1
|
Jiang XX, Tang ZR, Li ZP, Zhang GR, Zhou X, Ma XF, Wei KJ. Molecular characterization, expression analysis and function identification of Pf_IL-12p35, Pf_IL-23p19 and Pf_IL-12p40 genes in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109623. [PMID: 38750705 DOI: 10.1016/j.fsi.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The interleukin-12 (IL-12) family is a class of heterodimeric cytokines that play crucial roles in pro-inflammatory and pro-stimulatory responses. Although some IL-12 and IL-23 paralogues have been found in fish, their functional activity in fish remains poorly understood. In this study, Pf_IL-12p35a/b, Pf_IL-23p19 and Pf_IL-12p40a/b/c genes were cloned from yellow catfish (Pelteobagrus fulvidraco), four α-helices were found in Pf_IL-12p35a/b and Pf_IL-23p19. The transcripts of these six genes were relatively high in mucus and immune tissues of healthy individuals, and in gill leukocytes. Following Edwardsiella ictaluri infection, Pf_IL-12p35a/b and Pf_IL-23p19 mRNAs were induced in brain and kidney (or head kidney), Pf_IL-12p40a mRNA was induced in gill, and Pf_IL-12p40b/c mRNAs were induced in brain and liver (or skin). The mRNA expression of these genes in PBLs was induced by phytohaemagglutinin (PHA) and polyinosinic-polycytidylic acid (poly I:C), while lipopolysaccharides (LPS) induced the mRNA expression of Pf_IL-12p35a and Pf_IL-12p40b/c in PBLs. After stimulation with recombinant (r) Pf_IL-12 and rPf_IL-23 subunit proteins, either alone or in combination, mRNA expression patterns of genes related to T helper cell development exhibited distinct differences. The results suggest that Pf_IL-12 and Pf_IL-23 subunits may play important roles in regulating immune responses to pathogens and T helper cell development.
Collapse
Affiliation(s)
- Xin-Xin Jiang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zi-Rui Tang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhang-Ping Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xu-Fa Ma
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104621. [PMID: 36801469 DOI: 10.1016/j.dci.2022.104621] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/05/2023]
Abstract
T and B lymphocytes (T and B cells) are immune effector cells that play critical roles in adaptive immunity and defend against external pathogens in most vertebrates, including teleost fish. In mammals, the development and immune response of T and B cells is associated with cytokines including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors during pathogenic invasion or immunization. Given that teleost fish have evolved a similar adaptive immune system to mammals with T and B cells bearing unique receptors (B-cell receptors (BCRs) and T-cell receptors (TCRs)) and that cytokines in general have been identified, whether the regulatory roles of cytokines in T and B cell-mediated immunity are evolutionarily conserved between mammalians and teleost fish is a fascinating question. Thus, the purpose of this review is to summarize the current knowledge of teleost cytokines and T and B cells as well as the regulatory roles of cytokines on these two types of lymphocytes. This may provide important information on the parallelisms and dissimilarities of the functions of cytokines in bony fish versus higher vertebrates, which may aid in the evaluation and development of adaptive immunity-based vaccines or immunostimulants.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoyue Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
3
|
Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Cytokine networks provide sufficient evidence for the differentiation of CD4 + T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104627. [PMID: 36587713 DOI: 10.1016/j.dci.2022.104627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Cytokines, a class of small molecular proteins with a wide range of biological activities, are secreted mainly by immune cells and function by binding to the corresponding receptors to regulate cell growth, differentiation and effects. CD4+ T cells can be defined into different lineages based on the unique set of signature cytokines and transcription factors, including helper T cells (Th1, Th2, Th17) and regulatory T cells (Treg). In teleost, CD4+ T cells have been identified in a variety of fish species, thought to play roles as Th cells, and shown to be involved in the immune response following specific antigen stimulation. With the update of sequencing technologies, a variety of cytokines and transcription factors capable of characterizing CD4+ T cell subsets also have been described in fish, including hallmark cytokines such as IFN-γ, TNF-α, IL-4, IL-17, IL-10, TGF-β and unique transcription factors such as T-bet, GATA3, RORγt, and Foxp3. Hence, there is increasing evidence that the subpopulation of Th and Treg cells present in mammals may also exist in teleost fish. However, the differentiation, plasticity and precise roles of Th cell subsets in mammals remain controversial. Research on the identification and differentiation of fish Th cells is still in its infancy and requires more significant effort. Here we will review recent research advances in characterizing the differentiation of fish CD4+ T cells by cytokines and transcription factors, mainly including the identification of Th and Treg cell hallmark cytokines and transcription factors, the regulatory role of cytokines on Th cell differentiation, and the function of Th and Treg cells in the immune response. The primary purpose of this review is to deepen our understanding of cytokine networks in characterizing the differentiation of CD4+ T cells in teleost.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
4
|
Wang X, Zhang A, Qiu X, Yang K, Zhou H. The IL-12 family cytokines in fish: Molecular structure, expression profile and function. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104643. [PMID: 36632929 DOI: 10.1016/j.dci.2023.104643] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-12 family cytokines including IL-12, IL-23, IL-27, IL-35 and IL-39 are heterodimeric cytokines composed of two subunits, an α-chain (entitled p35, p19 and p28) and a β-chain (namely p40 and Epstein-Barr virus-induced gene 3, EBI3). Unlike in mammals, specific whole genome duplication events in fish may generate more paralogues of these subunits as the components of IL-12 family cytokines. Although all subunit genes of IL-12 family have been isolated and identified in various fish species, some important issues on fish IL-12 family are needed to be addressed compared to the extensive study in mammals: Whether the expansion of these subunit genes results in the generation of multiple isoforms of the family cytokines; Whether the related receptor genes have similar complex repertoire corresponding to their ligands; How about the expression kinetics of these subunit paralogues particularly under the circumstance of pathogen infection and immune stimulation; How about the functional properties of IL-12 family in fish. In the past ten years, these concerns have received increasing attentions to establish the biological significance of this family cytokines in fish immunity. In this review, we summarized the current understanding of IL-12 family with a special focus on the molecular structures, inducible expression profiles and functions of IL-12 family members in fish.
Collapse
Affiliation(s)
- Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
5
|
Xia YT, Cheng EHC, Xia YJ, Wu QY, Zhang LHL, Lin SY, Dong TTX, Qin QW, Wang WX, Tsim KWK. Characterization of a macrophagic-like cell line derived from rabbit fish (Siganus fuscescens): An illustration of anti-inflammatory responses of the herbal extract of Scutellaria baicalensis. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100036. [DOI: 10.1016/j.fsirep.2021.100036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 12/20/2022] Open
|
6
|
Jacobs SH, Dóró E, Hammond FR, Nguyen-Chi ME, Lutfalla G, Wiegertjes GF, Forlenza M. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. eLife 2021; 10:64520. [PMID: 34114560 PMCID: PMC8238505 DOI: 10.7554/elife.64520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterise their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterised by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge, this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.
Collapse
Affiliation(s)
- Sem H Jacobs
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Eva Dóró
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Saleh M, Friedl A, Srivastava M, Secombes CJ, El-Matbouli M. Modulation of local and systemic immune responses in brown trout (Salmo trutta) following exposure to Myxobolus cerebralis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:844-851. [PMID: 32891791 DOI: 10.1016/j.fsi.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Myxobolus cerebralis, the etiological agent of Whirling Disease (WD), is a freshwater myxozoan parasite with considerable economic and ecological relevance for salmonids. There are differences in disease susceptibility between species and strains of salmonids. Recently, we have reported that the suppressor of cytokine signaling SOCS1 and SOCS3 are key in modulating rainbow trout (Oncorhynchus mykiss) immune responses and that resistant fish apparently exhibit effective Th17 cell response after exposure to M. cerebralis. It is unclear whether such molecules and pathways are also involved in the immune response of M. cerebralis infected brown trout (Salmo trutta). Hence, this study aimed to explore their role during immune modulation in infected brown trout, which is considered resistant to this parasite. Fish were exposed to the triactinomyxon (TAM) stages of M. cerebralis and quantitative real-time PCR (RT-qPCR) was carried out to examine local (caudal fin) and systemic (head kidney, spleen) immune transcriptional changes associated with WD over time in infected and control fish. All of the immune genes in the three tissues studied were differentially expressed in infected fish at multiple time points. Brown trout reduced the parasite load and demonstrated effective immune responses, likely by keeping pro-inflammatory and anti-inflammatory cytokines in balance whilst stimulating efficient Th17-mediated immunity. This study increases knowledge on the brown trout immune response to M. cerebralis and helps us to understand the underlying mechanisms of WD resistance.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| | - Adina Friedl
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| | - Mitaly Srivastava
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
8
|
Konczal M, Ellison AR, Phillips KP, Radwan J, Mohammed RS, Cable J, Chadzinska M. RNA-Seq analysis of the guppy immune response against Gyrodactylus bullatarudis infection. Parasite Immunol 2020; 42:e12782. [PMID: 32738163 DOI: 10.1111/pim.12782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Amy R Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Marine Institute, Furnace, Newport, Ireland.,School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, St. Augustine, Trinidad and Tobago
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
STAT3/SOCS3 axis contributes to the outcome of salmonid whirling disease. PLoS One 2020; 15:e0234479. [PMID: 32542025 PMCID: PMC7295227 DOI: 10.1371/journal.pone.0234479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
There are differences in disease susceptibility to whirling disease (WD) among strains of rainbow trout. The North American strain Trout Lodge (TL) is highly susceptible, whereas the German Hofer (HO) strain is more resistant. The suppressor of cytokine signaling (SOCS) proteins are key in inhibiting cytokine signaling. Their role in modulating the immune response against whirling disease is not completely clear. This study aimed at investigating the transcriptional response of SOCS1 and SOCS3 genes to Myxobolus cerebralis along with that of several upstream regulators and immune response genes. M. cerebralis induced the expression of SOCS1, the IL-6-dependent SOCS3, the anti-inflammatory cytokine IL-10 and the Treg associated transcription factor FOXP3 in TL fish at multiple time points, which likely caused a restricted STAT1 and STAT3 activity affecting the Th17/Treg17 balance. The expression of SOCS1 and the IL-6-dependent SOCS3 was induced constraining the activation of STAT1 and STAT3 in TL fish, thereby causing Th17/Treg17 imbalance and leaving the fish unable to establish a protective immune response against M. cerebralis or control inflammatory reactions increasing susceptibility to WD. Conversely, in HO fish, the expression of SOCS1 and SOCS3 was restrained, whereas the expression of STAT1 and IL-23-mediated STAT3 was induced potentially enabling more controlled immune responses, accelerating parasite clearance and elevating resistance. The induced expression of STAT1 and IL-23-mediated STAT3 likely maintained a successful Th17/Treg17 balance and enabled fish to promote effective immune responses favouring resistance against WD. The results provide insights into the role of SOCS1 and SOCS3 in regulating the activation and magnitude of host immunity in rainbow trout, which may help us understand the mechanisms that underlie the variation in resistance to WD.
Collapse
|
10
|
Piazzon MC, Estensoro I, Calduch-Giner JA, Del Pozo R, Picard-Sánchez A, Pérez-Sánchez J, Sitjà-Bobadilla A. Hints on T cell responses in a fish-parasite model: Enteromyxum leei induces differential expression of T cell signature molecules depending on the organ and the infection status. Parasit Vectors 2018; 11:443. [PMID: 30064468 PMCID: PMC6069777 DOI: 10.1186/s13071-018-3007-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUD Enteromyxum leei is a myxozoan parasite that produces a slow-progressing intestinal disease. This parasite invades the paracellular space of the intestinal epithelium and progresses from the posterior to the anterior intestine. The aim of the present study was to gain insights into fish T cell responses in the gilthead sea bream-E. leei infection model using a PCR-array with 30 signature molecules for different leukocyte responses in head kidney, spleen, anterior and posterior intestine. RESULTS The PCR-array results suggest that E. leei induced migration of T cells from head kidney to intestines where TH1, CTL and TH17 profiles were activated and kept in balance by the upregulation of regulatory cytokines. These results were partially validated by the use of cross-reacting antibodies and BrdU immunostaining to monitor proliferation. Zap70 immunostaining supported the increased number of T cells in the anterior intestine detected by gene expression, but double staining with BrdU did not show active proliferation of this cell type at a local level, supporting the migration from lymphohaematopoietic tissues to the site of infection. Global analyses of the expression profiles revealed a clear separation between infected and exposed, but non-infected fish, more evident in the target organ. Exposed, non-infected animals showed an intermediate phenotype closer to the control fish. CONCLUSIONS These results evidence a clear modulation of the T cell response of gilthead sea bream upon E. leei infection. The effects occurred both at local and systemic levels, but the response was stronger and more specific at the site of infection, the intestine. Altogether, this research poses a promising basis to understand the response against this important parasite and establish effective preventive or palliative measures.
Collapse
Affiliation(s)
- M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Amparo Picard-Sánchez
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
11
|
Wang X, Qin L, Du L, Chen D, Zhang A, Yang K, Zhou H. Identification of a single p19 gene and three p40 paralogues in grass carp (Ctenopharyngodon idellus): Their potential for the formation of interleukin 23 and inducible expression in vitro and in vivo. FISH & SHELLFISH IMMUNOLOGY 2017; 71:434-442. [PMID: 29024769 DOI: 10.1016/j.fsi.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Interleukin (IL-) 23, a member of IL-12 family, is a composite cytokine with the subunits of p19 and p40. Although IL-12 and IL-23 share the p40 subunit, they play vastly different roles in immune regulation. In teleost, much emphasis has been placed on the identification of IL-12, but evidence for the existence of IL-23 is still lacking. In the present study, a p19 gene and three p40 paralogues were isolated and identified from grass carp, suggesting multiple assembly of IL-23 molecules in fish species. To address this issue, the existence of different p19/p40 heterodimers were examined by Co-Immunoprecipitation (Co-IP) assay, showing that only co-expression of p19 and each p40 subunit could produce the soluble proteins corresponding to three IL-23 isoforms. Additionally, bacterial infection could up-regulate the mRNA expression of p19, p40a and p40b but not p40c in head kidney, indicating distinct expression patterns of three p40 paralogues. Moreover, in vitro experiments demonstrated that both B-cell stimulator, LPS and T-cell mitogen, PHA markedly increased the mRNA levels of p19 and three p40 paralogues in grass carp periphery blood lymphocytes (PBLs). The simultaneous up-regulation of mRNA expression of p19 and p40 paralogues in response to immune stimuli supports the idea that p19 may form heterodimeric molecules with three p40 subunits in grass carp under immune activation. These findings for the first time highlight the potential of p19 and p40 for dimerization in fish, particularly the existence of three IL-23 isoforms as soluble heterodimeric cytokines in grass carp, thereby providing the basis for further investigating the function of IL-23 in fish immunity.
Collapse
Affiliation(s)
- Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lei Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Di Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
12
|
Piazzon MC, Wentzel AS, Wiegertjes GF, Forlenza M. Carp Il10a and Il10b exert identical biological activities in vitro, but are differentially regulated in vivo. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:350-360. [PMID: 27586813 DOI: 10.1016/j.dci.2016.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/28/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
We recently reported on the functional characterization of carp Il10. We showed that carp Il10 is able to downregulate proinflammatory activities by carp phagocytes and promote B cell proliferation, differentiation and antibody production as well as proliferation of memory T cells. Taking advantage of the recent annotation of the carp genome, we completed the sequence of a second il10 paralogue, named il10b, the presence of which was expected owing to the recent (8 million years ago) fourth round of whole genome duplication that occurred in common carp. In the present study we closely compared the two Il10 paralogues and show that Il10a and Il10b have almost identical gene structure, synteny, protein sequence as well as bioactivity on phagocytes. Although the two il10 paralogues show a large overlap in tissue expression, il10b has a low constitutive expression and is highly upregulated upon infection, whereas il10a is higher expressed under basal conditions but its gene expression remains constant during viral and parasitic infections. This differential regulation is most likely due to the observed differences in their promoter regions. Altogether our results demonstrate that gene duplication in carp, although recent, led to sub-functionalization and expression divergence rather than functional redundancy of the Il10 paralogues, yet with very similar protein sequences.
Collapse
Affiliation(s)
- M Carla Piazzon
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands
| | - Annelieke S Wentzel
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Pharmacogenomic implications of the evolutionary history of infectious diseases in Africa. THE PHARMACOGENOMICS JOURNAL 2016; 17:112-120. [PMID: 27779243 PMCID: PMC5380847 DOI: 10.1038/tpj.2016.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
As the common birthplace of all human populations, modern humans have lived longer on the African continent than in any other geographical region of the world. This long history, along with the evolutionary need to adapt to environmental challenges such as exposure to infectious agents, has led to greater genetic variation in Africans. The vast genetic variation in Africans also extends to genes involved in the absorption, distribution, metabolism and excretion of pharmaceuticals. Ongoing cataloging of these clinically relevant variants reveals huge allele-frequency differences within and between African populations. Here, we examine Africa's large burden of infectious disease, discuss key examples of known genetic variation modulating disease risk, and provide examples of clinically relevant variants critical for establishing dosing guidelines. We propose that a more systematic characterization of the genetic diversity of African ancestry populations is required if the current benefits of precision medicine are to be extended to these populations.
Collapse
|
14
|
Fink IR, Pietretti D, Voogdt CGP, Westphal AH, Savelkoul HFJ, Forlenza M, Wiegertjes GF. Molecular and functional characterization of Toll-like receptor (Tlr)1 and Tlr2 in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2016; 56:70-83. [PMID: 27368535 DOI: 10.1016/j.fsi.2016.06.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) are fundamental components of innate immunity that play significant roles in the defence against pathogen invasion. In this study, we present the molecular characterization of the full-length coding sequence of tlr1, tlr2a and tlr2b from common carp (Cyprinus carpio). Each is encoded within a single exon and contains a conserved number of leucine-rich repeats, a transmembrane region and an intracellular TIR domain for signalling. Indeed, sequence, phylogenetic and synteny analysis of carp tlr1, tlr2a and tlr2b support that these genes are orthologues of mammalian TLR1 and TLR2. The tlr genes are expressed in various immune organs and cell types. Furthermore, the carp sequences exhibited a good three-dimensional fit with the heterodimer structure of human TLR1-TLR2, including the potential to bind to the ligand Pam3CSK4. This supports the possible formation of carp Tlr1-Tlr2 heterodimers. However, we were unable to demonstrate Tlr1/Tlr2-mediated ligand binding in transfected cell lines through NF-κB activation, despite showing the expression and co-localization of Tlr1 and Tlr2. We discuss possible limitations when studying ligand-specific activation of NF-κB after expression of Tlr1 and/or Tlr2 in human but also fish cell lines and we propose alternative future strategies for studying ligand-binding properties of fish Tlrs.
Collapse
Affiliation(s)
- Inge R Fink
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Danilo Pietretti
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Carlos G P Voogdt
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, PO Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Matsumoto M, Hayashi K, Suetake H, Yamamoto A, Araki K. Identification and functional characterization of multiple interleukin 12 in amberjack (Seriola dumerili). FISH & SHELLFISH IMMUNOLOGY 2016; 55:281-292. [PMID: 27238429 DOI: 10.1016/j.fsi.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
Interleukin (IL) -12 is a heterodimeric cytokine mainly produced by monocytes, macrophages, and dendritic cells in mammals. IL-12p70 composed of IL-12p35 and IL-12p40, is known to play a crucial role in promoting cell-mediated immunity (CMI) through Th1 differentiation and IFN-γ production. Although two types of IL-12p35 (p35a, p35b) and three types of IL-12p40 (p40a, p40b and p40c) have been identified in several fish species, the knowledge on functional characteristics of teleost IL-12 is still limited. In the present study, we cloned two types of IL-12p35 and three types of IL-12p40 genes in amberjack and yellowtail, and analyzed their expressions in response to stimulation with Nocardia seriolae in amberjack. As a result, four types of IL-12 (IL-12p35a, p35b, p40a and p40b) and IFN-γ mRNA were increased by live-N. seriolae stimulation but not by formalin-killed N. seriolae, suggesting that four types of IL-12 (p35, p35b, p40a and p40c) participate in promoting CMI. Subsequently, we produced six types of recombinant IL-12p70 (rIL12p70) protein in insect cells. Head kidney leukocytes were cultured with formalin-killed N. seriolae and six types of rIL-12p70 to elucidate the role of amberjack IL-12p70 in induction of CMI. After stimulation, IFN-γ expression was elevated whereas IL-10 expression was suppressed in Head kidney leukocytes stimulated with four types of rIL-12 (p40a/p35a, p40c/p35a, p40a/p35b, p40a/p35b). On the other hand, two types of rIL-12 (p40b/p35a, p40b/p35b) only elicited down regulation of IL-10 expression. These results indicate that all amberjack IL-12p70 isoforms are involved in Th1 -differentiation and promotion of CMI with different manners. Fish IL-12 has a potential for the promising vaccine adjuvant.
Collapse
Affiliation(s)
- Megumi Matsumoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Kazuma Hayashi
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan
| | - Hiroaki Suetake
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Atsushi Yamamoto
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan
| | - Kyosuke Araki
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan.
| |
Collapse
|
16
|
Nandi A, Bishayi B. Intracellularly survived Staphylococcus aureus after phagocytosis are more virulent in inducing cytotoxicity in fresh murine peritoneal macrophages utilizing TLR-2 as a possible target. Microb Pathog 2016; 97:131-47. [DOI: 10.1016/j.micpath.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 01/27/2023]
|
17
|
Li H, Yu J, Li J, Tang Y, Yu F, Zhou J, Yu W. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2. FISH & SHELLFISH IMMUNOLOGY 2016; 51:303-312. [PMID: 26921542 DOI: 10.1016/j.fsi.2016.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/22/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes.
Collapse
Affiliation(s)
- Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Juhua Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jie Zhou
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Wenjuan Yu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
18
|
Polarization of immune responses in fish: The ‘macrophages first’ point of view. Mol Immunol 2016; 69:146-56. [DOI: 10.1016/j.molimm.2015.09.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/01/2023]
|
19
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
20
|
Du L, Feng S, Yin L, Wang X, Zhang A, Yang K, Zhou H. Identification and functional characterization of grass carp IL-17A/F1: An evaluation of the immunoregulatory role of teleost IL-17A/F1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:202-211. [PMID: 25847875 DOI: 10.1016/j.dci.2015.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
In mammals, IL-17A and IL-17F are hallmark cytokines of Th17 cells which act significant roles in eradicating extracellular pathogens. IL-17A and IL-17F homologs nominated as IL-17A/F1-3 have been revealed in fish and their functions remain largely undefined. Here we identified and characterized grass carp IL-17A/F1 (gcIL-17A/F1) in fish immune system. In this regard, both tissue distribution and inductive expression of gcIL-17A/F1 indicated its possible involvement in immune response. Moreover, recombinant gcIL-17A/F1 (rgcIL-17A/F1) was prepared and displayed an ability to enhance pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) mRNA expression in head kidney leukocytes. It is suggestive of that gcIL-17A/F1 may act as a proinflammatory cytokine in fish immunity. Besides, rgcIL-17A/F1 induced gene expression and protein release of grass carp chemokine CXCL-8 (gcCXCL-8) in head kidney cells (HKCs), probably via NF-κB, p38 and Erk1/2 pathways. In particular, culture medium from the HKCs treated by rgcIL-17A/F1 could stimulate peripheral blood leukocytes migration and immunoneutralization of endogenous gcCXCL-8 could partially attenuate this stimulation, suggesting that rgcIL-17A/F1 could recruit immune cells through producing gcCXCL-8 as mammalian IL-17 A and F. Taken together, we not only identified the pro-inflammatory role of gcIL-17A/F1 in host defense, but also provided the basis for clarifying Th17 cells in teleost.
Collapse
Affiliation(s)
- Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
21
|
Fink IR, Ribeiro CMS, Forlenza M, Taverne-Thiele A, Rombout JHWM, Savelkoul HFJ, Wiegertjes GF. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:146-154. [PMID: 25681740 DOI: 10.1016/j.dci.2015.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed.
Collapse
Affiliation(s)
- Inge R Fink
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Carla M S Ribeiro
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Anja Taverne-Thiele
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Jan H W M Rombout
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
22
|
Identification of the salmonid IL-17A/F1a/b, IL-17A/F2b, IL-17A/F3 and IL-17N genes and analysis of their expression following in vitro stimulation and infection. Immunogenetics 2015; 67:395-412. [DOI: 10.1007/s00251-015-0838-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/15/2015] [Indexed: 01/23/2023]
|
23
|
Jiang Y, Husain M, Qi Z, Bird S, Wang T. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar. Mol Immunol 2015; 66:216-28. [PMID: 25841173 DOI: 10.1016/j.molimm.2015.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish.
Collapse
Affiliation(s)
- Yousheng Jiang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mansourah Husain
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhitao Qi
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Steve Bird
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Molecular Genetics, School of Science, University of Waikato, Hamilton, New Zealand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
24
|
Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, Karthikeyan S, Iles L, Pollard MO, Choudhury A, Ritchie GRS, Xue Y, Asimit J, Nsubuga RN, Young EH, Pomilla C, Kivinen K, Rockett K, Kamali A, Doumatey AP, Asiki G, Seeley J, Sisay-Joof F, Jallow M, Tollman S, Mekonnen E, Ekong R, Oljira T, Bradman N, Bojang K, Ramsay M, Adeyemo A, Bekele E, Motala A, Norris SA, Pirie F, Kaleebu P, Kwiatkowski D, Tyler-Smith C, Rotimi C, Zeggini E, Sandhu MS. The African Genome Variation Project shapes medical genetics in Africa. Nature 2014; 517:327-32. [PMID: 25470054 PMCID: PMC4297536 DOI: 10.1038/nature13997] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/23/2014] [Indexed: 12/27/2022]
Abstract
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.
Collapse
Affiliation(s)
- Deepti Gurdasani
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Tommy Carstensen
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Fasil Tekola-Ayele
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Luca Pagani
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Ioanna Tachmazidou
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Savita Karthikeyan
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Louise Iles
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK [3] Department of Archaeology, University of York, King's Manor, York YO1 7EP, UK
| | - Martin O Pollard
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ananyo Choudhury
- Sydney Brenner Institute of Molecular Bioscience (SBIMB), University of the Witwatersrand, The Mount, 9 Jubilee Road, Parktown 2193, Johannesburg, Gauteng, South Africa
| | - Graham R S Ritchie
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Vertebrate Genomics, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yali Xue
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jennifer Asimit
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rebecca N Nsubuga
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Elizabeth H Young
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Cristina Pomilla
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Katja Kivinen
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Anatoli Kamali
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Ayo P Doumatey
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Gershim Asiki
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Janet Seeley
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Fatoumatta Sisay-Joof
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Muminatou Jallow
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Stephen Tollman
- 1] Medical Research Council/Wits Rural Public Health and Health Transitions Unit, School of Public Health, Education Campus, 27 St Andrew's Road, Parktown 2192, Johannesburg, Gauteng, South Africa [2] INDEPTH Network, 38/40 Mensah Wood Street, East Legon, PO Box KD 213, Kanda, Accra, Ghana
| | - Ephrem Mekonnen
- Institute of Biotechnology, Addis Ababa University, Entoto Avenue, Arat Kilo, 16087 Addis Ababa, Ethiopia
| | - Rosemary Ekong
- Department of Genetics Evolution and Environment, University College, London, Gower Street, London WC1E 6BT, UK
| | - Tamiru Oljira
- University of Haramaya, Department of Biology, PO Box 138, Dire Dawa, Ethiopia
| | - Neil Bradman
- Henry Stewart Group, 28/30 Little Russell Street, London WC1A 2HN, UK
| | - Kalifa Bojang
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Michele Ramsay
- 1] Sydney Brenner Institute of Molecular Bioscience (SBIMB), University of the Witwatersrand, The Mount, 9 Jubilee Road, Parktown 2193, Johannesburg, Gauteng, South Africa [2] Division of Human Genetics, National Health Laboratory Service, C/O Hospital and de Korte Streets, Braamfontein 2000, Johannesburg, South Africa [3] School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| | - Adebowale Adeyemo
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Endashaw Bekele
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Arat Kilo Campus, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Ayesha Motala
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Shane A Norris
- Department of Paediatrics, University of Witwatersrand, 7 York Road, Parktown 2198, Johannesburg, Gauteng, South Africa
| | - Fraser Pirie
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Dominic Kwiatkowski
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Charles Rotimi
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Manjinder S Sandhu
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| |
Collapse
|
25
|
Chettri JK, Kuhn JA, Jaafar RM, Kania PW, Møller OS, Buchmann K. Epidermal response of rainbow trout to Ichthyobodo necator: immunohistochemical and gene expression studies indicate a Th1-/Th2-like switch. JOURNAL OF FISH DISEASES 2014; 37:771-83. [PMID: 23952070 DOI: 10.1111/jfd.12169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 07/05/2013] [Accepted: 07/16/2013] [Indexed: 05/20/2023]
Abstract
Infections with the parasitic flagellate Ichthyobodo necator (Henneguy, 1883) cause severe skin and gill disease in rainbow trout Oncorhynchus mykiss (Walbaum, 1792) juveniles. The epidermal disturbances including hyperplasia and mucous cell exhaustion caused by parasitization are known, but no details on specific cellular and humoral reactions have been presented. By applying gene expression methods and immunohistochemical techniques, further details of immune processes in the affected skin can be presented. A population of I. necator was established in the laboratory and used to induce an experimental infection of juvenile rainbow trout. The course of infection was followed by sampling for parasite enumeration, immunohistochemistry (IHC) and quantitative PCR (qPCR) on days 0, 5, 9 and 14 post-infection. IHC showed a significant increase in the occurrence of IgM-positive cells in the skin of the infected fish, whereas IgT-positive cells were eliminated and the number of CD8-positive cells declined. qPCR studies supported the IHC findings showing a significant increase in IgM and a decrease in the CD8 gene expression. In addition, genes encoding innate immune genes such as lysozyme, SAA and cathelicidin 2 were up-regulated. Expression of cytokines (IL-1β, IL-4/13A, IL-6, IL-8, IL-10), the cell marker CD4 and the transcription factor GATA3 showed a significant increase after infection. Cytokine profiling including up-regulation of IL-4/13A and IL-10 genes and transcription factor GATA3 connected to the proliferation of IgM producing lymphocytes suggests a partial shift towards a Th2 response associated with the I. necator infection.
Collapse
Affiliation(s)
- J K Chettri
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Gratacap RL, Wheeler RT. Utilization of zebrafish for intravital study of eukaryotic pathogen-host interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:108-15. [PMID: 24491522 PMCID: PMC4028364 DOI: 10.1016/j.dci.2014.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 05/04/2023]
Abstract
Unique imaging tools and practical advantages have made zebrafish a popular model to investigate in vivo host-pathogen interactions. These studies have uncovered details of the mechanisms involved in several human infections. Until recently, studies using this versatile host were limited to viral and prokaryotic pathogens. Eukaryotic pathogens are a diverse group with a major impact on the human and fish populations. The relationships of eukaryote pathogens with their hosts are complex and many aspects remain obscure. The small and transparent zebrafish, with its conserved immune system and amenability to genetic manipulation, make it an exciting model for quantitative study of the core strategies of eukaryotic pathogens and their hosts. The only thing to do now is realize its potential for advancement of biomedical and aquaculture research.
Collapse
Affiliation(s)
- Remi L Gratacap
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
27
|
Pietretti D, Wiegertjes GF. Ligand specificities of Toll-like receptors in fish: indications from infection studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:205-222. [PMID: 23981328 DOI: 10.1016/j.dci.2013.08.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Toll like receptors (TLRs) are present in many different fish families from several different orders, including cyprinid, salmonid, perciform, pleuronectiform and gadiform representatives, with at least some conserved properties among these species. However, low conservation of the leucine-rich repeat ectodomain hinders predictions of ligand specificities of fish TLRs based on sequence information only. We review the presence of a TLR genes, and changes in their gene expression profiles as result of infection, in the context of different fish orders and fish families. The application of RT-qPCR and availability of increasing numbers of fish genomes has led to numerous gene expression studies, including studies on TLR gene expression, providing the most complete dataset to date. Induced changes of gene expression may provide (in)direct evidence for the involvement of a particular TLR in the reaction to a pathogen. Especially when findings are consistent across different studies on the same fish species or consistent across different fish species, up-regulation of TLR gene expression could be a first indication of functional relevance. We discuss TLR1, TLR2, TLR4, TLR5 and TLR9 as presumed sensors of bacterial ligands and discuss as presumed sensors of viral ligands TLR3 and TLR22, TLR7 and TLR8. More functional studies are needed before conclusions on ligands specific to (groups of) fish TLRs can be drawn, certainly true for studies on non-mammalian TLRs. Future studies on the conservation of function of accessory molecules, in conjunction with TLR molecules, may bring new insight into the function of fish TLRs.
Collapse
Affiliation(s)
- Danilo Pietretti
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
28
|
Woo PTK, Ardelli BF. Immunity against selected piscine flagellates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:268-279. [PMID: 23872230 DOI: 10.1016/j.dci.2013.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
This discussion is on immune response to Amyloodinium ocellatum, Cryptobia salmositica, Trypanoplasma borreli and Trypanosoma carassii. Piscidin and histone-like proteins enhance innate resistance to Amyloodinium. Fish that are naturally resistant to Cryptobia and Trypanoplasma can be bred. Cryptobia resistance in charr is controlled by a dominant Mendelian locus and protection is via the Alternative Pathway of Complement Activation. Studies on Cryptobia-tolerant charr may lead to production of transgenic Cryptobia-tolerant salmon. Innate response to T. borreli is associated with NO in macrophages. Transferrin regulates resistance and carp have been bred for transferrin genotypes. Recovered fish are protected from homologous challenge, and complement fixing antibodies are crucial in protection. Studies on antigens in T. carassii may lead to a vaccine. There are two vaccines against cryptobiosis; a single dose of the attenuated vaccine protects salmonids. On challenge fish inoculated with the metalloprotease-DNA vaccine do not have the disease and they recover faster.
Collapse
Affiliation(s)
- Patrick T K Woo
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
29
|
Zhang H, Shen B, Wu H, Gao L, Liu Q, Wang Q, Xiao J, Zhang Y. Th17-like immune response in fish mucosal tissues after administration of live attenuated Vibrio anguillarum via different vaccination routes. FISH & SHELLFISH IMMUNOLOGY 2014; 37:229-238. [PMID: 24561130 DOI: 10.1016/j.fsi.2014.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to investigate the protective mucosal immunity elicited by live attenuated Vibrio anguillarum in fish. Zebrafish were immunized by bath or injection way, and undertook bath challenge at 28 days post vaccination. The results implied that bath vaccination was the better delivery route for inducing the protective immunity against bath challenge in zebrafish. The expressions of genes related to Th1, Th2 and Th17 cells were measured in the mucosal tissues of vaccinated and challenged zebrafish. Gene expression profiles showed that Th17-like responses were induced in mucosal immune system by vaccination via bath and injection routes while Th1 and Th2-like responses were not remarkable. Compared to injection vaccination, bath vaccination elicited the intense Th17-like immune responses in the gut tissue of zebrafish. Additionally, in gills and skin, Th17-like mucosal immunity elicited by injection vaccination occurred later than that by bath vaccination. Our results proved the immunological importance of gut in bath vaccination and the presence of two-compartmental model for immune response in zebrafish. In conclusion, bath vaccination more efficiently elicited protective Th17-like immunity than injection vaccination in mucosal tissues of vaccinated zebrafish. In turbot, effective immune protection against wild-type V. anguillarum was obtained by bath-vaccinated and the Th17-like responses were found in mucosal and systemic tissues.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Binbing Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
30
|
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1703-1718. [PMID: 24036335 DOI: 10.1016/j.fsi.2013.08.030] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 05/28/2023]
Abstract
Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
31
|
Min W, Kim WH, Lillehoj EP, Lillehoj HS. Recent progress in host immunity to avian coccidiosis: IL-17 family cytokines as sentinels of the intestinal mucosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:418-428. [PMID: 23583525 DOI: 10.1016/j.dci.2013.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
The molecular and cellular mechanisms leading to immune protection against coccidiosis are complex and include multiple aspects of innate and adaptive immunities. Innate immunity is mediated by various subpopulations of immune cells that recognize pathogen associated molecular patterns (PAMPs) through their pattern recognition receptors (PRRs) leading to the secretion of soluble factors with diverse functions. Adaptive immunity, which is important in conferring protection against subsequent reinfections, involves subtypes of T and B lymphocytes that mediate antigen-specific immune responses. Recently, global gene expression microarray analysis has been used in an attempt to dissect this complex network of immune cells and molecules during avian coccidiosis. These new studies emphasized the uniqueness of the innate immune response to Eimeria infection, and directly led to the discovery of previously uncharacterized host genes and proteins whose expression levels were modulated following parasite infection. Among these is the IL-17 family of cytokines. This review highlights recent progress in IL-17 research in the context of host immunity to avian coccidiosis.
Collapse
Affiliation(s)
- Wongi Min
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | | | | | | |
Collapse
|
32
|
Scapigliati G. Functional aspects of fish lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:200-208. [PMID: 23707785 DOI: 10.1016/j.dci.2013.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
After almost 40 years of studies in comparative immunology, some light has been shed on the evolutive immunobiology of vertebrates, and experimental evidences have shown that acquired immunity, defined by somatic recombination of antigen-binding molecules and memory, is an achievement as ancient as jawless vertebrates. However, the molecular processes generating antigen receptors evolved independently between jawless and jawed fishes, and produced lymphocytic cells with similar functions but employing different sets of genes. In recent years, data have been provided describing some in vitro and in vivo functional responses of fish lymphocytes. After a long gap, the number of specific markers for fish lymphocytes is increasing, thus allowing a first characterisation of lymphocyte subsets. Overall, in the near future it will be possible to open a new chapter in fish immunology and investigate functional immunity of lymphocyte responses by combining the extensive knowledge on immune gene products with markers for molecules and cells. The present review summarizes current knowledge on functional features of fish lymphocytes.
Collapse
Affiliation(s)
- Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| |
Collapse
|
33
|
Zhang H, Fei C, Wu H, Yang M, Liu Q, Wang Q, Zhang Y. Transcriptome profiling reveals Th17-like immune responses induced in zebrafish bath-vaccinated with a live attenuated Vibrio anguillarum. PLoS One 2013; 8:e73871. [PMID: 24023910 PMCID: PMC3762715 DOI: 10.1371/journal.pone.0073871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Background A candidate vaccine, live attenuated Vibrio anguillarum developed in our laboratory could prevent vibriosis of fish resulted from V. anguillarum and V. alginolyticus. To elucidate the molecular mechanisms underlying the vaccine protection, we used microarray technology to compare the spleen transcriptomes of bath-vaccinated and unvaccinated zebrafish at 28 days post vaccination. Principal Findings A total of 2164 genes and transcripts were differentially expressed, accounting for 4.9% of all genes represented on the chip. In addition to iron metabolism related to the innate immunity and the signaling pathways, these differentially expressed genes also involved in the adaptive immunity, mainly including the genes associated with B and T cells activation, proliferation and expansion. Transcription profiles of Th17-related transcription factors, cytokines and cytokine receptors during 35 days post-vaccination implied that Th17 cells be activated in bath-vaccinated zebrafish. Conclusion/Significance The transcriptome profiling with microarray revealed the Th17-like immune response to bath-vaccination with the live attenuated V. anguillarum in zebrafish.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chao Fei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- * E-mail:
| | - Minjun Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
34
|
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:197-206. [PMID: 23664867 DOI: 10.1016/j.fsi.2013.04.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The main function of the immune system is to maintain the organism's homeostasis when invaded by foreign material or organisms. Prior to successful elimination of the invader it is crucial to distinguish self from non-self. Most pathogens and altered cells can be recognized by immune cells through expressed pathogen- or danger-associated molecular patterns (PAMPS or DAMPS, respectively), through non-self (e.g. allogenic or xenogenic cells) or missing major histocompatibility (MHC) class I molecules (some virus-infected target cells), and by presenting foreign non-self peptides of intracellular (through MHC class I-e.g. virus-infected target cells) or extracellular (through MHC class II-e.g. from bacteria) origin. In order to eliminate invaders directly or by destroying their ability to replicate (e.g. virus-infected cells) specialized immune cells of the innate and adaptive responses appeared during evolution. The first line of defence is represented by the evolutionarily ancient macrophages and natural killer (NK) cells. These innate mechanisms are well developed in bony fish. Two types of NK cell homologues have been described in fish: non-specific cytotoxic cells and NK-like cells. Adaptive cell-mediated cytotoxicity (CMC) requires key molecules expressed on cytotoxic T lymphocytes (CTLs) and target cells. CTLs kill host cells harbouring intracellular pathogens by binding of their T cell receptor (TCR) and its co-receptor CD8 to a complex of MHC class I and bound peptide on the infected host cell. Alternatively, extracellular antigens are taken up by professional antigen presenting cells such as macrophages, dendritic cells and B cells to process those antigens and present the resulting peptides in association with MHC class II to CD4(+) T helper cells. During recent years, genes encoding MHC class I and II, TCR and its co-receptors CD8 and CD4 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. Functional assays for innate and adaptive lymphocyte responses have been developed in only a few fish species. This review summarizes and discusses recent results and developments in the field of T and NK cell responses with focus on economically important and experimental model fish species in the context of vaccination.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | |
Collapse
|
35
|
Cloning and characterization of rainbow trout interleukin-17A/F2 (IL-17A/F2) and IL-17 receptor A: expression during infection and bioactivity of recombinant IL-17A/F2. Infect Immun 2012; 81:340-53. [PMID: 23147036 DOI: 10.1128/iai.00599-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lower vertebrates have been found to possess genes that have similar homology to both interleukin (IL)-17A and IL-17F, which have been termed IL-17A/F. In fish species, several of these genes can be present, but, to date, very little is known about their functional activity. This article describes the discovery and sequence analysis of a rainbow trout (Oncorhynchus mykiss) IL-17A/F2 molecule and an IL-17RA receptor. In addition, the bioactivity of the trout IL-17A/F2 is investigated for the first time in any species. The predicted IL-17A/F2 and IL-17RA proteins consist of 146 and 966 amino acids (aa), respectively, with both molecules containing conserved family motifs. Expression analysis revealed high constitutive expression of trout IL-17A/F2 in mucosal tissues from healthy fish, suggesting a potential role in mucosal immunity. When the modulation of IL-17A/F2 and IL-17RA in vitro was analyzed, it was observed that the two molecules were similarly affected. The expression of IL-17A/F2 was also induced in head kidney during bacterial, parasitic, and viral infections, revealing a possible function in defense against such pathogens. However, downregulation of IL-17RA was seen in some tissues and infections. The recombinant IL-17A/F2 protein was produced in Escherichia coli and was found to affect the expression of an antimicrobial peptide and the proinflammatory cytokines IL-6 and IL-8 in splenocytes. Consistent with mammalian IL-17 homologues, our expression and bioactivity results imply that trout IL-17A/F2 plays an important role in promoting inflammatory and host innate immune responses directed against different pathogen groups.
Collapse
|
36
|
Monte MM, Wang T, Costa MM, Harun NO, Secombes CJ. Cloning and expression analysis of two ROR-γ homologues (ROR-γa1 and ROR-γa2) in rainbow trout Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2012; 33:365-374. [PMID: 22634748 DOI: 10.1016/j.fsi.2012.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
This paper describes the cloning and characterisation of two retinoid-related orphan receptor (ROR)-γ homologues (ROR-γa1 and -γa2) in rainbow trout (Oncorhynchus mykiss). The coding region predicted for both homologues consists of 1410 base pairs (bp), which translate into two 469 amino acid (aa) proteins. The trout ROR-γs revealed a high conservation of both DNA- and ligand-binding domains (functional regions of the nuclear receptor family), and shared a high homology to mammalian ROR-γt. A phylogenetic tree containing ROR family members confirmed that both trout homologues clustered within the ROR-γ group. Both results suggested that these molecules are likely to be ROR-γ homologues, more similar to the mammalian splice variant ROR-γt than the full length ROR-γ. Expression analysis of tissues obtained from healthy fish revealed highest constitutive expression of trout ROR-γ in muscle, followed by the brain, heart and skin. This suggests that these genes may play an important role in such tissues. In vitro studies, using trout cell lines, demonstrated that ROR-γ is induced significantly by LPS and down-regulated by the presence of PolyI:C and recombinant interferon (IFN)-γ. Moreover, analysis of this gene in head kidney macrophages and mixed primary leucocyte cultures indicated that differences were apparent between the different cell types/sources used, indicating that its expression may be cell-type dependent. Additional studies to investigate the regulation of this gene in vivo demonstrated that its expression was significantly higher in vaccinated vs unvaccinated fish following bacterial (Yersinia ruckeri) challenge but it was down-regulated after a viral (VHSV) infection. This suggests a potential role of trout ROR-γ, a putative T(H)17 transcription factor, in protection against extracellular bacteria.
Collapse
Affiliation(s)
- Milena M Monte
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The nuclear hormone receptor retinoid-related orphan receptor γt (RORγt) induces a pro-inflammatory program in lymphoid cells, culminating in the expression of interleukin-6 (IL-6), IL-17, IL-22, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor. During ontogeny, the first type of cells expressing RORγt are lymphoid tissue inducer cells, a type of innate lymphoid cell (ILC) generated in mammalian fetuses to induce the development of lymph nodes and Peyer's patches. After birth, RORγt(+) ILCs and RORγt(+) T cells are involved in the defense of epithelial surfaces against extracellular microbes and play an important role in the intestinal homeostasis with symbiotic microbiota. The development and evolution of RORγt(+) cells is intimately associated with the construction of a stable host-microbe interface.
Collapse
Affiliation(s)
- Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France. CNRS, URA1961, Paris, France.
| |
Collapse
|
38
|
Secombes CJ, Wang T, Bird S. The interleukins of fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1336-1345. [PMID: 21605591 DOI: 10.1016/j.dci.2011.05.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/10/2011] [Accepted: 05/05/2011] [Indexed: 05/28/2023]
Abstract
Interleukins are a subgroup of cytokines, molecules involved in the intercellular regulation of the immune system. The term interleukin was first coined in 1979 to refer to molecules that signal between different leucocyte types, although not exclusively restricted to leucocyte communication. Whilst it is now known that interleukins are produced by a wide variety of cell types, nevertheless many are synthesised by CD4(+) T helper cells, macrophages/monocytes and endothelial cells. The nomenclature is relatively straightforward, with interleukin 1 the first discovered and interleukin 2 the second, etc. However, whilst 35 interleukins are currently described in mammals, several are in fact terms referring to subfamilies of more molecules, as with the IL-1 family where 11 members (IL-1F1-IL-1F11) are present, and the IL-17 family where 6 members (IL-17A-IL-17F) are present. So the total is much higher and splice variants and allelic variation increase this diversity further. This review will focus on what is known about interleukins in fish, and will refer to the major subfamilies rather than try to work through 35 descriptions in a row. It is clear that many direct homologues of molecules known in mammals are present in fish, but that not all are present and some novel interleukins exist that may have arisen from fish specific gene duplication events.
Collapse
Affiliation(s)
- C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK.
| | | | | |
Collapse
|
39
|
Forlenza M, Fink IR, Raes G, Wiegertjes GF. Heterogeneity of macrophage activation in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1246-1255. [PMID: 21414343 DOI: 10.1016/j.dci.2011.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/08/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
In this review, we focus on four different activation states of fish macrophages. In vitro, stimulation with microbial ligands induces the development of innate activated macrophages whereas classically activated macrophages can be induced by stimulation with LPS in combination with (recombinant) IFNγ. Both types of macrophages show elevated phagocytic activity, expression of pro-inflammatory cytokine genes and radical production. Alternatively activated macrophages require the cytokines IL-4/IL-13 for induction of, among others, arginase activity. Until in vitro studies identify the effects of putative IL-4 and IL-13 homologues on fish macrophages, arginase enzyme activity remains the most reliable marker for the presence of alternatively activated macrophages in fish. The best evidence for the existence of regulatory macrophages, associated with the presence of IL-10, comes from in vivo studies, for example during parasitic infections of carp. Altogether, differentially activated macrophages in fish largely resemble the phenotypes of mammalian macrophages. However, the presence of fish-specific ligand recognition by TLRs and of duplicated genes coding for proteins with particular activities, poses additional challenges for the characterization of phenotype-specific gene signatures and cell surface markers.
Collapse
Affiliation(s)
- Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
40
|
Oladiran A, Beauparlant D, Belosevic M. The expression analysis of inflammatory and antimicrobial genes in the goldfish (Carassius auratus L.) infected with Trypanosoma carassii. FISH & SHELLFISH IMMUNOLOGY 2011; 31:606-613. [PMID: 21782951 DOI: 10.1016/j.fsi.2011.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 05/31/2023]
Abstract
We report results of a comprehensive analysis of inflammatory gene expression during the course of infection of Trypanosoma carassii in the goldfish. We observed significant increases in mRNA levels of genes encoding pro-inflammatory cytokines IFN-γ, TNFα1 and TNFα2; IL-1β-1 and IL-1β-2; IL-12-p35 and IL-12-p40; CCL1; CXCL8, anti-inflammatory cytokines IL-10 and TGFβ and iNOS A and iNOS B, using quantitative PCR. Expression levels and profiles of these cytokines and iNOS isoforms varied in the different tissues (kidney, spleen, liver) of goldfish during the course of T. carassii infection. The expression of majority of genes that encode pro- and anti-inflammatory cytokines were up-regulated during the acute phase of infection (days 7-21 post-infection). The mRNA levels of these cytokines returned to normal levels or were down-regulated during the elimination phase of infection (days 28-56), with exception of IL-10 in the spleen and liver of infected fish. A parallel up-regulation of IFN-γ and IL-10 mRNA levels were observed in all tissues of infected fish during the acute phase of the infection. The expression of iNOS genes (iNOS A and B) was significantly delayed (day 14 pi) in the kidney, liver and spleen of infected fish. These results provide insights into the interaction between T. carassii and goldfish, and suggest that Th1/Th2-like responses may be important for controlling T. carassii infection in the goldfish.
Collapse
Affiliation(s)
- Ayoola Oladiran
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|