1
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
2
|
Katsanos CS, Tran L, Hoffman N, Roust LR, De Filippis E, Mandarino LJ, Johnsson K, Belohlavek M, Buras MR. Impaired Suppression of Plasma Lipid Extraction and its Partitioning Away from Muscle by Insulin in Humans with Obesity. J Clin Endocrinol Metab 2024:dgae727. [PMID: 39401337 DOI: 10.1210/clinem/dgae727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
CONTEXT Humans with obesity and insulin resistance exhibit lipid accumulation in skeletal muscle, but the underlying biological mechanisms responsible for the accumulation of lipid in the muscle of these individuals remain unknown. OBJECTIVE We investigated how plasma insulin modulates the extraction of circulating triglycerides (TGs) and non-esterified fatty acids (NEFAs) from ingested and endogenous origin in the muscle of lean, insulin-sensitive humans (Lean-IS) and contrasted these responses to those in humans with obesity and insulin resistance (Obese-IR). METHODS The studies were performed in a postprandial state associated with steady-state plasma TG concentrations. The arterio-venous blood sampling technique was employed to determine the extraction of circulating lipids across the forearm muscle before and after insulin infusion. We distinguished kinetics of TGs and NEFAs from ingested origin from those from endogenous origin across muscle by incorporating stable isotope-labeled triolein in the ingested fat. RESULTS Insulin infusion rapidly suppressed the extraction of plasma TGs from endogenous, but not ingested, origin in the muscle of the Lean-IS, but this response was absent in the muscle of the Obese-IR. Furthermore, in the muscle of the Lean-IS, insulin infusion decreased the extraction of circulating NEFAs from both ingested and endogenous origin; however, this response was absent for NEFAs from ingested origin in the muscle of the Obese-IR subjects. CONCLUSIONS Partitioning of circulating lipids away from the skeletal muscle when plasma insulin increases during the postprandial period is impaired in humans with obesity and insulin resistance.
Collapse
Affiliation(s)
- Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Lee Tran
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
| | - Nyssa Hoffman
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
| | - Lori R Roust
- College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | | | - Lawrence J Mandarino
- Department of Medicine, and Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona College of Medicine, Tucson, AZ 85724
| | - Kailin Johnsson
- School of Life Sciences, Arizona State University, Tempe, AZ 85259
| | - Marek Belohlavek
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Matthew R Buras
- Department of Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ 85259
| |
Collapse
|
3
|
Katsanos CS, Tran L, Hoffman N, Roust LR, De Filippis E, Mandarino LJ, Johnsson K, Belohlavek M, Buras MR. Impaired Suppression of Plasma Lipid Extraction and its Partitioning Away from Muscle by Insulin in Humans with Obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598550. [PMID: 38915696 PMCID: PMC11195248 DOI: 10.1101/2024.06.11.598550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Context Humans with obesity and insulin resistance exhibit lipid accumulation in skeletal muscle, but the underlying biological mechanisms responsible for the accumulation of lipid in the muscle of these individuals remain unknown. Objective We investigated how plasma insulin modulates the extraction of circulating triglycerides (TGs) and non-esterified fatty acids (NEFAs) from ingested and endogenous origin in the muscle of lean, insulin-sensitive humans (Lean-IS) and contrasted these responses to those in humans with obesity and insulin resistance (Obese-IR). Methods The studies were performed in a postprandial state associated with steady-state plasma TG concentrations. The arterio-venous blood sampling technique was employed to determine the extraction of circulating lipids across the forearm muscle before and after insulin infusion. We distinguished kinetics of TGs and NEFAs from ingested origin from those from endogenous origin across muscle by incorporating stable isotope-labeled triolein in the ingested fat. Results Insulin infusion rapidly suppressed the extraction of plasma TGs from endogenous, but not ingested, origin in the muscle of the Lean-IS, but this response was absent in the muscle of the Obese-IR. Furthermore, in the muscle of the Lean-IS, insulin infusion decreased the extraction of circulating NEFAs from both ingested and endogenous origin; however, this response was absent for NEFAs from ingested origin in the muscle of the Obese-IR subjects. Conclusions Partitioning of circulating lipids away from the skeletal muscle when plasma insulin increases during the postprandial period is impaired in humans with obesity and insulin resistance.
Collapse
|
4
|
Chen X, Lin E, Haghighatian MM, Shepard LW, Hattar S, Kuruvilla R, Zhao H. Light modulates glucose and lipid homeostasis via the sympathetic nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617839. [PMID: 39416062 PMCID: PMC11483057 DOI: 10.1101/2024.10.11.617839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Light is an important environmental factor for vision, and for diverse physiological and psychological functions. Light can also modulate glucose metabolism. Here, we show that in mice, light is critical for glucose and lipid homeostasis by regulating the sympathetic nervous system, independent of circadian disruption. Light deprivation from birth elicits insulin hypersecretion, glucagon hyposecretion, lower gluconeogenesis, and reduced lipolysis by 6-8 weeks, in male, but not, female mice. These metabolic defects are consistent with blunted sympathetic activity, and indeed, sympathetic responses to a cold stimulus are significantly attenuated in dark-reared mice. Further, long-term dark rearing leads to body weight gain, insulin resistance, and glucose intolerance. Notably, metabolic dysfunction can be partially alleviated by 5 weeks exposure to a regular light-dark cycle. These studies provide insight into circadian-independent mechanisms by which light directly influences whole-body physiology and inform new approaches for understanding metabolic disorders linked to aberrant environmental light conditions.
Collapse
Affiliation(s)
- Xiangning Chen
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Eugene Lin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | | | | | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| |
Collapse
|
5
|
Šedivý P, Dusilová T, Šetinová B, Pajuelo D, Hájek M, Rossmeislová L, Šiklová M, Šrámková V, Krauzová E, Gojda J, Koc M, Dezortová M, Kovář J. Liver fat response to two days fasting and two days isocaloric high-carbohydrate refeeding in lean and obese women. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00379-X. [PMID: 39443278 DOI: 10.1016/j.numecd.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS Prolonged fasting, which leads to the mobilization of fat from adipose tissue, can result in the development of hepatosteatosis. However, it is not yet known whether the accumulation of fat in the liver after fasting can be affected by concurrent obesity. Therefore, this study aimed to assess how excessive adiposity influences changes in liver fat content induced by fasting and subsequent refeeding. METHODS AND RESULTS Ten lean women and eleven women with obesity (age: 36.4 ± 7.9 and 34.5 ± 7.9 years, BMI: 21.4 ± 1.7 and 34.5 ± 4.8 kg/m2) underwent a 60-h fasting period followed by 2 days of isocaloric high-carbohydrate refeeding. Magnetic resonance spectroscopy (MRS) examinations of liver were conducted at baseline, after 48 h of fasting, and at the end of refeeding period. Hepatic fat content (HFC) increased in lean women after fasting, whereas no statistically significant change in HFC was observed in women with obesity. Additionally, fasting led to significant reductions in liver volume in both groups, likely attributable to glycogen depletion, with subsequent restoration upon refeeding. Notably, changes in hepatic fat volume (HFV) rather than HFC inversely correlated with baseline liver fat content and HOMA-IR. CONCLUSION We demonstrated that prolonged fasting results in accumulation of fat in the liver in lean subjects only and that this accumulation is inversely related to baseline fat content and insulin resistance. Moreover, the study underscored the importance of evaluating hepatic fat volume rather than hepatic fat content in studies that involve considerable changes in hepatic lean volume.
Collapse
Affiliation(s)
- Petr Šedivý
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tereza Dusilová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Bára Šetinová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dita Pajuelo
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Milan Hájek
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Šiklová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Krauzová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Internal Medicine, Third Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Jan Gojda
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Internal Medicine, Third Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Michal Koc
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Dezortová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Jan Kovář
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
6
|
Chen J, Zhao D, Wang Y, Liu M, Zhang Y, Feng T, Xiao C, Song H, Miao R, Xu L, Chen H, Qiu X, Xu Y, Xu J, Cui Z, Wang W, Quan Y, Zhu Y, Huang C, Zheng SG, Zhao J, Zhu T, Sun L, Fan G. Lactylated Apolipoprotein C-II Induces Immunotherapy Resistance by Promoting Extracellular Lipolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406333. [PMID: 38981044 PMCID: PMC11481198 DOI: 10.1002/advs.202406333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 07/11/2024]
Abstract
Mortality rates due to lung cancer are high worldwide. Although PD-1 and PD-L1 immune checkpoint inhibitors boost the survival of patients with non-small-cell lung cancer (NSCLC), resistance often arises. The Warburg Effect, which causes lactate build-up and potential lysine-lactylation (Kla), links immune dysfunction to tumor metabolism. The role of non-histone Kla in tumor immune microenvironment and immunotherapy remains to be clarified. Here, global lactylome profiling and metabolomic analyses of samples from patients with NSCLC is conducted. By combining multi-omics analysis with in vitro and in vivo validation, that intracellular lactate promotes extracellular lipolysis through lactyl-APOC2 is revealed. Mechanistically, lactate enhances APOC2 lactylation at K70, stabilizing it and resulting in FFA release, regulatory T cell accumulation, immunotherapy resistance, and metastasis. Moreover, the anti-APOC2K70-lac antibody that sensitized anti-PD-1 therapy in vivo is developed. This findings highlight the potential of anti lactyl-APOC2-K70 approach as a new combination therapy for sensitizing immunotherapeutic responses.
Collapse
Affiliation(s)
- Jian Chen
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
- Department of Thoracic Surgery, Shanghai Pulmonary HospitalTongji University507 Zhengmin RoadShanghai200433P. R. China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary HospitalTongji University507 Zhengmin RoadShanghai200433P. R. China
| | - Yupeng Wang
- Department of General Surgery, Shanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011P. R. China
| | - Ming Liu
- Department of Thoracic Surgery, Shanghai Pulmonary HospitalTongji University507 Zhengmin RoadShanghai200433P. R. China
| | - Yuan Zhang
- Department of Gastrointestinal SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620P. R. China
| | - Tingting Feng
- Department of Clinical PharmacyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620P. R. China
| | - Chao Xiao
- Department of Gastrointestinal SurgeryShanghai East Hospital, School of MedicineTongji UniversityShanghai200040P. R. China
| | - Huan Song
- Department of Clinical Laboratory MedicineShanghai Pulmonary HospitalTongji University School of MedicineShanghai200433P. R. China
| | - Rui Miao
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Li Xu
- Department of Thoracic Surgery, Shanghai Pulmonary HospitalTongji University507 Zhengmin RoadShanghai200433P. R. China
| | - Hongwei Chen
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Xiaoying Qiu
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Yi Xu
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Jingxuan Xu
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Zelin Cui
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620P. R. China
| | - Wei Wang
- Department of Breast‐thyroid SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620P. R. China
| | - Yanchun Quan
- Central LaboratoryLinyi People's HospitalShandong273300P. R. China
| | - Yifeng Zhu
- Department of Internal Medicine II, Klinikum rechts der IsarTechnical University of MunichIsmaninger Str. 2281675MunichGermany
| | - Chen Huang
- Department of Gastrointestinal SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620P. R. China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research InstituteShanghai Jiaotong University School of Medicine Affiliated Songjiang HospitalShanghai200080P. R. China
| | - Jian‐yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental HealthXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092P. R. China
| | - Ting Zhu
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Lianhui Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental HealthXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092P. R. China
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
7
|
Rossmeislová L, Krauzová E, Koc M, Wilhelm M, Šebo V, Varaliová Z, Šrámková V, Schouten M, Šedivý P, Tůma P, Kovář J, Langin D, Gojda J, Šiklová M. Obesity alters adipose tissue response to fasting and refeeding in women: A study on lipolytic and endocrine dynamics and acute insulin resistance. Heliyon 2024; 10:e37875. [PMID: 39328508 PMCID: PMC11425135 DOI: 10.1016/j.heliyon.2024.e37875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Fasting induces significant shifts in substrate utilization with signs of acute insulin resistance (IR), while obesity is associated with chronic IR. Nonetheless, both states substantially influence adipose tissue (AT) function. Therefore, in this interventional study (NCT04260542), we investigated if excessive adiposity in premenopausal women alters insulin sensitivity and AT metabolic and endocrine activity in response to a 60-h fast and a subsequent 48-h refeeding period. Using physiological methods, lipidomics, and AT explants, we showed that obesity partially modified AT endocrine activity and blunted the dynamics of AT insulin resistance in response to the fasting/refeeding challenge compared to that observed in lean women. AT adapted to its own excess by reducing lipolytic activity/free fatty acids (FFA) flux per mass. This adaptation persisted even after a 60-h fast, resulting in lower ketosis in women with obesity. This could be a protective mechanism that limits the lipotoxic effects of FFA; however, it may ultimately impede desirable weight loss induced by caloric restriction in women with obesity.
Collapse
Affiliation(s)
- Lenka Rossmeislová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Eva Krauzová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Internal Medicine, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Michal Koc
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Wilhelm
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Viktor Šebo
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Internal Medicine, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Zuzana Varaliová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Petr Šedivý
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kovář
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dominique Langin
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, Inserm, Toulouse III University - Paul Sabatier (UPS), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Institute Universitaire de France (IUF), Paris, France
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Department of Internal Medicine, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Michaela Šiklová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague and Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
8
|
Ábel T, Benczúr B, Csobod ÉC. Sex differences in pathogenesis and treatment of dyslipidemia in patients with type 2 diabetes and steatotic liver disease. Front Med (Lausanne) 2024; 11:1458025. [PMID: 39376658 PMCID: PMC11456427 DOI: 10.3389/fmed.2024.1458025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Previously published studies have shown that women with type 2 diabetes have a higher risk of atherosclerotic cardiovascular disease than men with type 2 diabetes. The exact reason for this is not yet known. The association between metabolic dysfunction-associated steatotic liver disease and type 2 diabetes appears to be bidirectional, meaning that the onset of one may increase the risk of the onset and progression of the other. Dyslipidemia is common in both diseases. Our aim was therefore to investigate whether there is a sex difference in the pathogenesis and management of dyslipidemia in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction. While the majority of published studies to date have found no difference between men and women in statin treatment, some studies have shown reduced effectiveness in women compared to men. Statin treatment is under-prescribed for both type 2 diabetics and patients with dysfunction-associated steatotic liver disease. No sex differences were found for ezetimibe treatment. However, to the best of our knowledge, no such study was found for fibrate treatment. Conflicting results on the efficacy of newer cholesterol-lowering PCSK9 inhibitors have been reported in women and men. Results from two real-world studies suggest that up-titration of statin dose improves the efficacy of PCSK9 inhibitors in women. Bempedoic acid treatment has been shown to be effective and safe in patients with type 2 diabetes and more effective in lipid lowering in women compared to men, based on phase 3 results published to date. Further research is needed to clarify whether the sex difference in dyslipidemia management shown in some studies plays a role in the risk of ASCVD in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction.
Collapse
Affiliation(s)
- Tatjana Ábel
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Béla Benczúr
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
- János Balassa County Hospital, Ist Department of Internal medicine (Cardiology/Nephrology), Szekszárd, Hungary
| | - Éva Csajbókné Csobod
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Jack BU, Dias S, Pheiffer C. Comparative Effects of Tumor Necrosis Factor Alpha, Lipopolysaccharide, and Palmitate on Mitochondrial Dysfunction in Cultured 3T3-L1 Adipocytes. Cell Biochem Biophys 2024:10.1007/s12013-024-01522-3. [PMID: 39269560 DOI: 10.1007/s12013-024-01522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
We have previously reported that dysregulated lipid metabolism and inflammation in 3T3-L1 adipocytes is attributed to tumor necrosis factor alpha (TNFα) rather than lipopolysaccharide (LPS) and palmitate (PA). In this study, we further compared the modulative effects of TNFα, LPS, and PA on mitochondrial function by treating 3T3-L1 adipocytes with TNFα (10 ng/mL), LPS (100 ng/mL), and PA (0.75 mM) individually or in combination for 24 h. Results showed a significant reduction in intracellular adenosine triphosphate (ATP) content, mitochondrial bioenergetics, total antioxidant capacity, and the mRNA expression of citrate synthase (Cs), sirtuin 3 (Sirt3), protein kinase AMP-activated catalytic subunit alpha 2 (Prkaa2), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1α), nuclear respiratory factor 1 (Nrf1), and superoxide dismutase 1 (Sod1) in cells treated with TNFα individually or in combination with LPS and PA. Additionally, TNFα treatments decreased insulin receptor substrate 1 (Irs1), insulin receptor substrate 2 (Irs2), solute carrier family 2, facilitated glucose transporter member 4 (Slc2a4), and phosphoinositide 3 kinase regulatory subunit 1 (Pik3r1) mRNA expression. Treatment with LPS and PA alone, or in combination, did not affect the assessed metabolic parameters, while the combination of LPS and PA increased lipid peroxidation. These results show that TNFα but not LPS and PA dysregulate mitochondrial function, thus inducing oxidative stress and impaired insulin signaling in 3T3-L1 adipocytes. This suggests that TNFα treatment can be used as a basic in vitro model for studying the pathophysiology of mitochondrial dysfunction and related metabolic complications and screening potential anti-obesity therapeutics in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Babalwa Unice Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa.
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
10
|
Yang X, Lin H, Wang M, Huang X, Li K, Xia W, Zhang Y, Wang S, Chen W, Zheng C. Identification of key genes and pathways in duck fatty liver syndrome using gene set enrichment analysis. Poult Sci 2024; 103:104015. [PMID: 39003797 PMCID: PMC11298935 DOI: 10.1016/j.psj.2024.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
High-laying ducks are often fed high-energy, nutritious feeds to maintain high productivity, which predisposes them to lipid metabolism disorders and the development of fatty liver syndrome (FLS), which seriously affects production performance and has a substantial economic impact on the poultry industry. Therefore, it is necessary to elucidate the mechanisms underlying the development of fatty liver syndrome. In this study, seven Shan Partridge ducks, each with fatty liver syndrome and normal laying ducks, were selected, and Hematoxylin Eosin staining (HE staining), Masson staining, and transcriptome sequencing were performed on liver tissue. In addition to exploring key genes and pathways using conventional analysis methods, we constructed the first Kyoto Encyclopedia of Genes and Genomes (KEGG) database-based predefined gene set containing 12,764 pathways and 16,836 genes and further performed gene set enrichment analysis (GSEA) on the liver transcriptome data. Finally, key nodes and biological processes were identified via the protein-protein interaction (PPI) network. The results showed that the liver in the FL group exhibited steatosis and fibrosis, and a total of 3,663 genes with upregulated expression versus 2,296 downregulated genes were screened by conventional analysis. GSEA analysis and PPI network analysis revealed that the liver in the FL group exhibited disruption of the mitochondrial electron transport chain, leading to decreased oxidative phosphorylation and the secretion of excessive proinflammatory factors amid the continuous accumulation of lipids. Under continuous chronic inflammation, cell cycle arrest triggers apoptosis, while fibrosis becomes more severe, and procarcinogenic genes are activated, leading to the continuous development and deterioration of the liver. In conclusion, the predefined gene set constructed in this study can be used for GSEA, and the identified hub genes provide useful reference data and a solid foundation for the study of the genetic regulatory mechanism of fatty liver syndrome in ducks.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Hao Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; College of Animal Science, Anhui Science and Technology University, Anhui 233100, P.R. China
| | - Mengpan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; College of Animal Science & Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300391, P.R. China
| | - Xuebing Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Kaichao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Weiguang Xia
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Yanan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Shuang Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Chuntian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China.
| |
Collapse
|
11
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
12
|
Risi R, Vidal-Puig A, Bidault G. An adipocentric perspective of pancreatic lipotoxicity in diabetes pathogenesis. J Endocrinol 2024; 262:e230313. [PMID: 38642584 PMCID: PMC11227041 DOI: 10.1530/joe-23-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Obesity and diabetes represent two increasing and invalidating public health issues that often coexist. It is acknowledged that fat mass excess predisposes to insulin resistance and type 2 diabetes mellitus (T2D), with the increasing incidence of the two diseases significantly associated. Moreover, emerging evidence suggests that obesity might also accelerate the appearance of type 1 diabetes (T1D), which is now a relatively frequent comorbidity in patients with obesity. It is a common clinical finding that not all patients with obesity will develop diabetes at the same level of adiposity, with gender, genetic, and ethnic factors playing an important role in defining the timing of diabetes appearance. The adipose tissue (AT) expandability hypothesis explains this paradigm, indicating that the individual capacity to appropriately store energy surplus in the form of fat within the AT determines and prevents the toxic deposition of lipids in other organs, such as the pancreas. Thus, we posit that when the maximal storing capacity of AT is exceeded, individuals will develop T2D. In this review, we provide insight into mechanisms by which the AT controls pancreas lipid content and homeostasis in case of obesity to offer an adipocentric perspective of pancreatic lipotoxicity in the pathogenesis of diabetes. Moreover, we suggest that improving AT function is a valid therapeutic approach to fighting obesity-associated complications including diabetes.
Collapse
Affiliation(s)
- Renata Risi
- Department of Experimental Medicine, Sapienza University of Rome, Sapienza University of Rome, Rome, Italy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| |
Collapse
|
13
|
Yao H, Yang J, Li S, Cui SW, Tan H, Nie S. Effects of different fractions of polysaccharides from Dictyophora indusiata on high-fat diet-induced metabolic syndrome in mice. Int J Biol Macromol 2024; 272:132744. [PMID: 38834122 DOI: 10.1016/j.ijbiomac.2024.132744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Dictyophora indusiata is a common edible mushroom with great potential in the field of medicine against metabolic disorders, inflammation, and immunodeficiency. Our previous studies have shown that different fractions of the polysaccharide from Dictyophora indusiata (DIP) have various structural characteristics and morphology. However, the impact of the structural features on the protective effects of DIP against metabolic syndrome remains unclear. In this study, three distinct polysaccharide fractions have been extracted from Dictyophora indusiata and a high-fat diet-induced metabolic syndrome (MetS) was constructed in mice. The effects of these fractions on a range of MetS-associated endpoints, including abnormal blood glucose, lipid profiles, body fat content, liver function, intestinal microbiota and their metabolites were investigated. Through correlation analysis, the potential link between the monosaccharide composition of the polysaccharides and their biological activities was determined. The study aimed to explore the potential mechanisms and ameliorative effects of these polysaccharide fractions on MetS, thereby providing statistical evidence for understanding the relationship between monosaccharides composition of Dictyophora indusiata polysaccharides and their potential utility in treating metabolic disorders.
Collapse
Affiliation(s)
- Hong Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Ezeh U, Chen YI, Pall M, Buyalos RP, Chan JL, Pisarska MD, Azziz R. Alterations in nonesterified free fatty acid trafficking rather than hyperandrogenism contribute to metabolic health in obese women with polycystic ovary syndrome. Fertil Steril 2024; 121:1040-1052. [PMID: 38307453 DOI: 10.1016/j.fertnstert.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE To determine whether alterations in nonesterified fatty acid (NEFA) dynamics or degree of hyperandrogenism (HA) contribute to the difference in insulin sensitivity between women with metabolically healthy obese polycystic ovary syndrome (PCOS) (MHO-PCOS) and women with metabolically unhealthy obese PCOS (MUO-PCOS). DESIGN Prospective cross-sectional study. SETTING Tertiary-care academic center. PATIENTS One hundred twenty-five obese women with PCOS. INTERVENTION Consecutive obese (body mass index [BMI] ≥ 30 kg/m2) oligo-ovulatory women (n = 125) with PCOS underwent an oral glucose tolerance test and a subgroup of 16 participants underwent a modified frequently sampled intravenous glucose tolerance test to determine insulin-glucose and -NEFA dynamics. MAIN OUTCOME MEASURES Degree of insulin resistance (IR) in adipose tissue (AT) basally (Adipo-IR) and dynamically (the nadir in NEFA levels observed [NEFAnadir], the time it took for NEFA levels to reach nadir [TIMEnadir], and the percent suppression in plasma NEFA levels from baseline to nadir [%NEFAsupp]); peak lipolysis rate (SNEFA) and peak rate of NEFA disposal from plasma pool (KNEFA); whole-body insulin-glucose interaction (acute response of insulin to glucose [AIRg], insulin sensitivity index [Si], glucose effectiveness [Sg], and disposition index [Di]); and HA (hirsutism score, total and free testosterone levels, and dehydroepiandrosterone sulfate levels). RESULTS A total of 85 (68%) women were MUO-PCOS and 40 (32%) were MHO-PCOS using the homeostasis model of assessment of IR. Subjects with MUO-PCOS and MHO-PCOS did not differ in mean age, BMI, waist-to-hip ratio, HA, and lipoprotein levels. By a modified frequently sampled intravenous glucose tolerance test, eight women with MUO-PCOS had lesser Si, KNEFA, and the percent suppression in plasma NEFA levels from baseline to nadir (%NEFAsupp) and greater TIMEnadir, NEFAnadir, and baseline adipose tissue IR index (Adipo-IR) than eight subjects with MHO-PCOS, but similar fasting NEFA levels and SNEFA. Women with MUO-PCOS had a higher homeostasis model of assessment-β% and fasting insulin levels than women with MHO-PCOS. In bivalent analysis, Si correlated strongly and negatively with Adipo-IR and NEFAnadir, weakly and negatively with TIMEnadir, and positively with KNEFA and %NEFAsupp, in women with MUO-PCOS only. CONCLUSION Independent of age and BMI, women with MUO-PCOS have reduced NEFA uptake and altered insulin-mediated NEFA suppression, but no difference in HA, compared with women with MHO-PCOS. Altered insulin-mediated NEFA suppression, rather than HA or lipolysis rate, contributes to variations in insulin sensitivity among obese women with PCOS.
Collapse
Affiliation(s)
- Uche Ezeh
- California IVF Fertility Center, Sacramento, California; Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama; Department of Obstetrics and Gynecology, Alta Bates Summit Medical Center (Sutter), Berkeley, California
| | - Yd Ida Chen
- Department of Pediatrics and Medicine, Harbor- University of California (UCLA) Medical Center, Torrance, California; Department of Medicine, The David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Marita Pall
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Richard P Buyalos
- Fertility and Surgical Associates of California, Thousand Oaks, California
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, UCLA, Los Angeles, California
| | - Ricardo Azziz
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama; Department of Medicine, Heersink School of Medicine, UAB, Birmingham, Alabama; Department of Healthcare Organization and Policy, School of Public Health, UAB, Birmingham, Alabama; Department of Health Policy, Management and Behavior, School of Public Health, State University of New York at Albany, Albany, New York.
| |
Collapse
|
15
|
Swarnamali H, Ranasinghe P, Jayawardena R. Changes in serum lipids following consumption of coconut oil and palm olein oil: A sequential feeding crossover clinical trial. Diabetes Metab Syndr 2024; 18:103070. [PMID: 38981164 DOI: 10.1016/j.dsx.2024.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND High incidence of cardiovascular disease (CVD) in South Asia is linked to genetic predisposition and diets high in saturated fatty acids (SFAs). Increased CVD prevalence correlates with rising palm oil consumption in some South Asian countries, where coconut oil and palm olein oil are primary SFA sources. OBJECTIVE Compare the effects of coconut oil and palm olein oil on serum lipoprotein lipids and biochemical parameters in healthy adults. METHODS A sequential feeding crossover clinical trial with two feeding periods of 8 weeks each was conducted among 40 healthy adults. Participants were provided palm olein oil in the first feeding period followed by coconut oil with a 16-week washout period in between. The outcomes measured were the difference in serum low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C), TC/HDL-C ratio, triglycerides (TG), very-low-density lipoprotein cholesterol (VLDL-C), fasting plasma glucose (FPG), and liver enzymes. RESULTS Thirty-seven participants completed the study. LDL-C decreased by 13.0 % with palm olein oil (p < 0.001) and increased by 5.6 % with coconut oil (p = 0.044), showing a significant difference (p < 0.001). TC decreased by 9.9 % with palm olein oil (p < 0.001) and increased by 4.0 % with coconut oil (p = 0.044). CONCLUSION Palm olein oil consumption resulted in more favorable changes in lipid-related CVD risk factors (TC, LDL-C, TC:HDL-C, and FPG) compared to coconut oil. Clinical Trial Registry number and website where it was obtained: (SLCTR/2019/034); https://slctr.lk/trials/slctr-2019-034.
Collapse
Affiliation(s)
- Hasinthi Swarnamali
- Health and Wellness Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka; University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Ranil Jayawardena
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
16
|
Petridi F, Geurts JMW, Nyakayiru J, Schaafsma A, Schaafsma D, Meex RCR, Singh-Povel CM. Effects of Early and Late Time-Restricted Feeding on Parameters of Metabolic Health: An Explorative Literature Assessment. Nutrients 2024; 16:1721. [PMID: 38892654 PMCID: PMC11175017 DOI: 10.3390/nu16111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Chrono-nutrition (meal timing) aligns food consumption with one's circadian rhythm. The first meal (e.g., breakfast) likely promotes synchronization of peripheral circadian clocks, thereby supporting metabolic health. Time-restricted feeding (TRF) has been shown to reduce body weight (BW) and/or improve cardiovascular biomarkers. In this explorative literature assessment, 13 TRF randomized controlled trials (RCTs) were selected from PubMed and Scopus to evaluate the effects of early (eTRF: first meal before 10:30 a.m.) and late TRF (lTRF: first meal after 11:30 a.m.) on parameters of metabolic health. Although distinct variations in study design were evident between reports, TRF consistently decreased energy intake (EI) and BW, and improved insulin resistance as well as systolic blood pressure. eTRF seemed to have a greater beneficial effect than lTRF on insulin resistance (HOMA-IR). Importantly, most studies did not appear to consider chronotype in their evaluation, which may have underestimated TRF effects. TRF intervention may be a promising approach for risk reduction of human metabolic diseases. To conclusively determine benefits of TRF and identify clear differences between eTRF and lTRF, future studies should be longer-term (≥8 weeks) with well-defined (differences in) feeding windows, include participants chronotypically matching the intervention, and compare outcomes to those of control groups without any dietary limitations.
Collapse
Affiliation(s)
- Froso Petridi
- Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | | | | | | | - Ruth C. R. Meex
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | | |
Collapse
|
17
|
Al-Horani RA, Alsays KM, Abo Alrob O. Obesity blunts insulin sensitivity improvements and attenuates strength gains following resistance training in nondiabetic men. Eur J Appl Physiol 2024; 124:1425-1437. [PMID: 38100040 DOI: 10.1007/s00421-023-05370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 04/28/2024]
Abstract
PURPOSE Impaired insulin sensitivity is central in the etiology of type 2 diabetes in people with obesity. The effectiveness of resistance training (RE) alone in improving insulin sensitivity in people with obesity is undetermined. This study aimed to determine the influence of obesity on insulin sensitivity responses to RE. METHODS Nineteen sedentary men were allocated to Lean (BMI 22.7 ± 2.5 kg m-2; n = 10) or Obese group (BMI 33.2 ± 3.2 kg m-2; n = 9). Participants were evaluated before and after a 10-week supervised progressive RE (3 sets of 10 repetition maximum (RM), 3 d/wk) for insulin sensitivity indexes using an oral glucose tolerance test, body composition using anthropometrics, and strength using 1RM. RESULTS Groups were matched at baseline for all variables except for body composition and absolute strength. Body fat was not changed in both groups. Matsuda insulin sensitivity index, hepatic insulin resistance, and insulin area under the curve improved by 64.3 ± 61.9 unit, - 58.2 ± 102.9 unit, 2.3 ± 4.1 unit, and - 721.6 ± 858.2 µU/ml, respectively, only in the Lean group. The increased 1RM% for leg press was greater in the Lean (49.5 ± 18.7%) than in the Obese (31.5 ± 13.9), but not different for bench press (18.0 ± 9.1% vs. 16.4 ± 6.0%, respectively). CONCLUSION Sustained obesity precludes insulin sensitivity improvements and attenuates strength gains in response to progressive RE. Additional strategies such as caloric restriction might be necessary for RE to improve insulin sensitivity, particularly at high levels of obesity.
Collapse
Affiliation(s)
- Ramzi A Al-Horani
- Department of Exercise Science, Yarmouk University, Irbid, 211-63, Jordan.
| | - Khaled M Alsays
- Department of Exercise Science, Yarmouk University, Irbid, 211-63, Jordan
| | - Osama Abo Alrob
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Yarmouk University, Irbid, 211-63, Jordan
| |
Collapse
|
18
|
Han YZ, Du BX, Zhu XY, Wang YZY, Zheng HJ, Liu WJ. Lipid metabolism disorder in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1336402. [PMID: 38742197 PMCID: PMC11089115 DOI: 10.3389/fendo.2024.1336402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.
Collapse
Affiliation(s)
- Yi-Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang-Zhi-Yuan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Ghooray DT, Xu M, Shi H, McClain CJ, Song M. Hepatocyte-Specific Fads1 Overexpression Attenuates Western Diet-Induced Metabolic Phenotypes in a Rat Model. Int J Mol Sci 2024; 25:4836. [PMID: 38732052 PMCID: PMC11084797 DOI: 10.3390/ijms25094836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.
Collapse
Affiliation(s)
- Dushan T. Ghooray
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
| | - Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
20
|
Morisseau L, Tokito F, Lucas M, Poulain S, Kim SH, Plaisance V, Pawlowski V, Legallais C, Jellali R, Sakai Y, Abderrahmani A, Leclerc E. Transcriptomic profiling analysis of the effect of palmitic acid on 3D spheroids of β-like cells derived from induced pluripotent stem cells. Gene 2024; 917:148441. [PMID: 38608795 DOI: 10.1016/j.gene.2024.148441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Type 2 diabetes (T2D) is posing a serious public health concern with a considerable impact on human life and health expenditures worldwide. The disease develops when insulin plasma level is insufficient for coping insulin resistance, caused by the decline of pancreatic β-cell function and mass. In β-cells, the lipotoxicity exerted by saturated free fatty acids in particular palmitate (PA), which is chronically elevated in T2D, plays a major role in β-cell dysfunction and mass. However, there is a lack of human relevant in vitro model to identify the underlying mechanism through which palmitate induces β-cell failure. In this frame, we have previously developed a cutting-edge 3D spheroid model of β-like cells derived from human induced pluripotent stem cells. In the present work, we investigated the signaling pathways modified by palmitate in β-like cells derived spheroids. When compared to the 2D monolayer cultures, the transcriptome analysis (FDR set at 0.1) revealed that the 3D spheroids upregulated the pancreatic markers (such as GCG, IAPP genes), lipids metabolism and transporters (CD36, HMGSC2 genes), glucose transporter (SLC2A6). Then, the 3D spheroids are exposed to PA 0.5 mM for 72 h. The differential analysis demonstrated that 32 transcription factors and 135 target genes were mainly modulated (FDR set at 0.1) including the upregulation of lipid and carbohydrates metabolism (HMGSC2, LDHA, GLUT3), fibrin metabolism (FGG, FGB), apoptosis (CASP7). The pathway analysis using the 135 selected targets extracted the fibrin related biological process and wound healing in 3D PA treated conditions. An overall pathway gene set enrichment analysis, performed on the overall gene set (with pathway significance cutoff at 0.2), highlighted that PA perturbs the citrate cycle, FOXO signaling and Hippo signaling as observed in human islets studies. Additional RT-PCR confirmed induction of inflammatory (IGFBP1, IGFBP3) and cell growth (CCND1, Ki67) pathways by PA. All these changes were associated with unaffected glucose-stimulated insulin secretion (GSIS), suggesting that they precede the defect of insulin secretion and death induced by PA. Overall, we believe that our data demonstrate the potential of our spheroid 3D islet-like cells to investigate the pancreatic-like response to diabetogenic environment.
Collapse
Affiliation(s)
- Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Fumiya Tokito
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mathilde Lucas
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Poulain
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Yasuyuki Sakai
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; CNRS/IIS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Eric Leclerc
- CNRS/IIS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
21
|
Hong Y, Song G, Feng X, Niu J, Wang L, Yang C, Luo X, Zhou S, Ma W. The Probiotic Kluyveromyces lactis JSA 18 Alleviates Obesity and Hyperlipidemia in High-Fat Diet C57BL/6J Mice. Foods 2024; 13:1124. [PMID: 38611428 PMCID: PMC11011337 DOI: 10.3390/foods13071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity poses a significant threat to various health conditions such as heart diseases, diabetes, high blood pressure, and heart attack, with the gut microbiota playing a crucial role in maintaining the body's energy balance. We identified a novel probiotic fungal strain, Kluyveromyces lactis JSA 18 (K. lactis), which was isolated from yak milk and was found to possess anti-obesity properties. Additionally, Lactobacillus plantarum CGMCC 8198 (LP8198) from our previous study was also included to evaluate its anti-obesity properties. The findings indicated that K. lactis caused a notable reduction in weight gain, liver and fat indexes, and hyperlipidemia in mice fed a high-fat diet (HFD). Administering K. lactis and LP8198 to mice on a high-fat diet resulted in a reduction of serum triglyceride levels. Furthermore, the supplements reduced ALT and AST activity, and inhibited the production of inflammatory cytokines such as TNF-α and IL-1β. In addition, lipid metabolism was enhanced by the downregulation of ACC1, PPAR-γ, SREBP-1, and Fasn. Moreover, this study found that K. lactis and LP8198 have little effect on gut bacteria. Additionally, K. lactis partially influenced intestinal fungi, while LP8198 had a minor influence on gut mycobiota. The main goal of this research was to show how effective K. lactis can be as a probiotic in combating obesity.
Collapse
Affiliation(s)
- Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Guodong Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Xiaoqian Feng
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Jialei Niu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Lu Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Caini Yang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
22
|
Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 2024; 25:270-289. [PMID: 38086922 DOI: 10.1038/s41580-023-00680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/10/2024]
Abstract
The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.
Collapse
Affiliation(s)
- Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Siewe N, Friedman A. A mathematical model of obesity-induced type 2 diabetes and efficacy of anti-diabetic weight reducing drug. J Theor Biol 2024; 581:111756. [PMID: 38307451 DOI: 10.1016/j.jtbi.2024.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/04/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
The dominant paradigm for modeling the obesity-induced T2DM (type 2 diabetes mellitus) today focuses on glucose and insulin regulatory systems, diabetes pathways, and diagnostic test evaluations. The problem with this approach is that it is not possible to explicitly account for the glucose transport mechanism from the blood to the liver, where the glucose is stored, and from the liver to the blood. This makes it inaccurate, if not incorrect, to properly model the concentration of glucose in the blood in comparison to actual glycated hemoglobin (A1C) test results. In this paper, we develop a mathematical model of glucose dynamics by a system of ODEs. The model includes the mechanism of glucose transport from the blood to the liver, and from the liver to the blood, and explains how obesity is likely to lead to T2DM. We use the model to evaluate the efficacy of an anti-T2DM drug that also reduces weight.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematics and Statistics, College of Science, Rochester Institute of Technology, Rochester, NY, USA.
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Hassell Sweatman CZW. Modelling remission from overweight type 2 diabetes reveals how altering advice may counter relapse. Math Biosci 2024; 371:109180. [PMID: 38518862 DOI: 10.1016/j.mbs.2024.109180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
The development or remission of diet-induced overweight type 2 diabetes involves many biological changes which occur over very different timescales. Remission, defined by HbA1c<6.5%, or fasting plasma glucose concentration G<126 mg/dl, may be achieved rapidly by following weight loss guidelines. However, remission is often short-term, followed by relapse. Mathematical modelling provides a way of investigating a typical situation, in which patients are advised to lose weight and then maintain fat mass, a slow variable. Remission followed by relapse, in a modelling sense, is equivalent to changing from a remission trajectory with steady state G<126 mg/dl, to a relapse trajectory with steady state G≥126 mg/dl. Modelling predicts that a trajectory which maintains weight will be a relapse trajectory, if the fat mass chosen is too high, the threshold being dependent on the lipid to carbohydrate ratio of the diet. Modelling takes into account the effects of hepatic and pancreatic lipid on hepatic insulin sensitivity and β-cell function, respectively. This study leads to the suggestion that type 2 diabetes remission guidelines be given in terms of model parameters, not variables; that is, the patient should adhere to a given nutrition and exercise plan, rather than achieve a certain subset of variable values. The model predicts that calorie restriction, not weight loss, initiates remission from type 2 diabetes; and that advice of the form 'adhere to the diet and exercise plan' rather than 'achieve a certain weight loss' may help counter relapse.
Collapse
Affiliation(s)
- Catherine Z W Hassell Sweatman
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, Auckland 1010, New Zealand.
| |
Collapse
|
25
|
Park JH, Kwon S, Park YM. Extracellular Vimentin Alters Energy Metabolism And Induces Adipocyte Hypertrophy. Diabetes Metab J 2024; 48:215-230. [PMID: 37750184 PMCID: PMC10995492 DOI: 10.4093/dmj.2022.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/19/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGRUOUND Previous studies have reported that oxidative stress contributes to obesity characterized by adipocyte hypertrophy. However, mechanism has not been studied extensively. In the current study, we evaluated role of extracellular vimentin secreted by oxidized low-density lipoprotein (oxLDL) in energy metabolism in adipocytes. METHODS We treated 3T3-L1-derived adipocytes with oxLDL and measured vimentin which was secreted in the media. We evaluated changes in uptake of glucose and free fatty acid, expression of molecules functioning in energy metabolism, synthesis of adenosine triphosphate (ATP) and lactate, markers for endoplasmic reticulum (ER) stress and autophagy in adipocytes treated with recombinant vimentin. RESULTS Adipocytes secreted vimentin in response to oxLDL. Microscopic evaluation revealed that vimentin treatment induced increase in adipocyte size and increase in sizes of intracellular lipid droplets with increased intracellular triglyceride. Adipocytes treated with vimentin showed increased uptake of glucose and free fatty acid with increased expression of plasma membrane glucose transporter type 1 (GLUT1), GLUT4, and CD36. Vimentin treatment increased transcription of GLUT1 and hypoxia-inducible factor 1α (Hif-1α) but decreased GLUT4 transcription. Adipose triglyceride lipase (ATGL), peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), diacylglycerol O-acyltransferase 1 (DGAT1) and 2 were decreased by vimentin treatment. Markers for ER stress were increased and autophagy was impaired in vimentin-treated adipocytes. No change was observed in synthesis of ATP and lactate in the adipocytes treated with vimentin. CONCLUSION We concluded that extracellular vimentin regulates expression of molecules in energy metabolism and promotes adipocyte hypertrophy. Our results show that vimentin functions in the interplay between oxidative stress and metabolism, suggesting a mechanism by which adipocyte hypertrophy is induced in oxidative stress.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Medicine, Graduate School, Ewha Womans University, Seoul, Korea
| | - Soyeon Kwon
- Department of Medicine, Graduate School, Ewha Womans University, Seoul, Korea
| | - Young Mi Park
- Department of Medicine, Graduate School, Ewha Womans University, Seoul, Korea
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Parikh M, Pierce GN. Considerations for choosing an optimal animal model of cardiovascular disease. Can J Physiol Pharmacol 2024; 102:75-85. [PMID: 37748198 DOI: 10.1139/cjpp-2023-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The decision to use the optimal animal model to mimic the various types of cardiovascular disease is a critical one for a basic scientist. Clinical cardiovascular disease can be complex and presents itself as atherosclerosis, hypertension, ischemia/reperfusion injury, myocardial infarcts, and cardiomyopathies, amongst others. This may be further complicated by the simultaneous presence of two or more cardiovascular lesions (for example, atherosclerosis and hypertension) and co-morbidities (i.e., diabetes, infectious disease, obesity, etc). This variety and merging of disease states creates an unusually difficult situation for the researcher who needs to identify the optimal animal model that is available to best represent all of the characteristics of the clinical cardiovascular disease. The present manuscript reviews the characteristics of the various animal models of cardiovascular disease available today, their advantages and disadvantages, with the goal to allow the reader access to the most recent data available for optimal choices prior to the initiation of the study. The animal species that can be chosen, the methods of generating these models of cardiovascular disease, as well as the specific cardiovascular lesions involved in each of these models are reviewed. A particular focus on the JCR:LA-cp rat as a model of cardiovascular disease is discussed.
Collapse
Affiliation(s)
- Mihir Parikh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB, Canada
| |
Collapse
|
27
|
Król-Kulikowska M, Urbanowicz I, Kepinska M. The Concentrations of Interleukin-6, Insulin, and Glucagon in the Context of Obesity and Type 2 Diabetes and Single Nucleotide Polymorphisms in IL6 and INS Genes. J Obes 2024; 2024:7529779. [PMID: 38250713 PMCID: PMC10798838 DOI: 10.1155/2024/7529779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Obesity and diabetes are a problem of modern medicine. Although the environmental factors contributing to the development of these diseases are widely known, research into genetic factors is still ongoing. At the same time, the role of inflammation in the pathophysiology of obesity and diabetes is increasingly emphasized. Therefore, the purpose of this study was to investigate the influence of two selected polymorphisms (rs1800795 and rs3842729) on the development of obesity and type 2 diabetes. In this study, 118 participants were examined, including a control group (nonobese and nondiabetic group), an obese group, and a diabetic group. Genotype analysis was performed using the PCR-RFLP method. It has been shown that in patients with the G/G genotype within the rs1800795 polymorphism (IL6), the chance of developing type 2 diabetes is several times lower compared to patients with the G/C and C/C genotypes. However, the rs3842729 polymorphism (INS) does not directly affect the risk of obesity or type 2 diabetes (T2D), although elevated insulin concentrations have been observed in obese and diabetic patients. These results confirm the impact of the rs1800795 polymorphism on the development of diabetes; however, this relationship is more complex and requires further research on other factors.
Collapse
Affiliation(s)
- Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Iwona Urbanowicz
- Department of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw 50-556, Poland
| |
Collapse
|
28
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
29
|
Reed RM, Whyte MB, Goff LM. Cardiometabolic disease in Black African and Caribbean populations: an ethnic divergence in pathophysiology? Proc Nutr Soc 2023:1-11. [PMID: 38230432 DOI: 10.1017/s0029665123004895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In the UK, populations of Black African and Caribbean (BAC) ethnicity suffer higher rates of cardiometabolic disease than White Europeans (WE). Obesity, leading to increased visceral adipose tissue (VAT) and intrahepatic lipid (IHL), has long been associated with cardiometabolic risk, driving insulin resistance and defective fatty acid/lipoprotein metabolism. These defects are compounded by a state of chronic low-grade inflammation, driven by dysfunctional adipose tissue. Emerging evidence has highlighted associations between central complement system components and adipose tissue, fatty acid metabolism and inflammation; it may therefore sit at the intersection of various cardiometabolic disease risk factors. However, increasing evidence suggests an ethnic divergence in pathophysiology, whereby current theories fail to explain the high rates of cardiometabolic disease in BAC populations. Lower fasting and postprandial TAG has been reported in BAC, alongside lower VAT and IHL deposition, which are paradoxical to the high rates of cardiometabolic disease exhibited by this ethnic group. Furthermore, BAC have been shown to exhibit a more anti-inflammatory profile, with lower TNF-α and greater IL-10. In contrast, recent evidence has revealed greater complement activation in BAC compared to WE, suggesting its dysregulation may play a greater role in the high rates of cardiometabolic disease experienced by this population. This review outlines the current theories of how obesity is proposed to drive cardiometabolic disease, before discussing evidence for ethnic differences in disease pathophysiology between BAC and WE populations.
Collapse
Affiliation(s)
- Reuben M Reed
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Martin B Whyte
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7WG, UK
| | - Louise M Goff
- Leicester Diabetes Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
30
|
Colosimo S, Mitra SK, Chaudhury T, Marchesini G. Insulin resistance and metabolic flexibility as drivers of liver and cardiac disease in T2DM. Diabetes Res Clin Pract 2023; 206:111016. [PMID: 37979728 DOI: 10.1016/j.diabres.2023.111016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Metabolic flexibility refers to the ability of tissues to adapt their use of energy sources according to substrate availability and energy demands. This review aims to disentangle the emerging mechanisms through which altered metabolic flexibility and insulin resistance promote NAFLD and heart disease progression. Insulin resistance and metabolic inflexibility are central drivers of hepatic and cardiac diseases in individuals with type 2 diabetes. Both play a critical role in the complex interaction between glucose and lipid metabolism. Disruption of metabolic flexibility results in hyperglycemia and abnormal lipid metabolism, leading to increased accumulation of fat in the liver, contributing to the development and progression of NAFLD. Similarly, insulin resistance affects cardiac glucose metabolism, leading to altered utilization of energy substrates and impaired cardiac function, and influence cardiac lipid metabolism, further exacerbating the progression of heart failure. Regular physical activity promotes metabolic flexibility by increasing energy expenditure and enabling efficient switching between different energy substrates. On the contrary, weight loss achieved through calorie restriction ameliorates insulin sensitivity without improving flexibility. Strategies that mimic the effects of physical exercise, such as pharmacological interventions or targeted lifestyle modifications, show promise in effectively treating both diabetes and NAFLD, finally reducing the risk of advanced liver disease.
Collapse
Affiliation(s)
- Santo Colosimo
- School of Nutrition Science, University of Milan, Milan, Italy
| | - Sandip Kumar Mitra
- Diabetes and Endocrinology Unit, Apollo Gleneagles Hospital, Kolkata, West Bengal, India
| | - Tirthankar Chaudhury
- Diabetes and Endocrinology Unit, Apollo Gleneagles Hospital, Kolkata, West Bengal, India
| | - Giulio Marchesini
- IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy.
| |
Collapse
|
31
|
Gamwell JM, Paphiti K, Hodson L, Karpe F, Pinnick KE, Todorčević M. An optimised protocol for the investigation of insulin signalling in a human cell culture model of adipogenesis. Adipocyte 2023; 12:2179339. [PMID: 36763512 PMCID: PMC9980465 DOI: 10.1080/21623945.2023.2179339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
While there is no standardized protocol for the differentiation of human adipocytes in culture, common themes exist in the use of supra-physiological glucose and hormone concentrations, and an absence of exogenous fatty acids. These factors can have detrimental effects on some aspects of adipogenesis and adipocyte function. Here, we present methods for modifying the adipogenic differentiation protocol to overcome impaired glucose uptake and insulin signalling in human adipose-derived stem cell lines derived from the stromal vascular fraction of abdominal and gluteal subcutaneous adipose tissue. By reducing the length of exposure to adipogenic hormones, in combination with a physiological glucose concentration (5 mM), and the provision of exogenous fatty acids (reflecting typical dietary fatty acids), we were able to restore early insulin signalling events and glucose uptake, which were impaired by extended use of hormones and a high glucose concentration, respectively. Furthermore, the addition of exogenous fatty acids greatly increased the storage of triglycerides and removed the artificial demand to synthesize all fatty acids by de novo lipogenesis. Thus, modifying the adipogenic cocktail can enhance functional aspects of human adipocytes in vitro and is an important variable to consider prior to in vitro investigations into adipocyte biology.
Collapse
Affiliation(s)
- Jonathan M. Gamwell
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| | - Keanu Paphiti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Katherine E. Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| | - Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| |
Collapse
|
32
|
Yan W, Bai R, Zheng Q, Yang X, Shi Y, Yang R, Jiang C, Wang X, Li X. Concentrations and association between exposure to mixed perfluoroalkyl and polyfluoroalkyl substances and glycometabolism among adolescents. Ann Med 2023; 55:2227844. [PMID: 37354023 PMCID: PMC10291925 DOI: 10.1080/07853890.2023.2227844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/07/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widely used for industrial and commercial purposes and have received increasing attention due to their adverse effects on health. OBJECTIVE To examine the relationship of serum PFAS and glycometabolism among adolescents based on the US National Health and Nutrition Examination Survey. METHODS General linear regression models were applied to estimate the relationship between exposure to single PFAS and glycometabolism. Weighted quantile sum (WQS) regression models and Bayesian kernel machine regressions (BKMR) were used to assess the associations between multiple PFASs mixture exposure and glycometabolism. RESULTS A total of 757 adolescents were enrolled. Multivariable regression model showed that Me-PFOSA-AcOH exposure was negatively associated with fasting blood glucose. WQS index showed that there was marginal negative correlation between multiple PFASs joint exposure and the homeostasis model of assessment for insulin resistance index (HOMA-IR) (β = -0.26, p < .068), and PFHxS had the largest weight. BKMR models showed that PFASs mixture exposure were associated with decreased INS and HOMA-IR, and the exposure-response relationship had curvilinear shape. CONCLUSIONS The increase in serum PFASs were associated with a decrease in HOMA-IR among adolescents. Mixed exposure models could more accurately and effectively reveal true exposure.Key MessagesThe detection rates of different PFAS contents in adolescent serum remained diverse.Adolescent serum PFASs had negative curvilinear correlation with INS and HOMA-IR levels.PFHxS had the highest weight in the associations between multiple PFASs and adolescent glycometabolism.
Collapse
Affiliation(s)
- Wu Yan
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ruhai Bai
- School of Public Affairs, Nanjing University of Science and Technology, Nanjing, China
| | - Qingqing Zheng
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaona Yang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanan Shi
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ruizhe Yang
- Department of Prevention and Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjun Jiang
- Department of Physics, University of Auckland, Auckland, New Zealand
| | - Xu Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Institute of Pediatric Research, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Rydin AO, Milaneschi Y, Quax R, Li J, Bosch JA, Schoevers RA, Giltay EJ, Penninx BWJH, Lamers F. A network analysis of depressive symptoms and metabolomics. Psychol Med 2023; 53:7385-7394. [PMID: 37092859 PMCID: PMC10719687 DOI: 10.1017/s0033291723001009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Depression is associated with metabolic alterations including lipid dysregulation, whereby associations may vary across individual symptoms. Evaluating these associations using a network perspective yields a more complete insight than single outcome-single predictor models. METHODS We used data from the Netherlands Study of Depression and Anxiety (N = 2498) and leveraged networks capturing associations between 30 depressive symptoms (Inventory of Depressive Symptomatology) and 46 metabolites. Analyses involved 4 steps: creating a network with Mixed Graphical Models; calculating centrality measures; bootstrapping for stability testing; validating central, stable associations by extra covariate-adjustment; and validation using another data wave collected 6 years later. RESULTS The network yielded 28 symptom-metabolite associations. There were 15 highly-central variables (8 symptoms, 7 metabolites), and 3 stable links involving the symptoms Low energy (fatigue), and Hypersomnia. Specifically, fatigue showed consistent associations with higher mean diameter for VLDL particles and lower estimated degree of (fatty acid) unsaturation. These remained present after adjustment for lifestyle and health-related factors and using another data wave. CONCLUSIONS The somatic symptoms Fatigue and Hypersomnia and cholesterol and fatty acid measures showed central, stable, and consistent relationships in our network. The present analyses showed how metabolic alterations are more consistently linked to specific symptom profiles.
Collapse
Affiliation(s)
- Arja O. Rydin
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
| | - Rick Quax
- Computational Science Lab, Faculty of Science, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Jie Li
- Computational Science Lab, Faculty of Science, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Jos A. Bosch
- Clinical Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert A. Schoevers
- Department of Psychiatry, Faculty of Medical Sciences, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik J. Giltay
- Department of Psychiatry, Leiden University Medical Centre, Leiden University, Leiden, The Netherlands
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
- Department of Psychiatry and Neuroscience Campus Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Jové M, Mota-Martorell N, Fernàndez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. Free Radic Biol Med 2023; 208:728-747. [PMID: 37748717 DOI: 10.1016/j.freeradbiomed.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain.
| |
Collapse
|
35
|
Langer HT, Taylor SR, Ahmed M, Perrier T, Ahmed T, Goncalves MD. The proteasome regulates body weight and systemic nutrient metabolism during fasting. Am J Physiol Endocrinol Metab 2023; 325:E500-E512. [PMID: 37672249 PMCID: PMC10864006 DOI: 10.1152/ajpendo.00069.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
The ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway are the primary means of degradation in mammalian tissues. We sought to determine the individual contribution of the UPS and autophagy to tissue catabolism during fasting. Mice were overnight fasted for 15 h before regaining food access ("Fed" group, n = 6) or continuing to fast ("Fast" group, n = 7) for 3 h. In addition, to investigate the effects of autophagy on systemic metabolism and tissue degradation, one group of mice was fasted for 18 h and treated with chloroquine ("Fast + CLQ" group, n = 7) and a fourth group of mice was treated with bortezomib ("Fast + Bort" group, n = 7) to assess the contribution of the UPS. Body weight, tissue weight, circulating hormones and metabolites, intracellular signaling pathways, and protein synthesis were investigated. Fasting induced the loss of body weight, liver mass, and white adipose tissue in the Fast and the Fast + CLQ group, whereas the Fast + Bort group maintained tissue and body weight. Fasting reduced glucose and increased β hydroxybutyrate in the circulation of all mice. Both changes were most profound in the Fast + Bort group compared with the other fasting conditions. Molecular signaling indicated a successful inhibition of hepatic UPS with bortezomib and an upregulation of the PI3K/AKT/mTOR pathway. The latter was further supported by an increase in hepatic protein synthesis with bortezomib. Inhibition of the UPS through bortezomib blocks body weight loss and tissue catabolism during an acute overnight fast in mice. The effects were likely mediated through a combined effect of the drug on biomolecule degradation and synthesis.NEW & NOTEWORTHY Bortezomib treatment prevents tissue and body weight loss during fasting. The loss of proteasome activity with bortezomib exacerbates fasting-induced ketogenesis. During fasting, bortezomib increases AMPK and PI3K/AKT signaling in the liver, which promotes protein synthesis.
Collapse
Affiliation(s)
- Henning Tim Langer
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Samuel R Taylor
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Mujmmail Ahmed
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Tiffany Perrier
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Tanvir Ahmed
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Marcus D Goncalves
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
36
|
Irshad Z, Lund J, Sillars A, Løvsletten NG, Gharanei S, Salt IP, Freeman DJ, Gill JMR, Thoresen GH, Rustan AC, Zammit VA. The roles of DGAT1 and DGAT2 in human myotubes are dependent on donor patho-physiological background. FASEB J 2023; 37:e23209. [PMID: 37779421 PMCID: PMC10947296 DOI: 10.1096/fj.202300960rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
The roles of DGAT1 and DGAT2 in lipid metabolism and insulin responsiveness of human skeletal muscle were studied using cryosections and myotubes prepared from muscle biopsies from control, athlete, and impaired glucose regulation (IGR) cohorts of men. The previously observed increases in intramuscular triacylglycerol (IMTG) in athletes and IGR were shown to be related to an increase in lipid droplet (LD) area in type I fibers in athletes but, conversely, in type II fibers in IGR subjects. Specific inhibition of both diacylglycerol acyltransferase (DGAT) 1 and 2 decreased fatty acid (FA) uptake by myotubes, whereas only DGAT2 inhibition also decreased fatty acid oxidation. Fatty acid uptake in myotubes was negatively correlated with the lactate thresholds of the respective donors. DGAT2 inhibition lowered acetate uptake and oxidation in myotubes from all cohorts whereas DGAT1 inhibition had no effect. A positive correlation between acetate oxidation in myotubes and resting metabolic rate (RMR) from fatty acid oxidation in vivo was observed. Myotubes from athletes and IGR had higher rates of de novo lipogenesis from acetate that were normalized by DGAT2 inhibition. Moreover, DGAT2 inhibition in myotubes also resulted in increased insulin-induced Akt phosphorylation. The differential effects of DGAT1 and DGAT2 inhibition suggest that the specialized role of DGAT2 in esterifying nascent diacylglycerols and de novo synthesized FA is associated with synthesis of a pool of triacylglycerol, which upon hydrolysis results in effectors that promote mitochondrial fatty acid oxidation but decrease insulin signaling in skeletal muscle cells.
Collapse
Affiliation(s)
- Zehra Irshad
- Translational and Experimental Medicine, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Anne Sillars
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Nils Gunnar Løvsletten
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Seley Gharanei
- Translational and Experimental Medicine, Warwick Medical SchoolUniversity of WarwickCoventryUK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM)University Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Ian P. Salt
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Dilys J. Freeman
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Jason M. R. Gill
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
- Department of Pharmacology, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Victor A. Zammit
- Translational and Experimental Medicine, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
37
|
Johansen MØ, Afzal S, Vedel-Krogh S, Nielsen SF, Smith GD, Nordestgaard BG. From plasma triglycerides to triglyceride metabolism: effects on mortality in the Copenhagen General Population Study. Eur Heart J 2023; 44:4174-4182. [PMID: 37575001 DOI: 10.1093/eurheartj/ehad330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 08/15/2023] Open
Abstract
AIMS It is unclear whether higher triglyceride metabolism per se contributes to mortality separate from elevated triglyceride-rich lipoproteins and body mass index. This study tested the hypotheses that higher triglyceride metabolism, measured as higher plasma glycerol and β-hydroxybutyrate, is associated with increased all-cause, cardiovascular, cancer, and other mortality. METHODS AND RESULTS This study included 30 000 individuals nested within 109 751 individuals from the Copenhagen General Population Study. During a median follow-up of 10.7 years, 9897 individuals died (2204 from cardiovascular, 3366 from cancer, and 2745 from other causes), while none were lost to follow-up. In individuals with glycerol >80 µmol/L (highest fourth) vs. individuals with glycerol <52 µmol/L (lowest fourth), the multivariable adjusted hazard ratio for all-cause mortality was 1.31 (95% confidence interval 1.22-1.40). In individuals with β-hydroxybutyrate >154 µmol/L (highest fourth) vs. individuals with β-hydroxybutyrate <91 µmol/L (lowest fourth), the multivariable adjusted hazard ratio for all-cause mortality was 1.18 (1.11-1.26). Corresponding values for higher plasma glycerol and β-hydroxybutyrate were 1.37 (1.18-1.59) and 1.18 (1.03-1.35) for cardiovascular mortality, 1.24 (1.11-1.39) and 1.16 (1.05-1.29) for cancer mortality, and 1.45 (1.28-1.66) and 1.23 (1.09-1.39) for other mortality, respectively. Results were robust to exclusion of first years of follow-up, to stratification for covariates including plasma triglycerides and body mass index, and to further adjustments. CONCLUSION This study observed an increased risk of all-cause, cardiovascular, cancer, and other mortality with higher triglyceride metabolism. This was not explained by higher plasma triglycerides and body mass index. The hypothesis studied in the present paper should be further validated by isotope flux studies.
Collapse
Affiliation(s)
- Mia Ø Johansen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| | - Signe Vedel-Krogh
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| | - Sune F Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Elevator 7, 4th Floor, N5, Herlev DK-2730, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev DK-2730, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
| |
Collapse
|
38
|
Vitale M, Costabile G, Bergia RE, Hjorth T, Campbell WW, Landberg R, Riccardi G, Giacco R. The effects of Mediterranean diets with low or high glycemic index on plasma glucose and insulin profiles are different in adult men and women: Data from MEDGI-Carb randomized clinical trial. Clin Nutr 2023; 42:2022-2028. [PMID: 37651979 DOI: 10.1016/j.clnu.2023.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND & AIMS Recent evidence suggests that the ability to regulate glucose and insulin homeostasis is different in men and women. Against this background, it has been hypothesized that the impact on daily plasma glucose and insulin profiles of the glycemic index (GI) of the habitual diet may differ according to sex. The aim of this study is to evaluate whether 8-h average plasma glucose and insulin profiles during a low- or a high-GI diet in individuals at high risk of developing type 2 diabetes are influenced by sex. METHODS We conducted a randomized, controlled, parallel group dietary intervention, comparing high-versus low-GI diets in a multi-national (Italy, Sweden, and the United States) sample of 156 adults at risk for type 2 diabetes. For 12 weeks, 82 vs 74 participants consumed either a low-GI or high-GI Mediterranean diet, respectively. The two experimental diets contained the same quantity of available carbohydrate (270 g/d) and fiber (35 g/d) and the same foods and beverages, except for the major sources of starch that was specific to the low-GI and high-GI groups (pasta, brown rice, flatbread, all bran, and wheat bread plus rye and seeds, vs jasmine rice, potato, couscous, wholegrain bread, and rusks). At baseline and after the intervention plasma glucose and insulin profiles were evaluated for 8 h in the two intervention groups - separately for men and women - with both breakfast and lunch resembling food choices of the assigned diet. RESULTS One hundred fifty-six adults (82 women, 74 men) with at least two traits of the metabolic syndrome completed the intervention. In women, the high-GI induced significantly higher (23%, p < 0.05) 8-h average plasma glucose concentrations in comparison to the low-GI diet already on the first day of the intervention; the difference increased up to 37% (p < 0.05) after 12 weeks of diet. Conversely, there were no significant differences between the two diets in men. These results were confirmed by the two-way analysis of variance showing a statistically significant interaction between the effects of sex and diet on the glucose profile after breakfast and lunch (F = 7.887, p = 0.006). CONCLUSION The results of our intervention show that women, compared to men, are more sensitive to the metabolic effects of the dietary GI. This has a strong clinical and scientific relevance and, if confirmed in further studies, it might have important implications for dietary strategies for diabetes and cardiovascular disease prevention in the context of personalized nutrition. REGISTRATION NUMBER OF CLINICAL TRIAL Clinicaltrials.gov n. NCT03410719.
Collapse
Affiliation(s)
- Marilena Vitale
- Diabetes, Nutrition and Metabolism Unit, Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy.
| | - Giuseppina Costabile
- Diabetes, Nutrition and Metabolism Unit, Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy
| | - Robert E Bergia
- Department of Nutrition Science, Purdue University, 700 West State St., West Lafayette, IN 47907, USA
| | - Therese Hjorth
- Department of Food and Nutrition Science, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, 700 West State St., West Lafayette, IN 47907, USA
| | - Rikard Landberg
- Department of Food and Nutrition Science, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Gabriele Riccardi
- Diabetes, Nutrition and Metabolism Unit, Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy
| | - Rosalba Giacco
- Diabetes, Nutrition and Metabolism Unit, Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy; Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| |
Collapse
|
39
|
Vaishnav MS, Kumari N, Srikanta S, Krishnaswamy PR, Balaram P, Bhat N. Differential Spectrum of Albumin Glycation, Oxidation, and Truncation in Type 2 and Type 1 Diabetes: Clinical and Biological Implications. Metab Syndr Relat Disord 2023; 21:397-409. [PMID: 37471231 DOI: 10.1089/met.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Background: Albumin, the most abundant and physiologically vital serum protein, accumulates a range of chemical modifications, as consequence of encounters with large number of reactive molecules whose concentrations increase in serum under pathological conditions. Methods: In a "proof of concept" study, mass spectrometric analysis was utilized to quantitate albumin post-translational modifications (glycation, oxidation, and truncation; individual isoforms and total) in four informative subject groups [type 1 diabetes (T1DM), type 2 diabetes (T2DM), prediabetes-obesity and healthy; all with estimated glomerular filtration rate ≥60 mL/(min·m2)]. Besides glycated albumin (GA/mass spectrometry), glycated serum protein (GSP/nitro blue tetrazolium colorimetry), and glycated hemoglobin (HbA1c/high-performance liquid chromatography) were also measured. Results: A wide spectrum of albumin molecular modifications was identified in diabetes, with significant differences between T2DM and T1DM. Albumin glycation: GA correlated more strongly with HbA1c in T1DM, compared to T2DM. Higher albumin glycation isoforms (human serum albumin +3G/2G) were more stable and discriminative markers of mean glycemia. Albumin oxidation: T2DM, in comparison with T1DM, showed enhanced oxidative and dual (glycation plus oxidation) modifications, representing extreme molecular pathology. Albumin truncation: There was dramatic reduction ("deficiency") of truncated albumin isoforms in T2DM, and significant reduction in T1DM. Albumin truncation negatively correlated with severity of albumin glycation (mean glycemia) and albumin oxidation (cysteinylation). Possible mechanisms of insulin resistance, with associated increased free fatty acids binding to albumin, in stimulating albumin oxidation and inhibiting albumin glycation ("metabolic cross talks") are reviewed. Conclusions: Albumin molecular modifications in diabetes, together with significant differences between T2DM and T1DM, suggest possible role for insulin resistance in their genesis and consequent cell, tissue, and vascular dysfunction/damage. Albumin molecular fingerprinting can provide valuable insights into pathogenesis, diagnosis, monitoring, and future therapies for diabetes. Identification of biomarker battery ("albuminomics," "diabetomics") driven diverse "healthy," prediabetes, obesity, and T2DM phenotypes represents additional novel step toward precision medicine in diabetes and related disorders.
Collapse
Affiliation(s)
- Madhumati S Vaishnav
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - Namita Kumari
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Sathyanarayana Srikanta
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - Patnam R Krishnaswamy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
- National Centre for Biological Sciences, Bengaluru, India
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
40
|
Zhao M, Zheng Z, Yin Z, Zhang J, Qin J, Wan J, Wang M. Resolvin D2 and its receptor GPR18 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Pharmacol Res 2023; 195:106832. [PMID: 37364787 DOI: 10.1016/j.phrs.2023.106832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Juanjuan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430060, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
41
|
Glassman I, Le N, Asif A, Goulding A, Alcantara CA, Vu A, Chorbajian A, Mirhosseini M, Singh M, Venketaraman V. The Role of Obesity in Breast Cancer Pathogenesis. Cells 2023; 12:2061. [PMID: 37626871 PMCID: PMC10453206 DOI: 10.3390/cells12162061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Research has shown that obesity increases the risk for type 2 diabetes mellitus (Type 2 DM) by promoting insulin resistance, increases serum estrogen levels by the upregulation of aromatase, and promotes the release of reactive oxygen species (ROS) by macrophages. Increased circulating glucose has been shown to activate mammalian target of rapamycin (mTOR), a significant signaling pathway in breast cancer pathogenesis. Estrogen plays an instrumental role in estrogen-receptor-positive breast cancers. The role of ROS in breast cancer warrants continued investigation, in relation to both pathogenesis and treatment of breast cancer. We aim to review the role of obesity in breast cancer pathogenesis and novel therapies mediating obesity-associated breast cancer development. We explore the association between body mass index (BMI) and breast cancer incidence and the mechanisms by which oxidative stress modulates breast cancer pathogenesis. We discuss the role of glutathione, a ubiquitous antioxidant, in breast cancer therapy. Lastly, we review breast cancer therapies targeting mTOR signaling, leptin signaling, blood sugar reduction, and novel immunotherapy targets.
Collapse
Affiliation(s)
- Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Nghia Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Aamna Asif
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Anabel Goulding
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Cheldon Ann Alcantara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Annie Vu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Mercedeh Mirhosseini
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Manpreet Singh
- Corona Regional Medical Center, Department of Emergency Medicine, Corona, CA 92882, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| |
Collapse
|
42
|
Crichton M, Marshall S, Marx W, Isenring E, Lohning A. Therapeutic health effects of ginger (Zingiber officinale): updated narrative review exploring the mechanisms of action. Nutr Rev 2023; 81:1213-1224. [PMID: 36688554 DOI: 10.1093/nutrit/nuac115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ginger (Zingiber officinale) has been investigated for its potentially therapeutic effect on a range of chronic conditions and symptoms in humans. However, a simplified and easily understandable examination of the mechanisms behind these effects is lacking and, in turn, hinders interpretation and translation to practice, and contributes to overall clinical heterogeneity confounding the results. Therefore, drawing on data from nonhuman trials, the objective for this narrative review was to comprehensively describe the current knowledge on the proposed mechanisms of action of ginger on conferring therapeutic health effects in humans. Mechanistic studies support the findings from human clinical trials that ginger may assist in improving symptoms and biomarkers of pain, metabolic chronic disease, and gastrointestinal conditions. Bioactive ginger compounds reduce inflammation, which contributes to pain; promote vasodilation, which lowers blood pressure; obstruct cholesterol production, which regulates blood lipid profile; translocate glucose transporter type 4 molecules to plasma membranes to assist in glycemic control; stimulate fatty acid breakdown to aid weight management; and inhibit serotonin, muscarinic, and histaminergic receptor activation to reduce nausea and vomiting. Additional human trials are required to confirm the antimicrobial, neuroprotective, antineoplastic, and liver- and kidney-protecting effects of ginger. Interpretation of the mechanisms of action will help clinicians and researchers better understand how and for whom ginger may render therapeutic effects and highlight priority areas for future research.
Collapse
Affiliation(s)
- Megan Crichton
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Cancer and Palliative Care Outcomes Centre, Centre for Healthcare Transformation, School of Nursing, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Skye Marshall
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Department of Science, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Wolfgang Marx
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Impact (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia
| | - Elizabeth Isenring
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| | - Anna Lohning
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| |
Collapse
|
43
|
Mostad IL, Grill V. NEFA Dynamics in Adults With Severe Obesity and Insulin Resistance: No Coupling to the rs9939609 FTO Risk Allele. J Endocr Soc 2023; 7:bvad101. [PMID: 37873504 PMCID: PMC10590638 DOI: 10.1210/jendso/bvad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Indexed: 10/25/2023] Open
Abstract
Context The FTO gene is highly expressed in adipose tissues; however, whether nonesterified fatty acids (NEFA) dynamics are impacted by FTO has not been rigorously tested for in a uniformly obese study population comprising both sexes. Objective To test for associations of the rs9939609 FTO risk allele with NEFA suppression. Methods We investigated 97 subjects with severe obesity but without diabetes, having genotype TT (n = 32), AT (n = 31), or AA (n = 34) in a cross-sectional observation study. NEFA suppression was assessed from a low-dose hyperinsulinemic euglycemic clamp with glucose-tracer as well as from the response to a standardized meal. Insulin sensitivity was assessed by hepatic and total insulin sensitivity measurements in the clamp and by the Matsuda index during the meal. Variables of possible importance for NEFA dynamics were primarily assessed by linear regression. Results No genotype associations with fasting or suppressed NEFA were found, whether in the clamp or meal situation (P > .7 for all comparisons). Independent of genotype, higher fasting concentrations of NEFA and larger NEFA suppression were found in female compared with male subjects. Fasting NEFA or degree of suppression were not associated with total fat mass or body mass index. The respiratory quotient was negatively associated with NEFA suppression. Conclusion In a gender-mixed adult population of obese individuals, an FTO obesity-risk allele did not affect fasting NEFA nor suppression thereof. These negative results on NEFA dynamics appear strengthened by the documentation of gender influence and associations with parameters reflective of insulin resistance.
Collapse
Affiliation(s)
- Ingrid Løvold Mostad
- Department of Clinical Nutrition and Speech-Language Therapy, Clinic of Rehabilitation, St. Olavs hospital—Trondheim University Hospital, NO 7006 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NO 7491 Trondheim, Norway
| | - Valdemar Grill
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NO 7491 Trondheim, Norway
| |
Collapse
|
44
|
Zhang H, Ke W, Chen X, Han Y, Xiong Y, Zhu F, Xiang Y, Yan R, Cai H, Huang S, Ke X. High-Fat Diet Promotes Adipogenesis in Offspring Female Rats Induced by Perinatal Exposure to 4-Nonylphenol. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6540585. [PMID: 37398946 PMCID: PMC10313470 DOI: 10.1155/2023/6540585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/28/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
Background Both high-fat diet (HFD) and 4-nonylphenol (4-NP) could affect fat formation in adipose tissue individually. We investigated whether HFD promote abnormal adipose tissue formation caused by early exposure to 4-NP in life and preliminarily explore the possible mechanisms involved. Methods The first-generation rats were treated with HFD on postnatal day after pregnant rats exposure to 5 ug/kg/day 4-NP. Then, the second generation rats started to only receive normal diet without 4-NP or HFD. We analyzed organ coefficient and histopathology of fat tissues, biochemical index, and gene level involved in lipid metabolism in female offspring rats. Results HFD and 4-NP interaction synergistically increased birth weight, body weight, and organ coefficients of adipose tissue in offspring female rats. HFD accelerately aggravated abnormal lipid metabolism and increased the adipocyte mean areas around the uterus of the offspring female rats induced by prenatal exposure to 4-NP. HFD also facilitate the regulation of gene expression involved lipid metabolism in offspring female rats induced by perinatal exposure to 4-NP, even passed on to the second generation of female rats. Moreover, HFD and 4-NP interaction synergistically declined the gene and protein expression of estrogen receptor (ER) in the adipose tissue of second-generation female rats. Conclusion HFD and 4-NP synergistically regulate the expression of lipid metabolism genes in adipose tissue of F2 female rats and promote adipose tissue generation, leading to obesity in offspring rats, which is closely related to low expression of ER. Therefore, ER genes and proteins may be involved in the synergistic effect of HFD and 4-NP.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Weiran Ke
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xi Chen
- Department of Nosocomial Infection Management, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Han
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Yan Xiong
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Feng Zhu
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Yang Xiang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Rong Yan
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Hongbo Cai
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430030, China
| | - Shunmei Huang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoyu Ke
- Emergency Department and Intensive Care Unit, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
45
|
Wang W, Zhang Y, Wang Z, Zhang J, Jia L. Ganoderma lucidum polysaccharides improve lipid metabolism against high-fat diet-induced dyslipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116321. [PMID: 36868439 DOI: 10.1016/j.jep.2023.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a kind of traditional medicinal fungi, Ganoderma lucidum has been employed as folk medicine in China against multiple metabolic diseases on account of its superior bioactivities. Recently, accumulated reports have investigated the protective effects of G. lucidum polysaccharides (GLP) on ameliorating dyslipidemia. However, the specific mechanism by which GLP improves dyslipidemia is not completely clear. AIMS OF THE STUDY This study aimed to investigate the protective effects of GLP on high-fatdiet-induced hyperlipidemia and exploring its underlying mechanism. MATERIALS AND METHODS The GLP was successfully obtained from G. lucidum mycelium. The mice were conducted with high-fatdiet to establish the hyperlipidemia model. Biochemical determination, histological analysis, immunofluorescence, western blot and real-time qPCR were used to assess the alterations in high-fatdiet-treated mice after the GLP intervention. RESULTS It was found that GLP administration significantly decreased body weight gain and the excessive lipid levels, and partly alleviated tissue injury. Oxidative stress and inflammations were efficiently ameliorated after the treatment of GLP by activing Nrf2-Keap1 and inhibiting NF-κB signal pathways. GLP promoted cholesterol reverse transport by LXRα-ABCA1/ABCG1 signaling, increased the expressions of CYP7A1 and CYP27A1 responsible for bile acids production, accompanied by inhibition of intestinal FXR-FGF15 levels. Besides, multiple target proteins involved in lipid metabolism were also significantly modulated under the intervention of GLP. CONCLUSION Taken together, our results suggested that GLP showed potential lipid-lowering effects and its possible mechanism was involved in improving oxidative stress and inflammation response, modulating bile acids synthesis and lipid regulatory factors, and promoting reverse cholesterol transport, thereby suggesting that GLP may possibly used as a dietary supplement or medication for the adjuvant therapy for hyperlipidemia.
Collapse
Affiliation(s)
- Wenshuai Wang
- College of Life Science, Shandong Agricultural University, PR China
| | - Yaohan Zhang
- College of Life Science, Shandong Agricultural University, PR China
| | - Zhiying Wang
- College of Life Science, Shandong Agricultural University, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, PR China.
| |
Collapse
|
46
|
Razliqi RN, Ahangarpour A, Mard SA, Khorsandi L. Gentisic acid ameliorates type 2 diabetes induced by Nicotinamide-Streptozotocin in male mice by attenuating pancreatic oxidative stress and inflammation through modulation of Nrf2 and NF-кB pathways. Life Sci 2023; 325:121770. [PMID: 37192699 DOI: 10.1016/j.lfs.2023.121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
AIMS There is a close link between oxidative stress, inflammation, and type 2 diabetes mellitus (T2DM). Gentisic acid (GA) is a di-phenolic compound and an active metabolite of aspirin that possesses antioxidant and anti-inflammatory properties, but its potential anti-diabetic effects have not been evaluated so far. Therefore, this study aimed to evaluate GA's potential antidiabetic effects through the Nuclear Factor Erythroid 2-Related Factor (Nrf2) and Nuclear Factor Kappa Beta (NF-кB) signaling pathways. MATERIAL AND METHODS In this study, T2DM induced by a single intraperitoneal injection of STZ (65 mg/kg B.W) after 15 min nicotinamide (120 mg/kg B.W) injection. After seven days of injections, fasting blood glucose (FBS) was measured. Seven days after FBS monitoring treatments started. Grouping and treatments were as follows: 1) Normal control group; NC, 2) Diabetic control group; DC, 3) Metformin group; MT (150 mg/kg B.W, daily), 4) Test group; GA (100 mg/kg B.W, daily). Treatments continued for 14 consecutive days. KEY FINDINGS Diabetic mice treatment with GA significantly decreased FBS, improved plasma lipid profiles and pancreatic antioxidant status. GA modulated Nrf2 pathway by upregulation of Nrf2 protein, NAD(P)H: quinone oxidoreductase 1 (Nqo1), and p21, and downregulation of miR-200a, Kelch-like ECH-associated protein 1 (Keap1), and nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2). Also, GA attenuated inflammation by upregulation of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and interleukin-10 (IL-10) and downregulation of miR-125b, NF-кB, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1ß). SIGNIFICANCE GA attenuates T2DM, possibly by improving antioxidant status through the Nrf2 pathway and attenuation of inflammation.
Collapse
Affiliation(s)
| | - Akram Ahangarpour
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyyed Ali Mard
- Physiology Research Center, Alimentary Tract Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz, Iran.
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
47
|
Lin Z, Xue H, Pan W. Combining Mendelian randomization and network deconvolution for inference of causal networks with GWAS summary data. PLoS Genet 2023; 19:e1010762. [PMID: 37200398 PMCID: PMC10231771 DOI: 10.1371/journal.pgen.1010762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Mendelian randomization (MR) has been increasingly applied for causal inference with observational data by using genetic variants as instrumental variables (IVs). However, the current practice of MR has been largely restricted to investigating the total causal effect between two traits, while it would be useful to infer the direct causal effect between any two of many traits (by accounting for indirect or mediating effects through other traits). For this purpose we propose a two-step approach: we first apply an extended MR method to infer (i.e. both estimate and test) a causal network of total effects among multiple traits, then we modify a graph deconvolution algorithm to infer the corresponding network of direct effects. Simulation studies showed much better performance of our proposed method than existing ones. We applied the method to 17 large-scale GWAS summary datasets (with median N = 256879 and median #IVs = 48) to infer the causal networks of both total and direct effects among 11 common cardiometabolic risk factors, 4 cardiometabolic diseases (coronary artery disease, stroke, type 2 diabetes, atrial fibrillation), Alzheimer's disease and asthma, identifying some interesting causal pathways. We also provide an R Shiny app (https://zhaotongl.shinyapps.io/cMLgraph/) for users to explore any subset of the 17 traits of interest.
Collapse
Affiliation(s)
- Zhaotong Lin
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Haoran Xue
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
48
|
Harris C, Czaja K. Can Circadian Eating Pattern Adjustments Reduce Risk or Prevent Development of T2D? Nutrients 2023; 15:nu15071762. [PMID: 37049602 PMCID: PMC10096926 DOI: 10.3390/nu15071762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic condition that occurs in insulin-resistant people with reduced glucose uptake. It is contributed to and exacerbated by a poor diet that results in accumulation of adipose tissue, high blood sugar, and other metabolic issues. Because humans have undergone food scarcity throughout history, our species has adapted a fat reserve genotype. This adaptation is no longer beneficial, as eating at a higher frequency than that of our ancestors has had a significant effect on T2D development. Eating at high frequencies disrupts the circadian clock, the circadian rhythm, and the composition of the gut microbiome, as well as hormone secretion and sensitivity. The current literature suggests an improved diet requires meal consistency, avoiding late-night eating, low meal frequency, and fasting to increase metabolic health. In addition, fasting as a treatment for T2D must be used correctly for beneficial results. Early time-restricted eating (TRE) provides many benefits such as improving insulin resistance, cognitive function, and glycemic control. Alternate-day fasting (ADF), 5:2 fasting, and long-term fasting all have benefits; however, they may be less advantageous than early TRE. Therefore, eating pattern adjustments can be used to reduce T2D if used correctly.
Collapse
Affiliation(s)
- Carlee Harris
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Krzysztof Czaja
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
49
|
Torres AN, Tavares L, Pereira MJ, Eriksson JW, Jones JG. Positional and compositional analysis of saturated, monounsaturated, and polyunsaturated fatty acids in human adipose tissue triglyceride by 13 C nuclear magnetic resonance. NMR IN BIOMEDICINE 2023; 36:e4632. [PMID: 34676601 DOI: 10.1002/nbm.4632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The synthesis and turnover of triglyceride in adipose tissue involves enzymes with preferences for specific fatty acid classes and/or regioselectivity regarding the fatty acid position within the glycerol moiety. The focus of the current study was to characterize both the composition of fatty acids and their positional distribution in triglycerides of biopsied human subcutaneous adipose tissue, from subjects with wide ranges of body mass index (BMI) and insulin sensitivity, using 13 C nuclear magnetic resonance (NMR) spectroscopy. The triglyceride sn2 position was significantly more enriched with monounsaturated fatty acids compared with that of sn1,3, while the abundance of saturated fatty acids was significantly lower in the sn2 position compared with that of sn1,3. Furthermore, the analysis revealed significant positive correlations between the total fraction of palmitoleic acid with both BMI and insulin sensitivity scores (homeostatic model assessment of insulin resistance index). Additionally, we established that 13 C NMR chemical shifts for ω-3 signals, centered at 31.9 ppm, provided superior resolution of the most abundant fatty acid species, including palmitoleate, compared with the ω-2 signals that were used previously. 13 C NMR spectroscopy reveals for the first time a highly nonhomogenous distribution of fatty acids in the glycerol sites of human adipose tissue triglyceride, and that these distributions are correlated with different phenotypes, such as BMI and insulin sensitivity.
Collapse
Affiliation(s)
- Alejandra N Torres
- Metabolism, Aging and Disease, Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Ludgero Tavares
- Metabolism, Aging and Disease, Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, Coimbra, Portugal
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - John G Jones
- Metabolism, Aging and Disease, Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| |
Collapse
|
50
|
Teong XT, Liu K, Vincent AD, Bensalem J, Liu B, Hattersley KJ, Zhao L, Feinle-Bisset C, Sargeant TJ, Wittert GA, Hutchison AT, Heilbronn LK. Intermittent fasting plus early time-restricted eating versus calorie restriction and standard care in adults at risk of type 2 diabetes: a randomized controlled trial. Nat Med 2023; 29:963-972. [PMID: 37024596 DOI: 10.1038/s41591-023-02287-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023]
Abstract
Intermittent fasting appears an equivalent alternative to calorie restriction (CR) to improve health in humans. However, few trials have considered applying meal timing during the 'fasting' day, which may be a limitation. We developed a novel intermittent fasting plus early time-restricted eating (iTRE) approach. Adults (N = 209, 58 ± 10 years, 34.8 ± 4.7 kg m-2) at increased risk of developing type 2 diabetes were randomized to one of three groups (2:2:1): iTRE (30% energy requirements between 0800 and 1200 hours and followed by a 20-h fasting period on three nonconsecutive days per week, and ad libitum eating on other days); CR (70% of energy requirements daily, without time prescription); or standard care (weight loss booklet). This open-label, parallel group, three-arm randomized controlled trial provided nutritional support to participants in the iTRE and CR arms for 6 months, with an additional 12-month follow-up. The primary outcome was change in glucose area under the curve in response to a mixed-meal tolerance test at month 6 in iTRE versus CR. Glucose tolerance was improved to a greater extent in iTRE compared with CR (-10.10 (95% confidence interval -14.08, -6.11) versus -3.57 (95% confidence interval -7.72, 0.57) mg dl-1 min-1; P = 0.03) at month 6, but these differences were lost at month 18. Adverse events were transient and generally mild. Reports of fatigue were higher in iTRE versus CR and standard care, whereas reports of constipation and headache were higher in iTRE and CR versus standard care. In conclusion, incorporating advice for meal timing with prolonged fasting led to greater improvements in postprandial glucose metabolism in adults at increased risk of developing type 2 diabetes. ClinicalTrials.gov identifier NCT03689608 .
Collapse
Affiliation(s)
- Xiao Tong Teong
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kai Liu
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrew D Vincent
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Julien Bensalem
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Bo Liu
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kathryn J Hattersley
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Lijun Zhao
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Timothy J Sargeant
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Gary A Wittert
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Amy T Hutchison
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|