TL) is a biomarker for biological aging, and the initial setting of TL at birth is a determinant factor of TL in later life. Newborn TL is sensitive to maternal metals concentrations, while study about the association between maternal manganese (Mn) concentrations and newborn TL was not found. Our study aimed to investigate whether newborn TL is related to maternal Mn concentrations. METHODS Data were collected from a birth cohort study of 762 mother-newborn pairs conducted from November 2013 to March 2015 in Wuhan, China. We measured the Mn concentrations in spot urine samples collected during three trimesters by inductively coupled plasma mass spectrometry (ICP-MS) and relative cord blood TL by quantitative real-time polymerase chain reaction (qPCR). We applied multiple informant models to investigate the associations between maternal Mn concentrations and cord blood TL. RESULTS The geometric mean of creatinine-corrected urinary Mn concentrations were 1.58 μg/g creatinine, 2.53 μg/g creatinine, and 2.62 μg/g creatinine in the first, second, and third trimester, respectively. After adjusting for potential confounders, a doubling of maternal urinary Mn concentration during the second trimester was related to a 2.10% (95% CI: 0.25%, 3.99%) increase in cord blood TL. Mothers with the highest tertile of urinary Mn concentrations during the second trimester had a 9.67% (95% CI: 2.13%, 17.78%) longer cord blood TL than those with the lowest tertile. This association was more evident in male infants. No relationship was found between maternal urinary Mn concentrations and cord blood TL during the first and third trimesters in our study. CONCLUSIONS Our findings suggested that maternal Mn concentration during the second trimester was positively associated with newborn TL. These results might provide an epidemiology evidence on the protective role of maternal Mn for newborn TL and offer clues for the early prevention of telomere shortening related diseases.
Collapse
Affiliation(s)
- Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aifen Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
47
|
Tian M, Wang YX, Wang X, Wang H, Liu L, Zhang J, Nan B, Shen H, Huang Q. Environmental doses of arsenic exposure are associated with increased reproductive-age male urinary hormone excretion and in vitro Leydig cell steroidogenesis. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124904. [PMID: 33385727 DOI: 10.1016/j.jhazmat.2020.124904] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Humans are ubiquitously exposed to arsenic from multiple sources, and chronic arsenic exposure may be associated with male reproductive health. Although association regarding arsenic exposure and sex hormone secretion in blood has been reported, sex hormone excretion in urine studies is lacking. Urinary sex hormone excretion has emerged as a complementary strategy to evaluate gonadal function. Herein, we determined the associations between environmental exposure to arsenic and urinary sex hormone elimination and in vitro Leydig cell steroidogenesis. Concentrations of arsenic and testosterone (T), estradiol (E2) and progesterone (P) in repeated urine samples were determined among 451 reproductive-age males. Moreover, an in vitro Leydig cell MLTC-1 steroidogenesis experiment was designed to simulate real-world scenarios of low human exposure. Multivariable linear regression models were used to assess the associations of urinary arsenic levels with urinary hormones. Urinary arsenic concentrations were positively associated with urinary sex hormone (T, E2, and P) levels. An in vitro test further demonstrated that a population-based environmental exposure range (0.01-5 μM) of arsenic induced Leydig cell steroidogenesis potency. Our results indicate that low-dose arsenic exposure exhibits an endocrine disrupting effect by stimulating Leydig cell steroidogenesis and accelerating urinary steroid excretion, which extends previous knowledge of the inverse association of high-dose arsenic exposure with sexual steroid production that is assumed to be anti-androgen.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiaofei Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bingru Nan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
48
|
Xiao L, Zhu C, Yang S, Zhou M, Wang B, Wang X, Wang D, Ma J, Zhou Y, Chen W. Assessment of the variability of urinary cadmium for general adults. CHEMOSPHERE 2021; 269:128752. [PMID: 33127101 DOI: 10.1016/j.chemosphere.2020.128752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) exposure has become a growing public health issue and the level of urinary Cd is commonly used as the internal biomarker of overall Cd exposure. There has been raised a concern whether the level of Cd in a single spot urine actually reflects individual internal exposure over a long-term period. We aimed to examine the variability of urinary Cd levels over three years. Levels of urinary Cd were determined repeatedly in 2238 general adults during a follow-up of three-year from a community-based prospective study. We estimated the intra-class correlation coefficients (ICCs) of urinary Cd level over three years using the three-level random-effects mixed models to assess their variations. We found that the Pearson correlations for urinary Cd over three years were 0.521 for uncorrected Cd, 0.632 for creatinine (Cr)-corrected Cd, and 0.551 for specific gravity (SG)-corrected Cd, respectively (all P < 0.001). Moderate reproducibility was obtained for urinary Cd over three years, where ICCs of the three methods all exceeded 0.50. Of note, Cr-corrected urinary Cd levels achieved high reproducibility [0.773, 95%CI (0.750-0.794)]. Additionally, positive dose-response associations of smoking amount with Cr-corrected urinary Cd level were observed (P trend <0.05). Our findings suggest that Cr-corrected urinary Cd level in a single measurement was a credible biomarker for the relatively long-term levels of urinary Cd in the general population and cigarette smoking plays a part of urinary Cd exposure.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
49
|
Sallsten G, Barregard L. Variability of Urinary Creatinine in Healthy Individuals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063166. [PMID: 33808539 PMCID: PMC8003281 DOI: 10.3390/ijerph18063166] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
Many urinary biomarkers are adjusted for dilution using creatinine or specific gravity. The aim was to evaluate the variability of creatinine excretion, in 24 h and spot samples, and to describe an openly available variability biobank. Urine and blood samples were collected from 60 healthy non-smoking adults, 29 men and 31 women. All urine was collected at six time points during two 24 h periods. Blood samples were also collected twice and stored frozen. Analyses of creatinine in urine was performed in fresh urine using an enzymatic method. For creatinine in urine, the intra-class correlation (ICC) was calculated for 24 h urine and spot samples. Diurnal variability was examined, as well as association with urinary flow rate. The creatinine excretion rate was lowest in overnight samples and relatively constant in the other five samples. The creatinine excretion rate in each individual was positively correlated with urinary flow rate. The creatinine concentration was highest in the overnight sample and at 09:30. For 24 h samples the ICC was 0.64, for overnight samples it was 0.5, and for all spot samples, it was much lower. The ICC for urinary creatinine depends on the time of day of sampling. Frozen samples from this variability biobank are open for researchers examining normal variability of their favorite biomarker(s).
Collapse
|
50
|
Gaitens JM, Brown CH, Strathmann FG, Xu H, Lewin-Smith MR, Velez-Quinones MA, McDiarmid MA. The Utility of Spot vs 24-Hour Urine Samples for Metal Determination in Veterans With Retained Fragments. Am J Clin Pathol 2021; 155:428-434. [PMID: 33083816 DOI: 10.1093/ajcp/aqaa144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The objective of this investigation is to explore the utility of using a spot urine sample in lieu of a 24-hour collection in assessing fragment-related metal exposure in war-injured veterans. METHODS Twenty-four veterans collected each urine void over a 24-hour period in separate containers. Concentrations of 13 metals were measured in each void and in a pooled 24-hour sample using inductively coupled plasma mass spectrometry. To assess the reliability of spot sample measures over time, intraclass correlations (ICCs) were calculated across all spot samples. Lin's concordance correlation coefficient was used to assess agreement between a randomly selected spot urine sample and each corresponding 24-hour sample. RESULTS In total, 149 spot urine samples were collected. Ten of the 13 metals measured had ICCs more than 0.4, suggesting "fair to good" reliability. Concordance coefficients were more than 0.4 for all metals, suggesting "moderate" agreement between spot and 24-hour concentrations, and more than 0.6 for seven of the 13 metals, suggesting "good" agreement. CONCLUSIONS Our fair to good reliability findings, for most metals investigated, and moderate to good agreement findings for all metals, across the range of concentrations observed here, suggest the utility of spot urine samples to obtain valid estimates of exposure in the longitudinal surveillance of metal-exposed populations.
Collapse
Affiliation(s)
- Joanna M Gaitens
- Department of Veterans Affairs, Baltimore VA Medical Center, Baltimore, MD
- Department of Medicine, Division of Occupational and Environmental Medicine
| | - Clayton H Brown
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore
| | | | - Hanna Xu
- The Joint Pathology Center, Environmental Toxicology Laboratory, Silver Spring, MD
| | | | | | - Melissa A McDiarmid
- Department of Veterans Affairs, Baltimore VA Medical Center, Baltimore, MD
- Department of Medicine, Division of Occupational and Environmental Medicine
| |
Collapse
|