1
|
Jain PR, Ng HK, Tay D, Mina T, Low D, Sadhu N, Kooner IK, Gupta A, Li TF, Bertin N, Chin CWL, Jin Fang C, Goh LL, Mok SQ, Peh SQ, Sabanayagam C, Jha V, Kasturiratne A, Katulanda P, Khawaja KI, Lim WK, Leong KP, Cheng CY, Yuan JM, Elliott P, Riboli E, Eng Sing L, Lee J, Ngeow J, Liu JJ, Best J, Kooner JS, Tai ES, Tan P, van Dam RM, Koh WP, Xueling S, Loh M, Chambers JC. Nuclear regulatory disturbances precede and predict the development of Type-2 diabetes in Asian populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.14.25322264. [PMID: 39990582 PMCID: PMC11844604 DOI: 10.1101/2025.02.14.25322264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
To identify biomarkers and pathways to Type-2 diabetes (T2D), a major global disease, we completed array-based epigenome-wide association in whole blood in 5,709 Asian people. We found 323 Sentinel CpGs (from 314 genetic loci) that predict future T2D. The CpGs reveal coherent, nuclear regulatory disturbances in canonical immune activation pathways, as well as metabolic networks involved in insulin signalling, fatty acid metabolism and lipid transport, which are causally linked to development of T2D. The CpGs have potential clinical utility as biomarkers. An array-based composite Methylation Risk Score (MRS) is predictive for future T2D (RR: 5.2 in Q4 vs Q1; P=7x10 -25 ), and is additive to genetic risk. Targeted methylation sequencing revealed multiple additional CpGs predicting T2D, and synthesis of a sequencing-based MRS that is strongly predictive for T2D (RR: 8.3 in Q4 vs Q1; P=1.0x10 -11 ). Importantly, MRS varies between Asian ethnic groups, in a way that explains a large fraction of the difference in T2D risk between populations. We thus provide new insights into the nuclear regulatory disturbances that precede development of T2D, and reveal the potential for sequence-based DNA methylation markers to inform risk stratification in diabetes prevention.
Collapse
|
2
|
Ma Y, Jing X, Li D, Zhang T, Xiang H, Xia Y, Xu F. Proteomics and metabolomics analyses of urine for investigation of gallstone disease in a high-altitude area. Metabolomics 2024; 20:99. [PMID: 39143352 DOI: 10.1007/s11306-024-02162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND The incidence of gallstones is high in Qinghai Province. However, the molecular mechanisms underlying the development of gallstones remain unclear. METHODS In this study, we collected urine samples from 30 patients with gallstones and 30 healthy controls. The urine samples were analysed using multi-omics platforms. Proteomics analysis was conducted using data-independent acquisition, whereas metabolomics analysis was performed using liquid chromatography-mass spectrometry (LC-MS). RESULTS Among the patients with gallstones, we identified 49 down-regulated and 185 up-regulated differentially expressed proteins as well as 195 up-regulated and 189 down-regulated differentially expressed metabolites. Six pathways were significantly enriched: glycosaminoglycan degradation, arginine and proline metabolism, histidine metabolism, pantothenate and coenzyme A biosynthesis, drug metabolism-other enzymes, and the pentose phosphate pathway. Notably, 10 differentially expressed proteins and metabolites showed excellent predictive performance and were selected as potential biomarkers. CONCLUSION The findings of our metabolomics and proteomics analyses provide new insights into novel biomarkers for patients with cholelithiasis in high-altitude areas.
Collapse
Affiliation(s)
- Ying Ma
- Department of Hepatobiliary Surgery, Qinghai Provincial Traffic Hospital, Xining, 810001, Qinghai, China
| | - Xiaofeng Jing
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health , Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Defu Li
- Department of Hepatobiliary Surgery, Qinghai Provincial Traffic Hospital, Xining, 810001, Qinghai, China
| | - Tiecheng Zhang
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health , Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Haiqi Xiang
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health , Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yonghong Xia
- Department of Hepatobiliary Surgery, Qinghai Provincial Traffic Hospital, Xining, 810001, Qinghai, China.
| | - Fan Xu
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health , Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
3
|
Takeda Y, Dai P. Functional roles of pantothenic acid, riboflavin, thiamine, and choline in adipocyte browning in chemically induced human brown adipocytes. Sci Rep 2024; 14:18252. [PMID: 39107469 PMCID: PMC11303702 DOI: 10.1038/s41598-024-69364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Brown fat is a therapeutic target for the treatment of obesity-associated metabolic diseases. However, nutritional intervention strategies for increasing the mass and activity of human brown adipocytes have not yet been established. To identify vitamins required for brown adipogenesis and adipocyte browning, chemical compound-induced brown adipocytes (ciBAs) were converted from human dermal fibroblasts under serum-free and vitamin-free conditions. Choline was found to be essential for adipogenesis. Additional treatment with pantothenic acid (PA) provided choline-induced immature adipocytes with browning properties and metabolic maturation, including uncoupling protein 1 (UCP1) expression, lipolysis, and mitochondrial respiration. However, treatment with high PA concentrations attenuated these effects along with decreased glycolysis. Transcriptome analysis showed that a low PA concentration activated metabolic genes, including the futile creatine cycle-related thermogenic genes, which was reversed by a high PA concentration. Riboflavin treatment suppressed thermogenic gene expression and increased lipolysis, implying a metabolic pathway different from that of PA. Thiamine treatment slightly activated thermogenic genes along with decreased glycolysis. In summary, our results suggest that specific B vitamins and choline are uniquely involved in the regulation of adipocyte browning via cellular energy metabolism in a concentration-dependent manner.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
4
|
Barritt SA, DuBois-Coyne SE, Dibble CC. Coenzyme A biosynthesis: mechanisms of regulation, function and disease. Nat Metab 2024; 6:1008-1023. [PMID: 38871981 DOI: 10.1038/s42255-024-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
The tricarboxylic acid cycle, nutrient oxidation, histone acetylation and synthesis of lipids, glycans and haem all require the cofactor coenzyme A (CoA). Although the sources and regulation of the acyl groups carried by CoA for these processes are heavily studied, a key underlying question is less often considered: how is production of CoA itself controlled? Here, we discuss the many cellular roles of CoA and the regulatory mechanisms that govern its biosynthesis from cysteine, ATP and the essential nutrient pantothenate (vitamin B5), or from salvaged precursors in mammals. Metabolite feedback and signalling mechanisms involving acetyl-CoA, other acyl-CoAs, acyl-carnitines, MYC, p53, PPARα, PINK1 and insulin- and growth factor-stimulated PI3K-AKT signalling regulate the vitamin B5 transporter SLC5A6/SMVT and CoA biosynthesis enzymes PANK1, PANK2, PANK3, PANK4 and COASY. We also discuss methods for measuring CoA-related metabolites, compounds that target CoA biosynthesis and diseases caused by mutations in pathway enzymes including types of cataracts, cardiomyopathy and neurodegeneration (PKAN and COPAN).
Collapse
Affiliation(s)
- Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Department of Medicine, Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
HAN M, YI X, YOU S, WU X, WANG S, HE D. Gehua Jiejiu Dizhi decoction ameliorates alcoholic fatty liver in mice by regulating lipid and bile acid metabolism and with exertion of antioxidant stress based on 4DLabel-free quantitative proteomic study. J TRADIT CHIN MED 2024; 44:277-288. [PMID: 38504534 PMCID: PMC10927405 DOI: 10.19852/j.cnki.jtcm.20231018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.
Collapse
Affiliation(s)
- Min HAN
- 1 Guizhou University of Traditional Chinese Medicine, Graduate School, Guiyang 550025, China
| | - Xu YI
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shaowei YOU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Xueli WU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shuoshi WANG
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Diancheng HE
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
6
|
Subramanian C, Frank MW, Sukhun R, Henry CE, Wade A, Harden ME, Rao S, Tangallapally R, Yun MK, White SW, Lee RE, Sinha U, Rock CO, Jackowski S. Pantothenate Kinase Activation Restores Brain Coenzyme A in a Mouse Model of Pantothenate Kinase-Associated Neurodegeneration. J Pharmacol Exp Ther 2024; 388:171-180. [PMID: 37875310 DOI: 10.1124/jpet.123.001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN) is characterized by a motor disorder with combinations of dystonia, parkinsonism, and spasticity, leading to premature death. PKAN is caused by mutations in the PANK2 gene that result in loss or reduction of PANK2 protein function. PANK2 is one of three kinases that initiate and regulate coenzyme A biosynthesis from vitamin B5, and the ability of BBP-671, an allosteric activator of pantothenate kinases, to enter the brain and elevate coenzyme A was investigated. The metabolic stability, protein binding, and membrane permeability of BBP-671 all suggest that it has the physical properties required to cross the blood-brain barrier. BBP-671 was detected in plasma, liver, cerebrospinal fluid, and brain following oral administration in rodents, demonstrating the ability of BBP-671 to penetrate the brain. The pharmacokinetic and pharmacodynamic properties of orally administered BBP-671 evaluated in cannulated rats showed that coenzyme A (CoA) concentrations were elevated in blood, liver, and brain. BBP-671 elevation of whole-blood acetyl-CoA served as a peripheral pharmacodynamic marker and provided a suitable method to assess target engagement. BBP-671 treatment elevated brain coenzyme A concentrations and improved movement and body weight in a PKAN mouse model. Thus, BBP-671 crosses the blood-brain barrier to correct the brain CoA deficiency in a PKAN mouse model, resulting in improved locomotion and survival and providing a preclinical foundation for the development of BBP-671 as a potential treatment of PKAN. SIGNIFICANCE STATEMENT: The blood-brain barrier represents a major hurdle for drugs targeting brain metabolism. This work describes the pharmacokinetic/pharmacodynamic properties of BBP-671, a pantothenate kinase activator. BBP-671 crosses the blood-brain barrier to correct the neuron-specific coenzyme A (CoA) deficiency and improve motor function in a mouse model of pantothenate kinase-associated neurodegeneration. The central role of CoA and acetyl-CoA in intermediary metabolism suggests that pantothenate kinase activators may be useful in modifying neurological metabolic disorders.
Collapse
Affiliation(s)
- Chitra Subramanian
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Matthew W Frank
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Rajaa Sukhun
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Christopher E Henry
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Anna Wade
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Mallory E Harden
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Satish Rao
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Rajendra Tangallapally
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Mi-Kyung Yun
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Stephen W White
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Richard E Lee
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Uma Sinha
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Charles O Rock
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| | - Suzanne Jackowski
- Departments of Infectious Diseases (C.S., M.W.F., C.O.R., S.J.), Chemical Biology and Therapeutics (R.T., R.E.L.), Structural Biology (M.-K.Y., S.W.W.), and St. Jude Graduate School of Biomedical Sciences (S.W.W.), St. Jude Children's Research Hospital, Memphis, Tennessee; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee (S.W.W., C.O.R.); and CoA Therapeutics, Inc., a BridgeBio Pharma, Inc. Company, Palo Alto, California (R.S., C.E.H., A.W., M.E.H., S.R., U.S.)
| |
Collapse
|
7
|
Zhao Z, Xu X, Ma S, Li L. Expression and Prognostic Role of PANK1 in Glioma. Comb Chem High Throughput Screen 2024; 27:715-724. [PMID: 37138430 PMCID: PMC11092558 DOI: 10.2174/1386207326666230502103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Malignant gliomas are the most common type of primary malignant brain tumors. Pantothenate kinase 1 (PANK1) mRNA is highly expressed in several metabolic processes, implying that PANK1 plays a potential role in metabolic programming in cancers. However, the role of PANK1 in glioma has not been fully explored. METHODS Public datasets (The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Gravendeel and Rembrandt) and validation cohort were used to explore the expression of PANK1 in glioma tissues. Kaplan-Meier and Cox regression analyses were used to explore the relationship between PANK1 and prognosis in glioma. Cell proliferation and invasion were determined using Cell Counting Kit-8 (CCK8) and transwell invasion in vitro assays. RESULTS Analysis using the four public datasets and the validation cohort showed that PANK1 expression was significantly downregulated in glioma tissues compared with non-tumor tissues (P<0.01). PANK1 expression was negatively correlated with World Health Organization (WHO) grade, 1p/19q non-codeletion and isocitric dehydrogenase 1/2 (IDH1/2) wildtype. Furthermore, high expression of PANK1 was correlated with significantly better prognosis of glioma patients compared to patients with low expression of PANK1 (all P<0.01 in the four datasets). Besides, both lower-grade glioma (LGG) and glioblastoma multiform (GBM) patients with high expression of PANK1 had a significantly better prognosis than those with low expression of PANK1 in TCGA, Gravendeel and Rembrandt datasets (all P <0.01). Multivariate Cox regression analysis revealed that low PANK1 expression was an independent risk factor associated with a worse prognosis of glioma patients. Moreover, overexpression of PANK1 significantly inhibited the proliferation and invasion of U87 and U251 cells. CONCLUSION PANK1 expression is downregulated in glioma tissues and is a novel prognostic biomarker in glioma patients.
Collapse
Affiliation(s)
- Zhiming Zhao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, 430060, China
| | - Xu Xu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, 430060, China
| | - Shijing Ma
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, 430060, China
| | - Li Li
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, 430060, China
| |
Collapse
|
8
|
He K, Gao Q, Su J, Shang H, Meng X, Jiang S, Liu D, Huang B. Gut Microbiome and Metabolomics Study of Selenium-Enriched Kiwifruit Regulating Hyperlipidemia in Mice Induced by a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20386-20401. [PMID: 38055355 DOI: 10.1021/acs.jafc.3c00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Our previous study showed that as a substitute for statins, selenium-enriched kiwifruit (Se-Kiwi) might reduce blood lipids and protect the liver in Kunming mice, but the underlying mechanism remains unclear. Metabolic regulation of mammalian intestinal microflora plays an important role in obesity and related diseases induced by a high-fat diet (HFD). Here, samples of serum, liver, colon, and fresh feces from the Se-Kiwi-treated hyperlipidemia C57BL/6J mouse model were collected. Based on metabolome (UHPLC-Q-TOF MS) and gut microbiome (16S rDNA) analyses as well as the integrative analysis of physiological and biochemical indices and pathological data of mice, we aimed to systematically illustrate the gut microbiome and metabolomics mechanism of Se-Kiwi in HFD-induced hyperlipidemic mice. As a result, Se-Kiwi can significantly increase the abundance of potentially beneficial gut bacteria such as Parabacteroides, Bacteroides, and Allobaculum in the colon and improve hyperlipidemia by regulating the digestion and absorption of vitamins, pyrimidine metabolism, purine metabolism, and other metabolic pathways, which have been confirmed by the following fecal microbiota transplantation experiment. This process was significantly regulated by the Ada, Gda, Pank1, Ppara, Pparg, and Cd36 genes. These findings may provide a theoretical basis for the research and development of selenium-enriched functional foods in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Qian Gao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Hai Shang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Xia Meng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| |
Collapse
|
9
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
10
|
Xie LY, Xu YB, Ding XQ, Liang S, Li DL, Fu AK, Zhan XA. Itaconic acid and dimethyl itaconate exert antibacterial activity in carbon-enriched environments through the TCA cycle. Biomed Pharmacother 2023; 167:115487. [PMID: 37713987 DOI: 10.1016/j.biopha.2023.115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Itaconic acid (IA), a metabolite generated by the tricarboxylic acid (TCA) cycle in eukaryotic immune cells, and its derivative dimethyl itaconate (DI) exert antibacterial functions in intracellular environments. Previous studies suggested that IA and DI only inhibit bacterial growth in carbon-limited environments; however, whether IA and DI maintain antibacterial activity in carbon-enriched environments remains unknown. Here, IA and DI inhibited the bacteria with minimum inhibitory concentrations of 24.02 mM and 39.52 mM, respectively, in a carbon-enriched environment. The reduced bacterial pathogenicity was reflected in cell membrane integrity, motility, biofilm formation, AI-2/luxS, and virulence. Mechanistically, succinate dehydrogenase (SDH) activity and fumaric acid levels decreased in the IA and DI treatments, while isocitrate lyase (ICL) activity was upregulated. Inhibited TCA circulation was also observed through untargeted metabolomics. In addition, energy-related aspartate metabolism and lysine degradation were suppressed. In summary, these results indicated that IA and DI reduced bacterial pathogenicity while exerting antibacterial functions by inhibiting TCA circulation. This study enriches knowledge on the inhibition of bacteria by IA and DI in a carbon-mixed environment, suggesting an alternative method for treating bacterial infections by immune metabolites.
Collapse
Affiliation(s)
- L Y Xie
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y B Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X Q Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S Liang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D L Li
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - A K Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X A Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Miallot R, Millet V, Galland F, Naquet P. The vitamin B5/coenzyme A axis: A target for immunomodulation? Eur J Immunol 2023; 53:e2350435. [PMID: 37482959 DOI: 10.1002/eji.202350435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Coenzyme A (CoA) serves as a vital cofactor in numerous enzymatic reactions involved in energy production, lipid metabolism, and synthesis of essential molecules. Dysregulation of CoA-dependent metabolic pathways can contribute to chronic diseases, such as inflammatory diseases, obesity, diabetes, cancer, and cardiovascular disorders. Additionally, CoA influences immune cell activation by modulating the metabolism of these cells, thereby affecting their proliferation, differentiation, and effector functions. Targeting CoA metabolism presents a promising avenue for therapeutic intervention, as it can potentially restore metabolic balance, mitigate chronic inflammation, and enhance immune cell function. This might ultimately improve the management and outcomes for these diseases. This review will more specifically focus on the contribution of pathways regulating the availability of the CoA precursor Vitamin B5/pantothenate in vivo and modulating the development of Th17-mediated inflammation, CD8-dependent anti-tumor immunity but also tissue repair processes in chronic inflammatory or degenerative diseases.
Collapse
|
12
|
Yi Y, Wang J, Liang C, Ren C, Lian X, Han C, Sun W. LC-MS-based serum metabolomics analysis for the screening and monitoring of colorectal cancer. Front Oncol 2023; 13:1173424. [PMID: 37448516 PMCID: PMC10338013 DOI: 10.3389/fonc.2023.1173424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Background Colorectal Cancer (CRC) is a prevalent digestive system tumour with significant mortality and recurrence rates. Serum metabolomics, with its high sensitivity and high throughput, has shown potential as a tool to discover biomarkers for clinical screening and monitoring of the CRC patients. Methods Serum metabolites of 61 sex and age-matched healthy controls and 62 CRC patients (before and after surgical intervention) were analyzed using a ultra-performance liquid chromatography-high resolution mass spectrometer (UPLC-MS). Statistical methods and pathway enrichment analysis were used to identify potential biomarkers and altered metabolic pathways. Results Our analysis revealed a clear distinction in the serum metabolic profile between CRC patients and healthy controls (HCs). Pathway analysis indicated a significant association with arginine biosynthesis, pyrimidine metabolism, pantothenate, and CoA biosynthesis. Univariate and multivariate statistical analysis showed that 9 metabolites had significant diagnostic value for CRC, among them, Guanosine with Area Under the Curve (AUC) values of 0.951 for the training group and0.998 for the validation group. Furthermore, analysis of four specific metabolites (N-Phenylacetylasparticacid, Tyrosyl-Gamma-glutamate, Tyr-Ser and Sphingosine) in serum samples of CRC patients before and after surgery indicated a return to healthy levels after an intervention. Conclusion Our results suggest that serum metabolomics may be a valuable tool for the screening and monitoring of CRC patients.
Collapse
Affiliation(s)
- Yanan Yi
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjian Wang
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengtong Liang
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Lian
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chongxu Han
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Cavestro C, Diodato D, Tiranti V, Di Meo I. Inherited Disorders of Coenzyme A Biosynthesis: Models, Mechanisms, and Treatments. Int J Mol Sci 2023; 24:ijms24065951. [PMID: 36983025 PMCID: PMC10054636 DOI: 10.3390/ijms24065951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Coenzyme A (CoA) is a vital and ubiquitous cofactor required in a vast number of enzymatic reactions and cellular processes. To date, four rare human inborn errors of CoA biosynthesis have been described. These disorders have distinct symptoms, although all stem from variants in genes that encode enzymes involved in the same metabolic process. The first and last enzymes catalyzing the CoA biosynthetic pathway are associated with two neurological conditions, namely pantothenate kinase-associated neurodegeneration (PKAN) and COASY protein-associated neurodegeneration (CoPAN), which belong to the heterogeneous group of neurodegenerations with brain iron accumulation (NBIA), while the second and third enzymes are linked to a rapidly fatal dilated cardiomyopathy. There is still limited information about the pathogenesis of these diseases, and the knowledge gaps need to be resolved in order to develop potential therapeutic approaches. This review aims to provide a summary of CoA metabolism and functions, and a comprehensive overview of what is currently known about disorders associated with its biosynthesis, including available preclinical models, proposed pathomechanisms, and potential therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Daria Diodato
- Unit of Muscular and Neurodegenerative Disorders, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
14
|
Bravo-Alonso I, Morin M, Arribas-Carreira L, Álvarez M, Pedrón-Giner C, Soletto L, Santolaria C, Ramón-Maiques S, Ugarte M, Rodríguez-Pombo P, Ariño J, Moreno-Pelayo MÁ, Pérez B. Pathogenic variants of the coenzyme A biosynthesis-associated enzyme phosphopantothenoylcysteine decarboxylase cause autosomal-recessive dilated cardiomyopathy. J Inherit Metab Dis 2023; 46:261-272. [PMID: 36564894 DOI: 10.1002/jimd.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Coenzyme A (CoA) is an essential cofactor involved in a range of metabolic pathways including the activation of long-chain fatty acids for catabolism. Cells synthesize CoA de novo from vitamin B5 (pantothenate) via a pathway strongly conserved across prokaryotes and eukaryotes. In humans, it involves five enzymatic steps catalyzed by four enzymes: pantothenate kinase (PANK [isoforms 1-4]), 4'-phosphopantothenoylcysteine synthetase (PPCS), phosphopantothenoylcysteine decarboxylase (PPCDC), and CoA synthase (COASY). To date, inborn errors of metabolism associated with all of these genes, except PPCDC, have been described, two related to neurodegeneration with brain iron accumulation (NBIA), and one associated with a cardiac phenotype. This paper reports another defect in this pathway (detected in two sisters), associated with a fatal cardiac phenotype, caused by biallelic variants (p.Thr53Pro and p.Ala95Val) of PPCDC. PPCDC enzyme (EC 4.1.1.36) catalyzes the decarboxylation of 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine in CoA biosynthesis. The variants p.Thr53Pro and p.Ala95Val affect residues highly conserved across different species; p.Thr53Pro is involved in the binding of flavin mononucleotide, and p.Ala95Val is likely a destabilizing mutation. Patient-derived fibroblasts showed an absence of PPCDC protein, and nearly 50% reductions in CoA levels. The cells showed clear energy deficiency problems, with defects in mitochondrial respiration, and mostly glycolytic ATP synthesis. Functional studies performed in yeast suggest these mutations to be functionally relevant. In summary, this work describes a new, ultra-rare, severe inborn error of metabolism due to pathogenic variants of PPCDC.
Collapse
Affiliation(s)
- Irene Bravo-Alonso
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - Matías Morin
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/0048; CIBERER-ISCIII), Madrid, Spain
| | - Laura Arribas-Carreira
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - Mar Álvarez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - Consuelo Pedrón-Giner
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Lucia Soletto
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Carlos Santolaria
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Miguel Ángel Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/0048; CIBERER-ISCIII), Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Madrid, Spain
| |
Collapse
|
15
|
Subramanian C, Frank MW, Tangallapally R, Yun MK, White SW, Lee RE, Rock CO, Jackowski S. Relief of CoA sequestration and restoration of mitochondrial function in a mouse model of propionic acidemia. J Inherit Metab Dis 2023; 46:28-42. [PMID: 36251252 PMCID: PMC10092110 DOI: 10.1002/jimd.12570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023]
Abstract
Propionic acidemia (PA, OMIM 606054) is a devastating inborn error of metabolism arising from mutations that reduce the activity of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). The defects in PCC reduce the concentrations of nonesterified coenzyme A (CoASH), thus compromising mitochondrial function and disrupting intermediary metabolism. Here, we use a hypomorphic PA mouse model to test the effectiveness of BBP-671 in correcting the metabolic imbalances in PA. BBP-671 is a high-affinity allosteric pantothenate kinase activator that counteracts feedback inhibition of the enzyme to increase the intracellular concentration of CoA. Liver CoASH and acetyl-CoA are depressed in PA mice and BBP-671 treatment normalizes the cellular concentrations of these two key cofactors. Hepatic propionyl-CoA is also reduced by BBP-671 leading to an improved intracellular C3:C2-CoA ratio. Elevated plasma C3:C2-carnitine ratio and methylcitrate, hallmark biomarkers of PA, are significantly reduced by BBP-671. The large elevations of malate and α-ketoglutarate in the urine of PA mice are biomarkers for compromised tricarboxylic acid cycle activity and BBP-671 therapy reduces the amounts of both metabolites. Furthermore, the low survival of PA mice is restored to normal by BBP-671. These data show that BBP-671 relieves CoA sequestration, improves mitochondrial function, reduces plasma PA biomarkers, and extends the lifespan of PA mice, providing the preclinical foundation for the therapeutic potential of BBP-671.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| |
Collapse
|
16
|
Vickers SD, Shumar SA, Saporito DC, Kunovac A, Hathaway QA, Mintmier B, King JA, King RD, Rajendran VM, Infante AM, Hollander JM, Leonardi R. NUDT7 regulates total hepatic CoA levels and the composition of the intestinal bile acid pool in male mice fed a Western diet. J Biol Chem 2022; 299:102745. [PMID: 36436558 PMCID: PMC9792899 DOI: 10.1016/j.jbc.2022.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Nudix hydrolase 7 (NUDT7) is an enzyme that hydrolyzes CoA species, is highly expressed in the liver, and resides in the peroxisomes. Peroxisomes are organelles where the preferential oxidation of dicarboxylic fatty acids occurs and where the hepatic synthesis of the primary bile acids cholic acid and chenodeoxycholic acid is completed. We previously showed that liver-specific overexpression of NUDT7 affects peroxisomal lipid metabolism but does not prevent the increase in total liver CoA levels that occurs during fasting. We generated Nudt7-/- mice to further characterize the role that peroxisomal (acyl-)CoA degradation plays in the modulation of the size and composition of the acyl-CoA pool and in the regulation of hepatic lipid metabolism. Here, we show that deletion of Nudt7 alters the composition of the hepatic acyl-CoA pool in mice fed a low-fat diet, but only in males fed a Western diet does the lack of NUDT7 activity increase total liver CoA levels. This effect is driven by the male-specific accumulation of medium-chain dicarboxylic acyl-CoAs, which are produced from the β-oxidation of dicarboxylic fatty acids. We also show that, under conditions of elevated synthesis of chenodeoxycholic acid derivatives, Nudt7 deletion promotes the production of tauromuricholic acid, decreasing the hydrophobicity index of the intestinal bile acid pool and increasing fecal cholesterol excretion in male mice. These findings reveal that NUDT7-mediated hydrolysis of acyl-CoA pathway intermediates in liver peroxisomes contributes to the regulation of dicarboxylic fatty acid metabolism and the composition of the bile acid pool.
Collapse
Affiliation(s)
- Schuyler D Vickers
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Stephanie A Shumar
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Dominique C Saporito
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Breeanna Mintmier
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Judy A King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Rachel D King
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Aniello M Infante
- Genomics Core Facility, West Virginia University, Morgantown, West Virginia, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, USA
| | - Roberta Leonardi
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
17
|
Matye D, Gunewardena S, Chen J, Wang H, Wang Y, Hasan MN, Gu L, Clayton YD, Du Y, Chen C, Friedman JE, Lu SC, Ding WX, Li T. TFEB regulates sulfur amino acid and coenzyme A metabolism to support hepatic metabolic adaptation and redox homeostasis. Nat Commun 2022; 13:5696. [PMID: 36171419 PMCID: PMC9519740 DOI: 10.1038/s41467-022-33465-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty liver is a highly heterogenous condition driven by various pathogenic factors in addition to the severity of steatosis. Protein insufficiency has been causally linked to fatty liver with incompletely defined mechanisms. Here we report that fatty liver is a sulfur amino acid insufficient state that promotes metabolic inflexibility via limiting coenzyme A availability. We demonstrate that the nutrient-sensing transcriptional factor EB synergistically stimulates lysosome proteolysis and methionine adenosyltransferase to increase cysteine pool that drives the production of coenzyme A and glutathione, which support metabolic adaptation and antioxidant defense during increased lipid influx. Intriguingly, mice consuming an isocaloric protein-deficient Western diet exhibit selective hepatic cysteine, coenzyme A and glutathione deficiency and acylcarnitine accumulation, which are reversed by cystine supplementation without normalizing dietary protein intake. These findings support a pathogenic link of dysregulated sulfur amino acid metabolism to metabolic inflexibility that underlies both overnutrition and protein malnutrition-associated fatty liver development.
Collapse
Affiliation(s)
- David Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jianglei Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Huaiwen Wang
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cheng Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
18
|
Generation and Validation of an Anti-Human PANK3 Mouse Monoclonal Antibody. Biomolecules 2022; 12:biom12091323. [PMID: 36139163 PMCID: PMC9496473 DOI: 10.3390/biom12091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A (CoA) is an essential co-factor at the intersection of diverse metabolic pathways. Cellular CoA biosynthesis is regulated at the first committed step—phosphorylation of pantothenic acid—catalyzed by pantothenate kinases (PANK1,2,3 in humans, PANK3 being the most highly expressed). Despite the critical importance of CoA in metabolism, the differential roles of PANK isoforms remain poorly understood. Our investigations of PANK proteins as potential precision oncology collateral lethality targets (PANK1 is co-deleted as part of the PTEN locus in some highly aggressive cancers) were severely hindered by a dearth of commercial antibodies that can reliably detect endogenous PANK3 protein. While we successfully validated commercial antibodies for PANK1 and PANK2 using CRISPR knockout cell lines, we found no commercial antibody that could detect endogenous PANK3. We therefore set out to generate a mouse monoclonal antibody against human PANK3 protein. We demonstrate that a clone (Clone MDA-299-62A) can reliably detect endogenous PANK3 protein in cancer cell lines, with band-specificity confirmed by CRISPR PANK3 knockout and knockdown cell lines. Sub-cellular fractionation shows that PANK3 is overwhelmingly cytosolic and expressed broadly across cancer cell lines. PANK3 monoclonal antibody MDA-299-62A should prove a valuable tool for researchers investigating this understudied family of metabolic enzymes in health and disease.
Collapse
|
19
|
Görigk S, Ouwens DM, Kuhn T, Altenhofen D, Binsch C, Damen M, Khuong JMA, Kaiser K, Knebel B, Vogel H, Schürmann A, Chadt A, Al-Hasani H. Nudix hydrolase NUDT19 regulates mitochondrial function and ATP production in murine hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159153. [PMID: 35367353 DOI: 10.1016/j.bbalip.2022.159153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
Changes in intracellular CoA levels are known to contribute to the development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2D) in human and rodents. However, the underlying genetic basis is still poorly understood. Due to their diverse susceptibility towards metabolic diseases, mouse inbred strains have been proven to serve as powerful tools for the identification of novel genetic factors that underlie the pathophysiology of NAFLD and diabetes. Transcriptome analysis of mouse liver samples revealed the nucleoside diphosphate linked moiety X-type motif Nudt19 as novel candidate gene responsible for NAFLD and T2D development. Knockdown (KD) of Nudt19 increased mitochondrial and glycolytic ATP production rates in Hepa 1-6 cells by 41% and 10%, respectively. The enforced utilization of glutamine or fatty acids as energy substrate reduced uncoupled respiration by 41% and 47%, respectively, in non-target (NT) siRNA transfected cells. This reduction was prevented upon Nudt19 KD. Furthermore, incubation with palmitate or oleate respectively increased mitochondrial ATP production by 31% and 20%, and uncoupled respiration by 23% and 30% in Nudt19 KD cells, but not in NT cells. The enhanced fatty acid oxidation in Nudt19 KD cells was accompanied by a 1.3-fold increased abundance of Pdk4. This study is the first to describe Nudt19 as regulator of hepatic lipid metabolism and potential mediator of NAFLD and T2D development.
Collapse
Affiliation(s)
- Sarah Görigk
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - D Margriet Ouwens
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tanja Kuhn
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Mareike Damen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Jenny Minh-An Khuong
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Katharina Kaiser
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Heike Vogel
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, D-14558 Nuthetal, Germany; Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, D-14558 Nuthetal, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
20
|
Audam TN, Howard CM, Garrett LF, Zheng YW, Bradley JA, Brittian KR, Frank MW, Fulghum KL, Pólos M, Herczeg S, Merkely B, Radovits T, Uchida S, Hill BG, Dassanayaka S, Jackowski S, Jones SP. Cardiac PANK1 deletion exacerbates ventricular dysfunction during pressure overload. Am J Physiol Heart Circ Physiol 2021; 321:H784-H797. [PMID: 34533403 PMCID: PMC8794231 DOI: 10.1152/ajpheart.00411.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme A (CoA) is an essential cofactor required for intermediary metabolism. Perturbations in homeostasis of CoA have been implicated in various pathologies; however, whether CoA homeostasis is changed and the extent to which CoA levels contribute to ventricular function and remodeling during pressure overload has not been explored. In this study, we sought to assess changes in CoA biosynthetic pathway during pressure overload and determine the impact of limiting CoA on cardiac function. We limited cardiac CoA levels by deleting the rate-limiting enzyme in CoA biosynthesis, pantothenate kinase 1 (Pank1). We found that constitutive, cardiomyocyte-specific Pank1 deletion (cmPank1-/-) significantly reduced PANK1 mRNA, PANK1 protein, and CoA levels compared with Pank1-sufficient littermates (cmPank1+/+) but exerted no obvious deleterious impact on the mice at baseline. We then subjected both groups of mice to pressure overload-induced heart failure. Interestingly, there was more ventricular dilation in cmPank1-/- during the pressure overload. To explore potential mechanisms contributing to this phenotype, we performed transcriptomic profiling, which suggested a role for Pank1 in regulating fibrotic and metabolic processes during the pressure overload. Indeed, Pank1 deletion exacerbated cardiac fibrosis following pressure overload. Because we were interested in the possibility of early metabolic impacts in response to pressure overload, we performed untargeted metabolomics, which indicated significant changes to metabolites involved in fatty acid and ketone metabolism, among other pathways. Collectively, our study underscores the role of elevated CoA levels in supporting fatty acid and ketone body oxidation, which may be more important than CoA-driven, enzyme-independent acetylation in the failing heart.NEW & NOTEWORTHY Changes in CoA homeostasis have been implicated in a variety of metabolic diseases; however, the extent to which changes in CoA homeostasis impacts remodeling has not been explored. We show that limiting cardiac CoA levels via PANK deletion exacerbated ventricular remodeling during pressure overload. Our results suggest that metabolic alterations, rather than structural alterations, associated with Pank1 deletion may underlie the exacerbated cardiac phenotype during pressure overload.
Collapse
Affiliation(s)
- Timothy N Audam
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Caitlin M Howard
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Lauren F Garrett
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Yi Wei Zheng
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - James A Bradley
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Kenneth R Brittian
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kyle L Fulghum
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Miklós Pólos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Szilvia Herczeg
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Shizuka Uchida
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Bradford G Hill
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Sujith Dassanayaka
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Steven P Jones
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
21
|
Subramanian C, Frank MW, Tangallapally R, Yun MK, Edwards A, White SW, Lee RE, Rock CO, Jackowski S. Pantothenate kinase activation relieves coenzyme A sequestration and improves mitochondrial function in mice with propionic acidemia. Sci Transl Med 2021; 13:eabf5965. [PMID: 34524863 DOI: 10.1126/scitranslmed.abf5965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis TN, 38105, USA
| | - Anne Edwards
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis TN, 38105, USA.,St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Pediatric Experimental Therapeutics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
22
|
Abegaz F, Martines ACMF, Vieira-Lara MA, Rios-Morales M, Reijngoud DJ, Wit EC, Bakker BM. Bistability in fatty-acid oxidation resulting from substrate inhibition. PLoS Comput Biol 2021; 17:e1009259. [PMID: 34383741 PMCID: PMC8396765 DOI: 10.1371/journal.pcbi.1009259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/27/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022] Open
Abstract
In this study we demonstrated through analytic considerations and numerical studies that the mitochondrial fatty-acid β-oxidation can exhibit bistable-hysteresis behavior. In an experimentally validated computational model we identified a specific region in the parameter space in which two distinct stable and one unstable steady state could be attained with different fluxes. The two stable states were referred to as low-flux (disease) and high-flux (healthy) state. By a modular kinetic approach we traced the origin and causes of the bistability back to the distributive kinetics and the conservation of CoA, in particular in the last rounds of the β-oxidation. We then extended the model to investigate various interventions that may confer health benefits by activating the pathway, including (i) activation of the last enzyme MCKAT via its endogenous regulator p46-SHC protein, (ii) addition of a thioesterase (an acyl-CoA hydrolysing enzyme) as a safety valve, and (iii) concomitant activation of a number of upstream and downstream enzymes by short-chain fatty-acids (SCFA), metabolites that are produced from nutritional fibers in the gut. A high concentration of SCFAs, thioesterase activity, and inhibition of the p46Shc protein led to a disappearance of the bistability, leaving only the high-flux state. A better understanding of the switch behavior of the mitochondrial fatty-acid oxidation process between a low- and a high-flux state may lead to dietary and pharmacological intervention in the treatment or prevention of obesity and or non-alcoholic fatty-liver disease.
Collapse
Affiliation(s)
- Fentaw Abegaz
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Statistics and Probability Unit, University of Groningen, Groningen, The Netherlands
| | - Anne-Claire M. F. Martines
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A. Vieira-Lara
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Melany Rios-Morales
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ernst C. Wit
- Statistics and Probability Unit, University of Groningen, Groningen, The Netherlands
- Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Barbara M. Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Coenzyme a Biochemistry: From Neurodevelopment to Neurodegeneration. Brain Sci 2021; 11:brainsci11081031. [PMID: 34439650 PMCID: PMC8392065 DOI: 10.3390/brainsci11081031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme A (CoA) is an essential cofactor in all living organisms. It is involved in a large number of biochemical processes functioning either as an activator of molecules with carbonyl groups or as a carrier of acyl moieties. Together with its thioester derivatives, it plays a central role in cell metabolism, post-translational modification, and gene expression. Furthermore, recent studies revealed a role for CoA in the redox regulation by the S-thiolation of cysteine residues in cellular proteins. The intracellular concentration and distribution in different cellular compartments of CoA and its derivatives are controlled by several extracellular stimuli such as nutrients, hormones, metabolites, and cellular stresses. Perturbations of the biosynthesis and homeostasis of CoA and/or acyl-CoA are connected with several pathological conditions, including cancer, myopathies, and cardiomyopathies. In the most recent years, defects in genes involved in CoA production and distribution have been found in patients affected by rare forms of neurodegenerative and neurodevelopmental disorders. In this review, we will summarize the most relevant aspects of CoA cellular metabolism, their role in the pathogenesis of selected neurodevelopmental and neurodegenerative disorders, and recent advancements in the search for therapeutic approaches for such diseases.
Collapse
|
24
|
Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathog 2021; 17:e1009797. [PMID: 34324601 PMCID: PMC8366970 DOI: 10.1371/journal.ppat.1009797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
25
|
Tolonen JP, Heikkilä M, Malinen M, Lee HM, Palvimo JJ, Wei GH, Myllyharju J. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell Mol Life Sci 2020; 77:3627-3642. [PMID: 31768607 PMCID: PMC7452874 DOI: 10.1007/s00018-019-03387-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022]
Abstract
Hypoxia-inducible factor (HIF), an αβ dimer, is the master regulator of oxygen homeostasis with hundreds of hypoxia-inducible target genes. Three HIF isoforms differing in the oxygen-sensitive α subunit exist in vertebrates. While HIF-1 and HIF-2 are known transcription activators, HIF-3 has been considered a negative regulator of the hypoxia response pathway. However, the human HIF3A mRNA is subject to complex alternative splicing. It was recently shown that the long HIF-3α variants can form αβ dimers that possess transactivation capacity. Here, we show that overexpression of the long HIF-3α2 variant induces the expression of a subset of genes, including the erythropoietin (EPO) gene, while simultaneous downregulation of all HIF-3α variants by siRNA targeting a shared HIF3A region leads to downregulation of EPO and additional genes. EPO mRNA and protein levels correlated with HIF3A silencing and HIF-3α2 overexpression. Chromatin immunoprecipitation analyses showed that HIF-3α2 binding associated with canonical hypoxia response elements in the promoter regions of EPO. Luciferase reporter assays showed that the identified HIF-3α2 chromatin-binding regions were sufficient to promote transcription by all three HIF-α isoforms. Based on these data, HIF-3α2 is a transcription activator that directly regulates EPO expression.
Collapse
Affiliation(s)
- Jussi-Pekka Tolonen
- Oulu Center for Cell-Matrix Research, University of Oulu, PO Box 5400, 90014, Oulu, Finland
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Minna Heikkilä
- Oulu Center for Cell-Matrix Research, University of Oulu, PO Box 5400, 90014, Oulu, Finland
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Marjo Malinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80100, Joensuu, Finland
| | - Hang-Mao Lee
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | - Gong-Hong Wei
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, University of Oulu, PO Box 5400, 90014, Oulu, Finland.
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland.
| |
Collapse
|
26
|
Naquet P, Kerr EW, Vickers SD, Leonardi R. Regulation of coenzyme A levels by degradation: the 'Ins and Outs'. Prog Lipid Res 2020; 78:101028. [PMID: 32234503 DOI: 10.1016/j.plipres.2020.101028] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/09/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme A (CoA) is the predominant acyl carrier in mammalian cells and a cofactor that plays a key role in energy and lipid metabolism. CoA and its thioesters (acyl-CoAs) regulate a multitude of metabolic processes at different levels: as substrates, allosteric modulators, and via post-translational modification of histones and other non-histone proteins. Evidence is emerging that synthesis and degradation of CoA are regulated in a manner that enables metabolic flexibility in different subcellular compartments. Degradation of CoA occurs through distinct intra- and extracellular pathways that rely on the activity of specific hydrolases. The pantetheinase enzymes specifically hydrolyze pantetheine to cysteamine and pantothenate, the last step in the extracellular degradation pathway for CoA. This reaction releases pantothenate in the bloodstream, making this CoA precursor available for cellular uptake and de novo CoA synthesis. Intracellular degradation of CoA depends on specific mitochondrial and peroxisomal Nudix hydrolases. These enzymes are also active against a subset of acyl-CoAs and play a key role in the regulation of subcellular (acyl-)CoA pools and CoA-dependent metabolic reactions. The evidence currently available indicates that the extracellular and intracellular (acyl-)CoA degradation pathways are regulated in a coordinated and opposite manner by the nutritional state and maximize the changes in the total intracellular CoA levels that support the metabolic switch between fed and fasted states in organs like the liver. The objective of this review is to update the contribution of these pathways to the regulation of metabolism, physiology and pathology and to highlight the many questions that remain open.
Collapse
Affiliation(s)
- Philippe Naquet
- Aix Marseille Univ, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Schuyler D Vickers
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America.
| |
Collapse
|
27
|
Yang L, Zhang B, Wang X, Liu Z, Li J, Zhang S, Gu X, Jia M, Guo H, Feng N, Fan R, Xie M, Pei J, Chen L. P53/PANK1/miR-107 signalling pathway spans the gap between metabolic reprogramming and insulin resistance induced by high-fat diet. J Cell Mol Med 2020; 24:3611-3624. [PMID: 32048816 PMCID: PMC7131928 DOI: 10.1111/jcmm.15053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
High-fat diet (HFD) leads to obesity, type II diabetes mellitus (T2DM) and increases the coincidence of cardiovascular diseases and cancer. Insulin resistance (IR) is considered as the 'common soil' of those diseases. Furthermore, people on HFD showed restrained glycolysis and enhanced fatty acid oxidation, which is the so-called metabolic reprogramming. However, the relationship between metabolic reprogramming and IR induced by HFD is still unclear. Here, we demonstrate that PANK1 and miR-107 were up-regulated in the liver tissue of mice on HFD for 16 weeks and involved in metabolic reprogramming induced by palmitate acid (PA) incubation. Importantly, miR-107 within an intron of PANK1 gene facilitated IR by targeting caveolin-1 in AML12 cells upon PA incubation. Moreover, we identify that HFD enhanced P53 expression, and activation of P53 with nutlin-3a induced PANK1 and miR-107 expression simultaneously in transcriptional level, leading to metabolic reprogramming and IR, respectively. Consistently, inhibition of P53 with pifithrin-α hydrobromide ameliorated PA-induced metabolic reprogramming and IR. Thus, our results revealing a new mechanism by which P53 regulate metabolism. In addition, the results distinguished the different roles of PANK1 and its intron miR-107 in metabolic regulation, which will provide more accurate intervention targets for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Bin Zhang
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'anChina
| | - Xinju Wang
- Battalion 5 of CadetsFourth Military Medical UniversityXi'anChina
| | - Zhenhua Liu
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Juan Li
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Shumiao Zhang
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Xiaoming Gu
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Min Jia
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Haitao Guo
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Na Feng
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Rong Fan
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Manjiang Xie
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'anChina
| | - Jianming Pei
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Li Chen
- Department of PhysiologyNational Key Discipline of Cell BiologyFourth Military Medical UniversityXi'anChina
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
28
|
Chohnan S, Matsuno S, Shimizu K, Tokutake Y, Kohari D, Toyoda A. Coenzyme A and Its Thioester Pools in Obese Zucker and Zucker Diabetic Fatty Rats. Nutrients 2020; 12:E417. [PMID: 32041091 PMCID: PMC7071249 DOI: 10.3390/nu12020417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Feeding behavior is closely related to hypothalamic malonyl-CoA level in the brain and diet-induced obesity affects total CoA pools in liver. Herein, we performed a comprehensive analysis of the CoA pools formed in thirteen tissues of Zucker and Zucker diabetic fatty (ZDF) rats. Hypothalamic malonyl-CoA levels in obese rats remained low and were almost the same as those of lean rats, despite obese rats having much higher content of leptin, insulin, and glucose in their sera. Regardless of the fa-genotypes, larger total CoA pools were formed in the livers of ZDF rats and the size of hepatic total CoA pools in Zucker rats showed almost one tenth of the size of ZDF rats. The decreased total CoA pool sizes in Zucker rats was observed in the brown adipose tissues, while ZDF-fatty rats possessed 6% of total CoA pool in the lean rats in response to fa deficiency. This substantially lower CoA content in the obese rats would be disadvantageous to non-shivering thermogenesis. Thus, comparing the intracellular CoA behaviors between Zucker and ZDF rats, as well as the lean and fatty rats of each strain would help to elucidate features of obesity and type 2 diabetes in combination with result (s) of differential gene expression analysis and/or comparative genomics.
Collapse
Affiliation(s)
- Shigeru Chohnan
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Shiori Matsuno
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Kei Shimizu
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Yuka Tokutake
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan;
| | - Daisuke Kohari
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Atsushi Toyoda
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| |
Collapse
|
29
|
Subramanian C, Yao J, Frank MW, Rock CO, Jackowski S. A pantothenate kinase-deficient mouse model reveals a gene expression program associated with brain coenzyme a reduction. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165663. [PMID: 31918006 DOI: 10.1016/j.bbadis.2020.165663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022]
Abstract
Pantothenate kinase (PanK) is the first enzyme in the coenzyme A (CoA) biosynthetic pathway. The differential expression of the four-active mammalian PanK isoforms regulates CoA levels in different tissues and PANK2 mutations lead to Pantothenate Kinase Associated Neurodegeneration (PKAN). The molecular mechanisms that potentially underlie PKAN pathophysiology are investigated in a mouse model of CoA deficiency in the central nervous system (CNS). Both PanK1 and PanK2 contribute to brain CoA levels in mice and so a mouse model with a systemic deletion of Pank1 together with neuronal deletion of Pank2 was generated. Neuronal Pank2 expression in double knockout mice decreased starting at P9-11 triggering a significant brain CoA deficiency. The depressed brain CoA in the mice correlates with abnormal forelimb flexing and weakness that, in turn, contributes to reduced locomotion and abnormal gait. Biochemical analysis reveals a reduction in short-chain acyl-CoAs, including acetyl-CoA and succinyl-CoA. Comparative gene expression analysis reveals that the CoA deficiency in brain is associated with a large elevation of Hif3a transcript expression and significant reduction of gene transcripts in heme and hemoglobin synthesis. Reduction of brain heme levels is associated with the CoA deficiency. The data suggest a response to oxygen/glucose deprivation and indicate a disruption of oxidative metabolism arising from a CoA deficiency in the CNS.
Collapse
Affiliation(s)
| | - Jiangwei Yao
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Matthew W Frank
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Charles O Rock
- St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | |
Collapse
|
30
|
Xu H, Gajda AM, Zhou YX, Panetta C, Sifnakis Z, Fatima A, Henderson GC, Storch J. Muscle metabolic reprogramming underlies the resistance of liver fatty acid-binding protein (LFABP)-null mice to high-fat feeding-induced decline in exercise capacity. J Biol Chem 2019; 294:15358-15372. [PMID: 31451493 DOI: 10.1074/jbc.ra118.006684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 08/21/2019] [Indexed: 11/06/2022] Open
Abstract
Liver fatty acid-binding protein (LFABP) binds long-chain fatty acids with high affinity and is abundantly expressed in the liver and small intestine. Although LFABP is thought to function in intracellular lipid trafficking, studies of LFABP-null (LFABP-/-) mice have also indicated a role in regulating systemic energy homeostasis. We and others have reported that LFABP-/- mice become more obese than wildtype (WT) mice upon high-fat feeding. Here, we show that despite increased body weight and fat mass, LFABP-/- mice are protected from a high-fat feeding-induced decline in exercise capacity, displaying an approximate doubling of running distance compared with WT mice. To understand this surprising exercise phenotype, we focused on metabolic alterations in the skeletal muscle due to LFABP ablation. Compared with WT mice, resting skeletal muscle of LFABP-/- mice had higher glycogen and intramuscular triglyceride levels as well as an increased fatty acid oxidation rate and greater mitochondrial enzyme activities, suggesting higher substrate availability and substrate utilization capacity. Dynamic changes in the respiratory exchange ratio during exercise indicated that LFABP-/- mice use more carbohydrate in the beginning of an exercise period and then switch to using lipids preferentially in the later stage. Consistently, LFABP-/- mice exhibited a greater decrease in muscle glycogen stores during exercise and elevated circulating free fatty acid levels postexercise. We conclude that, because LFABP is not expressed in muscle, its ablation appears to promote interorgan signaling that alters muscle substrate levels and metabolism, thereby contributing to the prevention of high-fat feeding-induced skeletal muscle impairment.
Collapse
Affiliation(s)
- Heli Xu
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Angela M Gajda
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Yin Xiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Cristina Panetta
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Zoe Sifnakis
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Anam Fatima
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Gregory C Henderson
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901.,Department of Exercise Science, Rutgers University, New Brunswick, New Jersey 08901
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901 .,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
31
|
Yang H, Zhao C, Tang MC, Wang Y, Wang SP, Allard P, Furtos A, Mitchell GA. Inborn errors of mitochondrial acyl-coenzyme a metabolism: acyl-CoA biology meets the clinic. Mol Genet Metab 2019; 128:30-44. [PMID: 31186158 DOI: 10.1016/j.ymgme.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/30/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022]
Abstract
The last decade saw major advances in understanding the metabolism of Coenzyme A (CoA) thioesters (acyl-CoAs) and related inborn errors (CoA metabolic diseases, CAMDs). For diagnosis, acylcarnitines and organic acids, both derived from acyl-CoAs, are excellent markers of most CAMDs. Clinically, each CAMD is unique but strikingly, three main patterns emerge: first, systemic decompensations with combinations of acidosis, ketosis, hypoglycemia, hyperammonemia and fatty liver; second, neurological episodes, particularly acute "stroke-like" episodes, often involving the basal ganglia but sometimes cerebral cortex, brainstem or optic nerves and third, especially in CAMDs of long chain fatty acyl-CoA metabolism, lipid myopathy, cardiomyopathy and arrhythmia. Some patients develop signs from more than one category. The pathophysiology of CAMDs is not precisely understood. Available data suggest that signs may result from CoA sequestration, toxicity and redistribution (CASTOR) in the mitochondrial matrix has been suggested to play a role. This predicts that most CAMDs cause deficiency of CoA, limiting mitochondrial energy production, and that toxic effects from the abnormal accumulation of acyl-CoAs and from extramitochondrial functions of acetyl-CoA may also contribute. Recent progress includes the following. (1) Direct measurements of tissue acyl-CoAs in mammalian models of CAMDs have been related to clinical features. (2) Inborn errors of CoA biosynthesis were shown to cause clinical changes similar to those of inborn errors of acyl-CoA degradation. (3) CoA levels in cells can be influenced pharmacologically. (4) Roles for acetyl-CoA are increasingly identified in all cell compartments. (5) Nonenzymatic acyl-CoA-mediated acylation of intracellular proteins occurs in mammalian tissues and is increased in CAMDs.
Collapse
Affiliation(s)
- Hao Yang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Chen Zhao
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada; College of Animal Science and Technology, Northwest A&F University, China
| | | | - Youlin Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Shu Pei Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Pierre Allard
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | | | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada.
| |
Collapse
|
32
|
Yao J, Subramanian C, Rock CO, Jackowski S. Human pantothenate kinase 4 is a pseudo-pantothenate kinase. Protein Sci 2019; 28:1031-1047. [PMID: 30927326 PMCID: PMC6511746 DOI: 10.1002/pro.3611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/28/2019] [Indexed: 11/07/2022]
Abstract
Pantothenate kinase generates 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) biosynthesis. The human genome encodes three well-characterized and nearly identical pantothenate kinases (PANK1-3) plus a putative bifunctional protein (PANK4) with a predicted amino-terminal pantothenate kinase domain fused to a carboxy-terminal phosphatase domain. Structural and phylogenetic analyses show that all active, characterized PANKs contain the key catalytic residues Glu138 and Arg207 (HsPANK3 numbering). However, all amniote PANK4s, including human PANK4, encode Glu138Val and Arg207Trp substitutions which are predicted to inactivate kinase activity. Biochemical analysis corroborates bioinformatic predictions-human PANK4 lacks pantothenate kinase activity. Introducing Glu138Val and Arg207Trp substitutions to the human PANK3 and plant PANK4 abolished their robust pantothenate kinase activity. Introducing both catalytic residues back into human PANK4 restored kinase activity, but only to a low level. This result suggests that epistatic changes to the rest of the protein already reduced the kinase activity prior to mutation of the catalytic residues in the course of evolution. The PANK4 from frog, an anamniote living relative encoding the catalytically active residues, had only a low level of kinase activity, supporting the view that HsPANK4 had reduced kinase activity prior to the catalytic residue substitutions in amniotes. Together, our data show that human PANK4 is a pseudo-pantothenate kinase-a catalytically deficient variant of the catalytically active PANK4 found in plants and fungi. The Glu138Val and Arg207Trp substitutions in amniotes (HsPANK3 numbering) completely deactivated the pantothenate kinase activity that had already been reduced by prior epistatic mutations.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennessee, 38105
| | - Chitra Subramanian
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennessee, 38105
| | - Charles O. Rock
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennessee, 38105
| | - Suzanne Jackowski
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennessee, 38105
| |
Collapse
|
33
|
Kerr EW, Shumar SA, Leonardi R. Nudt8 is a novel CoA diphosphohydrolase that resides in the mitochondria. FEBS Lett 2019; 593:1133-1143. [PMID: 31004344 DOI: 10.1002/1873-3468.13392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
CoA regulates energy metabolism and exists in separate pools in the cytosol, peroxisomes, and mitochondria. At the whole tissue level, the concentration of CoA changes with the nutritional state by balancing synthesis and degradation; however, it is currently unclear how individual subcellular CoA pools are regulated. Liver and kidney peroxisomes contain Nudt7 and Nudt19, respectively, enzymes that catalyze CoA degradation. We report that Nudt8 is a novel CoA-degrading enzyme that resides in the mitochondria. Nudt8 has a distinctive preference for manganese ions and exhibits a broader tissue distribution than Nudt7 and Nudt19. The existence of CoA-degrading enzymes in both peroxisomes and mitochondria suggests that degradation may be a key regulatory mechanism for modulating the intracellular CoA pools.
Collapse
Affiliation(s)
- Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Stephanie A Shumar
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
34
|
Shumar SA, Kerr EW, Fagone P, Infante AM, Leonardi R. Overexpression of Nudt7 decreases bile acid levels and peroxisomal fatty acid oxidation in the liver. J Lipid Res 2019; 60:1005-1019. [PMID: 30846528 PMCID: PMC6495166 DOI: 10.1194/jlr.m092676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism requires CoA, an essential cofactor found in multiple subcellular compartments, including the peroxisomes. In the liver, CoA levels are dynamically adjusted between the fed and fasted states. Elevated CoA levels in the fasted state are driven by increased synthesis; however, this also correlates with decreased expression of Nudix hydrolase (Nudt)7, the major CoA-degrading enzyme in the liver. Nudt7 resides in the peroxisomes, and we overexpressed this enzyme in mouse livers to determine its effect on the size and composition of the hepatic CoA pool in the fed and fasted states. Nudt7 overexpression did not change total CoA levels, but decreased the concentration of short-chain acyl-CoAs and choloyl-CoA in fasted livers, when endogenous Nudt7 activity was lowest. The effect on these acyl-CoAs correlated with a significant decrease in the hepatic bile acid content and in the rate of peroxisomal fatty acid oxidation, as estimated by targeted and untargeted metabolomics, combined with the measurement of fatty acid oxidation in intact hepatocytes. Identification of the CoA species and metabolic pathways affected by the overexpression on Nudt7 in vivo supports the conclusion that the nutritionally driven modulation of Nudt7 activity could contribute to the regulation of the peroxisomal CoA pool and peroxisomal lipid metabolism.
Collapse
Affiliation(s)
- Stephanie A Shumar
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Paolo Fagone
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506; Protein Core Facility West Virginia University, Morgantown, WV 26506
| | - Aniello M Infante
- Genomics Core Facility West Virginia University, Morgantown, WV 26506
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
35
|
Sharma LK, Subramanian C, Yun MK, Frank MW, White SW, Rock CO, Lee RE, Jackowski S. A therapeutic approach to pantothenate kinase associated neurodegeneration. Nat Commun 2018; 9:4399. [PMID: 30352999 PMCID: PMC6199309 DOI: 10.1038/s41467-018-06703-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022] Open
Abstract
Pantothenate kinase (PANK) is a metabolic enzyme that regulates cellular coenzyme A (CoA) levels. There are three human PANK genes, and inactivating mutations in PANK2 lead to pantothenate kinase associated neurodegeneration (PKAN). Here we performed a library screen followed by chemical optimization to produce PZ-2891, an allosteric PANK activator that crosses the blood brain barrier. PZ-2891 occupies the pantothenate pocket and engages the dimer interface to form a PANK•ATP•Mg2+•PZ-2891 complex. The binding of PZ-2891 to one protomer locks the opposite protomer in a catalytically active conformation that is refractory to acetyl-CoA inhibition. Oral administration of PZ-2891 increases CoA levels in mouse liver and brain. A knockout mouse model of brain CoA deficiency exhibited weight loss, severe locomotor impairment and early death. Knockout mice on PZ-2891 therapy gain weight, and have improved locomotor activity and life span establishing pantazines as novel therapeutics for the treatment of PKAN.
Collapse
Affiliation(s)
- Lalit Kumar Sharma
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Nurix, Inc, 1700 Owens Street, Suite 205, San Francisco, CA, 94158, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
36
|
Shumar SA, Kerr EW, Geldenhuys WJ, Montgomery GE, Fagone P, Thirawatananond P, Saavedra H, Gabelli SB, Leonardi R. Nudt19 is a renal CoA diphosphohydrolase with biochemical and regulatory properties that are distinct from the hepatic Nudt7 isoform. J Biol Chem 2018; 293:4134-4148. [PMID: 29378847 PMCID: PMC5857999 DOI: 10.1074/jbc.ra117.001358] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/26/2018] [Indexed: 12/31/2022] Open
Abstract
CoA is the major acyl carrier in mammals and a key cofactor in energy metabolism. Dynamic regulation of CoA in different tissues and organs supports metabolic flexibility. Two mammalian Nudix hydrolases, Nudt19 and Nudt7, degrade CoA in vitro Nudt19 and Nudt7 possess conserved Nudix and CoA signature sequences and specifically hydrolyze the diphosphate bond of free CoA and acyl-CoAs to form 3',5'-ADP and 4'-(acyl)phosphopantetheine. Limited information is available on these enzymes, but the relatively high abundance of Nudt19 and Nudt7 mRNA in the kidney and liver, respectively, suggests that they play specific roles in the regulation of CoA levels in these organs. Here, we analyzed Nudt19-/- mice and found that deletion of Nudt19 elevates kidney CoA levels in mice fed ad libitum, indicating that Nudt19 contributes to the regulation of CoA in vivo Unlike what was observed for the regulation of Nudt7 in the liver, Nudt19 transcript and protein levels in the kidney did not differ between fed and fasted states. Instead, we identified chenodeoxycholic acid as a specific Nudt19 inhibitor that competed with CoA for Nudt19 binding but did not bind to Nudt7. Exchange of the Nudix and CoA signature motifs between the two isoforms dramatically decreased their kcat Furthermore, substitutions of conserved residues within these motifs identified amino acids playing different roles in CoA binding and hydrolysis in Nudt19 and Nudt7. Our results reveal that the kidney and liver each possesses a distinct peroxisomal CoA diphosphohydrolase.
Collapse
Affiliation(s)
| | | | - Werner J Geldenhuys
- Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26501 and
| | | | | | - Puchong Thirawatananond
- the Departments of Biophysics and Biophysical Chemistry
- Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | - Sandra B Gabelli
- the Departments of Biophysics and Biophysical Chemistry
- Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Medicine, and
| | | |
Collapse
|
37
|
Elbaum D, Beconi MG, Monteagudo E, Di Marco A, Quinton MS, Lyons KA, Vaino A, Harper S. Fosmetpantotenate (RE-024), a phosphopantothenate replacement therapy for pantothenate kinase-associated neurodegeneration: Mechanism of action and efficacy in nonclinical models. PLoS One 2018. [PMID: 29522513 PMCID: PMC5844530 DOI: 10.1371/journal.pone.0192028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In cells, phosphorylation of pantothenic acid to generate phosphopantothenic acid by the pantothenate kinase enzymes is the first step in coenzyme A synthesis. Pantothenate kinase 2, the isoform localized in neuronal cell mitochondria, is dysfunctional in patients with pantothenate kinase-associated neurodegeneration. Fosmetpantotenate is a phosphopantothenic acid prodrug in clinical development for treatment of pantothenate kinase-associated neurodegeneration, which aims to replenish phosphopantothenic acid in patients. Fosmetpantotenate restored coenzyme A in short-hairpin RNA pantothenate kinase 2 gene-silenced neuroblastoma cells and was permeable in a blood-brain barrier model. The rate of fosmetpantotenate metabolism in blood is species-dependent. Following up to 700 mg/kg orally, blood exposure to fosmetpantotenate was negligible in rat and mouse, but measurable in monkey. Consistent with the difference in whole blood half-life, fosmetpantotenate dosed orally was found in the brains of the monkey (striatal dialysate) but was absent in mice. Following administration of isotopically labeled-fosmetpantotenate to mice, ~40% of liver coenzyme A (after 500 mg/kg orally) and ~50% of brain coenzyme A (after 125 μg intrastriatally) originated from isotopically labeled-fosmetpantotenate. Additionally, 10-day dosing of isotopically labeled-fosmetpantotenate, 12.5 μg, intracerebroventricularly in mice led to ~30% of brain coenzyme A containing the stable isotopic labels. This work supports the hypothesis that fosmetpantotenate acts to replace reduced phosphopantothenic acid in pantothenate kinase 2-deficient tissues.
Collapse
Affiliation(s)
- Daniel Elbaum
- Research and Development, Retrophin Inc., Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Maria G. Beconi
- Research and Development, Retrophin Inc., Cambridge, Massachusetts, United States of America
| | - Edith Monteagudo
- Preclinical Research, IRBM Science Park SpA, Pomezia, Rome, Italy
| | | | - Maria S. Quinton
- Research and Development, Retrophin Inc., Cambridge, Massachusetts, United States of America
| | - Kathryn A. Lyons
- Independent consultant, Holland, New York, United States of America
| | - Andrew Vaino
- Research and Development, Retrophin Inc., Cambridge, Massachusetts, United States of America
| | - Steven Harper
- Medicinal Chemistry, IRBM Science Park SpA, Pomezia, Rome, Italy
| |
Collapse
|
38
|
Abstract
Glucose is the key source for most organisms to provide energy, as well as the key source for metabolites to generate building blocks in cells. The deregulation of glucose homeostasis occurs in various diseases, including the enhanced aerobic glycolysis that is observed in cancers, and insulin resistance in diabetes. Although p53 is thought to suppress tumorigenesis primarily by inducing cell cycle arrest, apoptosis, and senescence in response to stress, the non-canonical functions of p53 in cellular energy homeostasis and metabolism are also emerging as critical factors for tumor suppression. Increasing evidence suggests that p53 plays a significant role in regulating glucose homeostasis. Furthermore, the p53 family members p63 and p73, as well as gain-of-function p53 mutants, are also involved in glucose metabolism. Indeed, how this protein family regulates cellular energy levels is complicated and difficult to disentangle. This review discusses the roles of the p53 family in multiple metabolic processes, such as glycolysis, gluconeogenesis, aerobic respiration, and autophagy. We also discuss how the dysregulation of the p53 family in these processes leads to diseases such as cancer and diabetes. Elucidating the complexities of the p53 family members in glucose homeostasis will improve our understanding of these diseases.
Collapse
|
39
|
Efficient one-pot enzymatic synthesis of dephospho coenzyme A. Bioorg Chem 2017; 76:23-27. [PMID: 29107839 DOI: 10.1016/j.bioorg.2017.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
Dephospho coenzyme A (depCoA) is the last intermediate for CoA biosynthesis, and it can be used as a transcription initiator to prepare CoA-linked RNA by in vitro transcription. However, commercially available depCoA is expensive. We hereby describe a simple and efficient enzymatic synthesis of depCoA in a single-step from commercially available and inexpensive oxidized pantethine (Ox-Pan) and ATP. A plasmid (pCoaDAa) was constructed to co-express and co-purify two enzymes pantothenate kinase (PanK/coaA) and phosphopantetheine adenylyltransferase (PPAT/coaD). Starting from Ox-Pan and ATP, two different synthetic routes of one-pot reaction catalyzed by PanK and PPAT, followed by a simple column purification step, afforded depCoA and its oxidized dimer (Ox-depCoA) with high yields and purity. The simplicity and low cost of our method should make depCoA easily accessible to a broad scientific community, and promote research on CoA-related areas in biology and biomedicine.
Collapse
|
40
|
Wilson KA, Han Y, Zhang M, Hess JP, Chapman KA, Cline GW, Tochtrop GP, Brunengraber H, Zhang GF. Inter-relations between 3-hydroxypropionate and propionate metabolism in rat liver: relevance to disorders of propionyl-CoA metabolism. Am J Physiol Endocrinol Metab 2017; 313:E413-E428. [PMID: 28634175 PMCID: PMC5668600 DOI: 10.1152/ajpendo.00105.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/25/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022]
Abstract
Propionate, 3-hydroxypropionate (3HP), methylcitrate, related compounds, and ammonium accumulate in body fluids of patients with disorders of propionyl-CoA metabolism, such as propionic acidemia. Although liver transplantation alleviates hyperammonemia, high concentrations of propionate, 3HP, and methylcitrate persist in body fluids. We hypothesized that conserved metabolic perturbations occurring in transplanted patients result from the simultaneous presence of propionate and 3HP in body fluids. We investigated the inter-relations of propionate and 3HP metabolism in perfused livers from normal rats using metabolomic and stable isotopic technologies. In the presence of propionate, 3HP, or both, we observed the following metabolic perturbations. First, the citric acid cycle (CAC) is overloaded but does not provide sufficient reducing equivalents to the respiratory chain to maintain the homeostasis of adenine nucleotides. Second, there is major CoA trapping in the propionyl-CoA pathway and a tripling of liver total CoA within 1 h. Third, liver proteolysis is stimulated. Fourth, propionate inhibits the conversion of 3HP to acetyl-CoA and its oxidation in the CAC. Fifth, some propionate and some 3HP are converted to nephrotoxic maleate by different processes. Our data have implications for the clinical management of propionic acidemia. They also emphasize the perturbations of the liver intermediary metabolism induced by supraphysiological, i.e., millimolar, concentrations of labeled propionate used to trace the intermediary metabolism, in particular, inhibition of CAC flux and major decreases in the [ATP]/[ADP] and [ATP]/[AMP] ratios.
Collapse
Affiliation(s)
- Kirkland A Wilson
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio
| | - Yong Han
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Miaoqi Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio
| | - Jeremy P Hess
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Kimberly A Chapman
- Children's National Medical Center, Washington, District of Columbia
- George Washington University, Washington, District of Columbia
| | - Gary W Cline
- Department of Internal Medicine, Yale University, New Haven, Connecticut; and
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio;
| | - Guo-Fang Zhang
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| |
Collapse
|
41
|
Di Meo I, Colombelli C, Srinivasan B, de Villiers M, Hamada J, Jeong SY, Fox R, Woltjer RL, Tepper PG, Lahaye LL, Rizzetto E, Harrs CH, de Boer T, van der Zwaag M, Jenko B, Čusak A, Pahor J, Kosec G, Grzeschik NA, Hayflick SJ, Tiranti V, Sibon OCM. Acetyl-4'-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency. Sci Rep 2017; 7:11260. [PMID: 28900161 PMCID: PMC5595861 DOI: 10.1038/s41598-017-11564-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/09/2017] [Indexed: 01/22/2023] Open
Abstract
Coenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available. One therapeutic strategy is to generate Coenzyme A precursors downstream of the defective step in the pathway. Here we describe the synthesis, characteristics and in vivo rescue potential of the acetyl-Coenzyme A precursor S-acetyl-4′-phosphopantetheine as a possible treatment for neurodegeneration associated with pantothenate kinase deficiency.
Collapse
Affiliation(s)
- Ivano Di Meo
- Division of Molecular Neurogenetics, IRCCS Foundation Neurological Institute "C.Besta" Via Temolo 4, 20126, Milano, Italy
| | - Cristina Colombelli
- Division of Molecular Neurogenetics, IRCCS Foundation Neurological Institute "C.Besta" Via Temolo 4, 20126, Milano, Italy
| | - Balaji Srinivasan
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Jeffrey Hamada
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Suh Y Jeong
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Rachel Fox
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Randall L Woltjer
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Pieter G Tepper
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Liza L Lahaye
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Emanuela Rizzetto
- Clinical Pathology and Medical Genetics Unit, Foundation IRCCS-Neurological Institute "Carlo Besta", Milano, Italy
| | - Clara H Harrs
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Theo de Boer
- Analytical Biochemical Laboratory (ABL), WA Scholtenstraat 7, 9403 AJ, Assen, The Netherlands
| | - Marianne van der Zwaag
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Branko Jenko
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Alen Čusak
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Jerca Pahor
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.,Laboratory of Organic and Bioorganic Chemistry, Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Nicola A Grzeschik
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Susan J Hayflick
- Departments of Molecular & Medical Genetics and Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Valeria Tiranti
- Division of Molecular Neurogenetics, IRCCS Foundation Neurological Institute "C.Besta" Via Temolo 4, 20126, Milano, Italy
| | - Ody C M Sibon
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
42
|
Arber C, Angelova PR, Wiethoff S, Tsuchiya Y, Mazzacuva F, Preza E, Bhatia KP, Mills K, Gout I, Abramov AY, Hardy J, Duce JA, Houlden H, Wray S. iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease. PLoS One 2017; 12:e0184104. [PMID: 28863176 PMCID: PMC5581181 DOI: 10.1371/journal.pone.0184104] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/17/2017] [Indexed: 01/22/2023] Open
Abstract
Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain unknown. In this study, atypical patient-derived fibroblasts were reprogrammed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into cortical neuronal cells for studying disease mechanisms in human neurons. We observed no changes in PANK2 expression between control and patient cells, but a reduction in protein levels was apparent in patient cells. CoA homeostasis and cellular iron handling were normal, mitochondrial function was affected; displaying activated NADH-related and inhibited FADH-related respiration, resulting in increased mitochondrial membrane potential. This led to increased reactive oxygen species generation and lipid peroxidation in patient-derived neurons. These data suggest that mitochondrial deficiency is an early feature of the disease process and can be explained by altered NADH/FADH substrate supply to oxidative phosphorylation. Intriguingly, iron chelation appeared to exacerbate the mitochondrial phenotype in both control and patient neuronal cells. This raises caution for the use iron chelation therapy in general when iron accumulation is absent.
Collapse
Affiliation(s)
- Charles Arber
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Plamena R. Angelova
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Sarah Wiethoff
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Yugo Tsuchiya
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Francesca Mazzacuva
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Elisavet Preza
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P. Bhatia
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Kevin Mills
- Centre for Translational Omics, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Ivan Gout
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Andrey Y. Abramov
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - James A. Duce
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Selina Wray
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
43
|
Determination of Coenzyme A and Acetyl-Coenzyme A in Biological Samples Using HPLC with UV Detection. Molecules 2017; 22:molecules22091388. [PMID: 28832533 PMCID: PMC6151540 DOI: 10.3390/molecules22091388] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/12/2017] [Indexed: 01/26/2023] Open
Abstract
Coenzyme A (CoA) and acetyl-coenzyme A (acetyl-CoA) play essential roles in cell energy metabolism. Dysregulation of the biosynthesis and functioning of both compounds may contribute to various pathological conditions. We describe here a simple and sensitive HPLC-UV based method for simultaneous determination of CoA and acetyl-CoA in a variety of biological samples, including cells in culture, mouse cortex, and rat plasma, liver, kidney, and brain tissues. The limits of detection for CoA and acetyl-CoA are >10-fold lower than those obtained by previously described HPLC procedures, with coefficients of variation <1% for standard solutions, and 1–3% for deproteinized biological samples. Recovery is 95–97% for liver extracts spiked with Co-A and acetyl-CoA. Many factors may influence the tissue concentrations of CoA and acetyl-CoA (e.g., age, fed, or fasted state). Nevertheless, the values obtained by the present HPLC method for the concentration of CoA and acetyl-CoA in selected rodent tissues are in reasonable agreement with literature values. The concentrations of CoA and acetyl-CoA were found to be very low in rat plasma, but easily measurable by the present HPLC method. The method should be useful for studying cellular energy metabolism under normal and pathological conditions, and during targeted drug therapy treatment.
Collapse
|
44
|
Evers C, Seitz A, Assmann B, Opladen T, Karch S, Hinderhofer K, Granzow M, Paramasivam N, Eils R, Diessl N, Bartram CR, Moog U. Diagnosis of CoPAN by whole exome sequencing: Waking up a sleeping tiger's eye. Am J Med Genet A 2017; 173:1878-1886. [PMID: 28489334 DOI: 10.1002/ajmg.a.38252] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative disorders characterized by iron accumulation in the basal ganglia. Recently, mutations in CoA synthase (COASY) have been identified as a cause of a novel NBIA subtype (COASY Protein-Associated Neurodegeneration, CoPAN) in two patients with dystonic paraparesis, parkinsonian features, cognitive impairment, behavior abnormalities, and axonal neuropathy. COASY encodes an enzyme required for Coenzyme A (CoA) biosynthesis. Using whole exome sequencing (WES) we identified compound heterozygous COASY mutations in two siblings with intellectual disability, ataxic gait, progressive spasticity, and obsessive-compulsive behavior. The "eye-of-the tiger-sign," a characteristic hypointense spot within the hyperintense globi pallidi on MRI found in the most common subtype of NBIA (Pantothenate Kinase-Associated Neurodegeneration, PKAN), was not present. Instead, bilateral hyperintensity and swelling of caudate nucleus, putamen, and thalamus were found. In addition, our patients showed a small corpus callosum and frontotemporal and parietal white matter changes, expanding the brain phenotype of patients with CoPAN. Metabolic investigations showed increased free carnitine and decreased acylcarnitines in the patientś dried blood samples. Carnitine palmitoyl transferase 1 (CPT1) deficiency was excluded by further enzymatic and metabolic investigations. As CoA and its derivate Acetyl-CoA play an essential role in fatty acid metabolism, we assume that abnormal acylcarnitine profiles are a result of the COASY mutations. This report not only illustrates that WES is a powerful tool to elucidate the etiology of rare genetic diseases, but also identifies unique neuroimaging and metabolic findings that may be key features for an early diagnosis of CoPAN.
Collapse
Affiliation(s)
- Christina Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Birgit Assmann
- Center for Child and Adolescent Medicine, Pediatric Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Opladen
- Center for Child and Adolescent Medicine, Pediatric Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Karch
- Center for Child and Adolescent Medicine, Pediatric Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Martin Granzow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty Heidelberg, Heidelberg University, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Nicolle Diessl
- Genomics and Proteomics Core Facility (GPCF), High Throughput Sequencing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claus R Bartram
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
45
|
Corbin DR, Rehg JE, Shepherd DL, Stoilov P, Percifield RJ, Horner L, Frase S, Zhang YM, Rock CO, Hollander JM, Jackowski S, Leonardi R. Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2. Mol Genet Metab 2017; 120:350-362. [PMID: 28189602 PMCID: PMC5382100 DOI: 10.1016/j.ymgme.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022]
Abstract
Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function.
Collapse
Affiliation(s)
- Deborah R Corbin
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Jerold E Rehg
- Department Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Danielle L Shepherd
- Department of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Ryan J Percifield
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Linda Horner
- Cell and Tissue Imaging-Electron Microscopy Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharon Frase
- Cell and Tissue Imaging-Electron Microscopy Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Mei Zhang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John M Hollander
- Department of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
46
|
Subramanian C, Yun MK, Yao J, Sharma LK, Lee RE, White SW, Jackowski S, Rock CO. Allosteric Regulation of Mammalian Pantothenate Kinase. J Biol Chem 2016; 291:22302-22314. [PMID: 27555321 DOI: 10.1074/jbc.m116.748061] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Pantothenate kinase is the master regulator of CoA biosynthesis and is feedback-inhibited by acetyl-CoA. Comparison of the human PANK3·acetyl-CoA complex to the structures of PANK3 in four catalytically relevant complexes, 5'-adenylyl-β,γ-imidodiphosphate (AMPPNP)·Mg2+, AMPPNP·Mg2+·pantothenate, ADP·Mg2+·phosphopantothenate, and AMP phosphoramidate (AMPPN)·Mg2+, revealed a large conformational change in the dimeric enzyme. The amino-terminal nucleotide binding domain rotates to close the active site, and this allows the P-loop to engage ATP and facilitates required substrate/product interactions at the active site. Biochemical analyses showed that the transition between the inactive and active conformations, as assessed by the binding of either ATP·Mg2+ or acyl-CoA to PANK3, is highly cooperative indicating that both protomers move in concert. PANK3(G19V) cannot bind ATP, and biochemical analyses of an engineered PANK3/PANK3(G19V) heterodimer confirmed that the two active sites are functionally coupled. The communication between the two protomers is mediated by an α-helix that interacts with the ATP-binding site at its amino terminus and with the substrate/inhibitor-binding site of the opposite protomer at its carboxyl terminus. The two α-helices within the dimer together with the bound ligands create a ring that stabilizes the assembly in either the active closed conformation or the inactive open conformation. Thus, both active sites of the dimeric mammalian pantothenate kinases coordinately switch between the on and off states in response to intracellular concentrations of ATP and its key negative regulators, acetyl(acyl)-CoA.
Collapse
Affiliation(s)
| | | | | | - Lalit Kumar Sharma
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Richard E Lee
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | | | |
Collapse
|
47
|
Tarantino G, Finelli C. Lipids, Low-Grade Chronic Inflammation and NAFLD. HANDBOOK OF LIPIDS IN HUMAN FUNCTION 2016:731-759. [DOI: 10.1016/b978-1-63067-036-8.00028-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Kubota Y, Goto T, Hagiya Y, Chohnan S, Toyoda A. Decreased hepatic contents of coenzyme A molecular species in mice after subchronic mild social defeat stress. Stress 2016; 19:192-7. [PMID: 26864137 DOI: 10.3109/10253890.2015.1137558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Social stress may precipitate psychiatric disorders such as depression, which is related to the occurrence of the metabolic syndrome, including obesity and type 2 diabetes. We have evaluated the effects of social stress on central and peripheral metabolism using a model of depression in mice. In the present study, we focused on coenzyme A (CoA) molecular species [i.e. non-esterified CoA (CoASH), acetyl-CoA and malonyl-CoA] which play important roles in numerous metabolic pathways, and we analyzed changes in expression of these molecules in the hypothalamus and liver of adult male mice (C57BL/6J) subjected to 10 days of subchronic mild social defeat stress (sCSDS) with ICR mice as aggressors. Mice (n = 12) exposed to showed hyperphagia- and polydipsia-like symptoms and increased body weight gain compared with control mice which were not affected by exposure to ICR mice (n = 12). To elucidate the underlying metabolic features in the sCSDS model, acetyl-CoA, malonyl-CoA and CoASH tissue levels were analyzed using the acyl-CoA cycling method. The levels of hypothalamic malonyl-CoA, which decreases feeding behavior, were not influenced by sCSDS. However, sCSDS reduced levels of acetyl-CoA, malonyl-CoA and total CoA (sum of the three CoA molecular species) in the liver. Hence, hyperphagia-like symptoms in sCSDS mice evidently occurred independently of hypothalamic malonyl-CoA, but might consequently lead to down-regulation of hepatic CoA via altered expression of nudix hydrolase 7. Future studies should investigate the molecular mechanism(s) underlying the down-regulation of liver CoA pools in sCSDS mice.
Collapse
Affiliation(s)
- Yoshifumi Kubota
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
- b National Federation of Agricultural Cooperative Associations, Central Research Institute for Feed and Livestock, Swine Research Sec , Tsukuba , Ibaraki , Japan
| | - Tatsuhiko Goto
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
- c Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM) , Ami , Ibaraki , Japan , and
| | - Yuki Hagiya
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
| | - Shigeru Chohnan
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
- c Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM) , Ami , Ibaraki , Japan , and
- d United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology , Fuchu-City, Tokyo , Japan
| | - Atsushi Toyoda
- a College of Agriculture, Ibaraki University , Ami , Ibaraki , Japan
- c Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM) , Ami , Ibaraki , Japan , and
- d United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology , Fuchu-City, Tokyo , Japan
| |
Collapse
|
49
|
Zano SP, Pate C, Frank M, Rock CO, Jackowski S. Correction of a genetic deficiency in pantothenate kinase 1 using phosphopantothenate replacement therapy. Mol Genet Metab 2015; 116:281-8. [PMID: 26549575 PMCID: PMC4764103 DOI: 10.1016/j.ymgme.2015.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/03/2023]
Abstract
Coenzyme A (CoA) is a ubiquitous cofactor involved in numerous essential biochemical transformations, and along with its thioesters is a key regulator of intermediary metabolism. Pantothenate (vitamin B5) phosphorylation by pantothenate kinase (PanK) is thought to control the rate of CoA production. Pantothenate kinase associated neurodegeneration is a hereditary disease that arises from mutations that inactivate the human PANK2 gene. Aryl phosphoramidate phosphopantothenate derivatives were prepared to test the feasibility of using phosphopantothenate replacement therapy to bypass the genetic deficiency in the Pank1(-/-) mouse model. The efficacies of candidate compounds were first compared by measuring the ability to increase CoA levels in Pank1(-/-) mouse embryo fibroblasts. Administration of selected candidate compounds to Pank1(-/-) mice corrected their deficiency in hepatic CoA. The PanK bypass was confirmed by the incorporation of intact phosphopantothenate into CoA using triple-isotopically labeled compound. These results provide strong support for PanK as a master regulator of intracellular CoA and illustrate the feasibility of employing PanK bypass therapy to restore CoA levels in genetically deficient mice.
Collapse
Affiliation(s)
- Stephen P Zano
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Caroline Pate
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthew Frank
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
50
|
Naquet P, Giessner C, Galland F. Metabolic adaptation of tissues to stress releases metabolites influencing innate immunity. Curr Opin Immunol 2015; 38:30-8. [PMID: 26605965 DOI: 10.1016/j.coi.2015.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
Recent developments have demonstrated that metabolic rewiring imposed by adaptation of tissues to stress leads to the release of various metabolites which directly or indirectly impact innate immune responses and inflammation. Some metabolites can behave as second messengers and leave local cues in tissues. Immune cells which infiltrate stressed tissues reorient their metabolism to cope with these microenvironmental cues while preserving their effector functions in tissues.
Collapse
Affiliation(s)
- Philippe Naquet
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| | - Caroline Giessner
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Franck Galland
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| |
Collapse
|