1
|
Siqueira BS, Gomes ECZ, Rentz T, Malta A, de Freitas Mathias PC, Balbo SL, Grassiolli S. Vagal Splenic-Dependent Effects Influence Glucose Homeostasis, Insulin Secretion, and Histopathology of the Endocrine Pancreas in Hypothalamic Obese Male Rats: Vagus Nerve and Spleen Interactions Affect the Endocrine Pancreas. ScientificWorldJournal 2025; 2025:9910997. [PMID: 40276696 PMCID: PMC12021492 DOI: 10.1155/tswj/9910997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/20/2025] [Indexed: 04/26/2025] Open
Abstract
Vagus nerve (VN) and spleen dysfunctions are often associated with obesity (Ob). Aim: We evaluated the effects of VN and spleen ablation on adiposity, metabolism, and insulin secretion in hypothalamic obese male rats. Methods: Ob was induced by neonatal subcutaneous injection of monosodium glutamate (4 g/kg). At 60 days of life, Ob animals were randomly distributed into four groups (n = 16 rats/group): sham operation (SHAM), vagotomy (VAG), splenectomy (SPL), and VAG + SPL. Body weight and food intake were monitored for 8 weeks postsurgery. Intraperitoneal glucose tolerance test (ipGTT) and intraperitoneal pyruvate tolerance test (ipPTT) were performed at 148 days of life, and VN activity was recorded at 150 days. After euthanasia (150 days), adiposity, plasma biochemical parameters, glucose-induced insulin secretion (GIIS), and cholinergic and adrenergic islet responsiveness were evaluated. The pancreas was submitted for histopathological analysis, and the protein content of OXPHOS and IL-10 was evaluated in isolated pancreatic islets. Results: Decreased VN activity was confirmed in the Ob-VAG groups, associated with lower visceral adiposity, triglycerides, and plasma insulin, together with improved insulin sensibility and pyruvate tolerance, compared to Ob-SHAM rats. Spleen absence reduced VN activity and cholinergic insulinotropic responses, with deleterious effects on the endocrine pancreas. Furthermore, Ob-VAG + SPL rats presented greater reductions in GIIS and more severe endocrine pancreas histopathology, compared to the Ob-SHAM group, without altered islet size or number or protein content of OXPHOS or IL-10. Conclusion: Vagal and splenic interactions contribute to glucose homeostasis control in hypothalamic obese rats, modulating insulin secretion and pancreas histology.
Collapse
Affiliation(s)
- Bruna Schumaker Siqueira
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
| | - Ellen Carolina Zawoski Gomes
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
- Centro Universitario Fundacao Assis Gurgacz, Cascavel, Brazil
| | - Thiago Rentz
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ananda Malta
- Universidade Estadual de Maringa, Maringá, Brazil
| | | | - Sandra Lucinei Balbo
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
| | - Sabrina Grassiolli
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
| |
Collapse
|
2
|
Chen S, Wang W, Shen L, Liu H, Luo J, Ren Y, Cui S, Ye Y, Shi G, Cheng F, Su X, Dai L, Gou M, Deng H. A 3D-printed microdevice encapsulates vascularized islets composed of iPSC-derived β-like cells and microvascular fragments for type 1 diabetes treatment. Biomaterials 2025; 315:122947. [PMID: 39547136 DOI: 10.1016/j.biomaterials.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Transplantation of insulin-secreting cells provides a promising method for re-establishing the autonomous blood glucose control ability of type 1 diabetes (T1D) patients, but the low survival of the transplanted cells hinder the therapeutic efficacy. In this study, we 3D-printed an encapsulation system containing β-like cells and microvascular fragments (MVF), to create a retrivable microdevice with vascularized islets in vivo for T1D therapy. The functional β-like cells were differentiated from the urine epithelial cell-derived induced pluripotent stem cells (UiPSCs). Single-cell RNA sequencing provided an integrative study and macroscopic developmental analyses of the entire process of differentiation, which revealed the developmental trajectory of differentiation in vitro follows the developmental pattern of embryonic pancreas in vivo. The MVF were isolated from the epididymal fat pad. The microdevice with a groove structure were rapidly fabricated by the digital light processing (DLP)-3D printing technology. The β-like cells and MVF were uniformly distributed in the device. After subcutaneous transplantation into C57BL/6 mice, the microdevice have less collagen accumulation and low immune cell infiltration. Moreover, the microdevice encapsulated vascularized islets reduced hyperglycemia in 33 % of the treated mice for up to 100 days without immunosuppressants, and the humanized C-peptide was also detected in the serum of the mice. In summary, we described the microdevice-protected vascularized islets for long-term treatment of T1D, with high safety and potential clinical transformative value, and may therefore provide a translatable solution to advance the research progress of β cell replacement therapy for T1D.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshuang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lanlin Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushuang Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Susu Cui
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Migliorini A, Ge S, Atkins MH, Oakie A, Sambathkumar R, Kent G, Huang H, Sing A, Chua C, Gehring AJ, Keller GM, Notta F, Nostro MC. Embryonic macrophages support endocrine commitment during human pancreatic differentiation. Cell Stem Cell 2024; 31:1591-1611.e8. [PMID: 39406230 DOI: 10.1016/j.stem.2024.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 11/10/2024]
Abstract
Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown. To investigate this, we performed single-nucleus RNA sequencing (snRNA-seq) of the second-trimester human pancreas and identified a wide range of hematopoietic cells, including two distinct subsets of tissue-resident macrophages. Leveraging this discovery, we developed a co-culture system of human embryonic stem cell-derived endocrine-macrophage organoids to model their interaction in vitro. Here, we show that macrophages support the differentiation and viability of endocrine cells in vitro and enhance tissue engraftment, highlighting their potential role in tissue engineering strategies for diabetes.
Collapse
Affiliation(s)
- Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Sabrina Ge
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael H Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Gregory Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Haiyang Huang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Angel Sing
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Conan Chua
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
4
|
Chernysheva МB, Ruchko ЕS, Karimova МV, Vorotelyak ЕA, Vasiliev АV. Development, regeneration, and physiological expansion of functional β-cells: Cellular sources and regulators. Front Cell Dev Biol 2024; 12:1424278. [PMID: 39045459 PMCID: PMC11263198 DOI: 10.3389/fcell.2024.1424278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Pancreatic regeneration is a complex process observed in both normal and pathological conditions. The aim of this review is to provide a comprehensive understanding of the emergence of a functionally active population of insulin-secreting β-cells in the adult pancreas. The renewal of β-cells is governed by a multifaceted interaction between cellular sources of genetic and epigenetic factors. Understanding the development and heterogeneity of β-cell populations is crucial for functional β-cell regeneration. The functional mass of pancreatic β-cells increases in situations such as pregnancy and obesity. However, the specific markers of mature β-cell populations and postnatal pancreatic progenitors capable of increasing self-reproduction in these conditions remain to be elucidated. The capacity to regenerate the β-cell population through various pathways, including the proliferation of pre-existing β-cells, β-cell neogenesis, differentiation of β-cells from a population of progenitor cells, and transdifferentiation of non-β-cells into β-cells, reveals crucial molecular mechanisms for identifying cellular sources and inducers of functional cell renewal. This provides an opportunity to identify specific cellular sources and mechanisms of regeneration, which could have clinical applications in treating various pathologies, including in vitro cell-based technologies, and deepen our understanding of regeneration in different physiological conditions.
Collapse
Affiliation(s)
- М. B. Chernysheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Е. S. Ruchko
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - М. V. Karimova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
- Department of Biology and Biotechnologies Charles Darwin, The Sapienza University of Rome, Rome, Italy
| | - Е. A. Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - А. V. Vasiliev
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
5
|
Fulda FC. Agential autonomy and biological individuality. Evol Dev 2023; 25:353-370. [PMID: 37317487 DOI: 10.1111/ede.12450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
What is a biological individual? How are biological individuals individuated? How can we tell how many individuals there are in a given assemblage of biological entities? The individuation and differentiation of biological individuals are central to the scientific understanding of living beings. I propose a novel criterion of biological individuality according to which biological individuals are autonomous agents. First, I articulate an ecological-dynamical account of natural agency according to which, agency is the gross dynamical capacity of a goal-directed system to bias its repertoire to respond to its conditions as affordances. Then, I argue that agents or agential dynamical systems can be agentially dependent on, or agentially autonomous from, other agents and that this agential dependence/autonomy can be symmetrical or asymmetrical, strong or weak. Biological individuals, I propose, are all and only those agential dynamical systems that are strongly agentially autonomous. So, to determine how many individuals there are in a given multiagent aggregate, such as multicellular organism, a colony, symbiosis, or a swarm, we first have to identify how many agential dynamical systems there are, and then what their relations of agential dependence/autonomy are. I argue that this criterion is adequate to the extent that it vindicates the paradigmatic cases, and explains why the paradigmatic cases are paradigmatic, and why the problematic cases are problematic. Finally, I argue for the importance of distinguishing between agential and causal dependence and show the relevance of agential autonomy for understanding the explanatory structure of evolutionary developmental biology.
Collapse
Affiliation(s)
- Fermin C Fulda
- Institute for the History and Philosophy of Science and Technology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Thompson PJ, Pipella J, Rutter GA, Gaisano HY, Santamaria P. Islet autoimmunity in human type 1 diabetes: initiation and progression from the perspective of the beta cell. Diabetologia 2023; 66:1971-1982. [PMID: 37488322 PMCID: PMC10542715 DOI: 10.1007/s00125-023-05970-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 07/26/2023]
Abstract
Type 1 diabetes results from the poorly understood process of islet autoimmunity, which ultimately leads to the loss of functional pancreatic beta cells. Mounting evidence supports the notion that the activation and evolution of islet autoimmunity in genetically susceptible people is contingent upon early life exposures affecting the islets, especially beta cells. Here, we review some of the recent advances and studies that highlight the roles of these changes as well as antigen presentation and stress response pathways in beta cells in the onset and propagation of the autoimmune process in type 1 diabetes. Future progress in this area holds promise for advancing islet- and beta cell-directed therapies that could be implemented in the early stages of the disease and could be combined with immunotherapies.
Collapse
Affiliation(s)
- Peter J Thompson
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Jasmine Pipella
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Guy A Rutter
- CRCHUM and Department of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Diabetes, Endocrinology and Medicine, Faculty of Medicine, Imperial College, London, UK.
- LKC School of Medicine, Nanyang Technological College, Singapore, Republic of Singapore.
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Pere Santamaria
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
7
|
Khalil WJ, Akeblersane M, Khan AS, Moin ASM, Butler AE. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int J Mol Sci 2023; 24:8870. [PMID: 37240215 PMCID: PMC10219141 DOI: 10.3390/ijms24108870] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
To meet the increased need for food and energy because of the economic shift brought about by the Industrial Revolution in the 19th century, there has been an increase in persistent organic pollutants (POPs), atmospheric emissions and metals in the environment. Several studies have reported a relationship between these pollutants and obesity, and diabetes (type 1, type 2 and gestational). All of the major pollutants are considered to be endocrine disruptors because of their interactions with various transcription factors, receptors and tissues that result in alterations of metabolic function. POPs impact adipogenesis, thereby increasing the prevalence of obesity in exposed individuals. Metals impact glucose regulation by disrupting pancreatic β-cells, causing hyperglycemia and impaired insulin signaling. Additionally, a positive association has been observed between the concentration of endocrine disrupting chemicals (EDCs) in the 12 weeks prior to conception and fasting glucose levels. Here, we evaluate what is currently known regarding the link between environmental pollutants and metabolic disorders. In addition, we indicate where further research is required to improve our understanding of the specific effects of pollutants on these metabolic disorders which would enable implementation of changes to enable their prevention.
Collapse
Affiliation(s)
- William Junior Khalil
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Meriem Akeblersane
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Ana Saad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
8
|
Serbis A, Giapros V, Tsamis K, Balomenou F, Galli-Tsinopoulou A, Siomou E. Beta Cell Dysfunction in Youth- and Adult-Onset Type 2 Diabetes: An Extensive Narrative Review with a Special Focus on the Role of Nutrients. Nutrients 2023; 15:2217. [PMID: 37432389 PMCID: PMC10180650 DOI: 10.3390/nu15092217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
Traditionally a disease of adults, type 2 diabetes (T2D) has been increasingly diagnosed in youth, particularly among adolescents and young adults of minority ethnic groups. Especially, during the recent COVID-19 pandemic, obesity and prediabetes have surged not only in minority ethnic groups but also in the general population, further raising T2D risk. Regarding its pathogenesis, a gradually increasing insulin resistance due to central adiposity combined with a progressively defective β-cell function are the main culprits. Especially in youth-onset T2D, a rapid β-cell activity decline has been observed, leading to higher treatment failure rates, and early complications. In addition, it is well established that both the quantity and quality of food ingested by individuals play a key role in T2D pathogenesis. A chronic imbalance between caloric intake and expenditure together with impaired micronutrient intake can lead to obesity and insulin resistance on one hand, and β-cell failure and defective insulin production on the other. This review summarizes our evolving understanding of the pathophysiological mechanisms involved in defective insulin secretion by the pancreatic islets in youth- and adult-onset T2D and, further, of the role various micronutrients play in these pathomechanisms. This knowledge is essential if we are to curtail the serious long-term complications of T2D both in pediatric and adult populations.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| |
Collapse
|
9
|
Tudurí E, Soriano S, Almagro L, Montanya E, Alonso-Magdalena P, Nadal Á, Quesada I. The pancreatic β-cell in ageing: Implications in age-related diabetes. Ageing Res Rev 2022; 80:101674. [PMID: 35724861 DOI: 10.1016/j.arr.2022.101674] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022]
Abstract
The prevalence of type 2 diabetes (T2D) and impaired glucose tolerance (IGT) increases with ageing. T2D generally results from progressive impairment of the pancreatic islets to adapt β-cell mass and function in the setting of insulin resistance and increased insulin demand. Several studies have shown an age-related decline in peripheral insulin sensitivity. However, a precise understanding of the pancreatic β-cell response in ageing is still lacking. In this review, we summarize the age-related alterations, adaptations and/or failures of β-cells at the molecular, morphological and functional levels in mouse and human. Age-associated alterations include processes such as β-cell proliferation, apoptosis and cell identity that can influence β-cell mass. Age-related changes also affect β-cell function at distinct steps including electrical activity, Ca2+ signaling and insulin secretion, among others. We will consider the potential impact of these alterations and those mediated by senescence pathways on β-cells and their implications in age-related T2D. Finally, given the great diversity of results in the field of β-cell ageing, we will discuss the sources of this heterogeneity. A better understanding of β-cell biology during ageing, particularly at older ages, will improve our insight into the contribution of β-cells to age-associated T2D and may boost new therapeutic strategies.
Collapse
Affiliation(s)
- Eva Tudurí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Lucía Almagro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Eduard Montanya
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain; Bellvitge Hospital-IDIBELL, Barcelona, Spain, University of Barcelona, Barcelona, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ángel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
10
|
Khan D, Moffett RC, Flatt PR, Tarasov AI. Classical and non-classical islet peptides in the control of β-cell function. Peptides 2022; 150:170715. [PMID: 34958851 DOI: 10.1016/j.peptides.2021.170715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail of hormones into the blood, which is responsible for blood glucose control and regulation of carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets have been reported to express a number of non-classical peptide hormones involved in metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. in the small intestine. We highlight the key non-classical islet peptides, and consider their involvement, together with established islet hormones, in regulation of stimulus-secretion coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore focus on the paracrine interaction between classical and non-classical islet hormones in the maintenance of β-cell function. Understanding the functional relationships between these islet peptides might help to develop novel, more efficient treatments for diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrei I Tarasov
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
11
|
Sasaki H, Saisho Y, Inaishi J, Itoh H. Revisiting Regulators of Human β-cell Mass to Achieve β-cell-centric Approach Toward Type 2 Diabetes. J Endocr Soc 2021; 5:bvab128. [PMID: 34405128 PMCID: PMC8361804 DOI: 10.1210/jendso/bvab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes (T2DM) is characterized by insulin resistance and β-cell dysfunction. Because patients with T2DM have inadequate β-cell mass (BCM) and β-cell dysfunction worsens glycemic control and makes treatment difficult, therapeutic strategies to preserve and restore BCM are needed. In rodent models, obesity increases BCM about 3-fold, but the increase in BCM in humans is limited. Besides, obesity-induced changes in BCM may show racial differences between East Asians and Caucasians. Recently, the developmental origins of health and disease hypothesis, which states that the risk of developing noncommunicable diseases including T2DM is influenced by the fetal environment, has been proposed. It is known in rodents that animals with low birthweight have reduced BCM through epigenetic modifications, making them more susceptible to diabetes in the future. Similarly, in humans, we revealed that individuals born with low birthweight have lower BCM in adulthood. Because β-cell replication is more frequently observed in the 5 years after birth, and β cells are found to be more plastic in that period, a history of childhood obesity increases BCM. BCM in patients with T2DM is reduced by 20% to 65% compared with that in individuals without T2DM. However, since BCM starts to decrease from the stage of borderline diabetes, early intervention is essential for β-cell protection. In this review, we summarize the current knowledge on regulatory factors of human BCM in health and diabetes and propose the β-cell–centric concept of diabetes to enhance a more pathophysiology-based treatment approach for T2DM.
Collapse
Affiliation(s)
- Hironobu Sasaki
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Saisho
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Inaishi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Krentz NAJ, Shea LD, Huising MO, Shaw JAM. Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. Lancet Diabetes Endocrinol 2021; 9:708-724. [PMID: 34480875 PMCID: PMC10881068 DOI: 10.1016/s2213-8587(21)00170-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes is characterised by autoimmune-mediated destruction of pancreatic β-cell mass. With the advent of insulin therapy a century ago, type 1 diabetes changed from a progressive, fatal disease to one that requires lifelong complex self-management. Replacing the lost β-cell mass through transplantation has proven successful, but limited donor supply and need for lifelong immunosuppression restricts widespread use. In this Review, we highlight incremental advances over the past 20 years and remaining challenges in regenerative medicine approaches to restoring β-cell mass and function in type 1 diabetes. We begin by summarising the role of endocrine islets in glucose homoeostasis and how this is altered in disease. We then discuss the potential regenerative capacity of the remaining islet cells and the utility of stem cell-derived β-like cells to restore β-cell function. We conclude with tissue engineering approaches that might improve the engraftment, function, and survival of β-cell replacement therapies.
Collapse
Affiliation(s)
- Nicole A J Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lonnie D Shea
- Departments of Biomedical Engineering, Chemical Engineering, and Surgery, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Abstract
Pancreatic islet beta cells (β-cells) synthesize and secrete insulin in response to rising glucose levels and thus are a prime target in both major forms of diabetes. Type 1 diabetes ensues due to autoimmune destruction of β-cells. On the other hand, the prevailing insulin resistance and hyperglycemia in type 2 diabetes (T2D) elicits a compensatory response from β-cells that involves increases in β-cell mass and function. However, the sustained metabolic stress results in β-cell failure, characterized by severe β-cell dysfunction and loss of β-cell mass. Dynamic changes to β-cell mass also occur during pancreatic development that involves extensive growth and morphogenesis. These orchestrated events are triggered by multiple signaling pathways, including those representing the transforming growth factor β (TGF-β) superfamily. TGF-β pathway ligands play important roles during endocrine pancreas development, β-cell proliferation, differentiation, and apoptosis. Furthermore, new findings are suggestive of TGF-β's role in regulation of adult β-cell mass and function. Collectively, these findings support the therapeutic utility of targeting TGF-β in diabetes. Summarizing the role of the various TGF-β pathway ligands in β-cell development, growth and function in normal physiology, and during diabetes pathogenesis is the topic of this mini-review.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Ji-Hyeon Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Sushil G Rane
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
- Correspondence: Sushil G. Rane, PhD, Cell Growth and Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Building 10, CRC-West 5-5940, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Pro-Inflammatory Cytokines Induce Insulin and Glucagon Double Positive Human Islet Cells That Are Resistant to Apoptosis. Biomolecules 2021; 11:biom11020320. [PMID: 33669901 PMCID: PMC7923272 DOI: 10.3390/biom11020320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
The presence of islet cells double positive for insulin and glucagon (Ins+/Glu+) has been described in the pancreas from both type 2 (T2D) and type 1 (T1D) diabetic subjects. We studied the role of pro-inflammatory cytokines on the occurrence, trajectory, and characteristics of Ins+/Glu+ cells in human pancreatic islets. Pancreas samples, isolated islets, and dispersed islet cells from 3 T1D and 11 non-diabetic (ND) multi-organ donors were studied by immunofluorescence, confocal microscopy, and/or electron microscopy. ND islet cells were exposed to interleukin-1β and interferon-γ for up to 120 h. In T1D islets, we confirmed an increased prevalence of Ins+/Glu+ cells. Cytokine-exposed islets showed a progressive increase of Ins+/Glu+ cells that represented around 50% of endocrine cells after 120h. Concomitantly, cells expressing insulin granules only decreased significantly over time, whereas those containing only glucagon granules remained stable. Interestingly, Ins+/Glu+ cells were less prone to cytokine-induced apoptosis than cells containing only insulin. Cytokine-exposed islets showed down-regulation of β-cell identity genes. In conclusion, pro-inflammatory cytokines induce Ins+/Glu+ cells in human islets, possibly due to a switch from a β- to a β-/α-cell phenotype. These Ins+/Glu+ cells appear to be resistant to cytokine-induced apoptosis.
Collapse
|
16
|
Sasaki H, Saisho Y, Inaishi J, Watanabe Y, Tsuchiya T, Makio M, Sato M, Kitago M, Yamada T, Itoh H. Associations of birthweight and history of childhood obesity with beta cell mass in Japanese adults. Diabetologia 2020; 63:1199-1210. [PMID: 32239263 PMCID: PMC7228916 DOI: 10.1007/s00125-020-05127-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Low birthweight is associated with a high risk of diabetes, but there are no reports discussing birthweight and pancreatic tissues in humans. The purpose of this study was to examine the correlation between birthweight and beta and alpha cell mass in humans. METHODS Sixty-four Japanese adults with and without diabetes who underwent pancreatectomy and were able to recall their weight history including birthweight were included. Pancreatic tissues were stained for insulin and glucagon, and fractional beta cell area (BCA) and alpha cell area (ACA) were quantified. Islet size and density and beta cell replication were also quantified and their associations with birthweight were evaluated. RESULTS In participants without diabetes, there was a weak positive correlation between birthweight and BCA (R = 0.34, p = 0.03). The group with a history of childhood obesity, but not the group with a history of obesity in adulthood only, showed higher BCA compared with those without a history of obesity (1.78 ± 0.74% vs 0.99 ± 0.53%, p = 0.01), and the correlation coefficient between birthweight and BCA increased after excluding those with a history of childhood obesity (R = 0.51, p < 0.01). In those with diabetes, there was no correlation between birthweight and BCA. No correlation was found between birthweight and ACA in either those with or without diabetes. CONCLUSIONS/INTERPRETATION Birthweight and beta, but not alpha, cell mass are positively correlated in non-diabetic adults, and a history of childhood obesity may affect beta cell mass. Graphical abstract.
Collapse
Affiliation(s)
- Hironobu Sasaki
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Jun Inaishi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuusuke Watanabe
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Tsuchiya
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masayoshi Makio
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Midori Sato
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Taketo Yamada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Pathology, Saitama Medical University, Saitama, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
17
|
Marchetti P, Suleiman M, De Luca C, Baronti W, Bosi E, Tesi M, Marselli L. A direct look at the dysfunction and pathology of the β cells in human type 2 diabetes. Semin Cell Dev Biol 2020; 103:83-93. [PMID: 32417220 DOI: 10.1016/j.semcdb.2020.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022]
Abstract
β cells uniquely produce and secrete insulin under the control of several, integrated signals, to maintain blood glucose concentrations within a narrow physiological interval. β cell failure is key to the onset and progression of type 2 diabetes, due to impaired function and reduced mass. In this review we focus on several features of human β cell dysfunction and pathology in type 2 diabetes, as revealed by direct assessment of isolated islet traits and examination of pancreatic tissue from organ donors, surgical samples or autoptic specimens. Insulin secretion defects and pathology findings are discussed in relation to some of the major underlying mechanisms, to also provide clues for conceiving better prevention and treatment of type 2 diabetes by targeting the pancreatic β cells.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy.
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Walter Baronti
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Emanuele Bosi
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| |
Collapse
|
18
|
Sant KE, Venezia OL, Sinno PP, Timme-Laragy AR. Perfluorobutanesulfonic Acid Disrupts Pancreatic Organogenesis and Regulation of Lipid Metabolism in the Zebrafish, Danio rerio. Toxicol Sci 2019; 167:258-268. [PMID: 30239974 DOI: 10.1093/toxsci/kfy237] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Following the phase-out of highly persistent perfluorosulfonates in the United States from non-stick and stain-resistant products in the early 2000s, perfluorobutanesulfonic acid (PFBS) has replaced these compounds as a primary surfactant. Measurements of PFBS in environmental and human samples have been rising in recent years, raising concerns about potential negative health effects. We previously found that embryonic exposures to a related compound, perfluorooctanesulfonic acid (PFOS), decreased pancreas length and insulin-producing islet area in zebrafish embryos (Danio rerio). The objective of this study was to compare the effects of PFBS exposures on pancreatic organogenesis with our previous PFOS findings. Dechorionated zebrafish embryos from two different transgenic fish lines (Tg[insulin:GFP], Tg[ptf1a:GFP]) were exposed to 0 (0.01% DMSO), 16, or 32 µM PFBS daily beginning at 1 day post fertilization (dpf) until 4 and 7 dpf when they were examined using fluorescent microscopy for islet area and morphology, and exocrine pancreas length. PFBS-exposed embryos had significantly increased caudal fin deformities, delayed swim bladder inflation, and impaired yolk utilization. Incidence of fish with significantly stunted growth and truncated exocrine pancreas length was significantly increased, although these two effects occurred independently. Islet morphology revealed an increased incidence of severely hypomorphic islets (areas lower than the 1st percentile of controls) and an elevated occurrence of fragmented islets. RNA-Seq data (4 dpf) also identify disruptions in regulation of lipid homeostasis. Overall, this work demonstrates that PFBS exposure can perturb embryonic development, energy homeostasis, and pancreatic organogenesis.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003.,Division of Environmental Health, School of Public Health, San Diego State University, San Diego, California 92182
| | - Olivia L Venezia
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Paul P Sinno
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
19
|
Rodriguez-Fernandez S, Murillo M, Villalba A, Perna-Barrull D, Cano-Sarabia M, Gomez-Muñoz L, Aguilera E, Maspoch D, Vazquez F, Bel J, Vives-Pi M. Impaired Phagocytosis in Dendritic Cells From Pediatric Patients With Type 1 Diabetes Does Not Hamper Their Tolerogenic Potential. Front Immunol 2019; 10:2811. [PMID: 31849983 PMCID: PMC6892968 DOI: 10.3389/fimmu.2019.02811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is prompted by defective immunological tolerance, an event in which dendritic cells (DCs) are crucial as immune response orchestrators. In fact, they contribute to maintaining tolerance to self-antigens, but they can also prompt an immunogenic response against them, leading to autoimmunity. Countless factors can potentially impact on the proper functionality of the DCs, which range from altered subset distribution, impaired phagocytic function to abnormal gene expression. Moreover, in T1D, metabolic dysregulation could impair DC functions as well. Indeed, since T1D clinical course is likely to be more aggressive in children and adolescents and entails severe dysglycemia, the aim of this study was to analyze circulating DCs subpopulations in pediatric T1D at different stages, as well as to characterize their phagocytosis ability and tolerance induction potential. Thus, pediatric patients newly diagnosed with T1D, with established disease and control subjects were recruited. Firstly, DCs subsets from peripheral blood were found quantitatively altered during the first year of disease, but recovered in the second year of progression. Secondly, to study the tolerogenic functionality of DCs, liposomes with phosphatidylserine (PS) were designed to mimic apoptotic beta cells, which are able to induce tolerance, as previously demonstrated by our group in DCs from adult patients with T1D. In this study, monocyte-derived DCs from pediatric patients with T1D and control subjects were assessed in terms of PS-liposomes capture kinetics, and transcriptional and phenotypic changes. DCs from pediatric patients with T1D were found to phagocyte PS-liposomes more slowly and less efficiently than DCs from control subjects, inversely correlating with disease evolution. Nonetheless, the transcription of PS receptors and immunoregulatory genes, cytokine profile, and membrane expression of immunological markers in DCs was consistent with tolerogenic potential after PS-liposomes phagocytosis. In conclusion, T1D progression in childhood entails altered peripheral blood DCs subsets, as well as impaired DCs phagocytosis, although tolerance induction could still function optimally. Therefore, this study provides useful data for patient follow-up and stratification in immunotherapy clinical trials.
Collapse
Affiliation(s)
- Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Marta Murillo
- Pediatrics Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and the Barcelona Institute of Science and Technology, Bellaterra, Spain
| | - Laia Gomez-Muñoz
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Aguilera
- Endocrinology Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and the Barcelona Institute of Science and Technology, Bellaterra, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Federico Vazquez
- Endocrinology Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Joan Bel
- Pediatrics Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain.,Biomedical Research Center in Diabetes Network and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ISCiii), Madrid, Spain
| |
Collapse
|
20
|
Moin ASM, Montemurro C, Zeng K, Cory M, Nguyen M, Kulkarni S, Fritsch H, Meier JJ, Dhawan S, Rizza RA, Atkinson MA, Butler AE. Characterization of Non-hormone Expressing Endocrine Cells in Fetal and Infant Human Pancreas. Front Endocrinol (Lausanne) 2019; 9:791. [PMID: 30687234 PMCID: PMC6334491 DOI: 10.3389/fendo.2018.00791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023] Open
Abstract
Context: Previously, we identified chromograninA positive hormone-negative (CPHN) cells in high frequency in human fetal and neonatal pancreas, likely representing nascent endocrine precursor cells. Here, we characterize the putative endocrine fate and replicative status of these newly formed cells. Objective: To establish the replicative frequency and transcriptional identity of CPHN cells, extending our observation on CPHN cell frequency to a larger cohort of fetal and infant pancreas. Design, Setting, and Participants: 8 fetal, 19 infant autopsy pancreata were evaluated for CPHN cell frequency; 12 fetal, 24 infant/child pancreata were evaluated for CPHN replication and identity. Results: CPHN cell frequency decreased 84% (islets) and 42% (clusters) from fetal to infant life. Unlike the beta-cells at this stage, CPHN cells were rarely observed to replicate (0.2 ± 0.1 vs. 4.7 ± 1.0%, CPHN vs. islet hormone positive cell replication, p < 0.001), indicated by the lack of Ki67 expression in CPHN cells whether located in the islets or in small clusters, and with no detectable difference between fetal and infant groups. While the majority of CPHN cells express (in overall compartments of pancreas) the pan-endocrine transcription factor NKX2.2 and beta-cell specific NKX6.1 in comparable frequency in fetal and infant/child cases (81.9 ± 6.3 vs. 82.8 ± 3.8% NKX6.1+-CPHN cells of total CPHN cells, fetal vs. infant/child, p = 0.9; 88.0 ± 4.7 vs. 82.1 ± 5.3% NKX2.2+-CPHN cells of total CPHN cells, fetal vs. infant/child, p = 0.4), the frequency of clustered CPHN cells expressing NKX6.1 or NKX2.2 is lower in infant/child vs. fetal cases (1.2 ± 0.3 vs. 16.7 ± 4.7 clustered NKX6.1+-CPHN cells/mm2, infant/child vs. fetal, p < 0.01; 2.7 ± 1.0 vs. 16.0 ± 4.0 clustered NKX2.2+-CPHN cells/mm2, infant/child vs. fetal, p < 0.01). Conclusions: The frequency of CPHN cells declines steeply from fetal to infant life, presumably as they differentiate to hormone-expressing cells. CPHN cells represent a non-replicative pool of endocrine precursor cells, a proportion of which are likely fated to become beta-cells. Precis : CPHN cell frequency declines steeply from fetal to infant life, as they mature to hormone expression. CPHN cells represent a non-replicative pool of endocrine precursor cells, a proportion of which are likely fated to become beta-cells.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Chiara Montemurro
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Kylie Zeng
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Megan Cory
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Megan Nguyen
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Shweta Kulkarni
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Helga Fritsch
- Institute of Pathology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Tyrol, Austria
| | - Juris J. Meier
- St. Josef Hospital of the Ruhr-University Bochum (RUB), Bochum, Germany
| | - Sangeeta Dhawan
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - Robert A. Rizza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Mark A. Atkinson
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| |
Collapse
|
21
|
Baeyens L, Lemper M, Staels W, De Groef S, De Leu N, Heremans Y, German MS, Heimberg H. (Re)generating Human Beta Cells: Status, Pitfalls, and Perspectives. Physiol Rev 2018; 98:1143-1167. [PMID: 29717931 DOI: 10.1152/physrev.00034.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus results from disturbed glucose homeostasis due to an absolute (type 1) or relative (type 2) deficiency of insulin, a peptide hormone almost exclusively produced by the beta cells of the endocrine pancreas in a tightly regulated manner. Current therapy only delays disease progression through insulin injection and/or oral medications that increase insulin secretion or sensitivity, decrease hepatic glucose production, or promote glucosuria. These drugs have turned diabetes into a chronic disease as they do not solve the underlying beta cell defects or entirely prevent the long-term complications of hyperglycemia. Beta cell replacement through islet transplantation is a more physiological therapeutic alternative but is severely hampered by donor shortage and immune rejection. A curative strategy should combine newer approaches to immunomodulation with beta cell replacement. Success of this approach depends on the development of practical methods for generating beta cells, either in vitro or in situ through beta cell replication or beta cell differentiation. This review provides an overview of human beta cell generation.
Collapse
Affiliation(s)
- Luc Baeyens
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Marie Lemper
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Willem Staels
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Sofie De Groef
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Nico De Leu
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Yves Heremans
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Michael S German
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| |
Collapse
|
22
|
Kowalska M, Rupik W. Development of endocrine pancreatic islets in embryos of the grass snake Natrix natrix
(Lepidosauria, Serpentes). J Morphol 2018; 280:103-118. [DOI: 10.1002/jmor.20921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Magdalena Kowalska
- Department of Animal Histology and Embryology; University of Silesia in Katowice; Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology; University of Silesia in Katowice; Poland
| |
Collapse
|
23
|
Fujita Y, Kozawa J, Iwahashi H, Yoneda S, Uno S, Eguchi H, Nagano H, Imagawa A, Shimomura I. Human pancreatic α- to β-cell area ratio increases after type 2 diabetes onset. J Diabetes Investig 2018; 9:1270-1282. [PMID: 29570955 PMCID: PMC6215948 DOI: 10.1111/jdi.12841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Pancreatic α-cell area and the α- to β-cell area ratio (α/β) might be associated with glucose tolerance. The aim was to clarify how these histological parameters change as glucose tolerance deteriorates. MATERIALS AND METHODS We analyzed pancreatic tissues obtained from pancreatectomies of 43 patients. We evaluated the relationships between α-cell area or the α/β and various clinical parameters. Additionally, we analyzed α-cell proliferation and the expression patterns of various pancreatic transcription factors. RESULTS The α/β in individuals with longstanding (previously diagnosed) type 2 diabetes (0.36 ± 0.12) was higher than that in those with normal glucose tolerance (0.18 ± 0.10; P < 0.01), impaired glucose tolerance (0.17 ± 0.12; P < 0.05) and newly diagnosed diabetes (0.17 ± 0.12; P < 0.05). In all participants, glycated hemoglobin (HbA1c) correlated with relative α-cell area (P = 0.010). Diabetes duration (P = 0.004), HbA1c (P < 0.001) and plasma glucose levels (P = 0.008) were significantly correlated with the α/β in single regression analyses, and diabetes duration was the only independent and significant determinant in stepwise multiple regression analyses (P = 0.006). The α-cell Ki67-positive ratio in patients with HbA1c ≥6.5% was significantly higher than that in patients with HbA1c <6.5% (P = 0.022). We identified β-cells that expressed aristaless-related homeobox and α-cells that did not express aristaless-related homeobox at all glucose tolerance stages. Aristaless-related homeobox and NK homeobox 6.1 expression patterns varied in insulin and glucagon double-positive cells. CONCLUSIONS The pancreatic α/β increases after type 2 diabetes onset and correlates with diabetes duration. This change might occur through α-cell proliferation and phenotypic changes in pancreatic endocrine cells.
Collapse
Affiliation(s)
- Yukari Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiromi Iwahashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sho Yoneda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Community Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sae Uno
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akihisa Imagawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
24
|
Bogdani M, Blackman SM, Ridaura C, Bellocq JP, Powers AC, Aguilar-Bryan L. Structural abnormalities in islets from very young children with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Sci Rep 2017; 7:17231. [PMID: 29222447 PMCID: PMC5722914 DOI: 10.1038/s41598-017-17404-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/22/2017] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF)-related diabetes (CFRD) is thought to result from beta-cell injury due in part to pancreas exocrine damage and lipofibrosis. CFRD pancreata exhibit reduced islet density and altered cellular composition. To investigate a possible etiology, we tested the hypothesis that such changes are present in CF pancreata before the development of lipofibrosis. We evaluated pancreas and islet morphology in tissues from very young CF children (<4 years of age), and adult patients with CF and CFRD. The relative number of beta-cells in young CF tissues was reduced by 50% or more when compared to age-matched controls. Furthermore, young CF tissues displayed significantly smaller insulin-positive areas, lower proportion of beta-cells positive for the proliferation marker Ki67 or the ductal marker CK19 vs. control subjects, and islet inflammatory cell infiltrates, independently of the severity of the exocrine lesion and in the absence of amyloid deposits. CFRD pancreata exhibited greater islet injury with further reduction in islet density, decreased relative beta-cell number, and presence of amyloid deposits. Together, these results strongly suggest that an early deficiency in beta-cell number in infants with CF may contribute to the development of glucose intolerance in the CF pediatric population, and to CFRD, later in life.
Collapse
Affiliation(s)
| | - Scott M Blackman
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cecilia Ridaura
- Department of Pathology, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | | |
Collapse
|
25
|
Tatmatsu-Rocha JC, de Castro CA, Sene-Fiorese M, Parizotto NA. Light-emitting diode modulates carbohydrate metabolism by pancreatic duct regeneration. Lasers Med Sci 2017; 32:1747-1755. [PMID: 28577185 DOI: 10.1007/s10103-017-2245-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic lesions can produce metabolic disorders. Light-emitting diode (LED) has been used as a safe and effective phototherapy for cell proliferation and regeneration. We investigate the effects of phototherapy using LED irradiation on the pancreas after the injection of streptozotocin (STZ) to induce experimental diabetes and evaluate that the β cells can regenerate in the pancreas in an in vivo model and observe its implications on the control of carbohydrate metabolism. Twenty Wistar rats were randomized into three groups: non-diabetic control, diabetic control, and diabetic treated with LED. Except for the non-diabetic control group, all were induced to diabetes type I by streptozotocin injection. Treated groups were irradiated by LED: λ = 805 nm; 40 mW, 22 s; spot diameter 5 mm, spot area 0.196 cm2, 0.88 J that it was applied on pancreas projection area for 5 consecutive days and monitored for 30 days. Diabetic group treated with LED showed regeneration of islets and ducts (p = 0.001) on the pancreas. Intraperitoneal insulin tolerance test showed differences between the diabetic control and diabetic treated groups (p = 0.03). In diabetic control group, the hepatic glycogen content was 296% lower when compared with diabetic treated with LED. Furthermore, in the diabetic control group, the glycogen content of the gastrocnemius muscle was 706% smaller when compared with diabetic treated with LED. This study shows that LED was able to modify morphological and metabolic features and also altered carbohydrate metabolism on irradiated pancreas in experimental model of diabetes.
Collapse
Affiliation(s)
- José Carlos Tatmatsu-Rocha
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP, Brazil.
- Physical Therapy Department, Federal University of Ceara, Fortaleza, CE, Brazil.
| | | | | | | |
Collapse
|
26
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
27
|
Beamish CA, Mehta S, Strutt BJ, Chakrabarti S, Hara M, Hill DJ. Decrease in Ins +Glut2 LO β-cells with advancing age in mouse and human pancreas. J Endocrinol 2017; 233:229-241. [PMID: 28348115 DOI: 10.1530/joe-16-0475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022]
Abstract
The presence and location of resident pancreatic β-cell progenitors is controversial. A subpopulation of insulin-expressing but glucose transporter-2-low (Ins+Glut2LO) cells may represent multipotent pancreatic progenitors in adult mouse and in human islets, and they are enriched in small, extra-islet β-cell clusters (<5 β cells) in mice. Here, we sought to identify and compare the ontogeny of these cells in mouse and human pancreata throughout life. Mouse pancreata were collected at postnatal days 7, 14, 21, 28, and at 3, 6, 12, and 18 months of age, and in the first 28 days after β-cell mass depletion following streptozotocin (STZ) administration. Samples of human pancreas were examined during fetal life (22-30 weeks gestation), infancy (0-1 year), childhood (2-9), adolescence (10-17), and adulthood (18-80). Tissues were analyzed by immunohistochemistry for the expression and location of insulin, GLUT2 and Ki67. The proportion of β cells within clusters relative to that in islets was higher in pancreas of human than of mouse at all ages examined, and decreased significantly at adolescence. In mice, the total number of Ins+Glut2LO cells decreased after 7 days concurrent with the proportion of clusters. These cells were more abundant in clusters than in islets in both species. A positive association existed between the appearance of new β cells after the STZ treatment of young mice, particularly in clusters and smaller islets, and an increased proportional presence of Ins+Glut2LO cells during early β-cell regeneration. These data suggest that Ins+Glut2LO cells are preferentially located within β-cell clusters throughout life in pancreas of mouse and human, and may represent a source of β-cell plasticity.
Collapse
Affiliation(s)
- Christine A Beamish
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
- Department of Physiology & PharmacologyWestern University, London, Ontario, Canada
| | - Sofia Mehta
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
| | - Brenda J Strutt
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
| | - Subrata Chakrabarti
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
- Department of Pathology and Laboratory MedicineWestern University, London, Ontario, Canada
| | - Manami Hara
- Department of MedicineUniversity of Chicago, Chicago, Illinois, USA
| | - David J Hill
- Lawson Health Research InstituteSt Joseph Health Care, London, Ontario, Canada
- Department of Physiology & PharmacologyWestern University, London, Ontario, Canada
- Department of MedicineWestern University, London, Ontario, Canada
| |
Collapse
|
28
|
Marchetti P, Bugliani M, De Tata V, Suleiman M, Marselli L. Pancreatic Beta Cell Identity in Humans and the Role of Type 2 Diabetes. Front Cell Dev Biol 2017; 5:55. [PMID: 28589121 PMCID: PMC5440564 DOI: 10.3389/fcell.2017.00055] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic beta cells uniquely synthetize, store, and release insulin. Specific molecular, functional as well as ultrastructural traits characterize their insulin secretion properties and survival phentoype. In this review we focus on human islet/beta cells, and describe the changes that occur in type 2 diabetes and could play roles in the disease as well as represent possible targets for therapeutical interventions. These include transcription factors, molecules involved in glucose metabolism and insulin granule handling. Quantitative and qualitative insulin release patterns and their changes in type 2 diabetes are also associated with ultrastructural features involving the insulin granules, the mitochondria, and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Vincenzo De Tata
- Department of Translational Medicine, University of PisaPisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| |
Collapse
|
29
|
Jiang FX, Li K, Archer M, Mehta M, Jamieson E, Charles A, Dickinson JE, Matsumoto M, Morahan G. Differentiation of Islet Progenitors Regulated by Nicotinamide into Transcriptome-Verified β Cells That Ameliorate Diabetes. Stem Cells 2017; 35:1341-1354. [DOI: 10.1002/stem.2567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/21/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Fang-Xu Jiang
- Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Kevin Li
- Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | | | - Munish Mehta
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Emma Jamieson
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| | - Adrian Charles
- School of Women's and Infants' Health; The University of Western Australia; Nedlands Australia
| | - Jan E. Dickinson
- School of Women's and Infants' Health; The University of Western Australia; Nedlands Australia
| | | | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, and Centre for Medical Research
| |
Collapse
|
30
|
Ueberberg S, Jütte H, Uhl W, Schmidt W, Nauck M, Montanya E, Tannapfel A, Meier J. Histological changes in endocrine and exocrine pancreatic tissue from patients exposed to incretin-based therapies. Diabetes Obes Metab 2016; 18:1253-1262. [PMID: 27545110 DOI: 10.1111/dom.12766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
AIMS Incretin-based therapies have been associated with an increased risk of pancreatitis. Recently, various histological abnormalities have been reported in human pancreatic tissue from brain-dead organ donors who had been exposed to incretin-based drugs. In the present study we examined pancreatic tissue collected at surgery. METHODS Human pancreatic tissue from 7 type 2-diabetic patients treated with incretin-based drugs (type 2-I), 6 diabetic patients without incretin treatment (type 2-NI), 11 patients without diabetes (no diabetes group) and 9 brain-dead organ donors (BDOD group) was examined. RESULTS Fractional beta-cell area was reduced in the type 2-NI group compared to the group without diabetes (P < .05), but there was no difference compared to the type 2-I patients. Alpha-cell area (P = .30), beta-cell replication (P = .17) and alpha-cell replication (P = .91) were not different. There were also no differences in acinar cell (P = .13) and duct cell replication (P = .099). Insulin-positive duct cells were more frequent in the type 2-I and the BDOD groups (P = .034). No co-expression of insulin and glucagon was detected. Pancreatic intraepithelial neoplasia (PanIN) lesions were very rare, all low-grade (PanIN 1a and 1b) and tended to occur more frequently in the type 2-I group (P = .084). CONCLUSIONS The present results did not reveal marked histological abnormalities in the pancreas of incretin-treated patients with type 2 diabetes. Low numbers of specimens available and a large inter-individual variability of the findings warrant caution regarding the interpretation of histological data concerning drug effects on the human pancreas.
Collapse
Affiliation(s)
- Sandra Ueberberg
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Hendrik Jütte
- Department of Pathology, Ruhr-University Bochum, Bochum, Germany
| | - Waldemar Uhl
- Department of Surgery, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Wolfgang Schmidt
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Michael Nauck
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Eduard Montanya
- Bellvitge Hospital, Department of Endocrinology, Feixa Llarga s/n, Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Andrea Tannapfel
- Department of Pathology, Ruhr-University Bochum, Bochum, Germany
| | - Juris Meier
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Pechriggl EJ, Concin N, Blumer MJ, Bitsche M, Zwierzina M, Dudas J, Koziel K, Altevogt P, Zeimet AG, Fritsch H. L1CAM in the Early Enteric and Urogenital System. J Histochem Cytochem 2016; 65:21-32. [PMID: 28026654 DOI: 10.1369/0022155416677241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is a transmembrane molecule belonging to the L1 protein family. It has shown to be a key player in axonal guidance in the course of neuronal development. Furthermore, L1CAM is also crucial for the establishment of the enteric and urogenital organs and is aberrantly expressed in cancer originating in these organs. Carcinogenesis and embryogenesis follow a lot of similar molecular pathways, but unfortunately, comprehensive data on L1CAM expression and localization in human developing organs are lacking so far. In the present study we, therefore, examined the spatiotemporal distribution of L1CAM in the early human fetal period (weeks 8-12 of gestation) by means of immunohistochemistry and in situ hybridization (ISH). In the epithelia of the gastrointestinal organs, L1CAM localization cannot be observed in the examined stages most likely due to their advanced polarization and differentiation. Despite these results, our ISH data indicate weak L1CAM expression, but only in few epithelial cells. The genital tracts, however, are distinctly L1CAM positive throughout the entire fetal period. We, therefore, conclude that in embryogenesis L1CAM is crucial for further differentiation of epithelia.
Collapse
Affiliation(s)
- Elisabeth Judith Pechriggl
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| | - Nicole Concin
- Department of Gynaecology and Obstetrics (NC, KK, A-GZ), Medical University of Innsbruck, Innsbruck, Austria
| | - Michael J Blumer
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| | - Mario Bitsche
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| | - Marit Zwierzina
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otolaryngology (JD), Medical University of Innsbruck, Innsbruck, Austria
| | - Katarzyna Koziel
- Department of Gynaecology and Obstetrics (NC, KK, A-GZ), Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany (PA).,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany (PA)
| | - Alain-Gustave Zeimet
- Department of Gynaecology and Obstetrics (NC, KK, A-GZ), Medical University of Innsbruck, Innsbruck, Austria
| | - Helga Fritsch
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Klee P, Bosco D, Guérardel A, Somm E, Toulotte A, Maechler P, Schwitzgebel VM. Activation of Nicotinic Acetylcholine Receptors Decreases Apoptosis in Human and Female Murine Pancreatic Islets. Endocrinology 2016; 157:3800-3808. [PMID: 27471776 DOI: 10.1210/en.2015-2057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes (T1DM) results from destruction of most insulin-secreting pancreatic β-cells. The persistence of β-cells decades after the onset of the disease indicates that the resistance of individual cells to the autoimmune insult is heterogeneous and might depend on the metabolic status of a cell at a given moment. The aim of this study is to investigate whether activation of nicotinic acetylcholine receptors (nACh-Rs) could increase β-cell resistance against the adverse environment prevailing at the onset of T1DM. Here, we show that nACh-R activation by nicotine and choline, 2 agonists of the receptor, decreases murine and human β-cell apoptosis induced by proinflammatory cytokines known to be present in the islet environment at the onset of T1DM. The protective mechanism activated by nicotine and choline involves attenuation of mitochondrial outer membrane permeabilization via modulation of endoplasmic reticulum stress, of the activity of B-cell lymphoma 2 family proteins and cytoplasmic calcium levels. Local inflammation and endoplasmic reticulum stress being key determinants of β-cell death in T1DM, we conclude that pharmacological activation of nACh-R could represent a valuable therapeutic option in the modulation of β-cell death in T1DM.
Collapse
Affiliation(s)
- Philippe Klee
- Service of Development and Growth (P.K., A.G., E.S., A.T., V.S.), Department of Pediatrics, University Hospital of Geneva and Diabetes Center, University of Geneva, 1211 Geneva, Switzerland; Cell Isolation and Transplantation Center (D.B.), Department of Surgery, University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland; and Department of Cell Physiology and Metabolism (P.M.), Geneva University Medical Center, 1205 Geneva, Switzerland
| | - Domenico Bosco
- Service of Development and Growth (P.K., A.G., E.S., A.T., V.S.), Department of Pediatrics, University Hospital of Geneva and Diabetes Center, University of Geneva, 1211 Geneva, Switzerland; Cell Isolation and Transplantation Center (D.B.), Department of Surgery, University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland; and Department of Cell Physiology and Metabolism (P.M.), Geneva University Medical Center, 1205 Geneva, Switzerland
| | - Audrey Guérardel
- Service of Development and Growth (P.K., A.G., E.S., A.T., V.S.), Department of Pediatrics, University Hospital of Geneva and Diabetes Center, University of Geneva, 1211 Geneva, Switzerland; Cell Isolation and Transplantation Center (D.B.), Department of Surgery, University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland; and Department of Cell Physiology and Metabolism (P.M.), Geneva University Medical Center, 1205 Geneva, Switzerland
| | - Emmanuel Somm
- Service of Development and Growth (P.K., A.G., E.S., A.T., V.S.), Department of Pediatrics, University Hospital of Geneva and Diabetes Center, University of Geneva, 1211 Geneva, Switzerland; Cell Isolation and Transplantation Center (D.B.), Department of Surgery, University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland; and Department of Cell Physiology and Metabolism (P.M.), Geneva University Medical Center, 1205 Geneva, Switzerland
| | - Audrey Toulotte
- Service of Development and Growth (P.K., A.G., E.S., A.T., V.S.), Department of Pediatrics, University Hospital of Geneva and Diabetes Center, University of Geneva, 1211 Geneva, Switzerland; Cell Isolation and Transplantation Center (D.B.), Department of Surgery, University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland; and Department of Cell Physiology and Metabolism (P.M.), Geneva University Medical Center, 1205 Geneva, Switzerland
| | - Pierre Maechler
- Service of Development and Growth (P.K., A.G., E.S., A.T., V.S.), Department of Pediatrics, University Hospital of Geneva and Diabetes Center, University of Geneva, 1211 Geneva, Switzerland; Cell Isolation and Transplantation Center (D.B.), Department of Surgery, University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland; and Department of Cell Physiology and Metabolism (P.M.), Geneva University Medical Center, 1205 Geneva, Switzerland
| | - Valérie M Schwitzgebel
- Service of Development and Growth (P.K., A.G., E.S., A.T., V.S.), Department of Pediatrics, University Hospital of Geneva and Diabetes Center, University of Geneva, 1211 Geneva, Switzerland; Cell Isolation and Transplantation Center (D.B.), Department of Surgery, University Hospital of Geneva and University of Geneva, 1205 Geneva, Switzerland; and Department of Cell Physiology and Metabolism (P.M.), Geneva University Medical Center, 1205 Geneva, Switzerland
| |
Collapse
|
33
|
Anderson de la Llana S, Klee P, Santoni F, Stekelenburg C, Blouin JL, Schwitzgebel VM. Gene Variants Associated with Transient Neonatal Diabetes Mellitus in the Very Low Birth Weight Infant. Horm Res Paediatr 2016; 84:283-8. [PMID: 26315042 DOI: 10.1159/000437378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/01/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transient and permanent neonatal diabetes mellitus (NDM), usually defined as diabetes diagnosed within the first 6 months of life, are rare conditions occurring in 1:90,000-260,000 live births. The origin of NDM is rarely related to type 1 diabetes, but rather to single gene defects. METHODS Genetic analysis was performed using targeted parallel sequencing including 323 diabetes genes. Data were filtered by a locally developed program. RESULTS A very low birth weight neonate born at 28 weeks postmenstrual age developed diabetes 13 days after birth. The patient was treated with continuous subcutaneous insulin infusion. After 1 month, insulin treatment could be stopped. At 18 months of age, the child was normoglycemic and developing normally. Genetic analysis revealed a novel variant (p.Pro190Leu) in HNF4A, which is located in the ligand binding domain of the transcription factor, and the p.Glu23Lys variant in KCNJ11, which is associated with type 2 diabetes. CONCLUSION Here, we describe a novel HNF4A variant associated with transient NDM in a premature infant. We hypothesize that the neonatal phenotype previously described in carriers of HNF4A mutations was modified by the additional variant in KCNJ11 and prematurity.
Collapse
|
34
|
Lee I. Human pancreatic islets develop through fusion of distinct β
and α
/δ
islets. Dev Growth Differ 2016; 58:635-640. [DOI: 10.1111/dgd.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Inchul Lee
- Department of Pathology; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| |
Collapse
|
35
|
Ueberberg S, Tannapfel A, Schenker P, Viebahn R, Uhl W, Schneider S, Meier JJ. Differential expression of cell-cycle regulators in human beta-cells derived from insulinoma tissue. Metabolism 2016; 65:736-746. [PMID: 27085780 DOI: 10.1016/j.metabol.2016.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The low frequency of beta-cell replication in the adult human pancreas limits beta-cell regeneration. A better understanding of the regulation of human beta-cell proliferation is crucial to develop therapeutic strategies aiming to enhance beta-cell mass. METHODS To identify factors that control beta-cell proliferation, cell-cycle regulation was examined in human insulinomas as a model of increased beta-cell proliferation (n=11) and healthy pancreatic tissue from patients with benign pancreatic tumors (n=9). Tissue sections were co-stained for insulin and cell-cycle proteins. Transcript levels of selected cell-cycle factors in beta-cells were determined by qRT-PCR after performing laser-capture microdissection. RESULTS The frequency of beta-cell replication was 3.74±0.92% in the insulinomas and 0.11±0.04% in controls (p=0.0016). p21 expression was higher in insulinomas (p=0.0058), and Rb expression was higher by trend (p=0.085), whereas p16 (p<0.0001), Cyclin C (p<0.0001), and p57 (p=0.018) expression levels were lower. The abundance of Cyclin D3 (p=0.62) and p27 (p=0.68) was not different between the groups. The reduced expression of p16 (p<0.0001) and p57 (p=0.012) in insulinomas and the unchanged expression of Cyclin D3 (p=0.77) and p27 (p=0.55) were confirmed using qRT-PCR. CONCLUSIONS The expression of certain cell-cycle factors in beta-cells derived from insulinomas and healthy adults differs markedly. Targeting such differentially regulated cell-cycle proteins may evolve as a future strategy to enhance beta-cell regeneration.
Collapse
Affiliation(s)
- Sandra Ueberberg
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum 44791, Germany
| | - Andrea Tannapfel
- Department of Pathology, Ruhr-University Bochum, Bürkle de la Camp-Platz 1, Bochum 44789, Germany
| | - Peter Schenker
- Department of Surgery, Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Richard Viebahn
- Department of Surgery, Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Waldemar Uhl
- Department of Surgery, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum 44791, Germany
| | - Stephan Schneider
- Department of Medicine II, St. Vinzenz Hospital, Merheimer Str. 221-223, Cologne 50733, Germany
| | - Juris J Meier
- Diabetes Division, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, Bochum 44791, Germany.
| |
Collapse
|
36
|
Tamura Y, Takubo K, Aida J, Araki A, Ito H. Telomere attrition and diabetes mellitus. Geriatr Gerontol Int 2016; 16 Suppl 1:66-74. [DOI: 10.1111/ggi.12738] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Yoshiaki Tamura
- Department of Diabetes, Metabolism, and Endocrinology; Tokyo Metropolitan Geriatric Hospital; Tokyo Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology and Department of Pathology; Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Tokyo Japan
| | - Junko Aida
- Research Team for Geriatric Pathology and Department of Pathology; Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology; Tokyo Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism, and Endocrinology; Tokyo Metropolitan Geriatric Hospital; Tokyo Japan
| | - Hideki Ito
- Department of Diabetes, Metabolism, and Endocrinology; Tokyo Metropolitan Geriatric Hospital; Tokyo Japan
| |
Collapse
|
37
|
Yagihashi S, Inaba W, Mizukami H. Dynamic pathology of islet endocrine cells in type 2 diabetes: β-Cell growth, death, regeneration and their clinical implications. J Diabetes Investig 2016; 7:155-65. [PMID: 27042265 PMCID: PMC4773678 DOI: 10.1111/jdi.12424] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 12/12/2022] Open
Abstract
Diabetes is defined as a disease of hyperglycemic metabolic disorder caused by impaired insulin action or low insulin secretion, resulting in the occurrence of vascular complications. Based on this definition, diabetes therapy has long been oriented to correct hyperglycemia against the specific complications of diabetes. This definition has posed some difficulties, however, in understanding of the pathophysiology of this complicated disease and as such in the establishment of an effective treatment. With continuing efforts to explore the structural basis for diabetes onset and methodological development of immunohistochemistry, progressive decline of β-cells is now established as a salient feature of type 2 diabetes. Accordingly, diabetes therapy has now turned out to protect β-cells concurrently with the correction of hyperglycemia. Together with this effort, exploration of the means to regenerate β-cells or to supply new β-cells by, for example, induced pluripotential stem cells, are vigorously made with the search for the mechanism of β-cell decline in diabetes. In the present review, we describe the advances in the islet pathology in type 2 diabetes with special reference to the dynamic alterations of islet endocrine cells in the milieu of maturation, obesity, aging and ethnic differences. The effect of amyloid deposition is also discussed. We hope it will help with understanding the pathophysiology of diabetes, and suggest the future direction of diabetes treatment.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Wataru Inaba
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
38
|
Koskinen MK, Helminen O, Matomäki J, Aspholm S, Mykkänen J, Mäkinen M, Simell V, Vähä-Mäkilä M, Simell T, Ilonen J, Knip M, Veijola R, Toppari J, Simell O. Reduced β-cell function in early preclinical type 1 diabetes. Eur J Endocrinol 2016; 174:251-9. [PMID: 26620391 PMCID: PMC4712442 DOI: 10.1530/eje-15-0674] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We aimed to characterize insulin responses to i.v. glucose during the preclinical period of type 1 diabetes starting from the emergence of islet autoimmunity. DESIGN AND METHODS A large population-based cohort of children with HLA-conferred susceptibility to type 1 diabetes was observed from birth. During regular follow-up visits islet autoantibodies were analysed. We compared markers of glucose metabolism in sequential intravenous glucose tolerance tests between 210 children who were positive for multiple (≥2) islet autoantibodies and progressed to type 1 diabetes (progressors) and 192 children testing positive for classical islet-cell antibodies only and remained healthy (non-progressors). RESULTS In the progressors, the first phase insulin response (FPIR) was decreased as early as 4-6 years before the diagnosis when compared to the non-progressors (P=0.001). The difference in FPIR between the progressors and non-progressors was significant (P<0.001) in all age groups, increasing with age (at 2 years: difference 50% (95% CI 28-75%) and at 10 years: difference 172% (95% CI 128-224%)). The area under the 10-min insulin curve showed a similar difference between the groups (P<0.001; at 2 years: difference 36% (95% CI 17-58%) and at 10 years: difference 186% (95% CI 143-237%)). Insulin sensitivity did not differ between the groups. CONCLUSIONS FPIR is decreased several years before the diagnosis of type 1 diabetes, implying an intrinsic defect in β-cell mass and/or function.
Collapse
Affiliation(s)
- Maarit K Koskinen
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
- MediCity Laboratories, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 320520, Turku, Finland
- Correspondence should be addressed to M K Koskinen ()
| | - Olli Helminen
- PEDEGO Research Unit, Department of Paediatrics, Medical Research Centre Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Jaakko Matomäki
- Clinical Research Centre, Turku University Hospital, Turku, Finland
| | - Susanna Aspholm
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
- Novo Nordisk Farma Oy, CMR Department, Espoo, Finland
- Diabetes Outpatient Clinic, Tampere, Finland
| | - Juha Mykkänen
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Marjaana Mäkinen
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
- MediCity Laboratories, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 320520, Turku, Finland
| | - Ville Simell
- MediCity Laboratories, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 320520, Turku, Finland
| | - Mari Vähä-Mäkilä
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuula Simell
- Department of Paediatrics, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
- Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
| | - Mikael Knip
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, University of Helsinki, Helsinki, Finland
| | - Riitta Veijola
- PEDEGO Research Unit, Department of Paediatrics, Medical Research Centre Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Jorma Toppari
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Olli Simell
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Butler AE, Dhawan S, Hoang J, Cory M, Zeng K, Fritsch H, Meier JJ, Rizza RA, Butler PC. β-Cell Deficit in Obese Type 2 Diabetes, a Minor Role of β-Cell Dedifferentiation and Degranulation. J Clin Endocrinol Metab 2016; 101:523-32. [PMID: 26700560 PMCID: PMC4880126 DOI: 10.1210/jc.2015-3566] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Type 2 diabetes is characterized by a β-cell deficit and a progressive defect in β-cell function. It has been proposed that the deficit in β-cells may be due to β-cell degranulation and transdifferentiation to other endocrine cell types. OBJECTIVE The objective of the study was to establish the potential impact of β-cell dedifferentiation and transdifferentiation on β-cell deficit in type 2 diabetes and to consider the alternative that cells with an incomplete identity may be newly forming rather than dedifferentiated. DESIGN, SETTING, AND PARTICIPANTS Pancreata obtained at autopsy were evaluated from 14 nondiabetic and 13 type 2 diabetic individuals, from four fetal cases, and from 10 neonatal cases. RESULTS Whereas there was a slight increase in islet endocrine cells expressing no hormone in type 2 diabetes (0.11 ± 0.03 cells/islet vs 0.03 ± 0.01 cells/islet, P < .01), the impact on the β-cell deficit would be minimal. Furthermore, we established that the deficit in β-cells per islet cannot be accounted for by an increase in other endocrine cell types. The distribution of hormone negative endocrine cells in type 2 diabetes (most abundant in cells scattered in the exocrine pancreas) mirrors that in developing (embryo and neonatal) pancreas, implying that these may represent newly forming cells. CONCLUSIONS Therefore, although we concur that in type 2 diabetes there are endocrine cells with altered cell identity, this process does not account for the deficit in β-cells in type 2 diabetes but may reflect, in part, attempted β-cell regeneration.
Collapse
Affiliation(s)
- Alexandra E Butler
- Larry L. Hillblom Islet Research Center (A.E.B., S.D., J.H., M.C., K.Z., P.C.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073; Institute of Pathology (H.F.), Division of Clinical and Functional Anatomy, Medical University of Innsbruck, A-6020 Innsbruck, Austria; St Josef Hospital of the Ruhr-University Bochum (J.J.M.), 44791 Bochum, Germany; and Division of Endocrinology, Diabetes, Metabolism, and Nutrition (R.A.R.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sangeeta Dhawan
- Larry L. Hillblom Islet Research Center (A.E.B., S.D., J.H., M.C., K.Z., P.C.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073; Institute of Pathology (H.F.), Division of Clinical and Functional Anatomy, Medical University of Innsbruck, A-6020 Innsbruck, Austria; St Josef Hospital of the Ruhr-University Bochum (J.J.M.), 44791 Bochum, Germany; and Division of Endocrinology, Diabetes, Metabolism, and Nutrition (R.A.R.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Jonathan Hoang
- Larry L. Hillblom Islet Research Center (A.E.B., S.D., J.H., M.C., K.Z., P.C.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073; Institute of Pathology (H.F.), Division of Clinical and Functional Anatomy, Medical University of Innsbruck, A-6020 Innsbruck, Austria; St Josef Hospital of the Ruhr-University Bochum (J.J.M.), 44791 Bochum, Germany; and Division of Endocrinology, Diabetes, Metabolism, and Nutrition (R.A.R.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Megan Cory
- Larry L. Hillblom Islet Research Center (A.E.B., S.D., J.H., M.C., K.Z., P.C.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073; Institute of Pathology (H.F.), Division of Clinical and Functional Anatomy, Medical University of Innsbruck, A-6020 Innsbruck, Austria; St Josef Hospital of the Ruhr-University Bochum (J.J.M.), 44791 Bochum, Germany; and Division of Endocrinology, Diabetes, Metabolism, and Nutrition (R.A.R.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Kylie Zeng
- Larry L. Hillblom Islet Research Center (A.E.B., S.D., J.H., M.C., K.Z., P.C.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073; Institute of Pathology (H.F.), Division of Clinical and Functional Anatomy, Medical University of Innsbruck, A-6020 Innsbruck, Austria; St Josef Hospital of the Ruhr-University Bochum (J.J.M.), 44791 Bochum, Germany; and Division of Endocrinology, Diabetes, Metabolism, and Nutrition (R.A.R.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Helga Fritsch
- Larry L. Hillblom Islet Research Center (A.E.B., S.D., J.H., M.C., K.Z., P.C.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073; Institute of Pathology (H.F.), Division of Clinical and Functional Anatomy, Medical University of Innsbruck, A-6020 Innsbruck, Austria; St Josef Hospital of the Ruhr-University Bochum (J.J.M.), 44791 Bochum, Germany; and Division of Endocrinology, Diabetes, Metabolism, and Nutrition (R.A.R.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Juris J Meier
- Larry L. Hillblom Islet Research Center (A.E.B., S.D., J.H., M.C., K.Z., P.C.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073; Institute of Pathology (H.F.), Division of Clinical and Functional Anatomy, Medical University of Innsbruck, A-6020 Innsbruck, Austria; St Josef Hospital of the Ruhr-University Bochum (J.J.M.), 44791 Bochum, Germany; and Division of Endocrinology, Diabetes, Metabolism, and Nutrition (R.A.R.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Robert A Rizza
- Larry L. Hillblom Islet Research Center (A.E.B., S.D., J.H., M.C., K.Z., P.C.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073; Institute of Pathology (H.F.), Division of Clinical and Functional Anatomy, Medical University of Innsbruck, A-6020 Innsbruck, Austria; St Josef Hospital of the Ruhr-University Bochum (J.J.M.), 44791 Bochum, Germany; and Division of Endocrinology, Diabetes, Metabolism, and Nutrition (R.A.R.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center (A.E.B., S.D., J.H., M.C., K.Z., P.C.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-7073; Institute of Pathology (H.F.), Division of Clinical and Functional Anatomy, Medical University of Innsbruck, A-6020 Innsbruck, Austria; St Josef Hospital of the Ruhr-University Bochum (J.J.M.), 44791 Bochum, Germany; and Division of Endocrinology, Diabetes, Metabolism, and Nutrition (R.A.R.), Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
40
|
Arrojo e Drigo R, Ali Y, Diez J, Srinivasan DK, Berggren PO, Boehm BO. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia 2015. [PMID: 26215305 DOI: 10.1007/s00125-015-3699-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human genome project and its search for factors underlying human diseases has fostered a major human research effort. Therefore, unsurprisingly, in recent years we have observed an increasing number of studies on human islet cells, including disease approaches focusing on type 1 and type 2 diabetes. Yet, the field of islet and diabetes research relies on the legacy of rodent-based investigations, which have proven difficult to translate to humans, particularly in type 1 diabetes. Whole islet physiology and pathology may differ between rodents and humans, and thus a comprehensive cross-species as well as species-specific view on islet research is much needed. In this review we summarise the current knowledge of interspecies islet cytoarchitecture, and discuss its potential impact on islet function and future perspectives in islet pathophysiology research.
Collapse
Affiliation(s)
- Rafael Arrojo e Drigo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore
| | - Juan Diez
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore
| | - Dinesh Kumar Srinivasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore
| | - Per-Olof Berggren
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore.
- Imperial College London, London, UK.
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska University Hospital L1, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Level 4, 637 553, Singapore, Singapore.
- Imperial College London, London, UK.
- Department of Internal Medicine 1, Ulm University Medical Centre, Ulm, Germany.
| |
Collapse
|
41
|
Tiwari S, Mishra S, Kaul J. Prenatal development of the human endocrine pancreas: A morphological and immunohistochemical study. J ANAT SOC INDIA 2015. [DOI: 10.1016/j.jasi.2015.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Dolenšek J, Rupnik MS, Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets 2015; 7:e1024405. [PMID: 26030186 PMCID: PMC4589993 DOI: 10.1080/19382014.2015.1024405] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023] Open
Abstract
Mice remain the most studied animal model in pancreas research. Since the findings of this research are typically extrapolated to humans, it is important to understand both similarities and differences between the 2 species. Beside the apparent difference in size and macroscopic organization of the organ in the 2 species, there are a number of less evident and only recently described differences in organization of the acinar and ductal exocrine tissue, as well as in the distribution, composition, and architecture of the endocrine islets of Langerhans. Furthermore, the differences in arterial, venous, and lymphatic vessels, as well as innervation are potentially important. In this article, the structure of the human and the mouse pancreas, together with the similarities and differences between them are reviewed in detail in the light of conceivable repercussions for basic research and clinical application.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
| |
Collapse
|
43
|
Wu J, Yang X, Chen B, Xu X. Pancreas β cell regeneration and type 1 diabetes (Review). Exp Ther Med 2014; 9:653-657. [PMID: 25667609 PMCID: PMC4316911 DOI: 10.3892/etm.2014.2163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/24/2014] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus, which may cause hyperglycemia and a number of complications, mostly results from a deficiency of β cell mass (type 1 diabetes) or a limitation of β cell function (type 2 diabetes). Currently, enhancing β cell regeneration and increasing cell proliferation have not only been described in experimental diabetes models, but have also been proven to improve outcomes for patients with diabetes. Therefore, understanding the mechanisms controlling the development and regeneration of β cells in the human pancreas may be helpful for the treatment of β cell-deficient disease. In this review, we first introduce the various cell types in the adult pancreas and thereby clarify their functions and origins. Then, the known mechanisms of β cell development and expansion in the normal human pancreas are described. The potential mechanisms of β cell regeneration, including β cell self-replication, neogenesis from non-β cell precursors and transdifferentiation from α cells, are discussed in the next part. Finally, the ability of the pancreas to regenerate mature β cells is explored in pathological conditions, including type 1 diabetes, chronic pancreatitis and persistent hyperinsulinemic hypoglycemia of infancy.
Collapse
Affiliation(s)
- Jinxiao Wu
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Xiyan Yang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bin Chen
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Xiuping Xu
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| |
Collapse
|
44
|
Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, Bernal-Mizrachi E. Natural history of β-cell adaptation and failure in type 2 diabetes. Mol Aspects Med 2014; 42:19-41. [PMID: 25542976 DOI: 10.1016/j.mam.2014.12.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) is a complex disease characterized by β-cell failure in the setting of insulin resistance. The current evidence suggests that genetic predisposition, and environmental factors can impair the capacity of the β-cells to respond to insulin resistance and ultimately lead to their failure. However, genetic studies have demonstrated that known variants account for less than 10% of the overall estimated T2D risk, suggesting that additional unidentified factors contribute to susceptibility of this disease. In this review, we will discuss the different stages that contribute to the development of β-cell failure in T2D. We divide the natural history of this process in three major stages: susceptibility, β-cell adaptation and β-cell failure, and provide an overview of the molecular mechanisms involved. Further research into mechanisms will reveal key modulators of β-cell failure and thus identify possible novel therapeutic targets and potential interventions to protect against β-cell failure.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, University of Michigan, Ann Arbor, MI, USA
| | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, University of Michigan, Ann Arbor, MI, USA
| | - Corentin Cras-Méneur
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, University of Michigan, Ann Arbor, MI, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Mezza T, Kulkarni RN. The regulation of pre- and post-maturational plasticity of mammalian islet cell mass. Diabetologia 2014; 57:1291-303. [PMID: 24824733 DOI: 10.1007/s00125-014-3251-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/24/2014] [Indexed: 12/17/2022]
Abstract
Regeneration of mature cells that produce functional insulin represents a major focus and a challenge of current diabetes research aimed at restoring beta cell mass in patients with most forms of diabetes, as well as in ageing. The capacity to adapt to diverse physiological states during life and the consequent ability to cope with increased metabolic demands in the normal regulation of glucose homeostasis is a distinctive feature of the endocrine pancreas in mammals. Both beta and alpha cells, and presumably other islet cells, are dynamically regulated via nutrient, neural and/or hormonal activation of growth factor signalling and the post-transcriptional modification of a variety of genes or via the microbiome to continually maintain a balance between regeneration (e.g. proliferation, neogenesis) and apoptosis. Here we review key regulators that determine islet cell mass at different ages in mammals. Understanding the chronobiology and the dynamics and age-dependent processes that regulate the relationship between the different cell types in the overall maintenance of an optimally functional islet cell mass could provide important insights into planning therapeutic approaches to counter and/or prevent the development of diabetes.
Collapse
Affiliation(s)
- Teresa Mezza
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, 1 Joslin Place, Boston, MA, 02215, USA
| | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW We highlight some of the major recent advances in characterizing human pancreas development and endocrine cell differentiation. RECENT FINDINGS Extensive research efforts have helped to define crucial events in the mouse pancreas organogenesis. Information gained from these studies was used to develop human embryonic stem cell (hESC) differentiation protocols with the goal of generating functional glucose-responsive, insulin-producing human β-cells. In spite of remarkable progress in hESC differentiation, current protocols based on mouse developmental biology can produce human β-cells only in vivo. New differentiation markers and recently generated reagents may provide an unprecedented opportunity to develop a high-density expression map of human fetal pancreas and pancreatic islets that could serve as a reference point for in vitro hESC differentiation. SUMMARY Integrating an increased knowledge of human pancreas development into hESC differentiation protocols has the potential to greatly advance our ability to generate functional insulin-producing cells for β-cell replacement therapy.
Collapse
Affiliation(s)
- Fong Cheng Pan
- Department of Cell and Developmental Biology and Vanderbilt University Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Abstract
Development of the human pancreas is well-known to involve tightly controlled differentiation of pancreatic precursors to mature cells that express endocrine- or exocrine-specific protein products. However, details of human pancreatic development at the ultrastructural level are limited. The present study analyzed 8-20 week fetal age human pancreata using scanning and transmission electron microscopy (TEM), TEM immunogold and double or triple immunofluorescence staining. Primary organization of islets and acini occurred during the developmental period examined. Differentiating endocrine and exocrine cells developed from the ductal tubules and subsequently formed isolated small clusters. Extracellular matrix fibers and proteins accumulated around newly differentiated cells during their migration and cluster formation. Glycogen expression was robust in ductal cells of the pancreas from 8-15 weeks of fetal age; however, this became markedly reduced at 20 weeks, with a concomitant increase in acinar cell glycogen content. Insulin secretory granules transformed from being dense and round at 8 weeks to distinct geometric (multilobular, crystalline) structures by 14-20 weeks. Initially many of the differentiating endocrine cells were multihormonal and contained polyhormonal granules; by 20 weeks, monohormonal cells were in the majority. Interestingly, certain secretory granules in the early human fetal pancreatic cells showed positivity for both exocrine (amylase) and endocrine proteins. This combined ultrastructural and immunohistochemical study showed that, during early developmental stages, the human pancreas contains differentiating epithelial cells that associate closely with the extracellular matrix, have dynamic glycogen expression patterns and contain polyhormonal as well as mixed endocrine/exocrine granules.
Collapse
Affiliation(s)
- Matthew Riopel
- Children's Health Research Institute; Western University; London, ON, Canada
- Departments of Pathology; Western University; London, ON, Canada
| | - Jinming Li
- Children's Health Research Institute; Western University; London, ON, Canada
- Department of Physiology & Pharmacology; Western University; London, ON, Canada
| | - George F Fellows
- Department of Obstetrics and Gynecology; Western University; London, ON, Canada
| | | | - Rennian Wang
- Children's Health Research Institute; Western University; London, ON, Canada
- Department of Physiology & Pharmacology; Western University; London, ON, Canada
- Department of Medicine; Western University; London, ON, Canada
- Correspondence to: Rennian Wang;
| |
Collapse
|
48
|
Abstract
Islets form in the pancreas after the first endocrine cells have arisen as either single cells or small cell clusters in the epithelial cords. These cords constitute the developing pancreas in one of its earliest recognizable stages. Islet formation begins at the time the cords transform into a branching ductal system, continues while the ductal system expands, and finally stops before the exocrine tissue of ducts and acini reaches its final expansion. Thus, islets continuously arise from founder cells located in the branching and ramifying ducts. Islets arising from proximal duct cells locate between the exocrine lobules, develop strong autonomic and sensory innervations, and pass their blood to efferent veins (insulo-venous efferent system). Islets arising from cells of more distal ducts locate within the exocrine lobules, respond to nerve impulses ending at neighbouring blood vessels, and pass their blood to the surrounding acini (insulo-acinar portal system). Consequently, the section of the ductal system from which an islet arises determines to a large extent its future neighbouring tissue, architecture, properties, and functions. We note that islets interlobular in position are frequently found in rodents (rats and mice), whereas intralobularly-located, peripheral duct islets prevail in humans and cattle. Also, we expound on bovine foetal Laguesse islets as a prominent foetal type of type 1 interlobular neuro-insular complexes, similar to neuro-insular associations frequently found in rodents. Finally, we consider the probable physiological and pathophysiological implications of the different islet positions within and between species.
Collapse
|
49
|
Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 2013; 62:2595-604. [PMID: 23524641 PMCID: PMC3712065 DOI: 10.2337/db12-1686] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Controversy exists regarding the potential regenerative influences of incretin therapy on pancreatic β-cells versus possible adverse pancreatic proliferative effects. Examination of pancreata from age-matched organ donors with type 2 diabetes mellitus (DM) treated by incretin therapy (n = 8) or other therapy (n = 12) and nondiabetic control subjects (n = 14) reveals an ∼40% increased pancreatic mass in DM treated with incretin therapy, with both increased exocrine cell proliferation (P < 0.0001) and dysplasia (increased pancreatic intraepithelial neoplasia, P < 0.01). Pancreata in DM treated with incretin therapy were notable for α-cell hyperplasia and glucagon-expressing microadenomas (3 of 8) and a neuroendocrine tumor. β-Cell mass was reduced by ∼60% in those with DM, yet a sixfold increase was observed in incretin-treated subjects, although DM persisted. Endocrine cells costaining for insulin and glucagon were increased in DM compared with non-DM control subjects (P < 0.05) and markedly further increased by incretin therapy (P < 0.05). In conclusion, incretin therapy in humans resulted in a marked expansion of the exocrine and endocrine pancreatic compartments, the former being accompanied by increased proliferation and dysplasia and the latter by α-cell hyperplasia with the potential for evolution into neuroendocrine tumors.
Collapse
Affiliation(s)
- Alexandra E Butler
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Marchetti P, Bugliani M, Boggi U, Masini M, Marselli L. The pancreatic beta cells in human type 2 diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:288-309. [PMID: 23393686 DOI: 10.1007/978-1-4614-5441-0_22] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bell-cell (beta-cell) impairment is central to the development and progression of human diabetes, as a result of the combined effects of genetic and acquired factors. Reduced islet number and/or reduced beta cells amount in the pancreas of individuals with Type 2 diabetes have been consistently reported. This is mainly due to increased beta cell death, not adequately compensated for by regeneration. In addition, several quantitative and/or qualitative defects of insulin secretion have been observed in Type 2 diabetes, both in vivo and ex vivo with isolated islets. All this is associated with modifications of islet cell gene and protein expression. With the identification of several susceptible Type 2 diabetes loci, the role of genotype in affecting beta-cell function and survival has been addressed in a few studies and the relationships between genotype and beta-cell phenotype investigated. Among acquired factors, the importance of metabolic insults (in particular glucotoxicity and lipotoxicity) in the natural history of beta-cell damage has been widely underlined. Continuous improvements in our knowledge of the beta cells in human Type 2 diabetes will lead to more targeted and effective strategies for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | | | | | | | | |
Collapse
|