1
|
Karati D, Meur S, Roy S, Mukherjee S, Debnath B, Jha SK, Sarkar BK, Naskar S, Ghosh P. Glycogen synthase kinase 3 (GSK3) inhibition: a potential therapeutic strategy for Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03500-1. [PMID: 39432068 DOI: 10.1007/s00210-024-03500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease (AD), the most common type of dementia among older adults, is a chronic neurodegenerative pathology that causes a progressive loss of cognitive functioning with a decline of rational skills. It is well known that AD is multifactorial, so there are many different pharmacological targets that can be pursued. According to estimates from the World Health Organization (WHO), 18 million individuals worldwide suffer from AD. Major initiatives to identify risk factors, enhance care giving, and conduct basic research to delay the beginning of AD were started by the USA, France, Germany, France, and various other nations. Widely recognized as a key player in the development and subsequent progression of AD pathogenesis, glycogen synthase kinase-3 (GSK-3) controls a number of crucial targets associated with neuronal degeneration. GSK-3 inhibition has been linked to reduced tau hyperphosphorylation, β-amyloid formation, and neuroprotective benefits in Alzheimer's disease. Lithium, the very first inhibitor of GSK-3β that was used therapeutically, has been successfully used for many years with remarkable results. A great variety of structurally varied strong GSK-3β blockers have been identified in recent years. The purpose of this thorough review is to cover the biological and structural elements of glycogen synthase kinase, as well as the medicinal chemistry aspects of GSK inhibitors that have been produced in recent years.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India.
| | - Biplab Debnath
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal, 711316, India
| | - Sajal Kumar Jha
- Department of Pharmaceutical Technology, Bengal College of Pharmaceutical Technology, Dubrajpur, West Bengal, 731123, India
| | | | - Saheli Naskar
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Priya Ghosh
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| |
Collapse
|
2
|
Gomez GT, Shi L, Fohner AE, Chen J, Yang Y, Fornage M, Duggan MR, Peng Z, Daya GN, Tin A, Schlosser P, Longstreth WT, Kalani R, Sharma M, Psaty BM, Nevado-Holgado AJ, Buckley NJ, Gottesman RF, Lutsey PL, Jack CR, Sullivan KJ, Mosley T, Hughes TM, Coresh J, Walker KA. Plasma proteome-wide analysis of cerebral small vessel disease identifies novel biomarkers and disease pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24314972. [PMID: 39417098 PMCID: PMC11483013 DOI: 10.1101/2024.10.07.24314972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebral small vessel disease (SVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although conditions such as hypertension are known to contribute to SVD, little is known about the diverse set of subclinical biological processes and molecular mediators that may also influence the development and progression of SVD. To better understand the mechanisms underlying SVD and to identify novel SVD biomarkers, we used a large-scale proteomic platform to relate 4,877 plasma proteins to MRI-defined SVD characteristics within 1,508 participants of the Atherosclerosis Risk in Communities (ARIC) Study cohort. Our proteome-wide analysis of older adults (mean age: 76) identified 13 WMH-associated plasma proteins involved in synaptic function, endothelial integrity, and angiogenesis, two of which remained associated with late-life WMH volume when measured nearly 20 years earlier, during midlife. We replicated the relationship between 9 candidate proteins and WMH volume in one or more external cohorts; we found that 11 of the 13 proteins were associated with risk for future dementia; and we leveraged publicly available proteomic data from brain tissue to demonstrate that a subset of WMH-associated proteins was differentially expressed in the context of cerebral atherosclerosis, pathologically-defined Alzheimer's disease, and cognitive decline. Bidirectional two-sample Mendelian randomization analyses examined the causal relationships between candidate proteins and WMH volume, while pathway and network analyses identified discrete biological processes (lipid/cholesterol metabolism, NF-kB signaling, hemostasis) associated with distinct forms of SVD. Finally, we synthesized these findings to identify two plasma proteins, oligodendrocyte myelin glycoprotein (OMG) and neuronal pentraxin receptor (NPTXR), as top candidate biomarkers for elevated WMH volume and its clinical manifestations.
Collapse
|
3
|
Zuniga G, Katsumura S, De Mange J, Ramirez P, Atrian F, Morita M, Frost B. Pathogenic tau induces an adaptive elevation in mRNA translation rate at early stages of disease. Aging Cell 2024; 23:e14245. [PMID: 38932463 PMCID: PMC11464109 DOI: 10.1111/acel.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Alterations in the rate and accuracy of messenger RNA (mRNA) translation are associated with aging and several neurodegenerative disorders, including Alzheimer's disease and related tauopathies. We previously reported that error-containing RNA that are normally cleared via nonsense-mediated mRNA decay (NMD), a key RNA surveillance mechanism, are translated in the adult brain of a Drosophila model of tauopathy. In the current study, we find that newly-synthesized peptides and translation machinery accumulate within nuclear envelope invaginations that occur as a consequence of tau pathology, and that the rate of mRNA translation is globally elevated in early stages of disease in adult brains of Drosophila models of tauopathy. Polysome profiling from adult heads of tau transgenic Drosophila reveals the preferential translation of specific mRNA that have been previously linked to neurodegeneration. Unexpectedly, we find that panneuronal elevation of NMD further elevates the global translation rate in tau transgenic Drosophila, as does treatment with rapamycin. As NMD activation and rapamycin both suppress tau-induced neurodegeneration, their shared effect on translation suggests that elevated rates of mRNA translation are an early adaptive mechanism to limit neurodegeneration. Our work provides compelling evidence that tau-induced deficits in NMD reshape the tau translatome by increasing translation of RNA that are normally repressed in healthy cells.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Sakie Katsumura
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Premium Research Institute for Human Metaverse Medicine (WPI‐PRIMe)Osaka UniversitySuitaOsakaJapan
| | - Jasmine De Mange
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Farzaneh Atrian
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Premium Research Institute for Human Metaverse Medicine (WPI‐PRIMe)Osaka UniversitySuitaOsakaJapan
| | - Bess Frost
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| |
Collapse
|
4
|
Olğun Y, Poyraz CA, Bozluolçay M, Konukoğlu D, Poyraz BÇ. Plasma Biomarkers in Neurodegenerative Dementias: Unrevealing the Potential of Serum Oxytocin, BDNF, NPTX1, TREM2, TNF-alpha, IL-1 and Prolactin. Curr Alzheimer Res 2024; 21:109-119. [PMID: 38803182 DOI: 10.2174/0115672050313419240520051751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Dementia encompasses a range of neurodegenerative disorders characterized by cognitive decline and functional impairment. The identification of reliable biomarkers is essential for accurate diagnosis and gaining insights into the mechanisms underlying diseases. OBJECTIVE This study aimed to investigate the plasma biomarker profiles associated with Brain- Derived Neurotrophic Factor (BDNF), Oxytocin, Neuronal Pentraxin-1 (NPTX1), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), Tumor Necrosis Factor-alpha (TNF-alpha), Interleukin- 1 (IL-1) and Prolactin in Alzheimer's disease (AD), dementia with Lewy bodies (DLB), frontotemporal dementias (FTD) and healthy controls. METHODS Serum levels of the aforementioned biomarkers were analyzed in 23 AD, 28 DLB, 15 FTD patients recruited from outpatient units and 22 healthy controls. Diagnostic evaluations followed established criteria and standardized clinical tests were conducted. Blood samples were collected and analyzed using ELISA and electrochemiluminescence immunoassay methods. RESULTS Serum BDNF and oxytocin levels did not significantly differ across groups. NPTX1, TREM2, TNF-alpha and IL-1 levels also did not show significant differences among dementia groups. However, prolactin levels exhibited distinct patterns, with lower levels in male DLB patients and higher levels in female AD patients compared to controls. CONCLUSION The study findings suggest potential shared mechanisms in dementia pathophysiology and highlight the importance of exploring neuroendocrine responses, particularly in AD and DLB. However, further research is warranted to elucidate the role of these biomarkers in dementia diagnosis and disease progression.
Collapse
Affiliation(s)
- Yeşim Olğun
- Department of Psychiatry, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| | - Cana Aksoy Poyraz
- Department of Psychiatry, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| | - Melda Bozluolçay
- Department of Neurology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| | - Dildar Konukoğlu
- Department of Medical Biochemistry, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| | - Burç Çağrı Poyraz
- Department of Psychiatry, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| |
Collapse
|
5
|
Pastorello Y, Carare RO, Banescu C, Potempa L, Di Napoli M, Slevin M. Monomeric C-reactive protein: A novel biomarker predicting neurodegenerative disease and vascular dysfunction. Brain Pathol 2023; 33:e13164. [PMID: 37158450 PMCID: PMC10580018 DOI: 10.1111/bpa.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Circulating C-reactive protein (pCRP) concentrations rise dramatically during both acute (e.g., following stroke) or chronic infection and disease (e.g., autoimmune conditions such as lupus), providing complement fixation through C1q protein binding. It is now known, that on exposure to the membranes of activated immune cells (and microvesicles and platelets), or damaged/dysfunctional tissue, it undergoes lysophosphocholine (LPC)-phospholipase-C-dependent dissociation to the monomeric form (mCRP), concomitantly becoming biologically active. We review histological, immunohistochemical, and morphological/topological studies of post-mortem brain tissue from individuals with neuroinflammatory disease, showing that mCRP becomes stably distributed within the parenchyma, and resident in the arterial intima and lumen, being "released" from damaged, hemorrhagic vessels into the extracellular matrix. The possible de novo synthesis via neurons, endothelial cells, and glia is also considered. In vitro, in vivo, and human tissue co-localization analyses have linked mCRP to neurovascular dysfunction, vascular activation resulting in increased permeability, and leakage, compromise of blood brain barrier function, buildup of toxic proteins including tau and beta amyloid (Aβ), association with and capacity to "manufacture" Aβ-mCRP-hybrid plaques, and, greater susceptibility to neurodegeneration and dementia. Recently, several studies linked chronic CRP/mCRP systemic expression in autoimmune disease with increased risk of dementia and the mechanisms through which this occurs are investigated here. The neurovascular unit mediates correct intramural periarterial drainage, evidence is provided here that suggests a critical impact of mCRP on neurovascular elements that could suggest its participation in the earliest stages of dysfunction and conclude that further investigation is warranted. We discuss future therapeutic options aimed at inhibiting the pCRP-LPC mediated dissociation associated with brain pathology, for example, compound 1,6-bis-PC, injected intravenously, prevented mCRP deposition and associated damage, after temporary left anterior descending artery ligation and myocardial infarction in a rat model.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Roxana O. Carare
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Clinical and experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Claudia Banescu
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and PharmacyRoosevelt UniversitySchaumburgIllinoisUSA
| | - Mario Di Napoli
- Department of Neurology and Stroke UnitSan Camillo de Lellis General HospitalRietiItaly
| | - Mark Slevin
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Manchester Metropolitan UniversityManchesterUK
| |
Collapse
|
6
|
Nilsson J, Constantinescu J, Nellgård B, Jakobsson P, Brum WS, Gobom J, Forsgren L, Dalla K, Constantinescu R, Zetterberg H, Hansson O, Blennow K, Bäckström D, Brinkmalm A. Cerebrospinal Fluid Biomarkers of Synaptic Dysfunction are Altered in Parkinson's Disease and Related Disorders. Mov Disord 2023; 38:267-277. [PMID: 36504237 DOI: 10.1002/mds.29287] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Synaptic dysfunction and degeneration are central contributors to the pathogenesis and progression of parkinsonian disorders. Therefore, identification and validation of biomarkers reflecting pathological synaptic alterations are greatly needed and could be used in prognostic assessment and to monitor treatment effects. OBJECTIVE To explore candidate biomarkers of synaptic dysfunction in Parkinson's disease (PD) and related disorders. METHODS Mass spectrometry was used to quantify 15 synaptic proteins in two clinical cerebrospinal fluid (CSF) cohorts, including PD (n1 = 51, n2 = 101), corticobasal degeneration (CBD) (n1 = 11, n2 = 3), progressive supranuclear palsy (PSP) (n1 = 22, n2 = 21), multiple system atrophy (MSA) (n1 = 31, n2 = 26), and healthy control (HC) (n1 = 48, n2 = 30) participants, as well as Alzheimer's disease (AD) (n2 = 23) patients in the second cohort. RESULTS Across both cohorts, lower levels of the neuronal pentraxins (NPTX; 1, 2, and receptor) were found in PD, MSA, and PSP, compared with HC. In MSA and PSP, lower neurogranin, AP2B1, and complexin-2 levels compared with HC were observed. In AD, levels of 14-3-3 zeta/delta, beta- and gamma-synuclein were higher compared with the parkinsonian disorders. Lower pentraxin levels in PD correlated with Mini-Mental State Exam scores and specific cognitive deficits (NPTX2; rho = 0.25-0.32, P < 0.05) and reduced dopaminergic pre-synaptic integrity as measured by DaTSCAN (NPTX2; rho = 0.29, P = 0.023). Additionally, lower levels were associated with the progression of postural imbalance and gait difficulty symptoms (All NPTX; β-estimate = -0.025 to -0.038, P < 0.05) and cognitive decline (NPTX2; β-estimate = 0.32, P = 0.021). CONCLUSIONS These novel findings show different alterations of synaptic proteins in parkinsonian disorders compared with AD and HC. The neuronal pentraxins may serve as prognostic CSF biomarkers for both cognitive and motor symptom progression in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Julius Constantinescu
- Department of Neurology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bengt Nellgård
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Protik Jakobsson
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Wagner S Brum
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Johan Gobom
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Keti Dalla
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Radu Constantinescu
- Department of Neurology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - David Bäckström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
7
|
Zhao JK, Hou SJ, Zhao JW, Yu HL, Duan SR. An interventional study of baicalin on neuronal pentraxin-1, neuronal pentraxin-2, and C-reactive protein in Alzheimer's disease rat model. Transl Neurosci 2023; 14:20220298. [PMID: 37719746 PMCID: PMC10500638 DOI: 10.1515/tnsci-2022-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023] Open
Abstract
Background Baicalin has been shown to promote spatial learning and neural regeneration, which might increase the differentiation of neural stem cells in Alzheimer's disease (AD) rat models. We aimed to study the role of baicalin on neuronal pentraxin-1 (NPTX-1), neuronal pentraxin-2 (NPTX-2), and C-reactive protein (CRP) in AD model rats. Methods The 30 male Sprague Dawley rats were divided into three groups: the control group, the AD model group, and the AD + baicalin group. Then, the Morris water maze was used to verify the effect of baicalin on the memory and spatial learning of rats. Immunohistochemistry and immunofluorescence were used to observe the expression of NPTX-1, NPTX-2, and CRP in brain tissue. Results Compared with the AD model group, the AD rats treated with baicalin spent significantly less time finding escape latencies (P = 0.008) and had longer cross-platform times in the target quadrant (P = 0.015). In addition, the AD + baicalin group had significantly higher numbers of hippocampal neurons compared with the AD model group (P < 0.05). Baicalin also obviously decreased the apoptosis of neurons. Moreover, compared with the AD model group, the NPTX-1 and CRP expression in the AD + baicalin group was significantly reduced (P = 0.000) while the expression of NPTX-2 in the brain tissue of AD rats was significantly increased (P = 0.000). Conclusions Baicalin can play a therapeutic role by downregulating NPTX-1, upregulating NPTX-2, and downregulating CPR in AD model rats.
Collapse
Affiliation(s)
- Jing-Kun Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No. 23 Postal Street, Nangang District, Harbin150001, China
| | - Si-Jia Hou
- Department of Neurology, The General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin150088, China
| | - Ji-Wei Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No. 23 Postal Street, Nangang District, Harbin150001, China
| | - Hong-Li Yu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No. 23 Postal Street, Nangang District, Harbin150001, China
| | - Shu-Rong Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No. 23 Postal Street, Nangang District, Harbin150001, China
| |
Collapse
|
8
|
Agrawal H, Mehendale AM. A Review of Proteins Associated With Neuroprotection and Regeneration in Alzheimer's Disease. Cureus 2022; 14:e30412. [DOI: 10.7759/cureus.30412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
|
9
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Global Proteome Profiling of the Temporal Cortex of Female Rats Exposed to Chronic Stress and the Western Diet. Nutrients 2022; 14:nu14091934. [PMID: 35565902 PMCID: PMC9103025 DOI: 10.3390/nu14091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing consumption of highly processed foods with high amounts of saturated fatty acids and simple carbohydrates is a major contributor to the burden of overweight and obesity. Additionally, an unhealthy diet in combination with chronic stress exposure is known to be associated with the increased prevalence of central nervous system diseases. In the present study, the global brain proteome approach was applied to explore protein alterations after exposure to the Western diet and/or stress. Female adult rats were fed with the Western diet with human snacks and/or subjected to chronic stress induced by social instability for 12 weeks. The consumption of the Western diet resulted in an obese phenotype and induced changes in the serum metabolic parameters. Consuming the Western diet resulted in changes in only 5.4% of the proteins, whereas 48% of all detected proteins were affected by chronic stress, of which 86.3% were down-regulated due to this exposure to chronic stress. However, feeding with a particular diet modified stress-induced changes in the brain proteome. The down-regulation of proteins involved in axonogenesis and mediating the synaptic clustering of AMPA glutamate receptors (Nptx1), as well as proteins related to metabolic processes (Atp5i, Mrps36, Ndufb4), were identified, while increased expression was detected for proteins involved in the development and differentiation of the CNS (Basp1, Cend1), response to stress, learning and memory (Prrt2), and modulation of synaptic transmission (Ncam1, Prrt2). In summary, global proteome analysis provides information about the impact of the combination of the Western diet and stress exposure on cerebrocortical protein alterations and yields insight into the underlying mechanisms and pathways involved in functional and morphological brain alterations as well as behavioral disturbances described in the literature.
Collapse
|
11
|
Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun 2022; 10:53. [PMID: 35418158 PMCID: PMC9008934 DOI: 10.1186/s40478-022-01356-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid plaques contain many proteins in addition to beta amyloid (Aβ). Previous studies examining plaque-associated proteins have shown these additional proteins are important; they provide insight into the factors that drive amyloid plaque development and are potential biomarkers or therapeutic targets for Alzheimer's disease (AD). The aim of this study was to comprehensively identify proteins that are enriched in amyloid plaques using unbiased proteomics in two subtypes of early onset AD: sporadic early onset AD (EOAD) and Down Syndrome (DS) with AD. We focused our study on early onset AD as the drivers of the more aggressive pathology development in these cases is unknown and it is unclear whether amyloid-plaque enriched proteins differ between subtypes of early onset AD. Amyloid plaques and neighbouring non-plaque tissue were microdissected from human brain sections using laser capture microdissection and label-free LC-MS was used to quantify the proteins present. 48 proteins were consistently enriched in amyloid plaques in EOAD and DS. Many of these proteins were more significantly enriched in amyloid plaques than Aβ. The most enriched proteins in amyloid plaques in both EOAD and DS were: COL25A1, SMOC1, MDK, NTN1, OLFML3 and HTRA1. Endosomal/lysosomal proteins were particularly highly enriched in amyloid plaques. Fluorescent immunohistochemistry was used to validate the enrichment of four proteins in amyloid plaques (moesin, ezrin, ARL8B and SMOC1) and to compare the amount of total Aβ, Aβ40, Aβ42, phosphorylated Aβ, pyroglutamate Aβ species and oligomeric species in EOAD and DS. These studies showed that phosphorylated Aβ, pyroglutamate Aβ species and SMOC1 were significantly higher in DS plaques, while oligomers were significantly higher in EOAD. Overall, we observed that amyloid plaques in EOAD and DS largely contained the same proteins, however the amount of enrichment of some proteins was different in EOAD and DS. Our study highlights the significant enrichment of many proteins in amyloid plaques, many of which may be potential therapeutic targets and/or biomarkers for AD.
Collapse
Affiliation(s)
- Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Geoffrey Pires
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Mitchell Marta-Ariza
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Shruti Nayak
- Merck & Co., Inc, Computational & Structural Chemistry, Kenilworth, NJ, USA
| | - Arline Faustin
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Valentin Berdah
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
- Departments of Pathology and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
13
|
Navakkode S, Gaunt JR, Pavon MV, Bansal VA, Abraham RP, Chong YS, Ch'ng TH, Sajikumar S. Sex-specific accelerated decay in time/activity-dependent plasticity and associative memory in an animal model of Alzheimer's disease. Aging Cell 2021; 20:e13502. [PMID: 34796608 PMCID: PMC8672784 DOI: 10.1111/acel.13502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/02/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical studies have shown that female brains are more predisposed to neurodegenerative diseases such as Alzheimer's disease (AD), but the cellular and molecular mechanisms behind this disparity remain unknown. In several mouse models of AD, synaptic plasticity dysfunction is an early event and appears before significant accumulation of amyloid plaques and neuronal degeneration. However, it is unclear whether sexual dimorphism at the synaptic level contributes to the higher risk and prevalence of AD in females. Our studies on APP/PS1 (APPSwe/PS1dE9) mouse model show that AD impacts hippocampal long‐term plasticity in a sex‐specific manner. Long‐term potentiation (LTP) induced by strong tetanic stimulation (STET), theta burst stimulation (TBS) and population spike timing‐dependent plasticity (pSTDP) show a faster decay in AD females compared with age‐matched AD males. In addition, behavioural tagging (BT), a model of associative memory, is specifically impaired in AD females with a faster decay in memory compared with males. Together with the plasticity and behavioural data, we also observed an upregulation of neuroinflammatory markers, along with downregulation of transcripts that regulate cellular processes associated with synaptic plasticity and memory in females. Immunohistochemistry of AD brains confirms that female APP/PS1 mice carry a higher amyloid plaque burden and have enhanced microglial activation compared with male APP/PS1 mice. Their presence in the diseased mice also suggests a link between the impairment of LTP and the upregulation of the inflammatory response. Overall, our data show that synaptic plasticity and associative memory impairments are more prominent in females and this might account for the faster progression of AD in females.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- Department of Physiology National University of Singapore Singapore Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Maria Vazquez Pavon
- Department of Physiology National University of Singapore Singapore Singapore
| | | | - Riya Prasad Abraham
- Department of Physiology National University of Singapore Singapore Singapore
| | - Yee Song Chong
- Department of Physiology National University of Singapore Singapore Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- School of Biological Science Nanyang Technological University Singapore Singapore
| | - Sreedharan Sajikumar
- Department of Physiology National University of Singapore Singapore Singapore
- Healthy Longevity Translational Research Programme Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Life Sciences Institute Neurobiology Programme National University of Singapore Singapore Singapore
| |
Collapse
|
14
|
Pedrero-Prieto CM, Frontiñán-Rubio J, Alcaín FJ, Durán-Prado M, Peinado JR, Rabanal-Ruiz Y. Biological Significance of the Protein Changes Occurring in the Cerebrospinal Fluid of Alzheimer's Disease Patients: Getting Clues from Proteomic Studies. Diagnostics (Basel) 2021; 11:1655. [PMID: 34573996 PMCID: PMC8467255 DOI: 10.3390/diagnostics11091655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The fact that cerebrospinal fluid (CSF) deeply irrigates the brain together with the relative simplicity of sample extraction from patients make this biological fluid the best target for biomarker discovery in neurodegenerative diseases. During the last decade, biomarker discovery has been especially fruitful for the identification new proteins that appear in the CSF of Alzheimer's disease (AD) patients together with amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau). Thus, several proteins have been already stablished as important biomarkers, due to an increase (i.e., CHI3L1) or a decrease (i.e., VGF) in AD patients' CSF. Notwithstanding this, only a deep analysis of a database generated with all the changes observed in CSF across multiple proteomic studies, and especially those using state-of-the-art methodologies, may expose those components or metabolic pathways disrupted at different levels in AD. Deep comparative analysis of all the up- and down-regulated proteins across these studies revealed that 66% of the most consistent protein changes in CSF correspond to intracellular proteins. Interestingly, processes such as those associated to glucose metabolism or RXR signaling appeared inversely represented in CSF from AD patients in a significant manner. Herein, we discuss whether certain cellular processes constitute accurate indicators of AD progression by examining CSF. Furthermore, we uncover new CSF AD markers, such as ITAM, PTPRZ or CXL16, identified by this study.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| |
Collapse
|
15
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
16
|
Kumar D, Sharma A, Sharma L. A Comprehensive Review of Alzheimer's Association with Related Proteins: Pathological Role and Therapeutic Significance. Curr Neuropharmacol 2021; 18:674-695. [PMID: 32172687 PMCID: PMC7536827 DOI: 10.2174/1570159x18666200203101828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's is an insidious, progressive, chronic neurodegenerative disease which causes the devastation of neurons. Alzheimer's possesses complex pathologies of heterogeneous nature counting proteins as one major factor along with enzymes and mutated genes. Proteins such as amyloid precursor protein (APP), apolipoprotein E (ApoE), presenilin, mortalin, calbindin-D28K, creactive protein, heat shock proteins (HSPs), and prion protein are some of the chief elements in the foremost hypotheses of AD like amyloid-beta (Aβ) cascade hypothesis, tau hypothesis, cholinergic neuron damage, etc. Disturbed expression of these proteins results in synaptic dysfunction, cognitive impairment, memory loss, and neuronal degradation. On the therapeutic ground, attempts of developing anti-amyloid, anti-inflammatory, anti-tau therapies are on peak, having APP and tau as putative targets. Some proteins, e.g., HSPs, which ameliorate oxidative stress, calpains, which help in regulating synaptic plasticity, and calmodulin-like skin protein (CLSP) with its neuroprotective role are few promising future targets for developing anti-AD therapies. On diagnostic grounds of AD C-reactive protein, pentraxins, collapsin response mediator protein-2, and growth-associated protein-43 represent the future of new possible biomarkers for diagnosing AD. The last few decades were concentrated over identifying and studying protein targets of AD. Here, we reviewed the physiological/pathological roles and therapeutic significance of nearly all the proteins associated with AD that addresses putative as well as probable targets for developing effective anti-AD therapies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., India
| |
Collapse
|
17
|
Marcucci V, Kleiman J. Biomarkers and Their Implications in Alzheimer’s Disease: A Literature Review. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2021.00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Rizzardi LF, Hickey PF, Idrizi A, Tryggvadóttir R, Callahan CM, Stephens KE, Taverna SD, Zhang H, Ramazanoglu S, Hansen KD, Feinberg AP. Human brain region-specific variably methylated regions are enriched for heritability of distinct neuropsychiatric traits. Genome Biol 2021; 22:116. [PMID: 33888138 PMCID: PMC8061076 DOI: 10.1186/s13059-021-02335-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND DNA methylation dynamics in the brain are associated with normal development and neuropsychiatric disease and differ across functionally distinct brain regions. Previous studies of genome-wide methylation differences among human brain regions focus on limited numbers of individuals and one to two brain regions. RESULTS Using GTEx samples, we generate a resource of DNA methylation in purified neuronal nuclei from 8 brain regions as well as lung and thyroid tissues from 12 to 23 donors. We identify differentially methylated regions between brain regions among neuronal nuclei in both CpG (181,146) and non-CpG (264,868) contexts, few of which were unique to a single pairwise comparison. This significantly expands the knowledge of differential methylation across the brain by 10-fold. In addition, we present the first differential methylation analysis among neuronal nuclei from basal ganglia tissues and identify unique CpG differentially methylated regions, many associated with ion transport. We also identify 81,130 regions of variably CpG methylated regions, i.e., variable methylation among individuals in the same brain region, which are enriched in regulatory regions and in CpG differentially methylated regions. Many variably methylated regions are unique to a specific brain region, with only 202 common across all brain regions, as well as lung and thyroid. Variably methylated regions identified in the amygdala, anterior cingulate cortex, and hippocampus are enriched for heritability of schizophrenia. CONCLUSIONS These data suggest that epigenetic variation in these particular human brain regions could be associated with the risk for this neuropsychiatric disorder.
Collapse
Affiliation(s)
- Lindsay F. Rizzardi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| | - Peter F. Hickey
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Rakel Tryggvadóttir
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Colin M. Callahan
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Kimberly E. Stephens
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Sean D. Taverna
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
| | - Sinan Ramazanoglu
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - GTEx Consortium
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| |
Collapse
|
19
|
Norwood I, Szondi D, Ciocca M, Coudert A, Cohen-Solal M, Rucci N, Teti A, Maurizi A. Transcriptomic and bioinformatic analysis of Clcn7-dependent Autosomal Dominant Osteopetrosis type 2. Preclinical and clinical implications. Bone 2021; 144:115828. [PMID: 33359007 DOI: 10.1016/j.bone.2020.115828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/26/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Autosomal Dominant Osteopetrosis type 2 (ADO2) is a rare genetic disease characterized by dense yet fragile bones. To date, the radiological approach remains the gold standard for ADO2 diagnosis. However, recent observations unveiled that ADO2 is a systemic disease affecting various organs beyond bone, including lung, kidney, muscle, and brain. Monitoring disease status and progression would greatly benefit from specific biomarkers shared by the affected organs. In this work, data derived from RNA deep sequencing (RNA dSeq) of bone, lung, kidney, muscle, brain, and osteoclasts isolated from wildtype (WT) and Clcn7G213R ADO2 mice were subjected to gene ontology and pathway analyses. Results showed the presence of alterations in gene ontology terms and pathways associated with bone metabolism and osteoclast biology, including JAK-STAT, cytokine-cytokine receptor, and hematopoietic cell lineage. Furthermore, in line with the multiorgan alterations caused by ADO2, the analysis of soft organs showed an enrichment of PPAR and neuroactive ligand-receptor interaction pathways known to be involved in the onset of tissue fibrosis and behavioral alterations, respectively. Finally, we observed the modulations of potential ADO2 biomarkers in organs and cells of ADO2 mice and in the peripheral blood mononuclear cells of patients, using conventional methods. Of note, some of these biomarkers could be possibly responsive to an effective experimental therapy based on a mutation-specific siRNA. Overall, the identified gene signature and the soluble forms of the encoded proteins could potentially represent reliable disease biomarkers that could improve the ADO2 diagnosis, the monitoring of both the skeletal and non-skeletal dysfunctions, and the assessment of the response to therapy.
Collapse
Affiliation(s)
- Iona Norwood
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Denis Szondi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michela Ciocca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Amélie Coudert
- Université de Paris, INSERM U 1132 Bioscar and Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Martine Cohen-Solal
- Université de Paris, INSERM U 1132 Bioscar and Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
20
|
Molecular mechanisms of aluminum neurotoxicity: Update on adverse effects and therapeutic strategies. ADVANCES IN NEUROTOXICOLOGY 2021; 5:1-34. [PMID: 34263089 DOI: 10.1016/bs.ant.2020.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Kovács RÁ, Vadászi H, Bulyáki É, Török G, Tóth V, Mátyás D, Kun J, Hunyadi-Gulyás É, Fedor FZ, Csincsi Á, Medzihradszky K, Homolya L, Juhász G, Kékesi KA, Józsi M, Györffy BA, Kardos J. Identification of Neuronal Pentraxins as Synaptic Binding Partners of C1q and the Involvement of NP1 in Synaptic Pruning in Adult Mice. Front Immunol 2021; 11:599771. [PMID: 33628204 PMCID: PMC7897678 DOI: 10.3389/fimmu.2020.599771] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Elements of the immune system particularly that of innate immunity, play important roles beyond their traditional tasks in host defense, including manifold roles in the nervous system. Complement-mediated synaptic pruning is essential in the developing and healthy functioning brain and becomes aberrant in neurodegenerative disorders. C1q, component of the classical complement pathway, plays a central role in tagging synapses for elimination; however, the underlying molecular mechanisms and interaction partners are mostly unknown. Neuronal pentraxins (NPs) are involved in synapse formation and plasticity, moreover, NP1 contributes to cell death and neurodegeneration under adverse conditions. Here, we investigated the potential interaction between C1q and NPs, and its role in microglial phagocytosis of synapses in adult mice. We verified in vitro that NPs interact with C1q, as well as activate the complement system. Flow cytometry, immunostaining and co-immunoprecipitation showed that synapse-bound C1q colocalizes and interacts with NPs. High-resolution confocal microscopy revealed that microglia-surrounded C1q-tagged synapses are NP1 positive. We have also observed the synaptic occurrence of C4 suggesting that activation of the classical pathway cannot be ruled out in synaptic plasticity in healthy adult animals. In summary, our results indicate that NPs play a regulatory role in the synaptic function of C1q. Whether this role can be intensified upon pathological conditions, such as in Alzheimer’s disease, is to be disclosed.
Collapse
Affiliation(s)
- Réka Á Kovács
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bulyáki
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - György Török
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Vilmos Tóth
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dominik Mátyás
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Judit Kun
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Flóra Zsófia Fedor
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Doctoral School of Chemical Engineering and Material Sciences, Pannon University, Veszprém, Hungary
| | - Ádám Csincsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - László Homolya
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin A Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs A Györffy
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
22
|
Ben Khedher MR, Haddad M, Laurin D, Ramassamy C. Apolipoprotein E4-driven effects on inflammatory and neurotrophic factors in peripheral extracellular vesicles from cognitively impaired, no dementia participants who converted to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12124. [PMID: 33537405 PMCID: PMC7842191 DOI: 10.1002/trc2.12124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In brain, extracellular vesicles (EVs) play an essential role in the neuron-glia interface and ensure the crosstalk between the brain and the periphery. Some studies now link the pathway dysfunction of the EVs to apolipoprotein E gene variant (APOE ε4) and the risk of progression to Alzheimer's disease (AD). To better understand the role of APOE ε4 in pre-clinical AD, we have determined levels of pathogenic, neurotrophic and inflammatory proteins in peripheral EVs (pEVs) and in plasma from cognitively impaired, no dementia (CIND) participants stratified upon the absence (APOE ε4-) or the presence (APOE ε4+ ) of the ε4 allele of APOE. METHODS Levels of 15 neurodegenerative, neurotrophic and neuroinflammatory proteins were quantified in pEVs and compared to their plasma levels from cognitively normal and CIND participants. RESULTS Levels of neurotrophic and inflammatory markers were reduced in pEVs from APOE ε4+. The pentraxin-2/α-synuclein ratio measured in pEVs was able to predict AD 5 years before the onset among APOE ε4+-CIND individuals. DISCUSSION Our findings suggest an alteration of the endosomal pathway in APOE ε4+ and that pEVs pentraxin-2/α-synuclein ratio could serve as a useful early biomarker for AD susceptibility.
Collapse
Affiliation(s)
- Mohamed Raâfet Ben Khedher
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuebecCanada
| | - Mohamed Haddad
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuebecCanada
| | - Danielle Laurin
- Institute of Nutrition and Functional FoodsQuébecQuebecCanada
- Centre d'excellence sur le vieillissement de Québec, CHU de Québec‐Université Laval Research CentreVITAM‐Centre de recherche en santé durableQuébecQuebecCanada
- Faculty of pharmacyLaval UniversityQuébecQuebecCanada
| | - Charles Ramassamy
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuebecCanada
| |
Collapse
|
23
|
Tarawneh R. Biomarkers: Our Path Towards a Cure for Alzheimer Disease. Biomark Insights 2020; 15:1177271920976367. [PMID: 33293784 PMCID: PMC7705771 DOI: 10.1177/1177271920976367] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, biomarkers have significantly improved our understanding of
the pathophysiology of Alzheimer disease (AD) and provided valuable tools to
examine different disease mechanisms and their progression over time. While
several markers of amyloid, tau, neuronal, synaptic, and axonal injury,
inflammation, and immune dysregulation in AD have been identified, there is a
relative paucity of biomarkers which reflect other disease mechanisms such as
oxidative stress, mitochondrial injury, vascular or endothelial injury, and
calcium-mediated excitotoxicity. Importantly, there is an urgent need to
standardize methods for biomarker assessments across different centers, and to
identify dynamic biomarkers which can monitor disease progression over time
and/or response to potential disease-modifying treatments. The updated research
framework for AD, proposed by the National Institute of Aging- Alzheimer’s
Association (NIA-AA) Work Group, emphasizes the importance of incorporating
biomarkers in AD research and defines AD as a biological construct consisting of
amyloid, tau, and neurodegeneration which spans pre-symptomatic and symptomatic
stages. As results of clinical trials of AD therapeutics have been
disappointing, it has become increasingly clear that the success of future AD
trials will require the incorporation of biomarkers in participant selection,
prognostication, monitoring disease progression, and assessing response to
treatments. We here review the current state of fluid AD biomarkers, and discuss
the advantages and limitations of the updated NIA-AA research framework.
Importantly, the integration of biomarker data with clinical, cognitive, and
imaging domains through a systems biology approach will be essential to
adequately capture the molecular, genetic, and pathological heterogeneity of AD
and its spatiotemporal evolution over time.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Tau Protein as a New Regulator of Cellular Prion Protein Transcription. Mol Neurobiol 2020; 57:4170-4186. [PMID: 32683652 DOI: 10.1007/s12035-020-02025-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Cellular prion protein (PrPC) is largely responsible for transmissible spongiform encephalopathies (TSEs) when it becomes the abnormally processed and protease resistant form PrPSC. Physiological functions of PrPC include protective roles against oxidative stress and excitotoxicity. Relevantly, PrPC downregulates tau levels, whose accumulation and modification are a hallmark in the advance of Alzheimer's disease (AD). In addition to the accumulation of misfolded proteins, in the initial stages of AD-affected brains display both increased reactive oxygen species (ROS) markers and levels of PrPC. However, the factors responsible for the upregulation of PrPC are unknown. Thus, the aim of this study was to uncover the different molecular actors promoting PrPC overexpression. In order to mimic early stages of AD, we used β-amyloid-derived diffusible ligands (ADDLs) and tau cellular treatments, as well as ROS generation, to elucidate their particular roles in human PRNP promoter activity. In addition, we used specific chemical inhibitors and site-specific mutations of the PRNP promoter sequence to analyze the contribution of the main transcription factors involved in PRNP transcription under the analyzed conditions. Our results revealed that tau is a new modulator of PrPC expression independently of ADDL treatment and ROS levels. Lastly, we discovered that the JNK/c-jun-AP-1 pathway is involved in increased PRNP transcription activity by tau but not in the promoter response to ROS.
Collapse
|
25
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
26
|
Wang Z, Jin T, Le Q, Liu C, Wang X, Wang F, Ma L. Retrieval-Driven Hippocampal NPTX2 Plasticity Facilitates the Extinction of Cocaine-Associated Context Memory. Biol Psychiatry 2020; 87:979-991. [PMID: 31836174 DOI: 10.1016/j.biopsych.2019.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/13/2019] [Accepted: 10/04/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Postretrieval extinction attenuates the pathological memory associated with psychiatric states such as drug addiction in both humans and rodents. The extinction of a learned response requires gene transcription and protein synthesis after memory retrieval in a time-dependent manner, yet the precise physiological basis after retrieval to allow extinction to neutralize a learned behavior is not fully understood. METHODS In a cocaine conditioned place preference paradigm, we used a ribosomal tagging strategy to measure the translational state of hippocampal pyramidal neurons after the retrieval of cocaine-associated context memory. Using approaches of electrophysiology, neuronal tracing, and a doxycycline-dependent robust activity marking system, we investigated the cellular and molecular basis of retrieval-induced plasticity that facilitated the extinction. RESULTS Bioinformatics analysis discovered the specific translational regulation of signaling pathways by retrieval and revealed Nptx2 as the hub gene. Manipulating Nptx2 in dorsal hippocampus bidirectionally regulated the extinction of cocaine-associated context memory as well as the retrieval-driven synaptic remodeling. The pentraxin (PTX) domain of NPTX2 recruited GluA1-AMPA receptors and enhanced the extinction and excitatory synaptic transmission that was prevented by overexpressing carboxyl cytoplasmic tail of GluA1. Furthermore, Nptx2 in retrieval-activated neurons was required for the extinction. CONCLUSIONS The retrieval-driven upregulation of Nptx2 contributes to the synaptic remodeling in dorsal hippocampus and facilitates the extinction of cocaine-associated context memory, indicating a potential target for the treatment of cue-induced cocaine seeking.
Collapse
Affiliation(s)
- Zhilin Wang
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tao Jin
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiumin Le
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cao Liu
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xueying Wang
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Lan Ma
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Sinsky J, Majerova P, Kovac A, Kotlyar M, Jurisica I, Hanes J. Physiological Tau Interactome in Brain and Its Link to Tauopathies. J Proteome Res 2020; 19:2429-2442. [PMID: 32357304 DOI: 10.1021/acs.jproteome.0c00137] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) and most of the other tauopathies are incurable neurodegenerative diseases with unpleasant symptoms and consequences. The common hallmark of all of these diseases is tau pathology, but its connection with disease progress has not been completely understood so far. Therefore, uncovering novel tau-interacting partners and pathology affected molecular pathways can reveal the causes of diseases as well as potential targets for the development of AD treatment. Despite the large number of known tau-interacting partners, a limited number of studies focused on in vivo tau interactions in disease or healthy conditions are available. Here, we applied an in vivo cross-linking approach, capable of capturing weak and transient protein-protein interactions, to a unique transgenic rat model of progressive tau pathology similar to human AD. We have identified 175 potential novel and known tau-interacting proteins by MALDI-TOF mass spectrometry. Several of the most promising candidates for possible drug development were selected for validation by coimmunoprecipitation and colocalization experiments in animal and cellular models. Three proteins, Baiap2, Gpr37l1, and Nptx1, were confirmed as novel tau-interacting partners, and on the basis of their known functions and implications in neurodegenerative or psychiatric disorders, we proposed their potential role in tau pathology.
Collapse
Affiliation(s)
- Jakub Sinsky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, Bratislava 811 02, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, Bratislava 811 02, Slovakia
| | - Max Kotlyar
- Krembil Research Institute, UHN, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada
| | - Igor Jurisica
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,Krembil Research Institute, UHN, 60 Leonard Avenue, Toronto, Ontario M5T 0S8, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, 27 King's College Circle, Toronto, Ontario ON M5S, Canada
| | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84510, Slovakia.,AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, Bratislava 811 02, Slovakia
| |
Collapse
|
28
|
Cardozo PL, de Lima IBQ, Maciel EMA, Silva NC, Dobransky T, Ribeiro FM. Synaptic Elimination in Neurological Disorders. Curr Neuropharmacol 2020; 17:1071-1095. [PMID: 31161981 PMCID: PMC7052824 DOI: 10.2174/1570159x17666190603170511] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Synapses are well known as the main structures responsible for transmitting information through the release and recognition of neurotransmitters by pre- and post-synaptic neurons. These structures are widely formed and eliminated throughout the whole lifespan via processes termed synaptogenesis and synaptic pruning, respectively. Whilst the first pro-cess is needed for ensuring proper connectivity between brain regions and also with the periphery, the second phenomenon is important for their refinement by eliminating weaker and unnecessary synapses and, at the same time, maintaining and fa-voring the stronger ones, thus ensuring proper synaptic transmission. It is well-known that synaptic elimination is modulated by neuronal activity. However, only recently the role of the classical complement cascade in promoting this phenomenon has been demonstrated. Specifically, microglial cells recognize activated complement component 3 (C3) bound to synapses tar-geted for elimination, triggering their engulfment. As this is a highly relevant process for adequate neuronal functioning, dis-ruptions or exacerbations in synaptic pruning could lead to severe circuitry alterations that could underlie neuropathological alterations typical of neurological and neuropsychiatric disorders. In this review, we focus on discussing the possible in-volvement of excessive synaptic elimination in Alzheimer’s disease, as it has already been reported dendritic spine loss in post-synaptic neurons, increased association of complement proteins with its synapses and, hence, augmented microglia-mediated pruning in animal models of this disorder. In addition, we briefly discuss how this phenomenon could be related to other neurological disorders, including multiple sclerosis and schizophrenia.
Collapse
Affiliation(s)
- Pablo L Cardozo
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabella B Q de Lima
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Esther M A Maciel
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathália C Silva
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabíola M Ribeiro
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, Scholz M, Sargurupremraj M, Jahanshad N, Roshchupkin GV, Smith AV, Bis JC, Jian X, Luciano M, Hofer E, Teumer A, van der Lee SJ, Yang J, Yanek LR, Lee TV, Li S, Hu Y, Koh JY, Eicher JD, Desrivières S, Arias-Vasquez A, Chauhan G, Athanasiu L, Rentería ME, Kim S, Hoehn D, Armstrong NJ, Chen Q, Holmes AJ, den Braber A, Kloszewska I, Andersson M, Espeseth T, Grimm O, Abramovic L, Alhusaini S, Milaneschi Y, Papmeyer M, Axelsson T, Ehrlich S, Roiz-Santiañez R, Kraemer B, Håberg AK, Jones HJ, Pike GB, Stein DJ, Stevens A, Bralten J, Vernooij MW, Harris TB, Filippi I, Witte AV, Guadalupe T, Wittfeld K, Mosley TH, Becker JT, Doan NT, Hagenaars SP, Saba Y, Cuellar-Partida G, Amin N, Hilal S, Nho K, Mirza-Schreiber N, Arfanakis K, Becker DM, Ames D, Goldman AL, Lee PH, Boomsma DI, Lovestone S, Giddaluru S, Le Hellard S, Mattheisen M, Bohlken MM, Kasperaviciute D, Schmaal L, Lawrie SM, Agartz I, Walton E, Tordesillas-Gutierrez D, Davies GE, Shin J, Ipser JC, Vinke LN, Hoogman M, Jia T, Burkhardt R, Klein M, Crivello F, Janowitz D, Carmichael O, Haukvik UK, Aribisala BS, Schmidt H, Strike LT, Cheng CY, Risacher SL, Pütz B, Fleischman DA, Assareh AA, Mattay VS, Buckner RL, Mecocci P, Dale AM, Cichon S, Boks MP, Matarin M, Penninx BWJH, Calhoun VD, Chakravarty MM, Marquand AF, Macare C, Kharabian Masouleh S, Oosterlaan J, Amouyel P, Hegenscheid K, Rotter JI, Schork AJ, Liewald DCM, de Zubicaray GI, Wong TY, Shen L, Sämann PG, Brodaty H, Roffman JL, de Geus EJC, Tsolaki M, Erk S, van Eijk KR, Cavalleri GL, van der Wee NJA, McIntosh AM, Gollub RL, Bulayeva KB, Bernard M, Richards JS, Himali JJ, Loeffler M, Rommelse N, Hoffmann W, Westlye LT, Valdés Hernández MC, Hansell NK, van Erp TGM, Wolf C, Kwok JBJ, Vellas B, Heinz A, Olde Loohuis LM, Delanty N, Ho BC, Ching CRK, Shumskaya E, Singh B, Hofman A, van der Meer D, Homuth G, Psaty BM, Bastin ME, Montgomery GW, Foroud TM, Reppermund S, Hottenga JJ, Simmons A, Meyer-Lindenberg A, Cahn W, Whelan CD, van Donkelaar MMJ, Yang Q, Hosten N, Green RC, Thalamuthu A, Mohnke S, Hulshoff Pol HE, Lin H, Jack CR, Schofield PR, Mühleisen TW, Maillard P, Potkin SG, Wen W, Fletcher E, Toga AW, Gruber O, Huentelman M, Davey Smith G, Launer LJ, Nyberg L, Jönsson EG, Crespo-Facorro B, Koen N, Greve DN, Uitterlinden AG, Weinberger DR, Steen VM, Fedko IO, Groenewold NA, Niessen WJ, Toro R, Tzourio C, Longstreth WT, Ikram MK, Smoller JW, van Tol MJ, Sussmann JE, Paus T, Lemaître H, Schroeter ML, Mazoyer B, Andreassen OA, Holsboer F, Depondt C, Veltman DJ, Turner JA, Pausova Z, Schumann G, van Rooij D, Djurovic S, Deary IJ, McMahon KL, Müller-Myhsok B, Brouwer RM, Soininen H, Pandolfo M, Wassink TH, Cheung JW, Wolfers T, Martinot JL, Zwiers MP, Nauck M, Melle I, Martin NG, Kanai R, Westman E, Kahn RS, Sisodiya SM, White T, Saremi A, van Bokhoven H, Brunner HG, Völzke H, Wright MJ, van 't Ent D, Nöthen MM, Ophoff RA, Buitelaar JK, Fernández G, Sachdev PS, Rietschel M, van Haren NEM, Fisher SE, Beiser AS, Francks C, Saykin AJ, Mather KA, Romanczuk-Seiferth N, Hartman CA, DeStefano AL, Heslenfeld DJ, Weiner MW, Walter H, Hoekstra PJ, Nyquist PA, Franke B, Bennett DA, Grabe HJ, Johnson AD, Chen C, van Duijn CM, Lopez OL, Fornage M, Wardlaw JM, Schmidt R, DeCarli C, De Jager PL, Villringer A, Debette S, Gudnason V, Medland SE, Shulman JM, Thompson PM, Seshadri S, Ikram MA. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat Genet 2019; 51:1624-1636. [PMID: 31636452 PMCID: PMC7055269 DOI: 10.1038/s41588-019-0511-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
Collapse
Affiliation(s)
- Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA.
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA.
- The Framingham Heart Study, Framingham, MA, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Derrek P Hibar
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles C White
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jason L Stein
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Muralidharan Sargurupremraj
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, Bordeaux, France
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xueqiu Jian
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michelle Luciano
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jia Yu Koh
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - John D Eicher
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Framingham, MA, USA
| | - Sylvane Desrivières
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alejandro Arias-Vasquez
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Ganesh Chauhan
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, Bordeaux, France
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Lavinia Athanasiu
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sungeun Kim
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Hoehn
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Perth, Western Australia, Australia
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Anouk den Braber
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Thomas Espeseth
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Oliver Grimm
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Lucija Abramovic
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Saud Alhusaini
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Martina Papmeyer
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
- Division of Systems Neuroscience of Psychopathology, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Ehrlich
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Roberto Roiz-Santiañez
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- Department of Medicine, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Bernd Kraemer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Asta K Håberg
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hannah J Jones
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - G Bruce Pike
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Allison Stevens
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Irina Filippi
- INSERM, Research Unit 1000 'Neuroimaging and Psychiatry', Paris Saclay University and Paris Descartes University-DIGITEO Labs, Gif sur Yvette, France
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 'Obesity Mechanisms', University of Leipzig, Leipzig, Germany
| | - Tulio Guadalupe
- International Max Planck Research School for Language Sciences, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Katharina Wittfeld
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - James T Becker
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nhat Trung Doan
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Saskia P Hagenaars
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Yasaman Saba
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Saima Hilal
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Center, National University Health System, Singapore, Singapore
| | - Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazanin Mirza-Schreiber
- Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Ames
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
- National Ageing Research Institute, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | - Phil H Lee
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Lexington, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Dementia Biomedical Research Unit, King's College London, London, UK
| | - Sudheer Giddaluru
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Manuel Mattheisen
- Centre for integrated Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Marc M Bohlken
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dalia Kasperaviciute
- UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Ingrid Agartz
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Department of Research and Development, Diakonhjemmet Hospital, Oslo, Norway
| | - Esther Walton
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Department of Psychology, University of Bath, Bath, UK
| | - Diana Tordesillas-Gutierrez
- Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | | | - Jean Shin
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Louis N Vinke
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tianye Jia
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ralph Burkhardt
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Fabrice Crivello
- Neurodegeneratives Diseases Institute, CNRS UMR 5293, Université de Bordeaux, Bordeaux, France
| | - Deborah Janowitz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | | | - Unn K Haukvik
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Adult Psychiatry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Benjamin S Aribisala
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Department of Computer Science, Lagos State University, Ojo, Nigeria
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Lachlan T Strike
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Shannon L Risacher
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Amelia A Assareh
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Randy L Buckner
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California. San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Institute for Neuroscience and Medicine: Structural and Functional Organisation of the Brain (INM-1), Research Centre Jülich, Jülich, Germany
| | - Marco P Boks
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mar Matarin
- UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Vince D Calhoun
- Department of ECE, University of New Mexico, Albuquerque, NM, USA
- The Mind Research Network and LBERI, Albuquerque, NM, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Québec, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Québec, Canada
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Christine Macare
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Shahrzad Kharabian Masouleh
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Neuroscience and Medicine: Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Emma Neuroscience Group, Department of Pediatrics, Emma Children's Hospital, Amsterdam Reproduction & Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Philippe Amouyel
- LabEx DISTALZ-U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille, France
- Inserm U1167, Lille, France
- Centre Hospitalier Universitaire Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Katrin Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - David C M Liewald
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Greig I de Zubicaray
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Academic Medicine Research Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Dementia Centre for Research Collaboration, UNSW, Sydney, New South Wales, Australia
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Susanne Erk
- Division of Mind and Brain Research, D, Corporate member of Freie Universität Berliepartment of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kristel R van Eijk
- Brain Center Rudolf Magnus, Human Neurogenetics Unit, UMC Utrecht, Utrecht, the Netherlands
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew M McIntosh
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kazima B Bulayeva
- Department of Evolution and Genetics, Dagestan State University, Makhachkala, Russia
| | - Manon Bernard
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Richards
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Jayandra J Himali
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Nanda Rommelse
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Wolfgang Hoffmann
- German Center for Neurodegenerative Diseases, Greifswald, Germany
- Section Epidemiology of Health Care and Community Health, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lars T Westlye
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria C Valdés Hernández
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Narelle K Hansell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - John B J Kwok
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Bruno Vellas
- Department of Internal Medicine, INSERM U 1027, University of Toulouse, Toulouse, France
- Department of Geriatric Medicine, INSERM U 1027, University of Toulouse, Toulouse, France
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Norman Delanty
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- Neurology Division, Beaumont Hospital, Dublin, Ireland
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Interdepartmental Neuroscience Graduate Program, UCLA School of Medicine, Los Angeles, CA, USA
| | - Elena Shumskaya
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Baljeet Singh
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dennis van der Meer
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanent Washington Health Research Institute, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Mark E Bastin
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Medicine, Sydney, New South Wales, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Andrew Simmons
- Biomedical Research Unit for Dementia, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Wiepke Cahn
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christopher D Whelan
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marjolein M J van Donkelaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Robert C Green
- Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Sebastian Mohnke
- Division of Mind and Brain Research, D, Corporate member of Freie Universität Berliepartment of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Honghuang Lin
- The Framingham Heart Study, Framingham, MA, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, UNSW, Sydney, New South Wales, Australia
| | - Thomas W Mühleisen
- Institute for Neuroscience and Medicine: Structural and Functional Organisation of the Brain (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pauline Maillard
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Evan Fletcher
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Matthew Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Radiation Sciences, Umeå University, Umeå, Sweden
| | - Erik G Jönsson
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Benedicto Crespo-Facorro
- Department of Medicine, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Nastassja Koen
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Douglas N Greve
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vidar M Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Iryna O Fedko
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
- Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | | | | | - William T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Marie-Jose van Tol
- Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jessika E Sussmann
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Hervé Lemaître
- INSERM, Research Unit 1000 'Neuroimaging and Psychiatry', Paris Saclay University and Paris Descartes University-DIGITEO Labs, Gif sur Yvette, France
| | - Matthias L Schroeter
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany
| | - Bernard Mazoyer
- Neurodegeneratives Diseases Institute, CNRS UMR 5293, Université de Bordeaux, Bordeaux, France
| | - Ole A Andreassen
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
- HMNC Brain Health, Munich, Germany
| | - Chantal Depondt
- Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Jessica A Turner
- The Mind Research Network and LBERI, Albuquerque, NM, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Zdenka Pausova
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gunter Schumann
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Srdjan Djurovic
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Katie L McMahon
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hilkka Soininen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
- Neurocentre Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Massimo Pandolfo
- Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Thomas H Wassink
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joshua W Cheung
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas Wolfers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jean-Luc Martinot
- INSERM, Research Unit 1000 'Neuroimaging and Psychiatry', Paris Saclay University and Paris Descartes University-DIGITEO Labs, Gif sur Yvette, France
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (partner site Greifswald), Greifswald, Germany
| | - Ingrid Melle
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ryota Kanai
- Department of Neuroinformatics, Araya, Tokyo, Japan
- Institute of Cognitive Neuroscience, University College London, London, UK
- School of Psychology, University of Sussex, Brighton, UK
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - René S Kahn
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay M Sisodiya
- UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Tonya White
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Arvin Saremi
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (partner site Greifswald), Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Dennis van 't Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Marcella Rietschel
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Neeltje E M van Haren
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Simon E Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Alexa S Beiser
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Andrew J Saykin
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Catharina A Hartman
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Anita L DeStefano
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dirk J Heslenfeld
- Department of Psychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Disease, San Francisco VA Medical Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Henrik Walter
- Division of Mind and Brain Research, D, Corporate member of Freie Universität Berliepartment of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Paul A Nyquist
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Andrew D Johnson
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Framingham, MA, USA
| | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Center, National University Health System, Singapore, Singapore
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Myriam Fornage
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joanna M Wardlaw
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Charles DeCarli
- Department of Neurology, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
| | - Philip L De Jager
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 'Obesity Mechanisms', University of Leipzig, Leipzig, Germany
| | - Stéphanie Debette
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, Bordeaux, France
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
31
|
Driving Neurogenesis in Neural Stem Cells with High Sensitivity Optogenetics. Neuromolecular Med 2019; 22:139-149. [PMID: 31595404 DOI: 10.1007/s12017-019-08573-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/21/2019] [Indexed: 01/15/2023]
Abstract
Optogenetic stimulation of neural stem cells (NSCs) enables their activity-dependent photo-modulation. This provides a spatio-temporal tool for studying activity-dependent neurogenesis and for regulating the differentiation of the transplanted NSCs. Currently, this is mainly driven by viral transfection of channelrhodopsin-2 (ChR2) gene, which requires high irradiance and complex in vivo/vitro stimulation systems. Additionally, despite the extensive application of optogenetics in neuroscience, the transcriptome-level changes induced by optogenetic stimulation of NSCs have not been elucidated yet. Here, we made transformed NSCs (SFO-NSCs) stably expressing one of the step-function opsin (SFO)-variants of chimeric channelrhodopsins, ChRFR(C167A), which is more sensitive to blue light than native ChR2, via a non-viral transfection system using piggyBac transposon. We set up a simple low-irradiance optical stimulation (OS)-incubation system that induced c-fos mRNA expression, which is activity-dependent, in differentiating SFO-NSCs. More neuron-like SFO-NCSs, which had more elongated axons, were differentiated with daily OS than control cells without OS. This was accompanied by positive/negative changes in the transcriptome involved in axonal remodeling, synaptic plasticity, and microenvironment modulation with the up-regulation of several genes involved in the Ca2+-related functions. Our approach could be applied for stem cell transplantation studies in tissue with two strengths: lower carcinogenicity and less irradiance needed for tissue penetration.
Collapse
|
32
|
Yan H, Zheng C, Li Z, Bao B, Yang B, Hou K, Qu X, Xiao J, Che X, Liu Y. NPTX1 promotes metastasis via integrin/FAK signaling in gastric cancer. Cancer Manag Res 2019; 11:3237-3251. [PMID: 31043800 PMCID: PMC6472287 DOI: 10.2147/cmar.s196509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE This study aimed to investigate the effect of NPTX1 on the prognosis of gastric cancer (GC), as well as the metastatic process in GC. MATERIALS AND METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to analyze the association between NPTX1 expression and prognosis in GC. Quantitative real-time polymerase chain reaction and Western blots were applied to examine the expression of NPTX1 in GC cell lines and expression of genes in downstream pathways. The role of NPTX1 on the migration, invasion, adhesion, and proliferation of GC cell lines was investigated with the transwell assay, the adhesion assay, and the MTT assay. Immunofluorescence staining was used to observe the effect of NPTX1 knockdown on the morphology of cells. RESULTS According to the review of TCGA and GEO databases of GC, we found that the expression of NPTX1 increased in cancer tissues and high NPTX1 expression was correlated with poor overall survival, which was associated with lymph node stage in clinicopathologic parameters. Knockdown of NPTX1 attenuated the migration, invasion, and adhesion abilities of GC cells. According to gene set enrichment analysis, NPTX1 was found to be positively related to integrin and focal adhesion (FA). Additionally, NPTX1 knockdown decreased the expression of integrin α1 and integrin α7, followed by deregulation of the expression of p-Src, p-Akt, p-Erk, MMP2, and MMP7, as well as inhibiting the formation of FA complexes and decreasing the length of pseudopods in GC cells. CONCLUSION Our study provides strong evidence that NPTX1 plays a crucial role in promoting metastasis and acts as a prognostic indicator in GC.
Collapse
Affiliation(s)
- Hongfei Yan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China, ;
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China, ;
| | - Chunlei Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China, ;
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China, ;
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China, ;
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China, ;
| | - Bowen Bao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China, ;
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China, ;
| | - Bowen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China, ;
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China, ;
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China, ;
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China, ;
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China, ;
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China, ;
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Tiexi District, Shenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China, ;
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China, ;
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China, ;
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China, ;
| |
Collapse
|
33
|
Ma QL, Teng E, Zuo X, Jones M, Teter B, Zhao EY, Zhu C, Bilousova T, Gylys KH, Apostolova LG, LaDu MJ, Hossain MA, Frautschy SA, Cole GM. Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer's disease. Neurobiol Dis 2018; 114:120-128. [PMID: 29501530 DOI: 10.1016/j.nbd.2018.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/11/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023] Open
Abstract
Synaptic neurodegeneration is thought to be an early event initiated by soluble β-amyloid (Aβ) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aβ aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aβ oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4+/+/FAD+/-) relative to E4FAD- (non-carrier; APOE4+/+/FAD-/-) mice, suggesting NP1 is modulated by Aβ expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States; Veterans Affairs Greater Los Angeles Healthcare System, United States.
| | - Edmond Teng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States; Veterans Affairs Greater Los Angeles Healthcare System, United States
| | - Xiaohong Zuo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States; Veterans Affairs Greater Los Angeles Healthcare System, United States
| | - Mychica Jones
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States; Veterans Affairs Greater Los Angeles Healthcare System, United States
| | - Bruce Teter
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States; Veterans Affairs Greater Los Angeles Healthcare System, United States
| | - Evan Y Zhao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States; Veterans Affairs Greater Los Angeles Healthcare System, United States
| | - Cansheng Zhu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States; Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tina Bilousova
- School of Nursing, University of California, Los Angeles, United States
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, United States
| | - Liana G Apostolova
- Departments of Neurology, Radiology, and Medical and Molecular Genetics, Indiana University School of Medicine, United States
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, United States
| | - Mir Ahamed Hossain
- The Johns Hopkins University School of Medicine, The Kennedy Krieger Institute, United States
| | - Sally A Frautschy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States; Veterans Affairs Greater Los Angeles Healthcare System, United States
| | - Gregory M Cole
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States; Veterans Affairs Greater Los Angeles Healthcare System, United States.
| |
Collapse
|
34
|
Shao Q, Lin Z, Wu X, Tang J, Lu S, Feng D, Cheng C, Qing L, Yao K, Chen Y. Transcriptome sequencing of neurologic diseases associated genes in HHV-6A infected human astrocyte. Oncotarget 2018; 7:48070-48080. [PMID: 27344170 PMCID: PMC5217001 DOI: 10.18632/oncotarget.10127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/01/2016] [Indexed: 01/21/2023] Open
Abstract
Human Herpesvirus 6 (HHV-6) has been involved in the development of several central nervous system (CNS) diseases, such as Alzheimer's disease, multiple sclerosis and glioma. In order to identify the pathogenic mechanism of HHV-6A infection, we carried out mRNA-seq study of human astrocyte HA1800 cell with HHV-6A GS infection. Using mRNA-seq analysis of HA1800-control cells with HA1800-HHV-6A GS cells, we identified 249 differentially expressed genes. After investigating these candidate genes, we found seven genes associated with two or more CNS diseases: CTSS, PTX3, CHI3L1, Mx1, CXCL16, BIRC3, and BST2. This is the first transcriptome sequencing study which showed the significant association of these genes between HHV-6A infection and neurologic diseases. We believe that our findings can provide a new perspective to understand the pathogenic mechanism of HHV-6A infection and neurologic diseases.
Collapse
Affiliation(s)
- Qing Shao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhe Lin
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaohui Wu
- Genetic Data Analysis Group, Shanghai Biotechnology Corporation, Shanghai, People's Republic of China
| | - Junwei Tang
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Shuai Lu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Dongju Feng
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Ci Cheng
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lanqun Qing
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Kun Yao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yun Chen
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
35
|
Qu Z, D'Mello SR. Proteomic analysis identifies NPTX1 and HIP1R as potential targets of histone deacetylase-3-mediated neurodegeneration. Exp Biol Med (Maywood) 2018; 243:627-638. [PMID: 29486577 DOI: 10.1177/1535370218761149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A defining feature of neurodegenerative diseases is the abnormal and excessive loss of neurons. One molecule that is particularly important in promoting neuronal death in a variety of cell culture and in vivo models of neurodegeneration is histone deacetylase-3 (HDAC3), a member of the histone deacetylase family of proteins. As a step towards understanding how HDAC3 promotes neuronal death, we conducted a proteomic screen aimed at identifying proteins that were regulated by HDAC3. HDAC3 was overexpressed in cultured rat cerebellar granule neurons (CGNs) and protein lysates were analyzed by mass spectrometry. Of over 3000 proteins identified in the screen, only 21 proteins displayed a significant alteration in expression. Of these, 12 proteins were downregulated whereas 9 proteins were upregulated. The altered expression of five of these proteins, TEX10, NPTX1, TFG, TSC1, and NFL, along with another protein that was downregulated in the proteomic screen, HIP1R, was confirmed using Western blots and commercially available antibodies. Because antibodies were not available for some of the proteins and since HDAC3 is a transcriptional regulator of gene expression, we conducted RT-PCR analysis to confirm expression changes. In separate analyses, we also included other proteins that are known to regulate neurodegeneration, including HDAC9, HSF1, huntingtin, GAPDH, FUS, and p65/RELA. Based on our proteomic screen and candidate protein approach, we identify three genes, Nptx1, Hip1r, and Hdac9, all known to regulate neurodegeneration that are robustly regulated by HDAC3. Given their suggested roles in regulating neuronal death, these genes are likely to be involved in regulating HDAC3-mediated neurotoxicity. Impact statement Neurodegenerative diseases are a major medical, social, and economic problem. Recent studies by several laboratories have indicated that histone deacetylase-3 (HDAC3) plays a key role in promoting neuronal death. But the downstream mediators of HDAC3 neurotoxicity have yet to be identified. We conducted a proteomic screen to identify HDAC3 targets the results of which have been described in this report. Briefly, we identify Nptx1, Hip1r, and Hdac9 as genes whose expression is altered by HDAC3. Investigating how these genes are involved in HDAC3 neurotoxicity could shed valuable insight into neurodegenerative disease and identify molecules that can be targeted to treat these devastating disorders.
Collapse
Affiliation(s)
- Zhe Qu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
36
|
Duits FH, Brinkmalm G, Teunissen CE, Brinkmalm A, Scheltens P, Van der Flier WM, Zetterberg H, Blennow K. Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:5. [PMID: 29370833 PMCID: PMC6389073 DOI: 10.1186/s13195-017-0335-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND We investigated whether a panel of 12 potential novel biomarkers consisting of proteins involved in synapse functioning and immunity would be able to distinguish patients with Alzheimer's disease (AD) and patients with mild cognitive impairment (MCI) from control subjects. METHODS We included 40 control subjects, 40 subjects with MCI, and 40 subjects with AD from the Amsterdam Dementia Cohort who were matched for age and sex (age 65 ± 5 years, 19 [48%] women). The mean follow-up of patients with MCI was 3 years. Two or three tryptic peptides per protein were analyzed in cerebrospinal fluid using parallel reaction monitoring mass spectrometry. Corresponding stable isotope-labeled peptides were added and used as reference peptides. Multilevel generalized estimating equations (GEEs) with peptides clustered per subject and per protein (as within-subject variables) were used to assess differences between diagnostic groups. To assess differential effects of individual proteins, we included the diagnosis × protein interaction in the model. Separate GEE analyses were performed to assess differences between stable patients and patients with progressive MCI (MCI-AD). RESULTS There was a main effect for diagnosis (p < 0.01) and an interaction between diagnosis and protein (p < 0.01). Analysis stratified according to protein showed higher levels in patients with MCI for most proteins, especially in patients with MCI-AD. Chromogranin A, secretogranin II, neurexin 3, and neuropentraxin 1 showed the largest effect sizes; β values ranged from 0.53 to 0.78 for patients with MCI versus control subjects or patients with AD, and from 0.67 to 0.98 for patients with MCI-AD versus patients with stable MCI. In contrast, neurosecretory protein VGF was lower in patients with AD than in patients with MCI (ß = -0.93 [SE 0.22]) and control subjects (ß = 0.46 [SE 0.19]). CONCLUSIONS Our results suggest that several proteins involved in vesicular transport and synaptic stability are elevated in patients with MCI, especially in patients with MCI progressing to AD dementia. This may reflect early events in the AD pathophysiological cascade. These proteins may be valuable as disease stage or prognostic markers in an early symptomatic stage of the disease.
Collapse
Affiliation(s)
- Flora H Duits
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands.
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Charlotte E Teunissen
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands.,Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands
| | - Wiesje M Van der Flier
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
37
|
Brinkmalm G, Sjödin S, Simonsen AH, Hasselbalch SG, Zetterberg H, Brinkmalm A, Blennow K. A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease. Proteomics Clin Appl 2017; 12. [PMID: 29028155 DOI: 10.1002/prca.201700131] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 01/04/2023]
Abstract
SCOPE The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN Thirteen proteins were selected based on their association with neurodegenerative diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF samples were digested and two to three peptides per protein were quantified using stable isotope-labeled peptide standards. RESULTS Coefficients of variation were generally below 15%. Clinical evaluation was performed on a cohort of 10 patients with Alzheimer's disease (AD) and 15 healthy subjects. Investigated proteins of the granin family exhibited the largest difference between the patient groups. Secretogranin-2 (p<0.005) and neurosecretory protein VGF (p<0.001) concentrations were lowered in AD. For chromogranin A, two of three peptides had significantly lowered AD concentrations (p<0.01). The concentrations of the synaptic proteins neurexin-1 and neuronal pentraxin-1, as well as neurofascin were also significantly lowered in AD (p<0.05). The other investigated proteins, β2-microglobulin, cystatin C, amyloid precursor protein, lysozyme C, neurexin-2, neurexin-3, and neurocan core protein, were not significantly altered. CONCLUSION AND CLINICAL RELEVANCE PRM-MS of protein panels is a valuable tool to evaluate biomarker candidates for neurodegenerative disorders.
Collapse
Affiliation(s)
- Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Simon Sjödin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
38
|
Hooper AWM, Alamilla JF, Venier RE, Gillespie DC, Igdoura SA. Neuronal pentraxin 1 depletion delays neurodegeneration and extends life in Sandhoff disease mice. Hum Mol Genet 2017; 26:661-673. [PMID: 28007910 DOI: 10.1093/hmg/ddw422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/09/2016] [Indexed: 01/15/2023] Open
Abstract
GM2 gangliosidoses are a group of lysosomal storage disorders which include Sandhoff disease and Tay-Sachs disease. Dysregulation of glutamate receptors has been recently postulated in the pathology of Sandhoff disease. Glutamate receptor association with neuronal pentraxins 1 and 2, and the neuronal pentraxin receptor facilitates receptor potentiation and synaptic shaping. In this study, we have observed an upregulation of a novel form of neuronal pentraxin 1 (NP1-38) in the brains of a mouse model of Sandhoff disease and Tay-Sachs disease. In order to determine the impact of NP1 on the pathophysiology of Sandhoff disease mouse models, we have generated an Np1-/-Hexb-/- double knockout mouse, and observed extended lifespan, improved righting reflex and enhanced body condition relative to Hexb-/- mice, with no effect on gliosis or apoptotic markers in the CNS. Sandhoff mouse brain slices reveals a reduction in AMPA receptor-mediated currents, and increased variability in total glutamate currents in the CA1 region of the hippocampus; Np1-/-Hexb-/- mice show a correction of this phenotype, suggesting NP1-38 may be interfering with glutamate receptor function. Indeed, some of the psychiatric aspects of Sandhoff and Tay-Sachs disease (particularly late onset) may be attributed to a dysfunctional hippocampal glutamatergic system. Our work highlights a potential role for synaptic proteins, such as NP1 and glutamate receptors in lysosomal storage diseases.
Collapse
Affiliation(s)
| | | | | | | | - Suleiman A Igdoura
- Department of Biology.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
39
|
Bastos P, Ferreira R, Manadas B, Moreira PI, Vitorino R. Insights into the human brain proteome: Disclosing the biological meaning of protein networks in cerebrospinal fluid. Crit Rev Clin Lab Sci 2017; 54:185-204. [PMID: 28393582 DOI: 10.1080/10408363.2017.1299682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is an excellent source of biological information regarding the nervous system, once it is in close contact and accurately reflects alterations in this system. Several studies have analyzed differential protein profiles of CSF samples between healthy and diseased human subjects. However, the pathophysiological mechanisms and how CSF proteins relate to diseases are still poorly known. By applying bioinformatics tools, we attempted to provide new insights on the biological and functional meaning of proteomics data envisioning the identification of putative disease biomarkers. Bioinformatics analysis of data retrieved from 99 mass spectrometry (MS)-based studies on CSF profiling highlighted 1985 differentially expressed proteins across 49 diseases. A large percentage of the modulated proteins originate from exosome vesicles, and the majority are involved in either neuronal cell growth, development, maturation, migration, or neurotransmitter-mediated cellular communication. Nevertheless, some diseases present a unique CSF proteome profile, which were critically analyzed in the present study. For instance, 48 proteins were found exclusively upregulated in the CSF of patients with Alzheimer's disease and are mainly involved in steroid esterification and protein activation cascade processes. A higher number of exclusively upregulated proteins were found in the CSF of patients with multiple sclerosis (76 proteins) and with bacterial meningitis (70 proteins). Whereas in multiple sclerosis, these proteins are mostly involved in the regulation of RNA metabolism and apoptosis, in bacterial meningitis the exclusively upregulated proteins participate in inflammation and antibacterial humoral response, reflecting disease pathogenesis. The exploration of the contribution of exclusively upregulated proteins to disease pathogenesis will certainly help to envision potential biomarkers in the CSF for the clinical management of nervous system diseases.
Collapse
Affiliation(s)
- Paulo Bastos
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal.,b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal
| | - Rita Ferreira
- c QOPNA, Department of Chemistry , University of Aveiro , Aveiro , Portugal
| | - Bruno Manadas
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal
| | - Paula I Moreira
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal.,e Laboratory of Physiology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Rui Vitorino
- b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal.,f Departmento de Cirurgia e Fisiologia, Faculdade de Medicina , Unidade de Investigação Cardiovascular, Universidade do Porto , Porto , Portugal
| |
Collapse
|
40
|
Cummings DM, Benway TA, Ho H, Tedoldi A, Fernandes Freitas MM, Shahab L, Murray CE, Richard-Loendt A, Brandner S, Lashley T, Salih DA, Edwards FA. Neuronal and Peripheral Pentraxins Modify Glutamate Release and may Interact in Blood–Brain Barrier Failure. Cereb Cortex 2017; 27:3437-3448. [DOI: 10.1093/cercor/bhx046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Damian M. Cummings
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
| | - Tiffanie A. Benway
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
| | - Hinze Ho
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
- Present address: MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Angelo Tedoldi
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
- Present address: Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Lion Shahab
- Department of Behavioural Science and Health, University College London, London WC1E 6BT, UK
| | - Christina E. Murray
- The Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Angela Richard-Loendt
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Dervis A. Salih
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
| | - Frances A. Edwards
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
| |
Collapse
|
41
|
Schaukowitch K, Reese AL, Kim SK, Kilaru G, Joo JY, Kavalali ET, Kim TK. An Intrinsic Transcriptional Program Underlying Synaptic Scaling during Activity Suppression. Cell Rep 2017; 18:1512-1526. [PMID: 28178527 PMCID: PMC5524384 DOI: 10.1016/j.celrep.2017.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 11/15/2016] [Accepted: 01/14/2017] [Indexed: 11/15/2022] Open
Abstract
Homeostatic scaling allows neurons to maintain stable activity patterns by globally altering their synaptic strength in response to changing activity levels. Suppression of activity by the blocking of action potentials increases synaptic strength through an upregulation of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Although this synaptic upscaling was shown to require transcription, the molecular nature of the intrinsic transcription program underlying this process and its functional significance have been unclear. Using RNA-seq, we identified 73 genes that were specifically upregulated in response to activity suppression. In particular, Neuronal pentraxin-1 (Nptx1) increased within 6 hr of activity blockade, and knockdown of this gene blocked the increase in synaptic strength. Nptx1 induction is mediated by calcium influx through the T-type voltage-gated calcium channel, as well as two transcription factors, SRF and ELK1. Altogether, these results uncover a transcriptional program that specifically operates when neuronal activity is suppressed to globally coordinate the increase in synaptic strength.
Collapse
Affiliation(s)
- Katie Schaukowitch
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Austin L Reese
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Seung-Kyoon Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Gokhul Kilaru
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jae-Yeol Joo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
42
|
Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death. Cell Death Differ 2016; 24:238-250. [PMID: 28141794 DOI: 10.1038/cdd.2016.114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
Death-associated protein kinase 1 (DAPK1) has been shown to have important roles in neuronal cell death in several model systems and has been implicated in multiple diseases, including Alzheimer's disease (AD). However, little is known about the molecular mechanisms by which DAPK1 signals neuronal cell death. In this study, N-myc downstream-regulated gene 2 (NDRG2) was identified as a novel substrate of DAPK1 using phospho-peptide library screening. DAPK1 interacted with NDRG2 and directly phosphorylated the Ser350 residue in vitro and in vivo. Moreover, DAPK1 overexpression increased neuronal cell death through NDRG2 phosphorylation after ceramide treatment. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant and small hairpin RNA, or by treatment with a DAPK1 inhibitor significantly decreased neuronal cell death, and abolished NDRG2 phosphorylation in cell culture and in primary neurons. Furthermore, NDRG2-mediated cell death by DAPK1 was required for a caspase-dependent poly-ADP-ribose polymerase cleavage. In addition, DAPK1 ablation suppressed ceramide-induced cell death in mouse brain and neuronal cell death in Tg2576 APPswe-overexpressing mice. Finally, levels of phosphorylated NDRG2 Ser350 and DAPK1 were significantly increased in human AD brain samples. Thus, phosphorylation of NDRG2 on Ser350 by DAPK1 is a novel mechanism activating NDRG2 function and involved in neuronal cell death regulation in vivo.
Collapse
|
43
|
Hooper AWM, Igdoura SA. Bi-phasic gliosis drives neuropathology in a Sandhoff disease mouse model. J Neuroimmunol 2016; 299:19-27. [PMID: 27725117 DOI: 10.1016/j.jneuroim.2016.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/02/2016] [Accepted: 08/07/2016] [Indexed: 11/20/2022]
Abstract
Microgliosis and astrogliosis are known to be exacerbating factors in the progression of the lysosomal storage disorder Sandhoff disease. We have also found evidence for excitotoxicity via glutamate receptors in Sandhoff disease. To view the interaction of these cascades, we measured cerebellar expression of markers for gliosis, apoptosis, and excitatory synapses over the disease course in a Sandhoff disease mouse model. We observe a 2-stage model, with initial activation of microgliosis as early as 60days of age, followed by a later onset of astrogliosis, caspase-mediated apoptosis, and reduction in GluR1 at approximately 100days of age. These results implicate immune cells as first responders in Sandhoff disease.
Collapse
Affiliation(s)
| | - Suleiman A Igdoura
- Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ont. L8S 4L8, Canada.
| |
Collapse
|
44
|
Jamil A, Mahboob A, Ahmed T. Ibuprofen targets neuronal pentraxins expresion and improves cognitive function in mouse model of AlCl 3-induced neurotoxicity. Exp Ther Med 2015; 11:601-606. [PMID: 26893653 DOI: 10.3892/etm.2015.2928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/01/2015] [Indexed: 11/06/2022] Open
Abstract
Aluminum is known to exert neurotoxic effects associated with various neurodegenerative disorders, including Alzheimer's disease (AD). Ibuprofen is a well-known non-steroidal anti-inflammatory drug, which has demonstrated potential efficacy in the treatment of numerous inflammatory and neurodegenerative disorders, including AD. The present study aimed to investigate the protective effects of ibuprofen on cognitive function, and the expression levels of neuronal pentraxins (NPs) and interleukin (IL)-1β in an aluminum chloride (AlCl3)-induced mouse model of neurotoxicity. The effects of ibuprofen (100 mg/kg/day for 12 days) on learning and memory were evaluated in the AlCl3-induced neurotoxic mice using a Morris water maze and open field tests. In addition, ibuprofen was assessed for its effects on the expression levels of NPs and IL-1β in the hippocampus, cortex and amygdala of the brain. Treatment of the AlCl3-treated mice with ibuprofen decreased anxiety levels (6.90±0.34 min) compared with the AlCl3-treated group (1.80±0.29 min), as indicated by the time spent in the central area in an open field test. Furthermore, the expression levels of NP1 (1.32±0.47) and IL-1β (0.99±0.21) were significantly decreased in the hippocampus of mice following ibuprofen treatment, as compared with the AlCl3-treated mice (8.62±1.54 and 7.47±0.53, respectively). In the present study, ibuprofen was able to target novel structures in order to attenuate the inflammation associated with an AlCl3-induced mouse model of neurotoxicity; thus suggesting that ibuprofen may be considered a potential therapeutic option for the treatment of neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Anum Jamil
- Neurobiology Laboratory, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Aamra Mahboob
- Neurobiology Laboratory, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| |
Collapse
|
45
|
Pathological Findings of a Subependymal Giant Cell Astrocytoma Following Treatment With Rapamycin. Pediatr Neurol 2015; 53:238-242.e1. [PMID: 26173783 DOI: 10.1016/j.pediatrneurol.2015.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberous sclerosis complex is a heritable multisystem disorder associated with genes involved in the formation of a tumor-suppressor complex acting through the Ras homologue enriched in brain protein to limit activation of the mammalian target of rapamycin complex I. Mutations in these genes result in enhanced mammalian target of rapamycin signaling and may cause neurological manifestations including brain tubers, subependymal nodules, and subependymal giant cell astrocytomas. These astrocytomas are tumors that arise near the foramen of Monro and may lead to obstructive hydrocephalus. Standard therapy has been surgical resection. More recently, mammalian target of rapamycin inhibitor, everolimus, has been approved for treatment after demonstration of efficacy in prospective clinical trials. METHODS We report a 15 year-old girl with tuberous sclerosis complex who proceeded to surgical resection of her subependymal giant cell astrocytoma after 3 months of treatment with mammalian target of rapamycin inhibition. We compared her subependymal giant cell astrocytoma tissue specimen with 12 untreated subependymal giant cell astrocytomas accessed from The Hospital for Sick Children in Toronto, Canada. RESULTS This girl's histopathological findings were consistent with subependymal giant cell astrocytomas with no exposure to mammalian target of rapamycin inhibitors. There were no major differences identified on immunohistochemistry at targets downstream of mammalian target of rapamycin complex 1 or in neighboring signaling pathways. The majority of cells were reactive to glial fibrillary acidic protein, mitogen-activated protein kinase, phospho-S6, caspase 3 (95% positivity), and NP-1. CONCLUSION In this one individual, rapamycin therapy did not change the histopathological characteristics of subependymal giant cell astrocytoma. Mammalian target of rapamycin inhibition involves complex signaling pathways inducing subependymal giant cell astrocytoma shrinkage. However, its effect is not easily characterized within tumor tissue.
Collapse
|
46
|
Chu YY, Ko CY, Wang WJ, Wang SM, Gean PW, Kuo YM, Wang JM. Astrocytic CCAAT/Enhancer Binding Protein δ Regulates Neuronal Viability and Spatial Learning Ability via miR-135a. Mol Neurobiol 2015. [PMID: 26208701 PMCID: PMC4937099 DOI: 10.1007/s12035-015-9359-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The progression of Alzheimer’s disease (AD) has been associated with astrocytes-induced neuroinflammation. However, the detailed mechanism of astrocytes associated with learning impairments and neuronal loss in AD is poorly defined. Here, we provide novel evidences that astrocytic miR-135a is critical for neuronal viability and spatial learning ability in vivo. The AppTg/Cebpd−/− mice showed a spatial learning improvement compared with the APPswe/PS1/E9 bigenic (AppTg) mice. miR-135a was found to be a CCAAT/enhancer binding protein δ (CEBPD) responsive miRNA and can repress the transcription of thrombospondin 1 (THBS1) / Thbs1 (mouse) via its 3′-untranslated region (3′UTR). We used different experimental approaches to attenuate the expression of CEBPD/Cebpd (mouse) or miR-135a in astrocytes and found the following results: increase in THBS1/Thbs1 expression, decrease in neuronal apoptosis, and increase in growth of neurites. Importantly, injection of miR-135a antagonist (AM135a) into the brain of AppTg mice was found to prevent neuronal apoptosis and improved the spatial learning ability. Together, our findings demonstrate a critical function for the astrocytic CEBPD, and point to miR-135a antagonist as an attractive therapeutic target for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 110, Taiwan
| | - Wei-Jan Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shao-Ming Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Pharmacology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 701, Taiwan. .,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
47
|
C-Reactive Protein Induces Tau Hyperphosphorylation via GSK3β Signaling Pathway in SH-SY5Y Cells. J Mol Neurosci 2015; 56:519-27. [DOI: 10.1007/s12031-015-0572-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
|
48
|
Figueiro-Silva J, Gruart A, Clayton KB, Podlesniy P, Abad MA, Gasull X, Delgado-García JM, Trullas R. Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity. J Neurosci 2015; 35:5504-21. [PMID: 25855168 PMCID: PMC6605318 DOI: 10.1523/jneurosci.2548-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 01/19/2023] Open
Abstract
In mature neurons, the number of synapses is determined by a neuronal activity-dependent dynamic equilibrium between positive and negative regulatory factors. We hypothesized that neuronal pentraxin (NP1), a proapoptotic protein induced by low neuronal activity, could be a negative regulator of synapse density because it is found in dystrophic neurites in Alzheimer's disease-affected brains. Here, we report that knockdown of NP1 increases the number of excitatory synapses and neuronal excitability in cultured rat cortical neurons and enhances excitatory drive and long-term potentiation in the hippocampus of behaving mice. Moreover, we found that NP1 regulates the surface expression of the Kv7.2 subunit of the Kv7 family of potassium channels that control neuronal excitability. Furthermore, pharmacological activation of Kv7 channels prevents, whereas inhibition mimics, the increase in synaptic proteins evoked by the knockdown of NP1. These results indicate that NP1 negatively regulates excitatory synapse number by modulating neuronal excitability and show that NP1 restricts excitatory synaptic plasticity.
Collapse
Affiliation(s)
- Joana Figueiro-Silva
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Kevin Bernard Clayton
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Petar Podlesniy
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Alba Abad
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Gasull
- Laboratory of Neurophysiology, School of Medicine, University of Barcelona, 08036 Barcelona, Spain, and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
49
|
Rajkumar AP, Christensen JH, Mattheisen M, Jacobsen I, Bache I, Pallesen J, Grove J, Qvist P, McQuillin A, Gurling HM, Tümer Z, Mors O, Børglum AD. Analysis of t(9;17)(q33.2;q25.3) chromosomal breakpoint regions and genetic association reveals novel candidate genes for bipolar disorder. Bipolar Disord 2015; 17:205-11. [PMID: 25053281 DOI: 10.1111/bdi.12239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/29/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Breakpoints of chromosomal abnormalities facilitate identification of novel candidate genes for psychiatric disorders. Genome-wide significant evidence supports the linkage between chromosome 17q25.3 and bipolar disorder (BD). Co-segregation of translocation t(9;17)(q33.2;q25.3) with psychiatric disorders has been reported. We aimed to narrow down these chromosomal breakpoint regions and to investigate the associations between single nucleotide polymorphisms within these regions and BD as well as schizophrenia (SZ) in large genome-wide association study samples. METHODS We cross-linked Danish psychiatric and cytogenetic case registers to identify an individual with both t(9;17)(q33.2;q25.3) and BD. Fluorescent in situ hybridization was employed to map the chromosomal breakpoint regions of this proband. We accessed the Psychiatric Genomics Consortium BD (n = 16,731) and SZ (n = 21,856) data. Genetic associations between these disorders and single nucleotide polymorphisms within these breakpoint regions were analysed by BioQ, FORGE, and RegulomeDB programmes. RESULTS Four protein-coding genes [coding for (endonuclease V (ENDOV), neuronal pentraxin I (NPTX1), ring finger protein 213 (RNF213), and regulatory-associated protein of mammalian target of rapamycin (mTOR) (RPTOR)] were found to be located within the 17q25.3 breakpoint region. NPTX1 was significantly associated with BD (p = 0.004), while ENDOV was significantly associated with SZ (p = 0.0075) after Bonferroni correction. CONCLUSIONS Prior linkage evidence and our findings suggest NPTX1 as a novel candidate gene for BD.
Collapse
Affiliation(s)
- Anto P Rajkumar
- Department of Biomedicine, Institute of Human Genetics, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bilousova T, Taylor K, Emirzian A, Gylys R, Frautschy SA, Cole GM, Teng E. Parallel age-associated changes in brain and plasma neuronal pentraxin receptor levels in a transgenic APP/PS1 rat model of Alzheimer's disease. Neurobiol Dis 2014; 74:32-40. [PMID: 25449907 DOI: 10.1016/j.nbd.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022] Open
Abstract
Neuronal pentraxin receptor (NPR) is a synaptic protein implicated in AMPA receptor trafficking at excitatory synapses. Since glutamate neurotransmission is disrupted in Alzheimer's disease (AD), NPR levels measured from plasma represent a potential biomarker for synaptic dysfunction associated with AD. We sought to determine the relationship between AD pathology and brain and plasma NPR levels by examining age-associated NPR levels in these compartments in a transgenic APP/PS1 rat model of AD. NPR levels in cortical homogenate were similar in wild-type (Wt) and APP/PS1 rats at 3 months of age (prior to Aβ plaque deposition), but significantly increased in APP/PS1 rats by 9 and 18-20 months of age (after the onset of plaque deposition). These age-dependent differences were driven by proportional increases in NPR in membrane-associated cortical fractions. Genotype-related differences in NPR expression were also seen in the hippocampus, which exhibits significant Aβ pathology, but not in the cerebellum, which does not. Plasma analyses revealed increased levels of a 26 kDa NPR fragment in APP/PS1 rats relative to Wt rats by 18-20 months of age, which correlated with the levels of full-length NPR in cortex. Our findings indicate that cerebral accumulation of NPR and Aβ occurs with similar temporal and regional patterns in the APP/PS1 model, and suggest that a 26 kDa plasma NPR fragment may represent a peripheral biomarker of this process.
Collapse
Affiliation(s)
- Tina Bilousova
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Karen Taylor
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Ana Emirzian
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States
| | - Raymond Gylys
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States
| | - Sally A Frautschy
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Gregory M Cole
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Edmond Teng
- Department of Neurology, David Geffen School of Medicine, at UCLA, Los Angeles, CA, United States; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States.
| |
Collapse
|