1
|
Zarate SM, Kirabo A, Hinton AO, Santisteban MM. Neuroimmunology of Cardiovascular Disease. Curr Hypertens Rep 2024; 26:339-347. [PMID: 38613621 PMCID: PMC11199253 DOI: 10.1007/s11906-024-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.
Collapse
Affiliation(s)
- Sara M Zarate
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Vanderbilt Center for Immunobiology, Nashville, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA
- Vanderbilt Institute for Global Health, Nashville, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Monica M Santisteban
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
2
|
Saha TK, Mariom, Rahman T, Moniruzzaman M, Min T, Hossain Z. Immuno-physiological effects of dietary reishi mushroom powder as a source of beta-glucan on Rohu, Labeo rohita challenged with Aeromonas veronii. Sci Rep 2023; 13:14652. [PMID: 37670115 PMCID: PMC10480226 DOI: 10.1038/s41598-023-41557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
Beta-glucans have immense potential to stimulate immune modulation in fish by being injected intramuscularly, supplemented with feed or immersion routes of administration. We studied how supplementing Labeo rohita's diet with reishi mushroom powder containing beta-glucan influenced immunological function. A supplemented diet containing 10% reishi mushroom powder was administered for 120 days. Afterwards, analyses were conducted on different immunological parameters such as antioxidants, respiratory burst, reactive oxygen species (ROS), alternative complement activity, and serum immunoglobulin, which resulted significant increases (p < 0.05; p < 0.01) for the reishi mushroom-fed immune primed L. rohita. Additionally, analyzing various hematological parameters such as erythrocytes and leukocytes count were assessed to elucidate the immunomodulatory effects, indicating positive effects of dietary reishi mushroom powder on overall fish health. Furthermore, the bacterial challenge-test with 1.92 × 104 CFU/ml intramuscular dose of Aeromonas veronii showed enhanced disease-defending system as total serum protein and lysozyme activity levels accelerated significantly (p < 0.01). Nevertheless, reishi mushroom powder contained with beta-glucan ameliorated the stress indicating parameters like acetylcholinesterase (AChE), serum-glutamic pyruvic transaminase (SGPT) and serum-glutamic oxaloacetic transaminase (SGOT) enzyme activities results suggested the fish's physiology was unaffected. Therefore, the results indicated that adding dietary reishi mushroom as a source of beta-glucan could significantly boost the immune responses in Rohu.
Collapse
Affiliation(s)
- Tutul Kumar Saha
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mariom
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Tanvir Rahman
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Bio-Resources Computing Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Zakir Hossain
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
3
|
Mathieu NM, Fekete EM, Muskus PC, Brozoski DT, Lu KT, Wackman KK, Gomez J, Fang S, Reho JJ, Grobe CC, Vazirabad I, Mouradian GC, Hodges MR, Segar JL, Grobe JL, Sigmund CD, Nakagawa P. Genetic Ablation of Prorenin Receptor in the Rostral Ventrolateral Medulla Influences Blood Pressure and Hydromineral Balance in Deoxycorticosterone-Salt Hypertension. FUNCTION 2023; 4:zqad043. [PMID: 37609445 PMCID: PMC10440998 DOI: 10.1093/function/zqad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Non-enzymatic activation of renin via its interaction with prorenin receptor (PRR) has been proposed as a key mechanism of local renin-angiotensin system (RAS) activation. The presence of renin and angiotensinogen has been reported in the rostral ventrolateral medulla (RVLM). Overactivation of bulbospinal neurons in the RVLM is linked to hypertension (HTN). Previous studies have shown that the brain RAS plays a role in the pathogenesis of the deoxycorticosterone (DOCA)-salt HTN model. Thus, we hypothesized that PRR in the RVLM is involved in the local activation of the RAS, facilitating the development of DOCA-salt HTN. Selective PRR ablation targeting the RVLM (PRRRVLM-Null mice) resulted in an unexpected sex-dependent and biphasic phenotype in DOCA-salt HTN. That is, PRRRVLM-Null females (but not males) exhibited a significant delay in achieving maximal pressor responses during the initial stage of DOCA-salt HTN. Female PRRRVLM-Null subsequently showed exacerbated DOCA-salt-induced pressor responses during the "maintenance" phase with a maximal peak at 13 d on DOCA-salt. This exacerbated response was associated with an increased sympathetic drive to the resistance arterioles and the kidney, exacerbated fluid and sodium intake and output in response to DOCA-salt, and induced mobilization of fluids from the intracellular to extracellular space concomitant with elevated vasopressin. Ablation of PRR suppressed genes involved in RAS activation and catecholamine synthesis in the RVLM but also induced expression of genes involved in inflammatory responses. This study illustrates complex and sex-dependent roles of PRR in the neural control of BP and hydromineral balance through autonomic and neuroendocrine systems. Graphical abstract.
Collapse
Affiliation(s)
- Natalia M Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eva M Fekete
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Patricia C Muskus
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel T Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Javier Gomez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shi Fang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ibrahim Vazirabad
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey L Segar
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Dobrowolski C, Barraclough M, Su J, Tanic M, Bingham K, Ruttan L, Beaton D, Wither J, Tartaglia MC, Sano M, Kakvan M, Bonilla D, Green R, Touma Z. Centrally acting ACE inhibitor (cACEi) and angiotensin receptor blocker (cARB) use and cognitive dysfunction in patients with SLE. Lupus Sci Med 2023; 10:e000923. [PMID: 37429671 PMCID: PMC10335417 DOI: 10.1136/lupus-2023-000923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE Cognitive dysfunction (CD) is detectable in approximately 40% of patients with SLE. Despite this high prevalence, there are no approved pharmacological treatment options for this detrimental condition. Preliminary murine studies show potential for targeting microglial activation as a treatment of SLE-CD, which may be ameliorated with centrally acting ACE inhibitor (cACEi) and angiotensin receptor blocker (cARB) use. The aim of this study is to determine if there is an association of cACEi/cARB use with cognitive function in a human SLE cohort. METHODS The American College of Rheumatology neuropsychological battery was administered to patients with consecutive SLE at a single academic health centre at baseline, 6 and 12 months. Scores were compared with sex-matched and age-matched control subjects. Clinical and demographic data were gathered at each visit. The primary outcome was CD defined as dysfunction in two or more cognitive domains. The primary predictor was a total cumulative dose of cACEi/cARB in milligrams per kilogram, recorded as an equivalent ramipril dose. Odds of CD with respect to cACEi/cARB use were determined through generalised linear mixed modelling. RESULTS A total of 300 patients, representing 676 visits, completed this study. One hundred sixteen (39%) met the criteria for CD. Fifty-three participants (18%) were treated with a cACEi or cARB. Mean cumulative dose was 236 mg/kg (calculated as equivalent ramipril dose). Cumulative cACEi/cARB dose was not protective against SLE-CD. Caucasian ethnicity, current employment status and azathioprine cumulative dose were each associated with reduced odds of SLE-CD. Increasing Fatigue Severity Scale score was associated with increased odds of CD. CONCLUSIONS In a single-centre SLE cohort, cACEi/cARB use was not associated with absence of CD. Many important confounders may have influenced the results of this retrospective study. A randomised trial is required to accurately determine if cACEi/cARB is a potential treatment for SLE-CD.
Collapse
Affiliation(s)
- Chrisanna Dobrowolski
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Michelle Barraclough
- Division of Musculoskeletal & Dermatological Sciences, The University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester, UK
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jiandong Su
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Milica Tanic
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kathleen Bingham
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Lesley Ruttan
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Dorcas Beaton
- Institute for Work and Health, Toronto, Ontario, Canada
| | - Joan Wither
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- University of Toronto, Toronto, Ontario, Canada
- Krembil Neurosciences Centre, University Health Network, Toronto, Ontario, Canada
| | - Mary Sano
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Mahta Kakvan
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Dennisse Bonilla
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Robin Green
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Zahi Touma
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Rheumatology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Pan S, Worker CJ, Feng Earley Y. The hypothalamus as a key regulator of glucose homeostasis: emerging roles of the brain renin-angiotensin system. Am J Physiol Cell Physiol 2023; 325:C141-C154. [PMID: 37273237 PMCID: PMC10312332 DOI: 10.1152/ajpcell.00533.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
The regulation of plasma glucose levels is a complex and multifactorial process involving a network of receptors and signaling pathways across numerous organs that act in concert to ensure homeostasis. However, much about the mechanisms and pathways by which the brain regulates glycemic homeostasis remains poorly understood. Understanding the precise mechanisms and circuits employed by the central nervous system to control glucose is critical to resolving the diabetes epidemic. The hypothalamus, a key integrative center within the central nervous system, has recently emerged as a critical site in the regulation of glucose homeostasis. Here, we review the current understanding of the role of the hypothalamus in regulating glucose homeostasis, with an emphasis on the paraventricular nucleus, the arcuate nucleus, the ventromedial hypothalamus, and lateral hypothalamus. In particular, we highlight the emerging role of the brain renin-angiotensin system in the hypothalamus in regulating energy expenditure and metabolic rate, as well as its potential importance in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Shiyue Pan
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, United States
| | - Caleb J Worker
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, United States
| | - Yumei Feng Earley
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, United States
| |
Collapse
|
6
|
Kumar T, Dutta RR, Velagala VR, Ghosh B, Mudey A. Analyzing the Complicated Connection Between Intestinal Microbiota and Cardiovascular Diseases. Cureus 2022; 14:e28165. [PMID: 36148181 PMCID: PMC9482761 DOI: 10.7759/cureus.28165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
Relentless human curiosity to understand the basis of every aspect of medical science has led humanity to unlock the deepest secrets about the physiology of human existence and, in the process, has reached milestones that a century ago could only be imagined. Recent ground-breaking breakthroughs have helped scientists and physicians all over the world to update the scientific basis of diseases and hence further improve treatment outcomes. According to recent studies, scientists have found a link between intestinal flora and the pathogenesis of diseases, including cardiovascular diseases. Any change in the typical habitat of gut microbiota has been shown to result in the culmination of various metabolic and cardiac diseases. Therefore, gut microbiota can be credited for influencing the course of the development of a disease. Any change in the composition and function of bacterial species living in the gut can result in both beneficial and harmful effects on the body. Gut microbiota achieves this role by numerous mechanisms. Generations of various metabolites like TMAO (trimethylamine N-oxide), increased receptibility of various bacterial antigens, and disruption of the enzyme action in various metabolic pathways like the bile acids pathway may result in the development of metabolic as well as cardiovascular diseases. Even if they may not be the only etiological factor in the pathogenesis of a disease, they may very well serve as a contributing factor in worsening the outcome of the condition. Studies have shown that they actively play a role in the progression of cardiovascular diseases like atherosclerotic plaque formation and rising blood pressure. The focus of this review article is to establish a relation between various cardiovascular diseases and gut microbiota. This could prove beneficial for clinicians, health care providers, and scientists to develop novel therapeutic algorithms while treating cardiac patients.
Collapse
|
7
|
Bi Q, Wang C, Cheng G, Chen N, Wei B, Liu X, Li L, Lu C, He J, Weng Y, Yin C, Lin Y, Wan S, Zhao L, Xu J, Wang Y, Gu Y, Shen XZ, Shi P. Microglia-derived PDGFB promotes neuronal potassium currents to suppress basal sympathetic tonicity and limit hypertension. Immunity 2022; 55:1466-1482.e9. [PMID: 35863346 DOI: 10.1016/j.immuni.2022.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Qianqian Bi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Wang
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guo Cheng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ningting Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Li
- Department of Pharmacy, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
| | - Cheng Lu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian He
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuancheng Weng
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chunyou Yin
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yunfan Lin
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, China
| | - Yi Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiao Z Shen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. J Inflamm Res 2022; 15:3083-3094. [PMID: 35642214 PMCID: PMC9148574 DOI: 10.2147/jir.s350109] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia are tissue-resident macrophages of the central nervous system (CNS). In the CNS, microglia play an important role in the monitoring and intervention of synaptic and neuron-level activities. Interventions targeting microglia have been shown to improve the prognosis of various neurological diseases. Recently, studies have observed the activation of microglia in different cardiovascular diseases. In addition, different approaches that regulate the activity of microglia have been shown to modulate the incidence and progression of cardiovascular diseases. The change in autonomic nervous system activity after neuroinflammation may be a potential intermediate link between microglia and cardiovascular diseases. Here, in this review, we will discuss recent updates on the regulatory role of microglia in hypertension, myocardial infarction and ischemia/reperfusion injury. We propose that microglia serve as neuroimmune modulators and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
- Correspondence: Hong Jiang; Jun Wan, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China, Email ;
| |
Collapse
|
9
|
Annoni F, Moro F, Caruso E, Zoerle T, Taccone FS, Zanier ER. Angiotensin-(1-7) as a Potential Therapeutic Strategy for Delayed Cerebral Ischemia in Subarachnoid Hemorrhage. Front Immunol 2022; 13:841692. [PMID: 35355989 PMCID: PMC8959484 DOI: 10.3389/fimmu.2022.841692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a substantial cause of mortality and morbidity worldwide. Moreover, survivors after the initial bleeding are often subject to secondary brain injuries and delayed cerebral ischemia, further increasing the risk of a poor outcome. In recent years, the renin-angiotensin system (RAS) has been proposed as a target pathway for therapeutic interventions after brain injury. The RAS is a complex system of biochemical reactions critical for several systemic functions, namely, inflammation, vascular tone, endothelial activation, water balance, fibrosis, and apoptosis. The RAS system is classically divided into a pro-inflammatory axis, mediated by angiotensin (Ang)-II and its specific receptor AT1R, and a counterbalancing system, presented in humans as Ang-(1-7) and its receptor, MasR. Experimental data suggest that upregulation of the Ang-(1-7)/MasR axis might be neuroprotective in numerous pathological conditions, namely, ischemic stroke, cognitive disorders, Parkinson's disease, and depression. In the presence of SAH, Ang-(1-7)/MasR neuroprotective and modulating properties could help reduce brain damage by acting on neuroinflammation, and through direct vascular and anti-thrombotic effects. Here we review the role of RAS in brain ischemia, with specific focus on SAH and the therapeutic potential of Ang-(1-7).
Collapse
Affiliation(s)
- Filippo Annoni
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.,Department of Intensive Care, Erasme Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|
10
|
Yokota H, Hayashi H, Hanaguri J, Yamagami S, Kushiyama A, Nakagami H, Nagaoka T. Effect of prorenin peptide vaccine on the early phase of diabetic retinopathy in a murine model of type 2 diabetes. PLoS One 2022; 17:e0262568. [PMID: 35041699 PMCID: PMC8765632 DOI: 10.1371/journal.pone.0262568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
Prorenin is viewed as an ideal target molecule in the prevention of diabetic retinopathy. However, no drugs are available for inhibiting activation of prorenin. Here, we tested the effect of a prorenin peptide vaccine (VP) in the retina of a murine model of type 2 diabetes (T2D). To choose the optimal vaccine, we selected three different epitopes of the prorenin prosegment (E1, E2, and E3) and conjugated them to keyhole limpet hemocyanin (KLH). We injected C57BL/6J mice twice with KLH only (as a control vaccine), E1 conjugated with KLH (E1-KLH), E2-KLH, or E3-KLH and compared antibody titers. E2-KLH showed the highest antibody titer and specific immunoreactivity of anti-sera against prorenin, so we used E2-KLH as VP. Then, we administered injections to the non-diabetic db/m and diabetic db/db mice, as follows: db/m + KLH, db/db + KLH, and db/db + VP. Retinal blood flow measurement with laser speckle flowgraphy showed that the impaired retinal circulation response to both flicker light and systemic hyperoxia in db/db mice improved with VP. Furthermore, the prolonged implicit time of b-wave and oscillatory potentials in electroretinography was prevented, and immunohistochemical analysis showed reduced microglial activation, gliosis, and vascular leakage. The enzyme-linked immunosorbent spot assay confirmed vaccinated mice had no auto-immune response against prorenin itself. The present data suggest that vaccination against prorenin is an effective and safe measure against the early pathological changes of diabetic retinopathy in T2D.
Collapse
Affiliation(s)
- Harumasa Yokota
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University, Osaka, Japan
| | - Junya Hanaguri
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Tokyo, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University, Osaka, Japan
| | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Science, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Souza LA, Earley YF. (Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Curr Hypertens Rev 2022; 18:101-116. [PMID: 35086455 PMCID: PMC9662243 DOI: 10.2174/1570162x20666220127105655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The renin-angiotensin system (RAS) is classically described as a hormonal system in which angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, and has more recently been implicated in cardiovascular metabolism. The presence of a local or tissue RAS in various tissues, including the central nervous system (CNS), is well established. However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous angiotensin peptides are generated in the CNS-the focus of this review-has been the subject of considerable debate. Notable in this context is the identification of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss recent developments in PRR involvement in cardiovascular and metabolic diseases and present perspectives for future directions.
Collapse
Affiliation(s)
- Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
12
|
Ooi K, Hu L, Feng Y, Han C, Ren X, Qian X, Huang H, Chen S, Shi Q, Lin H, Wang J, Zhu D, Wang R, Xia C. Sigma-1 Receptor Activation Suppresses Microglia M1 Polarization via Regulating Endoplasmic Reticulum-Mitochondria Contact and Mitochondrial Functions in Stress-Induced Hypertension Rats. Mol Neurobiol 2021; 58:6625-6646. [PMID: 34601668 DOI: 10.1007/s12035-021-02488-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
Exposure to stress plays a detrimental role in the pathogenesis of hypertension via neuroinflammation pathways. Microglial neuroinflammation in the rostral ventrolateral medulla (RVLM) exacerbates stress-induced hypertension (SIH) by increasing sympathetic hyperactivity. Mitochondria of microglia are the regulators of innate immune response. Sigma-1R (σ-1R) localizes to the mitochondria-associated membranes (MAMs) and regulates endoplasmic reticulum (ER) and mitochondria communication, in part through its chaperone activity. The present study aims to investigate the protective role of σ-1R on microglial-mediated neuroinflammation. Stress-induced hypertension (SIH) was induced in rats using electric foot shocks and intermittent noise. Arterial blood pressure (ABP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were measured to evaluate the sympathetic nervous system (SNS) activities. SKF10047 (100 µM), an agonist of σ-1R, was administrated to rats, then σ-1R localization and MAM alterations were detected by immuno-electron microscopy. Mitochondrial calcium homeostasis was examined in primary microglia and/or BV-2 microglia cells. The effect of SKF10047 treatment on the mitochondrial respiratory function of cultured microglia was measured using a Seahorse Extracellular Flux Analyzer. Confocal microscopic images were performed to indicate mitochondrial dynamics. Stress reduces σ-1R's localization at the MAMs, leading to decreased ER-mitochondria contact and IP3R-GRP75-VDAC calcium transport complexes expression in the RVLM of rats. SKF10047 promotes the length and coverage of MAMs in the prorenin-treated microglia. Prorenin treatment increases mitoROS levels, and inhibits Ca2+ signalling between the two organelles, therefore negatively affects ATP production in BV2 cells, and these effects are reversed by SKF10047 treatment. We found mitochondrial hyperfusion and microglial M1 polarization in prorenin-treated microglia. SKF10047 suppresses microglial M1 polarization and RVLM neuroinflammation, subsequently ameliorates sympathetic hyperactivity in stress-induced hypertensive rats. Sigma-1 receptor activation suppresses microglia M1 polarization and neuroinflammation via regulating endoplasmic reticulum-mitochondria contact and mitochondrial functions in stress-induced hypertension rats.
Collapse
Affiliation(s)
- Kokwin Ooi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Li Hu
- Department of Cardiovascular Diseases, Renji Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chenzhi Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xiaorong Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xinyi Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Haofeng Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Sijia Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Qi Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Hong Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Rui Wang
- Department of Cardiovascular Diseases, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200090, People's Republic of China.
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Mosquera‐Sulbaran JA, Pedreañez A, Carrero Y, Callejas D. C-reactive protein as an effector molecule in Covid-19 pathogenesis. Rev Med Virol 2021; 31:e2221. [PMID: 34773448 PMCID: PMC7995022 DOI: 10.1002/rmv.2221] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
The current pandemic caused by SARS-CoV-2 virus infection is known as Covid-19 (coronavirus disease 2019). This disease can be asymptomatic or can affect multiple organ systems. Damage induced by the virus is related to dysfunctional activity of the immune system, but the activity of molecules such as C-reactive protein (CRP) as a factor capable of inducing an inflammatory status that may be involved in the severe evolution of the disease, has not been extensively evaluated. A systematic review was performed using the NCBI-PubMed database to find articles related to Covid-19 immunity, inflammatory response, and CRP published from December 2019 to December 2020. High levels of CRP were found in patients with severe evolution of Covid-19 in which several organ systems were affected and in patients who died. CRP activates complement, induces the production of pro-inflammatory cytokines and induces apoptosis which, together with the inflammatory status during the disease, can lead to a severe outcome. Several drugs can decrease the level or block the effect of CRP and might be useful in the treatment of Covid-19. From this review it is reasonable to conclude that CRP is a factor that can contribute to severe evolution of Covid-19 and that the use of drugs able to lower CRP levels or block its activity should be evaluated in randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jesús A. Mosquera‐Sulbaran
- Instituto de Investigaciones Clinicas “Dr. Americo Negrette”Facultad de MedicinaUniversidad del ZuliaMaracaiboVenezuela
| | - Adriana Pedreañez
- Catedra de InmunologiaEscuela de BioanalisisFacultad de MedicinaUniversidad del ZuliaMaracaiboVenezuela
| | - Yenddy Carrero
- Facultad de Ciencias de la SaludCarrera de MedicinaUniversidad Tecnica de AmbatoAmbatoEcuador
| | - Diana Callejas
- Facultad de Ciencias de la SaludDepartamento de Ciencias BiologicasUniversidad Tecnica de ManabiPortoviejoEcuador
| |
Collapse
|
14
|
NADPH-Oxidase, Rho-Kinase and Autophagy Mediate the (Pro)renin-Induced Pro-Inflammatory Microglial Response and Enhancement of Dopaminergic Neuron Death. Antioxidants (Basel) 2021; 10:antiox10091340. [PMID: 34572972 PMCID: PMC8472832 DOI: 10.3390/antiox10091340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of the tissue renin–angiotensin system (RAS) is involved in tissue oxidative and inflammatory responses. Among RAS components, renin, its precursor (pro)renin and its specific receptor (PRR) have been less investigated, particularly in the brain. We previously showed the presence of PRR in neurons and glial cells in the nigrostriatal system of rodents and primates, including humans. Now, we used rat and mouse models and cultures of BV2 and primary microglial cells to study the role of PRR in microglial pro-inflammatory responses. PRR was upregulated in the nigral region, particularly in microglia during the neuroinflammatory response. In the presence of the angiotensin type-1 receptor blocker losartan, to exclude angiotensin-related effects, treatment of microglial cells with (pro)renin induces the expression of microglial pro-inflammatory markers, which is mediated by upregulation of NADPH-oxidase and Rho-kinase activities, downregulation of autophagy and upregulation of inflammasome activity. Conditioned medium from (pro)renin-treated microglia increased dopaminergic cell death relative to medium from non-treated microglia. However, these effects were blocked by pre-treatment of microglia with the Rho-kinase inhibitor fasudil. Activation of microglial PRR enhances the microglial pro-inflammatory response and deleterious effects of microglia on dopaminergic cells, and microglial NADPH-oxidase, Rho-Kinase and autophagy are involved in this process.
Collapse
|
15
|
Mohsin M, Souza LAC, Aliabadi S, Worker CJ, Cooper SG, Afrin S, Murata Y, Xiong Z, Feng Earley Y. Increased (Pro)renin Receptor Expression in the Hypertensive Human Brain. Front Physiol 2020; 11:606811. [PMID: 33329061 PMCID: PMC7710895 DOI: 10.3389/fphys.2020.606811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Overactivation of the renin-angiotensin system (RAS) – a central physiological pathway involved in controlling blood pressure (BP) – leads to hypertension. It is now well-recognized that the central nervous system (CNS) has its own local RAS, and the majority of its components are known to be expressed in the brain. In physiological and pathological states, the (pro)renin receptor (PRR), a novel component of the brain RAS, plays a key role in the formation of angiotensin II (Ang II) and also mediates Ang II-independent PRR signaling. A recent study reported that neuronal PRR activation is a novel mechanism for cardiovascular and metabolic regulation in obesity and diabetes. Expression of the PRR is increased in cardiovascular regulatory nuclei in hypertensive (HTN) animal models and plays an important role in BP regulation in the CNS. To determine the clinical significance of the brain PRR in human hypertension, we investigated whether the PRR is expressed and regulated in the paraventricular nucleus of the hypothalamus (PVN) and rostral ventrolateral medulla (RVLM) – two key cardiovascular regulatory nuclei – in postmortem brain samples of normotensive (NTN) and HTN humans. Here, we report that the PRR is expressed in neurons, but not astrocytes, of the human PVN and RVLM. Notably, PRR immunoreactivity was significantly increased in both the PVN and RVLM of HTN subjects. In addition, PVN-PRR immunoreactivity was positively correlated with systolic BP (sBP) and showed a tendency toward correlation with age but not body mass index (BMI). Collectively, our data provide clinical evidence that the PRR in the PVN and RVLM may be a key molecular player in the neural regulation of BP and cardiovascular and metabolic function in humans.
Collapse
Affiliation(s)
- Minhazul Mohsin
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Lucas A C Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Simindokht Aliabadi
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Caleb J Worker
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Silvana G Cooper
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Sanzida Afrin
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| | - Yuki Murata
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Zhenggang Xiong
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, United States.,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, NV, United States
| |
Collapse
|
16
|
Verhaar BJH, Prodan A, Nieuwdorp M, Muller M. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients 2020; 12:E2982. [PMID: 33003455 PMCID: PMC7601560 DOI: 10.3390/nu12102982] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota and its metabolites such as short chain fatty acids (SCFA), lipopolysaccharides (LPS), and trimethylamine-N-oxide (TMAO) impact cardiovascular health. In this review, we discuss how gut microbiota and gut metabolites can affect hypertension and atherosclerosis. Hypertensive patients were shown to have lower alpha diversity, lower abundance of SCFA-producing microbiota, and higher abundance of gram-negative bacteria, which are a source of LPS. Animal studies point towards a direct role for SCFAs in blood pressure regulation and show that LPS has pro-inflammatory effects. Translocation of LPS into the systemic circulation is a consequence of increased gut permeability. Atherosclerosis, a multifactorial disease, is influenced by the gut microbiota through multiple pathways. Many studies have focused on the pro-atherogenic role of TMAO, however, it is not clear if this is a causal factor. In addition, gut microbiota play a key role in bile acid metabolism and some interventions targeting bile acid receptors tend to decrease atherosclerosis. Concluding, gut microbiota affect hypertension and atherosclerosis through many pathways, providing a wide range of potential therapeutic targets. Challenges ahead include translation of findings and mechanisms to humans and development of therapeutic interventions that target cardiovascular risk by modulation of gut microbes and metabolites.
Collapse
Affiliation(s)
- Barbara J. H. Verhaar
- Department of Internal Medicine, Section Geriatrics, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands;
- Department of Internal Medicine, Section Vascular Medicine, Universiteit van Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands; (A.P.); (M.N.)
| | - Andrei Prodan
- Department of Internal Medicine, Section Vascular Medicine, Universiteit van Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands; (A.P.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal Medicine, Section Vascular Medicine, Universiteit van Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands; (A.P.); (M.N.)
| | - Majon Muller
- Department of Internal Medicine, Section Geriatrics, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands;
| |
Collapse
|
17
|
Hu L, Zhang S, Ooi K, Wu X, Wu J, Cai J, Sun Y, Wang J, Zhu D, Chen F, Xia C. Microglia-Derived NLRP3 Activation Mediates the Pressor Effect of Prorenin in the Rostral Ventrolateral Medulla of Stress-Induced Hypertensive Rats. Neurosci Bull 2020; 36:475-492. [PMID: 32242284 PMCID: PMC7186257 DOI: 10.1007/s12264-020-00484-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023] Open
Abstract
Increased microglial activation and neuroinflammation within autonomic brain regions such as the rostral ventrolateral medulla (RVLM) have been implicated in stress-induced hypertension (SIH). Prorenin, a member of the brain renin-angiotensin system (RAS), can directly activate microglia. The present study aimed to investigate the effects of prorenin on microglial activation in the RVLM of SIH rats. Rats were subjected to intermittent electric foot-shocks plus noise, this stress was administered for 2 h twice daily for 15 consecutive days, and mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) were monitored. The results showed that MAP and RSNA were augmented, and this paralleled increased pro-inflammatory phenotype (M1) switching. Prorenin and its receptor (PRR) expression and the NLR family pyrin domain containing 3 (NLRP3) activation were increased in RVLM of SIH rats. In addition, PLX5622 (a microglial depletion agent), MCC950 (a NLRP3 inhibitor), and/or PRO20 (a (Pro)renin receptor antagonist) had antihypertensive effects in the rats. The NLRP3 expression in the RVLM was decreased in SIH rats treated with PLX5622. Mito-tracker staining showed translocation of NLRP3 from mitochondria to the cytoplasm in prorenin-stimulated microglia. Prorenin increased the ROS-triggering M1 phenotype-switching and NLRP3 activation, while MCC950 decreased the M1 polarization. In conclusion, upregulated prorenin in the RVLM may be involved in the pathogenesis of SIH, mediated by activation of the microglia-derived NLRP3 inflammasome. The link between prorenin and NLRP3 in microglia provides insights for the treatment of stress-related hypertension.
Collapse
Affiliation(s)
- Li Hu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Shutian Zhang
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China
| | - Kokwin Ooi
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiaxiang Wu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Jian Cai
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yinggang Sun
- Department of Cardiovascular Diseases, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China
| | - Fuxue Chen
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Li HB, Yang T, Richards EM, Pepine CJ, Raizada MK. Maternal Treatment With Captopril Persistently Alters Gut-Brain Communication and Attenuates Hypertension of Male Offspring. Hypertension 2020; 75:1315-1324. [PMID: 32200676 DOI: 10.1161/hypertensionaha.120.14736] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Maternal-fetal crosstalk has been implicated in long-term control of the health of offspring, including transgenerational hypertension. However, current knowledge is limited regarding maternal influences on the gut and its microbiome in blood pressure control in offspring. Therefore, the current study was designed to test the hypothesis that maternal factors influence the gut-brain axis impacting hypertension in offspring. We elected to use captopril, an antihypertensive angiotensin-converting enzyme inhibitor that possesses antibacterial properties, for the study. Pregnant female spontaneously hypertensive rats and normotensive Wistar Kyoto rats were treated with captopril water (100 mg/[kg·day]) or sterile water throughout pregnancy and lactation. At weaning, the pups from dams drinking sterile water were continued with sterile water until 12 weeks of age. The male pups from dams drinking captopril water were divided at weaning into 2 groups: offspring drinking captopril water and offspring withdrawn from captopril water, then drinking sterile water until 12 weeks of age. Captopril changed gut microbiota of spontaneously hypertensive rat dams, and some of these changes were reflected in their 12-week-old male offspring. These 12-week-old spontaneously hypertensive rat male offspring exposed to captopril via dams demonstrated persistently decreased systolic blood pressure, decreased number of activated microglia and neuroinflammation, as well as improvement of gut inflammation and permeability. Therefore, maternal captopril treatment improves the dysregulated gut-brain axis in spontaneously hypertensive rat male offspring, providing conceptual support that targeting the gut-brain axis via the mother may be a viable strategy for control of hypertension in the offspring.
Collapse
Affiliation(s)
- Hong-Bao Li
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China (H.-B.L.).,Department of Physiology and Functional Genomics (H.-B.L, T.Y., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville
| | - Tao Yang
- Department of Physiology and Functional Genomics (H.-B.L, T.Y., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville.,Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, OH (T.Y.)
| | - Elaine M Richards
- Department of Physiology and Functional Genomics (H.-B.L, T.Y., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics (H.-B.L, T.Y., E.M.R., M.K.R.), College of Medicine, University of Florida, Gainesville
| |
Collapse
|
19
|
Abstract
Purpose of the Review The main goal of this article is to discuss how the development of state-of-the-art technology has made it possible to address fundamental questions related to how the renin-angiotensin system (RAS) operates within the brain from the neurophysiological and molecular perspective. Recent Findings The existence of the brain RAS remains surprisingly controversial. New sensitive in situ hybridization techniques and novel transgenic animals expressing reporter genes have provided pivotal information of the expression of RAS genes within the brain. We discuss studies using genetically engineered animals combined with targeted viral microinjections to study molecular mechanisms implicated in the regulation of the brain RAS. We also discuss novel drugs targeting the brain RAS that have shown promising results in clinical studies and trials. Summary Over the last 50 years, several new physiological roles of the brain RAS have been identified. In the coming years, efforts to incorporate cutting-edge technologies such as optogenetics, chemogenetics, and single-cell RNA sequencing will lead to dramatic advances in our full understanding of how the brain RAS operates at molecular and neurophysiological levels.
Collapse
|
20
|
Díaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R. Neuroinflammation in heart failure: new insights for an old disease. J Physiol 2020; 598:33-59. [PMID: 31671478 DOI: 10.1113/jp278864] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 08/25/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood. Previous work suggests that inflammation and activation of the renin-angiotensin system (RAS) increases sympathetic drive. Importantly, chronic inflammation in several brain regions is commonly observed in aged populations, and a growing body of evidence suggests neuroinflammation plays a crucial role in HF. In animal models of HF, central inhibition of RAS and pro-inflammatory cytokines normalizes sympathetic drive and improves cardiac function. The precise molecular and cellular mechanisms that lead to neuroinflammation and its effect on HF progression remain undetermined. This review summarizes the most recent advances in the field of neuroinflammation and autonomic control in HF. In addition, it focuses on cellular and molecular mediators of neuroinflammation in HF and in particular on brain regions involved in sympathetic control. Finally, we will comment on what is known about neuroinflammation in the context of preserved vs. reduced ejection fraction HF.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
21
|
Oliveira AC, Richards EM, Raizada MK. Pulmonary hypertension: Pathophysiology beyond the lung. Pharmacol Res 2020; 151:104518. [PMID: 31730803 PMCID: PMC6981289 DOI: 10.1016/j.phrs.2019.104518] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) is classically considered a disease of pulmonary vasculature which has been the predominant target for drug development and PH therapy. Despite significant advancement in recent years in identification of new drug targets and innovative treatment strategies, the prognosis of PH remains poor, with median survival of 5 years. Recent studies have demonstrated involvement of neuroinflammation, altered autonomic and gastrointestinal functions and increased trafficking of bone marrow-derived cells in cardiopulmonary pathophysiology. This has led to the proposal that PH could be considered a systemic disease involving complex interactions among many organs. Our objectives in this review is to summarize evidence for the involvement of the brain, bone marrow and gut in PH pathophysiology. Then, to synthesize all evidence supporting a brain-gut-lung interaction hypothesis for consideration in PH pathophysiology and finally to summarize unanswered questions and future directions to move this novel concept forward. This forward-thinking view, if proven by further experiments, would provide new opportunities and novel targets for the control and treatment of PH.
Collapse
Affiliation(s)
- Aline C Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
22
|
Janatpour ZC, Korotcov A, Bosomtwi A, Dardzinski BJ, Symes AJ. Subcutaneous Administration of Angiotensin-(1-7) Improves Recovery after Traumatic Brain Injury in Mice. J Neurotrauma 2019; 36:3115-3131. [DOI: 10.1089/neu.2019.6376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Zachary C. Janatpour
- Department of Pharmacology and Molecular Therapeutics, Program in Molecular and Cell Biology, Uniformed Services University, Bethesda, Maryland
| | - Alexandru Korotcov
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, Maryland
| | - Asamoah Bosomtwi
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, Maryland
| | - Bernard J. Dardzinski
- Translational Imaging Core, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, Maryland
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, Maryland
| | - Aviva J. Symes
- Department of Pharmacology and Molecular Therapeutics, Program in Molecular and Cell Biology, Uniformed Services University, Bethesda, Maryland
| |
Collapse
|
23
|
Circulating Metabolites Originating from Gut Microbiota Control Endothelial Cell Function. Molecules 2019; 24:molecules24213992. [PMID: 31694161 PMCID: PMC6864778 DOI: 10.3390/molecules24213992] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular functionality strictly depends on endothelial cell trophism and proper biochemical function. Any condition (environmental, pharmacological/toxicological, physical, or neuro-humoral) that changes the vascular endothelium has great consequences for the organism’s wellness and on the outcome and evolution of severe cardiovascular pathologies. Thus, knowledge of the mechanisms, both endogenous and external, that affect endothelial dysfunction is pivotal to preventing and treating these disorders. In recent decades, significant attention has been focused on gut microbiota and how these symbiotic microorganisms can influence host health and disease development. Indeed, dysbiosis has been reported to be at the base of a range of different pathologies, including pathologies of the cardiovascular system. The study of the mechanism underlying this relationship has led to the identification of a series of metabolites (released by gut bacteria) that exert different effects on all the components of the vascular system, and in particular on endothelial cells. The imbalance of factors promoting or blunting endothelial cell viability and function and angiogenesis seems to be a potential target for the development of new therapeutic interventions. This review highlights the circulating factors identified to date, either directly produced by gut microbes or resulting from the metabolism of diet derivatives as polyphenols.
Collapse
|
24
|
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2019; 14:442-456. [PMID: 29760448 DOI: 10.1038/s41581-018-0018-2] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Phipps JA, Dixon MA, Jobling AI, Wang AY, Greferath U, Vessey KA, Fletcher EL. The renin-angiotensin system and the retinal neurovascular unit: A role in vascular regulation and disease. Exp Eye Res 2019; 187:107753. [PMID: 31408629 DOI: 10.1016/j.exer.2019.107753] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 01/16/2023]
Abstract
The retina is known to have a local renin-angiotensin system (RAS) and dysfunction in the RAS is often associated with diseases of the retinal vasculature that cause irreversible vision loss. Regulation of the retinal vasculature to meet the metabolic needs of the tissues occurs through a mechanism called neurovascular coupling, which is critical for maintaining homeostatic function and support for neurons. Neurovascular coupling is the process by which support cells, including glia, regulate blood vessel calibre and blood flow in response to neural activity. In retinal vascular diseases, this coupling mechanism is often disrupted. However, the role that angiotensin II (Ang II), the main effector peptide of the RAS, has in regulating both the retinal vasculature and neurovascular coupling is not fully understood. As components of the RAS are located on the principal neurons, glia and blood vessels of the retina, it is possible that Ang II has a role in regulating communication and function between these three cell types, and therefore the capacity to regulate neurovascular coupling. This review focuses on components of the RAS located on the retinal neurovascular unit, and the potential of this system to contribute to blood flow modulation in the healthy and compromised retina.
Collapse
Affiliation(s)
- Joanna A Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Michael A Dixon
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Andrew I Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Anna Y Wang
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
26
|
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144:279-291. [PMID: 31039397 DOI: 10.1016/j.phrs.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Overstimulation of the pro-inflammatory pathways within brain areas responsible for sympathetic outflow is well evidenced as a primary contributing factor to the establishment and maintenance of neurogenic hypertension. However, the precise mechanisms and stimuli responsible for promoting a pro-inflammatory state are not fully elucidated. Recent work has unveiled novel compounds derived from omega-3 polyunsaturated fatty acids (ω-3 PUFAs), termed specialized pro-resolving mediators (SPMs), which actively regulate the resolution of inflammation. Failure or dysregulation of the resolution process has been linked to a variety of chronic inflammatory and neurodegenerative diseases. Given the pathologic role of neuroinflammation in the hypertensive state, SPMs and their associated pathways may provide a link between hypertension and the long-standing association of dietary ω-3 PUFAs with cardioprotection. Herein, we review recent progress in understanding the RAS-driven pathophysiology of neurogenic hypertension, particularly in regards to the chronic low-grade neuroinflammatory response. In addition, we examine the potential for an impaired resolution of inflammation process in the context of hypertension.
Collapse
Affiliation(s)
- Francesca Elisabeth Mowry
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA; Center for Neurosciences Research Initiative, Auburn University, Alabama, USA.
| |
Collapse
|
27
|
Souza LAC, Worker CJ, Li W, Trebak F, Watkins T, Gayban AJB, Yamasaki E, Cooper SG, Drumm BT, Feng Y. (Pro)renin receptor knockdown in the paraventricular nucleus of the hypothalamus attenuates hypertension development and AT 1 receptor-mediated calcium events. Am J Physiol Heart Circ Physiol 2019; 316:H1389-H1405. [PMID: 30925093 DOI: 10.1152/ajpheart.00780.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of the brain renin-angiotensin system (RAS) is a pivotal step in the pathogenesis of hypertension. The paraventricular nucleus (PVN) of the hypothalamus is a critical part of the angiotensinergic sympatho-excitatory neuronal network involved in neural control of blood pressure and hypertension. However, the importance of the PVN (pro)renin receptor (PVN-PRR)-a key component of the brain RAS-in hypertension development has not been examined. In this study, we investigated the involvement and mechanisms of the PVN-PRR in DOCA-salt-induced hypertension, a mouse model of hypertension. Using nanoinjection of adeno-associated virus-mediated Cre recombinase expression to knock down the PRR specifically in the PVN, we report here that PVN-PRR knockdown attenuated the enhanced blood pressure and sympathetic tone associated with hypertension. Mechanistically, we found that PVN-PRR knockdown was associated with reduced activation of ERK (extracellular signal-regulated kinase)-1/2 in the PVN and rostral ventrolateral medulla during hypertension. In addition, using the genetically encoded Ca2+ biosensor GCaMP6 to monitor Ca2+-signaling events in the neurons of PVN brain slices, we identified a reduction in angiotensin II type 1 receptor-mediated Ca2+ activity as part of the mechanism by which PVN-PRR knockdown attenuates hypertension. Our study demonstrates an essential role of the PRR in PVN neurons in hypertension through regulation of ERK1/2 activation and angiotensin II type 1 receptor-mediated Ca2+ activity. NEW & NOTEWORTHY PRR knockdown in PVN neurons attenuates the development of DOCA-salt hypertension and autonomic dysfunction through a decrease in ERK1/2 activation in the PVN and RVLM during hypertension. In addition, PRR knockdown reduced AT1aR expression and AT1R-mediated calcium activity during hypertension. Furthermore, we characterized the neuronal targeting specificity of AAV serotype 2 in the mouse PVN and validated the advantages of the genetically encoded calcium biosensor GCaMP6 in visualizing neuronal calcium activity in the PVN.
Collapse
Affiliation(s)
- Lucas A C Souza
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Caleb J Worker
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University , Winston-Salem, North Carolina
| | - Fatima Trebak
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Trevor Watkins
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Ariana Julia B Gayban
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Silvana G Cooper
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Yumei Feng
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| |
Collapse
|
28
|
Effects of the (Pro)renin Receptor on Cardiac Remodeling and Function in a Rat Alcoholic Cardiomyopathy Model via the PRR-ERK1/2-NOX4 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4546975. [PMID: 31049135 PMCID: PMC6462324 DOI: 10.1155/2019/4546975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Alcoholic cardiomyopathy (ACM) caused by alcohol consumption manifests mainly as by maladaptive myocardial function, which eventually leads to heart failure and causes serious public health problems. The (pro)renin receptor (PRR) is an important member of the local tissue renin-angiotensin system and plays a vital role in many cardiovascular diseases. However, the mechanism responsible for the effects of PRR on ACM remains unclear. The purpose of this study was to determine the role of PRR in myocardial fibrosis and the deterioration of cardiac function in alcoholic cardiomyopathy. Wistar rats were fed a liquid diet containing 9% v/v alcohol to establish an alcoholic cardiomyopathy model. Eight weeks later, rats were injected with 1 × 109v.g./100 μl of recombinant adenovirus containing EGFP (scramble-shRNA), PRR, and PRR-shRNA via the tail vein. Cardiac function was assessed by echocardiography. Cardiac histopathology was measured by Masson's trichrome staining, immunohistochemical staining, and dihydroethidium staining. In addition, cardiac fibroblasts (CFs) were cultured to evaluate the effects of alcohol stimulation on the production of the extracellular matrix and their underlying mechanisms. Our results indicated that overexpression of PRR in rats with alcoholic cardiomyopathy exacerbates myocardial oxidative stress and myocardial fibrosis. Silencing of PRR expression with short hairpin RNA (shRNA) technology reversed the myocardial damage mediated by PRR. Additionally, PRR activated phosphorylation of ERK1/2 and increased NOX4-derived reactive oxygen species and collagen expression in CFs with alcohol stimulation. Administration of the ERK kinase inhibitor (PD98059) significantly reduced NOX4 protein expression and collagen production, which indicated that PRR increases collagen production primarily through the PRR-ERK1/2-NOX4 pathway in CFs. In conclusion, our study demonstrated that PRR induces myocardial fibrosis and deteriorates cardiac function through ROS from the PRR-ERK1/2-NOX4 pathway during ACM development.
Collapse
|
29
|
Mocayar Marón FJ, Ferder L, Saraví FD, Manucha W. Hypertension linked to allostatic load: from psychosocial stress to inflammation and mitochondrial dysfunction. Stress 2019; 22:169-181. [PMID: 30547701 DOI: 10.1080/10253890.2018.1542683] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Although a large number of available treatments and strategies, the prevalence of cardiovascular diseases continues to grow worldwide. Emerging evidence supports the notion of counteracting stress as a critical component of a comprehensive therapeutic strategy for cardiovascular disease. Indeed, an unhealthy lifestyle is a burden to biological variables such as plasma glucose, lipid profile, and blood pressure control. Recent findings identify allostatic load as a new paradigm for an integrated understanding of the importance of psychosocial stress and its impact on the development and maintenance of cardiovascular disease. Allostasis complement homeostasis and integrates behavioral and physiological mechanisms by which genes, early experiences, environment, lifestyle, diet, sleep, and physical exercise can modulate and adapt biological responses at the cellular level. For example, variability is a physiological characteristic of blood pressure necessary for survival and the allostatic load in hypertension can contribute to its related cardiovascular morbidity and mortality. Therefore, the current review will focus on the mechanisms that link hypertension to allostatic load, which includes psychosocial stress, inflammation, and mitochondrial dysfunction. We will describe and discuss new insights on neuroendocrine-immune effects linked to allostatic load and its impact on the cellular and molecular responses; the links between allostatic load, inflammation, and endothelial dysfunction; the epidemiological evidence supporting the pathophysiological origins of hypertension; and the biological embedding of allostatic load and hypertension with an emphasis on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- a Área de Química Biológica, Departamento de Morfofisiología, Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - León Ferder
- b Department of Pediatrics , Nephrology Division, Miller School of Medicine, University of Miami , FL , USA
| | - Fernando Daniel Saraví
- c Instituto de Fisiología, Departamento de Morfofisiología, Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - Walter Manucha
- d Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
- e Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) , Mendoza , Argentina
| |
Collapse
|
30
|
Hu L, Zhang S, Wen H, Liu T, Cai J, Du D, Zhu D, Chen F, Xia C. Melatonin decreases M1 polarization via attenuating mitochondrial oxidative damage depending on UCP2 pathway in prorenin-treated microglia. PLoS One 2019; 14:e0212138. [PMID: 30742657 PMCID: PMC6370243 DOI: 10.1371/journal.pone.0212138] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that neuroinflammation and oxidative stress in cardiovascular center contribute to the pathological processes underlying hypertension. Microglia activation triggers the inflammation and oxidative stress. Melatonin is a documented potent anti-inflammatory regent and antioxidant, the underlying roles of melatonin in regulating microglia activation via mitochondria remain unclear. In present study, we investigated the protective role of melatonin in decreasing M1 phenotype switching via attenuating mitochondrial oxidative damage in dependence on uncoupling protein 2 (UCP2) pathway in microglia. Prorenin (20 nmol/L; 24 hr) was used to induce inflammation in cultured microglia. Mitochondrial morphology was detected by transmission electron microscope. The reactive oxygen species (ROS) production by using DCFH-DA fluorescence imaging and mitochondrial membrane potential (MMP, ΔΨm) was evaluated by JC-1 staining. The indicator of the redox status as the ratio of the amount of total NADP+ to total NADPH, and the expression of 6 subunits of NADPH oxidase is measured. The pro-inflammatory cytokines releasing was measured by qPCR. UCP2 and activated AMPKα (p-AMPKα) expression were examined by immunoblot. Melatonin (100 μM) markedly alleviated the M1 microglia phenotype shifting and abnormal mitochondria morphology. Melatonin attenuated prorenin-induced ΔΨm increasing and ROS overproduction. Melatonin decreased the redox ratio (NADP+/NADPH) and the p47phox and gp91phox subunits of NADPH oxidase expression in prorenin-treated microglia. These effects were reversed in the presence of UCP2 siRNA. Our results suggested that the protective effect of melatonin against prorenin-induced M1 phenotype switching via attenuating mitochondrial oxidative damage depending on UCP2 upregulation in prorenin-treated microglia.
Collapse
Affiliation(s)
- Li Hu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, P.R. China
| | - Shutian Zhang
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, P.R. China
| | - Haoyu Wen
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, P.R. China
| | - Tianfeng Liu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, P.R. China
| | - Jian Cai
- Department of neurology, Renji Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Dongshu Du
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, P.R. China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, P.R. China
| | - Fuxue Chen
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, P.R. China
- * E-mail: (FXC); (CMX)
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, P.R. China
- * E-mail: (FXC); (CMX)
| |
Collapse
|
31
|
The renin-angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res 2018; 29:231-243. [PMID: 30413906 DOI: 10.1007/s10286-018-0572-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/25/2018] [Indexed: 10/27/2022]
Abstract
Complex and bidirectional interactions between the renin-angiotensin system (RAS) and autonomic nervous system have been well established for cardiovascular regulation under both physiological and pathophysiological conditions. Most research to date has focused on deleterious effects of components of the vasoconstrictor arm of the RAS on cardiovascular autonomic control, such as renin, angiotensin II, and aldosterone. The recent discovery of prorenin and the prorenin receptor have further increased our understanding of RAS interactions in autonomic brain regions. Therapies targeting these RAS components, such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, are commonly used for treatment of hypertension and cardiovascular diseases, with blood pressure-lowering effects attributed in part to sympathetic inhibition and parasympathetic facilitation. In addition, a vasodilatory arm of the RAS has emerged that includes angiotensin-(1-7), ACE2, and alamandine, and promotes beneficial effects on blood pressure in part by reducing sympathetic activity and improving arterial baroreceptor reflex function in animal models. The role of the vasodilatory arm of the RAS in cardiovascular autonomic regulation in clinical populations, however, has yet to be determined. This review will summarize recent developments in autonomic mechanisms involved in the effects of the RAS on cardiovascular regulation, with a focus on newly discovered pathways and therapeutic targets for this hormone system.
Collapse
|
32
|
Mi Y, Wu Q, Yuan W, Chen F, Du D. Role of microglia M1/M2 polarisation in the paraventricular nucleus: New insight into the development of stress-induced hypertension in rats. Auton Neurosci 2018; 213:71-80. [DOI: 10.1016/j.autneu.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
|
33
|
Haspula D, Clark MA. Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. J Pharmacol Exp Ther 2018; 366:251-264. [PMID: 29752427 DOI: 10.1124/jpet.118.248831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
The central renin angiotensin system (RAS) is one of the most widely investigated cardiovascular systems in the brain. It is implicated in a myriad of cardiovascular diseases. However, studies from the last decade have identified its involvement in several neurologic abnormalities. Understanding the molecular functionality of the various RAS components can thus provide considerable insight into the phenotypic differences and mechanistic drivers of not just cardiovascular but also neurologic disorders. Since activation of one of its primary receptors, the angiotensin type 1 receptor (AT1R), results in an augmentation of oxidative stress and inflammatory cytokines, it becomes essential to investigate not just neuronal RAS but glial RAS as well. Glial cells are key homeostatic regulators in the brain and are critical players in the resolution of overt oxidative stress and neuroinflammation. Designing better and effective therapeutic strategies that target the brain RAS could well hinge on understanding the molecular basis of both neuronal and glial RAS. This review provides a comprehensive overview of the major studies that have investigated the mechanisms and regulation of the brain RAS, and it also provides insight into the potential role of glial AT1Rs in the pathophysiology of cardiovascular and neurologic disorders.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| | - Michelle A Clark
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| |
Collapse
|
34
|
Peng H, Jensen DD, Li W, Sullivan MN, Buller SA, Worker CJ, Cooper SG, Zheng S, Earley S, Sigmund CD, Feng Y. Overexpression of the neuronal human (pro)renin receptor mediates angiotensin II-independent blood pressure regulation in the central nervous system. Am J Physiol Heart Circ Physiol 2018; 314:H580-H592. [PMID: 29350998 PMCID: PMC5899258 DOI: 10.1152/ajpheart.00310.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
Abstract
Despite advances in antihypertensive therapeutics, at least 15-20% of hypertensive patients have resistant hypertension through mechanisms that remain poorly understood. In this study, we provide a new mechanism for the regulation of blood pressure (BP) in the central nervous system (CNS) by the (pro)renin receptor (PRR), a recently identified component of the renin-angiotensin system that mediates ANG II formation in the CNS. Although PRR also mediates ANG II-independent signaling, the importance of these pathways in BP regulation is unknown. Here, we developed a unique transgenic mouse model overexpressing human PRR (hPRR) specifically in neurons (Syn-hPRR). Intracerebroventricular infusion of human prorenin caused increased BP in Syn-hPRR mice. This BP response was attenuated by a NADPH oxidase (NOX) inhibitor but not by antihypertensive agents that target the renin-angiotensin system. Using a brain-targeted genetic knockdown approach, we found that NOX4 was the key isoform responsible for the prorenin-induced elevation of BP in Syn-hPRR mice. Moreover, inhibition of ERK significantly attenuated the increase in NOX activity and BP induced by human prorenin. Collectively, our findings indicate that an ANG II-independent, PRR-mediated signaling pathway regulates BP in the CNS by a PRR-ERK-NOX4 mechanism. NEW & NOTEWORTHY This study characterizes a new transgenic mouse model with overexpression of the human (pro)renin receptor in neurons and demonstrated a novel angiotensin II-independent mechanism mediated by human prorenin and the (pro)renin receptor in the central regulation of blood pressure.
Collapse
Affiliation(s)
- Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huangzhong University of Sciences and Technology , Wuhan, Hubei , China
| | - Dane D Jensen
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Michelle N Sullivan
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Sophie A Buller
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Caleb J Worker
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Silvana G Cooper
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Shiqi Zheng
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Scott Earley
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Yumei Feng
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| |
Collapse
|
35
|
de Morais SDB, Shanks J, Zucker IH. Integrative Physiological Aspects of Brain RAS in Hypertension. Curr Hypertens Rep 2018; 20:10. [PMID: 29480460 DOI: 10.1007/s11906-018-0810-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) plays an important role in modulating cardiovascular function and fluid homeostasis. While the systemic actions of the RAS are widely accepted, the role of the RAS in the brain, its regulation of cardiovascular function, and sympathetic outflow remain controversial. In this report, we discuss the current understanding of central RAS on blood pressure (BP) regulation, in light of recent literature and new experimental techniques. RECENT FINDINGS Studies using neuronal or glial-specifc mouse models have allowed for greater understanding into the site-specific expression and role centrally expressed RAS proteins have on BP regulation. While all components of the RAS have been identified in cardiovascular regulatory regions of the brain, their actions may be site specific. In a number of animal models of hypertension, reduction in Ang II-mediated signaling, or upregulation of the central ACE2/Ang 1-7 pathway, has been shown to reduce BP, via a reduction in sympathetic signaling and increase parasympathetic tone, respectively. Emerging evidence also suggests that, in part, the female protective phenotype against hypertension may be due to inceased ACE2 activity within cardiovascular regulatory regions of the brain, potentially mediated by estrogen. Increasing evidence suggests the importance of a central renin-angiotensin pathway, although its localization and the mechanisms involved in its expression and regulation still need to be clarified and more precisely defined. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).
Collapse
Affiliation(s)
- Sharon D B de Morais
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
36
|
Hennrikus M, Gonzalez AA, Prieto MC. The prorenin receptor in the cardiovascular system and beyond. Am J Physiol Heart Circ Physiol 2018; 314:H139-H145. [PMID: 29101170 PMCID: PMC5867650 DOI: 10.1152/ajpheart.00373.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 01/24/2023]
Abstract
Since the prorenin receptor (PRR) was first reported, its physiological role in many cellular processes has been under intense scrutiny. The PRR is currently recognized as a multifunctional receptor with major roles as an accessory protein of the vacuolar-type H+-ATPase and as an intermediary in the Wnt signaling pathway. As a member of the renin-angiotensin system (RAS), the PRR has demonstrated to be of relevance in cardiovascular diseases (CVD) because it can activate prorenin and enhance the enzymatic activity of renin, thus promoting angiotensin II formation. Indeed, there is an association between PRR gene polymorphisms and CVD. Independent of angiotensin II, the activation of the PRR further stimulates intracellular signals linked to fibrosis. Studies using tissues and cells from a variety of organs and systems have supported its roles in multiple functions, although some remain controversial. In the brain, the PRR appears to be involved in the central regulation of blood pressure via activation of RAS- and non-RAS-dependent mechanisms. In the heart, the PRR promotes atrial structural and electrical remodeling. Nonetheless, animals overexpressing the PRR do not exhibit cardiac injury. In the kidney, the PRR is involved in the development of ureteric bud branching, urine concentration, and regulation of blood pressure. There is great interest in the PRR contributions to T cell homeostasis and to the development of visceral and brown fat. In this mini-review, we discuss the evidence for the pathophysiological roles of the PRR with emphasis in CVD.
Collapse
Affiliation(s)
- Matthew Hennrikus
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
- Tulane University Renal and Hypertension Center of Excellence , New Orleans, Louisiana
| |
Collapse
|
37
|
Cooper SG, Trivedi DP, Yamamoto R, Worker CJ, Feng CY, Sorensen JT, Yang W, Xiong Z, Feng Y. Increased (pro)renin receptor expression in the subfornical organ of hypertensive humans. Am J Physiol Heart Circ Physiol 2017; 314:H796-H804. [PMID: 29351470 DOI: 10.1152/ajpheart.00616.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The central nervous system plays an important role in essential hypertension in humans and in animal models of hypertension through modulation of sympathetic activity and Na+ and body fluid homeostasis. Data from animal models of hypertension suggest that the renin-angiotensin system in the subfornical organ (SFO) of the brain is critical for hypertension development. We recently reported that the brain (pro)renin receptor (PRR) is a novel component of the brain renin-angiotensin system and could be a key initiator of the pathogenesis of hypertension. Here, we examined the expression level and cellular distribution of PRR in the SFO of postmortem human brains to assess its association with the pathogenesis of human hypertension. Postmortem SFO tissues were collected from hypertensive and normotensive human subjects. Immunolabeling for the PRR and a retrospective analysis of clinical data were performed. We found that human PRR was prominently expressed in most neurons and microglia, but not in astrocytes, in the SFO. Importantly, PRR levels in the SFO were elevated in hypertensive subjects. Moreover, PRR immunoreactivity was significantly correlated with systolic blood pressure but not body weight, age, or diastolic blood pressure. Interestingly, this correlation was independent of antihypertensive drug therapy. Our data indicate that PRR in the SFO may be a key molecular player in the pathogenesis of human hypertension and, as such, could be an important focus of efforts to understand the neurogenic origin of hypertension. NEW & NOTEWORTHY This study provides evidence that, in the subfornical organ of the human brain, the (pro)renin receptor is expressed in neurons and microglia cells but not in astrocytes. More importantly, (pro)renin receptor immunoreactivity in the subfornical organ is increased in hypertensive humans and is significantly correlated with systolic blood pressure.
Collapse
Affiliation(s)
- Silvana G Cooper
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Darshan P Trivedi
- Department of Pathology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Rieko Yamamoto
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada.,Tokyo Medical and Dental University, Faculty of Medicine , Tokyo , Japan
| | - Caleb J Worker
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Cheng-Yuan Feng
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Jacob T Sorensen
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Wei Yang
- School of Community Health Sciences, University of Nevada , Reno, Nevada
| | - Zhenggang Xiong
- Department of Pathology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Yumei Feng
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| |
Collapse
|
38
|
Kuroda A, Fuchigami T, Fuke S, Koyama N, Ikenaka K, Hitoshi S. Minocycline Directly Enhances the Self-Renewal of Adult Neural Precursor Cells. Neurochem Res 2017; 43:219-226. [PMID: 29081002 DOI: 10.1007/s11064-017-2422-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Minocycline not only has antibacterial action but also produces a variety of pharmacological effects. It has drawn considerable attention as a therapeutic agent for symptoms caused by inflammation in many neurological disorders, leading to several clinical trials. Although some of these effects are mediated through its function of suppressing microglial activation, it is not clear whether minocycline acts on other cell types in the adult brain. In this study, we utilized a colony-forming neurosphere assay, in which neural stem cells (NSCs) clonally proliferate to form floating colonies, called neurospheres. We found that minocycline (at therapeutically relevant concentrations in cerebrospinal fluid) enhances the self-renewal capability of NSCs derived from the subependymal zone of adult mouse brain and facilitates their differentiation into oligodendrocytes. Importantly, these effects were independent of a suppression of microglial activation and were specifically observed with minocycline (among tetracycline derivatives). In addition, the size of the NSC population in the adult brain was increased when minocycline was infused into the lateral ventricle by an osmotic minipump in vivo. While precise molecular mechanisms of how minocycline alters the behavior of adult NSCs remain unknown, our data provide a basis for the clinical use of minocycline to treat neurodegenerative and demyelinating diseases.
Collapse
Affiliation(s)
- Anri Kuroda
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Takahiro Fuchigami
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Satoshi Fuke
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Natsu Koyama
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan.,Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies, Okazaki, 444-8787, Japan
| | - Seiji Hitoshi
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, 520-2192, Japan. .,Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan. .,Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies, Okazaki, 444-8787, Japan.
| |
Collapse
|
39
|
Yang T, Zubcevic J. Gut-Brain Axis in Regulation of Blood Pressure. Front Physiol 2017; 8:845. [PMID: 29118721 PMCID: PMC5661004 DOI: 10.3389/fphys.2017.00845] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 01/04/2023] Open
Abstract
Hypertension (HTN) is an escalating health issue worldwide. It is estimated that 1.56 billion people will suffer from high blood pressure (BP) by 2025. Recent studies reported an association between gut dysbiosis and HTN, thus proposing interesting avenues for novel treatments of this condition. The sympathetic nervous system (SNS) and the immune system (IS) play a recognized role in the onset and progression of HTN, while reciprocal communication between gut microbiota and the brain can regulate BP by modulating the interplay between the IS and SNS. This review presents the current state of the science implicating brain-gut connection in HTN, highlighting potential pathways of their interaction in control of BP.
Collapse
Affiliation(s)
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Du D, Hu L, Wu J, Wu Q, Cheng W, Guo Y, Guan R, Wang Y, Chen X, Yan X, Zhu D, Wang J, Zhang S, Guo Y, Xia C. Neuroinflammation contributes to autophagy flux blockage in the neurons of rostral ventrolateral medulla in stress-induced hypertension rats. J Neuroinflammation 2017; 14:169. [PMID: 28835252 PMCID: PMC5569471 DOI: 10.1186/s12974-017-0942-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neuroinflammation plays hypertensive roles in the uninjured autonomic nuclei of the central nervous system, while its mechanisms remain unclear. The present study is to investigate the effect of neuroinflammation on autophagy in the neurons of the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for the maintenance of vasomotor tone reside. METHODS Stress-induced hypertension (SIH) was induced by electric foot-shock stressors with noise interventions in rats. Systolic blood pressure (SBP) and the power density of the low frequency (LF) component of the SAP spectrum were measured to reflect sympathetic vasomotor activity. Microglia activation and pro-inflammatory cytokines (PICs (IL-1β, TNF-α)) expression in the RVLM were measured by immunoblotting and immunostaining. Autophagy and autophagic vacuoles (AVs) were examined by autophagic marker (LC3 and p62) expression and transmission electron microscopy (TEM) image, respectively. Autophagy flux was evaluated by RFP-GFP-tandem fluorescent LC3 (tf-LC3) vectors transfected into the RVLM. Tissue levels of glutamate, gamma aminobutyric acid (GABA), and plasma levels of norepinephrine (NE) were measured by using high-performance liquid chromatography (HPLC) with electrochemical detection. The effects of the cisterna magna infused minocycline, a microglia activation inhibitor, on the abovementioned parameters were analyzed. RESULTS SIH rats showed increased SBP, plasma NE accompanied by an increase in LF component of the SBP spectrum. Microglia activation and PICs expression was increased in SIH rats. TEM demonstrated that stress led to the accumulation of AVs in the RVLM of SIH rats. In addition to the Tf-LC3 assay, the concurrent increased level of LC3-II and p62 suggested the impairment of autophagic flux in SIH rats. To the contrary, minocycline facilitated autophagic flux and induced a hypotensive effect with attenuated microglia activation and decreased PICs in the RVLM of SIH rats. Furthermore, SIH rats showed higher levels of glutamate and lower level of GABA in the RVLM, while minocycline attenuated the decrease in GABA and the increase in glutamate of SIH rats. CONCLUSIONS Collectively, we concluded that the neuroinflammation might impair autophagic flux and induced neural excitotoxicity in the RVLM neurons following SIH, which is involved in the development of SIH.
Collapse
Affiliation(s)
- Dongshu Du
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Li Hu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Jiaxiang Wu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Qin Wu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wenjing Cheng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yuhong Guo
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yahui Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 People’s Republic of China
| | - Xingxin Chen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Xanxia Yan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Shutian Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, 200011 People’s Republic of China
| | - Yanfang Guo
- Department of Pediatrics, Pudong Gongli Hospital, Shanghai, 200135 People’s Republic of China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
41
|
Li Y, Shen XZ, Li L, Zhao TV, Bernstein KE, Johnson AK, Lyden P, Fang J, Shi P. Brain Transforming Growth Factor-β Resists Hypertension Via Regulating Microglial Activation. Stroke 2017; 48:2557-2564. [PMID: 28698257 DOI: 10.1161/strokeaha.117.017370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hypertension is the major risk factor for stroke. Recent work unveiled that hypertension is associated with chronic neuroinflammation; microglia are the major players in neuroinflammation, and the activated microglia elevate sympathetic nerve activity and blood pressure. This study is to understand how brain homeostasis is kept from hypertensive disturbance and microglial activation at the onset of hypertension. METHODS Hypertension was induced by subcutaneous delivery of angiotensin II, and blood pressure was monitored in conscious animals. Microglial activity was analyzed by flow cytometry and immunohistochemistry. Antibody, pharmacological chemical, and recombinant cytokine were administered to the brain through intracerebroventricular infusion. Microglial depletion was performed by intracerebroventricular delivering diphtheria toxin to CD11b-diphtheria toxin receptor mice. Gene expression profile in sympathetic controlling nucleus was analyzed by customized qRT-PCR array. RESULTS Transforming growth factor-β (TGF-β) is constitutively expressed in the brains of normotensive mice. Removal of TGF-β or blocking its signaling before hypertension induction accelerated hypertension progression, whereas supplementation of TGF-β1 substantially suppressed neuroinflammation, kidney norepinephrine level, and blood pressure. By means of microglial depletion and adoptive transfer, we showed that the effects of TGF-β on hypertension are mediated through microglia. In contrast to the activated microglia in established hypertension, the resting microglia are immunosuppressive and important in maintaining neural homeostasis at the onset of hypertension. Further, we profiled the signature molecules of neuroinflammation and neuroplasticity associated with hypertension and TGF-β by qRT-PCR array. CONCLUSIONS Our results identify that TGF-β-modulated microglia are critical to keeping brain homeostasis responding to hypertensive disturbance.
Collapse
Affiliation(s)
- You Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Xiao Z Shen
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Liang Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Tuantuan V Zhao
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Kenneth E Bernstein
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Alan K Johnson
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Patrick Lyden
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Jianmin Fang
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Peng Shi
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.).
| |
Collapse
|
42
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front Aging Neurosci 2017; 9:129. [PMID: 28515690 PMCID: PMC5413566 DOI: 10.3389/fnagi.2017.00129] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative
stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jose L Lanciego
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain.,Neurosciences Division, Center for Applied Medical Research (CIMA), University of NavarraPamplona, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| |
Collapse
|
43
|
Abstract
Inappropriate activation of the renin-angiotensin system (RAS) exacerbates renal and vascular injury. Accordingly, treatment with global RAS antagonists attenuates cardiovascular risk and slows the progression of proteinuric kidney disease. By reducing BP, RAS inhibitors limit secondary immune activation responding to hemodynamic injury in the target organ. However, RAS activation in hematopoietic cells has immunologic effects that diverge from those of RAS stimulation in the kidney and vasculature. In preclinical studies, activating type 1 angiotensin (AT1) receptors in T lymphocytes and myeloid cells blunts the polarization of these cells toward proinflammatory phenotypes, protecting the kidney from hypertensive injury and fibrosis. These endogenous functions of immune AT1 receptors temper the pathogenic actions of renal and vascular AT1 receptors during hypertension. By counteracting the effects of AT1 receptor stimulation in the target organ, exogenous administration of AT2 receptor agonists or angiotensin 1-7 analogs may similarly limit inflammatory injury to the heart and kidney. Moreover, although angiotensin II is the classic effector molecule of the RAS, several RAS enzymes affect immune homeostasis independently of canonic angiotensin II generation. Thus, as reviewed here, multiple components of the RAS signaling cascade influence inflammatory cell phenotype and function with unpredictable and context-specific effects on innate and adaptive immunity.
Collapse
Affiliation(s)
- Steven D Crowley
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| |
Collapse
|
44
|
Park S, Guo Y, Jia X, Choe HK, Grena B, Kang J, Park J, Lu C, Canales A, Chen R, Yim YS, Choi GB, Fink Y, Anikeeva P. One-step optogenetics with multifunctional flexible polymer fibers. Nat Neurosci 2017; 20:612-619. [PMID: 28218915 PMCID: PMC5374019 DOI: 10.1038/nn.4510] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022]
Abstract
Optogenetic interrogation of neural pathways relies on delivery of light-sensitive opsins into tissue and subsequent optical illumination and electrical recording from the regions of interest. Despite the recent development of multifunctional neural probes, integration of these modalities in a single biocompatible platform remains a challenge. We developed a device composed of an optical waveguide, six electrodes and two microfluidic channels produced via fiber drawing. Our probes facilitated injections of viral vectors carrying opsin genes while providing collocated neural recording and optical stimulation. The miniature (<200 μm) footprint and modest weight (<0.5 g) of these probes allowed for multiple implantations into the mouse brain, which enabled opto-electrophysiological investigation of projections from the basolateral amygdala to the medial prefrontal cortex and ventral hippocampus during behavioral experiments. Fabricated solely from polymers and polymer composites, these flexible probes minimized tissue response to achieve chronic multimodal interrogation of brain circuits with high fidelity.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuanyuan Guo
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xiaoting Jia
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Han Kyoung Choe
- McGovern Institute for Brain Research Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Grena
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeewoo Kang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiyeon Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chi Lu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andres Canales
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ritchie Chen
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yeong Shin Yim
- McGovern Institute for Brain Research Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gloria B. Choi
- McGovern Institute for Brain Research Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
45
|
Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-Gut-Bone Marrow Axis: Implications for Hypertension and Related Therapeutics. Circ Res 2016; 118:1327-36. [PMID: 27081113 DOI: 10.1161/circresaha.116.307709] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
Abstract
Hypertension is the most prevalent modifiable risk factor for cardiovascular disease and disorders directly influencing cardiovascular disease morbidity and mortality, such as diabetes mellitus, chronic kidney disease, obstructive sleep apnea, etc. Despite aggressive attempts to influence lifestyle modifications and advances in pharmacotherapeutics, a large percentage of patients still do not achieve recommended blood pressure control worldwide. Thus, we think that mechanism-based novel strategies should be considered to significantly improve control and management of hypertension. The overall objective of this review is to summarize implications of peripheral- and neuroinflammation as well as the autonomic nervous system-bone marrow communication in hematopoietic cell homeostasis and their impact on hypertension pathophysiology. In addition, we discuss the novel and emerging field of intestinal microbiota and roles of gut permeability and dysbiosis in cardiovascular disease and hypertension. Finally, we propose a brain-gut-bone marrow triangular interaction hypothesis and discuss its potential in the development of novel therapies for hypertension.
Collapse
Affiliation(s)
- Monica M Santisteban
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Seungbum Kim
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Carl J Pepine
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Mohan K Raizada
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville.
| |
Collapse
|
46
|
Pitra S, Feng Y, Stern JE. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control. Mol Metab 2016; 5:858-868. [PMID: 27688999 PMCID: PMC5034613 DOI: 10.1016/j.molmet.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Background Hypertension and obesity are highly interrelated diseases, being critical components of the metabolic syndrome. Despite the growing prevalence of this syndrome in the world population, efficient therapies are still missing. Thus, identification of novel targets and therapies are warranted. An enhanced activity of the hypothalamic renin-angiotensin system (RAS), including the recently discovered prorenin (PR) and its receptor (PRR), has been implicated as a common mechanism underlying aberrant sympatho-humoral activation that contributes to both metabolic and cardiovascular dysregulation in the metabolic syndrome. Still, the identification of precise neuronal targets, cellular mechanisms and signaling pathways underlying PR/PRR actions in cardiovascular- and metabolic related hypothalamic nuclei remain unknown. Methods and results Using a multidisciplinary approach including patch-clamp electrophysiology, live calcium imaging and immunohistochemistry, we aimed to elucidate cellular mechanisms underlying PR/PRR actions within the hypothalamic supraoptic (SON) and paraventricular nucleus (PVN), key brain areas previously involved in cardiometabolic regulation. We show for the first time that PRR is expressed in magnocellular neurosecretory cells (MNCs), and to a lesser extent, in presympathetic PVN neurons (PVNPS). Moreover, we show that while PRR activation efficiently stimulates the firing activity of both MNCs and PVNPS neurons, these effects involved AngII-independent and AngII-dependent mechanisms, respectively. In both cases however, PR excitatory effects involved an increase in intracellular Ca2+ levels and a Ca2+-dependent inhibition of a voltage-gated K+ current. Conclusions We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension. PRR is expressed in SON and PVN neurosecretory and presympathetic neurons. PRR activation stimulates firing activity of SON and PVN neurons. PR/PRR effects on neurosecretory neurons are AngII-independent. PR/PRR effects on presympathetic neurons are AngII-dependent. PR inhibits a voltage-gated K+ current in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Soledad Pitra
- Department of Physiology, Medical College of Georgia, Augusta University, United States
| | - Yumei Feng
- Departments of Pharmacology, Physiology and Cell Biology, Center for Cardiovascular Research, University of Nevada School of Medicine, United States
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Augusta University, United States.
| |
Collapse
|
47
|
Xu Q, Jensen DD, Peng H, Feng Y. The critical role of the central nervous system (pro)renin receptor in regulating systemic blood pressure. Pharmacol Ther 2016; 164:126-34. [PMID: 27113409 DOI: 10.1016/j.pharmthera.2016.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 01/24/2023]
Abstract
The systemic renin-angiotensin system (RAS) has long been recognized as a critically important system in blood pressure (BP) regulation. However, extensive evidence has shown that a majority of RAS components are also present in many tissues and play indispensable roles in BP regulation. Here, we review evidence that RAS components, notably including the newly identified (pro)renin receptor (PRR), are present in the brain and are essential for the central regulation of BP. Binding of the PRR to its ligand, prorenin or renin, increases BP and promotes progression of cardiovascular diseases in an angiotensin II-dependent and -independent manner, establishing the PRR a promising antihypertensive drug target. We also review the existing PRR blockers, including handle region peptide and PRO20, and propose a rationale for blocking prorenin/PRR activation as a therapeutic approach that does not affect the actions of the PRR in vacuolar H(+)-ATPase and development. Finally, we summarize categories of currently available antihypertensive drugs and consider future perspectives.
Collapse
Affiliation(s)
- Quanbin Xu
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA; Department of Physiology & Cell Biology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA
| | - Dane D Jensen
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA; Department of Physiology & Cell Biology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA
| | - Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huangzhong University of Sciences and Technology, Wuhan, China
| | - Yumei Feng
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA; Department of Physiology & Cell Biology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA.
| |
Collapse
|
48
|
Marina N, Teschemacher AG, Kasparov S, Gourine AV. Glia, sympathetic activity and cardiovascular disease. Exp Physiol 2016; 101:565-76. [PMID: 26988631 PMCID: PMC5031202 DOI: 10.1113/ep085713] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we discuss recent findings that provide a novel insight into the mechanisms that link glial cell function with the pathogenesis of cardiovascular disease, including systemic arterial hypertension and chronic heart failure. What advances does it highlight? We discuss how glial cells may influence central presympathetic circuits, leading to maladaptive and detrimental increases in sympathetic activity and contributing to the development and progression of cardiovascular disease. Increased activity of the sympathetic nervous system is associated with the development of cardiovascular disease and may contribute to its progression. Vasomotor and cardiac sympathetic activities are generated by the neuronal circuits located in the hypothalamus and the brainstem. These neuronal networks receive multiple inputs from the periphery and other parts of the CNS and, at a local level, may be influenced by their non-neuronal neighbours, in particular glial cells. In this review, we discuss recent experimental evidence suggesting that astrocytes and microglial cells are able to modulate the activity of sympathoexcitatory neural networks in disparate physiological and pathophysiological conditions. We focus on the chemosensory properties of astrocytes residing in the rostral ventrolateral medulla oblongata and discuss signalling mechanisms leading to glial activation during brain hypoxia and inflammation. Alterations in these mechanisms may lead to heightened activity of sympathoexcitatory CNS circuits and contribute to maladaptive and detrimental increases in sympathetic tone associated with systemic arterial hypertension and chronic heart failure.
Collapse
Affiliation(s)
- Nephtali Marina
- Department of Clinical Pharmacology, University College London, London, WC1E 6JF, UK
| | - Anja G Teschemacher
- School of Physiology and Pharmacology, Medical Sciences Building, Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD, UK
| | - Sergey Kasparov
- School of Physiology and Pharmacology, Medical Sciences Building, Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
49
|
Takesue K, Kishi T, Hirooka Y, Sunagawa K. Activation of microglia within paraventricular nucleus of hypothalamus is NOT involved in maintenance of established hypertension. J Cardiol 2016; 69:84-88. [PMID: 26874752 DOI: 10.1016/j.jjcc.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammation within paraventricular nucleus of the hypothalamus (PVN), a key circulatory control center in the hypothalamus, is an important pathology of sympathetic hyperactivity. Brain inflammation is mainly mediated by microglia, innate immune cells in the brain. Activated microglia produce inflammatory cytokines with alteration of their morphology. Increase in inflammatory cytokines synthesis coincides with activation of microglia within PVN of angiotensin II-induced hypertensive model and myocardial infarction-induced heart failure model. Although the increase in inflammatory cytokines and the microglial activation within PVN were also seen in spontaneously hypertensive rats (SHR), the model of essential hypertension, their involvement in blood pressure regulation has still be fully clarified. In the present study, we examined whether activated microglia within PVN were involved in maintenance of established severe hypertension with sympathoexcitation. METHODS Minocycline (25mg/kg/day), an inhibitor of microglial activation, or vehicle were orally administered to stroke-prone SHR (SHRSP) and normotensive Wistar-Kyoto (WKY) rats for 2 weeks from 15-weeks-old, the age of established hypertension. RESULTS Systolic blood pressure was comparable between minocycline treated-SHRSP and vehicle treated-SHRSP, whereas morphological analysis of microglia revealed smaller cell size in minocycline treated-SHRSP than vehicle treated-SHRSP, implying that minocycline deactivated microglia within PVN. CONCLUSIONS Activated microglia with morphological alteration within PVN are not involved in the maintenance of established severe hypertension, and inflammation within PVN could not be the therapeutic target of established hypertension.
Collapse
Affiliation(s)
- Ko Takesue
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan.
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| | - Kenji Sunagawa
- Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| |
Collapse
|
50
|
Abstract
The etiology of hypertension, a critical public health issue affecting one in three US adults, involves the integration of the actions of multiple organ systems, including the central nervous system. Increased activation of the central nervous system, driving enhanced sympathetic outflow and increased blood pressure, has emerged as a major contributor to the pathogenesis of hypertension. The hypothalamus is a key brain site acting to integrate central and peripheral inputs to ultimately impact blood pressure in multiple disease states that evoke hypertension. This review highlights recent advances that have identified novel signal transduction mechanisms within multiple hypothalamic nuclei (e.g., paraventricular nucleus, arcuate nucleus) acting to drive the pathophysiology of hypertension in neurogenic hypertension, angiotensin II hypertension, salt-sensitive hypertension, chronic intermittent hypoxia, and obesity-induced hypertension. Increased understanding of hypothalamic activity in hypertension has the potential to identify novel targets for future therapeutic interventions designed to treat hypertension.
Collapse
|