1
|
Wimer LA, Davis-Castillo A, Galkina S, Ciotlos S, Patterson C, Prado L, Munoz MC, Martin N, Epstein S, Schaum N, Melov S. Characterizing phenotypic data of Peromyscus leucopus compared to C57BL/6J Mus musculus and diversity outbred (DO) Mus musculus. GeroScience 2024; 46:4647-4656. [PMID: 38871964 PMCID: PMC11335981 DOI: 10.1007/s11357-024-01175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/24/2024] [Indexed: 06/15/2024] Open
Abstract
Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Collapse
Affiliation(s)
- Lauren A Wimer
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Asia Davis-Castillo
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Sofiya Galkina
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Serban Ciotlos
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Cavan Patterson
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Leandro Prado
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Maria Castro Munoz
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Nicolas Martin
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | - Sharon Epstein
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA
| | | | - Simon Melov
- Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94949, USA.
| |
Collapse
|
2
|
Sommers V, Gentenaar M, David K, Narinx N, Dubois V, Kroon J, Claessens F, Meijer OC. Androgens Suppress Corticosteroid Binding Globulin in Male Mice, Affecting the Endocrine Stress Response. Endocrinology 2024; 165:bqae119. [PMID: 39240718 PMCID: PMC11420631 DOI: 10.1210/endocr/bqae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/08/2024]
Abstract
Biological sex affects the activity of the hypothalamus-pituitary-adrenal (HPA) axis. However, how androgen deprivation affects this axis remains largely unknown. In this study, we investigated the effect of androgen status on different components of the HPA axis in male mice. Two weeks of androgen deprivation did not affect total plasma corticosterone levels but led to increased pituitary ACTH levels. Stress-induced total plasma corticosterone levels were increased, whereas the suppression of corticosterone after dexamethasone treatment under basal conditions was attenuated. Androgen-deprived mice displayed a 2-fold increase in plasma levels of corticosteroid binding globulin (CBG). A similar increase in CBG was observed in global androgen receptor knock-out animals, compared to wild-type littermates. Androgen deprivation was associated with a 6-fold increase in CBG mRNA in the liver and enhanced transcriptional activity at CBG regulatory regions, as evidenced by increased H3K27 acetylation. We propose that the induction of CBG as a consequence of androgen deprivation, together with the unaltered total corticosterone levels, results in lower free corticosterone levels in plasma. This is further supported by mRNA levels of androgen-independent GR target genes in the liver. The reduction in negative feedback on the HPA axis under basal condition would suffice to explain the enhanced stress reactivity after androgen deprivation. Overall, our data demonstrate that, in mice, tonic androgen receptor activation affects CBG levels in conjunction with effects on gene expression and HPA-axis reactivity.
Collapse
Affiliation(s)
- Vera Sommers
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg ON1 Herestraat 49 - Box 901, 3000 Leuven, Belgium
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
| | - Max Gentenaar
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
| | - Karel David
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, ON1bis Herestraat 49 - Box 902, 3000 Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, 30000 Leuven, Belgium
| | - Nick Narinx
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, ON1bis Herestraat 49 - Box 902, 3000 Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Vanessa Dubois
- Laboratory of Basic and Translational Endocrinology, Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Kroon
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg ON1 Herestraat 49 - Box 901, 3000 Leuven, Belgium
| | - Onno C Meijer
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Netherlands
| |
Collapse
|
3
|
Douté M, Monzali C, Nicoletti A, Caligiuri G, Clement M. Refining urine collection in mice: Development of an innovative urine collection device. Lab Anim 2024:236772231219828. [PMID: 39157988 DOI: 10.1177/00236772231219828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Urine collection can be challenging in studies involving small rodents like mice, as the actual methods of collection are anxiogenic and constrain animal welfare while having high variability in the volume of urine collected. To improve the current methods and eventually reduce the impact on the well-being of mice, we developed an innovative 3D-printed urine collection device (UCD). This two-compartment UCD is shaped to fit in classical husbandry cages and allows urine collection by spontaneous urination from two mice housed in their own cage without cross-contamination while enabling potential social interactions. We used our UCD to study the evolution of urinary parameters related to renal functions in a model of antibody-mediated chronic kidney disease. Overall, we report here a time-saving and affordable method for urine collection providing a large amount of uncontaminated urine and which we believe may improve animal welfare in comparison with other methods.
Collapse
Affiliation(s)
- Mélodie Douté
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
| | | | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Nord Val-de-Seine, Paris, France
| | - Marc Clement
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
| |
Collapse
|
4
|
Lawton SB, Grobe CC, Reho JJ, Raff H, Thulin JD, Jensen ES, Burnett CM, Segar JL, Grobe JL. Differences in Fluid, Electrolyte, and Energy Balance in C57BL/6J Mice ( Mus musculus) in Metabolic Caging at Thermoneutral or Standard Room Temperatures. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:190-200. [PMID: 38191147 PMCID: PMC11022944 DOI: 10.30802/aalas-jaalas-23-000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
The Guide for the Care and Use of Laboratory Animals recommends mice be pair or group housed and provided with nesting materials. These provisions support social interactions and are also critical for thermoregulatory behaviors such as huddling and burrowing. However, studies of fluid and electrolyte balance and digestive function may involve use of metabolic caging (MC) systems in which mice are housed individually on wire-mesh floors that permit quantitative collection of urine and feces. MC housing prevents mice from performing their typical huddling and burrowing behaviors. Housing in MC can cause weight loss and behavioral changes in rodents. Here, we tested the hypothesis that MC housing of mice at standard room temperature (SRT, 22 to 23 °C) exposes them to cold stress, which causes metabolic changes in the mice as compared with standard housing. We hypothesized that performing MC studies at a thermoneutral temperature (TNT, 30 °C) would minimize these changes. Fluid, electrolyte, and energy balance and body composition were assessed in male and female C57BL/6J mice housed at SRT or TNT in MC, static microisolation cages, or a multiplexed metabolic phenotyping system designed to mimic static microisolation cages (Promethion, Sable Systems International). In brief, as compared with MC housing at SRT, MC housing at TNT was associated with lower food intake and energy expenditure, absence of weight loss, and lower urine and fecal corticosterone levels. These results indicate that housing in MC at SRT causes cold stress that can be mitigated if MC studies are performed at TNT.
Collapse
Affiliation(s)
- Samuel Br Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hershel Raff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph D Thulin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Research Office Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eric S Jensen
- Department of Pediatrics, Research Office Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Colin Ml Burnett
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pediatrics; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin;,
| |
Collapse
|
5
|
Wittek L, Touma C, Nitezki T, Laeger T, Krämer S, Raila J. Reduction in Cold Stress in an Innovative Metabolic Cage Housing System Increases Animal Welfare in Laboratory Mice. Animals (Basel) 2023; 13:2866. [PMID: 37760266 PMCID: PMC10525209 DOI: 10.3390/ani13182866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Housing in metabolic cages can induce a pronounced stress response. Metabolic cage systems imply housing mice on metal wire mesh for the collection of urine and feces in addition to monitoring food and water intake. Moreover, mice are single-housed, and no nesting, bedding, or enrichment material is provided, which is often argued to have a not negligible impact on animal welfare due to cold stress. We therefore attempted to reduce stress during metabolic cage housing for mice by comparing an innovative metabolic cage (IMC) with a commercially available metabolic cage from Tecniplast GmbH (TMC) and a control cage. Substantial refinement measures were incorporated into the IMC cage design. In the frame of a multifactorial approach for severity assessment, parameters such as body weight, body composition, food intake, cage and body surface temperature (thermal imaging), mRNA expression of uncoupling protein 1 (Ucp1) in brown adipose tissue (BAT), fur score, and fecal corticosterone metabolites (CMs) were included. Female and male C57BL/6J mice were single-housed for 24 h in either conventional Macrolon cages (control), IMC, or TMC for two sessions. Body weight decreased less in the IMC (females-1st restraint: -6.94%; 2nd restraint: -6.89%; males-1st restraint: -8.08%; 2nd restraint: -5.82%) compared to the TMC (females-1st restraint: -13.2%; 2nd restraint: -15.0%; males-1st restraint: -13.1%; 2nd restraint: -14.9%) and the IMC possessed a higher cage temperature (females-1st restraint: 23.7 °C; 2nd restraint: 23.5 °C; males-1st restraint: 23.3 °C; 2nd restraint: 23.5 °C) compared with the TMC (females-1st restraint: 22.4 °C; 2nd restraint: 22.5 °C; males-1st restraint: 22.6 °C; 2nd restraint: 22.4 °C). The concentration of fecal corticosterone metabolites in the TMC (females-1st restraint: 1376 ng/g dry weight (DW); 2nd restraint: 2098 ng/g DW; males-1st restraint: 1030 ng/g DW; 2nd restraint: 1163 ng/g DW) was higher compared to control cage housing (females-1st restraint: 640 ng/g DW; 2nd restraint: 941 ng/g DW; males-1st restraint: 504 ng/g DW; 2nd restraint: 537 ng/g DW). Our results show the stress potential induced by metabolic cage restraint that is markedly influenced by the lower housing temperature. The IMC represents a first attempt to target cold stress reduction during metabolic cage application thereby producing more animal welfare friendlydata.
Collapse
Affiliation(s)
- Laura Wittek
- Department of Physiology and Pathophysiology of Nutrition, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany (T.L.); (J.R.)
| | - Chadi Touma
- Department of Behavioural Biology, Osnabruck University, 49076 Osnabruck, Germany;
| | - Tina Nitezki
- Department of Physiology and Pathophysiology of Nutrition, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany (T.L.); (J.R.)
| | - Thomas Laeger
- Department of Physiology and Pathophysiology of Nutrition, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany (T.L.); (J.R.)
| | - Stephanie Krämer
- Interdisciplinary Center of 3Rs in Animal Research (ICAR3R), Clinic of Veterinary Medicine, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Jens Raila
- Department of Physiology and Pathophysiology of Nutrition, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany (T.L.); (J.R.)
| |
Collapse
|
6
|
Bosque M, Margalef R, Llaveria A, Santafe MM. Stress increases the spontaneous release of ACh and may be involved in the generation and maintenance of myofascial trigger points in mouse. Behav Brain Res 2023; 452:114572. [PMID: 37421986 DOI: 10.1016/j.bbr.2023.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
An increase in spontaneous neurotransmission may be related to myofascial pain. Sympathetic neurons innervate most of the neuromuscular junction sand are involved in the modulation of synaptic transmission. Therefore, a direct action of stress on acetylcholine release is expected. For this reason, this study aims to evaluate the relationship between stress and spontaneous neurotransmission. Five acute stressors (immobilization, forced swimming, food and water deprivation, social isolation and ultrasound) were tested in 6 weeks adult Swiss male mice. Subsequently, these types of stress were combined to generate a model of chronic stress. The study of ACh release was evaluated before and after the application of stress by intracellular recording of spontaneous neurotransmission (mEPPs). In each one of the stressors, an increase in the frequency of mEPPs was obtained immediately after treatment, which remained elevated for 5 days and thereafter returned to control values after a week. With chronic stress, a much higher increase in the frequency of mEPPs was obtained and it was maintained for 15 days. In summary, stress, both in its acute and chronic forms, increased spontaneous neurotransmission significantly. There is a possibility that chronic stress is related with the genesis or maintenance of myofascial pain.
Collapse
Affiliation(s)
- Marc Bosque
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain
| | - Ramón Margalef
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain
| | - Albert Llaveria
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain
| | - Manel M Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain.
| |
Collapse
|
7
|
Brown RM, James MH. Binge eating, overeating and food addiction: Approaches for examining food overconsumption in laboratory rodents. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110717. [PMID: 36623582 PMCID: PMC10162020 DOI: 10.1016/j.pnpbp.2023.110717] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Overeating ranges in severity from casual overindulgence to an overwhelming drive to consume certain foods. At its most extreme, overeating can manifest as clinical diagnoses such as binge eating disorder or bulimia nervosa, yet subclinical forms of overeating such as emotional eating or uncontrolled eating can still have a profoundly negative impact on health and wellbeing. Although rodent models cannot possibly capture the full spectrum of disordered overeating, studies in laboratory rodents have substantially progressed our understanding of the neurobiology of overconsumption. These experimental approaches range from simple food-exposure protocols that promote binge-like eating and the development of obesity, to more complex operant procedures designed to examine distinct 'addiction-like' endophenotypes for food. This review provides an overview of these experimental approaches, with the view to providing a comprehensive resource for preclinical investigators seeking to utilize behavioural models for studying the neural systems involved in food overconsumption.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, NJ, USA; Brain Health Institute, Rutgers University, NJ, USA.
| |
Collapse
|
8
|
Muta O, Odaka M, Fujii Y, Fushimi T, Sato H, Osakabe N. Difference in endocrine and behavior between short-term single- and paired-housing mice in metabolic cage. Neurosci Lett 2023; 806:137246. [PMID: 37068655 DOI: 10.1016/j.neulet.2023.137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Metabolic cage housing which is exposed to a number of environmental stressors is often used in pharmacokinetic studies. In this study, we compared the difference in stress response between single- and paired-housing in metabolic cages by evaluating the alteration of urinary stress hormones and behavior. Mice were randomly divided into single- or paired-housing groups and placed in a metabolic cage with wire mesh. Their urine was collected every 24 hours for consecutive 4 days to determine excreted catecholamine and corticosterone. The change in body weight was significantly decreased at 3 and 4 days in the single-housing group compared with that before the experiment, but not paired-housing group. The level of urinary catecholamines, such as noradrenaline, adrenaline, and their metabolite vanillylmandelic acid, was significantly increased in the single-housing compared with paired housing group and urinary corticosterone increased as well. Next, for the two similarly housed groups, we observed spontaneous behavior on the fourth day and conducted an elevated plus-maze test on the fifth day. Spontaneous behavior was not different between experimental groups. In the elevated plus-maze test, the proportion of time spent in the open arms was significantly prolonged in the paired-housing group compared to that of the single-housing group. Short-term social isolation stress loading in metabolic cages was suggested to exhibit endocrinological and behavioral changes in mice. To reduce such interference due to stress exposure, it was suggested to keep two mice in a metabolic cage.
Collapse
Affiliation(s)
- Orie Muta
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology
| | - Minayu Odaka
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology
| | - Yasuyuki Fujii
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology; Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology
| | - Taiki Fushimi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology
| | - Hiroki Sato
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology; Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology
| | - Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology; Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology.
| |
Collapse
|
9
|
Bordeau BM, Nguyen TD, Polli JR, Chen P, Balthasar JP. Payload-Binding Fab Fragments Increase the Therapeutic Index of MMAE Antibody-Drug Conjugates. Mol Cancer Ther 2023; 22:459-470. [PMID: 36723609 PMCID: PMC10073278 DOI: 10.1158/1535-7163.mct-22-0440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Monomethyl auristatin E (MMAE) is a potent tubulin inhibitor that is used as the payload for four FDA-approved antibody-drug conjugates (ADC). Deconjugated MMAE readily diffuses into untargeted cells, resulting in off-target toxicity. Here, we report the development and evaluation of a humanized Fab fragment (ABC3315) that enhances the therapeutic selectivity of MMAE ADCs. ABC3315 increased the IC50 of MMAE against human cancer cell lines by > 500-fold with no impact on the cytotoxicity of MMAE ADCs, including polatuzumab vedotin (PV) and trastuzumab-vc-MMAE (TvcMMAE). Coadministration of ABC3315 did not reduce the efficacy of PV or TvcMMAE in xenograft tumor models. Coadministration of ABC3315 with 80 mg/kg TvcMMAE significantly (P < 0.0001) increased the cumulative amount of MMAE that was excreted in urine 0 to 4 days after administration from 789.4±19.0 nanograms (TvcMMAE alone) to 2625±206.8 nanograms (for mice receiving TvcMMAE with coadministration of ABC3315). Mice receiving 80 mg/kg TvcMMAE and PBS exhibited a significant drop in white blood cell counts (P = 0.025) and red blood cell counts (P = 0.0083) in comparison with control mice. No significant differences, relative to control mice, were found for white blood cell counts (P = 0.15) or for red blood cell counts (P = 0.23) for mice treated with 80 mg/kg TvcMMAE and ABC3315. Coadministration of ABC3315 with 120 mg/kg PV significantly (P = 0.045) decreased the percentage body weight loss at nadir for treated mice from 11.9%±7.0% to 4.1%±2.1%. Our results demonstrate that ABC3315, an anti-MMAE Fab fragment, decreases off-target toxicity while not decreasing antitumor efficacy, increasing the therapeutic window of MMAE ADCs.
Collapse
Affiliation(s)
- Brandon M. Bordeau
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Toan Duc Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Joseph Ryan Polli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Ping Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| |
Collapse
|
10
|
Corridon PR. Enhancing the expression of a key mitochondrial enzyme at the inception of ischemia-reperfusion injury can boost recovery and halt the progression of acute kidney injury. Front Physiol 2023; 14:1024238. [PMID: 36846323 PMCID: PMC9945300 DOI: 10.3389/fphys.2023.1024238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Hydrodynamic fluid delivery has shown promise in influencing renal function in disease models. This technique provided pre-conditioned protection in acute injury models by upregulating the mitochondrial adaptation, while hydrodynamic injections of saline alone have improved microvascular perfusion. Accordingly, hydrodynamic mitochondrial gene delivery was applied to investigate the ability to halt progressive or persistent renal function impairment following episodes of ischemia-reperfusion injuries known to induce acute kidney injury (AKI). The rate of transgene expression was approximately 33% and 30% in rats with prerenal AKI that received treatments 1 (T1hr) and 24 (T24hr) hours after the injury was established, respectively. The resulting mitochondrial adaptation via exogenous IDH2 (isocitrate dehydrogenase 2 (NADP+) and mitochondrial) significantly blunted the effects of injury within 24 h of administration: decreased serum creatinine (≈60%, p < 0.05 at T1hr; ≈50%, p < 0.05 at T24hr) and blood urea nitrogen (≈50%, p < 0.05 at T1hr; ≈35%, p < 0.05 at T24hr) levels, and increased urine output (≈40%, p < 0.05 at T1hr; ≈26%, p < 0.05 at T24hr) and mitochondrial membrane potential, Δψm, (≈ by a factor of 13, p < 0.001 at T1hr; ≈ by a factor of 11, p < 0.001 at T24hr), despite elevated histology injury score (26%, p < 0.05 at T1hr; 47%, p < 0.05 at T24hr). Therefore, this study identifies an approach that can boost recovery and halt the progression of AKI at its inception.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Costello HM, Crislip GR, Cheng KY, Lynch IJ, Juffre A, Bratanatawira P, Mckee A, Thelwell RS, Mendez VM, Wingo CS, Douma LG, Gumz ML. Adrenal-Specific KO of the Circadian Clock Protein BMAL1 Alters Blood Pressure Rhythm and Timing of Eating Behavior. FUNCTION 2023; 4:zqad001. [PMID: 36778748 PMCID: PMC9909366 DOI: 10.1093/function/zqad001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global Bmal1 knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific Bmal1 (ASCre/+ ::Bmal1) KO mice were generated using aldosterone synthase Cre recombinase to KO Bmal1 in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male ASCre/+ ::Bmal1 KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. AS Cre/+ ::Bmal1 KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, USA
| | - G Ryan Crislip
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Kit-Yan Cheng
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - I Jeanette Lynch
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Research, North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
| | - Alexandria Juffre
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Phillip Bratanatawira
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Annalisse Mckee
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Ryanne S Thelwell
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Victor M Mendez
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Charles S Wingo
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Research, North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
| | - Lauren G Douma
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, USA
- Research, North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Tiemann I, Fijn LB, Bagaria M, Langen EMA, van der Staay FJ, Arndt SS, Leenaars C, Goerlich VC. Glucocorticoids in relation to behavior, morphology, and physiology as proxy indicators for the assessment of animal welfare. A systematic mapping review. Front Vet Sci 2023; 9:954607. [PMID: 36686168 PMCID: PMC9853183 DOI: 10.3389/fvets.2022.954607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Translating theoretical concepts of animal welfare into quantitative assessment protocols is an ongoing challenge. Glucocorticoids (GCs) are frequently used as physiological measure in welfare assessment. The interpretation of levels of GCs and especially their relation to welfare, however, is not as straightforward, questioning the informative power of GCs. The aim of this systematic mapping review was therefore to provide an overview of the relevant literature to identify global patterns in studies using GCs as proxy for the assessment of welfare of vertebrate species. Following a systematic protocol and a-priory inclusion criteria, 509 studies with 517 experiments were selected for data extraction. The outcome of the experiments was categorized based on whether the intervention significantly affected levels of GCs, and whether these effects were accompanied by changes in behavior, morphology and physiology. Additional information, such as animal species, type of intervention, experimental set up and sample type used for GC determination was extracted, as well. Given the broad scope and large variation in included experiments, meta-analyses were not performed, but outcomes are presented to encourage further, in-depth analyses of the data set. The interventions did not consistently lead to changes in GCs with respect to the original authors hypothesis. Changes in GCs were not consistently paralleled by changes in additional assessment parameter on behavior, morphology and physiology. The minority of experiment quantified GCs in less invasive sample matrices compared to blood. Interventions showed a large variability, and species such as fish were underrepresented, especially in the assessment of behavior. The inconclusive effects on GCs and additional assessment parameter urges for further validation of techniques and welfare proxies. Several conceptual and technical challenges need to be met to create standardized and robust welfare assessment protocols and to determine the role of GCs herein.
Collapse
Affiliation(s)
- Inga Tiemann
- Faculty of Agriculture, Institute of Agricultural Engineering, University of Bonn, Bonn, Germany,*Correspondence: Inga Tiemann ✉
| | - Lisa B. Fijn
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Marc Bagaria
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther M. A. Langen
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - F. Josef van der Staay
- Division of Farm Animal Health, Behaviour and Welfare Group, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Saskia S. Arndt
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Vivian C. Goerlich
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Harris BN, Roberts BR, DiMarco GM, Maldonado KA, Okwunwanne Z, Savonenko AV, Soto PL. Hypothalamic-pituitary-adrenal (HPA) axis activity and anxiety-like behavior during aging: A test of the glucocorticoid cascade hypothesis in amyloidogenic APPswe/PS1dE9 mice. Gen Comp Endocrinol 2023; 330:114126. [PMID: 36122793 PMCID: PMC10250074 DOI: 10.1016/j.ygcen.2022.114126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive, dementing, whole-body disorder that presents with decline in cognitive, behavioral, and emotional functions, as well as endocrine dysregulation. The etiology of AD is not fully understood but stress- and anxiety-related hormones may play a role in its development and trajectory. The glucocorticoid cascade hypothesis posits that levels of glucocorticoids increase with age, leading to dysregulated negative feedback, further elevated glucocorticoids, and resulting neuropathology. We examined the impact of age (from 2 to 10 months) and stressor exposure (predator odor) on hormone levels (corticosterone and ghrelin), anxiety-like behavior (open field and light dark tests), and memory-related behavior (novel object recognition; NOR), and whether these various measures correlated with neuropathology (hippocampus and cortex amyloid beta, Aβ) in male and female APPswe/PS1dE9 transgenic and non-transgenic mice. Additionally, we performed exploratory analyses to probe if the open field and light dark test as commonly used tasks to assess anxiety levels were correlated. Consistent with the glucocorticoid cascade hypothesis, baseline corticosterone increased with age. Predator odor exposure elevated corticosterone at each age, but in contrast to the glucocorticoid cascade hypothesis, the magnitude of stressor-induced elevations in corticosterone levels did not increase with age. Overall, transgenic mice had higher post-stressor, but not baseline, corticosterone than non-transgenic mice, and across both genotypes, females consistently had higher (baseline and post-stressor) corticosterone than males. Behavior in the open field test primarily showed decreased locomotion with age, and this was pronounced in transgenic females. Anxiety-like behaviors in the light dark test were exacerbated following predator odor, and female transgenic mice were the most impacted. Compared to transgenic males, transgenic females had higher Aβ concentrations and showed more anxiety-like behavior. Performance on the NOR did not differ significantly between genotypes. Lastly, we did not find robust, statistically significant correlations among corticosterone, ghrelin, recognition memory, anxiety-like behaviors, or Aβ, suggesting outcomes are not strongly related on the individual level. Our data suggest that despite Aβ accumulation in the hippocampus and cortex, male and female APPswePS1dE9 transgenic mice do not differ robustly from their non-transgenic littermates in physiological, endocrine, and behavioral measures at the range of ages studied here.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.
| | - Breanna R Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Giuliana M DiMarco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States; Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | | | - Zenobia Okwunwanne
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Alena V Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul L Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
14
|
Chen Q, Huang L, Pan D, Hu K, Li R, Friedline RH, Kim JK, Zhu LJ, Guertin DA, Wang YX. A brown fat-enriched adipokine Adissp controls adipose thermogenesis and glucose homeostasis. Nat Commun 2022; 13:7633. [PMID: 36496438 PMCID: PMC9741603 DOI: 10.1038/s41467-022-35335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The signaling mechanisms underlying adipose thermogenesis have not been fully elucidated. Particularly, the involvement of adipokines that are selectively expressed in brown adipose tissue (BAT) and beige adipocytes remains to be investigated. Here we show that a previously uncharacterized adipokine (UPF0687 protein / human C20orf27 homolog) we named as Adissp (Adipose-secreted signaling protein) is a key regulator for white adipose tissue (WAT) thermogenesis and glucose homeostasis. Adissp expression is adipose-specific and highly BAT-enriched, and its secretion is stimulated by β3-adrenergic activation. Gain-of-functional studies collectively showed that secreted Adissp promotes WAT thermogenesis, improves glucose homeostasis, and protects against obesity. Adipose-specific Adissp knockout mice are defective in WAT browning, and are susceptible to high fat diet-induced obesity and hyperglycemia. Mechanistically, Adissp binds to a putative receptor on adipocyte surface and activates protein kinase A independently of β-adrenergic signaling. These results establish BAT-enriched Adissp as a major upstream signaling component in thermogenesis and offer a potential avenue for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Qingbo Chen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dongning Pan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yong-Xu Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Giral M, Armengol C, Gavaldà A. Physiologic Effects of Housing Rats in Metabolic Cages. Comp Med 2022; 72:298-305. [PMID: 36127131 PMCID: PMC9827597 DOI: 10.30802/aalas-cm-22-000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Currently, metabolic cages (MC) are the only way to achieve serial sampling of urine and feces in rodents. However, the use of this caging creates a dramatic change from an animal's usual microenvironment. Here we sought to examine the effect of MC on physiologic parameters that are stress-responsive in rats. We surgically implanted 8 male Wistar rats (weight, 150 to 175 g) with telemetric transmitters and allowed them to recover for at least 2 wk. At the beginning of the study, the rats were moved to conventional open-top cages, and telemetry recording was initiated. After 24 h, the rats were moved to MC or to another conventional cage and the recording continued for another 24 h. Finally, the rats were returned to their home cages, and telemetry recording was performed for a final 24 h. After 10 days, this process was then repeated, with MC and conventional assignments switched. During the 78-h monitoring period, we recorded heart rate, arterial blood pressure, locomotor activity, body weight, and food and water consumption. Heart rate and arterial blood pressure showed transient but significant changes. Locomotor activity during the dark phase was greatly decreased in MC compared with conventional cages, perhaps due to space constraints. In addition, when the rats were housed in MC, they showed a small but significant weight loss. Food consumption did not differ between housing environments, but water consumption was lower when rats were in MC. In conclusion, the housing of rats in MC for 24 h can elicit mild and reversible cardiovascular changes. This finding is consistent with European Directive 2010/63/EU, which considers short-term (less than 24 h) restraint in MC a procedure of mild severity.
Collapse
Affiliation(s)
- Marta Giral
- Animal Research Facilities,,Corresponding author.
| | | | | |
Collapse
|
16
|
Mieske P, Hobbiesiefken U, Fischer-Tenhagen C, Heinl C, Hohlbaum K, Kahnau P, Meier J, Wilzopolski J, Butzke D, Rudeck J, Lewejohann L, Diederich K. Bored at home?—A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Front Vet Sci 2022; 9:899219. [PMID: 36061113 PMCID: PMC9435384 DOI: 10.3389/fvets.2022.899219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Boredom is an emotional state that occurs when an individual has nothing to do, is not interested in the surrounding, and feels dreary and in a monotony. While this condition is usually defined for humans, it may very well describe the lives of many laboratory animals housed in small, barren cages. To make the cages less monotonous, environmental enrichment is often proposed. Although housing in a stimulating environment is still used predominantly as a luxury good and for treatment in preclinical research, enrichment is increasingly recognized to improve animal welfare. To gain insight into how stimulating environments influence the welfare of laboratory rodents, we conducted a systematic review of studies that analyzed the effect of enriched environment on behavioral parameters of animal well–being. Remarkably, a considerable number of these parameters can be associated with symptoms of boredom. Our findings show that a stimulating living environment is essential for the development of natural behavior and animal welfare of laboratory rats and mice alike, regardless of age and sex. Conversely, confinement and under-stimulation has potentially detrimental effects on the mental and physical health of laboratory rodents. We show that boredom in experimental animals is measurable and does not have to be accepted as inevitable.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carola Fischer-Tenhagen
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Céline Heinl
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Pia Kahnau
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jennifer Meier
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jenny Wilzopolski
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Daniel Butzke
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Juliane Rudeck
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- *Correspondence: Kai Diederich
| |
Collapse
|
17
|
Dickson E, Soylu-Kucharz R, Petersén Å, Björkqvist M. Hypothalamic expression of huntingtin causes distinct metabolic changes in Huntington's disease mice. Mol Metab 2022; 57:101439. [PMID: 35007790 PMCID: PMC8814380 DOI: 10.1016/j.molmet.2022.101439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE In Huntington's disease (HD), the disease-causing huntingtin (HTT) protein is ubiquitously expressed and causes both central and peripheral pathology. In clinical HD, a higher body mass index has been associated with slower disease progression, indicating the role of metabolic changes in disease pathogenesis. Underlying mechanisms of metabolic changes in HD remain poorly understood, but recent studies suggest the involvement of hypothalamic dysfunction. The present study aimed to investigate whether modulation of hypothalamic HTT levels would affect metabolic phenotype and disease features in HD using mouse models. METHODS We used the R6/2 and BACHD mouse models that express different lengths of mutant HTT to develop lean- and obese phenotypes, respectively. We utilized adeno-associated viral vectors to overexpress either mutant or wild-type HTT in the hypothalamus of R6/2, BACHD, and their wild-type littermates. The metabolic phenotype was assessed by body weight measurements over time and body composition analysis using dual-energy x-ray absorptiometry at the endpoint. R6/2 mice were further characterized using behavioral analyses, including rotarod, nesting-, and hindlimb clasping tests during early- and late-time points of disease progression. Finally, gene expression analysis was performed in R6/2 mice and wild-type littermates in order to assess transcriptional changes in the hypothalamus and adipose tissue. RESULTS Hypothalamic overexpression of mutant HTT induced significant gender-affected body weight gain in all models, including wild-type mice. In R6/2 females, early weight gain shifted to weight loss during the corresponding late stage of disease despite increased fat accumulation. Body weight changes were accompanied by behavioral alterations. During the period of early weight gain, R6/2 mice displayed a comparable locomotor capacity to wild-type mice. When assessing behavior just prior to weight loss onset in R6/2 mice, decreased locomotor performance was observed in R6/2 females with hypothalamic overexpression of mutant HTT. Transcriptional downregulation of beta-3 adrenergic receptor (B3AR), adipose triglyceride lipase (ATGL), and peroxisome proliferator-activated receptor-gamma (PPARγ) in gonadal white adipose tissue was accompanied by distinct alterations in hypothalamic gene expression profiles in R6/2 females after mutant HTT overexpression. No significant effect on metabolic phenotype in R6/2 was seen in response to wild-type HTT overexpression. CONCLUSIONS Taken together, our findings provide further support for the role of HTT in metabolic control via hypothalamic neurocircuits. Understanding the specific central neurocircuits and their peripheral link underlying metabolic imbalance in HD may open up avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
- Elna Dickson
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden.
| | - Rana Soylu-Kucharz
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, BMC D11, 221 84 Lund, Sweden
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| |
Collapse
|
18
|
Ziegler AA, Grobe CC, Reho JJ, Jensen ES, Thulin JD, Segar JL, Grobe JL. Short-term Housing in Metabolic Caging on Measures of Energy and Fluid Balance in Male C57BL/6J Mice ( Mus musculus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:132-139. [PMID: 34996529 PMCID: PMC8956215 DOI: 10.30802/aalas-jaalas-21-000087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Metabolic caging is an important tool for quantitative urine and feces collection in rodents, although significant limitations and problems accompany its use. Despite strong opinions among investigators regarding the effects of metabolic caging on energy and fluid homeostasis, careful quantitative analysis of the impact of this caging type-particularly when used for mice-is lacking. The current study assessed the effects of metabolic caging, with or without modifications such as plastic platform inserts, on ingestive behaviors, energy expenditure, accuracy of urine and fecal collection, and ambulatory activities in male C57BL/6J mice. Housing mice in metabolic cages, regardless of platform inclusion, increased energy expenditure without modifying food intake, presumably due to the inability of mice to perform normal thermoregulatory behaviors (burrowing and huddling). Surprisingly, mice in metabolic cages actively avoided platforms, and the inclusion of platforms modified the behavior of the mice and had position-dependent effects that reduced the accuracy of urine collection. Moving mice from cohousing to individual housing in home cages also increased ingestive behaviors and energy expenditure. We conclude that single housing of male C57BL/6J mice increases energy expenditure, that this increase is potentiated in metabolic caging conditions, and that platforms in metabolic cages alter mouse behavior and urine collection. Additional future work is needed to determine the potential benefits of using higher ambient temperature for studies of mice in metabolic caging and whether the above effects occur in females and other strains of mice and other rodent species.
Collapse
Affiliation(s)
- Alisha A Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI
| | - Eric S Jensen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Research Office Biomedical Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Joseph D Thulin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Research Office Biomedical Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
19
|
Reho JJ, Nakagawa P, Mouradian GC, Grobe CC, Saravia FL, Burnett CML, Kwitek AE, Kirby JR, Segar JL, Hodges MR, Sigmund CD, Grobe JL. Methods for the Comprehensive in vivo Analysis of Energy Flux, Fluid Homeostasis, Blood Pressure, and Ventilatory Function in Rodents. Front Physiol 2022; 13:855054. [PMID: 35283781 PMCID: PMC8914175 DOI: 10.3389/fphys.2022.855054] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular disease represents the leading cause of death in the United States, and metabolic diseases such as obesity represent the primary impediment to improving cardiovascular health. Rodent (mouse and rat) models are widely used to model cardiometabolic disease, and as a result, there is increasing interest in the development of accurate and precise methodologies with sufficiently high resolution to dissect mechanisms controlling cardiometabolic physiology in these small organisms. Further, there is great utility in the development of centralized core facilities furnished with high-throughput equipment configurations and staffed with professional content experts to guide investigators and ensure the rigor and reproducibility of experimental endeavors. Here, we outline the array of specialized equipment and approaches that are employed within the Comprehensive Rodent Metabolic Phenotyping Core (CRMPC) and our collaborating laboratories within the Departments of Physiology, Pediatrics, Microbiology & Immunology, and Biomedical Engineering at the Medical College of Wisconsin (MCW), for the detailed mechanistic dissection of cardiometabolic function in mice and rats. We highlight selected methods for the analysis of body composition and fluid compartmentalization, electrolyte accumulation and flux, energy accumulation and flux, physical activity, ingestive behaviors, ventilatory function, blood pressure, heart rate, autonomic function, and assessment and manipulation of the gut microbiota. Further, we include discussion of the advantages and disadvantages of these approaches for their use with rodent models, and considerations for experimental designs using these methods.
Collapse
Affiliation(s)
- John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Connie C. Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fatima L. Saravia
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Colin M. L. Burnett
- Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Anne E. Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey L. Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Justin L. Grobe,
| |
Collapse
|
20
|
Kongdang P, Pruksakorn D, Koonrungsesomboon N. Preclinical experimental models for assessing laxative activities of substances/products under investigation: a scoping review of the literature. Am J Transl Res 2022; 14:698-717. [PMID: 35273679 PMCID: PMC8902583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Constipation is a common gastrointestinal problem worldwide. Its impact on health can range from an unpleasant problem to being seriously troublesome. When lifestyle modification fails to deal with constipation, laxatives are the mainstay of therapy. There are several types of laxatives currently available; however, there still remains a need for better laxatives because certain currently available laxatives are not appropriate for or accessible to some patients. Preclinical experiments to study the laxative potential of substances/products of interest are vital to improving that situation. The selection of appropriate experimental models for assessing the laxative activities of substances/products under investigation is crucial to achieving valid and meaningful results. This article provides a scoping review of the literature, outlining, and summarizing models currently being used in preclinical experiments assessing the laxative activities of substances/products under investigation. The review includes both screening models, e.g., the isolated organ bath system, in vivo fecal assessment and intestinal transit assay, and confirmation models, e.g., in vivo constipation models. Chemical substances/drugs used to induce constipation in in vivo constipation models, e.g., loperamide, diphenoxylate, montmorillonite, and clonidine, as well as standard laxative agents used as a positive control in experimental models, e.g., bisacodyl, carbachol, lactulose, sodium picosulfate, castor oil, phenolphthalein, and yohimbine, are described in detail. The purpose of this article is to assist researchers in the design and implementation of preclinical experimental models for assessing laxative activities of substances/products under investigation to achieve valid and meaningful preclinical results prior to experimentation in humans.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Biomedical Engineering Institute, Chiang Mai UniversityChiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| |
Collapse
|
21
|
Koronowski KB, Sassone-Corsi P. Real-Time Measurement of Energy Metabolism Over Circadian Time Using Indirect Calorimetry-Enabled Metabolic Cages. Methods Mol Biol 2022; 2482:301-310. [PMID: 35610435 DOI: 10.1007/978-1-0716-2249-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Indirect calorimetry probes the relationship between fuel consumed and energy produced, and in doing so provides an estimation of whole-body energy expenditure and fuel preference. When assayed continuously in real-time, rhythms appear and illuminate the temporal regulation of energy metabolism by the circadian clock. Here we describe a method for recording circadian energy metabolism in mice using indirect calorimetry-enabled metabolic cages, encompassing mouse entrainment, experimental design, data acquisition and analysis, troubleshooting of common problems, and important considerations. This method is adaptable to the end user's equipment and serves as an effective tool to study, for example, mutant mice, dietary interventions, drug treatments, or circadian disruption.
Collapse
Affiliation(s)
- Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
22
|
Kaiyala KJ. Review of Measuring Metabolic Rates: A Manual for Scientists. Physiol Biochem Zool 2021. [DOI: 10.1086/714603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Stærk K, Grønnemose RB, Palarasah Y, Kolmos HJ, Lund L, Alm M, Thomsen P, Andersen TE. A Novel Device-Integrated Drug Delivery System for Local Inhibition of Urinary Tract Infection. Front Microbiol 2021; 12:685698. [PMID: 34248906 PMCID: PMC8267894 DOI: 10.3389/fmicb.2021.685698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Catheter-associated urinary tract infection (CAUTI) is a frequent community-acquired infection and the most common nosocomial infection. Here, we developed a novel antimicrobial catheter concept that utilizes a silicone-based interpenetrating polymer network (IPN) as balloon material to facilitate a topical slow-release prophylaxis of antibacterial agents across the balloon to the urinary bladder. Methods: The balloon material was achieved by modifying low shore hardness silicone tubes with a hydrogel interpenetrating polymer in supercritical CO2 using the sequential method. Release properties and antibacterial efficacy of the IPN balloon treatment concept was investigated in vitro and in a porcine CAUTI model developed for the study. In the latter, Bactiguard Infection Protection (BIP) Foley catheters were also assessed to enable benchmark with the traditional antimicrobial coating principle. Results: Uropathogenic Escherichia coli was undetectable in urinary bladders and on retrieved catheters in the IPN treatment group as compared to control that revealed significant bacteriuria (>105 colony forming units/ml) as well as catheter-associated biofilm. The BIP catheters failed to prevent E. coli colonization of the bladder but significantly reduced catheter biofilm formation compared to the control. Conclusion: The IPN-catheter concept provides a novel, promising delivery route for local treatment in the urinary tract.
Collapse
Affiliation(s)
- Kristian Stærk
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Rasmus Birkholm Grønnemose
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Lars Lund
- Research Unit of Urology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| |
Collapse
|
24
|
Lidocaine and bupivacaine as part of multimodal pain management in a C57BL/6J laparotomy mouse model. Sci Rep 2021; 11:10918. [PMID: 34035397 PMCID: PMC8149411 DOI: 10.1038/s41598-021-90331-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
While the use of local anesthesia as part of multimodal pain management is common practice in human and veterinarian surgery, these drugs are not applied routinely in rodent surgery. Several recommendations on the use of local anesthesia exist, but systematic studies on their efficacy and side effects are lacking. In the present study, male and female C57BL/6J mice were subjected to a sham vasectomy or a sham embryo transfer, respectively. We tested whether a mixture of subcutaneously injected Lidocaine and Bupivacaine in combination with systemic Paracetamol applied via drinking water results in superior pain relief when compared to treatment with local anesthesia or Paracetamol alone. We applied a combination of methods to assess behavioral, emotional, and physiological changes indicative of pain. Voluntary Paracetamol intake via drinking water reached the target dosage of 200 mg/kg in most animals. Local anesthesia did not lead to obvious side effects such as irregular wound healing or systemic disorders. No relevant sex differences were detected in our study. Sevoflurane anesthesia and surgery affected physiological and behavioral measurements. Surprisingly, Paracetamol treatment alone significantly increased the Mouse Grimace Scale. Taken together, mice treated with a combination of local anesthesia and systemic analgesia did not show fewer signs of post-surgical pain or improved recovery compared to animals treated with either local anesthesia or Paracetamol.
Collapse
|
25
|
Additional Assessment of Fecal Corticosterone Metabolites Improves Visual Rating in the Evaluation of Stress Responses of Laboratory Rats. Animals (Basel) 2021; 11:ani11030710. [PMID: 33807941 PMCID: PMC8001186 DOI: 10.3390/ani11030710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Assessment of animal welfare is an important aspect of preclinical studies to minimize suffering and burden and to improve scientific data. In a standard preclinical setup, such an assessment is normally done via so-called score sheets, which are part of the official documentation and approval of a preclinical study. These score sheets contain different categories, including objective parameters such as animals’ body weight, as well as more subjective criteria such as general status, behavior, and appearance, by which the animal is assessed and given a score reflecting the burden. However, very little is known about whether this mainly visual-based and subjective evaluation of the animals’ welfare reliably reflects the status of the animal and correlates well with more objective parameters used for assessment of animal welfare. To this end, the current study investigates the concordance of parameters obtained via standardized score sheets and fecal corticosterone metabolites in a preclinical neuroscientific setup. Determination of fecal corticosterone metabolites as response parameter of adrenocortical activity is thereby a well-validated parameter often used to determine animals’ stress levels. Our data reveal that specific but subjective scores did not mirror the stress response assessed via fecal corticosterone metabolites in the same animals. Abstract Since animal experiments cannot be completely avoided, the pain, suffering, and distress of laboratory animals must be minimized. To this end, a major prerequisite is reliable assessment of pain and distress. Usually, evaluation of animal welfare is done by visual inspection and score sheets. However, relatively little is known about whether standardized, but subjective, score sheets are able to reliably reflect the status of the animals. The current study aimed to compare visual assessment scores and changes in body weight with concentrations of fecal corticosterone metabolites (FCMs) in a neuroscientific experimental setup. Additionally, effects of refinement procedures were investigated. Eight male adult Sprague-Dawley rats underwent several experimental interventions, including electroencephalograph electrode implantation and subsequent recording, positron emission tomography (PET), and sleep deprivation (SD) by motorized activity wheels. Additional 16 rats were either used as controls without any treatment or to evaluate refinement strategies. Stress responses were determined on a daily basis by means of measuring FCMs, body weight, and evaluation of the animals’ welfare by standardized score sheets. Surgery provoked a significant elevation of FCM levels for up to five days. Increases in FCMs due to PET procedures or SD in activity wheels were also highly significant, while visual assessment scores did not indicate elevated stress levels and body weights remained constant. Visual assessment scores correlate with neither changes in body weight nor increases in FCM levels. Habituation procedures to activity wheels used for SD had no impact on corticosterone release. Our results revealed that actual score sheets for visual assessment of animal welfare did not mirror physiological stress responses assessed by FCM measurements. Moreover, small changes in body weight did not correlate with FCM concentration either. In conclusion, as visual assessment is a method allowing immediate interventions on suffering animals to alleviate burden, timely stress assessment in experimental rodents via score sheets should be ideally complemented by validated objective measures (e.g., fecal FCM measured by well-established assays for reliable detection of FCMs). This will complete a comprehensive appraisal of the animals’ welfare status in a retrospective manner and refine stressor procedures in the long run.
Collapse
|
26
|
Ortín-Piqueras V, Freitag TL, Andersson LC, Lehtonen SH, Meri SK, Spillmann T, Frias R. Urinary Excretion of Iohexol as a Permeability Marker in a Mouse Model of Intestinal Inflammation: Time Course, Performance and Welfare Considerations. Animals (Basel) 2021; 11:ani11010079. [PMID: 33406796 PMCID: PMC7824797 DOI: 10.3390/ani11010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022] Open
Abstract
Simple Summary In mammals, different diseases are associated with intestinal changes that may cause an increase in gut permeability. Intestinal permeability tests allow the evaluation of intestinal damage in humans, veterinary patients and laboratory animal models. When used in mouse models, these tests require that animals are singly housed in metabolic cages with a wire-grid floor to collect urine samples. This raises welfare concerns. Iohexol meets several criteria for an ideal intestinal permeability marker and has recently been used in several species. Here, we examined the performance of an intestinal permeability test using iohexol administered by mouth and following excretion over 24 h in urine. As a model, we chose immunodeficient mice with intestinal inflammation induced by adoptive transfer of effector/memory T cells. We collected urine samples at seven time points to profile the urinary excretion of iohexol, in addition to intestinal tissue samples for histological assessment. We conclude that a 6 h cumulative urine sample may be sufficient to evaluate small intestinal permeability in this mouse model and increased urinary excretion of iohexol is correlated with increased severity of duodenitis. The welfare of mice housed in metabolic cages could be improved by reducing the cage periods from 24 to 6 h. Abstract Intestinal permeability (IP) tests are used to assess intestinal damage in patients and research models. The probe iohexol has shown advantages compared to 51Cr-EDTA or absorbable/nonabsorbable sugars. During IP tests, animals are housed in metabolic cages (MCs) to collect urine. We examined the performance of an iohexol IP test in mice. Rag1-/- (C57BL/6) mice of both sexes were divided into controls or treatment groups, the latter receiving injections of effector/memory T cells to induce intestinal inflammation. After two, four and five weeks (W), a single dose of iohexol was orally administered. Urine was collected seven times over 24 h in MCs. Iohexol concentration was measured by ELISA. Intestinal histological damage was scored in duodenal sections. In control and treated mice of both sexes, urinary excretion of iohexol peaked at 4 h. From W2 to W4/W5, urinary iohexol excretion increased in treated mice of both sexes, consistent with development of duodenitis in this model. Positive correlations were observed between the urinary excretion of iohexol in W4/W5 and the histological severity of duodenitis in treated male mice. We conclude that a 6 h cumulative urine sample appears sufficient to evaluate small IP to iohexol in this mouse model, improving animal welfare by reducing cage periods.
Collapse
Affiliation(s)
- Victoria Ortín-Piqueras
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
- Comparative Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden;
- Correspondence:
| | - Tobias L Freitag
- Translational Immunology Research Program, University of Helsinki, FIN-00014 Helsinki, Finland; (T.L.F.); (S.K.M.)
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, FIN-00014 Helsinki, Finland; (L.C.A.); (S.H.L.)
| | - Sanna H Lehtonen
- Department of Pathology, University of Helsinki, FIN-00014 Helsinki, Finland; (L.C.A.); (S.H.L.)
- Research Programme for Clinical and Molecular Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Seppo K Meri
- Translational Immunology Research Program, University of Helsinki, FIN-00014 Helsinki, Finland; (T.L.F.); (S.K.M.)
| | - Thomas Spillmann
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Rafael Frias
- Comparative Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| |
Collapse
|
27
|
Asico LD, Rozyyev S, Crusan AM, Jose PA, Villar VAM. Elucidating the Role of Lipid Rafts on G Protein-Coupled Receptor Function in the Mouse Kidney: An In Vivo Approach. Methods Mol Biol 2021; 2187:187-206. [PMID: 32770507 DOI: 10.1007/978-1-0716-0814-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous G protein-coupled receptors (GPCRs) and GPCR-signaling molecules reside in lipid rafts and thus, are inherently regulated in these microdomains. However, the limitations of current methods to investigate lipid raft biology and GPCR activity in situ have hindered the complete understanding of the molecular underpinnings of GPCR trafficking and signaling, especially in the whole organism. This book chapter details an innovative in vivo approach to study the crucial role of lipid rafts on the workings of GPCRs in the mouse kidney. This protocol involves the use of a modified mini osmotic pump to deliver an agent that selectively disrupts the lipid raft in the kidney.
Collapse
Affiliation(s)
- Laureano D Asico
- Division of Renal Diseases and Hypertension, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| | - Selim Rozyyev
- Division of Renal Diseases and Hypertension, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Annabelle M Crusan
- Research Animal Facility, The Children's Research Institute, Children's National Health System, Washington, DC, USA
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Van Anthony M Villar
- Division of Renal Diseases and Hypertension, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
28
|
Whittaker AL, Hickman DL. The Impact of Social and Behavioral Factors on Reproducibility in Terrestrial Vertebrate Models. ILAR J 2020; 60:252-269. [PMID: 32720675 DOI: 10.1093/ilar/ilaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The use of animal models remains critical in preclinical and translational research. The reliability of the animal models and aspects of their validity is likely key to effective translation of findings to medicine. However, despite considerable uniformity in animal models brought about by control of genetics, there remain a number of social as well as innate and acquired behavioral characteristics of laboratory animals that may impact on research outcomes. These include the effects of strain and genetics, age and development, sex, personality and affective states, and social factors largely brought about by housing and husbandry. In addition, aspects of the testing environment may also influence research findings. A number of considerations resulting from the animals' innate and acquired behavioral characteristics as well as their social structures are described. Suggestions for minimizing the impact of these factors on research are provided.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Debra L Hickman
- Laboratory Animal Resource Center, Indiana University, Indianapolis, Indiana
| |
Collapse
|
29
|
Lin C, Wei Z, Yi Z, Tingting T, Huamao D, Lichun F. Analysis of the effects of nanosilver on bacterial community in the intestinal fluid of silkworms using high-throughput sequencing. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:309-320. [PMID: 31559940 DOI: 10.1017/s0007485319000634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanosilver is an environment-friendly, harmless alternative of traditional disinfectants which can be potentially applied in the sericulture industry. However, the effects of nanosilver on the intestinal bacterial community of the silkworms (Bombyx mori L.) are unclear. In this study, Illumina MiSeq high-throughput sequencing technology was used to assess the intestinal bacterial community in both male and female silkworms while treated with different concentrations of nanosilver. We found that nanosilver significantly influenced the composition of silkworm intestinal bacterial community on the different taxonomic levels. Most conspicuously, the abundance of Firmicutes was increased by the treatment of 20 mg L-1 nanosilver but decreased by that of 100 mg L-1 nanosilver at the phylum level. The same trend was observed in Bacilli at the class level and in Enterococcus at the genus level. In some extreme cases, application of nanosilver eliminated the bacterium, e.g., Brevibacillus, but increased the population of several other bacteria in the host intestine, such as Blautia, Terrisporobacter, Faecalibacterium, and some bacteria could only be found in nanosilver treatment groups, e.g., Dialister. In addition, although nanosilver generally showed negative effects on the cocooning rate in a dose-dependent manner, we found that 20 mg L-1 nanosilver treatment significantly increased the body weight of silkworms and did not show negative effects on the survival rate. These results indicated that the intestinal bacteria community of silkworm larvae was significantly changed after nanosilver treatment which might consequently influence host growth and development.
Collapse
Affiliation(s)
- Chen Lin
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing400715, China
| | - Zhou Wei
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing400715, China
| | - Zhou Yi
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing400715, China
| | - Tan Tingting
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing400715, China
| | | | - Feng Lichun
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing400715, China
| |
Collapse
|
30
|
Bradham K, Herde C, Herde P, Juhasz AL, Herbin-Davis K, Elek B, Farthing A, Diamond GL, Thomas DJ. Intra- and Interlaboratory Evaluation of an Assay of Soil Arsenic Relative Bioavailability in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2615-2622. [PMID: 32027133 PMCID: PMC8190816 DOI: 10.1021/acs.jafc.9b06537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hand-to-mouth activity in children can be an important route for ingestion of soil and dust contaminated with inorganic arsenic. Estimating the relative bioavailability of arsenic present in these media is a critical element in assessing the risks associated with aggregate exposure to this toxic metalloid during their early life. Here, we evaluated the performance of a mouse assay for arsenic bioavailability in two laboratories using a suite of 10 soils. This approach allowed us to examine both intralaboratory and interlaboratory variations in assay performance. Use of a single vendor for preparation of all amended test diets and of a single laboratory for arsenic analysis of samples generated in the participating laboratories minimized contributions of these potential sources of variability in assay performance. Intralaboratory assay data showed that food and water intake and cumulative urine and feces production remained stable over several years. The stability of these measurements accounted for the reproducibility of estimates of arsenic bioavailability obtained from repeated intralaboratory assays using sodium arsenate or soils as the test material. Interlaboratory comparisons found that estimates of variables used to evaluate assay performance (recovery and urinary excretion factor) were similar in the two laboratories. For all soils, estimates of arsenic relative bioavailability obtained in the two laboratories were highly correlated (r2 = 0.94 and slope = 0.9) in a linear regression model. Overall, these findings show that this mouse assay for arsenic bioavailability provides reproducible estimates using a variety of test soils. This robust model may be adaptable for use in other laboratory settings.
Collapse
Affiliation(s)
- Karen Bradham
- Public Health Chemistry Branch, Exposure Measurements and Methods Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709 USA
| | - Carina Herde
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Karen Herbin-Davis
- Pharmacokinetics Branch, Integrated Systems Toxicology Divison, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709 USA
| | - Brittany Elek
- Pharmacokinetics Branch, Integrated Systems Toxicology Divison, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709 USA
| | - Amy Farthing
- Pharmacokinetics Branch, Integrated Systems Toxicology Divison, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709 USA
| | | | | |
Collapse
|
31
|
Jobbagy S, Vitturi DA, Salvatore SR, Pires MF, Rowart P, Emlet DR, Ross M, Hahn S, St. Croix C, Wendell SG, Subramanya AR, Straub AC, Tan RJ, Schopfer FJ. Nrf2 activation protects against lithium-induced nephrogenic diabetes insipidus. JCI Insight 2020; 5:128578. [PMID: 31941842 PMCID: PMC7030822 DOI: 10.1172/jci.insight.128578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lithium (Li) is the mainstay pharmacotherapeutic mood stabilizer in bipolar disorder. Its efficacious use is complicated by acute and chronic renal side effects, including nephrogenic diabetes insipidus (NDI) and progression to chronic kidney disease (CKD). The nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway senses and coordinates cellular responses to oxidative and electrophilic stress. Here, we identify that graded genetic activation of Nrf2 protects against Li-induced NDI (Li-NDI) and volume wasting via an aquaporin 2-independent mechanism. Renal Nrf2 activity is differentially expressed on functional segments of the nephron, and its activation along the distal tubule and collecting duct directly modulates ion transporter expression, mimicking paradoxical effects of diuretics in mitigating Li-NDI. In addition, Nrf2 reduces cyclooxygenase expression and vasoactive prostaglandin biosynthesis. Pharmacologic activation of Nrf2 confers protective effects, confirming this pathway as a potentially novel druggable target for the prevention of acute and chronic renal sequelae of Li therapy.
Collapse
Affiliation(s)
| | - Dario A. Vitturi
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | | | | | - David R. Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine
| | | | - Scott Hahn
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology
- Health Sciences Metabolomics and Lipidomics Core, and
| | - Arohan R. Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | - Roderick J. Tan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
32
|
Barbee RW, Turner PV. Incorporating Laboratory Animal Science into Responsible Biomedical Research. ILAR J 2019; 60:9-16. [DOI: 10.1093/ilar/ilz017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/20/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Biomedical research has made great strides in the past century leading to rapid advances in human life expectancy, all derived from improved understanding, prevention, and treatment of many diseases and conditions. Research involving laboratory animals has played a significant role in this medical progress. However, there continues to be controversy surrounding the use of animals in research, and animal models have been questioned regarding their relevance to human conditions. While research fraud and questionable research practices could potentially contribute to this problem, we argue that a relative ignorance of laboratory animal science has contributed to the “uncontrolled vivarium experiment” that runs parallel to the more controlled scientific experiment. Several variables are discussed, including husbandry, animal environment, social housing, and more, that can contribute to this uncontrolled experiment, and that can simultaneously decrease quality of life for rodent test subjects when ignored. An argument is put forward that laboratory animal veterinarians and scientists can and should play an important role in better controlling such variables. Similarly, the laboratory animal veterinarian and scientist should play an important role in responsible science by addressing complex interdisciplinary challenges.
Collapse
Affiliation(s)
- R Wayne Barbee
- Virginia Commonwealth University, Office of Research and Innovation
| | - Patricia V Turner
- Charles River Laboratories Inc., Global Animal Welfare & Training, University of Guelph Pathobiology
| |
Collapse
|
33
|
Renal glycosuria as a novel early sign of colistin-induced kidney damage in mice. Antimicrob Agents Chemother 2019:AAC.01650-19. [PMID: 31591120 PMCID: PMC6879251 DOI: 10.1128/aac.01650-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The polymyxin colistin represents a last-resort antibiotic for multidrug-resistant infections, but its use is limited by the frequent onset of acute drug-induced kidney injury (DIKI). It is essential to closely monitor kidney function prior to and during colistin treatment in order to pinpoint early signs of injury and minimize long-term renal dysfunction. To facilitate this, a mouse model of colistin-induced nephrotoxicity was used to uncover novel early markers of colistin-induced DIKI. The polymyxin colistin represents a last-resort antibiotic for multidrug-resistant infections, but its use is limited by the frequent onset of acute drug-induced kidney injury (DIKI). It is essential to closely monitor kidney function prior to and during colistin treatment in order to pinpoint early signs of injury and minimize long-term renal dysfunction. To facilitate this, a mouse model of colistin-induced nephrotoxicity was used to uncover novel early markers of colistin-induced DIKI. Increased urinary levels of kidney injury molecule-1 (Kim-1) as well as glycosuria were observed in colistin-treated mice, where alterations of established clinical markers of acute kidney injury (serum creatinine and albuminuria) and emerging markers such as cystatin C were inaccurate in flagging renal damage as confirmed by histology. A direct interaction of colistin with renal glucose reabsorption was ruled out by a cis-inhibition assay in mouse brush border membrane vesicles (BBMV). Immunohistochemical examination and protein quantification by Western blotting showed a marked reduction in the protein amount of sodium-glucose transporter 2 (Sglt2), the main kidney glucose transporter, in renal tissue from colistin-treated mice in comparison to that in control animals. Consistently, BBMV isolated from treated mouse kidneys also showed a reduction in ex vivo glucose uptake compared to that in BBMV isolated from control kidneys. These findings support pathology observations of colistin-induced proximal tubule damage at the site of the brush border membrane, where Sglt2 is expressed, and open avenues for the study of glycosuria as a sensitive, specific, and accessible marker of DIKI during colistin therapy.
Collapse
|
34
|
Rowland NE, Toth LA. Analytic and Interpretational Pitfalls to Measuring Fecal Corticosterone Metabolites in Laboratory Rats and Mice. Comp Med 2019; 69:337-349. [PMID: 31578162 DOI: 10.30802/aalas-cm-18-000119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Minimization and alleviation of stress are generally viewed as desirable aspects of laboratory animal management and use. However, achieving that goal requires an unambiguous and valid measure of stress. Glucocorticoid concentrations are commonly used as a physiologic index of stress. Measurement of glucocorticoids in blood, serum or plasma clearly reflects many types of both acute and chronic stress. However, the rapid rise in concentrations of circulating glucocorticoids that occurs even with relatively simple manipulations such as handling has led to the increased use of fecal glucocorticoid metabolite (FCM) assays, which provide a temporally integrated measure that may allow a more accurate interpretation of chronic stressors. In this review, we consider 3 aspects of glucocorticoids as a measure of stress. First, we discuss the analytic and interpretational pitfalls of using FCM concentrations as an index of stress in mice and rats. Second, we consider evidence that some degree of stress may benefit animals by priming physiologic and behavioral adaptations that render the animals more resilient in the face of stress. Finally, we use 2 situations-social housing and food restriction-to illustrate the concept of hormesis-a biologic phenomenon in which a low dose or intensity of a challenge has a beneficial effect, whereas exposure to high doses or intensities is detrimental.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, Gainesville, Florida;,
| | - Linda A Toth
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, Illinois
| |
Collapse
|
35
|
Intermittent restraint stress induces circadian misalignment in the mouse bladder, leading to nocturia. Sci Rep 2019; 9:10069. [PMID: 31296902 PMCID: PMC6624370 DOI: 10.1038/s41598-019-46517-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Intermittent stress disrupts the circadian rhythm in clock genes such as Per2 only in peripheral organs without any effect on the central circadian clock in the suprachiasmatic nucleus. Here, the effect of restraint stress (RS) on circadian bladder function was investigated based on urination behavior and gene expression rhythms. Furthermore, PF670462 (PF), a Per2 phosphorylation enzyme inhibitor, was administered to investigate the effects on circadian bladder re-alignment after RS. Two-hour RS during the light (sleep) phase was applied to mice (RS mice) for 5 days. The following parameters were then examined: urination behaviors; clock gene expression rhythms and urinary sensory-related molecules such as piezo type mechanosensitive ion channel component 1 (Piezo1), transient receptor potential cation channel subfamily V member 4 (TRPV4), and Connexin26 (Cx26) in the bladder mucosa; Per2 expression in the excised bladder of Per2luciferase knock-in mice (Per2::luc); in vivo Per2 expression rhythms in the bladder of Per2::luc mice. Control mice did not show altered urination behavior in the light phase, whereas RS mice exhibited a higher voiding frequency and lower bladder capacity. In the bladder mucosa, RS mice also showed abrogated or misaligned Piezo1, TRPV4, Connexin26, and clock gene expression. The rhythmic expression of Per2 was also altered in RS mice both in excised- and in vivo bladder, compared with control mice. After PF administration, voiding frequency was reduced and bladder capacity was increased during the light phase in RS mice; the in vivo Per2 expression rhythm was also fully restored. Therefore, RS can alter circadian gene expression in the bladder during the light phase and might cause nocturia via changes in circadian bladder function due the dysregulation of clock genes. Amending the circadian rhythm therapeutically could be applied for nocturia.
Collapse
|
36
|
Gjendal K, Ottesen JL, Olsson IAS, Sørensen DB. Burrowing and nest building activity in mice after exposure to grid floor, isoflurane or ip injections. Physiol Behav 2019; 206:59-66. [DOI: 10.1016/j.physbeh.2019.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/22/2019] [Accepted: 02/16/2019] [Indexed: 01/23/2023]
|
37
|
Sahin Z, Solak H, Koc A, Ozen Koca R, Ozkurkculer A, Cakan P, Solak Gormus ZI, Kutlu S, Kelestimur H. Long-term metabolic cage housing increases anxiety/depression-related behaviours in adult male rats. Arch Physiol Biochem 2019; 125:122-127. [PMID: 29463132 DOI: 10.1080/13813455.2018.1441314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There are several reports on unfavourable effects of metabolic cage housing on animal welfare mainly due to the characteristic structures of these cages such as single housing and grid flooring. This study was aimed to compare the effects of long-term metabolic cage housing and conventional housing (normal grouped housing in standard cages) on the anxiety/depression-like behaviours in male rats. Anxiety/depression-related behaviours were evaluated by use of forced swimming test and open field test. Swimming and climbing were significantly lower and immobility duration higher in the metabolic cage group. In the open field test, total distance, mean velocity, time spent in the central area, zone transition, grooming, and rearing scores were significantly lower in the metabolic cage. Moreover, serum corticosterone level was higher in the metabolic cage group. The results of the study indicate that long-term metabolic cage housing may cause an increase in the anxiety- and depression-related behaviours in male rats.
Collapse
Affiliation(s)
- Zafer Sahin
- a Department of Physiology , Karadeniz Technical University , Trabzon , Turkey
| | - Hatice Solak
- b Department of Physiology , Necmettin Erbakan University , Konya , Turkey
| | - Aynur Koc
- b Department of Physiology , Necmettin Erbakan University , Konya , Turkey
| | - Raviye Ozen Koca
- b Department of Physiology , Necmettin Erbakan University , Konya , Turkey
| | | | - Pinar Cakan
- c Department of Physiology , Inonu University , Malatya , Turkey
| | | | - Selim Kutlu
- b Department of Physiology , Necmettin Erbakan University , Konya , Turkey
| | | |
Collapse
|
38
|
Sagar PS, Zhang J, Luciuk M, Mannix C, Wong ATY, Rangan GK. Increased water intake reduces long-term renal and cardiovascular disease progression in experimental polycystic kidney disease. PLoS One 2019; 14:e0209186. [PMID: 30601830 PMCID: PMC6314616 DOI: 10.1371/journal.pone.0209186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/01/2018] [Indexed: 01/29/2023] Open
Abstract
Polycystic kidney disease (PKD) is the most common inherited cause of kidney failure and currently has limited treatment options. Increasing water intake reduces renal cyst growth in the pck rat (a genetic ortholog of autosomal recessive PKD) but it is not clear if this beneficial effect is present in other models of PKD. In this study, we tested the hypothesis that high water intake (HWI) reduces the progression of cystic renal disease in Lewis polycystic kidney (LPK) rats (a genetic ortholog of human nephronophthisis-9). Groups of female and male LPK (n = 8–10 per group) and Lewis (n = 4 per group) rats received water ad libitum supplemented with or without 5% glucose [to simulate HWI or normal water intake (NWI) respectively] from postnatal weeks 3 to 16. Water intake increased ~1.3-fold in the LPK+HWI group compared to LPK+NWI rats between weeks 3 to 10 but the differences were not significant at later timepoints. In LPK rats, HWI reduced the increases in the kidney to body weight ratio by 54% at week 10 and by 42% at week 16 compared to NWI (both p<0.01). The reduction in kidney enlargement was accompanied by decreases in the percentage renal cyst area, percentage renal interstitial collagen and proteinuria (all p<0.05). At week 16, HWI reduced systolic blood pressure and the heart to body to weight ratio by 16% and 21% respectively in males LPK rats (both p<0.01). In conclusion, a modest increase in water intake during the early phase of disease was sufficient to attenuate renal cystic disease in LPK rats, with secondary benefits on hypertension and cardiovascular disease. These data provide further preclinical evidence that increased water intake is a potential intervention in cystic renal diseases.
Collapse
Affiliation(s)
- Priyanka S. Sagar
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
- * E-mail:
| | - Jennifer Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Magda Luciuk
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Carly Mannix
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Annette T. Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
39
|
Gibbs KM, Izer JM, Reeves WB, Wilson RP, Cooper TK. Effects of General Anesthesia on 2 Urinary Biomarkers of Kidney Injury-Hepatitis A Virus Cellular Receptor 1 and Lipocalin 2-in Male C57BL/6J Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2018; 58:21-29. [PMID: 30538007 DOI: 10.30802/aalas-jaalas-18-000062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Urinary biomarkers are used increasingly for sensitive prediction of kidney injury in preclinical and clinical studies. Given the frequent requirement of anesthesia in various animal models of disease, it is important to define the effects of anesthesia on kidney injury biomarkers to guide the appropriate selection of anesthetic agents and to avoid potential confounders in the interpretation of data. Therefore, we performed a prospective study using male C57BL/6J mice (n = 45) exposed to a single anesthetic episode to determine the effects several common anesthesia regimens on the urinary excretion of 2 commonly used kidney injury biomarkers: hepatitis A virus cellular receptor 1 (HAVCR1, also known as KIM1) and lipocalin 2 (LCN2, also known as NGAL). We evaluated 3 injectable regimens (ketamine-xylazine, tiletamine-zolazepam, and pentobarbital) and 2 inhalational agents (isoflurane and sevoflurane). Concentrations of HAVCR1 and LCN2 in urine collected at various time points after anesthesia were measured by using ELISA. Administration of ketamine-xylazine resulted in a significant increase in HAVCR1 levels at 6 h after anesthesia but a decrease in LCN2 levels compared with baseline. LCN2 levels steadily increased over the first 24 h after inhalant anesthesia, with a significant increase at 24 h after sevoflurane. These results suggest that injectable anesthesia had early effects on HAVCR1 and LCN2 levels, whereas inhalational agents increased these biomarkers over prolonged time.
Collapse
Affiliation(s)
- Krista M Gibbs
- Department of Comparative Medicine, Penn State University College of Medicine, Milton S Hershey Medical Center, Hershey, Pennsylvania;,
| | - Jenelle M Izer
- Department of Comparative Medicine, Penn State University College of Medicine, Milton S Hershey Medical Center, Hershey, Pennsylvania
| | - W Brian Reeves
- Department of Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ronald P Wilson
- Department of Comparative Medicine, Penn State University College of Medicine, Milton S Hershey Medical Center, Hershey, Pennsylvania
| | - Timothy K Cooper
- Department of Comparative Medicine, Penn State University College of Medicine, Milton S Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
40
|
Hill WG, Zeidel ML, Bjorling DE, Vezina CM. Void spot assay: recommendations on the use of a simple micturition assay for mice. Am J Physiol Renal Physiol 2018; 315:F1422-F1429. [PMID: 30156116 DOI: 10.1152/ajprenal.00350.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigators have for decades used mouse voiding patterns as end points for studying behavioral biology. It is only recently that mouse voiding patterns were adopted for study of lower urinary tract physiology. The spontaneous void spot assay (VSA), a popular micturition assessment tool, involves placing a mouse in an enclosure lined by filter paper and quantifying the resulting urine spot pattern. The VSA has advantages of being inexpensive and noninvasive, but some investigators challenge its ability to distinguish lower urinary tract function from behavioral voiding. A consensus group of investigators who regularly use the VSA was established by the National Institutes of Health in 2015 to address the strengths and weaknesses of the assay, determine whether it can be standardized across laboratories, and determine whether it can be used as a surrogate for evaluating urinary function. Here we leverage experience from the consensus group to review the history of the VSA and its uses, summarize experiments to optimize assay design for urinary physiology assessment, and make best practice recommendations for performing the assay and analyzing its results.
Collapse
Affiliation(s)
- Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts
| | - Chad M Vezina
- University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
41
|
Kovalčíková A, Gyurászová M, Gardlík R, Boriš M, Celec P, Tóthová Ľ. The effects of sucrose on urine collection in metabolic cages. Lab Anim 2018; 53:180-189. [PMID: 30045671 DOI: 10.1177/0023677218781674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Representative urine collection that respects the standards of animal welfare is still an issue in experimental nephrology. The commonly used metabolic cages induce stress in rodents. In mice, the volume of collected urine is sometimes insufficient for further analysis. The aim of this experiment was to analyse the effects of time of day, temperature and 2%, 5% or 10% sucrose solutions on diuresis, weight change and liquid intake of adult mice placed in metabolic cages for urine collection. Mice were placed in metabolic cages for 12 h during the day or night at standard ambient (22℃) and thermoneutral (28℃) temperatures. To determine the effect of acclimatisation, mice were placed in metabolic cages for five consecutive days. Diuresis increased with concentrations of sucrose. Body weight reduction was most rapid in the group given tap water and decreased with increasing sucrose concentrations. A drastic drop in body weight was observed in mice placed in metabolic cages for four consecutive days with access to tap water and food, indicating that time spent in metabolic cages should be kept to a minimum, as prolonged confinement in metabolic cages can be harmful to mice. The administration of concentrated sucrose solutions can potentially aid in mouse urine collection by reducing the time spent in metabolic cages. Sucrose supplementation increased the albumin/creatinine ratio. However, without showing estimates of glomerular filtration rate, renal haemodynamics, plasma electrolytes and urinary electrolyte excretions, the results of this study do not provide any conclusion about the effect of sucrose on renal function.
Collapse
Affiliation(s)
- Alexandra Kovalčíková
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Marianna Gyurászová
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Roman Gardlík
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Martin Boriš
- 3 Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Celec
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,4 Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Tóthová
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,5 Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
42
|
Wegner KA, Abler LL, Oakes SR, Mehta GS, Ritter KE, Hill WG, Zwaans BM, Lamb LE, Wang Z, Bjorling DE, Ricke WA, Macoska J, Marker PC, Southard-Smith EM, Eliceiri KW, Vezina CM. Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. Am J Physiol Renal Physiol 2018; 315:F1067-F1080. [PMID: 29972322 DOI: 10.1152/ajprenal.00245.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse urinary behavior is quantifiable and is used to pinpoint mechanisms of voiding dysfunction and evaluate potential human therapies. Approaches to evaluate mouse urinary function vary widely among laboratories, however, complicating cross-study comparisons. Here, we describe development and multi-institutional validation of a new tool for objective, consistent, and rapid analysis of mouse void spot assay (VSA) data. Void Whizzard is a freely available software plugin for FIJI (a distribution of ImageJ) that facilitates VSA image batch processing and data extraction. We describe its features, demonstrate them by evaluating how specific VSA method parameters influence voiding behavior, and establish Void Whizzard as an expedited method for VSA analysis. This study includes control and obese diabetic mice as models of urinary dysfunction to increase rigor and ensure relevance across distinct voiding patterns. In particular, we show that Void Whizzard is an effective tool for quantifying nonconcentric overlapping void spots, which commonly confound analyses. We also show that mouse genetics are consistently more influential than assay design parameters when it comes to VSA outcomes. None of the following procedural modifications to reduce overlapping spots masked these genetic-related differences: reduction of VSA testing duration, water access during the assay period, placement of a wire mesh cage bottom on top of or elevated over the filter paper, treatment of mesh with a hydrophobic spray, and size of wire mesh opening. The Void Whizzard software and rigorous validation of VSA methodological parameters described here advance the goal of standardizing mouse urinary phenotyping for comprehensive urinary phenome analyses.
Collapse
Affiliation(s)
- Kyle A Wegner
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Lisa L Abler
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Steven R Oakes
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Guneet S Mehta
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - K Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Bernadette M Zwaans
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Laura E Lamb
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Zunyi Wang
- Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Dale E Bjorling
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - William A Ricke
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Urology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jill Macoska
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Biology, University of Massachusetts Boston , Boston, Massachusetts
| | - Paul C Marker
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Division of Pharmaceutical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Kevin W Eliceiri
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Chad M Vezina
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
43
|
Careaga M, Taylor SL, Chang C, Chiang A, Ku KM, Berman RF, Van de Water JA, Bauman MD. Variability in PolyIC induced immune response: Implications for preclinical maternal immune activation models. J Neuroimmunol 2018; 323:87-93. [PMID: 30196839 DOI: 10.1016/j.jneuroim.2018.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Maternal infection during pregnancy may increase the risk of offspring neurodevelopmental disorders. The preclinical Polyinosinic-polycytidylic acid (PolyIC) model has become one of the most widely used approaches in maternal immune activation (MIA) research. However, variability in molecular weight may impact the immune activating potential of PolyIC. Nulliparous rats injected with high molecular weight PolyIC exhibit pronounced cytokine response and sickness behavior that was not observed in rats injected low molecular weight PolyIC. Although an essential next step is to extend these studies to pregnant animals, the preliminary results suggest that PolyIC molecular weight is an important experimental design consideration.
Collapse
Affiliation(s)
- Milo Careaga
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; The MIND Institute, University of California, Davis, USA
| | - Sandra L Taylor
- Department of Public Health Sciences, University of California, Davis, USA
| | - Carolyn Chang
- The MIND Institute, University of California, Davis, USA
| | - Alex Chiang
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; The MIND Institute, University of California, Davis, USA
| | - Katherine M Ku
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; The MIND Institute, University of California, Davis, USA
| | - Robert F Berman
- The MIND Institute, University of California, Davis, USA; Department of Neurological Surgery, University of California, Davis, USA
| | - Judy A Van de Water
- The MIND Institute, University of California, Davis, USA; Internal Medicine, Division of Rheumatology, University of California, Davis, USA
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; The MIND Institute, University of California, Davis, USA; California National Primate Research Center, University of California, Davis, USA.
| |
Collapse
|
44
|
Yausheva Е, Miroshnikov S, Sizova Е. Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18109-18120. [PMID: 29691748 DOI: 10.1007/s11356-018-1991-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The research included the study of influence of ultrafine particle preparations (nanoparticles of copper, zinc, iron, CuZn alloy) and metal salts (iron pyrophosphate, copper asparginate, zinc asparginate) on the composition of cecal microbiota of broiler chickens. Before adding the studied nanoparticles and metal salts to the diet, cecal microbiota of broiler chickens was represented by 76% Firmicutes taxon and 16% Bacteroidetes. Numerous among them were the bacteria of the taxa Anaerotruncus spp., Lactobacillus spp., Blautia spp., Alistipes spp., and Bacteroides spp.; they constituted 18, 17, 11, and 6%, respectively. A peculiarity of action of the most analyzed metals in nanoform and in the form of salts was a decrease in the number of phylum Firmicutes bacteria and an increase in the number of microorganisms of the phylum Bacteroidetes. The number of bacteria belonging to the families Ruminococcaceae (III, IV, V, VII, and VIII groups), Bacteroidaceae (in all experimental groups), and Lachnospiraceae (I, IV, V, and VII groups) was registered within the taxa of Firmicutes and Bacteroidetes. At the same time, in some experimental groups, the number of bacteria of the family Lachnospiraceae (II, III, and VIII) decreased in the intestine. The data obtained can be used to assess the possibility of using metal nanoparticles in the poultry diet, as a micronutrient preparation, to correct dysbiosis and to improve the utilization of fodder energy.
Collapse
Affiliation(s)
- Еlena Yausheva
- State Educational Institution All-Russian Research Institute of Beef Cattle Breeding, 29, 9-Yanvarya Street, Orenburg, Russia, 460000
| | - Sergey Miroshnikov
- State Educational Institution All-Russian Research Institute of Beef Cattle Breeding, 29, 9-Yanvarya Street, Orenburg, Russia, 460000
| | - Еlena Sizova
- State Educational Institution All-Russian Research Institute of Beef Cattle Breeding, 29, 9-Yanvarya Street, Orenburg, Russia, 460000.
- Orenburg State University, Pobedy pr. 13, Orenburg, Russia, 460018.
| |
Collapse
|
45
|
Mazzone G, Morisco C, Lembo V, D'Argenio G, D'Armiento M, Rossi A, Giudice CD, Trimarco B, Caporaso N, Morisco F. Dietary supplementation of vitamin D prevents the development of western diet-induced metabolic, hepatic and cardiovascular abnormalities in rats. United European Gastroenterol J 2018; 6:1056-1064. [PMID: 30228894 DOI: 10.1177/2050640618774140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background The western diet high in fat and fructose may cause metabolic disorders and cardiovascular diseases. Objective To evaluate whether long-term daily vitamin D3 supplementation prevents hepatic steatosis and cardiovascular abnormalities and restores insulin sensitivity caused by fat diet in rats without vitamin D deficiency. Methods Three groups of rats were fed for 6 months with standard diet (SD), western diet (WD) or WD containing 23 IU/day/rat vitamin D3, respectively. Tail-cuff systolic blood pressure (SBP)measurements in conscious rats and transthoracic echocardiography were performed in basal condition, and after 3 and 6 months of diet. Hepatic steatosis and myocardial fibrosis were assessed in liver and cardiac tissues using standard methods. Serum insulin and 25(OH)D3 concentrations were determined using rat-specific ELISA kits. Insulin resistance was determined according to the homeostasis model assessment of insulin resistance (HOMA-IR) method. Results Sixty-one per cent of hepatocytes in WD rats had steatotic vacuoles compared with just 27% in rats on a WD plus vitamin D3 (p < 0.05).HOMA-IR was reduced in rats with vitamin D supplementation compared with WD alone (19.4 ± 5.2 vs 41.9 ± 8.9, p < 0.05). Rat blood pressure and left ventricular mass were both reduced by vitamin D3 supplementation. Conclusion In animal models of liver and cardiovascular metabolic damage, the supplementation of vitamin D3 shows liver and cardio-protective effects.
Collapse
Affiliation(s)
- Giovanna Mazzone
- Gastroenterology, Department of Clinical Medicine and Surgery, University 'Federico II', Naples, Italy
| | - Carmine Morisco
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Vincenzo Lembo
- Gastroenterology, Department of Clinical Medicine and Surgery, University 'Federico II', Naples, Italy
| | - Giuseppe D'Argenio
- Gastroenterology, Department of Clinical Medicine and Surgery, University 'Federico II', Naples, Italy
| | - Maria D'Armiento
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Antonella Rossi
- Gastroenterology, Department of Clinical Medicine and Surgery, University 'Federico II', Naples, Italy
| | - Carmine Del Giudice
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Nicola Caporaso
- Gastroenterology, Department of Clinical Medicine and Surgery, University 'Federico II', Naples, Italy
| | - Filomena Morisco
- Gastroenterology, Department of Clinical Medicine and Surgery, University 'Federico II', Naples, Italy
| |
Collapse
|
46
|
Dahiya DK, Renuka, Puniya AK. Impact of nanosilver on gut microbiota: a vulnerable link. Future Microbiol 2018; 13:483-492. [DOI: 10.2217/fmb-2017-0103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A plethora of nanoparticles are currently used in the food industry in myriad applications. Of these, ‘nanosilver’ is widely used due to their multitude actions. Recent consensus among the scientific community affirmed that nanosilver might potentially alter the gut microbiota instead of their intended use that has a profound effect on our health. Dysbiosis of gut microbiota led to the onset of serious pathological conditions as reflected from several studies. In lieu of the positive impact of nanosilver, their inadvertent toxic effects on gut microbiota are underestimated. In this review, first all studies concerning the influence of nanosilver on gut microbiota are discussed along with relevant pharmacokinetic studies and in closing section the challenges and future task remained in the field are highlighted.
Collapse
Affiliation(s)
- Dinesh Kumar Dahiya
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education & Research, Rajasthan University of Veterinary & Animal Sciences at Bikaner, Jaipur 302020, Rajasthan, India
| | - Renuka
- Department of Veterinary Physiology & Biochemistry, Post Graduate Institute of Veterinary Education & Research, Rajasthan University of Veterinary & Animal Sciences at Bikaner, Jaipur 302020, Rajasthan, India
| | - Anil Kumar Puniya
- College of Dairy Science & Technology, Guru Angad Dev Veterinary & Animal Sciences University, Ludhiana 141004, Punjab, India
| |
Collapse
|
47
|
Nørgaard SA, Sand FW, Sørensen DB, Abelson KS, Søndergaard H. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy. Lab Anim 2018; 52:373-383. [PMID: 29301443 DOI: 10.1177/0023677217747915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The streptozotocin (STZ)-induced diabetic mouse is a widely used model of diabetes and diabetic nephropathy (DN). However, it is a well-known issue that this model is challenged by high weight loss, which despite supportive measures often results in high euthanization rates. To overcome these issues, we hypothesized that supplementing STZ-induced diabetic mice with water-softened chow in addition to normal chow would reduce weight loss, lower the need for supportive treatment, and reduce the number of mice reaching the humane endpoint of 20% weight loss. In a 15 week STZ-induced DN study we demonstrated that diabetic male mice receiving softened chow had reduced acute weight loss following STZ treatment ( p = 0.045) and additionally fewer mice were euthanized due to weight loss. By supplementing the diabetic mice with softened chow, no mice reached 20% weight loss whereas 37.5% of the mice without this supplement reached this humane endpoint ( p = 0.0027). Excretion of corticosterone metabolites in faeces was reduced in diabetic mice on softened chow ( p = 0.0007), suggesting lower levels of general stress. Finally, it was demonstrated that the water-softened chow supplement did not significantly affect the induction of key disease parameters, i.e. %HbA1C and albuminuria nor result in abnormal teeth wear. In conclusion, supplementation of softened food is refining the STZ-induced diabetic mouse model significantly by reducing stress, weight loss and the number of animals sacrificed due to humane endpoints, while maintaining the key phenotypes of diabetes and nephropathy.
Collapse
Affiliation(s)
- Sisse A Nørgaard
- 1 Diabetes & Cardiovascular Pharmacology, Novo Nordisk A/S, Denmark.,2 Department of Veterinary Disease Biology, University of Copenhagen, Denmark.,3 Diabetes Complications Pharmacology, Novo Nordisk A/S, Denmark
| | - Fredrik W Sand
- 1 Diabetes & Cardiovascular Pharmacology, Novo Nordisk A/S, Denmark
| | - Dorte B Sørensen
- 2 Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Klas Sp Abelson
- 4 Department of Experimental Medicine, University of Copenhagen, Denmark
| | | |
Collapse
|
48
|
Tungtur SK, Nishimune N, Radel J, Nishimune H. Mouse Behavior Tracker: An economical method for tracking behavior in home cages. Biotechniques 2017; 63:215-220. [PMID: 29185921 PMCID: PMC5910027 DOI: 10.2144/000114607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 10/06/2017] [Indexed: 02/02/2023] Open
Abstract
Analysis of mouse behavior often requires expensive equipment and transfer of the mice to new test environments, which could trigger confounding behavior alterations. Here, we describe a system for tracking mouse behavior in home cages using a low-cost USB webcam and free software (Fiji and wrMTrck). We demonstrate the effectiveness of this method by tracking differences in distance traveled, speed, and movement tracks between wild-type mice and amyotrophic lateral sclerosis (ALS) model mice (SOD1G93A).
Collapse
Affiliation(s)
- Sudheer K. Tungtur
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Natsuko Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Jeff Radel
- Department of Occupational Therapy Education, University of Kansas School of Health Professions, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| |
Collapse
|
49
|
Zhang Y, Liu Q, Yu J, Yu S, Wang J, Qiang L, Gu Z. Locally Induced Adipose Tissue Browning by Microneedle Patch for Obesity Treatment. ACS NANO 2017; 11:9223-9230. [PMID: 28914527 PMCID: PMC6812556 DOI: 10.1021/acsnano.7b04348] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Obesity is one of the most serious public health problems in the 21st century that may lead to many comorbidities such as type-2 diabetes, cardiovascular diseases, and cancer. Current treatments toward obesity including diet, physical exercise, pharmacological therapy, as well as surgeries are always associated with low effectiveness or undesired systematical side effects. In order to enhance treatment efficiency with minimized side effects, we developed a transcutaneous browning agent patch to locally induce adipose tissue transformation. This microneedle-based patch can effectively deliver browning agents to the subcutaneous adipocytes in a sustained manner and switch on the "browning" at the targeted region. It is demonstrated that this patch reduces treated fat pad size, increases whole body energy expenditure, and improves type-2 diabetes in vivo in a diet-induced obesity mouse model.
Collapse
Affiliation(s)
- Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qiongming Liu
- Department of Pathology and Cell Biology, Naomi Berrie Diabetes Center, Columbia University, New York, New York 10032, United States
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shuangjiang Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Li Qiang
- Department of Pathology and Cell Biology, Naomi Berrie Diabetes Center, Columbia University, New York, New York 10032, United States
- Corresponding Authors:.
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Corresponding Authors:.
| |
Collapse
|
50
|
Chen H, Zhang L, Hill WG, Yu W. Evaluating the voiding spot assay in mice: a simple method with complex environmental interactions. Am J Physiol Renal Physiol 2017; 313:F1274-F1280. [PMID: 28835420 DOI: 10.1152/ajprenal.00318.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022] Open
Abstract
The voiding spot assay (VSA) on filter paper is an increasingly popular method for studying lower urinary tract physiology in mice. However, the ways VSAs are performed differ significantly between laboratories, and many variables are introduced compared with the mouse's normal housing situation. Rodents are intelligent social animals, and it is increasingly understood that social and environmental stresses have significant effects on their physiology. Surprisingly, little is known about whether change of environment during VSA affects mouse voiding and what the best methodologies are for retaining "natural" micturition patterns. It is well known that stress-related neuropeptide corticotropin-releasing factor is significantly elevated and induces dramatic voiding changes when rodents encounter stresses. Therefore we hypothesized that changes in the environmental situation could potentially alter voiding during VSA. We have examined multiple factors to test whether they affect female mouse voiding patterns during VSA, including cage type, cage floor, water availability, water bottle location, single or group housing, and different handlers. Our results indicate that mice are surprisingly sensitive to changes in cage type and floor surface, water bottle location, and single/group housing, each of which induces significant changes in voiding patterns, indicative of a stress response. In contrast, neither changing handler nor 4 h of water deprivation affected voiding patterns. Our data indicate that VSA should be performed under conditions as close as possible to the mouse's normal housing. Optimizing VSA methodology will be useful in uncovering voiding alterations in both genetic and disease models of lower urinary dysfunctions.
Collapse
Affiliation(s)
- Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|