1
|
Mennitti C, Farina G, Imperatore A, De Fonzo G, Gentile A, La Civita E, Carbone G, De Simone RR, Di Iorio MR, Tinto N, Frisso G, D’Argenio V, Lombardo B, Terracciano D, Crescioli C, Scudiero O. How Does Physical Activity Modulate Hormone Responses? Biomolecules 2024; 14:1418. [PMID: 39595594 PMCID: PMC11591795 DOI: 10.3390/biom14111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Physical activity highly impacts the neuroendocrine system and hormonal secretion. Numerous variables, both those related to the individual, including genetics, age, sex, biological rhythms, nutritional status, level of training, intake of drugs or supplements, and previous or current pathologies, and those related to the physical activity in terms of type, intensity, and duration of exercise, or environmental conditions can shape the hormonal response to physical exercise. The aim of this review is to provide an overview of the effects of physical exercise on hormonal levels in the human body, focusing on changes in concentrations of hormones such as cortisol, testosterone, and insulin in response to different types and intensities of physical activity. Regular monitoring of hormonal responses in athletes could be a potential tool to design individual training programs and prevent overtraining syndrome.
Collapse
Affiliation(s)
- Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Gabriele Farina
- Department of Human Exercise and Health Sciences, University of Rome “Foro Italico” Piazza L. de Bosis 6, 00135 Rome, Italy;
| | - Antonio Imperatore
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Giulia De Fonzo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (E.L.C.); (G.C.); (D.T.)
| | - Gianluigi Carbone
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (E.L.C.); (G.C.); (D.T.)
| | - Rosa Redenta De Simone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, 00166 Rome, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (E.L.C.); (G.C.); (D.T.)
| | - Clara Crescioli
- Department of Human Exercise and Health Sciences, University of Rome “Foro Italico” Piazza L. de Bosis 6, 00135 Rome, Italy;
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
2
|
Baumgartner NW, Belbis MD, Kargl C, Holmes MJ, Gavin TP, Hirai DM, Kao SC. Acute Effects of High-Intensity Resistance Exercise on Recognition of Relational Memory, Lactate, and Serum and Plasma Brain-Derived Neurotrophic Factor. J Strength Cond Res 2024; 38:1867-1878. [PMID: 39074170 DOI: 10.1519/jsc.0000000000004851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Baumgartner, NW, Belbis, MD, Kargl, C, Holmes, MJ, Gavin, TP, Hirai, DM, and Kao, S-C. Acute effects of high-intensity resistance exercise on recognition of relational memory, lactate, and serum and plasma brain-derived neurotrophic factor. J Strength Cond Res 38(11): 1867-1878, 2024-Acute aerobic exercise improves memory, but this phenomenon is understudied in response to resistance exercise (RE) despite evidence that RE-induced increases in lactate and brain-derived neurotrophic factor (BDNF) play mechanistic roles in memory performance. To determine the acute effect of RE on lactate, BDNF, and their associations with object and relational memory, blood lactate, and serum and plasma BDNF were taken from 36 adults (average age 23.64 ± 3.89 years; 18 woman) before and immediately after 42 minutes of high-intensity RE and a rest condition on counterbalanced days. Subjects then immediately studied a series of paired objects and completed object and relational recognition tasks. Results revealed a condition by trial interaction, previously studied objects were remembered less accurately following RE ( d = 0.66) but recognition occurred faster ( d = 0.28), indicating a speed-accuracy tradeoff following RE. There was no effect of either intervention on relational recognition performance. Lactate ( d = 3.68) and serum BDNF ( d = 0.74) increased following RE, whereas there was no time-related change in lactate and serum BDNF following rest. However, changes in lactate and BDNF did not predict any measures of object ( rs < 0.25, p s > 0.16) or relation recognition ( rs < 0.28, p s > 0.13). Collectively, these findings suggest that acute high-intensity RE selectively improves the processing speed of recognizing objects at the cost of less accurate recognition of previously studied objects. Furthermore, changes in object and relational memory performance are unlikely driven by acute increases in lactate or BDNF following high-intensity RE.
Collapse
Affiliation(s)
| | - Michael D Belbis
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana; and
| | - Christopher Kargl
- Department of Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Holmes
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana; and
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana; and
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana; and
| | - Shih-Chun Kao
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana; and
| |
Collapse
|
3
|
Walser M, Karlsson L, Motalleb R, Isgaard J, Kuhn HG, Svensson J, Åberg ND. Running in mice increases the expression of brain hemoglobin-related genes interacting with the GH/IGF-1 system. Sci Rep 2024; 14:25464. [PMID: 39462081 PMCID: PMC11513053 DOI: 10.1038/s41598-024-77489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
The beneficial effects of exercise are partly mediated via local or systemic functions of the insulin-like growth factor-1 (IGF-1) system. As IGF-1 increases local brain hemoglobin beta (Hbb) transcripts, we hypothesized that exercise could have similar effects. Mice were single-housed with free access to running wheels for seven days. After sacrifice and saline perfusion, the expression of 13 genes was quantified using real-time quantitative polymerase chain reaction (RT-qPCR) in three brain regions: the prefrontal cortex, motor cortex, and hippocampus. In addition, plasma insulin, glucose, homeostatic model assessment of IR (HOMA-IR), C-peptide, and IGF-1 were investigated. We show that hemoglobin-related transcripts (Hbb and 5'-aminolevulinate synthase 2 [Alas2]) increased 46-63% in the running group, while IGF-1-related genes [Igf1 / growth hormone receptor (Ghr)] decreased slightly (7%). There were also moderate to large correlations between Hbb- and IGF-1-related genes in the running group but not in the sedentary group. HOMA-IR, plasma glucose, and insulin changed marginally and non-significantly, but there was a trend toward an increase in plasma-IGF-1 in the running group. In conclusion, seven days of running increased Hbb-related transcripts in three brain regions. Hbb-related transcripts correlated with components of the brain IGF-1 system only in the running group.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Laboratory of Experimental Endocrinology, Bruna Stråket 16, 413 45 , Gothenburg, Sweden.
| | - Lars Karlsson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - N David Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Kim JJ, Ahn A, Ying JY, Pollens-Voigt J, Ludlow AT. Effect of aging and exercise on hTERT expression in thymus tissue of hTERT transgenic bacterial artificial chromosome mice. GeroScience 2024:10.1007/s11357-024-01319-5. [PMID: 39222198 DOI: 10.1007/s11357-024-01319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Telomere shortening occurs with aging in immune cells and may be related to immunosenescence. Exercise can upregulate telomerase activity and attenuate telomere shortening in immune cells, but it is unknown if exercise impacts other immune tissues such as the thymus. This study aimed to examine human telomerase reverse transcriptase (hTERT) alternative splicing (AS) in response to aging and exercise in thymus tissue. Transgenic mice with a human TERT bacterial artificial chromosome integrated into its genome (hTERT-BAC) were utilized in two different exercise models. Mice of different ages were assigned to an exercise cage (running wheel) or not for 3 weeks prior to thymus tissue excision. Middle-aged mice (16 months) were exposed or not to treadmill running (30 min at 60% maximum speed) prior to thymus collection. hTERT transcript variants were measured by RT-PCR. hTERT transcripts decreased with aging (r = - 0.7511, p < 0.0001) and 3 weeks of wheel running did not counteract this reduction. The ratio of exons 7/8 containing hTERT to total hTERT transcripts increased with aging (r = 0.3669, p = 0.0423) but 3 weeks of voluntary wheel running attenuated this aging-driven effect (r = 0.2013, p = 0.4719). Aging increased the expression of senescence marker p16 with no impact of wheel running. Thymus regeneration transcription factor, Foxn1, went down with age with no impact of wheel running exercise. Acute treadmill exercise did not induce any significant changes in thymus hTERT expression or AS variant ratio (p > 0.05). In summary, thymic hTERT expression is reduced with aging. Exercise counteracted a shift in hTERT AS ratio with age. Our data demonstrate that aging impacts telomerase expression and that exercise impacts dysregulated splicing that occurs with aging.
Collapse
Affiliation(s)
- Jeongjin J Kim
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alexander Ahn
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Y Ying
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Liu L, Nguyen H, Das U, Ogunsola S, Yu J, Lei L, Kung M, Pejhan S, Rastegar M, Xie J. Epigenetic control of adaptive or homeostatic splicing during interval-training activities. Nucleic Acids Res 2024; 52:7211-7224. [PMID: 38661216 PMCID: PMC11229381 DOI: 10.1093/nar/gkae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Interval-training activities induce adaptive cellular changes without altering their fundamental identity, but the precise underlying molecular mechanisms are not fully understood. In this study, we demonstrate that interval-training depolarization (ITD) of pituitary cells triggers distinct adaptive or homeostatic splicing responses of alternative exons. This occurs while preserving the steady-state expression of the Prolactin and other hormone genes. The nature of these splicing responses depends on the exon's DNA methylation status, the methyl-C-binding protein MeCP2 and its associated CA-rich motif-binding hnRNP L. Interestingly, the steady expression of the Prolactin gene is also reliant on MeCP2, whose disruption leads to exacerbated multi-exon aberrant splicing and overexpression of the hormone gene transcripts upon ITD, similar to the observed hyperprolactinemia or activity-dependent aberrant splicing in Rett Syndrome. Therefore, epigenetic control is crucial for both adaptive and homeostatic splicing and particularly the steady expression of the Prolactin hormone gene during ITD. Disruption in this regulation may have significant implications for the development of progressive diseases.
Collapse
Affiliation(s)
- Ling Liu
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Samuel Ogunsola
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiankun Yu
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lei Lei
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Matthew Kung
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shervin Pejhan
- Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Oizumi R, Sugimoto Y, Aibara H. The Potential of Exercise on Lifestyle and Skin Function: Narrative Review. JMIR DERMATOLOGY 2024; 7:e51962. [PMID: 38483460 PMCID: PMC10979338 DOI: 10.2196/51962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND The skin is an important organ of the human body and has moisturizing and barrier functions. Factors such as sunlight and lifestyle significantly affect these skin functions, with sunlight being extremely damaging. The effects of lifestyle habits such as smoking, diet, and sleep have been studied extensively. It has been found that smoking increases the risk of wrinkles, while excessive fat and sugar intake leads to skin aging. Lack of sleep and stress are also dangerous for the skin's barrier function. In recent years, the impact of exercise habits on skin function has been a focus of study. Regular exercise is associated with increased blood flow to the skin, elevated skin temperature, and improved skin moisture. Furthermore, it has been shown to improve skin structure and rejuvenate its appearance, possibly through promoting mitochondrial biosynthesis and affecting hormone secretion. Further research is needed to understand the effects of different amounts and content of exercise on the skin. OBJECTIVE This study aims to briefly summarize the relationship between lifestyle and skin function and the mechanisms that have been elucidated so far and introduce the expected effects of exercise on skin function. METHODS We conducted a review of the literature using PubMed and Google Scholar repositories for relevant literature published between 2000 and 2022 with the following keywords: exercise, skin, and life habits. RESULTS Exercise augments the total spectrum power density of cutaneous blood perfusion by a factor of approximately 8, and vasodilation demonstrates an enhancement of approximately 1.5-fold. Regular exercise can also mitigate age-related skin changes by promoting mitochondrial biosynthesis. However, not all exercise impacts are positive; for instance, swimming in chlorinated pools may harm the skin barrier function. Hence, the exercise environment should be considered for its potential effects on the skin. CONCLUSIONS This review demonstrates that exercise can potentially enhance skin function retention.
Collapse
Affiliation(s)
- Ryosuke Oizumi
- Faculty of Nursing, Shijonawate gakuen University, Daito-shi, Japan
| | | | | |
Collapse
|
7
|
Baumgartner NW, Kao SC. Size or Strength? how components of muscle relate to behavioral and neuroelectric measures of executive function independent of aerobic fitness. Brain Cogn 2024; 175:106139. [PMID: 38364518 DOI: 10.1016/j.bandc.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
While previous research has linked cognitive function with resistance exercise, the nuanced links between muscle strength, mass, and neuroelectric function are less understood. Therefore, this study investigated the association of muscle strength and mass with inhibitory control (IC), working memory (WM), and related neuroelectric activity. A total of 123 18-50-year-old adults completed maximal aerobic capacity and strength tests, a body composition scan, and IC and WM tasks while the N2 and P3 components of event-related potentials were recorded. Bivariate correlations revealed aerobic fitness, strength, and mass were associated with behavioral and neuroelectric outcomes. After accounting for age, sex, and aerobic fitness, strength was associated with intra-individual response time variability, accuracy, and P3 latency during WM. Muscle mass was associated with N2 latency during IC. While relationships with behavioral outcomes did not persist after controlling for the opposite muscle outcome, greater strength and mass were related to shorter P3 latency during WM and shorter N2 latency during IC, respectively. These results provide initial evidence that muscle outcomes are associated with executive function and neuroelectric processing speed, suggesting distinct contributions of strength and mass to cognition. This work highlights the significance of maintaining muscle strength and mass alongside aerobic fitness for optimal cognitive health.
Collapse
Affiliation(s)
- Nicholas W Baumgartner
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Shih-Chun Kao
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States.
| |
Collapse
|
8
|
Drăgoi CM, Nicolae AC, Ungurianu A, Margină DM, Grădinaru D, Dumitrescu IB. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis-Molecular Mechanisms in Human Health. Cells 2024; 13:138. [PMID: 38247830 PMCID: PMC10814043 DOI: 10.3390/cells13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
A multitude of physiological processes, human behavioral patterns, and social interactions are intricately governed by the complex interplay between external circumstances and endogenous circadian rhythms. This multidimensional regulatory framework is susceptible to disruptions, and in contemporary society, there is a prevalent occurrence of misalignments between the circadian system and environmental cues, a phenomenon frequently associated with adverse health consequences. The onset of most prevalent current chronic diseases is intimately connected with alterations in human lifestyle practices under various facets, including the following: reduced physical activity, the exposure to artificial light, also acknowledged as light pollution, sedentary behavior coupled with consuming energy-dense nutriments, irregular eating frameworks, disruptions in sleep patterns (inadequate quality and duration), engagement in shift work, and the phenomenon known as social jetlag. The rapid evolution of contemporary life and domestic routines has significantly outpaced the rate of genetic adaptation. Consequently, the underlying circadian rhythms are exposed to multiple shifts, thereby elevating the susceptibility to disease predisposition. This comprehensive review endeavors to synthesize existing empirical evidence that substantiates the conceptual integration of the circadian clock, biochemical molecular homeostasis, oxidative stress, and the stimuli imparted by physical exercise, sleep, and nutrition.
Collapse
Affiliation(s)
- Cristina Manuela Drăgoi
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Alina Crenguţa Nicolae
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Denisa Marilena Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Ion-Bogdan Dumitrescu
- Department of Physics and Informatics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
9
|
Pałka T, Rydzik Ł, Tota Ł, Koteja P, Ambroży T, Mucha D, Szpotowicz-Czech B, Lech G, Javdaneh N, Czarny W. Concentration levels of selected hormones in judokas and the extent of their changes during a special performance test at different ambient temperatures. BMC Sports Sci Med Rehabil 2023; 15:140. [PMID: 37872638 PMCID: PMC10594670 DOI: 10.1186/s13102-023-00751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND There is little scientific literature available on the diversity of physiological responses of judokas to anaerobic interval exercises in warm environments. Understanding the dynamics of changes in the concentration of selected hormones during a special endurance test at different ambient temperatures may have significant practical value, as it provides an opportunity for optimal programming and monitoring of the training process. So, the main aim of the research was to survey interval anaerobic exercises in different ambient temperatures on Concentration levels of selected hormones in judokas. METHODS 15 judokas athletes (age: 20.65 ± 2.03 years; body height: 178.00 ± 6.31 cm; body mass: 76.26 ± 12.57 kg; training experience: 12.1 ± 1.57 years) volunteered for the study. The judokas performed five sequences (each lasting 7.20 min) of pulsatile exercises on a cycle ergometer and hand ergometer in a thermoclimatic chamber at temperatures of 21 ± 0.5 °C and 31 ± 0.5 °C. The exercises were different from typical interval exercises, with varying times, upper and lower limb loads, and were followed by a 15-minute break after each sequence. Total duration of the experiment, including the five sequences of pulsating exercise and four 15-minute rest breaks between each exercise sequence, amounted to 96 min and 20 s. The workload was increased by 20 W for the lower limb tests and 12 W for the upper limb tests every 2 min. Biochemical measurements of testosterone (T), cortisol (C), growth hormone (HGH), adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), adrenaline (E), noradrenaline (NE), and β-endorphin (β-end)were performed using the enzyme-linked immunosorbent assay (ELISA) method on blood samples taken before and after five series of pulsatile exercises, at 1, 24, and 48 h. RESULTS Pulsatile exercise at ambient temperatures of 21 and 31 °C resulted in a decrease in body weight of the studied athletes (p < 0.05) and significantly reduced body volume and plasma volume after training (p < 0.05). The concentration of HGH, testosterone, cortisol and NE showed a statistically significant difference after the end of the series of pulsating exercises at both temperatures (p < 0.05) and did not significantly affect the concentration of ACTH, FSH and adrenaline concentration. CONCLUSIONS An increase in the concentration of growth hormone, cortisol and NE was observed after doing the work at both 21 and 31 °C ambient temperature. Physical exertion in both ambient temperatures contributed to a statistically significant decrease in testosterone concentration. Based on the obtained research results, it can be concluded that physical activity in various thermal conditions of the external environment activates the hormonal response to varying degrees, with the direction of changes depending on the external thermal factor.
Collapse
Affiliation(s)
- Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Kraków, Kraków, Poland
| | - Łukasz Rydzik
- Institute of Sports Sciences, University of Physical Education, Kraków, Poland.
| | - Łukasz Tota
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Kraków, Kraków, Poland
| | - Piotr Koteja
- Institute of Sports Sciences, University of Physical Education, Kraków, Poland
| | - Tadeusz Ambroży
- Institute of Sports Sciences, University of Physical Education, Kraków, Poland
| | - Dariusz Mucha
- Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Barbara Szpotowicz-Czech
- Academy of Applied Sciences in Nowy Sącz, Faculty of Physical Culture and Security Sciences. Nowy Sącz, Nowy Sącz, Poland
| | - Grzegorz Lech
- Institute of Sports Sciences, University of Physical Education, Kraków, Poland
| | - Norollah Javdaneh
- Department of Biomechanics and Sports Injuries, Kharazmi University of Tehran, Tehran, 14911- 15719, Iran
| | - Wojciech Czarny
- College of Medical Sciences, Institute of Physical Culture Studies, University of Rzeszow, Rzeszów, 35- 959, Poland
| |
Collapse
|
10
|
Hassan AK, Bursais AK, Ata SN, Selim HS, Alibrahim MS, Hammad BE. The effect of TRX, combined with vibration training, on BMI, the body fat percentage, myostatin and follistatin, the strength endurance and layup shot skills of female basketball players. Heliyon 2023; 9:e20844. [PMID: 37867894 PMCID: PMC10585344 DOI: 10.1016/j.heliyon.2023.e20844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Trx Vibration Training (TVT) focuses on using the entire body weight in combination with vibration. While research has separately examined TRX training and vibration training, there is limited literature on the combined effects of these two methods specifically for female individuals. Therefore, the objective of this study was to examine the impact of combining TRX and vibration training (TVT) on various factors including body mass index (BMI), body fat percentage (BFP), myostatin (MSTN), follistatin (FLST), endurance, and Lay up shooting skills of female basketball players. By addressing this research gap, we aim to shed light on the potential benefits of incorporating TRX and vibration exercises into the training regimen of female basketball players. Method The study sample comprised 24 female players who were divided into two groups of equal size, with each group consisting of 12 female players: the experimental group (n = 12, age = 19.17 ± 0.68 years, height = 168.33 ± 0.89 cm, weight = 67.00 ± 2.17 kg, training age = 4.54 ± 0.45 years) and the control group (n = 12, age = 19.33 ± 0.78 years, height = 168.08 ± 2.02 cm, weight = 67.33 ± 1.50 kg, training age = 4.58 ± 0.52 years). The experimental method was employed in the study. For eight weeks, the program was used (TVT), with the experimental group participants completing three training sessions each week. The TVT training lasted between 30 and 45 min, out of the overall training session time, which ranged from 90 to 120 min. The control group used a conventional program without Trx Vibration training. Study variables were evaluated before and after the intervention, and a two-way ANOVA was used for repeated measures. Results The results of the study showed the superiority of the experimental group over the control group in BMI (p = 0.037, [d] = 0.64), BFP (p = 0.001, [d] = 2.97), FLST levels (p = 0.029, [d] = 0.68), MSTN (p = 0.001, [d] = 2.04), endurance (CMS) (p = 0.001, [d] = 4.56), and Lay up skill Y (s) (p = 0.001, [d] = 4.27), Y (sc) (p = 0.012, [d] = 4.27). Conclusion The results showed that, when comparing the two groups, the TVT program significantly improved the study's variables. Basketball players' motor abilities and skill performance improved after eight weeks of training, and coaches are advised to take this into account when developing seasonal training plans.
Collapse
Affiliation(s)
- Ahmed K. Hassan
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Team Sports and Racket Games, Faculty of Physical Education, Minia University, Minya, 61519, Egypt
| | - Abdulmalek K. Bursais
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Sobhi Noureldin Ata
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Kinesiology, Faculty of Physical Education, Mansoura University, Egypt
| | - Hossam S. Selim
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohammed S. Alibrahim
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Badry E. Hammad
- Department of Fights and Individual Sports, Faculty of Physical Education, Minia University, Minya, 61519, Egypt
| |
Collapse
|
11
|
Athanasiou N, Bogdanis GC, Mastorakos G. Endocrine responses of the stress system to different types of exercise. Rev Endocr Metab Disord 2023; 24:251-266. [PMID: 36242699 PMCID: PMC10023776 DOI: 10.1007/s11154-022-09758-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
Physical activity is an important part of human lifestyle although a large percentage of the population remains sedentary. Exercise represents a stress paradigm in which many regulatory endocrine systems are involved to achieve homeostasis. These endocrine adaptive responses may be either beneficial or harmful in case they exceed a certain threshold. The aim of this review is to examine the adaptive endocrine responses of hypothalamic-pituitary-adrenal axis (HPA), catecholamines, cytokines, growth hormone (GH) and prolactin (PRL) to a single bout or regular exercise of three distinct types of exercise, namely endurance, high-intensity interval (HIIE) and resistance exercise. In summary, a single bout of endurance exercise induces cortisol increase, while regular endurance exercise-induced activation of the HPA axis results to relatively increased basal cortisolemia; single bout or regular exercise induce similar GH peak responses; regular HIIE training lowers basal cortisol concentrations, while catecholamine response is reduced in regular HIIE compared with a single bout of HIIE. HPA axis response to resistance exercise depends on the intensity and volume of the exercise. A single bout of resistance exercise is characterized by mild HPA axis stimulation while regular resistance training in elderly results in attenuated inflammatory response and decreased resting cytokine concentrations. In conclusion, it is important to consider which type of exercise and what threshold is suitable for different target groups of exercising people. This approach intends to suggest types of exercise appropriate for different target groups in health and disease and subsequently to introduce them as medical prescription models.
Collapse
Affiliation(s)
- Nikolaos Athanasiou
- grid.5216.00000 0001 2155 0800Unit of Endocrinology, Diabetes mellitus and Metabolism, School of medicine, ARETAIEION hospital, National and Kapodistrian University of Athens, Neofytou Vamva str 10674, Athens, Greece
- grid.414655.70000 0004 4670 4329Dermatology Department, Evangelismos General hospital, Athens, Greece Ipsilantou 45-47, 10676
| | - Gregory C. Bogdanis
- grid.5216.00000 0001 2155 0800School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece
| | - George Mastorakos
- grid.5216.00000 0001 2155 0800Unit of Endocrinology, Diabetes mellitus and Metabolism, School of medicine, ARETAIEION hospital, National and Kapodistrian University of Athens, Neofytou Vamva str 10674, Athens, Greece
| |
Collapse
|
12
|
Sugiharto, Merawati D, Pranoto A, Susanto H. Physiological response of endurance exercise as a growth hormone mediator in adolescent women's. J Basic Clin Physiol Pharmacol 2023; 34:61-67. [PMID: 35499967 DOI: 10.1515/jbcpp-2022-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Overweight status decreases the growth hormone (GH) secretion, thus, increasing the risk factors for medical complications. However, proper exercise is reported to enhance GH and affect the energy balance. Therefore, exercise is proclaimed to be an accurate and engaging therapy to increase GH in preventing overweight. This study aims to investigate the physiological response of exercise in mediating the increase of GH secretion in female adolescents. METHODS 22 overweight women aged 19-20 years old, with maximal oxygen consumption of 27-35 mL/kg/min, were selected as sample size. They were divided into three groups, namely (CONT, n=7) Control, (MIEE, n=7) Moderate-intensity interval endurance exercise, and (MCEE, n=8) Moderate-intensity continuous endurance exercise. The exercise was carried out by running for 30-35 min using treadmills with an intensity of 60-70% HRmax. The blood sampling for GH examination was carried out four times before exercise, 10 min, 6 h, and 24 h after exercise. The enzyme-linked immunosorbent assay (ELISA) was used to measure the GH and IGF-1 levels. The data analysis was carried out using a one-way ANOVA test, with a significance level of 5%. RESULTS The results of the one-Way ANOVA test suggested a significantly different average GH and IGF-1 before and after the exercise between the three groups (CON, MIEE, and MCEE) (p≤0.05). CONCLUSIONS MCEE increases the GH and IGF-1 levels more considerably than MIEE. Therefore, exercise is a mediator to increase GH and IGF-1 secretion in overweight individuals. Exercise could be a viable therapy for overweight people.
Collapse
Affiliation(s)
- Sugiharto
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia
| | - Desiana Merawati
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hendra Susanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
| |
Collapse
|
13
|
Effects of Acute Resistance Exercise on Executive Function: A Systematic Review of the Moderating Role of Intensity and Executive Function Domain. SPORTS MEDICINE - OPEN 2022; 8:141. [PMID: 36480075 PMCID: PMC9732176 DOI: 10.1186/s40798-022-00527-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Research has demonstrated that there is a beneficial effect of acute exercise on cognitive function; however, the moderators of the acute resistance exercise (RE) effect on executive function (EF) are underestimated. This systematic review aims to clarify the effects of acute RE on EF by examining the moderating effect of exercise intensity (light, moderate, and vigorous) and EF domains (inhibitory control, working memory, and cognitive flexibility), as well as their interactions. METHODS The search strategy was conducted in four databases (PubMed, Scopus, PsycARTICLES, and Cochrane Library) prior to January 29, 2022. Included studies had to: (1) investigate acute RE in adults with normal cognition and without diagnosed disease; (2) include a control group or control session for comparison; (3) include outcomes related to the core EF domains; and (4) be published in English. The methodological quality of the included studies was judged according to the PEDro scale guidelines. RESULTS Nineteen studies were included which included a total of 692 participants. More than half of the outcomes (24/42, 57.14%) indicate that acute RE had a statistically significant positive effect on overall EF. In terms of RE intensity and EF domain, moderate intensity acute RE benefited EF more consistently than light and vigorous intensity acute RE. Acute RE-induced EF benefits were more often found for inhibitory control than for working memory and cognitive flexibility. When considering moderators simultaneously, measuring inhibitory control after light or moderate intensity RE and measuring working memory or cognitive flexibility after moderate intensity RE most often resulted in statistically significant positive outcomes. CONCLUSION Acute RE has a beneficial effect on EF, observed most consistently for inhibitory control following moderate intensity RE. Future studies should include all exercise intensities and EF domains as well as investigate other potential moderators to enable a better understanding of the benefits of acute RE on EF.
Collapse
|
14
|
Olascoaga-Caso EM, Tamariz-Domínguez E, Rodríguez-Alba JC, Juárez-Aguilar E. Exogenous growth hormone promotes an epithelial-mesenchymal hybrid phenotype in cancerous HeLa cells but not in non-cancerous HEK293 cells. Mol Cell Biochem 2022; 478:1117-1128. [PMID: 36222986 DOI: 10.1007/s11010-022-04583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
In cancer, the Epithelial to Mesenchymal Transition (EMT) is the process in which epithelial cells acquire mesenchymal features that allow metastasis, and chemotherapy resistance. Growth hormone (GH) has been associated with melanoma, breast, and endometrial cancer progression through an autocrine regulation of EMT. Since exogenous and autocrine expression of GH is known to have different molecular effects, we investigated whether exogenous GH is capable of regulating the EMT of cancer cells. Furthermore, we investigated whether exogenous GH could promote EMT in non-cancerous cells. To study the effect of GH (100 ng/ml) on cancer and non-cancer cells, we used HeLa and HEK293 cell lines, respectively. We evaluated the loss of cell-cell contacts, by cell scattering assay and migration by wound-healing assay. Additionally, we evaluated the morphological changes by phalloidin-staining. Finally, we evaluated the molecular markers E-cadherin and vimentin by flow cytometry. GH enhances cell scattering and the migratory rate and promotes morphological changes such as cell area increase and actin cytoskeleton filaments formation on HeLa cell line. Moreover, we found that GH favors the expression of the mesenchymal protein vimentin, followed by an increase in E-cadherin's epithelial protein expression, characteristics of an epithelial-mesenchymal hybrid phenotype that is associated with metastasis. On HEK293cells, GH promotes morphological changes, including cell area increment and filopodia formation, but not affects scattering, migration, nor EMT markers expression. Our results suggest that exogenous GH might participate in cervical cancer progression favoring a hybrid EMT phenotype but not on non-cancerous HEK293 cells.
Collapse
Affiliation(s)
- E M Olascoaga-Caso
- PhD Health Sciences Program. Universidad Veracruzana, Xalapa, Veracruz, Mexico.,Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - E Tamariz-Domínguez
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - J C Rodríguez-Alba
- Flow Cytometry Unity, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Médicos y odontólogos s/n, Unidad del Bosque, 91010, Xalapa, Veracruz, Mexico
| | - E Juárez-Aguilar
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
15
|
Berry NT, Rhea CK, Wideman L. Cardio-Hypothalamic-Pituitary Coupling during Rest and in Response to Exercise. ENTROPY 2022; 24:e24081045. [PMID: 36010709 PMCID: PMC9407513 DOI: 10.3390/e24081045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022]
Abstract
The objective of this study was to examine cardio hypothalamic-pituitary coupling and to better understand how the temporal relations between these systems are altered during rest and exercise conditions. An intensive within subjects study design was used. Seven adult males completed two visits, each consisting of either a 24 h period of complete rest or a 24 h period containing a high-intensity exercise bout. An intravenous catheter was used to collect serum samples every 10 min throughout the 24 h period (i.e., 145 samples/person/condition) to assess growth hormone (GH) dynamics throughout the 24 h period. Cardiac dynamics were also collected throughout the 24 h period and epoched into 3 min windows every 10 min, providing serial short-time measurements of heart rate variability (HRV) concurrent to the GH sampling. The standard deviation of the normal RR interval (SDNN), the root mean square of successive differences (rMSSD), and sample entropy (SampEn) was calculated for each epoch and used to create new profiles. The dynamics of these profiles were individually quantified using SampEn and recurrence quantification analysis (RQA). To address our central question, the coupling between these profiles with GH was assessed using cross-SampEn and cross-RQA (cRQA). A comparison between the epoched HRV profiles indicated a main effect between profiles for sample entropy (p < 0.001) and several measures from RQA. An interaction between profile and condition was observed for cross-SampEn (p = 0.04) and several measures from cRQA. These findings highlight the potential application of epoched HRV to assess changes in cardiac dynamics, with specific applications to assessing cardio hypothalamic-pituitary coupling.
Collapse
|
16
|
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol 2022; 66:100993. [PMID: 35283168 DOI: 10.1016/j.yfrne.2022.100993] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Tervuursevest 101, 3001 Heverlee, Belgium.
| | - Hakuei Fujiyama
- Department of Psychology, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South St., WA 6150 Perth, Australia.
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
17
|
Brenmoehl J, Walz C, Caffier C, Brosig E, Walz M, Ohde D, Trakooljul N, Langhammer M, Ponsuksili S, Wimmers K, Zettl UK, Hoeflich A. Central Suppression of the GH/IGF Axis and Abrogation of Exercise-Related mTORC1/2 Activation in the Muscle of Phenotype-Selected Male Marathon Mice (DUhTP). Cells 2021; 10:3418. [PMID: 34943926 PMCID: PMC8699648 DOI: 10.3390/cells10123418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
The somatotropic axis is required for a number of biological processes, including growth, metabolism, and aging. Due to its central effects on growth and metabolism and with respect to its positive effects on muscle mass, regulation of the GH/IGF-system during endurance exercise is of particular interest. In order to study the control of gene expression and adaptation related to physical performance, we used a non-inbred mouse model, phenotype-selected for high running performance (DUhTP). Gene expression of the GH/IGF-system and related signaling cascades were studied in the pituitary gland and muscle of sedentary males of marathon and unselected control mice. In addition, the effects of three weeks of endurance exercise were assessed in both genetic groups. In pituitary glands from DUhTP mice, reduced expression of Pou1f1 (p = 0.002) was accompanied by non-significant reductions of Gh mRNA (p = 0.066). In addition, mRNA expression of Ghsr and Sstr2 were significantly reduced in the pituitary glands from DUhTP mice (p ≤ 0.05). Central downregulation of Pou1f1 expression was accompanied by reduced serum concentrations of IGF1 and coordinated downregulation of multiple GH/IGF-signaling compounds in muscle (e.g., Ghr, Igf1, Igf1r, Igf2r, Irs1, Irs2, Akt3, Gskb, Pik3ca/b/a2, Pten, Rictor, Rptor, Tsc1, Mtor; p ≤ 0.05). In response to exercise, the expression of Igfbp3, Igfbp 4, and Igfbp 6 and Stc2 mRNA was increased in the muscle of DUhTP mice (p ≤ 0.05). Training-induced specific activation of AKT, S6K, and p38 MAPK was found in muscles from control mice but not in DUhTP mice (p ≤ 0.05), indicating a lack of mTORC1 and mTORC2 activation in marathon mice in response to physical exercise. While hormone-dependent mTORC1 and mTORC2 pathways in marathon mice were repressed, robust increases of Ragulator complex compounds (p ≤ 0.001) and elevated sirtuin 2 to 6 mRNA expression were observed in the DUhTP marathon mouse model (p ≤ 0.05). Activation of AMPK was not observed under the experimental conditions of the present study. Our results describe coordinated downregulation of the somatotropic pathway in long-term selected marathon mice (DUhTP), possibly via the pituitary gland and muscle interaction. Our results, for the first time, demonstrate that GH/IGF effects are repressed in a context of superior running performance in mice.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Christina Walz
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Caroline Caffier
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany;
| | - Elli Brosig
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany;
| | - Michael Walz
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Daniela Ohde
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Nares Trakooljul
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Martina Langhammer
- Lab Animal Facility, Research Institute for Genetics and Biometry, Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Klaus Wimmers
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| | - Uwe K. Zettl
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany;
| | - Andreas Hoeflich
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (C.W.); (C.C.); (E.B.); (M.W.); (D.O.); (N.T.); (S.P.); (K.W.)
| |
Collapse
|
18
|
The Effects of TRX Suspension Training Combined with Taurine Supplementation on Body Composition, Glycemic and Lipid Markers in Women with Type 2 Diabetes. Nutrients 2021; 13:nu13113958. [PMID: 34836211 PMCID: PMC8621658 DOI: 10.3390/nu13113958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: We aimed to investigate the effects of an 8-week total-body resistance exercise (TRX) suspension training intervention combined with taurine supplementation on body composition, blood glucose, and lipid markers in T2D females. Methods: Forty T2D middle-aged females (age: 53 ± 5 years, body mass = 84.3 ± 5.1 kg) were randomly assigned to four groups, TRX suspension training + placebo (TP; n = 10), TRX suspension training + taurine supplementation (TT; n = 10), taurine supplementation (T; n = 10), or control (C; n = 10). Body composition (body mass, body mass index (BMI), body fat percentage (BFP)), blood glucose (fasting blood sugar (FBS)), hemoglobin A1c (HbA1c), Insulin, and Insulin resistance (HOMA-IR), and lipid markers (low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), and total cholesterol (TC)) were evaluated prior to and after interventions. Results: All three interventions significantly decreased body mass, BMI, and BFP with no changes between them for body mass and BMI; however, BFP changes in the TT group were significantly greater than all other groups. FBS was significantly reduced in TP and TT. Insulin concentrations’ decrement were significantly greater in all experimental groups compared to C; however, no between group differences were observed between TT, TP, and T. In regards to HOMA-IR, decreases in TT were significantly greater than all other groups TG, HbA1c, and LDL were reduced following all interventions. HDL values significantly increased only in the TT group, while TC significantly decreased in TP and TT groups. Changes in HbA1c, TG, HDL, and TC were significantly greater in the TT compared to all other groups. Conclusions: TRX training improved glycemic and lipid profiles, while taurine supplementation alone failed to show hypoglycemic and hypolipidemic properties. Notably, the synergic effects of TRX training and taurine supplementation were shown in HbA1c, HOMA-IR, TG, TC, HDL, and BFP changes. Our outcomes suggest that TRX training + taurine supplementation may be an effective adjuvant therapy in individuals with T2D.
Collapse
|
19
|
Salvadori A, Fanari P, Marzullo P, Codecasa F, Tovaglieri I, Cornacchia M, Terruzzi I, Ferrulli A, Palmulli P, Brunani A, Lanzi S, Luzi L. Playing around the anaerobic threshold during COVID-19 pandemic: advantages and disadvantages of adding bouts of anaerobic work to aerobic activity in physical treatment of individuals with obesity. Acta Diabetol 2021; 58:1329-1341. [PMID: 34047810 PMCID: PMC8159723 DOI: 10.1007/s00592-021-01747-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Obesity is a condition that generally limits work capacity and predisposes to a number of comorbidities and related diseases, the last being COVID-19 and its complications and sequelae. Physical exercise, together with diet, is a milestone in its management and rehabilitation, although there is still a debate on intensity and duration of training. Anaerobic threshold (AT) is a broad term often used either as ventilatory threshold or as lactate threshold, respectively, detected by respiratory ventilation and/or respiratory gases (VCO2 and VO2), and by blood lactic acid. AIMS AND METHODOLOGY This review outlines the role of AT and of the different variations of growth hormone and catecholamine, in subjects with obesity vs normal weight individuals below and beyond AT, during a progressive increase in exercise training. We present a re-evaluation of the effects of physical activity on body mass and metabolism of individuals with obesity in light of potential benefits and pitfalls during COVID-19 pandemic. Comparison of a training program at moderate-intensity exercise (< AT) with training performed at moderate intensity (< AT) plus a final bout of high-intensity (> AT) exercise at the end of the aerobic session will be discussed. RESULTS Based on our data and considerations, a tailored strategy for individuals with obesity concerning the most appropriate intensity of training in the context of rehabilitation is proposed, with special regard to potential benefits of work program above AT. CONCLUSION Adding bouts of exercise above AT may improve lactic acid and H+ disposal and improve growth hormone. Long-term aerobic exercise may improve leptin reduction. In this way, the propensity of subjects with obesity to encounter a serious prognosis of COVID-19 may be counteracted and the systemic and cardiorespiratory sequelae that may ensue after COVID-19, can be overcome. Individuals with serious comorbidities associated with obesity should avoid excessive exercise intensity.
Collapse
Affiliation(s)
- Alberto Salvadori
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Paolo Fanari
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Paolo Marzullo
- Division of General Medicine, Ospedale S. Giuseppe, Istituto Auxologico Italiano, via Cadorna 90, 28824, Piancavallo Di Oggebbio (VB), Italy
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Franco Codecasa
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Ilaria Tovaglieri
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Mauro Cornacchia
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, Sesto San Giovanni, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, Sesto San Giovanni, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Patrizia Palmulli
- Department of Pulmonary Rehabilitation, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Amelia Brunani
- Department of Rehabilitation Medicine, Istituto Auxologico Italiano IRCCS, Verbania (VB), Italy
| | - Stefano Lanzi
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, Sesto San Giovanni, Italy.
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| |
Collapse
|
20
|
dos Santos WO, Gusmao DO, Wasinski F, List EO, Kopchick JJ, Donato J. Effects of Growth Hormone Receptor Ablation in Corticotropin-Releasing Hormone Cells. Int J Mol Sci 2021; 22:9908. [PMID: 34576072 PMCID: PMC8465163 DOI: 10.3390/ijms22189908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) cells are the dominant neuronal population responsive to the growth hormone (GH) in the paraventricular nucleus of the hypothalamus (PVH). However, the physiological importance of GH receptor (GHR) signaling in CRH neurons is currently unknown. Thus, the main objective of the present study was to investigate the consequences of GHR ablation in CRH-expressing cells of male and female mice. GHR ablation in CRH cells did not cause significant changes in body weight, body composition, food intake, substrate oxidation, locomotor activity, glucose tolerance, insulin sensitivity, counterregulatory response to 2-deoxy-D-glucose and ghrelin-induced food intake. However, reduced energy expenditure was observed in female mice carrying GHR ablation in CRH cells. The absence of GHR in CRH cells did not affect anxiety, circadian glucocorticoid levels or restraint-stress-induced corticosterone secretion and activation of PVH neurons in both male and female mice. In summary, GHR ablation, specifically in CRH-expressing neurons, does not lead to major alterations in metabolism, hypothalamic-pituitary-adrenal axis, acute stress response or anxiety in mice. Considering the previous studies showing that central GHR signaling regulates homeostasis in situations of metabolic stress, future studies are still necessary to identify the potential physiological importance of GH action on CRH neurons.
Collapse
Affiliation(s)
- Willian O. dos Santos
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| | - Daniela O. Gusmao
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| | - Edward O. List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (E.O.L.); (J.J.K.)
| | - John J. Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (E.O.L.); (J.J.K.)
| | - Jose Donato
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| |
Collapse
|
21
|
Time-of-Day Effects on Anaerobic Power and Concentration of Selected Hormones in Blind Men. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179353. [PMID: 34501943 PMCID: PMC8431504 DOI: 10.3390/ijerph18179353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Knowledge of the circadian rhythm of the blind person and diurnal changes in anaerobic power and hormones concentration can create the possibility of individualising physical training. The aim of the study was to examine the time-of-day effects on anaerobic performance and the concentration of selected hormones. The measurements were performed at two different times of the day (10:00 a.m., 10:00 p.m.) in blind men at the age of 20–25 years old. The experiment group was chosen by using repeated hormonal tests four times a day so that each selected patient had a sleep/wake cycle even of 24 h. Anaerobic peak power and total work were tested in an anaerobic sprint test, and the concentration of growth hormone, testosterone, cortisol, and melatonin was determined. In blind men, the hormonal response was not driven by the photoperiod as in the control group. In the blind group, at 10:00 p.m., anaerobic peak power and total work results were significantly higher than at 10:00 a.m. and negatively correlated with melatonin levels. No such correlation was found in the control group.
Collapse
|
22
|
Gumus Balikcioglu P, Ramaker ME, Mason KA, Huffman KM, Johnson JL, Ilkayeva O, Muehlbauer MJ, Freemark M, Kraus WE. Branched-Chain Amino Acid Catabolism and Cardiopulmonary Function Following Acute Maximal Exercise Testing in Adolescents. Front Cardiovasc Med 2021; 8:721354. [PMID: 34485418 PMCID: PMC8416443 DOI: 10.3389/fcvm.2021.721354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: To provide energy for cardiopulmonary function and maintenance of blood glucose, acute aerobic exercise induces lipolysis, fatty acid oxidation (FAO), glycolysis, and glycogenolysis/gluconeogenesis. These adaptations are mediated by increases in cortisol, growth hormone (GH), and catecholamines and facilitated by a decline in insulin. Branched-chain amino acids (BCAA) also undergo catabolism during intense exercise. Here, we investigated the relationship between BCAA catabolism and metrics of cardiopulmonary function in healthy, well-developed, mature adolescent athletes undergoing an acute bout of maximal aerobic exercise. Hypothesis: We hypothesized: (a) acute maximal exercise in adolescents induces lipolysis, FAO, and BCAA catabolism associated with increases in GH and cortisol and a reduction in insulin; (b) increases in GH are associated with increases in ghrelin; and (c) metrics of cardiopulmonary function (aVO2, rVO2, aVO2/HRmax) following maximal exercise correlate with increases in GH secretion, FAO, and BCAA catabolism. Methods: Blood samples before and after maximal cardiopulmonary exercise in 11 adolescent athletes were analyzed by tandem-mass spectrometry. Paired, two-tailed student's t-tests identified significant changes following exercise. Linear regression determined if pre-exercise metabolite levels, or changes in metabolite levels, were associated with aVO2, rVO2, and aVO2/HRmax. Sex and school of origin were included as covariates in all regression analyses. Results: Following exercise there were increases in GH and cortisol, and decreases in ghrelin, but no changes in glucose or insulin concentrations. Suggesting increased lipolysis and FAO, the levels of glycerol, ketones, β-hydroxybutyrate, and acetylcarnitine concentrations increased. Pyruvate, lactate, alanine, and glutamate concentrations also increased. Plasma concentrations of valine (a BCAA) declined (p = 0.002) while valine degradation byproducts increased in association with decreases in urea cycle amino acids arginine and ornithine. Metrics of cardiopulmonary function were associated with increases in propionylcarnitine (C3, p = 0.013) and Ci4-DC/C4-DC (p < 0.01), byproducts of BCAA catabolism. Conclusions: Induction of lipolysis, FAO, gluconeogenesis, and glycogenolysis provides critical substrates for cardiopulmonary function during exercise. However, none of those pathways were significantly associated with metrics of cardiopulmonary function. The associations between rVO2, and aVO2/HRmax and C3 and Ci4-DC/C4-DC suggest that the cardiopulmonary response to maximal exercise in adolescents is linked to BCAA utilization and catabolism.
Collapse
Affiliation(s)
- Pinar Gumus Balikcioglu
- Division of Pediatric Endocrinology and Diabetes, Duke University School of Medicine, Durham, NC, United States
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Megan E. Ramaker
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Kelly A. Mason
- Division of Pediatric Endocrinology and Diabetes, Duke University School of Medicine, Durham, NC, United States
| | - Kim M. Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Johanna L. Johnson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
- Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC, United States
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Michael Freemark
- Division of Pediatric Endocrinology and Diabetes, Duke University School of Medicine, Durham, NC, United States
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - William E. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
- Division of Adult Cardiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
23
|
Heikura IA, Stellingwerff T, Areta JL. Low energy availability in female athletes: From the lab to the field. Eur J Sport Sci 2021; 22:709-719. [PMID: 33832385 DOI: 10.1080/17461391.2021.1915391] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Decades of laboratory research have shown impairments to several body systems after only 4-5 days of strictly controlled consistent low energy availability (LEA); where energy availability (EA) = Energy Intake (EI) - Exercise Energy Expenditure (EEE)/Fat-Free Mass. Meanwhile, cross-sectional reports exist on the interrelatedness of LEA, menstrual dysfunction and impaired bone health in females (the Female Athlete Triad). These findings have demonstrated that LEA is the key underpinning factor behind a broader set of health and performance outcomes, recently termed as Relative Energy Deficiency in Sport (RED-S). There is utmost importance of early screening and diagnosis of RED-S to avoid the development of severe negative health and performance outcomes. However, a significant gap exists between short-term laboratory studies and cross-sectional reports, or clinically field-based situations, of long-term/chronic LEA and no definitive, validated diagnostic tests for RED-S exist. This review aims to highlight methodological challenges related to the assessment of the components of EA equation in the field (e.g. challenges with EI and EEE measures). Due to the uncertainty of these parameters, we propose the use of more chronic "objective" markers of LEA (i.e. blood markers). However, we note that direct extrapolations of laboratory-based outcomes into the field are likely to be problematic due to potentially poor ecological validity and the extreme variability in most athlete's daily EI and EEE. Therefore, we provide a critical appraisal of the scientific literature, highlighting research gaps, and a potential set of leading objective RED-S markers while working in the field.HIGHILIGHTS Direct application of short-term laboratory-based findings in the field is problematic.Calculation of energy availability (EA) in the field is methodologically challenging and prone to errors.The use of several biomarkers may allow the detection of early exposure to low EA in the female athlete.
Collapse
Affiliation(s)
- Ida A Heikura
- Canadian Sport Institute - Pacific, Victoria, Canada.,Exercise Science, Physical & Health Education, University of Victoria British Columbia, Victoria, Canada
| | - Trent Stellingwerff
- Canadian Sport Institute - Pacific, Victoria, Canada.,Exercise Science, Physical & Health Education, University of Victoria British Columbia, Victoria, Canada
| | - Jose L Areta
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
24
|
Pataky MW, Young WF, Nair KS. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clin Proc 2021; 96:788-814. [PMID: 33673927 PMCID: PMC8020896 DOI: 10.1016/j.mayocp.2020.07.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Increased life expectancy combined with the aging baby boomer generation has resulted in an unprecedented global expansion of the elderly population. The growing population of older adults and increased rate of age-related chronic illness has caused a substantial socioeconomic burden. The gradual and progressive age-related decline in hormone production and action has a detrimental impact on human health by increasing risk for chronic disease and reducing life span. This article reviews the age-related decline in hormone production, as well as age-related biochemical and body composition changes that reduce the bioavailability and actions of some hormones. The impact of hormonal changes on various chronic conditions including frailty, diabetes, cardiovascular disease, and dementia are also discussed. Hormone replacement therapy has been attempted in many clinical trials to reverse and/or prevent the hormonal decline in aging to combat the progression of age-related diseases. Unfortunately, hormone replacement therapy is not a panacea, as it often results in various adverse events that outweigh its potential health benefits. Therefore, except in some specific individual cases, hormone replacement is not recommended. Rather, positive lifestyle modifications such as regular aerobic and resistance exercise programs and/or healthy calorically restricted diet can favorably affect endocrine and metabolic functions and act as countermeasures to various age-related diseases. We provide a critical review of the available data and offer recommendations that hopefully will form the groundwork for physicians/scientists to develop and optimize new endocrine-targeted therapies and lifestyle modifications that can better address age-related decline in heath.
Collapse
Affiliation(s)
- Mark W Pataky
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - William F Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN.
| |
Collapse
|
25
|
Jarmasz JS, Jin Y, Vakili H, Cattini PA. Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo. Endocr Connect 2020; 9:1135-1147. [PMID: 33112821 PMCID: PMC7774756 DOI: 10.1530/ec-20-0354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022]
Abstract
Human (h) growth hormone (GH) production studies are largely limited to effects on secretion. How pituitary hGH gene (hGH-N/GH1) expression is regulated is important in our understanding of the role hGH plays in physiology and disease. Here we assess for the first time the effect of sleep deprivation (SD) and high-fat diet (HFD) on hGH-N expression in vivo using partially humanized 171hGH/CS transgenic (TG) mice, and attempted to elucidate a role for DNA methylation. Activation of hGH-N expression requires interactions between promoter and upstream locus control region (LCR) sequences including pituitary-specific hypersensitive site (HS) I/II. Both SD and diet affect hGH secretion, but the effect of SD on hGH-N expression is unknown. Mice fed a HFD or regular chow diet for 3 days underwent SD (or no SD) for 6 h at Zeitgeber time (ZT) 3. Serum and pituitaries were assessed over 24 h at 6-h intervals beginning at ZT 14. SD and HFD caused significant changes in serum corticosterone and insulin, as well as hGH and circadian clock-related gene RNA levels. No clear association between DNA methylation and the negative effects of SD or diet on hGH RNA levels was observed. However, a correlation with increased methylation at a CpG (cytosine paired with a guanine) in a putative E-box within the hGH LCR HS II was suggested in situ. Methylation at this site also increased BMAL1/CLOCK-related nuclear protein binding in vitro. These observations support an effect of SD on hGH synthesis at the level of gene expression.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Correspondence should be addressed to J S Jarmasz:
| | - Yan Jin
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hana Vakili
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter A Cattini
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Wasinski F, Klein MO, Bittencourt JC, Metzger M, Donato J. Distribution of growth hormone-responsive cells in the brain of rats and mice. Brain Res 2020; 1751:147189. [PMID: 33152340 DOI: 10.1016/j.brainres.2020.147189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
A growth hormone (GH) injection is able to induce the phosphorylated form of the signal transducer and activator of transcription 5 (pSTAT5) in a large number of cells throughout the mouse brain. The present study had the objective to map the distribution of GH-responsive cells in the brain of rats that received an intracerebroventricular injection of GH and compare it to the pattern found in mice. We observed that rats and mice exhibited a similar distribution of GH-induced pSTAT5 in the majority of areas of the telencephalon, hypothalamus and brainstem. However, rats exhibited a higher density of GH-responsive cells than mice in the horizontal limb of the diagonal band of Broca (HDB), supraoptic and suprachiasmatic nuclei, whereas mice displayed more GH-responsive cells than rats in the hippocampus, lateral hypothalamic area and dorsal motor nucleus of the vagus (DMX). Since both HDB and DMX contain acetylcholine-producing neurons, pSTAT5 was co-localized with choline acetyltransferase in GH-injected animals. We found that 50.0 ± 4.5% of cholinergic neurons in the rat HDB coexpressed GH-induced pSTAT5, whereas very few co-localizations were observed in the mouse HDB. In contrast, rats displayed fewer cholinergic neurons responsive to GH in the DMX at the level of the area postrema. In summary, pSTAT5 can be used as a marker of GH-responsive cells in the rat brain. Although rats and mice exhibit a relatively similar distribution of GH-responsive neurons, some species-specific differences exist, as exemplified for the responsiveness to GH in distinct populations of cholinergic neurons.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Marianne O Klein
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Jackson C Bittencourt
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Martin Metzger
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil.
| |
Collapse
|
27
|
Quaresma PGF, Dos Santos WO, Wasinski F, Metzger M, Donato J. Neurochemical phenotype of growth hormone-responsive cells in the mouse paraventricular nucleus of the hypothalamus. J Comp Neurol 2020; 529:1228-1239. [PMID: 32844436 DOI: 10.1002/cne.25017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Multiple neuroendocrine, autonomic and behavioral responses are regulated by the paraventricular nucleus of the hypothalamus (PVH). Previous studies have shown that PVH neurons express the growth hormone (GH) receptor (GHR), although the role of GH signaling on PVH neurons is still unknown. Given the great heterogeneity of cell types located in the PVH, we performed a detailed analysis of the neurochemical identity of GH-responsive cells to understand the possible physiological importance of GH action on PVH neurons. GH-responsive cells were detected via the phosphorylated form of the signal transducer and activator of transcription-5 (pSTAT5) in adult male mice that received an intraperitoneal GH injection. Approximately 51% of GH-responsive cells in the PVH co-localized with the vesicular glutamate transporter 2. Rare co-localizations between pSTAT5 and vesicular GABA transporter or vasopressin were observed, whereas approximately 20% and 38% of oxytocin and tyrosine hydroxylase (TH) cells, respectively, were responsive to GH in the PVH. Approximately 55%, 35% and 63% of somatostatin, thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) neurons expressed GH-induced pSTAT5, respectively. Additionally, 8%, 49% and 75% of neuroendocrine TH, TRH and CRH neurons, and 67%, 32% and 74% of nonneuroendocrine TH, TRH and CRH neurons were responsive to GH in the PVH of Fluoro-Gold-injected mice. Our findings suggest that GH action on PVH neurons is involved in the regulation of the thyroid, somatotropic and adrenal endocrine axes, possibly influencing homeostatic and stress responses.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Willian O Dos Santos
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Metzger
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Donato
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Yarizadeh H, Eftekhar R, Anjom-Shoae J, Speakman JR, Djafarian K. The Effect of Aerobic and Resistance Training and Combined Exercise Modalities on Subcutaneous Abdominal Fat: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Adv Nutr 2020; 12:179-196. [PMID: 32804997 PMCID: PMC7849939 DOI: 10.1093/advances/nmaa090] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Subcutaneous abdominal adipose tissue (SAT), is the largest fat depot and major provider of free fatty acids to the liver. Abdominal fat is indirectly (via increased levels of low-grade inflammation) correlated with many of the adverse health effects of obesity. Although exercise is one of the most prominent components of obesity management, its effects on SAT are still unclear. The aim of this study was to investigate the independent effects of aerobic training (AT) and resistance training (RT) modalities and combined exercise modalities on SAT in adults. PubMed, SCOPUS, and Google Scholar were searched to find relevant publications up to November 2018. The effect sizes were represented as weighted mean difference (WMD) and 95% CIs. Between-study heterogeneity was examined using the I2 test. Overall, 43 identified trials that enrolled 3552 subjects (2684 women) were included. After removal of outliers, combining effect sizes indicated a significant effect of AT (WMD: -13.05 cm2; 95% CI: -18.52, -7.57; P < 0.001), RT (WMD: -5.39 cm2; 95% CI: -9.66, -1.12; P = 0.01), and combined exercise training (CExT; WMD: -28.82 cm2; 95% CI: -30.83, -26.81; P < 0.001) on SAT relative to control groups. Pooled effect sizes demonstrated a significant effect of AT on SAT compared with a CExT group (WMD: 11.07 cm2; 95% CI: 1.81, 20.33; P = 0.01). However, when comparing the AT and RT groups, no significant difference was seen in SAT (WMD: -0.73 cm2; 95% CI: -4.50, 3.04; P = 0.70). Meta-analysis of relevant trials indicated that AT, RT, and CExT lead to SAT reduction. Aerobic exercise was shown to produce greater efficacy in decreasing SAT.
Collapse
Affiliation(s)
- Habib Yarizadeh
- Students' Scientific Center, Tehran University of Medical Sciences, Tehran, Iran,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eftekhar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Anjom-Shoae
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
29
|
Bettio LEB, Thacker JS, Rodgers SP, Brocardo PS, Christie BR, Gil-Mohapel J. Interplay between hormones and exercise on hippocampal plasticity across the lifespan. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165821. [PMID: 32376385 DOI: 10.1016/j.bbadis.2020.165821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
The hippocampus is a brain structure known to play a central role in cognitive function (namely learning and memory) as well as mood regulation and affective behaviors due in part to its ability to undergo structural and functional changes in response to intrinsic and extrinsic stimuli. While structural changes are achieved through modulation of hippocampal neurogenesis as well as alterations in dendritic morphology and spine remodeling, functional (i.e., synaptic) changes can be noted through the strengthening (i.e., long-term potentiation) or weakening (i.e., long-term depression) of the synapses. While age, hormone homeostasis, and levels of physical activity are some of the factors known to module these forms of hippocampal plasticity, the exact mechanisms through which these factors interact with each other at a given moment in time are not completely understood. It is well known that hormonal levels vary throughout the lifespan of an individual and it is also known that physical exercise can impact hormonal homeostasis. Thus, it is reasonable to speculate that hormone modulation might be one of the various mechanisms through which physical exercise differently impacts hippocampal plasticity throughout distinct periods of an individual's life. The present review summarizes the potential relationship between physical exercise and different types of hormones (namely sex, metabolic, and stress hormones) and how this relationship may mediate the effects of physical activity during three distinct life periods, adolescence, adulthood, and senescence. Overall, the vast majority of studies support a beneficial role of exercise in maintaining hippocampal hormonal levels and consequently, hippocampal plasticity, cognition, and mood regulation.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Jonathan S Thacker
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Shaefali P Rodgers
- Developmental, Cognitive & Behavioral Neuroscience Program, Department of Psychology, Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, TX, USA
| | - Patricia S Brocardo
- Department of Morphological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Brian R Christie
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC, Canada.
| |
Collapse
|
30
|
Arazi H, Salek L, Nikfal E, Izadi M, Tufano JJ, Elliott BT, Brughelli M. Comparable endocrine and neuromuscular adaptations to variable vs. constant gravity-dependent resistance training among young women. J Transl Med 2020; 18:239. [PMID: 32539753 PMCID: PMC7296723 DOI: 10.1186/s12967-020-02411-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023] Open
Abstract
Background Variable resistance has been shown to induce greater total work and muscle activation when compared to constant resistance. However, little is known regarding the effects of chronic exposure to variable resistance training in comparison with constant resistance training. The aim of the present study was therefore to examine the effects of chain-loaded variable and constant gravity-dependent resistance training on resting hormonal and neuromuscular adaptations. Methods Young women were randomly assigned to variable resistance training (VRT; n = 12; age, 23.75 ± 3.64 years; and BMI, 26.80 ± 4.21 kg m−2), constant resistance training (CRT; n = 12; age, 23.58 ± 3.84 years; BMI, 25.25 ± 3.84 kg m−2), or control (Con; n = 12; age, 23.50 ± 2.93 years; BMI, 27.12 ± 12 kg m−2) groups. CRT performed 8-week total-body free-weight training three times per week with moderate-to-high intensity (65–80% 1RM; periodized). VRT was the same as CRT but included variable resistance via chains (15% of total load). Resting serum samples were taken before and after the 8-week intervention for GH, IGF-1, cortisol, myostatin, and follistatin analyses. Results Both VRT and CRT groups displayed moderate-to-large significant increases in GH (197.1%; ES = 0.78 vs. 229.9%; ES = 1.55), IGF-1 (82.3%; ES = 1.87 vs. 66%; ES = 1.66), and follistatin (58.8%; ES = 0.80 vs. 49.15%; ES = 0.80) and decreases in cortisol (− 19.9%; ES = − 1.34 vs. − 17.1%; ES = − 1.05) and myostatin (− 26.9%; ES = − 0.78 vs. − 23.2%; ES = − 0.82). Also, VRT and CRT resulted in large significant increases in bench press (30.54%; ES = 1.45 vs. 25.08%; ES = 1.12) and squat (30.63%; ES = 1.28 vs. 24.81%; ES = 1.21) strength, with no differences between groups. Conclusions Implementing chain-loaded VRT into a periodized resistance training program can be an effective alternative to constant loading during free-weight RT among untrained young women.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, 10 th km of Tehran Road- Khalij-e-Fars Highway, Zip Code: 4199843653, Rasht, Iran.
| | - Lida Salek
- Department of Physical Education, Bandar-e-Anzali Branch, Islamic Azad University, Bandar-e-Anzali, Iran
| | - Elham Nikfal
- Department of Physical Education, Bandar-e-Anzali Branch, Islamic Azad University, Bandar-e-Anzali, Iran
| | - Mani Izadi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, 10 th km of Tehran Road- Khalij-e-Fars Highway, Zip Code: 4199843653, Rasht, Iran
| | - James J Tufano
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Bradley T Elliott
- Translational Physiology Research Group, School of Life Sciences, University of Westminster, London, UK
| | - Matt Brughelli
- Sports Performance Research Institute New Zealand (SPRINZ), AUT Millennium, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
31
|
Ikonen JN, Joro R, Uusitalo AL, Kyröläinen H, Kovanen V, Atalay M, Tanskanen-Tervo MM. Effects of military training on plasma amino acid concentrations and their associations with overreaching. Exp Biol Med (Maywood) 2020; 245:1029-1038. [PMID: 32363923 DOI: 10.1177/1535370220923130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
IMPACT STATEMENT The diagnosis of overtraining syndrome and overreaching poses a great challenge. Military training aims at improving the physical performance of the conscripts, but an excessive training load could also lead to overreaching. This study of Finnish conscripts provides new insights into the pathophysiology of overreaching and overtraining through amino acids concentrations. In addition to confirming the possible use of plasma glutamine/glutamate concentration to indicate and predict overreaching, we made a novel finding, i.e. low alanine and arginine concentrations might have a role in performance decrement and fatigue related to overreaching. Moreover, this study is the first to show the possible association between amino acids with putative neuronal properties and overreaching. Thus, the present findings might help to detect and prevent overreaching and offer a reliable diagnostic approach. In order to avoid overreaching, military training should be planned more periodically and individually, especially during the first four weeks of military service.
Collapse
Affiliation(s)
- Jenni N Ikonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70211, Finland
| | - Raimo Joro
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70211, Finland
| | - Arja Lt Uusitalo
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki 00530, Finland.,Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki 00530, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Vuokko Kovanen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70211, Finland
| | | |
Collapse
|
32
|
Pierce JR, Martin BJ, Rarick KR, Alemany JA, Staab JS, Kraemer WJ, Hymer WC, Nindl BC. Growth Hormone and Insulin-like Growth Factor-I Molecular Weight Isoform Responses to Resistance Exercise Are Sex-Dependent. Front Endocrinol (Lausanne) 2020; 11:571. [PMID: 32973684 PMCID: PMC7472848 DOI: 10.3389/fendo.2020.00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: To determine if acute resistance exercise-induced increases in growth hormone (GH) and insulin-like growth factor-I (IGF-I) were differentially responsive for one or more molecular weight (MW) isoforms and if these responses were sex-dependent. Methods: College-aged men (n = 10) and women (n = 10) performed an acute resistance exercise test (ARET; 6 sets, 10 repetition maximum (10-RM) squat, 2-min inter-set rest). Serum aliquots from blood drawn Pre-, Mid-, and Post-ARET (0, +15, and +30-min post) were processed using High Performance Liquid Chromatography (HPLC) fractionation and pooled into 3 MW fractions (Fr.A: >60; Fr.B: 30-60; Fr.C: <30 kDa). Results: We observed a hierarchy of serum protein collected among GH fractions across all time points independent of sex (Fr.C > Fr.A > Fr.B, p ≤ 0.03). Sex × time interactions indicated that women experienced earlier and augmented increases in all serum GH MW isoform fraction pools (p < 0.05); however, men demonstrated delayed and sustained GH elevations (p < 0.01) in all fractions through +30-min of recovery. Similarly, we observed a sex-independent hierarchy among IGF-I MW fraction pools (Fr.A > Fr.B > Fr.C, p ≤ 0.01). Furthermore, we observed increases in IGF-I Fr. A (ternary complexes) in men only (p ≤ 0.05), and increases in Fr.C (free/unbound IGF-I) in women only (p ≤ 0.05) vs. baseline, respectively. Conclusions: These data indicate that the processing of GH and IGF-I isoforms from the somatotrophs and hepatocytes are differential in their response to strenuous resistance exercise and reflect both temporal and sex-related differences.
Collapse
Affiliation(s)
- Joseph R. Pierce
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
- *Correspondence: Joseph R. Pierce
| | - Brian J. Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kevin R. Rarick
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Joseph A. Alemany
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Jeffery S. Staab
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - William J. Kraemer
- Department of Kinesiology, University of Connecticut, Mansfield, CT, United States
| | - Wesley C. Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Bradley C. Nindl
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Oberste M, Javelle F, Sharma S, Joisten N, Walzik D, Bloch W, Zimmer P. Effects and Moderators of Acute Aerobic Exercise on Subsequent Interference Control: A Systematic Review and Meta-Analysis. Front Psychol 2019; 10:2616. [PMID: 31824387 PMCID: PMC6881262 DOI: 10.3389/fpsyg.2019.02616] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Acute aerobic exercise leads to positive physiological adaptations within the central nervous system. These findings inspired research on potential cognitive benefits following acute aerobic exercise. The effects of acute aerobic exercise on subsequent cognitive performance, by far, have been the most researched for interference control, a subcomponent of executive function. The results of primary studies on the effects of acute aerobic exercise on subsequent interference control performance are inconsistent. Therefore, we used meta-analytic methods to pool available effect sizes, and to identify covariates that determine the magnitude of exercise-induced interference control benefits. Methods: Medline, PsycINFO, and SPORTDiscus were searched for eligible records. Hedges' g corrected standardized mean difference values (SMDs) were used for analyses. Random-effects weights were used to pool effect sizes. Moderator analyses were conducted using meta-regressions and subgroups analyses. Covariates that were here tested for moderation included parameters of the applied exercise regimen (exercise intensity and exercise duration), characteristics of examined participants (age and fitness), and methodological features of existing research (type of control group, familiarization with test procedure, type of test variable, delay between exercise cessation, and testing). Results: Fifty studies, with data from 2,366 participants, were included in qualitative and quantitative synthesis. A small, significant beneficial effect of acute aerobic exercise on time-dependent measures of interference control was revealed (k = 49, Hedges' g = -0.26, 95%CI: -34 to -0.18). Effect sizes from time-dependent measures of interference control varied widely and heterogeneity reached statistical significance (T 2 = 0.0557, I 2 = 28.8%). Moderator analyses revealed that higher exercise intensities (vigorous intensity and high-intensity interval training), also participants at younger or older age, and participants who are familiar with the testing procedure prior to the experiment, benefitted most from acute aerobic exercise. However, noticeable heterogeneity remained unexplained within specific subgroups (high-intensity interval training, preadolescent children, and active and supervised control group). Conclusion: Acute aerobic exercise improves subsequent interference control performance. However, the covariates exercise intensity, participants' age, and familiarization with testing procedure determine the magnitude of that effect. Methodological features were not found to influence the magnitude of effects. This dismisses some doubts that exercise induced benefits for interference control performance are scientific artifacts. The fact that large heterogeneity remained unexplained in some subgroups indicates the need for further research on covariates within these subgroups. It should be noted that effect sizes for all analyses were small.
Collapse
Affiliation(s)
- Max Oberste
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sophia Sharma
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Niklas Joisten
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - David Walzik
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
34
|
Al-Qahtani AM, Shaikh MAK, Shaikh IA. Exercise as a treatment modality for depression: A narrative review. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2018.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Awad Mohammed Al-Qahtani
- Department of Family & Community Medicine, Faculty of Medicine, Najran University, Najran, Saudi Arabia
| | | | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| |
Collapse
|
35
|
Brupbacher G, Gerger H, Wechsler M, Zander-Schellenberg T, Straus D, Porschke H, Gerber M, von Känel R, Schmidt-Trucksäss A. The effects of aerobic, resistance, and meditative movement exercise on sleep in individuals with depression: protocol for a systematic review and network meta-analysis. Syst Rev 2019; 8:105. [PMID: 31027509 PMCID: PMC6486698 DOI: 10.1186/s13643-019-1018-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The main objective of this review is to assess the effects of aerobic, resistance, and meditative movement exercise on sleep quality in patients with unipolar depression. A secondary goal is to ascertain the effects on sleep duration, sleepiness, daytime functioning, use of hypnotics, and adverse events. METHODS A systematic computerized search will be performed in the following online databases: PubMed, EMBASE (on Ovid), Cochrane Library, PsycINFO (on Ovid), SPORTDiscus (on EBSCOhost), CINHAL (on EBSCOhost), Clinicaltrials.gov , WHO International Clinical Trials Registry, OpenGrey, and ProQuest Dissertations and Theses. Bibliographies of all included studies as well as any other relevant reviews identified via the search will be screened. Randomized trials using aerobic, resistance, or meditative movement exercise interventions which target sleep as a primary or secondary outcome will be included. The primary outcome will be differences in sleep quality at post-intervention. Secondary outcomes will be adverse events, differences in sleep duration, daytime sleepiness and functioning, and the use of hypnotics at post-intervention. Two authors will independently screen the identified records. Disagreement will be resolved by consensus or if no consensus can be reached by adjudication of a designated third reviewer. Data extraction will be done independently by two authors using a standardized and piloted data extraction sheet. Bias in individual studies will be assessed using the revised Cochrane risk of bias tool. The certainty of evidence across all outcomes will be evaluated using the CINeMA (Confidence in Network Meta-Analysis) framework. A frequentist network meta-analysis will be conducted. The systematic review and network meta-analysis will be presented according to the PRISMA for Network Meta-Analyses (PRISMA-NMA) guideline. DISCUSSION This systematic review and network meta-analysis will provide a synthesis of the currently available evidence concerning the effects of aerobic, resistance, and meditative movement exercises on sleep in patients with unipolar depression. Thereby, we hope to accelerate the consolidation of evidence and inform decision-makers on potential benefits and harms. SYSTEMATIC REVIEW REGISTRATION The protocol has been registered at the International Prospective Register of Systematic Reviews (PROSPERO; registration number: CRD42019115705).
Collapse
Affiliation(s)
- Gavin Brupbacher
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland.
- Oberwaid AG, Rorschacher Strasse 311, 9016, St. Gallen, Switzerland.
| | - Heike Gerger
- Division of Clinical Psychology and Psychotherapy, Faculty of Psychology, University of Basel, Missionsstrasse 62a, 4055, Basel, Switzerland
| | - Monika Wechsler
- University Medical Library Basel, Spiegelgasse 5, 4051, Basel, Switzerland
| | - Thea Zander-Schellenberg
- Division of Clinical Psychology and Epidemiology, Faculty of Psychology, University of Basel, Missionsstrasse 62a, 4055, Basel, Switzerland
| | - Doris Straus
- Oberwaid AG, Rorschacher Strasse 311, 9016, St. Gallen, Switzerland
| | | | - Markus Gerber
- Division of Sport and Psychosocial Health, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zurich, Culmannstrasse 8, 8091, Zurich, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| |
Collapse
|
36
|
Yoon JR, Ha GC, Ko KJ, Kang SJ. Effects of exercise type on estrogen, tumor markers, immune function, antioxidant function, and physical fitness in postmenopausal obese women. J Exerc Rehabil 2018; 14:1032-1040. [PMID: 30656166 PMCID: PMC6323343 DOI: 10.12965/jer.1836446.223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
This study aims to identify the effects of exercise type on estrogen, tumor markers, immune function, antioxidant function, and physical fitness in postmenopausal obese women. The subjects were 30 post-menopausal obese women with body fat percentage higher than 30%. Participants were divided into aerobic exercise group (n=10; age, 53.70±3.37 years), resistance exercise group (n=10; age, 52.20±2.15 years), and control group (n=10; age, 52.50±2.68 years). Estrogen and growth hormone showed no significant difference in the aerobic exercise group, resistance exercise group, and control group. Tumor marker alpha-fetoprotein was increased in the aerobic exercise, resistance exercise, and control groups (P<0.01). The metabolic syndrome risk factor was decreased in the aerobic and resistance exercise groups, which was shown by the reduction of weight (P<0.001), body fat percentage (P<0.001), waist circumference (P<0.05), and increase of high density lipoprotein-cholesterol (P<0.001). natural killer cell activity was increased in the aerobic exercise group, resistance exercise group, and control group (P<0.001). Oxidative stress was decreased in the aerobic exercise group, resistance exercise group, and control group (P<0.001). Maximum oxygen uptake was increased in the aerobic and resistance exercise groups, but aerobic exercise was more effective (P<0.05). Knee isokinetic extensor muscle was increased in both the aerobic and resistance exercise groups (P<0.001). Aerobic and resistance exercise of postmenopausal obese women can be considered an effective intervention program to prevent metabolic syndrome and improve physical fitness.
Collapse
Affiliation(s)
- Jae-Ryang Yoon
- Department of Physical Education, Korea National Sport University, Seoul, Korea
| | - Gi-Chul Ha
- Department of Physical Education, Korea National Sport University, Seoul, Korea
| | - Kwang-Jun Ko
- Department of Sports Medicine, National Fitness Center, Seoul, Korea
| | - Seol-Jung Kang
- Department of Physical Education, Changwon National University, Changwon, Korea
| |
Collapse
|
37
|
An immuno polymerase chain reaction screen for the detection of CJC‐1295 and other growth‐hormone‐releasing hormone analogs in equine plasma. Drug Test Anal 2018; 11:804-812. [DOI: 10.1002/dta.2554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/01/2018] [Accepted: 11/25/2018] [Indexed: 12/30/2022]
|
38
|
Lee JH, Kim SK, Lee EK, Ahn MB, Kim SH, Cho WK, Cho KS, Jung MH, Suh BK. Factors affecting height velocity in normal prepubertal children. Ann Pediatr Endocrinol Metab 2018; 23:148-153. [PMID: 30286571 PMCID: PMC6177663 DOI: 10.6065/apem.2018.23.3.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To analyze the effects of clinical and laboratory factors, including insulinlike growth factor (IGF) levels, on the height velocity of normal prepubertal children. METHODS Ninety-five healthy prepubertal children (33 boys, 62 girls) were enrolled. The mean chronological age was 6.3±1.4 years, with a height standard deviation score (SDS) of -0.88±0.70. IGF-1, IGF binding protein-3 (IGFBP-3), SDS for anthropometric measurements, and changes in SDS for anthropometric measurements were analyzed for 1 year, and their associations with 1-year height velocity were investigated. RESULTS The group of children with a 1-year height velocity of ≥6 cm were chronologically younger than the group with a 1-year height velocity of <6 cm (5.9±1.3 years vs. 6.7±1.3 years, P=0.004), with a lesser increase of SDS for body mass index (BMI) over 1 year (-0.18±0.68 vs. 0.13±0.53, P=0.014). There were no differences between the 2 groups in IGF-1 SDS and IGFBP-3 SDS. Multiple linear regression showed that baseline chronological age (r=0.243, P=0.026) and height SDS (r=0.236, P=0.030) were positively associated with IGF-1 SDS. Binomial logistic regression showed that an older chronologic age at referral (odds ratio [OR], 0.68; 95% confidence interval [CI], 0.47-0.99) and an increase of BMI SDS over 1 year (OR, 0.41; 95% CI, 0.18-0.89) were associated with a decreased growth possibility of an above-average height velocity (≥6 cm/yr). CONCLUSION Height velocity of normal prepubertal children is affected by an increase of BMI SDS and chronological age. Prepubertal IGF-1 SDS reflects height SDS at the time of measurement but is not associated with subsequent height velocity.
Collapse
Affiliation(s)
- Jun Hui Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seul Ki Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Kyoung Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Moon Bae Ahn
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Shin Hee Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Kyoung Cho
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyoung Soon Cho
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Ho Jung
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Kyu Suh
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
39
|
A comparison of the acute physiological responses to BODYPUMP™ versus iso-caloric and iso-time steady state cycling. J Sci Med Sport 2018. [DOI: 10.1016/j.jsams.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Nindl BC, Eagle SR, Matheny RW, Martin BJ, Rarick KR, Pierce JR, Sharp MA, Kellogg MD, Patton JF. Characterization of growth hormone disulfide-linked molecular isoforms during post-exercise release vs nocturnal pulsatile release reveals similar milieu composition. Growth Horm IGF Res 2018; 42-43:102-107. [PMID: 30399477 DOI: 10.1016/j.ghir.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To characterize the influence of mode (aerobic/resistance) and volume of exercise (moderate/high) on circulating GH immediately post-exercise as well as following the onset of sleep. DESIGN This study used repeated measures in which subjects randomly completed 5 separate conditions: control (no exercise), moderate volume resistance exercise (MR), high-volume resistance exercise (HR), moderate volume aerobic exercise (MA), and high volume aerobic exercise (HA). METHODS Subjects had two overnight stays on each of the 5 iterations. Serial blood draws began as soon as possible after the completion of the exercise session. Blood was obtained every 20 min for 24-h. GH was measured using a chemiluminescent immunoassay. Pooled samples representing post exercise (PE) and first nocturnal pulse (NP) were divided into two aliquots. One of these aliquots was chemically reduced by adding 10 mM glutathione (GSH) to break down disulfide-linked aggregates. RESULTS No differences were observed when pooling GH response at post-exercise (2.02 ± 0.21) and nocturnal pulse (2.63 ± 0.51; p = .32). Pairwise comparisons revealed main effect differences between controls (1.19 ± 0.29) and both MA (2.86 ± 0.31; p = .009) and HA (3.73 ± 0.71; p = .001). Both MA (p = .049) and HA (p = .035) responses were significantly larger than the MR stimulus (1.96 ± 0.28). With GSH reduction, controls significantly differed from MA (p = .018) and HA (p = .003) during PE, but only differed from HA (p = .003) during NP. CONCLUSIONS This study demonstrated similar GH responses to exercise and nocturnal pulse, indicating that mode and intensity of exercise does not proportionately affect GH dimeric isoform concentration.
Collapse
Affiliation(s)
- Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA 15203, United States.
| | - Shawn R Eagle
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA 15203, United States
| | - Ronald W Matheny
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| | - Brian J Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA 15203, United States
| | - Kevin R Rarick
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| | - Joseph R Pierce
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| | - Marilyn A Sharp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| | - Mark D Kellogg
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| | - John F Patton
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, United States
| |
Collapse
|
41
|
Rigamonti AE, De Col A, Tamini S, Tringali G, De Micheli R, Abbruzzese L, Goncalves da Cruz CR, Bernardo-Filho M, Cella SG, Sartorio A. GH responses to whole body vibration alone or in combination with maximal voluntary contractions in obese male adolescents. Growth Horm IGF Res 2018; 42-43:22-27. [PMID: 30075349 DOI: 10.1016/j.ghir.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND The anabolic, lipolytic and anti-inflammatory effects of exercise-stimulated GH secretion could be usefully exploited in the multidisciplinary rehabilitative programs of obese patients, who are reported to suffer from hyposomatotropism. To date, evaluation of GH responses to whole body vibration (WBV) in combination with maximal voluntary contractions (MVC) has been performed in normal-weight subjects, but not obese patients. Thus, aim of the present study was to investigate the effects of WBV and MVC, alone and combined, on GH responsiveness in obese subjects. METHODS The acute effects of WBV or MVC alone and the combination of MVC with WBV (MVC + WBV) on serum GH, cortisol and IGF-I and blood lactate (LA) levels were evaluated in 8 obese male adolescents [mean age ± SD: 17.1 ± 3.3 yrs.; weight: 107.4 ± 17.8 kg; body mass index (BMI): 36.5 ± 6.6 kg/m2; BMI standard deviation score (SDS): 3.1 ± 0.6]. RESULTS WBV and MVC (alone or combined) significantly stimulated GH secretion. In particular, GH peaks and net areas under the curve (nAUCs) were significantly higher after MVC + WBV and MVC than WBV, without any difference between MVC + WBV and MVC groups; anyway, an additive effect on GH levels immediately after the execution of MVC + WBV test was found in comparison with MVC test. LA peaks significantly increased after each exercise (vs. basal condition), being significantly higher after MVC + WBV and MVC than WBV, without any difference between MVC + WBV and MVC groups. Peak LA values were significantly correlated with GH peaks and nAUCs. In contrast to the unchanged IGF-I levels, MVC + WBV and MVC (but not WBV) significantly stimulated cortisol secretion. CONCLUSIONS The results of the present study confirm the ability of MVC and WBV to stimulate GH secretion in obese patients. Rehabilitative programs combining different types of exercise eliciting a potent GH response seem to be important to counteract the hyposomatotropism of obese patients. Due to its limited stress upon joints without provoking an excessive fatigue, WBV could be usefully employed in the initial stages of a weight loss program alone or in combination with more potent GH releasing stimuli, such as MVC.
Collapse
Affiliation(s)
- A E Rigamonti
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy.
| | - A De Col
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - S Tamini
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - G Tringali
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - R De Micheli
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - L Abbruzzese
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy; Istituto Auxologico Italiano, IRCCS, Division of Auxology and Metabolic Diseases, Verbania, Italy
| | - C R Goncalves da Cruz
- Departamento de Biofisica e Biometria, Laboratório de Vibrações Mecânicas e Praticas Integrativas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Médicas, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - M Bernardo-Filho
- Departamento de Biofisica e Biometria, Laboratório de Vibrações Mecânicas e Praticas Integrativas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | - S G Cella
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - A Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy; Istituto Auxologico Italiano, IRCCS, Division of Auxology and Metabolic Diseases, Verbania, Italy
| |
Collapse
|
42
|
Zahr R, Fleseriu M. Updates in Diagnosis and Treatment of Acromegaly. EUROPEAN ENDOCRINOLOGY 2018; 14:57-61. [PMID: 30349595 PMCID: PMC6182922 DOI: 10.17925/ee.2018.14.2.57] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Acromegaly is a rare disease, caused largely by a growth hormone (GH) pituitary adenoma. Incidence is higher than previously thought. Due to increased morbidity and mortality, if not appropriately treated, early diagnosis efforts are essential. Screening is recommended for all patients with clinical features of GH excess. There is increased knowledge that classical diagnostic criteria no longer apply to all, and some patients can have GH excess with normal GH response to glucose. Treatment is multifactorial and personalised therapy is advised.
Collapse
Affiliation(s)
- Roula Zahr
- Department of Medicine, Division of Endocrinology, Diabetes and Clinical Nutrition
| | - Maria Fleseriu
- Department of Medicine, Division of Endocrinology, Diabetes and Clinical Nutrition
- Department of Neurological Surgery
- Northwest Pituitary Center, Oregon Health & Science University, Portland, OR, US
| |
Collapse
|
43
|
Rivas E, Sanchez K, Cambiaso-Daniel J, Gutierrez IL, Tran J, Herndon DN, Suman OE. Burn Injury May Have Age-Dependent Effects on Strength and Aerobic Exercise Capacity in Males. J Burn Care Res 2018; 39:815-822. [PMID: 29596612 PMCID: PMC6097589 DOI: 10.1093/jbcr/irx057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Whether burn injury affects boys and men differently is currently unknown. To test the hypothesis that burned boys have lower exercise capacity and exercise training-induced responses compared with burned men, 40 young boys (12 ± 4 years, 149 ± 20 cm, 46 ± 18 kg) were matched to 35 adult men (33 ± 9 years, 174 ± 10 cm, 84 ± 16 kg) based on extent of burn injury (total body surface area burned, boys 46 ± 14% vs men 47 ± 30, P = .85) and length of hospital stay (boys 33 ± 23 vs men 41 ± 32 days, P = .23). Strength (peak torque) and cardiorespiratory fitness (peak VO2) were normalized to kg of lean body mass for group comparisons. Each group was also compared with normative age-sex matched values at discharge and after an aerobic and resistance exercise training (RET) program. A two-way factorial analysis of covariance assessed interaction and main effects of group and time. We found that boys and men showed similar pre-RET to post-RET increases in total lean (~4%) and fat (7%) mass (each P ≤ .008). Both groups had lower age-sex matched norm values at discharge for peak torque (boys 36%; men 51% of normative values) and peak VO2 (boys: 44; men: 59%; each P ≤ .0001). Boys strength were 13-15 per cent lower than men at discharge and after RET (main effect for group, P < .0001). Cardiorespiratory fitness improved to a greater extent in men (19%) compared with boys (10%) after the RET (group × time interaction, P = .011). These results show that at discharge and after RET, burn injury may have age-dependent effects and should be considered when evaluating efficacy and progress of the exercise program.
Collapse
Affiliation(s)
- Eric Rivas
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | | | - Janos Cambiaso-Daniel
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Austria
| | - Ileana L Gutierrez
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Joan Tran
- Shriners Hospitals for Children, Galveston, Texas
| | - David N Herndon
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Oscar E Suman
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
44
|
Berry NT, Hubal M, Wideman L. The effects of an acute exercise bout on GH and IGF-1 in prediabetic and healthy African Americans: A pilot study investigating gene expression. PLoS One 2018; 13:e0191331. [PMID: 29351335 PMCID: PMC5774763 DOI: 10.1371/journal.pone.0191331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022] Open
Abstract
The incidence of pre-diabetes (PD) and Type-2 Diabetes Mellitus (T2D) is a worldwide epidemic. African American (AA) individuals are disproportionately more likely to become diabetic than other ethnic groups. Over the long-term, metabolic complications related to diabetes result in significant alterations in growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Considering the limited exercise-related studies in the area of gene expression changes with disease progression, the objective of this study was to examine differences in exercise-induced gene expression related to the GH and IGF-1 pathways in peripheral blood mononuclear cells (PBMCs) of healthy (CON) and PD AA individuals. DESIGN Ten subjects [5 PD (age = 35±9.3 yr, BMI = 32.1±4.0, FBG = 101.8±1.3 mg/dl) and 5 CON (age = 31±9.4 yr, BMI = 29.4±5.2, FBG = 82.8±9.7 mg/dl)] had blood drawn for RNA isolation prior to exercise (Pre), immediately following acute moderate intensity exercise on a treadmill (Post-1), 6-hours post (Post-6), and 24-hours post (Post-24). Isolation of mRNA from PBMCs was performed using ficoll separation, while the profiling of mRNA expression was performed using Illumina beadchip arrays with standard protocols. Scan results were statistically analyzed for a specific list of genes related to GH and IGF-1. GH and IGF-1 protein levels were also assessed in each sample. To address issues of normality, all GH and IGF-1 data were log-transformed prior to analysis. Statistical significance was set at p<0.05. RESULTS Group differences for GH2 variant 2 (p = 0.070) and GH2 variant 3 (p = 0.059) were coupled with significant alterations in IGF-1 mRNA over time (p = 0.024). A significant interaction between group and time was observed for GHRH mRNA (p = 0.008). No group differences were observed in GH AUC (p = 0.649), ΔGH (p = 0.331), GHrec (p = 0.294), or IGF-1 AUC (p = 0.865), representing a similar exercise-induced GH and IGF-1 response for both groups. CONCLUSIONS Analysis of GH and IGF-1 related-gene expression indicates that mild elevations in fasting blood glucose and exercise-induced alterations in gene expression are impacted by the prediabetic state.
Collapse
Affiliation(s)
- Nathaniel T. Berry
- University of North Carolina at Greensboro, Greensboro, NC, United States of America
| | - Monica Hubal
- George Washington University Milken Institute School of Public Health, Washington, D.C., United States of America
- Children's National Medical Center, NW, Washington, D.C., United States of America
| | - Laurie Wideman
- University of North Carolina at Greensboro, Greensboro, NC, United States of America
| |
Collapse
|
45
|
Exercise training reverses the negative effects of chronic L-arginine supplementation on insulin sensitivity. Life Sci 2017; 191:17-23. [DOI: 10.1016/j.lfs.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/24/2017] [Accepted: 10/01/2017] [Indexed: 12/14/2022]
|
46
|
Sellami M, Dhahbi W, Hayes LD, Padulo J, Rhibi F, Djemail H, Chaouachi A. Combined sprint and resistance training abrogates age differences in somatotropic hormones. PLoS One 2017; 12:e0183184. [PMID: 28800636 PMCID: PMC5553853 DOI: 10.1371/journal.pone.0183184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/29/2017] [Indexed: 02/01/2023] Open
Abstract
The aim of this investigation was to compare serum growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) in response to a combined sprint and resistance training (CSRT) program in young and middle-aged men.Thirty-eight healthy, moderately trained men participated in this study. Young and middle-aged men were randomly assigned to, a young training group (YT = 10, 21.4±1.2yrs) ora young control group (YC = 9, 21.6±1.8 yrs), a middle-aged training group (MAT = 10, 40.4±2.1 yrs) or a middle-aged control group (MAC = 9, 40.5±1.8 yrs). Participants performed the Wingate Anaerobic Test (WAnT) before and after a 13-week CSRT program (three sessions per week). Blood samples were collected at rest, after warm-up, immediately post-WAnT, and 10 min post-WAnT. CSRT induced increases in GH at rest and in response to the WAnT in YT and MAT (P<0.05). CSRT-induced increases were observed for IGF-1 and IGFBP-3 at rest in MAT only (P<0.05). Pre-training, GH, IGF-1 and IGFBP-3 were significantly higher at rest and in response to the WAnT in young participants as compared to their middle-aged counterparts (P<0.05). Post-training, YT and MAT had comparable basal GH (P>0.05). In response to the WAnT, amelioration of the age-effect was observed between YT and MAT for IGF-1 and IGF-1/IGFBP-3 ratio following CSRT (P>0.05). These data suggest that CSRT increases the activity of the GH/IGF-1 axis at rest and in response to the WAnT in young and middle-aged men. In addition, CSRT reduces the normal age-related decline of somatotropic hormones in middle-age men.
Collapse
Affiliation(s)
- Maha Sellami
- Tunisian Research Laboratory “Sport Performance Optimization” National Center of Medicine and Science in Sports, Tunis, Tunisia
| | - Wissem Dhahbi
- Tunisian Research Laboratory “Sport Performance Optimization” National Center of Medicine and Science in Sports, Tunis, Tunisia
| | - Lawrence D. Hayes
- Active Ageing Research Group, Department of Medical and Sport Sciences, University of Cumbria, Bowerham Road, Lancaster, United Kingdom
| | - Johnny Padulo
- Tunisian Research Laboratory “Sport Performance Optimization” National Center of Medicine and Science in Sports, Tunis, Tunisia
- University eCampus, Novedrate, Italy
- Faculty of Kinesiology, University of Split, Split, Croatia
- * E-mail:
| | - Fatma Rhibi
- Movement, Sport, Health and Sciences Laboratory (M2S), University of Rennes 2, Rennes, France
| | - Hanen Djemail
- Military Hospital of Instruction of Tunis, Department of Endocrinology, Tunis, Tunisia
| | - Anis Chaouachi
- Tunisian Research Laboratory “Sport Performance Optimization” National Center of Medicine and Science in Sports, Tunis, Tunisia
| |
Collapse
|
47
|
Codella R, Terruzzi I, Luzi L. Why should people with type 1 diabetes exercise regularly? Acta Diabetol 2017; 54:615-630. [PMID: 28289908 DOI: 10.1007/s00592-017-0978-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Plethoric evidence reminds of the protective effects of exercise against a number of health risks, across all ages, in the general population. The benefits of exercise for individuals with type 2 diabetes are indisputable. An in-depth understanding of energy metabolism has reasonably entailed exercise as a cornerstone in the lifestyle of almost all subjects with type 1 diabetes. Nevertheless, individuals with type 1 diabetes often fail in accomplishing exercise guidelines and they are less active than their peer without diabetes. Two major obstacles are feared by people with type 1 diabetes who wish to exercise regularly: management of blood glucose control and hypoglycemia. Nowadays, strategies, including glucose monitoring technology and insulin pump therapy, have significantly contributed to the participation in regular physical activity, and even in competitive sports, for people with type 1 diabetes. Novel modalities of training, like different intensity, interspersed exercise, are as well promising. The beneficial potential of exercise in type 1 diabetes is multi-faceted, and it has to be fully exploited because it goes beyond the insulin-mimetic action, possibly through immunomodulation.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy.
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
48
|
Harris NK, Dulson DK, Logan GRM, Warbrick IB, Merien FLR, Lubans DR. Acute Responses to Resistance and High-Intensity Interval Training in Early Adolescents. J Strength Cond Res 2017; 31:1177-1186. [PMID: 27537411 DOI: 10.1519/jsc.0000000000001590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Harris, NK, Dulson, DK, Logan, GRM, Warbrick, IB, Merien, FLR, and Lubans, DR. Acute responses to resistance and high-intensity interval training in early adolescents. J Strength Cond Res 31(5): 1177-1186, 2017-The purpose of this study was to compare the acute physiological responses within and between resistance training (RT) and high-intensity interval training (HIIT) matched for time and with comparable effort, in a school setting. Seventeen early adolescents (12.9 ± 0.3 years) performed both RT (2-5 repetitions perceived short of failure at the end of each set) and HIIT (90% of age-predicted maximum heart rate), equated for total work set and recovery period durations comprising of 12 "sets" of 30-second work followed by 30-second recovery (total session time 12 minutes). Variables of interest included oxygen consumption, set and session heart rate (HR), and rate of perceived exertion, and change in salivary cortisol (SC), salivary alpha amylase, and blood lactate (BL) from presession to postsession. Analyses were conducted to determine responses within and between the 2 different protocols. For both RT and HIIT, there were very large increases pretrial to posttrial for SC and BL, and only BL increased greater in HIIT (9.1 ± 2.6 mmol·L) than RT (6.8 ± 3.3 mmol·L). Mean set HR for both RT (170 ± 9.1 b·min) and HIIT (179 ± 5.6 b·min) was at least 85% of HRmax. V[Combining Dot Above]O2 over all 12 sets was greater for HIIT (33.8 ± 5.21 ml·kg·min) than RT (24.9 ± 3.23 ml·kg·min). Brief, repetitive, intermittent forays into high but not supramaximal intensity exercise using RT or HIIT seemed to be a potent physiological stimulus in adolescents.
Collapse
Affiliation(s)
- Nigel K Harris
- 1Human Potential Center, Auckland University of Technology, Auckland, New Zealand; 2Taupua Waiora Center for Maori Health Research, Auckland University of Technology, Auckland, New Zealand; 3Roche Diagnostics Laboratory, Auckland University of Technology, Auckland, New Zealand; and 4Priority Research Center in Physical Activity and Nutrition, School of Education, University of Newcastle, Newcastle, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Sabag A, Way KL, Keating SE, Sultana RN, O'Connor HT, Baker MK, Chuter VH, George J, Johnson NA. Exercise and ectopic fat in type 2 diabetes: A systematic review and meta-analysis. DIABETES & METABOLISM 2017; 43:195-210. [PMID: 28162956 DOI: 10.1016/j.diabet.2016.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/11/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
Ectopic adipose tissue surrounding the intra-abdominal organs (visceral fat) and located in the liver, heart, pancreas and muscle, is linked to cardio-metabolic complications commonly experienced in type 2 diabetes. A systematic review and meta-analysis was performed to determine the effect of exercise on ectopic fat in adults with type 2 diabetes. Relevant databases were searched to February 2016. Included were randomised controlled studies, which implemented≥4 weeks of aerobic and/or resistance exercise and quantified ectopic fat via magnetic resonance imaging, computed tomography, proton magnetic resonance spectroscopy or muscle biopsy before and after intervention. Risk of bias and study quality was assessed using Egger's funnel plot test and modified Downs and Black checklist, respectively. Of the 10,750 studies retrieved, 24 were included involving 1383 participants. No studies were found assessing the interaction between exercise and cardiac or pancreas fat. One study assessed the effect of exercise on intramyocellular triglyceride concentration. There was a significant pooled effect size for the meta-analysis comparing exercise vs. control on visceral adiposity (ES=-0.21, 95% CI: -0.37 to -0.05; P=0.010) and a near-significant pooled effect size for liver steatosis reduction with exercise (ES=-0.28, 95% CI: -0.57 to 0.01; P=0.054). Aerobic exercise (ES=-0.23, 95% CI: -0.44 to -0.03; P=0.025) but not resistance training exercise (ES=-0.13, 95% CI: -0.37 to 0.12; P=0.307) was effective for reducing visceral fat in overweight/obese adults with type 2 diabetes. These data suggest that exercise effectively reduces visceral and perhaps liver adipose tissue and that aerobic exercise should be a key feature of exercise programs aimed at reducing visceral fat in obesity-related type 2 diabetes. Further studies are required to assess the relative efficacy of exercise modality on liver fat reduction and the effect of exercise on pancreas, heart, and intramyocellular fat in type 2 diabetes and to clarify the effect of exercise on ectopic fat independent of weight loss.
Collapse
Affiliation(s)
- A Sabag
- Faculty of Health Sciences, University of Sydney, NSW, Australia; Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, University of Sydney, NSW, Australia
| | - K L Way
- Faculty of Health Sciences, University of Sydney, NSW, Australia; Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, University of Sydney, NSW, Australia
| | - S E Keating
- Faculty of Health Sciences, University of Sydney, NSW, Australia; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Queensland, Australia
| | - R N Sultana
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, University of Sydney, NSW, Australia; School of Exercise Science, Australian Catholic University, NSW, Australia
| | - H T O'Connor
- Faculty of Health Sciences, University of Sydney, NSW, Australia
| | - M K Baker
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, University of Sydney, NSW, Australia; School of Exercise Science, Australian Catholic University, NSW, Australia
| | - V H Chuter
- School of Health Sciences, University of Newcastle, NSW, Australia
| | - J George
- Storr Liver Centre, Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, NSW, Australia
| | - N A Johnson
- Faculty of Health Sciences, University of Sydney, NSW, Australia; Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, University of Sydney, NSW, Australia.
| |
Collapse
|
50
|
Ives SJ, Norton C, Miller V, Minicucci O, Robinson J, O'Brien G, Escudero D, Paul M, Sheridan C, Curran K, Rose K, Robinson N, He F, Arciero PJ. Multi-modal exercise training and protein-pacing enhances physical performance adaptations independent of growth hormone and BDNF but may be dependent on IGF-1 in exercise-trained men. Growth Horm IGF Res 2017; 32:60-70. [PMID: 27789212 DOI: 10.1016/j.ghir.2016.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/23/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Protein-pacing (P; 5-6meals/day @ 2.0g/kgBW/day) and multi-mode exercise (RISE; resistance, interval, stretching, endurance) training (PRISE) improves muscular endurance, strength, power and arterial health in exercise-trained women. The current study extends these findings by examining PRISE on fitness, growth hormone (GH), insulin-like growth factor-1 (IGF-1), and brain-derived neurotrophic factor (BDNF) response, cardiometabolic health, and body composition in exercise-trained men. DESIGN Twenty active males (>4daysexercise/week) completed either: PRISE (n=11) or RISE (5-6meals/day @ 1.0g/kgBW/day; n=9) for 12weeks. Muscular strength (1-repetition maximum bench and leg press, 1-RM BP, and 1-RM LP), endurance (sit-ups, SU; push-ups, PU), power (squat jump, SJ, and bench throw, BT), flexibility (sit-and-reach, SR), aerobic performance (5km cycling time-trial, TT), GH, IGF-1, BDNF, augmentation index, (AIx), and body composition, were assessed at weeks 0 (pre) and 13 (post). RESULTS At baseline, no differences existed between groups except for GH (RISE, 230±13 vs. PRISE, 382±59pg/ml, p<0.05). The exercise intervention improved 1-RM, SJ, BT, PU, SU, SR, 5km-TT, GH, AIx, BP, and body composition in both groups (time, p<0.05). However, PRISE elicited greater improvements in 1-RM BP (21 vs. 10∆lbs), SJ (171 vs. 13∆W), 5km-TT (-37 vs. -11∆s), and sit-and-reach (5.3 vs. 1.2∆cm) over RISE alone (p<0.05) including increased IGF-1 (12%, p<0.05). CONCLUSIONS Exercise-trained men consuming a P diet combined with multi-component exercise training (PRISE) enhance muscular power, strength, aerobic performance, and flexibility which are not likely related to GH or BDNF but possibly to IGF-1 response.
Collapse
Affiliation(s)
- Stephen J Ives
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Chelsea Norton
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Vincent Miller
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Olivia Minicucci
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Jake Robinson
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Gabe O'Brien
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Daniela Escudero
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Maia Paul
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Caitlin Sheridan
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Kathryn Curran
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Kayla Rose
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Nathaniel Robinson
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Feng He
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States.
| |
Collapse
|