1
|
Hwang J, Okada J, Liu L, Pessin JE, Schwartz GJ, Jo YH. The development of hepatic steatosis depends on the presence of liver-innervating parasympathetic cholinergic neurons in mice fed a high-fat diet. PLoS Biol 2024; 22:e3002865. [PMID: 39436946 PMCID: PMC11530026 DOI: 10.1371/journal.pbio.3002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/01/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Hepatic lipid metabolism is regulated by the autonomic nervous system of the liver, with the sympathetic innervation being extensively studied, while the parasympathetic efferent innervation is less understood despite its potential importance. In this study, we investigate the consequences of disrupted brain-liver communication on hepatic lipid metabolism in mice exposed to obesogenic conditions. We found that a subset of hepatocytes and cholangiocytes are innervated by parasympathetic nerve terminals originating from the dorsal motor nucleus of the vagus. The elimination of the brain-liver axis by deleting parasympathetic cholinergic neurons innervating the liver prevents hepatic steatosis and promotes browning of inguinal white adipose tissue (ingWAT). The loss of liver-innervating cholinergic neurons increases hepatic Cyp7b1 expression and fasting serum bile acid levels. Furthermore, knockdown of the G protein-coupled bile acid receptor 1 gene in ingWAT reverses the beneficial effects of the loss of liver-innervating cholinergic neurons, leading to the reappearance of hepatic steatosis. Deleting liver-innervating cholinergic neurons has a small but significant effect on body weight, which is accompanied by an increase in energy expenditure. Taken together, these data suggest that targeting the parasympathetic cholinergic innervation of the liver is a potential therapeutic approach for enhancing hepatic lipid metabolism in obesity and diabetes.
Collapse
Affiliation(s)
- Jiyeon Hwang
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Junichi Okada
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Li Liu
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jeffrey E. Pessin
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscince, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
2
|
Kuebler IRK, Liu Y, Bueno Álvarez BS, Huber NM, Jolton JA, Dasari R, Wakabayashi KT. Melanin-concentrating hormone receptor antagonism differentially attenuates nicotine experience-dependent locomotor behavior in female and male rats. Pharmacol Biochem Behav 2023; 232:173649. [PMID: 37793486 PMCID: PMC10985048 DOI: 10.1016/j.pbb.2023.173649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Nicotine is a significant public health concern because it is the primary pharmacological agent in tobacco use disorder. One neural system that has been implicated in the symptoms of several substance use disorders is the melanin-concentrating hormone (MCH) system. MCH regulates various motivated behaviors depending on sex, yet little is known of how this interaction affects experience with drugs of abuse, particularly nicotine. The goal of this study was to determine the effect of MCH receptor antagonism on experience-dependent nicotine-induced locomotion after chronic exposure, particularly on the expression of locomotor sensitization. Adult female and male Wistar rats were given saline then cumulative doses of nicotine (0.1, 0.32, 0.56, and 1.0 mg/kg) intraperitoneally to determine the acute effects of nicotine (day 1). Next, rats were treated with 1.0 mg/kg nicotine for 6 days, given an identical series of cumulative doses (day 8), and then kept in a drug-free state for 6 days. On day 15, rats were pretreated with vehicle or the MCH receptor antagonist GW803430 (10 or 30 mg/kg) before another series of cumulative doses to assess response to chronic nicotine. After vehicle, male rats increased nicotine locomotor activation from day 1 to day 15, and both sexes showed a sensitized response when normalized to saline. The lower dose of GW803430 decreased locomotion compared to vehicle in females, while the higher dose decreased locomotion in males. Both sexes showed nicotine dose-dependent effects of GW803430, strongest at lower doses of nicotine. Controlling for sex-based locomotor differences revealed that females are more sensitive to GW803430. The high dose of GW803430 also decreased saline locomotion in males. Together, the results of our study suggest that MCH is involved in the expression of nicotine locomotor sensitization, and that MCH regulates these nicotine behavioral symptoms differently across sex.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Youxi Liu
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Bárbara S Bueno Álvarez
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Noah M Huber
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Joshua A Jolton
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Raaga Dasari
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America; Rural Drug Addiction Research Center, University of Nebraska-Lincoln, 660 N 12th St., Lincoln, NE 68588, United States of America.
| |
Collapse
|
3
|
Huang Z, Tatti R, Loeven AM, Landi Conde DR, Fadool DA. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front Cell Neurosci 2021; 15:662184. [PMID: 34239417 PMCID: PMC8259627 DOI: 10.3389/fncel.2021.662184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.
Collapse
Affiliation(s)
- Zhenbo Huang
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Roberta Tatti
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Ashley M Loeven
- Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Daniel R Landi Conde
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
4
|
Abstract
Tobacco smoking results in more than five million deaths each year and accounts for ∼90% of all deaths from lung cancer.3 Nicotine, the major reinforcing component of tobacco smoke, acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are allosterically regulated, ligand-gated ion channels consisting of five membrane-spanning subunits. Twelve mammalian α subunits (α2-α10) and three β subunits (β2-β4) have been cloned. The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits (denoted as α4β2* nAChRs). The α4β2* nAChRs mediate many behaviors related to nicotine addiction and are the primary targets for currently approved smoking cessation agents. Considering the large number of nAChR subunits in the brain, it is likely that nAChRs containing subunits in addition to α4 and β2 also play a role in tobacco smoking. Indeed, genetic variation in the CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3, and β4 nAChR subunits, respectively, has been shown to increase vulnerability to tobacco dependence and smoking-associated diseases including lung cancer. Moreover, mice, in which expression of α5 or β4 subunits has been genetically modified, have profoundly altered patterns of nicotine consumption. In addition to the reinforcing properties of nicotine, the effects of nicotine on appetite, attention, and mood are also thought to contribute to establishment and maintenance of the tobacco smoking habit. Here, we review recent insights into the behavioral actions of nicotine, and the nAChR subtypes involved, which likely contribute to the development of tobacco dependence in smokers.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
5
|
Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2020; 219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Obesity has reached pandemic proportions and is associated with severe comorbidities, such as type 2 diabetes mellitus, hepatic and cardiovascular diseases, and certain cancer types. However, the therapeutic options to treat obesity are limited. Extensive epidemiological studies have shown a strong relationship between smoking and body weight, with non-smokers weighing more than smokers at any age. Increased body weight after smoking cessation is a major factor that interferes with their attempts to quit smoking. Numerous controlled studies in both humans and rodents have reported that nicotine, the main bioactive component of tobacco, exerts a marked anorectic action. Furthermore, nicotine is also known to modulate energy expenditure, by regulating the thermogenic activity of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT), as well as glucose homeostasis. Many of these actions occur at central level, by controlling the activity of hypothalamic neuropeptide systems such as proopiomelanocortin (POMC), or energy sensors such as AMP-activated protein kinase (AMPK). However, direct impact of nicotine on metabolic tissues, such as BAT, WAT, liver and pancreas has also been described. Here, we review the actions of nicotine on energy balance. The relevance of this interaction is interesting, because considering the restricted efficiency of obesity treatments, a possible complementary approach may focus on compounds with known pharmacokinetic profile and pharmacological actions, such as nicotine or nicotinic acetylcholine receptors signaling.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine and Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
6
|
Calarco CA, Picciotto MR. Nicotinic Acetylcholine Receptor Signaling in the Hypothalamus: Mechanisms Related to Nicotine's Effects on Food Intake. Nicotine Tob Res 2020; 22:152-163. [PMID: 30690485 DOI: 10.1093/ntr/ntz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Despite health risks associated with smoking, up to 20% of the US population persist in this behavior; many smoke to control body weight or appetite, and fear of post-cessation weight gain can motivate continued smoking. Nicotine and tobacco use is associated with lower body weight, and cessation yields an average weight gain of about 4 kg, which is thought to reflect a return to the body weight of a typical nonsmoker. Nicotine replacement therapies can delay this weight gain but do not prevent it altogether, and the underlying mechanism for how nicotine is able to reduce weight is not fully understood. In rodent models, nicotine reduces weight gain, reduces food consumption, and alters energy expenditure, but these effects vary with duration and route of nicotine administration. Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide and anorexigenic proopiomelanocortin neurons in the arcuate nucleus of the hypothalamus (ARC). Manipulation of nAChR subunit expression within the ARC can block the ability of nicotine and the nicotinic agonist cytisine from decreasing food intake; however, it is unknown exactly how this reduces food intake. This review summarizes the clinical and preclinical work on nicotine, food intake, and weight gain, then explores the feeding circuitry of the ARC and how it is regulated by nicotine. Finally, we propose a novel hypothesis for how nicotine acts on this hypothalamic circuit to reduce food intake. Implications: This review provides a comprehensive and updated summary of the clinical and preclinical work examining nicotine and food intake, as well as a summary of recent work examining feeding circuits of the hypothalamus. Synthesis of these two topics has led to new understanding of how nAChR signaling regulates food intake circuits in the hypothalamus.
Collapse
Affiliation(s)
- Cali A Calarco
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
8
|
Balkan B, Pogun S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol 2018; 16:371-387. [PMID: 28730966 PMCID: PMC6018196 DOI: 10.2174/1570159x15666170720092442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in the regulation of the stress responses. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved. METHODS Published research related to nicotinic cholinergic regulation of the HPA axis activity at the hypothalamic level is reviewed. RESULTS The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Additionally, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons. CONCLUSION Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides will aid in drug development and provide means to cope with these diseases. Considering that nicotine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.
Collapse
Affiliation(s)
- Burcu Balkan
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey.,Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sakire Pogun
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
9
|
Calarco CA, Li Z, Taylor SR, Lee S, Zhou W, Friedman JM, Mineur YS, Gotti C, Picciotto MR. Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus. Eur J Neurosci 2018; 48:10.1111/ejn.13966. [PMID: 29791746 PMCID: PMC6251769 DOI: 10.1111/ejn.13966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
Abstract
Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide (AgRP) and anorexigenic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral-mediated knockdown of the β4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the β4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real-time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in β4 expression. Immunoprecipitation of assembled nAChRs revealed that the β4 subunit forms assembled channels with α3, β2 and α4, but not other subunits found in the ARC. Finally, using cell type-selective, virally delivered small hairpin RNAs targeting either the β4 or α7 subunit, we examined the contribution of each subunit in either AgRP or POMC cells to the behavioural response to nicotine, refining the understanding of nicotinic regulation of this feeding circuit. These experiments identify a more complex set of nAChRs expressed in ARC than in other hypothalamic regions. Thus, the ARC appears to be a particular target of nicotinic modulation.
Collapse
Affiliation(s)
- Cali A. Calarco
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | - Seth R. Taylor
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | - Somin Lee
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | - Wenliang Zhou
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | - Yann S. Mineur
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | - Marina R. Picciotto
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508, USA
| |
Collapse
|
10
|
Wollman LB, Levine RB, Fregosi RF. Developmental plasticity of GABAergic neurotransmission to brainstem motoneurons. J Physiol 2018; 596:5993-6008. [PMID: 29352468 DOI: 10.1113/jp274923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/16/2018] [Indexed: 01/15/2023] Open
Abstract
KEY POINTS Critical homeostatic behaviours such as suckling, swallowing and breathing depend on the precise control of tongue muscle activity. Perinatal nicotine exposure has multiple effects on baseline inhibitory GABAergic neurotransmission to hypoglossal motoneurons (XIIMNs), consistent with homeostatic compensations directed at maintaining normal motoneuron output. Developmental nicotine exposure (DNE) alters how GABAergic neurotransmission is modulated by acute activation of nicotinic acetylcholine receptors, which may provide insight into mechanisms by which nicotine exposure alters motor function under conditions that result in increased release of GABA, such as hypoxia, or endogenous acetylcholine, as occurs in the transition from NREM to REM sleep, or in response to exogenous nicotine. ABSTRACT Nicotinic acetylcholine receptor (nAChR) signalling regulates neuronal differentiation and synaptogenesis. Here we test the hypothesis that developmental nicotine exposure (DNE) disrupts the development of GABAergic synaptic transmission to hypoglossal motoneurons (XIIMNs). GABAergic spontaneous and miniature inhibitory postsynaptic currents (sIPSCs/mIPSCs) were recorded from XIIMNs in brainstem slices from control and DNE rat pups of either sex, 1-5 days old, at baseline and following acute stimulation of nAChRs with nicotine. At baseline, sIPSCs were less frequent and smaller in DNE cells (consistent with decreased action potential-mediated GABA release), and mIPSCs were more frequent (consistent with increased vesicular GABA release from presynaptic terminals). Acute nicotine challenge increased sIPSC frequency in both groups, though the increase was greater in DNE cells. Acute nicotine challenge did not change the frequency of mIPSCs in either group, though mIPSC amplitude increased significantly in DNE cells, but not control cells. Stimulation of postsynaptic GABAA receptors with muscimol caused a significantly greater chloride current in DNE cells than in control cells. The increased quantal release of GABA, coupled with the rise in the strength of postsynaptic inhibition may be homeostatic adjustments to the decreased action-potential-mediated input from GABAergic interneurons. However, this will exaggerate synaptic inhibition under conditions where the release of GABA (e.g. hypoxia) or ACh (sleep-wake transitions) is increased. These findings reveal a mechanism that may explain why DNE is associated with deficits in the ability to respond appropriately to chemosensory stimuli or to changes in neuromodulation secondary to changes in central nervous system state.
Collapse
Affiliation(s)
- Lila Buls Wollman
- Department of Physiology, The University of Arizona, Tucson, AZ, USA
| | - Richard B Levine
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.,Department of Neuroscience, The University of Arizona, Tucson, AZ, USA
| | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.,Department of Neuroscience, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Mishra A, Anand M, Umesh S. Neurobiology of eating disorders - an overview. Asian J Psychiatr 2017; 25:91-100. [PMID: 28262179 DOI: 10.1016/j.ajp.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/03/2016] [Accepted: 10/09/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Anand Mishra
- Central Institute of Psychiatry, Ranchi, Jharkhand, India.
| | - Manu Anand
- Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Shreekantiah Umesh
- K.S. Mani Centre for Cognitive Neurosciences, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| |
Collapse
|
12
|
Ali MA, El-Abhar HS, Kamel MA, Attia AS. Antidiabetic Effect of Galantamine: Novel Effect for a Known Centrally Acting Drug. PLoS One 2015; 10:e0134648. [PMID: 26262991 PMCID: PMC4532414 DOI: 10.1371/journal.pone.0134648] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/10/2015] [Indexed: 01/26/2023] Open
Abstract
The cholinergic anti-inflammatory pathway is one of the putative biochemical pathways that link diabetes with Alzheimer disease. Hence, we aimed to verify the potential antidiabetic effect of galantamine, unveil the possible mechanisms and evaluate its interaction with vildagliptin. The n5-STZ rat model was adopted and the diabetic animals were treated with galantamine and/or vildagliptin for 4 weeks. Galantamine lowered the n5-STZ-induced elevation in body weight, food/water intake, serum levels of glucose, fructosamine, and ALT/AST, as well as AChE in the tested organs. Moreover, it modulated successfully the lipid profile assessed in serum, liver, and muscle, and increased serum insulin level, as well as % β-cell function, in a pattern similar to that of vildagliptin. Additionally, galantamine confirmed its antioxidant (Nrf2, TAC, MDA), anti-inflammatory (NF-κB, TNF-α, visfatin, adiponectin) and anti-apoptotic (caspase-3, cytochrome c) capabilities by altering the n5-STZ effect on all the aforementioned parameters. On the molecular level, galantamine/vildagliptin have improved the insulin (p-insulin receptor, p-Akt, GLUT4/GLUT2) and Wnt/β-catenin (p-GSK-3β, β-catenin) signaling pathways. On almost all parameters, the galantamine effects surpassed that of vildagliptin, while the combination regimen showed the best effects. The present results clearly proved that galantamine modulated glucose/lipid profile possibly through its anti-oxidant, -apoptotic, -inflammatory and -cholinesterase properties. These effects could be attributed partly to the enhancement of insulin and Wnt/β-catenin signaling pathways. Galantamine can be strongly considered as a potential antidiabetic agent and as an add-on therapy with other oral antidiabetics.
Collapse
Affiliation(s)
- Mennatallah A. Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt
| | - Hanan S. El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
García AP, Aitta-aho T, Schaaf L, Heeley N, Heuschmid L, Bai Y, Barrantes FJ, Apergis-Schoute J. Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits. PLoS One 2015; 10:e0133327. [PMID: 26247203 PMCID: PMC4527587 DOI: 10.1371/journal.pone.0133327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/24/2015] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating appetite and have been shown to do so by influencing neural activity in the hypothalamus. To shed light on the hypothalamic circuits governing acetylcholine's (ACh) regulation of appetite this study investigated the influence of hypothalamic nAChRs expressing the α4 subunit. We found that antagonizing the α4β2 nAChR locally in the lateral hypothalamus with di-hydro-ß-erythroidine (DHβE), an α4 nAChR antagonist with moderate affinity, caused an increase in food intake following free access to food after a 12 hour fast, compared to saline-infused animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO), oxytocin, and tyrosine hydroxylase (TH)-containing neurons in the A13 and A12 of the hypothalamus expressed the nAChR α4 subunit in varying amounts (34%, 42%, 50%, and 51%, respectively) whereas melanin concentrating hormone (MCH) neurons did not, suggesting that DHβE-mediated increases in food intake may be due to a direct activation of specific hypothalamic circuits. Systemic DHβE (2 mg/kg) administration similarly increased food intake following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons showed elevated activity compared to control animals and MCH neuronal activity was overall lower as measured by expression of the immediate early gene marker for neuronal activity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-containing neurons in the A13 and A12 did not show differential activity patterns. These results indicate that various neurochemically distinct hypothalamic populations are under the influence of α4β2 nAChRs and that cholinergic inputs to the lateral hypothalamus can affect satiety signals through activation of local α4β2 nAChR-mediated transmission.
Collapse
Affiliation(s)
- Ana P. García
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED) UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | - Teemu Aitta-aho
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
| | - Laura Schaaf
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
| | - Nicholas Heeley
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Lena Heuschmid
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
| | - Yunjing Bai
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED) UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | - John Apergis-Schoute
- Department of Pharmacology, University of Cambridge; Cambridge, United Kingdom
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Jiang L, López-Hernández GY, Lederman J, Talmage DA, Role LW. Optogenetic studies of nicotinic contributions to cholinergic signaling in the central nervous system. Rev Neurosci 2015; 25:755-71. [PMID: 25051276 DOI: 10.1515/revneuro-2014-0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/27/2014] [Indexed: 11/15/2022]
Abstract
Molecular manipulations and targeted pharmacological studies provide a compelling picture of which nicotinic receptor subtypes are where in the central nervous system (CNS) and what happens if one activates or deletes them. However, understanding the physiological contribution of nicotinic receptors to endogenous acetylcholine (ACh) signaling in the CNS has proven a more difficult problem to solve. In this review, we provide a synopsis of the literature on the use of optogenetic approaches to control the excitability of cholinergic neurons and to examine the role of CNS nicotinic ACh receptors (nAChRs). As is often the case, this relatively new technology has answered some questions and raised others. Overall, we believe that optogenetic manipulation of cholinergic excitability in combination with some rigorous pharmacology will ultimately advance our understanding of the many functions of nAChRs in the brain.
Collapse
|
15
|
Wellhauser L, Gojska NM, Belsham DD. Delineating the regulation of energy homeostasis using hypothalamic cell models. Front Neuroendocrinol 2015; 36:130-49. [PMID: 25223866 DOI: 10.1016/j.yfrne.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function.
Collapse
Affiliation(s)
- Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Nicole M Gojska
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Denise D Belsham
- Departments of Physiology, Medicine and OB/GYN, University of Toronto, Toronto, Ontario M5G 1A8, Canada; Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
16
|
McFadden KL, Cornier MA, Tregellas JR. The role of alpha-7 nicotinic receptors in food intake behaviors. Front Psychol 2014; 5:553. [PMID: 24936193 PMCID: PMC4047526 DOI: 10.3389/fpsyg.2014.00553] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/19/2014] [Indexed: 12/31/2022] Open
Abstract
Nicotine alters appetite and energy expenditure, leading to changes in body weight. While the exact mechanisms underlying these effects are not fully established, both central and peripheral involvement of the alpha-7 nicotinic acetylcholine receptor (α7nAChR) has been suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved in food intake regulation, including proopiomelanocortin and neuropeptide Y. α7nAChRs also modulate glutamatergic and dopaminergic systems controlling reward processes that affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, a key contributor to health problems in obesity. This review focuses on nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR, with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies are highlighted that identify links between α7nAChR expression and obesity, insulin resistance, and diabetes and describe early findings showing an α7nAChR agonist to be associated with reduced weight gain in a mouse model of diabetes. Given these effects, the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity.
Collapse
Affiliation(s)
- Kristina L McFadden
- Department of Psychiatry, School of Medicine, University of Colorado - Anschutz Medical Campus Aurora, CO, USA
| | - Marc-Andre Cornier
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus Aurora, CO, USA
| | - Jason R Tregellas
- Department of Psychiatry, School of Medicine, University of Colorado - Anschutz Medical Campus Aurora, CO, USA ; Research Service, Veterans Affairs Medical Center Denver, CO, USA
| |
Collapse
|
17
|
Nicotinic Cholinergic Signaling in Adipose Tissue and Pancreatic Islets Biology: Revisited Function and Therapeutic Perspectives. Arch Immunol Ther Exp (Warsz) 2013; 62:87-101. [DOI: 10.1007/s00005-013-0266-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
|
18
|
Ayala C, Pennacchio GE, Soaje M, Carreño NB, Bittencourt JC, Jahn GA, Celis ME, Valdez SR. Effects of thyroid status on NEI concentration in specific brain areas related to reproduction during the estrous cycle. Peptides 2013; 49:74-80. [PMID: 24028792 DOI: 10.1016/j.peptides.2013.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 01/10/2023]
Abstract
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Collapse
Affiliation(s)
- Carolina Ayala
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina; Sección de Desarrollo Cerebral Perinatal (SPBD), Instituto de Histología y Embriología Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Parque General San Martín, CP 5500 Mendoza, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Monti JM, Torterolo P, Lagos P. Melanin-concentrating hormone control of sleep–wake behavior. Sleep Med Rev 2013; 17:293-8. [DOI: 10.1016/j.smrv.2012.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 10/06/2012] [Accepted: 10/08/2012] [Indexed: 01/16/2023]
|
20
|
Picciotto MR, Kenny PJ. Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harb Perspect Med 2013; 3:a012112. [PMID: 23143843 DOI: 10.1101/cshperspect.a012112] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tobacco smoking results in more than 5 million deaths each year and accounts for almost 90% of all deaths from lung cancer. Nicotine, the major reinforcing component of tobacco smoke, acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are allosterically regulated, ligand-gated ion channels consisting of five membrane-spanning subunits. Twelve mammalian α subunits (α2-α10) and β subunits (β2-β4) have been cloned. The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits (denoted as α4β2* nAChRs). The α4β2* nAChRs mediate many behaviors related to nicotine addiction and are the primary targets for currently approved smoking cessation agents. Considering the large number of nAChR subunits in the brain, it is likely that nAChRs containing subunits in addition to α4 and β2 also play a role in tobacco smoking. Indeed, genetic variation in the CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3, and β4 nAChR subunits, respectively, has been shown to increase vulnerability to tobacco dependence and smoking-associated diseases including lung cancer. Moreover, mice in which expression of α5 or β4 subunits has been genetically modified have profoundly altered patterns of nicotine consumption. In addition to the reinforcing properties of nicotine, the effects of nicotine on appetite, attention, and mood are also thought to contribute to establishment and maintenance of the tobacco smoking habit. Here we review recent insights into the behavioral actions of nicotine and the nAChRs subtypes involved, which likely contribute to the development of tobacco dependence in smokers.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA.
| | | |
Collapse
|
21
|
Abstract
The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | | |
Collapse
|
22
|
Czupryn A, Zhou YD, Chen X, McNay D, Anderson MP, Flier JS, Macklis JD. Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science 2012; 334:1133-7. [PMID: 22116886 DOI: 10.1126/science.1209870] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evolutionarily old and conserved homeostatic systems in the brain, including the hypothalamus, are organized into nuclear structures of heterogeneous and diverse neuron populations. To investigate whether such circuits can be functionally reconstituted by synaptic integration of similarly diverse populations of neurons, we generated physically chimeric hypothalami by microtransplanting small numbers of embryonic enhanced green fluorescent protein-expressing, leptin-responsive hypothalamic cells into hypothalami of postnatal leptin receptor-deficient (db/db) mice that develop morbid obesity. Donor neurons differentiated and integrated as four distinct hypothalamic neuron subtypes, formed functional excitatory and inhibitory synapses, partially restored leptin responsiveness, and ameliorated hyperglycemia and obesity in db/db mice. These experiments serve as a proof of concept that transplanted neurons can functionally reconstitute complex neuronal circuitry in the mammalian brain.
Collapse
Affiliation(s)
- Artur Czupryn
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
INTRODUCTION The ability of nicotine, the primary psychoactive substance in tobacco smoke, to regulate appetite and body weight is one of the factors cited by smokers that prevents them from quitting and is the primary reason for smoking initiation in teenage girls. The regulation of feeding and metabolism by nicotine is complex, and recent studies have begun to identify nicotinic acetylcholine receptor (nAChR) subtypes and circuits or cell types involved in this regulation. DISCUSSION We will briefly describe the primary anatomical and functional features of the input, output, and central integration structures of the neuroendocrine systems that regulate energy homeostasis. Then, we will describe the nAChR subtypes expressed in these structures in mammals to identify the possible molecular targets for nicotine. Finally, we will review the effects of nicotine and its withdrawal on feeding and energy metabolism and attribute them to potential central and peripheral cellular targets.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | | |
Collapse
|
24
|
Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas-Ballina M, Valdes-Ferrer SI, Olofsson PS, Harris YT, Roth J, Chavan S, Tracey KJ, Pavlov VA. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol Med 2011; 17:599-606. [PMID: 21738953 DOI: 10.2119/molmed.2011.00083] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 01/14/2023] Open
Abstract
Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally [i.p.]) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Sanjaya K Satapathy
- Division of Gastroenterology, North Shore-Long Island Jewish Health System, New Hyde Park, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang H, Xu Y, van den Pol AN. Nicotine excites hypothalamic arcuate anorexigenic proopiomelanocortin neurons and orexigenic neuropeptide Y neurons: similarities and differences. J Neurophysiol 2011; 106:1191-202. [PMID: 21653710 DOI: 10.1152/jn.00740.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Two of the biggest health problems facing us today are addiction to nicotine and the increased prevalence of obesity. Interestingly, nicotine attenuates obesity, but the underlying mechanism is not clear. Here we address the hypothesis that if weight-reducing actions of nicotine are mediated by anorexigenic proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus, nicotine should excite these cells. Nicotine at concentrations similar to those found in smokers, 100-1,000 nM, excited POMC cells by mechanisms based on increased spike frequency, depolarization of membrane potential, and opening of ion channels. This was mediated by activation of both α7 and α4β2 nicotinic receptors; by itself, this nicotine-mediated excitation could explain weight loss caused by nicotine. However, in control experiments nicotine also excited the orexigenic arcuate nucleus neuropeptide Y (NPY) cells. Nicotine exerted similar actions on POMC and NPY cells, with a slightly greater depolarizing action on POMC cells. Immunocytochemistry revealed cholinergic axons terminating on both cell types. Nicotine actions were direct in both cell types, with nicotine depolarizing the membrane potentials and reducing input resistance. We found no differences in the relative desensitization to nicotine between POMC and NPY neurons. Nicotine inhibited excitatory synaptic activity recorded in NPY, but not POMC, cells. Nicotine also excited hypocretin/orexin neurons that enhance cognitive arousal, but the responses were smaller than in NPY or POMC cells. Together, these results indicate that nicotine has a number of similar actions, but also a few different actions, on POMC and NPY neurons that could contribute to the weight loss associated with smoking.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St. New Haven, CT 06520, USA
| | | | | |
Collapse
|
26
|
Nagumo Y, Takeuchi Y, Imoto K, Miyata M. Synapse- and subtype-specific modulation of synaptic transmission by nicotinic acetylcholine receptors in the ventrobasal thalamus. Neurosci Res 2010; 69:203-13. [PMID: 21145925 DOI: 10.1016/j.neures.2010.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 11/25/2022]
Abstract
The rodent thalamic ventrobasal complex (VB) which is a subdivision of somatosensory thalamus receives two excitatory inputs through the medial lemniscal synapse, which is a sensory afferent synapse, and the corticothalamic synapse from layer VI of the somatosensory cortex. In addition, the VB also receives cholinergic inputs from the brain stem, and nicotinic acetylcholine receptors (nAChRs) are highly expressed in the VB. Little is known, however, how acetylcholine (ACh) modulates synaptic transmission at the medial lemniscal and corticothalamic synapses in the VB. Furthermore, it remains unclear which subtype of nAChRs contributes to VB synaptic transmission. We report here that the activation of nAChRs presynaptically depressed corticothalamic synaptic transmission, whereas it did not affect medial lemniscal synaptic transmission in juvenile mice. This presynaptic modulation was mediated by the activation of nAChRs that contained α4 and β2 subunit, but not by α7 nAChRs. Moreover, galanthamine, an allosteric modulator of α4β2α5 nAChR, enhanced the ACh-induced depression of corticothalamic excitatory postsynaptic currents (EPSCs), indicating that α4β2α5 nAChRs at corticothalamic axon terminals specifically contribute to the depression of corticothalamic synaptic transmission.
Collapse
Affiliation(s)
- Yasuyuki Nagumo
- Department of Physiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | |
Collapse
|
27
|
Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2010; 221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline acetyltransferase (ChAT) immunostaining, and the expression of muscarinic acetylcholine receptors (mAChRs) detected immunocytochemically. In this brief review we first place cholinergic and cholinoceptive markers in a historic perspective, and then provide an overview of recent publications on cholinergic studies and techniques to provide a literature survey of current research. Next, we compare mouse (C57Bl/J6) and rat (Wistar) cholinergic and cholinoceptive systems simultaneously stained, respectively, for ChAT (analyzed qualitatively) and mAChRs (analyzed qualitatively and quantitatively). In general, the topographic cholinergic innervation patterns of both rodent species are highly comparable, with only considerable (but region specific) differences in number of detectable cholinergic interneurons, which are more numerous in rat. In contrast, immunolabeling for mAChRs, detected by the monoclonal antibody M35, differs markedly in the forebrain between the two species. In mouse brain, basal levels of activated and/or internalized mAChRs (as a consequence of cholinergic neurotransmission) are significantly higher. This suggests a higher cholinergic tone in mouse than rat, and hence the animal model of choice may have consequences for cholinergic drug testing experiments.
Collapse
|
28
|
Toshinai K, Yamaguchi H, Kageyama H, Matsuo T, Koshinaka K, Sasaki K, Shioda S, Minamino N, Nakazato M. Neuroendocrine regulatory peptide-2 regulates feeding behavior via the orexin system in the hypothalamus. Am J Physiol Endocrinol Metab 2010; 299:E394-401. [PMID: 20551287 DOI: 10.1152/ajpendo.00768.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuroendocrine regulatory peptide (NERP)-1 and NERP-2 are derived from distinct regions of VGF, a neurosecretory protein. Vgf(-/-) mice exhibit dwarfism and hypermetabolic rates, suggesting that VGF or VGF-derived peptides play important roles in energy metabolism. Here, we examined the role of NERPs in the central regulation of feeding and energy homeostasis. We attempted to identify NERPs expressing neurons in rats by immunohistochemistry. We studied the effects of intracerebroventricular (icv) administration of NERP-2 on feeding, body temperature, oxygen consumption, and locomotor activity in rats and mice. Intracerebroventricular administration of NERP-2, but not NERP-1 or a form of NERP-2 bearing a COOH-terminal glycine extension, increased food intake in rats. We investigated the downstream signal of NERP-2 on the basis of studies of NERP-2-induced feeding with neutralization of orexins, neuropeptide Y, or agouti-related protein. NERP-2 expression localized to the lateral hypothalamus (LH) and the dorsomedial perifornical hypothalamus in rats, colocalizing with orexins that activate feeding behavior and arousal. NERP-2 administration induced Fos protein, a marker of neuronal activation, in the orexin-immunoreactive neurons. Vgf mRNA levels were upregulated in the rat LH upon food deprivation. Intracerebroventricular administration of NERP-2 also increased body temperature, oxygen consumption, and locomotor activity in rats. Treatment with anti-NERP-2 IgG decreased food intake. NERP-2-induced bioactivities could be abrogated by administration of anti-orexins IgG or orexin receptor antagonists. NERP-2 did not induce food intake or locomotor activity in orexin-deficient mice. Our findings indicate that hypothalamic NERP-2 plays a role in the control of food intake and energy homeostasis via the orexin pathway. Thus, VGF serves as a precursor of multiple bioactive peptides exerting a diverse set of neuroendocrine functions.
Collapse
|
29
|
Pasumarthi RK, Fadel J. Stimulation of lateral hypothalamic glutamate and acetylcholine efflux by nicotine: implications for mechanisms of nicotine-induced activation of orexin neurons. J Neurochem 2010; 113:1023-35. [PMID: 20236223 DOI: 10.1111/j.1471-4159.2010.06666.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hypothalamus is a prominent target of nicotine action. We have previously shown that acute systemic nicotine treatment induces Fos expression in the lateral hypothalamus and perifornical area (LH/PFA), with orexin/hypocretin neurons being particularly responsive. However, the neurochemical correlates of acute nicotine treatment in the LH/PFA have not been described. Anatomical studies have revealed that this area receives afferents from cholinergic, glutamatergic, and GABAergic telencephalic brain regions, suggesting a potential role for these neurotransmitters in mediating the hypothalamic component of nicotine effects on homeostatic phenomena, such as arousal and appetite. Here, we used in vivo microdialysis to determine the effect of acute systemic or local nicotine on glutamate, acetylcholine, and GABA efflux in the LH/PFA of rats. Local administration of nicotine significantly increased acetylcholine and glutamate, but not GABA, in the LH/PFA. Thus, we further tested the role of afferent sources of glutamate and acetylcholine in mediating acute nicotine-induced activation of orexin neurons by unilaterally lesioning the prefrontal cortex or basal forebrain cholinergic regions. Lesioned animals showed reduced Fos-positive orexin neurons following nicotine treatment. These data suggest that both acetylcholine and glutamate may mediate the effects of acute nicotine on the activity of hypothalamic neurons, including orexin/hypocretin cells. Changes in cholinergic or glutamatergic transmission in this region with chronic nicotine may contribute to long-term alterations in functions mediated by LH/PFA neurons, including feeding and arousal.
Collapse
Affiliation(s)
- Ravi K Pasumarthi
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
30
|
Fulton S. Appetite and reward. Front Neuroendocrinol 2010; 31:85-103. [PMID: 19822167 DOI: 10.1016/j.yfrne.2009.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/14/2022]
Abstract
The tendency to engage in or maintain feeding behaviour is potently influenced by the rewarding properties of food. Affective and goal-directed behavioural responses for food have been assessed in response to various physiological, pharmacological and genetic manipulations to provide much insight into the neural mechanisms regulating motivation for food. In addition, several lines of evidence tie the actions of metabolic signals, neuropeptides and neurotransmitters to the modulation of the reward-relevant circuitry including midbrain dopamine neurons and corticolimbic nuclei that encode emotional and cognitive aspects of feeding. Along these lines, this review pulls together research describing the peripheral and central signalling molecules that modulate the rewarding effects of food and the underlying neural pathways.
Collapse
Affiliation(s)
- Stephanie Fulton
- CRCHUM and Montreal Diabetes Research Center, Department of Nutrition, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
31
|
Smith AM, Dwoskin LP, Pauly JR. Early exposure to nicotine during critical periods of brain development: Mechanisms and consequences. JOURNAL OF PEDIATRIC BIOCHEMISTRY 2010; 1:125-141. [PMID: 24904708 PMCID: PMC4042244 DOI: 10.3233/jpb-2010-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tobacco use during pregnancy continues to be a major problem with more than 16% of pregnant women in the United States continuing to smoke during pregnancy. Tobacco smoke is known to contain more than 4,000 different chemicals, and while many of these compounds have the potential to interfere with proper neurodevelopment, there is direct evidence that nicotine, the major psychoactive substance present in tobacco, acts as a neuroteratogen. Nicotine activates, and subsequently desensitizes, neuronal nicotinic acetylcholine receptor subtypes (AChRs), which are expressed in the developing central nervous system (CNS) prior to the in-growth of cholinergic neurons. Nicotinic AChRs are present by the first trimester of development in both humans and rodents, and activation of these receptors by acetylcholine is thought to play a critical role in CNS development. The purpose of the current review is to provide an overview of the role that nicotinic AChRs play in the developing CNS and to describe the effects of nicotine exposure during early development on neuronal cell biology, nicotinic AChR expression and neurotransmitter system (e.g., dopamine, norepinephrine, serotonin) function. In particular, differences that occur as a result of the timing and duration of nicotine exposure will be discussed. Emphasis will be placed on preclinical studies examining particular periods of time which correspond to periods of prenatal development in humans (i.e., first, second and third trimesters). Finally, the effects of early nicotine exposure on neurobehavioral development as it pertains to specific disorders, i.e., attention deficit hyperactivity disorder (ADHD), depression and addiction, will be discussed.
Collapse
Affiliation(s)
- Andrew M. Smith
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Linda P. Dwoskin
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA
| | - James R. Pauly
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA
| |
Collapse
|
32
|
Guyon A, Conductier G, Rovere C, Enfissi A, Nahon JL. Melanin-concentrating hormone producing neurons: Activities and modulations. Peptides 2009; 30:2031-9. [PMID: 19524001 DOI: 10.1016/j.peptides.2009.05.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/25/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Regulation of energy homeostasis in animals involves adaptation of energy intake to its loss, through a perfect regulation of feeding behavior and energy storage/expenditure. Factors from the periphery modulate brain activity in order to adjust food intake as needed. Particularly, "first order" neurons from arcuate nucleus are able to detect modifications in homeostatic parameters and to transmit information to "second order" neurons, partly located in the lateral hypothalamic area. These "second order" neurons have widespread projections throughout the brain and their proper activation leads them to a coordinated response associated to an adapted behavior. Among these neurons, melanin-concentrating hormone (MCH) expressing neurons play an integrative role of the various factors arising from periphery, first order neurons and extra-hypothalamic arousal systems neurons and modulate regulation of feeding, drinking and seeking behaviors. As regulation of MCH release is correlated to regulation of MCH neuronal activity, we focused this review on the electrophysiological properties of MCH neurons from the lateral hypothalamic area. We first reviewed the knowledge on the endogenous electrical properties of MCH neurons identified according to various criteria which are described. Then, we dealt with the modulations of the electrical activity of MCH neurons by different factors such as glucose, glutamate and GABA, peptides and hormones regulating feeding and transmitters of extra-hypothalamic arousal systems. Finally, we described the current knowledge on the modulation of MCH neuronal activity by cytokines and chemokines. Because of such regulation, MCH neurons are some of the best candidate to account for infection-induced anorexia, but also obesity.
Collapse
Affiliation(s)
- Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, Univrsité de Nice-Sophia Antipolis, Centre National de la Recherche Scientifique, Valbonne, France.
| | | | | | | | | |
Collapse
|
33
|
Marrero MB, Lucas R, Salet C, Hauser TA, Mazurov A, Lippiello PM, Bencherif M. An alpha7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. J Pharmacol Exp Ther 2009; 332:173-80. [PMID: 19786623 DOI: 10.1124/jpet.109.154633] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Type 2 diabetes has become a pervasive public health problem. The etiology of the disease has not been fully defined but appears to involve abnormalities in peripheral and central nervous system pathways, as well as prominent inflammatory components. Because nicotinic acetylcholine receptors (nAChRs) are known to interact with anti-inflammatory pathways and have been implicated in control of appetite and body weight, as well as lipid and energy metabolism, we examined their role in modulating biological parameters associated with the disease. In a model of type 2 diabetes, the homozygous leptin-resistant db/db obese mouse, we measured the effects of a novel alpha7 nAChR-selective agonist [5-methyl-N-[2-(pyridin-3-ylmethyl)-1-azabicyclo[2.2.2]oct-3-yl]thiophene-2-carboxamide (TC-7020)] on body mass, glucose and lipid metabolism, and proinflammatory cytokines. Oral administration of TC-7020 reduced weight gain and food intake, reduced elevated glucose and glycated hemoglobin levels, and lowered elevated plasma levels of triglycerides and the proinflammatory cytokine tumor necrosis factor-alpha. These changes were reversed by the alpha7-selective antagonist methyllycaconitine, confirming the involvement of alpha7 nAChRs. Prevention of weight gain, decreased food intake, and normalization of glucose levels were also blocked by the Janus kinase 2 (JAK2) inhibitor alpha-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG-490), suggesting that these effects involve linkage of alpha7 nAChRs to the JAK2-signal transducer and activator of transcription 3 signaling pathway. The results show that alpha7 nAChRs play a central role in regulating biological parameters associated with diabetes and support the potential of targeting these receptors as a new therapeutic strategy for treatment.
Collapse
Affiliation(s)
- Mario B Marrero
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Turenius CI, Charles JR, Tsai DH, Ebersole PL, Htut MH, Ngo PT, Lara RN, Stanley BG. The tuberal lateral hypothalamus is a major target for GABAA--but not GABAB-mediated control of food intake. Brain Res 2009; 1283:65-72. [PMID: 19501070 DOI: 10.1016/j.brainres.2009.05.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
The lateral hypothalamus (LH) is a site of integration for control mechanisms of feeding behavior as it has extensive reciprocal connections with multiple intrahypothalamic and extrahypothalamic brain areas. Evidence suggests that blockade of ionotropric gamma-aminobutyric acid (GABA) receptors in the LH elicits eating in satiated rats. To determine whether this GABA(A) receptor antagonist effect is specific to the LH, the antagonist picrotoxin was injected into one of six nearby sites and food intake was measured. Picrotoxin at 133 pmol elicited eating in the LH, but not in surrounding sites (thalamus, lateral preoptic area, ventral tegmental area, dorsomedial hypothalamus, and entopeduncular nucleus). More specifically, picrotoxin injected into the tuberal LH (tLH) elicited eating, but was ineffective when injected into the anterior or posterior LH. We also investigated whether GABA(B) receptors in the LH participated in the control of food intake and found that neither blockade nor activation of these receptors under multiple conditions changed food intake. Collectively, our findings suggest that GABA(A) but not GABA(B) receptors in the tLH act to suppress feeding behavior.
Collapse
Affiliation(s)
- Christine I Turenius
- Interdepartmental Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pasumarthi RK, Fadel J. Activation of orexin/hypocretin projections to basal forebrain and paraventricular thalamus by acute nicotine. Brain Res Bull 2008; 77:367-73. [PMID: 18950690 PMCID: PMC2742411 DOI: 10.1016/j.brainresbull.2008.09.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/11/2008] [Accepted: 09/18/2008] [Indexed: 01/15/2023]
Abstract
Orexin/hypocretin neurons of the lateral hypothalamus/perifornical area project to a diverse array of brain regions and are responsive to a variety of psychostimulant drugs. It has been shown that orexin neurons are activated by systemic nicotine administration suggesting a possible orexinergic contribution to the effects of this drug on arousal and cognitive function. The basal forebrain and paraventricular nucleus of the dorsal thalamus (PVT) both receive orexin inputs and have been implicated in arousal, attention and psychostimulant drug responses. However, it is unknown whether orexin inputs to these areas are activated by psychostimulant drugs such as nicotine. Here, we infused the retrograde tract tracer cholera toxin B subunit (CTb) into either the basal forebrain or PVT of adult male rats. Seven to 10 days later, animals received an acute systemic administration of (-) nicotine hydrogen tartrate or vehicle and were euthanized 2h later. Triple-label immunohistochemistry/immunofluorescence was used to detect Fos expression in retrogradely-labeled orexin neurons. Nicotine increased Fos expression in orexin neurons projecting to both basal forebrain and PVT. The relative activation in lateral and medial banks of retrogradely-labeled orexin neurons was similar following basal forebrain CTb deposits, but was more pronounced in the medial bank following PVT deposits of CTb. Our findings suggest that orexin inputs to the basal forebrain and PVT may contribute to nicotine effects on arousal and cognition and provide further support for the existence of functional heterogeneity across the medial-lateral distribution of orexin neurons.
Collapse
Affiliation(s)
- Ravi K. Pasumarthi
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208 USA
| | - Jim Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208 USA
| |
Collapse
|
36
|
Presynaptic type III neuregulin 1 is required for sustained enhancement of hippocampal transmission by nicotine and for axonal targeting of alpha7 nicotinic acetylcholine receptors. J Neurosci 2008; 28:9111-6. [PMID: 18784291 DOI: 10.1523/jneurosci.0381-08.2008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Both the neuregulin 1 (Nrg1) and alpha7 nicotinic acetylcholine receptor (alpha7*nAChRs) genes have been linked to schizophrenia and associated sensory-motor gating deficits. The prominence of nicotine addiction in schizophrenic patients is reflected in the normalization of gating deficits by nicotine self-administration. To assess the role of presynaptic type III Nrg1 at hippocampal-accumbens synapses, an important relay in sensory-motor gating, we developed a specialized preparation of chimeric circuits in vitro. Synaptic relays from Nrg1(tm1Lwr) heterozygote ventral hippocampal slices to wild-type (WT) nucleus accumbens neurons (1) lack a sustained, alpha7*nAChRs-mediated phase of synaptic potentiation seen in comparable WT/WT circuits and (2) are deficient in targeting alpha7*nAChRs to presynaptic sites. Thus, selective alteration of the level of presynaptic type III Nrg1 dramatically affects the modulation of glutamatergic transmission at ventral hippocampal to nucleus accumbens synapses.
Collapse
|
37
|
Abstract
Abstract The adverse effects of prenatal cigarette smoke exposure on human reproductive outcomes are a major scientific and public health concern. In the United States, approximately 25% of women of childbearing age currently smoke cigarettes, and only a small percentage of these individuals quit after learning of their pregnancy. Women interested in smoking cessation during pregnancy have a number of options, including behavioural and pharmacological aids, but nicotine replacement therapy (NRT) is by far the most common approach. While NRT avoids exposure to the myriad compounds present in tobacco smoke, nicotine itself causes damage to the developing nervous system. The purpose of this article is to review the detrimental effects of developmental tobacco smoke exposure on short- and long-term outcomes with particular emphasis on neurobehavioural consequences. In conclusion based on the clear, adverse effects of nicotine on brain development observed in human and animal studies, we suggest that safer alternatives for smoking cessation in pregnancy are badly needed.
Collapse
Affiliation(s)
- James R Pauly
- Department of Pharmaceutical Sciences, Spinal Cord and Brain Injury Research Center [corrected] College of Pharmacy, University of Kentucky, Lexington, KY [corrected] USA.
| | | |
Collapse
|
38
|
Chen H, Hansen MJ, Jones JE, Vlahos R, Anderson GP, Morris MJ. Long-term cigarette smoke exposure increases uncoupling protein expression but reduces energy intake. Brain Res 2008; 1228:81-8. [PMID: 18619427 DOI: 10.1016/j.brainres.2008.06.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
Abstract
The appetite suppressing effect of tobacco is a major driver of smoking behaviour; however few studies have addressed the effects of chronic cigarette smoke exposure (SE) on appetite, body weight and metabolic markers. We compared the effects of SE to equivalent food restriction (pair-fed, PF), against sham-exposure, on body weight, adiposity, cytokines, and levels of uncoupling proteins (UCP) and brain neuropeptide Y (NPY) in male Balb/C mice. SE rapidly induced anorexia, and after 12 weeks, SE and PF groups were lighter than control animals (23.9+/-0.2, 25.5+/-0.5, 26.8+/-0.4 g respectively, P<0.05). White fat (WAT) masses were reduced by both SE and PF. Plasma leptin and insulin were reduced in SE mice; insulin was further reduced by PF. Brown fat UCP1 and 3 mRNA were increased in SE animals relative to PF animals, possibly promoting thermogenesis. WAT mRNA expression of the inflammatory cytokine, TNFalpha was doubled by SE, while IL-6 was reduced by both PF and SE. Hypothalamic NPY content was increased by SE (89.3+/-2.8 vs. 75.9+/-2.4 ng control, P<0.05), and more by PF (100.7+/-3.4 ng, P<0.05 compared to both groups), suggesting disinhibition due to reduced adipose derived leptin. In contrast to equivalent food restriction, cigarette smoke exposure reduced body weight and total hypothalamic NPY, and increased thermogenesis and markers of inflammation. The suppressed hypothalamic NPY and increased UCPs may contribute to the spontaneous hypophagia and extra weight loss in SE animals. These findings contribute to our understanding of weight loss in smoking-related lung disease, suggesting a greater impact than that due to anorexia alone.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Role of the cholinergic mechanisms of the ventrolateral preoptic area of the hypothalamus in regulating the state of sleep and waking in pigeons. ACTA ACUST UNITED AC 2008; 38:245-52. [DOI: 10.1007/s11055-008-0036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/08/2006] [Indexed: 11/30/2022]
|
40
|
Jiang L, Role LW. Facilitation of cortico-amygdala synapses by nicotine: activity-dependent modulation of glutamatergic transmission. J Neurophysiol 2008; 99:1988-99. [PMID: 18272879 DOI: 10.1152/jn.00933.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basolateral nucleus of the amygdala (BLA) receives cholinergic innervation from the basal forebrain and nicotine, via activation of neuronal nicotinic acetylcholine receptors (nAChRs), can improve performance in amygdala-based learning tasks. We tested the hypothesis that acute and prenatal nicotine exposure modulates cortico-amygdala synaptic transmission. We found that low-dose, single-trial exposures to nicotine can elicit lasting facilitation, the extent of which is dependent on the level of stimulation of the cortical inputs to the BLA. In addition, sustained facilitation is ablated by prenatal exposure to nicotine. This study examined synaptic transmission in 238 patch-clamp recordings from BLA neurons in acute slice from mouse brain. Pharmacological studies in wild-type and nAChR subunit knock-out mice reveal that activation of presynaptic alpha 7, containing (alpha 7*) and non-alpha 7* nAChRs, facilitates glutamatergic transmission in an activity-dependent manner. Without prior stimulation, application of nicotine elicits modest and transient facilitation of glutamatergic postsynaptic currents (PSCs) in about 40% of BLA neurons. With low-frequency stimulation of cortical inputs nicotine elicits robust facilitation of transmission at about 60% of cortico-BLA synapses and synaptic strength remains elevated at about 40% of these connections for >15 min after nicotine washout. Following paired-pulse stimulation nicotine elicits long-lasting facilitation of glutamatergic transmission at about 70% of cortico-BLA connections. Nicotine reduces the threshold for activation of long-term potentiation of cortico-BLA synapses evoked by patterned stimulation. Prenatal exposure to nicotine reduced subsequent modulatory responses to acute nicotine application.
Collapse
Affiliation(s)
- Li Jiang
- Center for Neurobiology and Behavior, Columbia University College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
41
|
Turski MP, Turska M, Zgrajka W, Kuc D, Turski WA. Presence of kynurenic acid in food and honeybee products. Amino Acids 2008; 36:75-80. [DOI: 10.1007/s00726-008-0031-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 01/08/2008] [Indexed: 12/20/2022]
|
42
|
Huang LZ, Winzer-Serhan UH. Nicotine regulates mRNA expression of feeding peptides in the arcuate nucleus in neonatal rat pups. Dev Neurobiol 2007; 67:363-77. [PMID: 17443794 DOI: 10.1002/dneu.20348] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maternal smoking results in low birth weight. Using a neonatal gastric intubation model corresponding to the third trimester in humans, nicotine, the major psychoactive ingredient in tobacco, causes growth retardation in rat pups. Here, we wanted to determine the underlying mechanisms of nicotine's anorexic effects. In adults, body weight and energy expenditure are regulated by the adiposity hormone leptin and the orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP) and anorexic peptides proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) expressed in the hypothalamic arcuate (Arc) nucleus. Activation of nicotinic acetylcholine receptors (nAChRs) could regulate leptin release and/or peptide expression in the Arc. Neonatal rat pups were treated twice daily with nicotine (0.25, 1.5, and 3 mg/kg) from postnatal day 1 to 8 (P1-8). This resulted in an upregulation of heteromeric nAChR binding sites in the ventromedial nucleus of the hypothalamus and Arc. Nicotine at all three doses significantly reduced body weight gain and increased mRNA expression of NPY, AgRP, and POMC effects, which were blocked by dihydro-beta-erythroidine (DHbetaE), an alpha4beta2* nAChR antagonist, but CART expression was unaffected. In contrast, serum leptin levels were significantly increased only by 3 and 1.5 mg/kg, and the increase was only partially blocked by DHbetaE. These data suggest that in neonates chronic nicotine regulates body weight gain independent from serum leptin levels by a central mechanism involving alpha4beta2* heteromeric nAChRs and stimulated increased expression of the anorexic peptide POMC. Whereas, increased NPY and AgRP expression could be a secondary response to reduction in weight gain.
Collapse
Affiliation(s)
- L Z Huang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System, Health Sciences Center, Texas 77843-1114, USA
| | | |
Collapse
|
43
|
Meister B. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav 2007; 92:263-71. [PMID: 17586536 DOI: 10.1016/j.physbeh.2007.05.021] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
During the last two decades attention has been focussed on the role of different neuropeptides in hypothalamic control of feeding behavior. Several hypothalamic peptides that participate in the control of ingestive behavior are produced in neuronal cell bodies of the arcuate nucleus and/or the lateral hypothalamic area. Apart from producing orexigenic or anorexigenic compounds of peptidergic nature, these neurons also produce excitatory and inhibitory amino acid neurotransmitters. The role of GABA and glutamate in regulating energy balance has received less attention in comparison to neuropeptides. The arcuate nucleus-median eminence area, a region with a weak blood-brain barrier, contains at least two neuronal cell populations that exert opposing actions on energy balance. The majority of the neurons located in the ventromedial aspect of the arcuate nucleus, which produce the orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AGRP), contain in addition the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter (VGAT), thereby supporting their GABAergic nature. Some neurons producing pro-opiomelanocortin (POMC)- and cocaine- and amphetamine-regulated transcript (CART), located in the ventrolateral division of the arcuate nucleus have recently been reported to contain the vesicular glutamate transporter 2 (VGLUT2), a marker for glutamatergic neurons, and the acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT) as well as the vesicular ACh transporter (VAChT), supporting also a cholinergic phenotype. In the lateral hypothalamic area, hypocretin/orexin neurons express VGLUT1 or VGLUT2, but not GAD, whereas some melanin-concentrating hormone (MCH) cells contain GAD. These observations support the view that several classical transmitters, relatively neglected feeding transmitters candidates, are present in key neurons that regulate body weight and consequently may represent important orexigenic/anorexigenic mediators that convey information to other neurons within the hypothalamus as well as from the hypothalamus to other brain regions that participate in regulation of energy balance.
Collapse
Affiliation(s)
- Björn Meister
- Karolinska Institutet, Department of Neuroscience, Retzius väg 8, S-171 77 Stockholm, Sweden.
| |
Collapse
|
44
|
Meister B, Gömüç B, Suarez E, Ishii Y, Dürr K, Gillberg L. Hypothalamic proopiomelanocortin (POMC) neurons have a cholinergic phenotype. Eur J Neurosci 2007; 24:2731-40. [PMID: 17156199 DOI: 10.1111/j.1460-9568.2006.05157.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuronal networks originating in the hypothalamic arcuate nucleus play fundamental roles in the control of energy balance. Neuropeptide Y (NPY)-producing neurons in the arcuate nucleus stimulate food intake, whereas arcuate nucleus neurons that release the proopiomelanocortin (POMC)-derived peptide alpha-melanocyte-stimulating hormone (alpha-MSH) potently reduce food intake. Relatively little attention has been focused on classical neurotransmitters in regulation of food intake. Here, we have investigated the potential presence of acetylcholine (ACh) in NPY- and POMC-containing neuronal populations of the arcuate nucleus. Antisera to proteins required for cholinergic neurotransmission, including choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT), were employed in double-labeling immunohistochemical experiments. In colchicine-treated rats, ChAT- and VAChT-immunopositive cell bodies were located in the ventral aspect of the arcuate nucleus. ChAT and VAChT immunoreactivities were demonstrated in alpha-MSH- and cocaine- and amphetamine-regulated transcript (CART)-containing cell bodies of the arcuate nucleus, whereas cell bodies containing NPY or agouti-related peptide (AGRP) were distinct from VAChT-immunoreactive neuronal perikarya. VAChT immunoreactivity was also present in a large number of alpha-MSH-containing nerve fiber varicosities throughout the central nervous system. In the commissural part of the nucleus tractus solitarius, no alpha-MSH-containing cell bodies were found to have ChAT or VAChT immunoreactivity. The presence of markers for cholinergic neurotransmission in a subpopulation of hypothalamic POMC/CART neurons suggests co-release of ACh with peptides derived from the POMC precursor and CART. The results indicate a role for ACh in control of energy balance, mediating the effects of peripheral hormones such as leptin and insulin.
Collapse
Affiliation(s)
- Björn Meister
- Department of Neuroscience, The Retzius Laboratory, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
45
|
Jo YH, Chen YJJ, Chua SC, Talmage DA, Role LW. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron 2006; 48:1055-66. [PMID: 16364907 PMCID: PMC2280039 DOI: 10.1016/j.neuron.2005.10.021] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/22/2005] [Accepted: 10/05/2005] [Indexed: 12/18/2022]
Abstract
Recently developed therapeutics for obesity, targeted against cannabinoid receptors, result in decreased appetite and sustained weight loss. Prior studies have demonstrated CB1 receptors (CB1Rs) and leptin modulation of cannabinoid synthesis in hypothalamic neurons. Here, we show that depolarization of perifornical lateral hypothalamus (LH) neurons elicits a CB1R-mediated suppression of inhibition in local circuits thought to be involved in appetite and "natural reward." The depolarization-induced decrease in inhibitory tone to LH neurons is blocked by leptin. Leptin inhibits voltage-gated calcium channels in LH neurons via the activation of janus kinase 2 (JAK2) and of mitogen-activated protein kinase (MAPK). Leptin-deficient mice are characterized by both an increase in steady-state voltage-gated calcium currents in LH neurons and a CB1R-mediated depolarization-induced suppression of inhibition that is 6-fold longer than that in littermate controls. Our data provide direct electrophysiological support for the involvement of endocannabinoids and leptin as modulators of hypothalamic circuits underlying motivational aspects of feeding behavior.
Collapse
Affiliation(s)
- Young-Hwan Jo
- Department of Pathology and Cell Biology, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|