1
|
Preciado-Ortiz ME, Martínez-López E, García-Iglesias T, Gembe-Olivarez G, Torres-Castillo N, Llamas-Covarrubias IM, Rivera-Valdés JJ. 10-Gingerol reduces cytoplasmic lipid droplets and induces lipolysis in 3T3-L1 adipocytes. Adipocyte 2024; 13:2411453. [PMID: 39385585 PMCID: PMC11468046 DOI: 10.1080/21623945.2024.2411453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Obesity is a globally prevalent metabolic disorder characterized by an increased number of adipose cells and excessive fat in adipocytes. Herbal medicines, such as ginger, have shown potential in treating obesity by inhibiting adipogenesis and reducing adipocyte hypertrophy. Ginger contains bioactive compounds, particularly gingerols, which have demonstrated anti-adipogenic and/or lipolytic effects. However, research on the effects of 10-gingerol on adipose tissue remains limited. This study aimed to evaluate the effect of 10-gingerol on lipid content, lipolysis markers, and the expression of genes related to lipid metabolism in 3T3-L1 adipocytes. Three groups were analyzed: a negative control (preadipocytes), a positive control (mature adipocytes), and a group treated with 10-gingerol (10-G). Results showed that 10-G reduced lipid accumulation by 42.16% in mature adipocytes compared to the control, without affecting cell viability. Additionally, 10-G increased glycerol release and downregulated lipogenic genes such as Pparγ, Acaca, Fabp4, and Mtor, while upregulating genes related to fatty acid oxidation, including Cebpα, Cpt1a, Lipe, and Prkaa1. In conclusion, 10-gingerol reduces lipid content in mature adipocytes by downregulating lipogenesis, increasing lipolysis, and enhancing fatty acid oxidation.
Collapse
Affiliation(s)
- María Elizabeth Preciado-Ortiz
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Trinidad García-Iglesias
- Instituto de Investigación en Cáncer de la Infancia y Adolescencia, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Gildardo Gembe-Olivarez
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
- Doctorado en Ciencias de la Biología Molecular en Medicina, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Nathaly Torres-Castillo
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Iris Monserrat Llamas-Covarrubias
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Juan José Rivera-Valdés
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
2
|
Mansoori S, Ho MYM, Ng KKW, Cheng KKY. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2024:e13856. [PMID: 39455059 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Melody Yuen-Man Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kelvin Kwun-Wang Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Ning M, Chen L, Wang Y, Xu A, Zeng R, Zhang H, Wang B, Liu X. The Role of FTO Risk Haplotype in Overweight/Obesity and Lipid Parameters-Results From the Central China Population Study. Int J Endocrinol 2024; 2024:8062791. [PMID: 39483856 PMCID: PMC11527535 DOI: 10.1155/2024/8062791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Background: Fat mass and obesity-associated gene (FTO) genes rs9939609 is strongly associated with obesity and rs17817449 is an important and potential gene for obesity, have been well established. We aim to evaluate the relationship between FTO gene and overweight/obesity and confirm the influence of obesity on glucose and lipid metabolism parameters. Methods: We investigated 183 normal weight subjects and 193 individuals with overweight/obesity. Firstly, the effect of overweight/obesity on glucose and lipid metabolism parameters was analyzed. Then, the FTO genes rs9939609 and rs17817449 were counted to explore whether polymorphisms were associated with overweight/obesity and metabolic parameters. Results: Significant differences existed in glucose and lipid parameters between the group with overweight/obesity and control group. The rs9939609 and rs17817449 were strongly correlated with overweight/obesity. Haplotype analysis revealed that GA and GT haplotypes had 2.99 and 1.81 fold risk of overweight/obesity. FTO polymorphism also has effects on glucose and lipid metabolism parameters. Conclusions: There is a linkage imbalance between rs9939609 and rs17817449 in a Central China general population cohort, which also reflected the influence of FTO gene on the risk of overweight/obesity and total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL) disorders. The new findings could provide new clues to predict obesity and metabolic diseases.
Collapse
Affiliation(s)
- Meiwei Ning
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Heilongjiang University of Chinese Medicine Jiamusi College, Jiamusi, China
| | - Lin Chen
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Aohong Xu
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Rong Zeng
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Huan Zhang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Boda Wang
- Clinical Laboratory, Huangjiahu Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Xiang Liu
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
4
|
Chamas L, Seugnet I, Tanvé O, Enderlin V, Clerget-Froidevaux MS. The Downregulation of the Liver Lipid Metabolism Induced by Hypothyroidism in Male Mice: Metabolic Flexibility Favors Compensatory Mechanisms in White Adipose Tissue. Int J Mol Sci 2024; 25:10792. [PMID: 39409121 PMCID: PMC11477049 DOI: 10.3390/ijms251910792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
In mammals, the maintenance of energy homeostasis relies on complex mechanisms requiring tight synchronization between peripheral organs and the brain. Thyroid hormones (THs), through their pleiotropic actions, play a central role in these regulations. Hypothyroidism, which is characterized by low circulating TH levels, slows down the metabolism, which leads to a reduction in energy expenditure as well as in lipid and glucose metabolism. The objective of this study was to evaluate whether the metabolic deregulations induced by hypothyroidism could be avoided through regulatory mechanisms involved in metabolic flexibility. To this end, the response to induced hypothyroidism was compared in males from two mouse strains, the wild-derived WSB/EiJ mouse strain characterized by a diet-induced obesity (DIO) resistance due to its high metabolic flexibility phenotype and C57BL/6J mice, which are prone to DIO. The results show that propylthiouracil (PTU)-induced hypothyroidism led to metabolic deregulations, particularly a reduction in hepatic lipid synthesis in both strains. Furthermore, in contrast to the C57BL/6J mice, the WSB/EiJ mice were resistant to the metabolic dysregulations induced by hypothyroidism, mainly through enhanced lipid metabolism in their adipose tissue. Indeed, WSB/EiJ mice compensated for the decrease in hepatic lipid synthesis by mobilizing lipid reserves from white adipose tissue. Gene expression analysis revealed that hypothyroidism stimulated the hypothalamic orexigenic circuit in both strains, but there was unchanged melanocortin 4 receptor (Mc4r) and leptin receptor (LepR) expression in the hypothyroid WSB/EiJ mice strain, which reflects their adaptability to maintain their body weight, in contrast to C57BL/6J mice. Thus, this study showed that WSB/EiJ male mice displayed a resistance to the metabolic dysregulations induced by hypothyroidism through compensatory mechanisms. This highlights the importance of metabolic flexibility in the ability to adapt to disturbed circulating TH levels.
Collapse
Affiliation(s)
- Lamis Chamas
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| | - Isabelle Seugnet
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| | - Odessa Tanvé
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| | - Valérie Enderlin
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), CNRS UMR 9197, Université Paris-Saclay, 91400 Saclay, France;
| | - Marie-Stéphanie Clerget-Froidevaux
- CNRS/MNHN UMR 7221 “Physiologie Moléculaire et Adaptation” Phyma, Department of “Life Adaptations” Muséum National d’Histoire Naturelle 57, Rue Cuvier CP 32, 75231 Paris, CEDEX 05, France
| |
Collapse
|
5
|
Gamal M, Awad MA, Shadidizaji A, Ibrahim MA, Ghoneim MA, Warda M. In vivo and in silico insights into the antidiabetic efficacy of EVOO and hydroxytyrosol in a rat model. J Nutr Biochem 2024; 135:109775. [PMID: 39370013 DOI: 10.1016/j.jnutbio.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Extra virgin olive oil (EVOO) has a putative antidiabetic activity mostly attributed to its polyphenol Hydroxytyrosol. In this study, we explored the antidiabetic effects of EVOO and Hydroxytyrosol on an in vivo T2D-simulated rat model as well as in in silico study. Wistar rats were divided into four groups. The first group served as a normal control (NC), while type 2 diabetes (T2D) was induced in the remaining groups using a high-fat diet (HFD) for 12 weeks followed by a single dose of streptozotocin (STZ, 30 mg/kg). One diabetic group remained untreated (DC), while the other two groups received an 8-week treatment with either EVOO (90 g/kg of the diet) (DO) or Hydroxytyrosol (17.3 mg/kg of the diet) (DH). The DC group exhibited hallmark features of established T2D, including elevated fasting blood glucose levels, impaired glucose tolerance, increased HOMA-IR, widespread downregulation of insulin receptor expression, heightened oxidative stress, and impaired β-cell function. In contrast, treatments with EVOO and Hydroxytyrosol elicited an antidiabetic response, characterized by improved glucose tolerance, as indicated by accelerated blood glucose clearance. Systematic analysis revealed the underlying antidiabetic mechanisms: both treatments enhanced insulin receptor expression in the liver and skeletal muscles, increased adiponectin levels, and mitigated oxidative stress. Moreover, while EVOO reduced intramyocellular lipids, Hydroxytyrosol restored adipose tissue insulin sensitivity and enhanced β-cell survival. Molecular docking and dynamics confirm Hydroxytyrosol's high affinity binding to PGC-1α, IRE-1α, and PPAR-γ, particularly IRE-1α, highlighting its potential to modulate diabetic signaling pathways. Collectively, these mechanisms highlight the putative antidiabetic role of EVOO and Hydroxytyrosol. Moreover, the favorable docking scores of Hydroxytyrosol with PGC-1α, IRE-1α, and PPAR-γ support the antidiabetic potential and offer promising avenues for further research and the development of novel antidiabetic therapies.
Collapse
Affiliation(s)
- Mahmoud Gamal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mohamed A Awad
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Magdy A Ghoneim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
Le DD, Kim E, Dang T, Lee J, Shin CH, Park JW, Lee SG, Seo JB, Lee M. Chemical Investigation and Regulation of Adipogenic Differentiation of Cultivated Moringa oleifera. Pharmaceuticals (Basel) 2024; 17:1310. [PMID: 39458951 PMCID: PMC11510418 DOI: 10.3390/ph17101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Moringa oleifera is a matrix plant with the high potential to cure several diseases with its medicinal and ethnopharmacological value and nutraceutical properties. In this study, we investigated the chemical and biological properties of this plant cultivated in our local region. Methods: Leaves, roots, seeds, stem bark, and twigs of oleifera were extracted and evaluated bioactivities targeting intracellular lipid accumulation and adipocyte differentiation in 3T3-L1 preadipocytes, and UHPLC-ESI-Orbitrap-MS/MS-Based molecular networking guided isolation and dereplication of metabolites from these extracts. Results: Five extracts of different organs of M. oleifera significantly stimulated intracellular lipid accumulation and adipocyte differentiation in 3T3-L1 preadipocytes in a concentration-dependent manner. These extracts markedly increased the expression of genes related to adipogenesis and lipogenesis. Notably, these extracts promoted peroxisome proliferator-activated receptor γ (PPARγ) activity and the expression of its target genes, including phosphoenolpyruvate carboxykinase, fatty acid-binding protein 4, and perilipin-2. These adipogenic and lipogenic effects of Moringa extracts through the regulation of PPARγ activity suggests their potential efficacy in preventing or treating type 2 diabetes. Furthermore, chemical investigation revealed high contents of phytonutrients as rich sources of secondary metabolites including glycosides, flavones, fatty acids, phenolics, and other compounds. In addition, in silico studies on major components of these extracts revealed the bioavailability of major components through their binding affinity to respective proteins targeting adipocyte differentiation.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (T.D.)
| | - Eunbin Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
| | - Thinhulinh Dang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (T.D.)
| | - Jiseok Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
| | - Choon Ho Shin
- Suncheonman Moringa Union, Suncheon 57922, Jeonnam, Republic of Korea;
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
| | - Seul-gi Lee
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea;
- Glocal University Project Team, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea
| | - Jong Bae Seo
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
- Department of Biosciences, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (T.D.)
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea;
| |
Collapse
|
7
|
Ren H, Zhang R, Zhang H, Bian C. Ecnomotopic olfactory receptors in metabolic regulation. Biomed Pharmacother 2024; 179:117403. [PMID: 39241572 DOI: 10.1016/j.biopha.2024.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Olfactory receptors are seven-transmembrane G-protein-coupled receptors on the cell surface. Over the past few decades, evidence has been mounting that olfactory receptors are not unique to the nose and that their ectopic existence plays an integral role in extranasal diseases. Coupled with the discovery of many natural or synthetic odor-compound ligands, new roles of ecnomotopic olfactory receptors regulating blood glucose, obesity, blood pressure, and other metabolism-related diseases are emerging. Many well-known scientific journals have called for attention to extranasal functions of ecnomotopic olfactory receptors. Thus, the prospect of ecnomotopic olfactory receptors in drug target research has been greatly underestimated. Here, we have provided an overview for the role of ecnomotopic olfactory receptors in metabolic diseases, focusing on their effects on various metabolic tissues, and discussed the possible molecular biological and pathophysiological mechanisms, which provide the basis for drug development and clinical application targeting the function of ecnomotopic olfactory receptors via literature machine learning and screening.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haibo Zhang
- Departments of Infectious Disease, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
8
|
Pescari D, Mihuta MS, Bena A, Stoian D. Comparative Analysis of Dietary Habits and Obesity Prediction: Body Mass Index versus Body Fat Percentage Classification Using Bioelectrical Impedance Analysis. Nutrients 2024; 16:3291. [PMID: 39408258 PMCID: PMC11479188 DOI: 10.3390/nu16193291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Obesity remains a widely debated issue, often criticized for the limitations in its identification and classification. This study aims to compare two distinct systems for classifying obesity: body mass index (BMI) and body fat percentage (BFP) as assessed by bioelectrical impedance analysis (BIA). By examining these measures, the study seeks to clarify how different metrics of body composition influence the identification of obesity-related risk factors. Methods: The study enrolled 1255 adults, comprising 471 males and 784 females, with a mean age of 36 ± 12 years. Participants exhibited varying degrees of weight status, including optimal weight, overweight, and obesity. Body composition analysis was conducted using the TANITA Body Composition Analyzer BC-418 MA III device (T5896, Tokyo, Japan), evaluating the following parameters: current weight, basal metabolic rate (BMR), adipose tissue (%), muscle mass (%), and hydration status (%). Results: Age and psychological factors like cravings, fatigue, stress, and compulsive eating were significant predictors of obesity in the BMI model but not in the BFP model. Additionally, having a family history of diabetes was protective in the BMI model (OR: 0.33, 0.11-0.87) but increased risk in the BFP model (OR: 1.66, 1.01-2.76). The BMI model demonstrates exceptional predictive ability (AUC = 0.998). In contrast, the BFP model, while still performing well, exhibits a lower AUC (0.975), indicating slightly reduced discriminative power compared to the BMI model. Conclusions: BMI classification demonstrates superior predictive accuracy, specificity, and sensitivity. This suggests that BMI remains a more reliable measure for identifying obesity-related risk factors compared to the BFP model.
Collapse
Affiliation(s)
- Denisa Pescari
- Department of Doctoral Studies, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (D.S.)
| | - Monica Simina Mihuta
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (D.S.)
| | - Andreea Bena
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (D.S.)
- Discipline of Endocrinology, Second Department of Internal Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dana Stoian
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (D.S.)
- Discipline of Endocrinology, Second Department of Internal Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
9
|
Felemban AH, Alshammari GM, Yagoub AEA, Saleh A, Yahya MA. Royal Jelly Exerts a Potent Anti-Obesity Effect in Rats by Activating Lipolysis and Suppressing Adipogenesis. Nutrients 2024; 16:3174. [PMID: 39339774 PMCID: PMC11435164 DOI: 10.3390/nu16183174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objective: This study examined the anti-obesity effect of royal jelly (RJ) in rats fed with a high-fat diet by targeting the major pathways involved in adipogenesis and lipolysis. In addition, it examined whether this effect is AMPK-dependent. Methods: Five groups of adult male albino rats were used (n = 6 each as 1); the control rats were fed with a normal diet (2.9 kcal), and the other groups were as follows: control + RJ (300 mg/kg), HFD (4.75 kcal), HFD + RJ (300 mg/kg), and HFD + RJ (300 mg/kg) + dorsomorphin (an AMPK inhibitor) (0.2 mg/kg). Results: RJ was administered orally to all rats. With no changes in food and energy intake, RJ significantly reduced gains in body weight, fat weight, body mass index (BMI), the Lee index, abdominal circumference (AC), and the adiposity index (AI). It also reduced fasting glucose and insulin levels, HOMA-IR, and the circulatory levels of free fatty acids (FFAs), triglycerides, cholesterol, and LDL-c in the HFD-fed rats. RJ also increased serum glycerol levels and adiponectin levels, but reduced the serum levels of leptin, IL-6, and TNF-α. Moreover, RJ reduced the secretion of IL-6 and TNF-α from isolated WAT. At the tissue level, the HFD + RJ rats exhibited a smaller adipocyte size compared to the HFD rats. At the molecular level, RJ increased the phosphorylation of AMPK, SREBP1, and ACC-1 and increased the mRNA and protein levels of HSL and ATG in the WAT of the HFD rats. In concomitance, RJ increased the mRNA levels of PGC-α1, reduced the protein levels of PPARγ, and repressed the transcriptional activities of PPARγ, SREBP1, and C/EBPαβ in the WAT of these rats. All the aforementioned effects of RJ were prevented by co-treatment with dorsomorphin. Conclusions: RJ exerts a potent anti-obesity effect in rats that is mediated by the AMPk-dependent suppression of WAT adipogenesis and the stimulation of lipolysis.
Collapse
Affiliation(s)
- Alaa Hasanain Felemban
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Saleh
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Preciado-Ortiz ME, Martínez-López E, Pedraza-Chaverri J, Medina-Campos ON, Rodríguez-Echevarría R, Reyes-Pérez SD, Rivera-Valdés JJ. 10-Gingerol Increases Antioxidant Enzymes and Attenuates Lipopolysaccharide-Induced Inflammation by Modulating Adipokines in 3T3-L1 Adipocytes. Antioxidants (Basel) 2024; 13:1093. [PMID: 39334752 PMCID: PMC11429246 DOI: 10.3390/antiox13091093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Obesity increases reactive oxygen species production and alters adipokines levels, resulting in a low-grade chronic inflammation state, which contributes to tissue metabolic dysfunction. 10-gingerol, a phenol present in ginger, has shown potential anti-obesogenic effects in vitro. However, the antioxidant and anti-inflammatory properties of 10-gingerol have not been approached. The aim of this study was to investigate the effects of 10-gingerol on antioxidant enzymes' expression and adipokine production in 3T3-L1 adipocytes in response to lipopolysaccharide (LPS)-induced inflammation. METHODS 10-gingerol antioxidant capacity was assessed through Oxygen Radical Absorbance Capacity (ORAC) , Ferric Reducing Antioxidant Power (FRAP), and radical scavenging activity of 2,2-diphenyl-2-picrylhydrazyl (DPPH) assays. 3T3-L1 cells were differentiated and stimulated with 100 ng/mL LPSs. Then, 15 µg/mL 10-gingerol was added for 48 h. The mRNA expression and protein abundance of antioxidant enzymes were evaluated by qPCR and Western blot, respectively. Adipokine levels were determined by ELISA. RESULTS 10-gingerol showed low FRAP and DPPH values but a moderate ORAC value. Moreover, 10-gingerol increased Gpx1 and Sod1 but downregulated Cat expression. Additionally, 10-gingerol significantly increased CAT and GPx1 levels but not SOD-1. Finally, adiponectin and leptin concentrations were increased while resistin and tumor necrosis factor alpha (TNFα) were decreased by 10-gingerol. CONCLUSIONS 10-gingerol presented antioxidant potential by increasing antioxidant enzymes and attenuated LPS-induced inflammation by modulating adipokines in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- María Elizabeth Preciado-Ortiz
- Doctorado en Ciencias de la Nutrición Traslacional, Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Roberto Rodríguez-Echevarría
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| | - Samantha Desireé Reyes-Pérez
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
- Doctorado en Ciencias en Biología Molecular en Medicina, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Juan José Rivera-Valdés
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.R.-E.); (S.D.R.-P.)
| |
Collapse
|
11
|
Lee JC, Ray RM, Scott TA. Prospects and challenges of tissue-derived extracellular vesicles. Mol Ther 2024; 32:2950-2978. [PMID: 38910325 PMCID: PMC11403234 DOI: 10.1016/j.ymthe.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Extracellular vesicles (EVs) are considered a vital component of cell-to-cell communication and represent a new frontier in diagnostics and a means to identify pathways for therapeutic intervention. Recently, studies have revealed the importance of tissue-derived EVs (Ti-EVs), which are EVs present in the interstitial spaces between cells, as they better represent the underlying physiology of complex, multicellular tissue microenvironments in biology and disease. EVs are native, lipid bilayer membraned nano-sized particles produced by all cells that are packaged with varied functional biomolecules including proteins, lipids, and nucleic acids. They are implicated in short- and long-range cellular communication and may elicit functional responses in recipient cells. To date, studies have often utilized cultured cells or biological fluids as a source for EVs that do not capture local molecular signatures of the tissue microenvironment. Recent work utilizing Ti-EVs has elucidated novel biomarkers for disease and provided insights into disease mechanisms that may lead to the development of novel therapeutic agents. Still, there are considerable challenges facing current studies. This review explores the vast potential and unique challenges for Ti-EV research and provides considerations for future studies that seek to advance this exciting field.
Collapse
Affiliation(s)
- Justin C Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roslyn M Ray
- Gene Therapy Research, CSL Behring, Pasadena, CA 91106, USA
| | - Tristan A Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, Duarte, CA 91010, USA.
| |
Collapse
|
12
|
Gupta MK, Gouda G, Vadde R. Relation Between Obesity and Type 2 Diabetes: Evolutionary Insights, Perspectives and Controversies. Curr Obes Rep 2024; 13:475-495. [PMID: 38850502 DOI: 10.1007/s13679-024-00572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE OF REVIEW Since the mid-twentieth century, obesity and its related comorbidities, notably insulin resistance (IR) and type 2 diabetes (T2D), have surged. Nevertheless, their underlying mechanisms remain elusive. Evolutionary medicine (EM) sheds light on these issues by examining how evolutionary processes shape traits and diseases, offering insights for medical practice. This review summarizes the pathogenesis and genetics of obesity-related IR and T2D. Subsequently, delving into their evolutionary connections. Addressing limitations and proposing future research directions aims to enhance our understanding of these conditions, paving the way for improved treatments and prevention strategies. RECENT FINDINGS Several evolutionary hypotheses have been proposed to unmask the origin of obesity-related IR and T2D, e.g., the "thrifty genotype" hypothesis suggests that certain "thrifty genes" that helped hunter-gatherer populations efficiently store energy as fat during feast-famine cycles are now maladaptive in our modern obesogenic environment. The "drifty genotype" theory suggests that if thrifty genes were advantageous, they would have spread widely, but proposes genetic drift instead. The "behavioral switch" and "carnivore connection" hypotheses propose insulin resistance as an adaptation for a brain-dependent, low-carbohydrate lifestyle. The thrifty phenotype theory suggests various metabolic outcomes shaped by genes and environment during development. However, the majority of these hypotheses lack experimental validation. Understanding why ancestral advantages now predispose us to diseases may aid in drug development and prevention of disease. EM helps us to understand the evolutionary relation between obesity-related IR and T2D. But still gaps and contradictions persist. Further interdisciplinary research is required to elucidate complete mechanisms.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack, 753 006, Odisha, India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| |
Collapse
|
13
|
Nunes-Souza V, Alenina N, Qadri F, Mosienko V, Santos RAS, Bader M, Rabelo LA. ACE2 Knockout Mice Are Resistant to High-Fat Diet-Induced Obesity in an Age-Dependent Manner. Int J Mol Sci 2024; 25:9515. [PMID: 39273464 PMCID: PMC11394789 DOI: 10.3390/ijms25179515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) presents pleiotropic actions. It hydrolyzes angiotensin I (AngI) and angiotensin II (AngII) into angiotensin-(1-9) (Ang-(1-9)) and angiotensin-(1-7) (Ang-(1-7)), respectively, as well as participates in tryptophan uptake in the gut and in COVID-19 infection. Our aim was to investigate the metabolic effect of ACE2 deletion in young adults and elderly mice under conditions of high calorie intake. Male C57Bl/6 (WT) and ACE2-deficient (ACE2-/y) mice were analyzed at the age of 6 and 12 months under standard diet (StD) and high-fat diet (HFD). Under StD, ACE2-/y showed lower body weight and fat depots, improved glucose tolerance, enhanced insulin sensitivity, higher adiponectin, and lower leptin levels compared to WT. This difference was even more pronounced after HFD in 6-month-old mice, but, interestingly, it was blunted at the age of 12 months. ACE2-/y presented a decrease in adipocyte diameter and lipolysis, which reflected in the upregulation of lipid metabolism in white adipose tissue through the increased expression of genes involved in lipid regulation. Under HFD, both food intake and total energy expenditure were decreased in 6-month-old ACE2-/y mice, accompanied by an increase in liquid intake, compared to WT mice, fed either StD or HFD. Thus, ACE2-/y mice are less susceptible to HFD-induced obesity in an age-dependent manner, as well as represent an excellent animal model of human lipodystrophy and a tool to investigate new treatments.
Collapse
Affiliation(s)
- Valéria Nunes-Souza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Valentina Mosienko
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 10117 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - Luiza Antas Rabelo
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil
- Laboratory of Cardiovascular Reactivity, Metabolic Syndrome Center, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57072-900, Brazil
| |
Collapse
|
14
|
Sessler TM, Beier JP, Villwock S, Jonigk D, Dahl E, Ruhl T. Genetic deletion of ITIH5 leads to increased development of adipose tissue in mice. Biol Res 2024; 57:58. [PMID: 39198923 PMCID: PMC11360682 DOI: 10.1186/s40659-024-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Adipocytokines play a pivotal role in maintaining adipose tissue homeostasis by regulating cellular metabolism, proliferation, differentiation, and secretory activity. These soluble factors are relevant components for healthy adipose tissue, while their deficiency is closely associated with the development of obesity and related metabolic diseases, e.g., chronic inflammation. In human adipose tissue, inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is expressed in proportion to the development of adipose tissue, i.e., the individual's BMI. Thus, ITIH5 has been proposed to be an inert marker of human obesity. However, when applied to adipose stem cells in vitro, recombinant (r)ITIH5 protein inhibited proliferation and adipogenesis, suggesting that ITIH5 negatively affects the development of fat mass. We now tested the role of ITIH5 in vivo and compared ITIH5+/+ wildtype with ITIH5-/- knockout mice. RESULTS Genetic deletion of ITIH5 significantly increased adipose tissue mass relative to animal bodyweight (p < 0.05). Next, we characterized adipose stem cells (ASCs) from both genotypes in vitro. ITIH5-/- cells exhibited increased proliferation and adipogenic differentiation (p < 0.001), which could explain the increase in adipose tissue in vivo. Furthermore, ASCs from ITIH5-/- animals were more responsive to stimulation with inflammatory mediators, i.e., these cells released greater amounts of IL-6 and MCP-1 (p < 0.001). Importantly, the application of the rITIH5 protein reversed the observed knockout effects in ASCs. CONCLUSIONS Our data suggest that ITIH5 potently regulates adipose tissue development and homeostasis by modulating ASC biology in mice. In addition, the effect of the rITIH5 protein underscores its potential as a therapeutic agent to correct the adipose tissue dysregulation often associated with obesity and metabolic disorders.
Collapse
Affiliation(s)
- Thomas M Sessler
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophia Villwock
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Danny Jonigk
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hanover, Germany
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
15
|
Webb GM, Sauter KA, Takahashi D, Kirigiti M, Bader L, Lindsley SR, Blomenkamp H, Zaro C, Shallman M, McGuire C, Hofmeister H, Avila U, Pessoa C, Hwang JM, McCullen A, Humkey M, Reed J, Gao L, Winchester L, Fletcher CV, Varlamov O, Brown TT, Sacha JB, Kievit P, Roberts CT. Effect of metabolic status on response to SIV infection and antiretroviral therapy in nonhuman primates. JCI Insight 2024; 9:e181968. [PMID: 39115937 PMCID: PMC11457846 DOI: 10.1172/jci.insight.181968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Current antiretroviral therapy (ART) regimens efficiently limit HIV replication, thereby improving the life expectancy of people living with HIV; however, they also cause metabolic side effects. The ongoing obesity epidemic has resulted in more people with metabolic comorbidities at the time of HIV infection, yet the effect of preexisting metabolic dysregulation on infection sequelae and response to ART is unclear. Here, to investigate the impact of preexisting obesity and insulin resistance on acute infection and subsequent long-term ART, we infected a cohort of lean and obese adult male macaques with SIV and administered ART. The responses of lean and obese macaques to SIV and ART were similar with respect to plasma and cell-associated viral loads, ART drug levels in plasma and tissues, SIV-specific immune responses, adipose tissue and islet morphology, and colon inflammation, with baseline differences between lean and obese groups largely maintained. Both groups exhibited a striking depletion of CD4+ T cells from adipose tissue that did not recover with ART. However, differential responses to SIV and ART were observed for body weight, omental adipocyte size, and the adiponectin/leptin ratio, a marker of cardiometabolic risk. Thus, obesity and insulin resistance had limited effects on multiple responses to acute SIV infection and ART, while several factors that underlie long-term metabolic comorbidities were influenced by prior obesity and insulin resistance. These studies provide the foundation for future investigations into the efficacy of adjunct therapies such as metformin and glucagon-like peptide-1 receptor agonists in the prevention of metabolic comorbidities in people living with HIV.
Collapse
Affiliation(s)
| | - Kristin A. Sauter
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Diana Takahashi
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Melissa Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Lindsay Bader
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Sarah R. Lindsley
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Hannah Blomenkamp
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Cicely Zaro
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Molly Shallman
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Casey McGuire
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Heather Hofmeister
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Uriel Avila
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | | | | | | | | | - Jason Reed
- Division of Pathobiology and Immunology, and
| | - Lina Gao
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lee Winchester
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Courtney V. Fletcher
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Oleg Varlamov
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Todd T. Brown
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| | - Charles T. Roberts
- Division of Metabolic Health and Disease, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon, USA
| |
Collapse
|
16
|
Nayak A, Panda SS, Dwivedi I, Meena S, Aich P. Role of gut microbial-derived metabolites and other select agents on adipocyte browning. Biochem Biophys Res Commun 2024; 737:150518. [PMID: 39142136 DOI: 10.1016/j.bbrc.2024.150518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
AIMS Metabolic disease is a multifaceted condition characterized by the disruption of numerous metabolic parameters within the host. Its prevalence has surged significantly in recent years and it has become a prominent non-communicable disease worldwide. The effect of gut microbiota on various beige fat induction is well studied, while the mechanisms behind the link remain unclear. Given that gut microbiota-derived metabolites (meta-metabolites) secreted in the gut serve as a key mode of communication with their host through direct circulation or indirect host physiology modification, understanding the effect of meta-metabolites on adipose tissue is essential. METHODOLOGY In our previous in-vivo studies, we observed a correlation between gut microbiota and the formation of beige fat. In this study, we further aimed to validate this correlation by treating the adipocyte cell line (3T3-L1) with meta-metabolites collected from the cecum of mice exhibiting beige adipose tissue formation. Additionally, we treated the adipocyte cell line with known beige fat inducers (L-Rhamnose and Ginsenoside) to assess meta-metabolites' efficacy on beige fat formation. KEY FINDINGS Upon treatment with the meta-metabolites from the antibiotic-treated mice, we observed a significant increase in lipid metabolism and beige-specific gene expression. Analyzing the metabolites in these cells revealed that a set of metabolites potentially govern adipocytes, contributing to a metabolically active state. These effects were at par or even better than those of cells treated with L-Rhamnose or Ginsenoside. SIGNIFICANCE This research sheds light on the intricate interplay between microbial metabolites and adipose tissue, offering valuable clues for understanding and potentially manipulating these processes for therapeutic purposes.
Collapse
Affiliation(s)
- Akankshya Nayak
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Swati Sagarika Panda
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Isha Dwivedi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Shivani Meena
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, 752050, India; Homi Bhabha National Institute, Training School Complex, Mumbai, 400094, India; Centre for Interdisciplinary Science (CIS), National Institute of Science Education and Research (NISER), Jatni, 752050, India.
| |
Collapse
|
17
|
Marycz K, Wiatrak B, Irwin-Houston JM, Marcinkowska K, Mularczyk M, Bourebaba L. Sex hormone binding globulin (SHBG) modulates mitochondrial dynamics in PPARγ-depleted equine adipose derived stromal cells. J Mol Med (Berl) 2024; 102:1015-1036. [PMID: 38874666 PMCID: PMC11269461 DOI: 10.1007/s00109-024-02459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/28/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that promotes adipogenesis, lipid uptake and storage, insulin sensitivity, and glucose metabolism. Hence, defects in PPARγ have been associated to the development of metabolic disorders. Sex hormone-binding globulin (SHBG) is a glycoprotein primarily produced in the liver that regulates the bioavailability of sex hormones. Alike PPARγ, low SHBG levels have been correlated with insulin resistance and associated endocrine abnormalities. Therefore, this study aimed to verify whether SHBG may restore depleted PPARγ functions and thus serve as a new candidate for the management of metabolic conditions. A model of equine adipose-derived stromal cells (EqASCs) has been used, in which a PPARγ silencing and SHBG treatment have been achieved to determine the changes in cell viability, premature senescence, oxidative stress, and mitochondrial functions. Obtained data demonstrated that loss in PPARγ triggers cell apoptosis which is not reversed by SHBG application. Moreover, PPARγ knockdown cells exhibited premature senescence, which has been substantially alleviated by SHBG concomitantly to increased BAX/BCL2 ratio, suggesting a possible effect on senescence-induced apoptosis resistance. Interestingly, PPARγ silencing induced a significant alteration in mitochondrial membrane potential as well as the expression of dynamics and metabolism-related markers. SHBG treatment enabled to ameliorate the transmembrane potential, to normalize the expression levels of key dynamics and metabolism mediators, and to restore the protein levels of PINK, which is critically involved in mitochondria recycling machinery. Presented data suggest that SHBG may provide new mechanistic insights into the regulation of PPARγ functions, and thus offers a preliminary picture on a possible SHBG-PPARγ metabolic crosstalk. KEY MESSAGES : PPARγ is a transcription factor that tightly regulates cell metabolism. Low SHBG levels correlate with insulin resistance and associated endocrine abnormalities. PPARγ silencing reduces cell viability, triggers premature senescence and profound mitochondrial failure in equine ASCs. SHBG protein reverses senescent phenotype and apoptosis resistance of PPARγ- ASCs. SHBG improves mitochondrial dynamics and metabolism following PPARγ knockdown. SHBG might serve as a PPARγ potential mimicking agent for the modulation of ASCs metabolic processes.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95516, USA
| | - Benita Wiatrak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Jennifer M Irwin-Houston
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Klaudia Marcinkowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
| |
Collapse
|
18
|
Barbosa S, Pedrosa MB, Ferreira R, Moreira-Gonçalves D, Santos LL. The impact of chemotherapy on adipose tissue remodeling: The molecular players involved in this tissue wasting. Biochimie 2024; 223:1-12. [PMID: 38537739 DOI: 10.1016/j.biochi.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.
Collapse
Affiliation(s)
- Samuel Barbosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.
| | - Mafalda Barbosa Pedrosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal
| |
Collapse
|
19
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
20
|
Stojchevski R, Chandrasekaran P, Hadzi-Petrushev N, Mladenov M, Avtanski D. Adipose Tissue Dysfunction Related to Climate Change and Air Pollution: Understanding the Metabolic Consequences. Int J Mol Sci 2024; 25:7849. [PMID: 39063092 PMCID: PMC11277516 DOI: 10.3390/ijms25147849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
21
|
Delgadillo-Velázquez J, Alday E, Aguirre-García MM, Canett-Romero R, Astiazaran-Garcia H. The association between the size of adipocyte-derived extracellular vesicles and fasting serum triglyceride-glucose index as proxy measures of adipose tissue insulin resistance in a rat model of early-stage obesity. Front Nutr 2024; 11:1387521. [PMID: 39010858 PMCID: PMC11247012 DOI: 10.3389/fnut.2024.1387521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Obesity is a complex disease that predisposes individuals to cardiometabolic alterations. It leads to adipose tissue (AT) dysfunction, which triggers insulin resistance (IR). This suggests that people with obesity develop local IR first and systemic IR later. AT secretes extracellular vesicles, which may be physiopathologically associated with the development of IR. Our aim was to evaluate the effect of a high-fat diet on different parameters of adiposity in a rat model of early-stage obesity and to determine if these parameters are associated with markers of systemic IR. In addition, we sought to explore the relationship between fasting blood measures of IR (Triglycerides/High Density Lipoprotein-cholesterol [TAG/HDL-c] and Triglycerides-Glucose Index [TyG Index]) with the size of adipocyte-derived extracellular vesicles (adEV). Methods We used a model of diet-induced obesity for ten weeks in Wistar rats exposed to a high-fat diet. Final weight gain was analyzed by Dual X-ray absorptiometry. Visceral obesity was measured as epididymal AT weight. IR was evaluated with fasting TyG Index & TAG/HDL-c, and adEV were isolated from mature adipocytes on ceiling culture. Results In the high-fat diet group, glucose and triglyceride blood concentrations were higher in comparison to the control group (Log2FC, 0.5 and 1.5 times higher, respectively). The values for TyG Index and adEV size were different between the control animals and the high-fat diet group. Multiple linear regression analyses showed that adEV size can be significantly associated with the TyG Index value, when controlling for epididymal AT weight. Conclusion Our results show that lipid and glucose metabolism, as well as the size and zeta potential of adEV are already altered in early-stage obesity and that adEV size can be significantly associated with liver and systemic IR, estimated by TyG Index.
Collapse
Affiliation(s)
| | - Efrain Alday
- Departmento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - María Magdalena Aguirre-García
- Laboratorio de Inmunología Molecular y Cardiopatías, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Canett-Romero
- Departamento de Investigación y Posgrado en Alimentos, Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - Humberto Astiazaran-Garcia
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
- Departmento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| |
Collapse
|
22
|
Dhanyalayam D, Thangavel H, Sidrat T, Oswal N, Lizardo K, Mauro M, Zhao X, Xue HH, Desai JV, Nagajyothi JF. The Influence of Body Fat Dynamics on Pulmonary Immune Responses in Murine Tuberculosis: Unraveling Sex-Specific Insights. Int J Mol Sci 2024; 25:6823. [PMID: 38999932 PMCID: PMC11241512 DOI: 10.3390/ijms25136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.
Collapse
Affiliation(s)
- Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Neelam Oswal
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michael Mauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
23
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
24
|
Vidović V, Novaković I, Damnjanović T, Radić-Savić Z, Vidović S, Škrbić R, Maksimović N. Galectin 3 rs4644 gene polymorphism is associated with metabolic traits in Serbian adolescent population. J Med Biochem 2024; 43:445-450. [PMID: 39139163 PMCID: PMC11318064 DOI: 10.5937/jomb0-47180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/01/2023] [Indexed: 08/15/2024] Open
Abstract
Background Among many genes which have been analyzed to understand obesity and related metabolic traits among children and adolescents, not many studies are conducted on LGALS3 gene, especially in population of children. A positive correlation of circulating galectin 3 serum levels with impaired blood glucose, high blood pressure and higher values of serum lipids and was found in general population. The aim was to investigate possible association of rs4644 with body mass index, glycaemia, and lipid profile in Serbian adolescents. Methods The study included 72 boys and 79 girls, 14-15 years of age. Among boys 51 (67.1%) had normal values of BMI, 11 (14.5%) were overweight, and 14 (18.4%) were obese. Among girls, 53 (63.9%) had normal BMI, 16 (19.3%) were overweight, and 14 (16.9%) were obese. Diabetes type 1 or 2, genetic syndromes, generalized inflammation, cardiovascular and malignant diseases were criteria for exclusion. Genotyping was performed by Real time PCR.
Collapse
Affiliation(s)
- Vanja Vidović
- University of Banja Luka, Faculty of Medicine, Department of Human Genetics, Banja Luka, Bosnia and Herzegovina
| | - Ivana Novaković
- University of Belgrade, Faculty of Medicine, Institute of Human Genetics, Belgrade
| | - Tatjana Damnjanović
- University of Belgrade, Faculty of Medicine, Institute of Human Genetics, Belgrade
| | - Zana Radić-Savić
- University of Banja Luka, Faculty of Medicine, Department of Medical Biochemistry, Banja Luka, Bosnia and Herzegovina
| | - Stojko Vidović
- University of Banja Luka, Faculty of Medicine, Department of Human Genetics, Banja Luka, Bosnia and Herzegovina
| | - Ranko Škrbić
- University of Banja Luka, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Banja Luka, Bosnia and Herzegovina
| | - Nela Maksimović
- University of Belgrade, Faculty of Medicine, Institute of Human Genetics, Belgrade
| |
Collapse
|
25
|
Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 2024; 29:95. [PMID: 38606791 PMCID: PMC11025031 DOI: 10.3892/mmr.2024.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, TNF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction.
Collapse
Affiliation(s)
- Fani-Niki Varra
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
- Medical School, Dimocritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michail Varras
- Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece
| | | | | |
Collapse
|
26
|
Kim K, Wann J, Kim HG, So J, Rosen ED, Roh HC. Uncoupling protein 1-driven Cre (Ucp1-Cre) is expressed in the epithelial cells of mammary glands and various non-adipose tissues. Mol Metab 2024; 84:101948. [PMID: 38677508 PMCID: PMC11070624 DOI: 10.1016/j.molmet.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE Uncoupling protein 1 (UCP1), a mitochondrial protein responsible for nonshivering thermogenesis in adipose tissue, serves as a distinct marker for thermogenic brown and beige adipocytes. Ucp1-Cre mice are thus widely used to genetically manipulate these thermogenic adipocytes. However, evidence suggests that UCP1 may also be expressed in non-adipocyte cell types. In this study, we investigated the presence of UCP1 expression in different mouse tissues that have not been previously reported. METHODS We employed Ucp1-Cre mice crossed with Cre-inducible transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mice to investigate Ucp1-Cre expression in various tissues of adult female mice and developing embryos. Tamoxifen-inducible Ucp1-CreERT2 mice crossed with NuTRAP mice were used to assess active Ucp1 expression in adult mice. Immunostaining, RNA analysis, and single-cell/nucleus RNA-seq (sc/snRNA-seq) data analysis were performed to determine the expression of endogenous UCP1 and Ucp1-Cre-driven reporter expression. We also investigated the impact of UCP1 deficiency on mammary gland development and function using Ucp1-knockout (KO) mice. RESULTS Ucp1-Cre expression was observed in the mammary glands within the inguinal white adipose tissue of female Ucp1-Cre; NuTRAP mice. Ucp1-Cre was activated during embryonic development in various tissues, including mammary glands, as well as in the brain, kidneys, eyes, and ears, specifically in epithelial cells in these organs. However, Ucp1-CreERT2 showed no or only partial activation in these tissues of adult mice, indicating the potential for low or transient expression of endogenous Ucp1. While sc/snRNA-seq data suggest potential expression of UCP1 in mammary epithelial cells in adult mice and humans, Ucp1-KO female mice displayed normal mammary gland development and function. CONCLUSIONS Our findings reveal widespread Ucp1-Cre expression in various non-adipose tissue types, starting during early development. These results highlight the importance of exercising caution when interpreting data and devising experiments involving Ucp1-Cre mice.
Collapse
Affiliation(s)
- Kyungchan Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie Wann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jisun So
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
Kuptawach K, Noitung S, Buakeaw A, Puthong S, Sawangkeaw R, Sangtanoo P, Srimongkol P, Reamtong O, Choowongkomon K, Karnchanatat A. Lemon basil seed-derived peptide: Hydrolysis, purification, and its role as a pancreatic lipase inhibitor that reduces adipogenesis by downregulating SREBP-1c and PPAR-γ in 3T3-L1 adipocytes. PLoS One 2024; 19:e0301966. [PMID: 38776280 PMCID: PMC11111035 DOI: 10.1371/journal.pone.0301966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 05/24/2024] Open
Abstract
The purpose of this study is to assess the bioactive peptides derived from the defatted lemon basil seeds hydrolysate (DLSH) for their ability to inhibit pancreatic lipase, decrease intracellular lipid accumulation, and reduce adipogenesis. Response surface methodology (RSM) was employed to optimize trypsin hydrolysis conditions for maximizing lipase inhibitory activity (LI). A hydrolysis time of 387.06 min, a temperature of 49.03°C, and an enzyme concentration of 1.61% w/v, resulted in the highest LI with an IC50 of 368.07 μg/mL. The ultrafiltration of the protein hydrolysate revealed that the fraction below 0.65kDa exhibited the greatest LI potential. Further purification via RP-HPLC identified the Gly-Arg-Ser-Pro-Asp-Thr-His-Ser-Gly (GRSPDTHSG) peptide in the HPLC fraction F1 using mass spectrometry. The peptide was synthesized and demonstrated LI with an IC50 of 0.255 mM through a non-competitive mechanism, with a constant (Ki) of 0.61 mM. Docking studies revealed its binding site with the pancreatic lipase-colipase complex. Additionally, GRSPDTHSG inhibited lipid accumulation in 3T3-L1 cells in a dose-dependent manner without cytotoxic effects. Western blot analysis indicated downregulation of PPAR-γ and SREBP-1c levels under GRSPDTHSG treatment, while an increase in AMPK-α phosphorylation was observed, suggesting a role in regulating cellular lipid metabolism. Overall, GRSPDTHSG demonstrates potential in attenuating lipid absorption and adipogenesis, suggesting a prospective application in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Kittisak Kuptawach
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sajee Noitung
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Ruengwit Sawangkeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Chen J, Kuang S. A Notch toward Progenitor D(G)FRentiation: Defining a NOTCH-PDGFR axis in brown adipogenesis. Dev Cell 2024; 59:1231-1232. [PMID: 38772342 DOI: 10.1016/j.devcel.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Brown adipocytes are found in several fat depots, however, the origins and contributions of different lineages of adipogenic progenitor cells (APCs) to these depots are unclear. In this issue of Developmental Cell, Shi et al. show that platelet-derived growth factor receptor β (PDGFRβ)-lineage and T-box transcription factor 18 (TBX18)-lineage APCs differentially contribute to brown adipogenesis across these depots.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
29
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
30
|
Thangavel H, Dhanyalayam D, Kim M, Lizardo K, Sidrat T, Lopez JG, Wang X, Bansal S, Nagajyothi JF. Adipocyte-released adipomes in Chagas cardiomyopathy: Impact on cardiac metabolic and immune regulation. iScience 2024; 27:109672. [PMID: 38660407 PMCID: PMC11039351 DOI: 10.1016/j.isci.2024.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic Trypanosoma cruzi infection leads to Chagas cardiomyopathy (CCM), with varying manifestations such as inflammatory hypertrophic cardiomyopathy, arrhythmias, and dilated cardiomyopathy. The factors responsible for the increasing risk of progression to CCM are not fully understood. Previous studies link adipocyte loss to CCM progression, but the mechanism triggering CCM pathogenesis remains unexplored. Our study uncovers that T. cruzi infection triggers adipocyte apoptosis, leading to the release of extracellular vesicles named "adipomes". We developed an innovative method to isolate intact adipomes from infected mice's adipose tissue and plasma, showing they carry unique lipid cargoes. Large and Small adipomes, particularly plasma-derived infection-associated L-adipomes (P-ILA), regulate immunometabolic signaling and induce cardiomyopathy. P-ILA treatment induces hypertrophic cardiomyopathy in wild-type mice and worsens cardiomyopathy severity in post-acute-infected mice by regulating adipogenic/lipogenic and mitochondrial functions. These findings highlight adipomes' pivotal role in promoting inflammation and impairing myocardial function during cardiac remodeling in CD.
Collapse
Affiliation(s)
- Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michelle Kim
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | | | - Xiang Wang
- Rutgers University Molecular Imaging Core (RUMIC), Rutgers Translational Sciences, Piscataway, NJ 08854, USA
| | - Shivani Bansal
- Departnment of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jyothi F. Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
31
|
Mooli RGR, Zhu B, Khan SR, Nagati V, Michealraj KA, Jurczak MJ, Ramakrishnan SK. Epigenetically active chromatin in neonatal iWAT reveals GABPα as a potential regulator of beige adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1385811. [PMID: 38765953 PMCID: PMC11099907 DOI: 10.3389/fendo.2024.1385811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Background Thermogenic beige adipocytes, which dissipate energy as heat, are found in neonates and adults. Recent studies show that neonatal beige adipocytes are highly plastic and contribute to >50% of beige adipocytes in adults. Neonatal beige adipocytes are distinct from recruited beige adipocytes in that they develop independently of temperature and sympathetic innervation through poorly defined mechanisms. Methods We characterized the neonatal beige adipocytes in the inguinal white adipose tissue (iWAT) of C57BL6 postnatal day 3 and 20 mice (P3 and P20) by imaging, genome-wide RNA-seq analysis, ChIP-seq analysis, qRT-PCR validation, and biochemical assays. Results We found an increase in acetylated histone 3 lysine 27 (H3K27ac) on the promoter and enhancer regions of beige-specific gene UCP1 in iWAT of P20 mice. Furthermore, H3K27ac ChIP-seq analysis in the iWAT of P3 and P20 mice revealed strong H3K27ac signals at beige adipocyte-associated genes in the iWAT of P20 mice. The integration of H3K27ac ChIP-seq and RNA-seq analysis in the iWAT of P20 mice reveal epigenetically active signatures of beige adipocytes, including oxidative phosphorylation and mitochondrial metabolism. We identify the enrichment of GA-binding protein alpha (GABPα) binding regions in the epigenetically active chromatin regions of the P20 iWAT, particularly on beige genes, and demonstrate that GABPα is required for beige adipocyte differentiation. Moreover, transcriptomic analysis and glucose oxidation assays revealed increased glycolytic activity in the neonatal iWAT from P20. Conclusions Our findings demonstrate that epigenetic mechanisms regulate the development of peri-weaning beige adipocytes via GABPα. Further studies to better understand the upstream mechanisms that regulate epigenetic activation of GABPα and characterization of the metabolic identity of neonatal beige adipocytes will help us harness their therapeutic potential in metabolic diseases.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bokai Zhu
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute of University of Pittsburgh Medical Center (UPMC), University of Pittsburgh, Pittsburgh, PA, United States
| | - Saifur R. Khan
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Centre, Pittsburgh, PA, United States
- Center for Immunometabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Veerababu Nagati
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sadeesh K. Ramakrishnan
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Dabrowski P, Rasmus M, Jundzill A, Drewa T, Pokrywczynska M. A comparison of five methods to maximize RNA and DNA isolation yield from adipose tissue. PeerJ 2024; 12:e17071. [PMID: 38711623 PMCID: PMC11073010 DOI: 10.7717/peerj.17071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/18/2024] [Indexed: 05/08/2024] Open
Abstract
Adipose tissue in the human body occurs in various forms with different functions. It is an energy store, a complex endocrine organ, and a source of cells used in medicine. Many molecular analyses require the isolation of nucleic acids, which can cause some difficulties connected with the large amount of lipids in adipocytes. Ribonucleic acid isolation is particularly challenging due to its low stability and easy degradation by ribonucleases. The study aimed to compare and evaluate five RNA and DNA isolation methods from adipose tissue. The tested material was subcutaneous porcine adipose tissue subjected to different homogenization methods and RNA or DNA purification. A mortar and liquid nitrogen or ceramic beads were used for homogenization. The organic extraction (TriPure Reagent), spin columns with silica-membrane (RNeasy Mini Kit or High Pure PCR Template Preparation Kit), and the automatic MagNA Pure system were used for the purification. Five combinations were compared for RNA and DNA isolation. Obtained samples were evaluated for quantity and quality. The methods were compared in terms of yield (according to tissue mass), purity (A260/280 and A260/230), and nucleic acid degradation (RNA Integrity Number, RIN; DNA Integrity Number, DIN). The results were analyzed statistically. The average RNA yield was highest in method I, which used homogenization with ceramic beads and organic extraction. Low RNA concentration didn't allow us to measure degradation for all samples in method III (homogenization with ceramic beads and spin-column purification). The highest RNA quality was achieved with method IV using homogenization in liquid nitrogen and spin column purification, which makes it the most effective for RNA isolation from adipose tissue. Required values of DNA yield, purity, and integrity were achieved only with spin column-based methods (III and IV). The most effective method for DNA isolation from adipose tissue is method III, using spin-columns without additional homogenization.
Collapse
Affiliation(s)
- Pawel Dabrowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
33
|
Moinuddin A, Poznanski SM, Portillo AL, Monteiro JK, Ashkar AA. Metabolic adaptations determine whether natural killer cells fail or thrive within the tumor microenvironment. Immunol Rev 2024; 323:19-39. [PMID: 38459782 DOI: 10.1111/imr.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Natural Killer (NK) cells are a top contender in the development of adoptive cell therapies for cancer due to their diverse antitumor functions and ability to restrict their activation against nonmalignant cells. Despite their success in hematologic malignancies, NK cell-based therapies have been limited in the context of solid tumors. Tumor cells undergo various metabolic adaptations to sustain the immense energy demands that are needed to support their rapid and uncontrolled proliferation. As a result, the tumor microenvironment (TME) is depleted of nutrients needed to fuel immune cell activity and contains several immunosuppressive metabolites that hinder NK cell antitumor functions. Further, we now know that NK cell metabolic status is a main determining factor of their effector functions. Hence, the ability of NK cells to withstand and adapt to these metabolically hostile conditions is imperative for effective and sustained antitumor activity in the TME. With this in mind, we review the consequences of metabolic hostility in the TME on NK cell metabolism and function. We also discuss tumor-like metabolic programs in NK cell induced by STAT3-mediated expansion that adapt NK cells to thrive in the TME. Finally, we examine how other approaches can be applied to enhance NK cell metabolism in tumors.
Collapse
Affiliation(s)
- Adnan Moinuddin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Sophie M Poznanski
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ana L Portillo
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Schmid A, Pankuweit S, Vlacil AK, Koch S, Berge B, Gajawada P, Richter M, Troidl K, Schieffer B, Schäffler A, Grote K. Decreased circulating CTRP3 levels in acute and chronic cardiovascular patients. J Mol Med (Berl) 2024; 102:667-677. [PMID: 38436713 PMCID: PMC11055757 DOI: 10.1007/s00109-024-02426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
C1q/TNF-related protein 3 (CTRP3) represents an adipokine with various metabolic and immune-regulatory functions. While circulating CTRP3 has been proposed as a potential biomarker for cardiovascular disease (CVD), current data on CTRP3 regarding coronary artery disease (CAD) remains partially contradictory. This study aimed to investigate CTRP3 levels in chronic and acute settings such as chronic coronary syndrome (CCS) and acute coronary syndrome (ACS). A total of 206 patients were classified into three groups: CCS (n = 64), ACS having a first acute event (ACS-1, n = 75), and ACS having a recurrent acute event (ACS-2, n = 67). The control group consisted of 49 healthy individuals. ELISA measurement in peripheral blood revealed decreased CTRP3 levels in all patient groups (p < 0.001) without significant differences between the groups. This effect was exclusively observed in male patients. Females generally exhibited significantly higher CTRP3 plasma levels than males. ROC curve analysis in male patients revealed a valuable predictive potency of plasma CTRP3 in order to identify CAD patients, with a proposed cut-off value of 51.25 ng/mL. The sensitivity and specificity of prediction by CTRP3 were congruent for the subgroups of CCS, ACS-1, and ACS-2 patients. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings, with male mice exhibiting higher circulating CTRP3 levels than females. We conclude that circulating CTRP3 levels are decreased in both male CCS and ACS patients. Therefore, CTRP3 might be useful as a biomarker for CAD but not for distinguishing an acute from a chronic setting. KEY MESSAGES: CTRP3 levels were found to be decreased in both male CCS and ACS patients compared to healthy controls. Plasma CTRP3 has a valuable predictive potency in order to identify CAD patients among men and is therefore proposed as a biomarker for CAD but not for distinguishing between acute and chronic settings. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings in men.
Collapse
Affiliation(s)
- Andreas Schmid
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany.
| | - Sabine Pankuweit
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | | | - Sören Koch
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Benedikt Berge
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Praveen Gajawada
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Kerstin Troidl
- Department of Life Sciences and Engineering, TH Bingen, University of Applied Sciences, Bingen Am Rhein, Germany
- Department of Vascular and Endovascular Surgery, Cardiovascular Surgery Clinic, University Hospital Frankfurt and Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | | | - Andreas Schäffler
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany
| | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
35
|
Mora I, Puiggròs F, Serras F, Gil-Cardoso K, Escoté X. Emerging models for studying adipose tissue metabolism. Biochem Pharmacol 2024; 223:116123. [PMID: 38484851 DOI: 10.1016/j.bcp.2024.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Understanding adipose metabolism is essential for addressing obesity and related health concerns. However, the ethical and scientific pressure to animal testing, aligning with the 3Rs, has triggered the implementation of diverse alternative models for analysing anomalies in adipose metabolism. In this review, we will address this issue from various perspectives. Traditional adipocyte cell cultures, whether animal or human-derived, offer a fundamental starting point. These systems have their merits but may not fully replicate in vivo complexity. Established cell lines are valuable for high-throughput screening but may lack the authenticity of primary-derived adipocytes, which closely mimic native tissue. To enhance model sophistication, spheroids have been introduced. These three-dimensional cultures better mimicking the in vivo microenvironment, enabling the study of intricate cell-cell interactions, gene expression, and metabolic pathways. Organ-on-a-chip (OoC) platforms take this further by integrating multiple cell types into microfluidic devices, simulating tissue-level functions. Adipose-OoC (AOoC) provides dynamic environments with applications spanning drug testing to personalized medicine and nutrition. Beyond in vitro models, genetically amenable organisms (Caenorhabditis elegans, Drosophila melanogaster, and zebrafish larvae) have become powerful tools for investigating fundamental molecular mechanisms that govern adipose tissue functions. Their genetic tractability allows for efficient manipulation and high-throughput studies. In conclusion, a diverse array of research models is crucial for deciphering adipose metabolism. By leveraging traditional adipocyte cell cultures, primary-derived cells, spheroids, AOoCs, and lower organism models, we bridge the gap between animal testing and a more ethical, scientifically robust, and human-relevant approach, advancing our understanding of adipose tissue metabolism and its impact on health.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain.
| |
Collapse
|
36
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
37
|
Hateley C, Olona A, Halliday L, Edin ML, Ko JH, Forlano R, Terra X, Lih FB, Beltrán-Debón R, Manousou P, Purkayastha S, Moorthy K, Thursz MR, Zhang G, Goldin RD, Zeldin DC, Petretto E, Behmoaras J. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity. EBioMedicine 2024; 103:105127. [PMID: 38677183 PMCID: PMC11061246 DOI: 10.1016/j.ebiom.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Charlotte Hateley
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Antoni Olona
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Laura Halliday
- Department of Surgery and Cancer, Imperial College London, UK
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Jeong-Hun Ko
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Ximena Terra
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Raúl Beltrán-Debón
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Penelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Sanjay Purkayastha
- Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK; University of Brunel, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Guodong Zhang
- Department of Nutrition, College of Agriculture and Environmental Sciences, 3135 Meyer Hall, One Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Enrico Petretto
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
38
|
Mann V, Sundaresan A, Shishodia S. Overnutrition and Lipotoxicity: Impaired Efferocytosis and Chronic Inflammation as Precursors to Multifaceted Disease Pathogenesis. BIOLOGY 2024; 13:241. [PMID: 38666853 PMCID: PMC11048223 DOI: 10.3390/biology13040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Overnutrition, driven by the consumption of high-fat, high-sugar diets, has reached epidemic proportions and poses a significant global health challenge. Prolonged overnutrition leads to the deposition of excessive lipids in adipose and non-adipose tissues, a condition known as lipotoxicity. The intricate interplay between overnutrition-induced lipotoxicity and the immune system plays a pivotal role in the pathogenesis of various diseases. This review aims to elucidate the consequences of impaired efferocytosis, caused by lipotoxicity-poisoned macrophages, leading to chronic inflammation and the subsequent development of severe infectious diseases, autoimmunity, and cancer, as well as chronic pulmonary and cardiovascular diseases. Chronic overnutrition promotes adipose tissue expansion which induces cellular stress and inflammatory responses, contributing to insulin resistance, dyslipidemia, and metabolic syndrome. Moreover, sustained exposure to lipotoxicity impairs the efferocytic capacity of macrophages, compromising their ability to efficiently engulf and remove dead cells. The unresolved chronic inflammation perpetuates a pro-inflammatory microenvironment, exacerbating tissue damage and promoting the development of various diseases. The interaction between overnutrition, lipotoxicity, and impaired efferocytosis highlights a critical pathway through which chronic inflammation emerges, facilitating the development of severe infectious diseases, autoimmunity, cancer, and chronic pulmonary and cardiovascular diseases. Understanding these intricate connections sheds light on potential therapeutic avenues to mitigate the detrimental effects of overnutrition and lipotoxicity on immune function and tissue homeostasis, thereby paving the way for novel interventions aimed at reducing the burden of these multifaceted diseases on global health.
Collapse
Affiliation(s)
| | | | - Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (V.M.); (A.S.)
| |
Collapse
|
39
|
Huang HYR, Badar S, Said M, Shah S, Bharadwaj HR, Ramamoorthy K, Alrawashdeh MM, Haroon F, Basit J, Saeed S, Aji N, Tse G, Roy P, Bardhan M. The advent of RNA-based therapeutics for metabolic syndrome and associated conditions: a comprehensive review of the literature. Mol Biol Rep 2024; 51:493. [PMID: 38580818 DOI: 10.1007/s11033-024-09457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Badar
- Department of Biomedical Science, The University of the West Scotland, Paisley, Scotland
| | - Mohammad Said
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siddiqah Shah
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Krishna Ramamoorthy
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, Brunswick, NJ, USA
| | | | | | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Narjiss Aji
- Faculty of Medicine and Health, McGill University, Montreal, QC, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Priyanka Roy
- Directorate of Factories, Department of Labour, Government of West Bengal, Kolkata, India
| | - Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
40
|
Wu Y, Xin J, Li X, Yang T, Liu Y, Zhao Y, Xie W, Jiang M. Repurposing lansoprazole to alleviate metabolic syndrome via PHOSPHO1 inhibition. Acta Pharm Sin B 2024; 14:1711-1725. [PMID: 38572109 PMCID: PMC10985025 DOI: 10.1016/j.apsb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Drug repurposing offers an efficient approach to therapeutic development. In this study, our bioinformatic analysis first predicted an association between obesity and lansoprazole (LPZ), a commonly prescribed drug for gastrointestinal ulcers. We went on to show that LPZ treatment increased energy expenditure and alleviated the high-fat diet-induced obesity, insulin resistance, and hepatic steatosis in mice. Treatment with LPZ elicited thermogenic gene expression and mitochondrial respiration in primary adipocytes, and induced cold tolerance in cold-exposed mice, suggesting the activity of LPZ in promoting adipose thermogenesis and energy metabolism. Mechanistically, LPZ is an efficient inhibitor of adipose phosphocholine phosphatase 1 (PHOSPHO1) and produces metabolic benefits in a PHOSPHO1-dependent manner. Our results suggested that LPZ may stimulate adipose thermogenesis by inhibiting the conversion of 2-arachidonoylglycerol-lysophosphatidic acid (2-AG-LPA) to 2-arachidonoylglycerol (2-AG) and reduce the activity of the thermogenic-suppressive cannabinoid receptor signaling. In summary, we have uncovered a novel therapeutic indication and mechanism of LPZ in managing obesity and its related metabolic syndrome, and identified a potential metabolic basis by which LPZ improves energy metabolism.
Collapse
Affiliation(s)
- Yingting Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiaqi Xin
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xinyu Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ting Yang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongsheng Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mengxi Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
41
|
Vermehren-Schmaedick A, Joshi S, Wagoner W, Norgard MA, Packwood W, Diba P, Mendez H, Fedorov LM, Rakshe S, Park B, Marks DL, Grossberg A, Luoh SW. Grb7 Ablation in Mice Improved Glycemic Control, Enhanced Insulin Signaling, and Increased Abdominal fat Mass in Females. Endocrinology 2024; 165:bqae045. [PMID: 38578949 PMCID: PMC11491842 DOI: 10.1210/endocr/bqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES Growth factor receptor bound protein 7 (GRB7) is a multidomain signaling adaptor. Members of the Grb7/10/14 family, specifically Gbrb10/14, have important roles in metabolism. We ablated the Grb7 gene in mice to examine its metabolic function. METHODS Global ablation of Grb7 in FVB/NJ mice was generated. Growth, organ weight, food intake, and glucose homeostasis were measured. Insulin signaling was examined by Western blotting. Fat and lean body mass was measured by nuclear magnetic resonance, and body composition after fasting or high-fat diet was assessed. Energy expenditure was measured by indirect calorimetry. Expression of adiposity and lipid metabolism genes was measured by quantitative PCR. RESULTS Grb7-null mice were viable, fertile, and without obvious phenotype. Grb7 ablation improved glycemic control and displayed sensitization to insulin signaling in the liver. Grb7-null females but not males had increased gonadal white adipose tissue mass. Following a 12-week high-fat diet, Grb7-null female mice gained fat body mass and developed relative insulin resistance. With fasting, there was less decrease in fat body mass in Grb7-null female mice. Female mice with Grb7 ablation had increased baseline food intake, less energy expenditure, and displayed a decrease in the expression of lipolysis and adipose browning genes in gonadal white adipose tissue by transcript and protein analysis. CONCLUSION Our study suggests that Grb7 is a negative regulator of glycemic control. Our results reveal a role for Grb7 in female mice in the regulation of the visceral adipose tissue mass, a powerful predictor of metabolic dysfunction in obesity.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sonali Joshi
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Oregon Health & Science University and Knight Cancer Institute, Portland, OR 97239, USA
| | - Wendy Wagoner
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health &Science University, Portland, OR 97239, USA
| | - William Packwood
- Small Animal Research Imaging Core, USR Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Parham Diba
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health &Science University, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Heike Mendez
- Brenden Colson Center for Pancreatic Care, Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lev M Fedorov
- Transgenic Mouse Models Shared Resource, USR Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shauna Rakshe
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Byung Park
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health &Science University, Portland, OR 97239, USA
| | - Aaron Grossberg
- Brenden Colson Center for Pancreatic Care, Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shiuh-Wen Luoh
- Veterans Administration Portland Health Care System, Division of Hospital and Specialty Medicine, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
42
|
Valle A, Castillo P, García-Rodríguez A, Palou A, Palou M, Picó C. Brain-Derived Neurotrophic Factor as a Potential Mediator of the Beneficial Effects of Myo-Inositol Supplementation during Suckling in the Offspring of Gestational-Calorie-Restricted Rats. Nutrients 2024; 16:980. [PMID: 38613013 PMCID: PMC11013066 DOI: 10.3390/nu16070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
This study aims to investigate the potential mechanisms underlying the protective effects of myo-inositol (MI) supplementation during suckling against the detrimental effects of fetal energy restriction described in animal studies, particularly focusing on the potential connections with BDNF signaling. Oral physiological doses of MI or the vehicle were given daily to the offspring of control (CON) and 25%-calorie-restricted (CR) pregnant rats during suckling. The animals were weaned and then fed a standard diet until 5 months of age, when the diet was switched to a Western diet until 7 months of age. At 25 days and 7 months of age, the plasma BDNF levels and mRNA expression were analyzed in the hypothalamus and three adipose tissue depots. MI supplementation, especially in the context of gestational calorie restriction, promoted BDNF secretion and signaling at a juvenile age and in adulthood, which was more evident in the male offspring of the CR dams than in females. Moreover, the CR animals supplemented with MI exhibited a stimulated anorexigenic signaling pathway in the hypothalamus, along with improved peripheral glucose management and enhanced browning capacity. These findings suggest a novel connection between MI supplementation during suckling, BDNF signaling, and metabolic programming, providing insights into the mechanisms underlying the beneficial effects of MI during lactation.
Collapse
Affiliation(s)
- Ana Valle
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Adrián García-Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| |
Collapse
|
43
|
Kim M, Paik JH, Lee H, Kim MJ, Eum SM, Kim SY, Choi S, Park HY, Jeong HG, Jeong TS. Ancistrocladus tectorius Extract Inhibits Obesity by Promoting Thermogenesis and Mitochondrial Dynamics in High-Fat Diet-Fed Mice. Int J Mol Sci 2024; 25:3743. [PMID: 38612554 PMCID: PMC11011498 DOI: 10.3390/ijms25073743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Root extracts of Ancistrocladus tectorius (AT), a shrub native to China, have been shown to have antiviral and antitumor activities, but the anti-obesity effects of AT aerial parts, mainly the leaves and stems, have not been investigated. This study is the first to investigate the anti-obesity effects and molecular mechanism of AT 70% ethanol extract in 3T3-L1 adipocytes and high-fat diet (HFD)-fed C57BL/6J mice. Treatment with AT extract inhibited lipid accumulation in 3T3-L1 cells and decreased the expression of adipogenesis-related genes. AT extract also upregulated the mRNA expression of genes related to mitochondrial dynamics in 3T3-L1 adipocytes. AT administration for 12 weeks reduced body weight and organ weights, including liver, pancreas, and white and brown adipose tissue, and improved plasma profiles such as glucose, insulin, homeostasis model assessment of insulin resistance, triglyceride (TG), and total cholesterol in HFD-fed mice. AT extract reduced HFD-induced hepatic steatosis with levels of liver TG and lipogenesis-related genes. AT extract upregulated thermogenesis-related genes such as Cidea, Pgc1α, Ucp1, Prdm16, Adrb1, and Adrb3 and mitochondrial dynamics-related genes such as Mff, Opa1, and Mfn2 in brown adipose tissue (BAT). Therefore, AT extract effectively reduced obesity by promoting thermogenesis and the mitochondrial dynamics of BAT in HFD-fed mice.
Collapse
Affiliation(s)
- Minju Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Hwa Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| | - Min Ji Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Soo Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Sook Jeong
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| |
Collapse
|
44
|
Brath MSG, Alsted SD, Sahakyan M, Mark EB, Frøkjær JB, Rasmussen HH, Østergaard LR, Christensen RB, Weinreich UM. Association between the Static and Dynamic Lung Function and CT-Derived Thoracic Skeletal Muscle Measurements-A Retrospective Analysis of a 12-Month Observational Follow-Up Pilot Study. Adv Respir Med 2024; 92:123-144. [PMID: 38525774 PMCID: PMC10961694 DOI: 10.3390/arm92020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) with low skeletal muscle mass and severe airway obstruction have higher mortality risks. However, the relationship between dynamic/static lung function (LF) and thoracic skeletal muscle measurements (SMM) remains unclear. This study explored patient characteristics (weight, BMI, exacerbations, dynamic/static LF, sex differences in LF and SMM, and the link between LF and SMM changes. METHODS A retrospective analysis of a 12-month prospective follow-up study patients with stable COPD undergoing standardized treatment, covering mild to severe stages, was conducted. The baseline and follow-up assessments included computed tomography and body plethysmography. RESULTS This study included 35 patients (17 females and 18 males). This study revealed that females had more stable LF but tended to have greater declines in SMM areas and indices than males (-5.4% vs. -1.9%, respectively), despite the fact that females were younger and had higher LF and less exacerbation than males. A multivariate linear regression showed a negative association between the inspiratory capacity/total lung capacity ratio (IC/TLC) and muscle fat area. CONCLUSIONS The findings suggest distinct LF and BC progression patterns between male and female patients with COPD. A low IC/TLC ratio may predict increased muscle fat. Further studies are necessary to understand these relationships better.
Collapse
Affiliation(s)
- Mia Solholt Godthaab Brath
- Respiratory Research Aalborg (Reaal), Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Department of Respiratory Diseases, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Sisse Dyrman Alsted
- Department of General Medicine, North Region Hospital–Hjørring, 9800 Hjørring, Denmark;
| | - Marina Sahakyan
- Department of Radiology, Aalborg University Hospital, 9000 Aalborg, Denmark; (M.S.); (R.B.C.)
| | - Esben Bolvig Mark
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Department of Radiology, Aalborg University Hospital, 9000 Aalborg, Denmark; (M.S.); (R.B.C.)
| | - Henrik Højgaard Rasmussen
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Danish Nutrition Science Center, Aalborg University Hospital, 9000 Aalborg, Denmark
- Center for Nutrition and Intestinal Failure, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Dietetic and Nutritional Research, Copenhagen University Hospitals, Herlev and Gentofte Hospitals, 2730 Herlev, Denmark
| | - Lasse Riis Østergaard
- Medical Informatics Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | | | - Ulla Møller Weinreich
- Respiratory Research Aalborg (Reaal), Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark; (E.B.M.); (J.B.F.); (H.H.R.)
- Department of Respiratory Diseases, Aalborg University Hospital, 9000 Aalborg, Denmark
| |
Collapse
|
45
|
Liang X, Liang J, Zhang S, Yan H, Luan T. Di-2-ethylhexyl phthalate disrupts hepatic lipid metabolism in obese mice by activating the LXR/SREBP-1c and PPAR-α signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169919. [PMID: 38199361 DOI: 10.1016/j.scitotenv.2024.169919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP), a widely utilized plasticizer, has been described as a potential obesogen based on in vivo disruption of hepatic lipid homeostasis and in vitro promotion of lipid accumulation. However, limited literature exists regarding the specific ramifications of DEHP exposure on obese individuals, and the precise mechanisms underlying the adverse effects of DEHP exposure remain unclear. This study aimed to assess the impact of DEHP on hepatic lipid metabolism in obese mice by comparing them to normal mice. Following a 10-week DEHP exposure period, the obese mice exhibited higher blood lipid levels, more severe hepatic steatosis, and more infiltrations of inflammatory cells in liver tissue than normal mice. Interestingly, the body weight of the mice exhibited no significant alteration. In addition, transcriptomic analyses revealed that both lipogenesis and fatty acid oxidation contributed to hepatic lipid metabolism dysregulation following DEHP exposure. More specifically, alterations in the transcription of genes associated with hepatic lipid metabolism were linked to the different responses to DEHP exposure observed in normal and obese mice. Additionally, the outcomes of in vitro experiments validated the in vivo findings and demonstrated that DEHP exposure could modify hepatic lipid metabolism in normal mice by activating the LXR/SREBP-1c signaling pathway to promote lipogenesis. At the same time, DEHP exposure led to inhibition of the Camkkβ/AMPK pathway to suppress β-fatty acid oxidation. Conversely, in obese mice, DEHP exposure was found to be associated with the stimulation of both lipogenesis and fatty acid oxidation via activation of the LXR/SREBP-1c and PPAR-α signaling pathways, respectively. The findings presented in this study first elucidate the contrasting mechanisms underlying DEHP-induced liver damage in obese and normal mice, thereby offering valuable insights into the pathogenesis of DEHP-induced liver damage in individuals with obesity.
Collapse
Affiliation(s)
- Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Jiehua Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengqi Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haowei Yan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China.; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
46
|
Lopez-Yus M, Hörndler C, Borlan S, Bernal-Monterde V, Arbones-Mainar JM. Unraveling Adipose Tissue Dysfunction: Molecular Mechanisms, Novel Biomarkers, and Therapeutic Targets for Liver Fat Deposition. Cells 2024; 13:380. [PMID: 38474344 DOI: 10.3390/cells13050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Adipose tissue (AT), once considered a mere fat storage organ, is now recognized as a dynamic and complex entity crucial for regulating human physiology, including metabolic processes, energy balance, and immune responses. It comprises mainly two types: white adipose tissue (WAT) for energy storage and brown adipose tissue (BAT) for thermogenesis, with beige adipocytes demonstrating the plasticity of these cells. WAT, beyond lipid storage, is involved in various metabolic activities, notably lipogenesis and lipolysis, critical for maintaining energy homeostasis. It also functions as an endocrine organ, secreting adipokines that influence metabolic, inflammatory, and immune processes. However, dysfunction in WAT, especially related to obesity, leads to metabolic disturbances, including the inability to properly store excess lipids, resulting in ectopic fat deposition in organs like the liver, contributing to non-alcoholic fatty liver disease (NAFLD). This narrative review delves into the multifaceted roles of WAT, its composition, metabolic functions, and the pathophysiology of WAT dysfunction. It also explores diagnostic approaches for adipose-related disorders, emphasizing the importance of accurately assessing AT distribution and understanding the complex relationships between fat compartments and metabolic health. Furthermore, it discusses various therapeutic strategies, including innovative therapeutics like adipose-derived mesenchymal stem cells (ADMSCs)-based treatments and gene therapy, highlighting the potential of precision medicine in targeting obesity and its associated complications.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Carlos Hörndler
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- Pathology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Sofia Borlan
- General and Digestive Surgery Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Vanesa Bernal-Monterde
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
47
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
48
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
49
|
Jin H, Han H, Song G, Oh HJ, Lee BY. Anti-Obesity Effects of GABA in C57BL/6J Mice with High-Fat Diet-Induced Obesity and 3T3-L1 Adipocytes. Int J Mol Sci 2024; 25:995. [PMID: 38256069 PMCID: PMC10815605 DOI: 10.3390/ijms25020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity is the excessive accumulation of body fat resulting from impairment in energy balance mechanisms. In this study, we aimed to investigate the mechanism whereby GABA (γ-aminobutyric acid) prevents high-fat diet-induced obesity, and whether it induces lipolysis and browning in white adipose tissue (WAT), using high-fat diet (HFD)-fed obese mice and 3T3-L1 adipocytes. We demonstrated that GABA substantially inhibits the body mass gain of mice by suppressing adipogenesis and lipogenesis. Consistent with this result, histological analysis of WAT demonstrated that GABA decreases adipocyte size. Moreover, we show that GABA administration decreases fasting blood glucose and improves serum lipid profiles and hepatic lipogenesis in HFD-fed obese mice. Furthermore, Western blot and immunofluorescence analyses showed that GABA activates protein kinase A (PKA) signaling pathways that increase lipolysis and promote uncoupling protein 1 (UCP1)-mediated WAT browning. Overall, these results suggest that GABA exerts an anti-obesity effect via the regulation of lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (H.J.); (H.H.); (G.S.); (H.-J.O.)
| |
Collapse
|
50
|
Bailin SS, Koethe JR, Rebeiro PF. The pathogenesis of obesity in people living with HIV. Curr Opin HIV AIDS 2024; 19:6-13. [PMID: 37934696 PMCID: PMC10842175 DOI: 10.1097/coh.0000000000000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
PURPOSE OF REVIEW The public health challenge of overweight and obesity increasingly affects people living with HIV (PWH). These effects have also accelerated as the prevalence of antiretroviral therapy (ART) use has increased among PWH. It is therefore also critical that we examine and understand the pathogenesis of obesity among PWH.This review will aim to summarize relevant and recent literature related to the risks of weight gain and obesity associated with HIV disease progression, cardiometabolic disease, and multimorbidity among PWH. Further, we will discuss adipose tissue changes associated with weight gain and obesity and how these changes relate to metabolic complications. RECENT FINDINGS Several observational and experimental studies in recent years have evaluated the role of contemporary ART regimens, particularly integrase strand transfer inhibitors (INSTIs) and tenofovir alafenamide (TAF), as contributors to weight gain, obesity, and cardiometabolic disease, though the mechanisms remain unclear. Metabolic dysregulation has also been linked to ectopic fat deposition and alterations in innate and adaptive immune cell populations in adipose tissue that accompany HIV and obesity. These factors continue to contribute to an increasing burden of metabolic diseases in an aging HIV population. SUMMARY Obesity accompanies an increasing burden of metabolic disease among PWH, and understanding the role of fat partitioning and HIV and ART-related adipose tissue dysfunction may guide prevention and treatment strategies.
Collapse
Affiliation(s)
| | - John R Koethe
- Department of Medicine, Division of Infectious Diseases
| | - Peter F Rebeiro
- Department of Medicine, Division of Infectious Diseases
- Department of Medicine, Division of Epidemiology
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|