1
|
Aleman J, K R, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor VK, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic dysfunction-associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. Commun Biol 2024; 7:1317. [PMID: 39397070 PMCID: PMC11471816 DOI: 10.1038/s42003-024-07006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with pancreatic islet MPS (PANIS) enabling MASLD progression and islet dysfunction to be assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic-factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying disease mechanisms, and advancing precision medicine.
Collapse
Affiliation(s)
- Julio Aleman
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA
| | - Ravikumar K
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Connor Wiegand
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Greg LaRocca
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | | | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Vijay K Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
| | - Ipsita Banerjee
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA.
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
- University of Pittsburgh Liver Research Center, Pittsburgh, USA.
| |
Collapse
|
2
|
Holendová B, Šalovská B, Benáková Š, Plecitá-Hlavatá L. Beyond glucose: The crucial role of redox signaling in β-cell metabolic adaptation. Metabolism 2024; 161:156027. [PMID: 39260557 DOI: 10.1016/j.metabol.2024.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Redox signaling mediated by reversible oxidative cysteine thiol modifications is crucial for driving cellular adaptation to dynamic environmental changes, maintaining homeostasis, and ensuring proper function. This is particularly critical in pancreatic β-cells, which are highly metabolically active and play a specialized role in whole organism glucose homeostasis. Glucose stimulation in β-cells triggers signals leading to insulin secretion, including changes in ATP/ADP ratio and intracellular calcium levels. Additionally, lipid metabolism and reactive oxygen species (ROS) signaling are essential for β-cell function and health. METHODS We employed IodoTMT isobaric labeling combined with tandem mass spectrometry to elucidate redox signaling pathways in pancreatic β-cells. RESULTS Glucose stimulation significantly increases ROS levels in β-cells, leading to targeted reversible oxidation of proteins involved in key metabolic pathways such as glycolysis, the tricarboxylic acid (TCA) cycle, pyruvate metabolism, oxidative phosphorylation, protein processing in the endoplasmic reticulum (ER), and insulin secretion. Furthermore, the glucose-induced increase in reversible cysteine oxidation correlates with the presence of other post-translational modifications, including acetylation and phosphorylation. CONCLUSIONS Proper functioning of pancreatic β-cell metabolism relies on fine-tuned regulation, achieved through a sophisticated system of diverse post-translational modifications that modulate protein functions. Our findings demonstrate that glucose induces the production of ROS in pancreatic β-cells, leading to targeted reversible oxidative modifications of proteins. Furthermore, protein activity is modulated by acetylation and phosphorylation, highlighting the complexity of the regulatory mechanisms in β-cell function.
Collapse
Affiliation(s)
- Blanka Holendová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Barbora Šalovská
- Department of Genome Integrity, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic; Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
| | - Štěpánka Benáková
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Jabůrek M, Klöppel E, Průchová P, Mozheitova O, Tauber J, Engstová H, Ježek P. Mitochondria to plasma membrane redox signaling is essential for fatty acid β-oxidation-driven insulin secretion. Redox Biol 2024; 75:103283. [PMID: 39067330 PMCID: PMC11332078 DOI: 10.1016/j.redox.2024.103283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
We asked whether acute redox signaling from mitochondria exists concomitantly to fatty acid- (FA-) stimulated insulin secretion (FASIS) at low glucose by pancreatic β-cells. We show that FA β-oxidation produces superoxide/H2O2, providing: i) mitochondria-to-plasma-membrane redox signaling, closing KATP-channels synergically with elevated ATP (substituting NADPH-oxidase-4-mediated H2O2-signaling upon glucose-stimulated insulin secretion); ii) activation of redox-sensitive phospholipase iPLA2γ/PNPLA8, cleaving mitochondrial FAs, enabling metabotropic GPR40 receptors to amplify insulin secretion (IS). At fasting glucose, palmitic acid stimulated IS in wt mice; palmitic, stearic, lauric, oleic, linoleic, and hexanoic acids also in perifused pancreatic islets (PIs), with suppressed 1st phases in iPLA2γ/PNPLA8-knockout mice/PIs. Extracellular/cytosolic H2O2-monitoring indicated knockout-independent redox signals, blocked by mitochondrial antioxidant SkQ1, etomoxir, CPT1 silencing, and catalase overexpression, all inhibiting FASIS, keeping ATP-sensitive K+-channels open, and diminishing cytosolic [Ca2+]-oscillations. FASIS in mice was a postprandially delayed physiological event. Redox signals of FA β-oxidation are thus documented, reaching the plasma membrane, essentially co-stimulating IS.
Collapse
Affiliation(s)
- Martin Jabůrek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Eduardo Klöppel
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Pavla Průchová
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Oleksandra Mozheitova
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Jan Tauber
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
| |
Collapse
|
4
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bresson SE, Ruzzin J. Persistent organic pollutants disrupt the oxidant/antioxidant balance of INS-1E pancreatic β-cells causing their physiological dysfunctions. ENVIRONMENT INTERNATIONAL 2024; 190:108821. [PMID: 38885551 DOI: 10.1016/j.envint.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Persistent organic pollutants (POPs) have emerged as potent diabetogenic agents, but their mechanisms of action remain poorly identified. OBJECTIVES In this study, we aim to determine the mechanisms regulating the damaging effects of POPs in pancreatic β-cells, which have a central role in the development of diabetes. METHODS We treated INS-1E pancreatic β-cells with PCB-153, p,p'-DDE, PCB-126, or TCDD at doses ranging from 1 × 10-15to 5 × 10-6M. We measured insulin content and secretion, cell viability and assessed the mRNA expression of the xenobiotic nuclear receptors Nr1i2 and Nr1i3, and the aryl hydrocarbon receptor (Ahr). In addition, we evaluated the antioxidant defense and production of reactive oxygen species (ROS). Finally, we studied the ability of the antioxidant N-acetyl-L-cysteine (NAC) to counteract the effects of POPs in INS-1E cells. RESULTS When exposed to environmental POP levels, INS-1E cells had impaired production and secretion of insulin. These defects were observed for all tested POPs and were paralleled by reduced Ins1 and Ins2 mRNA expression. While POP treatment for 3 days did not affect INS-1E cell viability, longer treatment progressively killed the cells. Furthermore, we found that the xenobiotic detoxification machinery is poorly expressed in the INS-1E cells, as characterized by the absence of Nr1i2 and Nr1i3 and their respective downstream targets Cyp3a1/Cyp3a2 and Cyp2b1/Cyp2b3, and the weak functionality of the Ahr/Cyp1a1 signaling. Interestingly, POPs dysregulated key antioxidant enzymes such as glutathione peroxidases, peroxiredoxins, thioredoxins, and catalases. In parallel, the production of intracellular ROS, including superoxide anion (O2•-) and hydrogen peroxide (H2O2), was increased by POP exposure. Improving the oxidant scavenging capacity of INS-1E cells by NAC treatment restored the production and secretion of insulin. CONCLUSION By promoting oxidative stress and impairing the ability of INS-1E cells to produce and secrete insulin, this study reveals how POPs can mechanistically act as diabetogenic agents, and provides new scientific evidence supporting the concept that POPs are fueling the diabetes epidemics.
Collapse
Affiliation(s)
- Sophie Emilie Bresson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Aleman J, Ravikumar K, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor V, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic-dysfunction associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590598. [PMID: 38712135 PMCID: PMC11071380 DOI: 10.1101/2024.04.22.590598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in pancreatic islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with primary islets on a chip (PANIS) enabling MASLD progression and islet dysfunction to be quantitatively assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion (GSIS) response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived secreted factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying complex disease mechanisms, and advancing precision medicine.
Collapse
|
7
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
8
|
Rivera Nieves AM, Wauford BM, Fu A. Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes. Front Mol Biosci 2024; 11:1354199. [PMID: 38404962 PMCID: PMC10884328 DOI: 10.3389/fmolb.2024.1354199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In Type 1 and Type 2 diabetes, pancreatic β-cell survival and function are impaired. Additional etiologies of diabetes include dysfunction in insulin-sensing hepatic, muscle, and adipose tissues as well as immune cells. An important determinant of metabolic health across these various tissues is mitochondria function and structure. This review focuses on the role of mitochondria in diabetes pathogenesis, with a specific emphasis on pancreatic β-cells. These dynamic organelles are obligate for β-cell survival, function, replication, insulin production, and control over insulin release. Therefore, it is not surprising that mitochondria are severely defective in diabetic contexts. Mitochondrial dysfunction poses challenges to assess in cause-effect studies, prompting us to assemble and deliberate the evidence for mitochondria dysfunction as a cause or consequence of diabetes. Understanding the precise molecular mechanisms underlying mitochondrial dysfunction in diabetes and identifying therapeutic strategies to restore mitochondrial homeostasis and enhance β-cell function are active and expanding areas of research. In summary, this review examines the multidimensional role of mitochondria in diabetes, focusing on pancreatic β-cells and highlighting the significance of mitochondrial metabolism, bioenergetics, calcium, dynamics, and mitophagy in the pathophysiology of diabetes. We describe the effects of diabetes-related gluco/lipotoxic, oxidative and inflammation stress on β-cell mitochondria, as well as the role played by mitochondria on the pathologic outcomes of these stress paradigms. By examining these aspects, we provide updated insights and highlight areas where further research is required for a deeper molecular understanding of the role of mitochondria in β-cells and diabetes.
Collapse
Affiliation(s)
- Alejandra María Rivera Nieves
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Brian Michael Wauford
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
9
|
Lu B, Guo S, Zhao J, Wang X, Zhou B. Adipose knockout of H-ferritin improves energy metabolism in mice. Mol Metab 2024; 80:101871. [PMID: 38184276 PMCID: PMC10803945 DOI: 10.1016/j.molmet.2024.101871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Ferritin, the principal iron storage protein, is essential to iron homeostasis. How iron homeostasis affects the adipose tissue is not well understood. We investigated the role of ferritin heavy chain in adipocytes in energy metabolism. METHODS We generated adipocyte-specific ferritin heavy chain (Fth, also known as Fth1) knockout mice, herein referred to as FthAKO. These mice were analyzed for iron homeostasis, oxidative stress, mitochondrial biogenesis and activity, adaptive thermogenesis, insulin sensitivity, and metabolic measurements. Mouse embryonic fibroblasts and primary mouse adipocytes were used for in vitro experiments. RESULTS In FthAKO mice, the adipose iron homeostasis was disrupted, accompanied by elevated expression of adipokines, dramatically induced heme oxygenase 1(Hmox1) expression, and a notable decrease in the mitochondrial ROS level. Cytosolic ROS elevation in the adipose tissue of FthAKO mice was very mild, and we only observed this in the brown adipose tissue (BAT) but not in the white adipose tissue (WAT). FthAKO mice presented an altered metabolic profile and showed increased insulin sensitivity, glucose tolerance, and improved adaptive thermogenesis. Interestingly, loss of ferritin resulted in enhanced mitochondrial respiration capacity and a preference for lipid metabolism. CONCLUSIONS These findings indicate that ferritin in adipocytes is indispensable to intracellular iron homeostasis and regulates systemic lipid and glucose metabolism.
Collapse
Affiliation(s)
- Binyu Lu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shanshan Guo
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jialin Zhao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoting Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bing Zhou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
10
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
11
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
12
|
Vived C, Lee-Papastavros A, Aparecida da Silva Pereira J, Yi P, MacDonald TL. β Cell Stress and Endocrine Function During T1D: What Is Next to Discover? Endocrinology 2023; 165:bqad162. [PMID: 37947352 DOI: 10.1210/endocr/bqad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Canonically, type 1 diabetes (T1D) is a disease characterized by autoreactive T cells as perpetrators of endocrine dysfunction and β cell death in the spiral toward loss of β cell mass, hyperglycemia, and insulin dependence. β Cells have mostly been considered as bystanders in a flurry of autoimmune processes. More recently, our framework for understanding and investigating T1D has evolved. It appears increasingly likely that intracellular β cell stress is an important component of T1D etiology/pathology that perpetuates autoimmunity during the progression to T1D. Here we discuss the emerging and complex role of β cell stress in initiating, provoking, and catalyzing T1D. We outline the bridges between hyperglycemia, endoplasmic reticulum stress, oxidative stress, and autoimmunity from the viewpoint of intrinsic β cell (dys)function, and we extend this discussion to the potential role for a therapeutic β cell stress-metabolism axis in T1D. Lastly, we mention research angles that may be pursued to improve β cell endocrine function during T1D. Biology gleaned from studying T1D will certainly overlap to innovate therapeutic strategies for T2D, and also enhance the pursuit of creating optimized stem cell-derived β cells as endocrine therapy.
Collapse
Affiliation(s)
- Celia Vived
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jéssica Aparecida da Silva Pereira
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Yi
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Tara L MacDonald
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Lang AL, Nissanka N, Louzada RA, Tamayo A, Pereira E, Moraes CT, Caicedo A. A Defect in Mitochondrial Complex III but Not in Complexes I or IV Causes Early β-Cell Dysfunction and Hyperglycemia in Mice. Diabetes 2023; 72:1262-1276. [PMID: 37343239 PMCID: PMC10451017 DOI: 10.2337/db22-0728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Mitochondrial metabolism and oxidative respiration are crucial for pancreatic β-cell function and stimulus secretion coupling. Oxidative phosphorylation (OxPhos) produces ATP and other metabolites that potentiate insulin secretion. However, the contribution of individual OxPhos complexes to β-cell function is unknown. We generated β-cell-specific, inducible OxPhos complex knock-out (KO) mouse models to investigate the effects of disrupting complex I, complex III, or complex IV on β-cell function. Although all KO models had similar mitochondrial respiratory defects, complex III caused early hyperglycemia, glucose intolerance, and loss of glucose-stimulated insulin secretion in vivo. However, ex vivo insulin secretion did not change. Complex I and IV KO models showed diabetic phenotypes much later. Mitochondrial Ca2+ responses to glucose stimulation 3 weeks after gene deletion ranged from not affected to severely disrupted, depending on the complex targeted, supporting the unique roles of each complex in β-cell signaling. Mitochondrial antioxidant enzyme immunostaining increased in islets from complex III KO, but not from complex I or IV KO mice, indicating that severe diabetic phenotype in the complex III-deficient mice is causing alterations in cellular redox status. The present study highlights that defects in individual OxPhos complexes lead to different pathogenic outcomes. ARTICLE HIGHLIGHTS Mitochondrial metabolism is critical for β-cell insulin secretion, and mitochondrial dysfunction is involved in type 2 diabetes pathogenesis. We determined whether individual oxidative phosphorylation complexes contribute uniquely to β-cell function. Compared with loss of complex I and IV, loss of complex III resulted in severe in vivo hyperglycemia and altered β-cell redox status. Loss of complex III altered cytosolic and mitochondrial Ca2+ signaling and increased expression of glycolytic enzymes. Individual complexes contribute differently to β-cell function. This underscores the role of mitochondrial oxidative phosphorylation complex defects in diabetes pathogenesis.
Collapse
Affiliation(s)
- Anna L. Lang
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Ruy A. Louzada
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Tamayo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
14
|
Tong B, Zhang Z, Li X, Liu J, Wang H, Song L, Feng J, Dai Z, Xu Y. FUNDC1 modulates mitochondrial defects and pancreatic β-cell dysfunction under lipotoxicity. Biochem Biophys Res Commun 2023; 672:54-64. [PMID: 37336125 DOI: 10.1016/j.bbrc.2023.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Insulin resistance and many metabolic disorders are causally linked to mitochondrial dysfunction or defective mitochondrial quality control. Mitophagy is a highly selective mechanism that recognizes and removes damaged mitochondria to maintain mitochondrial homeostasis. Here, we addressed the potential role of FUNDC1, a mediator of mitophagy, in pancreatic β-cell dysfunction under lipotoxicity. In pancreatic MIN6 cells, FUNDC1 deficiency aggravated palmitate-induced mitochondrial dysfunction, which led to cell death and insulin insensitivity. Interestingly, FUNDC1 overexpression prevented these cellular harms brought on by palmitate. In mice models, pancreatic-specific FUNDC1 overexpression alleviated high-fat diet (HFD)-induced insulin resistance and obesity. Mechanistically, pancreatic-specific overexpression of FUNDC1 ameliorated mitochondrial defects and endoplasmic reticulum (ER) stress upon HFD. Our research indicates that FUNDC1 plays an essential role in apoptosis and dysfunction of pancreatic β-cells via modulating lipotoxicity-induced mitochondrial defects.
Collapse
Affiliation(s)
- Beier Tong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhengwei Zhang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuefeng Li
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jie Liu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Huawei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Linyang Song
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jieyuan Feng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
15
|
Park HJ, Rhie SJ, Shim I. The effects of physical exercise therapy on weight control: its regulation of adipocyte physiology and metabolic capacity. J Exerc Rehabil 2023; 19:141-148. [PMID: 37435589 PMCID: PMC10331143 DOI: 10.12965/jer.2346232.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/13/2023] Open
Abstract
Factors associated with increased body mass, including dyslipidemia, hypertension, insulin resistance, vascular endothelial dysfunction and sleep disorders, may contribute to the exacerbation of cardiovascular disease. These health problems associated with obesity are caused by accumulated metabolism and physical and emotional stress. Lifestyle, especially exercise, is a major therapeutic strategy for the treatment and management of obesity-induced metabolic problems. Metabolic disease often co-occurs with abdominal obesity. Exercise is necessary for the treatment of obesity, diabetes and cardiovascular disease. A potential benefit of exercise is to promote fat burning and energy use increases both during exercise itself and in the post-exercise period. Exercise suppresses basal metabolic rate and also has many health benefits. Why should we exercise to lose weight? Does physical activity help lower blood pressure, blood cholesterol, and blood sugar? In this article, we review the positive effects of physical exercise on weight maintenance and weight loss, and the effectiveness of physical exercise on the treatment and prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon,
Korea
| | - Sung Ja Rhie
- Department of Beauty Design, Halla University, Wonju,
Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| |
Collapse
|
16
|
Argaev-Frenkel L, Rosenzweig T. Redox Balance in Type 2 Diabetes: Therapeutic Potential and the Challenge of Antioxidant-Based Therapy. Antioxidants (Basel) 2023; 12:antiox12050994. [PMID: 37237860 DOI: 10.3390/antiox12050994] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is an important factor in the development of type 2 diabetes (T2D) and associated complications. Unfortunately, most clinical studies have failed to provide sufficient evidence regarding the benefits of antioxidants (AOXs) in treating this disease. Based on the known complexity of reactive oxygen species (ROS) functions in both the physiology and pathophysiology of glucose homeostasis, it is suggested that inappropriate dosing leads to the failure of AOXs in T2D treatment. To support this hypothesis, the role of oxidative stress in the pathophysiology of T2D is described, together with a summary of the evidence for the failure of AOXs in the management of diabetes. A comparison of preclinical and clinical studies indicates that suboptimal dosing of AOXs might explain the lack of benefits of AOXs. Conversely, the possibility that glycemic control might be adversely affected by excess AOXs is also considered, based on the role of ROS in insulin signaling. We suggest that AOX therapy should be given in a personalized manner according to the need, which is the presence and severity of oxidative stress. With the development of gold-standard biomarkers for oxidative stress, optimization of AOX therapy may be achieved to maximize the therapeutic potential of these agents.
Collapse
Affiliation(s)
| | - Tovit Rosenzweig
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
- Adison School of Medicine, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
17
|
Guf1 overexpression improves pancreatic β cell functions in type 2 diabetes mellitus rats with Roux-en-Y gastric bypass (RYGB) surgery. J Physiol Biochem 2023:10.1007/s13105-023-00952-6. [PMID: 36905457 DOI: 10.1007/s13105-023-00952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
The Roux-en-Y gastric bypass (RYGB) is a one-of-a-kind treatment among contemporary bariatric surgical procedures, and its therapeutic effects for type 2 diabetes mellitus (T2DM) are satisfactory. The present study performed isobaric tags for relative and absolute quantification (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identifying different proteomics between T2DM rats with or without Roux-en-Y gastric bypass (RYGB) surgery, and GTP binding elongation factor GUF1 (Guf1) was first found to be significantly upregulated in rats from the T2DM plus RYGB group. In the cellular lipotoxicity model induced by palmitic acid stimulation of rat pancreatic beta cell line, INS-1, palmitic acid treatment inhibited cell viability, suppressed GSIS, promoted lipid droplet formation, promoted cell apoptosis, and induced mitochondrial membrane potential loss. The effects of palmitic acid on INS-1 cells mentioned above could be partially eliminated by Guf1 overexpression but aggravated by Guf1 knockdown. Last, under palmitic acid treatment, Guf1 overexpression promotes the PI3K/Akt and NF-κB signaling but inhibits the AMPK activation. Guf1 is upregulated in T2DM rats who received RYGB, and Guf1 overexpression improves cell mitochondrial functions, increases cell proliferation, inhibits cell apoptosis, and promotes cell functions in palmitic acid-treated β cells.
Collapse
|
18
|
Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis 2023; 14:186. [PMID: 36882414 PMCID: PMC9992652 DOI: 10.1038/s41419-023-05708-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas β cells leads to decreased insulin secretion; and ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future directions concerning these novel T2DM treatment targets.
Collapse
|
19
|
Andreadi A, Muscoli S, Tajmir R, Meloni M, Muscoli C, Ilari S, Mollace V, Della Morte D, Bellia A, Di Daniele N, Tesauro M, Lauro D. Recent Pharmacological Options in Type 2 Diabetes and Synergic Mechanism in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24021646. [PMID: 36675160 PMCID: PMC9862607 DOI: 10.3390/ijms24021646] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Diabetes Mellitus is a multifactorial disease with a critical impact worldwide. During prediabetes, the presence of various inflammatory cytokines and oxidative stress will lead to the pathogenesis of type 2 diabetes. Furthermore, insulin resistance and chronic hyperglycemia will lead to micro- and macrovascular complications (cardiovascular disease, heart failure, hypertension, chronic kidney disease, and atherosclerosis). The development through the years of pharmacological options allowed us to reduce the persistence of chronic hyperglycemia and reduce diabetic complications. This review aims to highlight the specific mechanisms with which the new treatments for type 2 diabetes reduce oxidative stress and insulin resistance and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence: (A.A.); (D.L.)
| | - Saverio Muscoli
- Division of Cardiology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Rojin Tajmir
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Carolina Muscoli
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Sara Ilari
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - David Della Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alfonso Bellia
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence: (A.A.); (D.L.)
| |
Collapse
|
20
|
Stancill JS, Corbett JA. Hydrogen peroxide detoxification through the peroxiredoxin/thioredoxin antioxidant system: A look at the pancreatic β-cell oxidant defense. VITAMINS AND HORMONES 2022; 121:45-66. [PMID: 36707143 PMCID: PMC10058777 DOI: 10.1016/bs.vh.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS), such as hydrogen peroxide, are formed when molecular oxygen obtains additional electrons, increasing its reactivity. While low concentrations of hydrogen peroxide are necessary for regulation of normal cellular signaling events, high concentrations can be toxic. To maintain this balance between beneficial and deleterious concentrations of hydrogen peroxide, cells utilize antioxidants. Our recent work supports a primary role for peroxiredoxin, thioredoxin, and thioredoxin reductase as the oxidant defense pathway used by insulin-producing pancreatic β-cells. These three players work in an antioxidant cycle based on disulfide exchange, with oxidized targets ultimately being reduced using electrons provided by NADPH. Peroxiredoxins also participate in hydrogen peroxide-based signaling through disulfide exchange with redox-regulated target proteins. This chapter will describe the catalytic mechanisms of thioredoxin, thioredoxin reductase, and peroxiredoxin and provide an in-depth look at the roles these enzymes play in antioxidant defense pathways of insulin-secreting β-cells. Finally, we will evaluate the physiological relevance of peroxiredoxin-mediated hydrogen peroxide signaling as a regulator of β-cell function.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
21
|
Yan X, Zhao Z, Weaver J, Sun T, Yun JW, Roneker CA, Hu F, Doliba NM, McCormick CCW, Vatamaniuk MZ, Lei XG. Role and mechanism of REG2 depletion in insulin secretion augmented by glutathione peroxidase-1 overproduction. Redox Biol 2022; 56:102457. [PMID: 36063729 PMCID: PMC9463454 DOI: 10.1016/j.redox.2022.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
We previously reported a depletion of murine regenerating islet-derived protein 2 (REG2) in pancreatic islets of glutathione peroxidase-1 (Gpx1) overexpressing (OE) mice. The present study was to explore if and how the REG2 depletion contributed to an augmented glucose stimulated insulin secretion (GSIS) in OE islets. After we verified a consistent depletion (90%, p < 0.05) of REG2 mRNA, transcript, and protein in OE islets compared with wild-type (WT) controls, we treated cultured and perifused OE islets (70 islets/sample) with REG2 (1 μg/ml or ml · min) and observed 30-40% (p < 0.05) inhibitions of GSIS by REG2. Subsequently, we obtained evidences of co-immunoprecipitation, cell surface ligand binding, and co-immunofluorescence for a ligand-receptor binding between REG2 and transmembrane, L-type voltage-dependent Ca2+ channel (CaV1.2) in beta TC3 cells. Mutating the C-type lectin binding domain of REG2 or deglycosylating CaV1.2 removed the inhibition of REG2 on GSIS and(or) the putative binding between the two proteins. Treating cultured OE and perifused WT islets with REG2 (1 μg/ml or ml · min) decreased (p < 0.05) Ca2+ influx triggered by glucose or KCl. An intraperitoneal (ip) injection of REG2 (2 μg/g) to OE mice (6-month old, n = 10) decreased their plasma insulin concentration (46%, p < 0.05) and elevated their plasma glucose concentration (25%, p < 0.05) over a 60 min period after glucose challenge (ip, 1 g/kg). In conclusion, our study identifies REG2 as a novel regulator of Ca2+ influx and insulin secretion, and reveals a new cascade of GPX1/REG2/CaV1.2 to explain how REG2 depletion in OE islets could decrease its binding to CaV1.2, resulting in uninhibited Ca2+ influx and augmented GSIS. These findings create new links to bridge redox biology, tissue regeneration, and insulin secretion.
Collapse
Affiliation(s)
- Xi Yan
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jeremy Weaver
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Tao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jun-Won Yun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA; Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Carol A Roneker
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Nicolai M Doliba
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Marko Z Vatamaniuk
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Mukai E, Fujimoto S, Inagaki N. Role of Reactive Oxygen Species in Glucose Metabolism Disorder in Diabetic Pancreatic β-Cells. Biomolecules 2022; 12:biom12091228. [PMID: 36139067 PMCID: PMC9496160 DOI: 10.3390/biom12091228] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
The dysfunction of pancreatic β-cells plays a central role in the onset and progression of type 2 diabetes mellitus (T2DM). Insulin secretory defects in β-cells are characterized by a selective impairment of glucose stimulation, and a reduction in glucose-induced ATP production, which is essential for insulin secretion. High glucose metabolism for insulin secretion generates reactive oxygen species (ROS) in mitochondria. In addition, the expression of antioxidant enzymes is very low in β-cells. Therefore, β-cells are easily exposed to oxidative stress. In islet studies using a nonobese T2DM animal model that exhibits selective impairment of glucose-induced insulin secretion (GSIS), quenching ROS generated by glucose stimulation and accumulated under glucose toxicity can improve impaired GSIS. Acute ROS generation and toxicity cause glucose metabolism disorders through different molecular mechanisms. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor, is a master regulator of antioxidant defense and a potential therapeutic target in oxidative stress-related diseases, suggesting the possible involvement of Nrf2 in β-cell dysfunction caused by ROS. In this review, we describe the mechanisms of insulin secretory defects induced by oxidative stress in diabetic β-cells.
Collapse
Affiliation(s)
- Eri Mukai
- Medical Physiology and Metabolism Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 5258577, Japan
- Correspondence:
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kochi 7838505, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| |
Collapse
|
23
|
Wrublewsky S, Glas J, Carlein C, Nalbach L, Hoffmann MDA, Pack M, Vilas-Boas EA, Ribot N, Kappl R, Menger MD, Laschke MW, Ampofo E, Roma LP. The loss of pancreatic islet NADPH oxidase (NOX)2 improves islet transplantation. Redox Biol 2022; 55:102419. [PMID: 35933903 PMCID: PMC9357848 DOI: 10.1016/j.redox.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022] Open
Abstract
Islet transplantation is a promising treatment strategy for type 1 diabetes mellitus (T1DM) patients. However, oxidative stress-induced graft failure due to an insufficient revascularization is a major problem of this therapeutic approach. NADPH oxidase (NOX)2 is an important producer of reactive oxygen species (ROS) and several studies have already reported that this enzyme plays a crucial role in the endocrine function and viability of β-cells. Therefore, we hypothesized that targeting islet NOX2 improves the outcome of islet transplantation. To test this, we analyzed the cellular composition and viability of isolated wild-type (WT) and Nox2-/- islets by immunohistochemistry as well as different viability assays. Ex vivo, the effect of Nox2 deficiency on superoxide production, endocrine function and anti-oxidant protein expression was studied under hypoxic conditions. In vivo, we transplanted WT and Nox2-/- islets into mouse dorsal skinfold chambers and under the kidney capsule of diabetic mice to assess their revascularization and endocrine function, respectively. We found that the loss of NOX2 does not affect the cellular composition and viability of isolated islets. However, decreased superoxide production, higher glucose-stimulated insulin secretion as well as expression of nuclear factor erythroid 2-related factor (Nrf)2, heme oxygenase (HO)-1 and superoxide dismutase 1 (SOD1) was detected in hypoxic Nox2-/- islets when compared to WT islets. Moreover, we detected an early revascularization, a higher take rate and restoration of normoglycemia in diabetic mice transplanted with Nox2-/- islets. These findings indicate that the suppression of NOX2 activity represents a promising therapeutic strategy to improve engraftment and function of isolated islets.
Collapse
Affiliation(s)
- Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia Glas
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Christopher Carlein
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | | | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Eloisa Aparecida Vilas-Boas
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany; Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, 05508-900, Brazil
| | - Nathan Ribot
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
24
|
Huang K, Liang Y, Wang K, Wu J, Luo H, Yi B. Influence of circulating nesfatin-1, GSH and SOD on insulin secretion in the development of T2DM. Front Public Health 2022; 10:882686. [PMID: 36045734 PMCID: PMC9421132 DOI: 10.3389/fpubh.2022.882686] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
Aims To evaluate the correlation of nesfatin-1, GSH and SOD levels with β-cell insulin secretion and their influence on insulin secretion in the development of type 2 diabetes mellitus (T2DM). Materials and methods 75 patients with T2DM, 67 with prediabetes and 37 heathy participants were recruited in this study. Serum levels of nesfatin-1, GSH and SOD were quantified and statistically analyzed. Results The levels of nesfatin-1, GSH and SOD in T2DM were significantly decreased (P < 0.001) compared to either in prediabetes or in healthy control, and significant reduction of these biomarkers was also observed in prediabetes when compared to the control (P < 0.001). Circulating nesfatin-1, GSH and SOD were not only strongly correlated with β-cell insulin secretion, but also exerted remarkable influence on the secretion. Conclusion Serum nesfatin-1, GSH and SOD are important factors involving insulin secretion in the development of T2DM, which may help provide new ideas for forthcoming investigations on the roles of these factors in pathogenesis of T2DM, as well as for active prediction and prevention of prediabetes before it develops into overt T2DM.
Collapse
Affiliation(s)
- Kangkang Huang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunlai Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Wu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huidan Luo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Bin Yi
| |
Collapse
|
25
|
Mallone R, Halliez C, Rui J, Herold KC. The β-Cell in Type 1 Diabetes Pathogenesis: A Victim of Circumstances or an Instigator of Tragic Events? Diabetes 2022; 71:1603-1610. [PMID: 35881836 PMCID: PMC9490354 DOI: 10.2337/dbi21-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022]
Abstract
Recent reports have revived interest in the active role that β-cells may play in type 1 diabetes pathogenesis at different stages of disease. In some studies, investigators suggested an initiating role and proposed that type 1 diabetes may be primarily a disease of β-cells and only secondarily a disease of autoimmunity. This scenario is possible and invites the search for environmental triggers damaging β-cells. Another major contribution of β-cells may be to amplify autoimmune vulnerability and to eventually drive it into an intrinsic, self-detrimental state that turns the T cell-mediated homicide into a β-cell suicide. On the other hand, protective mechanisms are also mounted by β-cells and may provide novel therapeutic targets to combine immunomodulatory and β-cell protective agents. This integrated view of autoimmunity as a disease of T-cell/β-cell cross talk will ultimately advance our understanding of type 1 diabetes pathogenesis and improve our chances of preventing or reversing disease progression.
Collapse
Affiliation(s)
- Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Jinxiu Rui
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| |
Collapse
|
26
|
Merrins MJ, Corkey BE, Kibbey RG, Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab 2022; 34:947-968. [PMID: 35728586 PMCID: PMC9262871 DOI: 10.1016/j.cmet.2022.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/03/2023]
Abstract
In this review, we focus on recent developments in our understanding of nutrient-induced insulin secretion that challenge a key aspect of the "canonical" model, in which an oxidative phosphorylation-driven rise in ATP production closes KATP channels. We discuss the importance of intrinsic β cell metabolic oscillations; the phasic alignment of relevant metabolic cycles, shuttles, and shunts; and how their temporal and compartmental relationships align with the triggering phase or the secretory phase of pulsatile insulin secretion. Metabolic signaling components are assigned regulatory, effectory, and/or homeostatic roles vis-à-vis their contribution to glucose sensing, signal transmission, and resetting the system. Taken together, these functions provide a framework for understanding how allostery, anaplerosis, and oxidative metabolism are integrated into the oscillatory behavior of the secretory pathway. By incorporating these temporal as well as newly discovered spatial aspects of β cell metabolism, we propose a much-refined MitoCat-MitoOx model of the signaling process for the field to evaluate.
Collapse
Affiliation(s)
- Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Richard G Kibbey
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Marc Prentki
- Molecular Nutrition Unit and Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montréal, ON, Canada.
| |
Collapse
|
27
|
Stancill JS, Hansen PA, Mathison AJ, Schmidt EE, Corbett JA. Deletion of Thioredoxin Reductase Disrupts Redox Homeostasis and Impairs β-Cell Function. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac034. [PMID: 35873655 PMCID: PMC9301323 DOI: 10.1093/function/zqac034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have been implicated as mediators of pancreatic β-cell damage. While β-cells are thought to be vulnerable to oxidative damage, we have shown, using inhibitors and acute depletion, that thioredoxin reductase, thioredoxin, and peroxiredoxins are the primary mediators of antioxidant defense in β-cells. However, the role of this antioxidant cycle in maintaining redox homeostasis and β-cell survival in vivo remains unclear. Here, we generated mice with a β-cell specific knockout of thioredoxin reductase 1 (Txnrd1fl/fl; Ins1Cre/+ , βKO). Despite blunted glucose-stimulated insulin secretion, knockout mice maintain normal whole-body glucose homeostasis. Unlike pancreatic islets with acute Txnrd1 inhibition, βKO islets do not demonstrate increased sensitivity to ROS. RNA-sequencing analysis revealed that Txnrd1-deficient β-cells have increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated genes, and altered expression of genes involved in heme and glutathione metabolism, suggesting an adaptive response. Txnrd1-deficient β-cells also have decreased expression of factors controlling β-cell function and identity which may explain the mild functional impairment. Together, these results suggest that Txnrd1-knockout β-cells compensate for loss of this essential antioxidant pathway by increasing expression of Nrf2-regulated antioxidant genes, allowing for protection from excess ROS at the expense of normal β-cell function and identity.
Collapse
Affiliation(s)
| | - Polly A Hansen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Edward E Schmidt
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MN 59717, USA,Redox Biology Laboratory, University of Veterinary Medicine, Budapest 1078, Hungary
| | | |
Collapse
|
28
|
Moon JS, Riopel M, Seo JB, Herrero-Aguayo V, Isaac R, Lee YS. HIF-2α Preserves Mitochondrial Activity and Glucose Sensing in Compensating β-Cells in Obesity. Diabetes 2022; 71:1508-1524. [PMID: 35472707 PMCID: PMC9233300 DOI: 10.2337/db21-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022]
Abstract
In obesity, increased mitochondrial metabolism with the accumulation of oxidative stress leads to mitochondrial damage and β-cell dysfunction. In particular, β-cells express antioxidant enzymes at relatively low levels and are highly vulnerable to oxidative stress. Early in the development of obesity, β-cells exhibit increased glucose-stimulated insulin secretion in order to compensate for insulin resistance. This increase in β-cell function under the condition of enhanced metabolic stress suggests that β-cells possess a defense mechanism against increased oxidative damage, which may become insufficient or decline at the onset of type 2 diabetes. Here, we show that metabolic stress induces β-cell hypoxia inducible factor 2α (HIF-2α), which stimulates antioxidant gene expression (e.g., Sod2 and Cat) and protects against mitochondrial reactive oxygen species (ROS) and subsequent mitochondrial damage. Knockdown of HIF-2α in Min6 cells exaggerated chronic high glucose-induced mitochondrial damage and β-cell dysfunction by increasing mitochondrial ROS levels. Moreover, inducible β-cell HIF-2α knockout mice developed more severe β-cell dysfunction and glucose intolerance on a high-fat diet, along with increased ROS levels and decreased islet mitochondrial mass. Our results provide a previously unknown mechanism through which β-cells defend against increased metabolic stress to promote β-cell compensation in obesity.
Collapse
Affiliation(s)
- Jae-Su Moon
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Matthew Riopel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jong Bae Seo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Vicente Herrero-Aguayo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Corresponding author: Yun Sok Lee,
| |
Collapse
|
29
|
Mitochondria play a key role in oxidative stress-induced pancreatic islet dysfunction after severe burns. J Trauma Acute Care Surg 2022; 92:1012-1019. [PMID: 34882597 DOI: 10.1097/ta.0000000000003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Severe burns are often complicated with hyperglycemia in part caused by pancreatic islet dysfunction. Previous studies have revealed that in diabetes mellitus, the pancreatic islet dysfunction is partly attributed to oxidative stress. However, the role and mechanism of oxidative stress in hyperglycemia after severe burns remain unclear. Therefore, the purpose of this study was to explore the level and mechanism of oxidative stress in pancreatic islets after severe burns and the antioxidant effect of sodium pyruvate. METHODS A 30% total body surface area full-thickness burn model was established using male C57BL/6 mice. Fasting blood glucose and glucose-stimulated insulin secretion (GSIS) 24 hours post severe burns were detected. The levels of reactive oxygen species (ROS) and mitochondrial ROS of islets were detected. The activities of complexes in the mitochondrial respiratory chain of islets were measured. The main antioxidant defense system, glutaredoxin system, and thioredoxin system-related indexes were detected, and the expression of manganese superoxide dismutase (Mn-SOD) was measured. In addition, the antioxidant activity of sodium pyruvate was evaluated post severe burns. RESULTS After severe burns, fasting blood glucose levels increased, while GSIS levels decreased, with significantly elevated ROS levels of pancreatic islets. The activity of complex III decreased and the level of mitochondrial ROS increased significantly post severe burns. For the detoxification of ROS, the expressions of thioredoxin 2, thioredoxin reductase 2, and Mn-SOD located in mitochondria decreased. Sodium pyruvate reduced the level of mitochondrial ROS in islet cells and improved the GSIS of islets after severe burns. CONCLUSION The high level of mitochondrial ROS of islets is caused by reducing the activity of complex III in mitochondrial respiratory chain, inhibiting mitochondrial thioredoxin system, and downregulating Mn-SOD post severe burns. Sodium pyruvate plays an antioxidant role post severe burns in mice islets and improves the islet function.
Collapse
|
30
|
Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling. Antioxidants (Basel) 2022; 11:antiox11050862. [PMID: 35624726 PMCID: PMC9138114 DOI: 10.3390/antiox11050862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.
Collapse
|
31
|
Liu Y, Lyu Y, Wang H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. Front Mol Biosci 2022; 9:895814. [PMID: 35573736 PMCID: PMC9095829 DOI: 10.3389/fmolb.2022.895814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transient receptor potential (TRP) channels are polymodal channels capable of sensing environmental stimuli, which are widely expressed on the plasma membrane of cells and play an essential role in the physiological or pathological processes of cells as sensors. TRPs often form functional homo- or heterotetramers that act as cation channels to flow Na+ and Ca2+, change membrane potential and [Ca2+]i (cytosolic [Ca2+]), and change protein expression levels, channel attributes, and regulatory factors. Under normal circumstances, various TRP channels respond to intracellular and extracellular stimuli such as temperature, pH, osmotic pressure, chemicals, cytokines, and cell damage and depletion of Ca2+ reserves. As cation transport channels and physical and chemical stimulation receptors, TRPs play an important role in regulating secretion, interfering with cell proliferation, and affecting neural activity in these glands and their adenocarcinoma cells. Many studies have proved that TRPs are widely distributed in the pancreas, adrenal gland, and other glands. This article reviews the specific regulatory mechanisms of various TRP channels in some common glands (pancreas, salivary gland, lacrimal gland, adrenal gland, mammary gland, gallbladder, and sweat gland).
Collapse
|
32
|
Di Fabrizio C, Giorgione V, Khalil A, Murdoch CE. Antioxidants in Pregnancy: Do We Really Need More Trials? Antioxidants (Basel) 2022; 11:812. [PMID: 35624676 PMCID: PMC9137466 DOI: 10.3390/antiox11050812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Human pregnancy can be affected by numerous pathologies, from those which are mild and reversible to others which are life-threatening. Among these, gestational diabetes mellitus and hypertensive disorders of pregnancy with subsequent consequences stand out. Health problems experienced by women during pregnancy and postpartum are associated with significant costs to health systems worldwide and contribute largely to maternal mortality and morbidity. Major risk factors for mothers include obesity, advanced maternal age, cardiovascular dysfunction, and endothelial damage; in these scenarios, oxidative stress plays a major role. Markers of oxidative stress can be measured in patients with preeclampsia, foetal growth restriction, and gestational diabetes mellitus, even before their clinical onset. In consequence, antioxidant supplements have been proposed as a possible therapy; however, results derived from large scale randomised clinical trials have been disappointing as no positive effects were demonstrated. This review focuses on the latest evidence on oxidative stress in pregnancy complications, their early diagnosis, and possible therapies to prevent or treat these pathologies.
Collapse
Affiliation(s)
- Carolina Di Fabrizio
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Veronica Giorgione
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
| | - Asma Khalil
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Colin E. Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
33
|
Liebman C, Loya S, Lawrence M, Bashoo N, Cho M. Stimulatory responses in α- and β-cells by near-infrared (810 nm) photobiomodulation. JOURNAL OF BIOPHOTONICS 2022; 15:e202100257. [PMID: 34837336 DOI: 10.1002/jbio.202100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Significant efforts have been committed to better understand and regulate insulin secretion as it has direct implications on diabetes. The first phase of biphasic insulin secretion in response to glucose lasts about 10 minutes, followed by a more sustained release persisting several hours. Attenuated insulin release in the first phase is typically associated with abnormal β-cells. While near-infrared photobiomodulation (PBM) demonstrates potential for multiple therapeutic applications, photostimulatory effects on α- and β-cells remain to be further elucidated. Herein, we demonstrate that 810 nm PBM exposure at fluence of 9 J/cm2 can elevate the intracellular reactive oxygen species within 15 minutes following photostimulation. In addition, calcium spiking showed an approximately 3-fold increase in both ATC1 (α-cells) and BTC6 (β-cells) and correlates with hormone secretion in response to PBM stimulation. Our findings could lay a foundation for the development of non-biologic therapeutics that can augment islet transplantation.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Sheccid Loya
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
34
|
Panic A, Stanimirovic J, Sudar-Milovanovic E, Isenovic ER. Oxidative stress in obesity and insulin resistance. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since obesity is one of the main factors in the development of insulin resistance (IR) and is also associated with increased oxidative stress (OxS) rate, this study aims to review the published literature to collate and provide a comprehensive summary of the studies related to the status of the OxS in the pathogenesis of obesity and related IR. OxS represents an imbalance between the production of reactive oxygen and nitrogen
species (RONS) and the capacity of the antioxidant defense system (AOS) to neutralize RONS. A steady-state of RONS level is maintained through endogenous enzymatic and non-enzymatic AOS components. Three crucial enzymes, which suppress the formation of free radicals, are superoxide dismutases, catalases, and glutathione peroxidases. The second line of AOS includes non-enzymatic components such as vitamins C and E, coenzyme Q, and glutathione which neutralizes free radicals by donating electrons to RONS. Emerging evidence suggests that high RONS levels contribute to the progression of OxS in obesity by activating inflammatory pathways and thus leading to the development of pathological states, including IR. In addition, decreased level of AOS
components in obesity increases the susceptibility to oxidative tissue damage and further progression of its comorbidities. Increased OxS in accumulated adipose tissue should be an imperative target for developing new therapies in obesity-related IR.
Collapse
Affiliation(s)
- Anastasija Panic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julijana Stanimirovic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VIN�A Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
35
|
García-Aguilar A, Guillén C. Targeting pancreatic beta cell death in type 2 diabetes by polyphenols. Front Endocrinol (Lausanne) 2022; 13:1052317. [PMID: 36465657 PMCID: PMC9712222 DOI: 10.3389/fendo.2022.1052317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is a very complex disease which is characterized by the appearance of insulin resistance that is primarily compensated by an increase in pancreatic beta cell mass, generating hyperinsulinemia. After time, pancreatic beta cells die by apoptosis appearing in the second phase of the disease, and characterized by hypoinsulinemia. There are multiple conditions that can alter pancreatic beta cell homeostasis and viability, being the most relevant ones; ER stress, cytotoxicity by amylin, mTORC1 hyperactivity, oxidative stress, mitochondrial dysfunction, inflammation and alterations in autophagy/mitophagy flux. In addition, the possible effects that different polyphenols could exert in the modulation of these mechanisms and regulating pancreatic beta cell viability are analyzed. It is necessary a profound analysis and understanding of all the possible mechanisms involved in the control and maintenance of pancreatic beta cell viability to develop more accurate and target treatments for controlling beta cell homeostasis and preventing or even reversing type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Guillén
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Carlos Guillén,
| |
Collapse
|
36
|
Shum M, Segawa M, Gharakhanian R, Viñuela A, Wortham M, Baghdasarian S, Wolf DM, Sereda SB, Nocito L, Stiles L, Zhou Z, Gutierrez V, Sander M, Shirihai OS, Liesa M. Deletion of ABCB10 in beta-cells protects from high-fat diet induced insulin resistance. Mol Metab 2022; 55:101403. [PMID: 34823065 PMCID: PMC8689243 DOI: 10.1016/j.molmet.2021.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The contribution of beta-cell dysfunction to type 2 diabetes (T2D) is not restricted to insulinopenia in the late stages of the disease. Elevated fasting insulinemia in normoglycemic humans is a major factor predicting the onset of insulin resistance and T2D, demonstrating an early alteration of beta-cell function in T2D. Moreover, an early and chronic increase in fasting insulinemia contributes to insulin resistance in high-fat diet (HFD)-fed mice. However, whether there are genetic factors that promote beta-cell-initiated insulin resistance remains undefined. Human variants of the mitochondrial transporter ABCB10, which regulates redox by increasing bilirubin synthesis, have been associated with an elevated risk of T2D. The effects of T2D ABCB10 variants on ABCB10 expression and the actions of ABCB10 in beta-cells are unknown. METHODS The expression of beta-cell ABCB10 was analyzed in published transcriptome datasets from human beta-cells carrying the T2D-risk ABCB10 variant. Insulin sensitivity, beta-cell proliferation, and secretory function were measured in beta-cell-specific ABCB10 KO mice (Ins1Cre-Abcb10flox/flox). The short-term role of beta-cell ABCB10 activity on glucose-stimulated insulin secretion (GSIS) was determined in isolated islets. RESULTS Carrying the T2Drisk allele G of ABCB10 rs348330 variant was associated with increased ABCB10 expression in human beta-cells. Constitutive deletion of Abcb10 in beta-cells protected mice from hyperinsulinemia and insulin resistance by limiting HFD-induced beta-cell expansion. An early limitation in GSIS and H2O2-mediated signaling caused by elevated ABCB10 activity can initiate an over-compensatory expansion of beta-cell mass in response to HFD. Accordingly, increasing ABCB10 expression was sufficient to limit GSIS capacity. In health, ABCB10 protein was decreased during islet maturation, with maturation restricting beta-cell proliferation and elevating GSIS. Finally, ex-vivo and short-term deletion of ABCB10 in islets isolated from HFD-fed mice increased H2O2 and GSIS, which was reversed by bilirubin treatments. CONCLUSIONS Beta-cell ABCB10 is required for HFD to induce insulin resistance in mice by amplifying beta-cell mass expansion to maladaptive levels that cause fasting hyperinsulinemia.
Collapse
Affiliation(s)
- Michael Shum
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Department of Molecular Medicine, Faculty of Medicine, Universite Laval, Quebec City G1V 0A6, Canada.
| | - Mayuko Segawa
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Raffi Gharakhanian
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Ana Viñuela
- Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Siyouneh Baghdasarian
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Dane M Wolf
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA, 02118, USA
| | - Samuel B Sereda
- Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA, 02118, USA
| | - Laura Nocito
- Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA, 02118, USA
| | - Linsey Stiles
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Zhiqiang Zhou
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Vincent Gutierrez
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Molecular and Cellular Integrative Physiology, UCLA, 612 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Orian S Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Molecular and Cellular Integrative Physiology, UCLA, 612 Charles E. Young Dr., Los Angeles, CA 90095, USA
| | - Marc Liesa
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Dr., Los Angeles, CA 90095, USA; Molecular and Cellular Integrative Physiology, UCLA, 612 Charles E. Young Dr., Los Angeles, CA 90095, USA; Molecular Biology Institute at UCLA, 611 Charles E. Young Dr., Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Mousavi S, Khazeei Tabari MA, Bagheri A, Samieefar N, Shaterian N, Kelishadi R. The Role of p66Shc in Diabetes: A Comprehensive Review from Bench to Bedside. J Diabetes Res 2022; 2022:7703520. [PMID: 36465704 PMCID: PMC9715346 DOI: 10.1155/2022/7703520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
It is well-documented that diabetes is an inflammatory and oxidative disease, with an escalating global burden. Still, there is no definite treatment for diabetes or even prevention of its harmful complications. Therefore, understanding the molecular pathways associated with diabetes might help in finding a solution. p66Shc is a member of Shc family proteins, and it is considered as an oxidative stress sensor and regulator in cells. There are inconsistent data about the role of p66Shc in inducing diabetes, but accumulating evidence supports its role in the pathogenesis of diabetes-related complications, including macro and microangiopathies. There is growing hope that by understanding and targeting molecular pathways involved in this network, prevention of diabetes or its complications would be achievable. This review provides an overview about the role of p66Shc in the development of diabetes and its complications.
Collapse
Affiliation(s)
- SeyedehFatemeh Mousavi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Mazandaran, Iran
- USERN Office, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Alireza Bagheri
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Shaterian
- Student Research Committee, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- USERN Office, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- USERN Office, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Ahangarpour A, Oroojan AA. Myricitrin and Its Solid Lipid Nanoparticle Increase Insulin Secretion and Content of Isolated Islets from the Pancreas of Male Mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Akram Ahangarpour
- Ahvaz Jundishapur University of Medical Sciences, Iran; Ahvaz Jundishapur University of Medical Science, Iran
| | | |
Collapse
|
39
|
Veras K, Lucena CF, Goedcke J, Evangelista FS, Carpinelli A, Carvalho CRDO. Moderate Exercise Training Combined With a High-Fat and Sucrose Diet Protects Pancreatic Islet Function in Male C57BL/6J Mice. Front Endocrinol (Lausanne) 2022; 13:881236. [PMID: 35669687 PMCID: PMC9165053 DOI: 10.3389/fendo.2022.881236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is mainly caused by excess energy intake and physical inactivity, and the number of overweight/obese individuals has been steadily increasing for decades. Previous studies showed that rodents fed westernized diets exhibit endocrine pancreas deterioration and a range of metabolic disorders. This study evaluated the effects of moderated aerobic treadmill exercise training on pancreatic islet cell viability and function in mice consuming a high-fat and sucrose diet. In the present study, 60-day-old male C57BL/6J mice were divided into four groups: control (C), fed a standard diet AIN-93M (3.83 kcal/g; 70% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate for the AIN-93 diet. In addition, a small amount of sucrose), 20% protein (casein), and 10% fat (soybean) with no training (i.e., sedentary); C + training (CTR, fed the standard diet with eight weeks of exercise; high-fat diet + sucrose (HFDS), fed a high fat and sucrose diet (5.2 kcal/g; 20% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate), 20% protein (casein), 60% fat (Lard was chosen as the major source of fat and a small amount of soybean) + 20% sucrose diluted in drinking water with no training; and HFDS + training (HFDSTR). After eight weeks, the HFDS mice displayed increased body weight (P<0.001) and epididymal, inguinal and retroperitoneal adipose tissue mass (P<0.01). These mice also presented insulin resistance (P<0.01), glucose intolerance (P<0.001), impaired glucose-stimulated insulin secretion (GSIS) and were less responsive to the physiological net ROS production induced by glucose stimulus. The HFDS group's pancreatic islet cells were 38% less viable and 59% more apoptotic than those from the C group (P<0.05). The HFDSTR improved glucose tolerance, body mass, insulin sensitivity and GSIS (P<0.05). Furthermore, HFDSTR mice had 53% more viable isolated pancreatic islets cells and 29% fewer apoptotic cells than the HFDS group (P<0.01). Thus, exercise training may slow down and/or prevent adverse metabolic effects associated with consuming a westernized diet.
Collapse
Affiliation(s)
- Katherine Veras
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Camila Ferraz Lucena
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Julia Goedcke
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | | | - Angelo Carpinelli
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
40
|
Andreadi A, Bellia A, Di Daniele N, Meloni M, Lauro R, Della-Morte D, Lauro D. The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: A target for new therapies against cardiovascular diseases. Curr Opin Pharmacol 2021; 62:85-96. [PMID: 34959126 DOI: 10.1016/j.coph.2021.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Type 2 Diabetes Mellitus (T2D) is a chronic disease with a pandemic incidence whose pathogenesis has not yet been clarified. Raising evidence highlighted the role of oxidative stress in inducing insulin resistance, pancreatic beta-cell dysfunction, and leading to cardiovascular disease (CVD). Therefore, understanding the link between oxidative stress, T2D and CVD may help to further understand the pathological processes beyond this association, to personalize the algorithm of the cure, and to find new therapeutic targets. Here, we discussed the role of oxidative stress and the decrease of antioxidant defenses in the pathogenesis of T2D. Furthermore, some aspects of hypoglycemic therapies and their potential role as antioxidant agents were examined, which might be pivotal in preventing CVD in T2D patients.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Renato Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy; San Raffaele Rome Open University, Rome, Italy; Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School, Miami, USA
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
41
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
42
|
Lin H, Smith N, Spigelman AF, Suzuki K, Ferdaoussi M, Alghamdi TA, Lewandowski SL, Jin Y, Bautista A, Wang YW, Manning Fox JE, Merrins MJ, Buteau J, MacDonald PE. β-Cell Knockout of SENP1 Reduces Responses to Incretins and Worsens Oral Glucose Tolerance in High-Fat Diet-Fed Mice. Diabetes 2021; 70:2626-2638. [PMID: 34462260 PMCID: PMC8564408 DOI: 10.2337/db20-1235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme sentrin-specific protease 1 (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout (pSENP1-KO) mice on a high-fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses were identical in pSENP1-KO and wild-type littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to the GLP-1 receptor agonist exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated β-cell-specific SENP1 KO mice. These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca2+ levels. Thus, β-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Tamadher A Alghamdi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie L Lewandowski
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison
| | - Yaxing Jin
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ying Wayne Wang
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison
| | - Jean Buteau
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M. Iron Metabolism in Pancreatic Beta-Cell Function and Dysfunction. Cells 2021; 10:2841. [PMID: 34831062 PMCID: PMC8616520 DOI: 10.3390/cells10112841] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Iron is an essential element involved in a variety of physiological functions. In the pancreatic beta-cells, being part of Fe-S cluster proteins, it is necessary for the correct insulin synthesis and processing. In the mitochondria, as a component of the respiratory chain, it allows the production of ATP and reactive oxygen species (ROS) that trigger beta-cell depolarization and potentiate the calcium-dependent insulin release. Iron cellular content must be finely tuned to ensure the normal supply but also to prevent overloading. Indeed, due to the high reactivity with oxygen and the formation of free radicals, iron excess may cause oxidative damage of cells that are extremely vulnerable to this condition because the normal elevated ROS production and the paucity in antioxidant enzyme activities. The aim of the present review is to provide insights into the mechanisms responsible for iron homeostasis in beta-cells, describing how alteration of these processes has been related to beta-cell damage and failure. Defects in iron-storing or -chaperoning proteins have been detected in diabetic conditions; therefore, the control of iron metabolism in these cells deserves further investigation as a promising target for the development of new disease treatments.
Collapse
Affiliation(s)
| | | | | | | | - Carla Perego
- Department of Excellence Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste, 22134 Milano, Italy; (A.M.); (A.G.); (P.M.); (N.D.)
| | - Michela Castagna
- Department of Excellence Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste, 22134 Milano, Italy; (A.M.); (A.G.); (P.M.); (N.D.)
| |
Collapse
|
44
|
Corkey BE, Deeney JT, Merrins MJ. What Regulates Basal Insulin Secretion and Causes Hyperinsulinemia? Diabetes 2021; 70:2174-2182. [PMID: 34593535 PMCID: PMC8576498 DOI: 10.2337/dbi21-0009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
We hypothesize that basal hyperinsulinemia is synergistically mediated by an interplay between increased oxidative stress and excess lipid in the form of reactive oxygen species (ROS) and long-chain acyl-CoA esters (LC-CoA). In addition, ROS production may increase in response to inflammatory cytokines and certain exogenous environmental toxins that mislead β-cells into perceiving nutrient excess when none exists. Thus, basal hyperinsulinemia is envisioned as an adaptation to sustained real or perceived nutrient excess that only manifests as a disease when the excess demand can no longer be met by an overworked β-cell. In this article we will present a testable hypothetical mechanism to explain the role of lipids and ROS in basal hyperinsulinemia and how they differ from glucose-stimulated insulin secretion (GSIS). The model centers on redox regulation, via ROS, and S-acylation-mediated trafficking via LC-CoA. These pathways are well established in neural systems but not β-cells. During GSIS, these signals rise and fall in an oscillatory pattern, together with the other well-established signals derived from glucose metabolism; however, their precise roles have not been defined. We propose that failure to either increase or decrease ROS or LC-CoA appropriately will disturb β-cell function.
Collapse
Affiliation(s)
- Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Jude T Deeney
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Matthew J Merrins
- Department of Biomolecular Chemistry and Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| |
Collapse
|
45
|
Sammy MJ, Connelly AW, Brown JA, Holleman C, Habegger KM, Ballinger SW. Mito-Mendelian interactions alter in vivo glucose metabolism and insulin sensitivity in healthy mice. Am J Physiol Endocrinol Metab 2021; 321:E521-E529. [PMID: 34370595 PMCID: PMC8560378 DOI: 10.1152/ajpendo.00069.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The regulation of euglycemia is essential for human health with both chronic hypoglycemia and hyperglycemia having detrimental effects. It is well documented that the incidence of type 2 diabetes increases with age and exhibits racial disparity. Interestingly, mitochondrial DNA (mtDNA) damage also accumulates with age and its sequence varies with geographic maternal origins (maternal race). From these two observations, we hypothesized that mtDNA background may contribute to glucose metabolism and insulin sensitivity. Pronuclear transfer was used to generate mitochondrial-nuclear eXchange (MNX) mice to directly test this hypothesis, by assessing physiologic parameters of glucose metabolism in nuclear isogenic C57BL/6J mice harboring either a C57BL/6J (C57n:C57mt wild type-control) or C3H/HeN mtDNA (C57n:C3Hmt-MNX). All mice were fed normal chow diets. MNX mice were significantly leaner, had lower leptin levels, and were more insulin sensitive, with lower modified Homeostatic Model Assessment of Insulin Resistance (mHOMA-IR) values and enhanced insulin action when compared with their control counterparts. Further interrogation of muscle insulin signaling revealed higher phosphorylated Akt/total Akt ratios in MNX animals relative to control, consistent with greater insulin sensitivity. Overall, these results are consistent with the hypothesis that different mtDNA combinations on the same nuclear DNA (nDNA) background can significantly impact glucose metabolism and insulin sensitivity in healthy mice.NEW & NOTEWORTHY Different mitochondrial DNAs on the same nuclear genetic background can significantly impact body composition, glucose metabolism, and insulin sensitivity in healthy mice.
Collapse
Affiliation(s)
- Melissa J Sammy
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashley W Connelly
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jamelle A Brown
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cassie Holleman
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk M Habegger
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
46
|
Koike S, Hsu MF, Bettaieb A, Chu B, Matsumoto N, Morisseau C, Havel PJ, Huising MO, Hammock BD, Haj FG. Genetic deficiency or pharmacological inhibition of soluble epoxide hydrolase ameliorates high fat diet-induced pancreatic β-cell dysfunction and loss. Free Radic Biol Med 2021; 172:48-57. [PMID: 34038767 PMCID: PMC9901526 DOI: 10.1016/j.freeradbiomed.2021.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic β-cells are crucial regulators of systemic glucose homeostasis, and their dysfunction and loss are central features in type 2 diabetes. Interventions that rectify β-cell dysfunction and loss are essential to combat this deadly malady. In the current study, we sought to delineate the role of soluble epoxide hydrolase (sEH) in β-cells under diet-induced metabolic stress. The expression of sEH was upregulated in murine and macaque diabetes models and islets of diabetic human patients. We postulated that hyperglycemia-induced elevation in sEH leads to a reduction in its substrates, epoxyeicosatrienoic acids (EETs), and attenuates the function of β-cells. Genetic deficiency of sEH potentiated glucose-stimulated insulin secretion in mice, likely in a cell-autonomous manner, contributing to better systemic glucose control. Consistent with this observation, genetic and pharmacological inactivation of sEH and the treatment with EETs exhibited insulinotropic effects in isolated murine islets ex vivo. Additionally, sEH deficiency enhanced glucose sensing and metabolism with elevated ATP and cAMP concentrations. This phenotype was associated with attenuated oxidative stress and diminished β-cell death in sEH deficient islets. Moreover, pharmacological inhibition of sEH in vivo mitigated, albeit partly, high fat diet-induced β-cell loss and dedifferentiation. The current observations provide new insights into the role of sEH in β-cells and information that may be leveraged for the development of a mechanism-based intervention to rectify β-cell dysfunction and loss.
Collapse
Affiliation(s)
- Shinichiro Koike
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Bryan Chu
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Naoki Matsumoto
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Peter J Havel
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Mark O Huising
- Department of Neurobiology & Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA; Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
47
|
Vilas-Boas EA, Carlein C, Nalbach L, Almeida DC, Ampofo E, Carpinelli AR, Roma LP, Ortis F. Early Cytokine-Induced Transient NOX2 Activity Is ER Stress-Dependent and Impacts β-Cell Function and Survival. Antioxidants (Basel) 2021; 10:antiox10081305. [PMID: 34439552 PMCID: PMC8389306 DOI: 10.3390/antiox10081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023] Open
Abstract
In type 1 diabetes (T1D) development, proinflammatory cytokines (PIC) released by immune cells lead to increased reactive oxygen species (ROS) production in β-cells. Nonetheless, the temporality of the events triggered and the role of different ROS sources remain unclear. Isolated islets from C57BL/6J wild-type (WT), NOX1 KO and NOX2 KO mice were exposed to a PIC combination. We show that cytokines increase O2•− production after 2 h in WT and NOX1 KO but not in NOX2 KO islets. Using transgenic mice constitutively expressing a genetically encoded compartment specific H2O2 sensor, we show, for the first time, a transient increase of cytosolic/nuclear H2O2 in islet cells between 4 and 5 h during cytokine exposure. The H2O2 increase coincides with the intracellular NAD(P)H decrease and is absent in NOX2 KO islets. NOX2 KO confers better glucose tolerance and protects against cytokine-induced islet secretory dysfunction and death. However, NOX2 absence does not counteract the cytokine effects in ER Ca2+ depletion, Store-Operated Calcium Entry (SOCE) increase and ER stress. Instead, the activation of ER stress precedes H2O2 production. As early NOX2-driven ROS production impacts β-cells’ function and survival during insulitis, NOX2 might be a potential target for designing therapies against early β-cell dysfunction in the context of T1D onset.
Collapse
Affiliation(s)
- Eloisa A. Vilas-Boas
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Christopher Carlein
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Davidson C. Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Angelo R. Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Leticia P. Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| |
Collapse
|
48
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Benáková Š, Holendová B, Plecitá-Hlavatá L. Redox Homeostasis in Pancreatic β-Cells: From Development to Failure. Antioxidants (Basel) 2021; 10:antiox10040526. [PMID: 33801681 PMCID: PMC8065646 DOI: 10.3390/antiox10040526] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Redox status is a key determinant in the fate of β-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. β-cells require proper redox signaling already in cell ontogenesis during the development of mature β-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional β-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of β-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged β-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact β-cell redox homeostasis and establish prooxidative metabolism. This can further affect β-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target β-cells leading to their dedifferentiation, dysfunction and eventually cell death.
Collapse
Affiliation(s)
- Štěpánka Benáková
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- Department of Mitochondrial Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Correspondence: ; Tel.: +420-296-442-285
| |
Collapse
|
50
|
Benito-Vicente A, Jebari-Benslaiman S, Galicia-Garcia U, Larrea-Sebal A, Uribe KB, Martin C. Molecular mechanisms of lipotoxicity-induced pancreatic β-cell dysfunction. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:357-402. [PMID: 33832653 DOI: 10.1016/bs.ircmb.2021.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D), a heterogeneous disorder derived from metabolic dysfunctions, leads to a glucose overflow in the circulation due to both defective insulin secretion and peripheral insulin resistance. One of the critical risk factor for T2D is obesity, which represents a global epidemic that has nearly tripled since 1975. Obesity is characterized by chronically elevated free fatty acid (FFA) levels, which cause deleterious effects on glucose homeostasis referred to as lipotoxicity. Here, we review the physiological FFA roles onto glucose-stimulated insulin secretion (GSIS) and the pathological ones affecting many steps of the mechanisms and modulation of GSIS. We also describe in vitro and in vivo experimental evidences addressing lipotoxicity in β-cells and the role of saturation and chain length of FFA on the potency of GSIS stimulation. The molecular mechanisms underpinning lipotoxic-β-cell dysfunction are also reviewed. Among them, endoplasmic reticulum stress, oxidative stress and mitochondrial dysfunction, inflammation, impaired autophagy and β-cell dedifferentiation. Finally therapeutic strategies for the β-cells dysfunctions such as the use of metformin, glucagon-like peptide 1, thiazolidinediones, anti-inflammatory drugs, chemical chaperones and weight are discussed.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Shifa Jebari-Benslaiman
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Unai Galicia-Garcia
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Molecular Biophysics, Fundación Biofísica Bizkaia, Leioa, Spain
| | - Asier Larrea-Sebal
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Molecular Biophysics, Fundación Biofísica Bizkaia, Leioa, Spain
| | - Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
| | - Cesar Martin
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|