1
|
Bi J, Sun Y, Guo M, Sun X, Sun J, Jiang R, Wang N, Huang G. Lysosomes: guardians and healers within cells- multifaceted perspective and outlook from injury repair to disease treatment. Cancer Cell Int 2025; 25:136. [PMID: 40205430 PMCID: PMC11984033 DOI: 10.1186/s12935-025-03771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Lysosomes, as crucial organelles within cells, carry out diverse biological functions such as waste degradation, regulation of the cellular environment, and precise control of cell signaling. This paper reviews the core functions and structural characteristics of lysosomes, and delves into the current research status of lysosomes damage repair mechanisms. Subsequently, we explore in depth the close association between lysosomes and various diseases, including but not limited to age-related chronic diseases, neuro-degenerative diseases, tumors, inflammation, and immune imbalance. Additionally, we also provide a detailed discussion of the application of lysosome-targeted substances in the field of regenerative medicine, especially the enormous potential demonstrated in key areas such as stem cell regulation and therapy, and myocardial cell repair. Though the integration of multidisciplinary research efforts, we believe that lysosomes damage repair mechanisms will demonstrate even greater application value in disease treatment and regenerative medicine.
Collapse
Affiliation(s)
- Jianlei Bi
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China
| | - Yincong Sun
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Meihua Guo
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaoxin Sun
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, P.R. China
| | - Jie Sun
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Rujiao Jiang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Ning Wang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Gena Huang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China.
| |
Collapse
|
2
|
Li H, He J, Hou J, He C, Dai X, Song Z, Liu Q, Wang Z, Huang H, Ding Y, Qi T, Zhang H, Wu L. Intestinal rearrangement of biliopancreatic limbs, alimentary limbs, and common limbs in obese type 2 diabetic mice after duodenal jejunal bypass surgery. Front Endocrinol (Lausanne) 2025; 15:1456885. [PMID: 39845886 PMCID: PMC11750664 DOI: 10.3389/fendo.2024.1456885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice. We performed DJB and SHAM surgery in obese T2DM mice to investigate changes in the gut microbiota and barrier across different intestinal limbs. The effects on serum metabolism and potential associations with T2DM improvement were also investigated. Following DJB surgery, there was an increased abundance of commensals across various limbs. Additionally, the surgery improved intestinal permeability and inflammation in the alimentary and common limbs, while reducing inflammation in the biliopancreatic limbs. Furthermore, DJB surgery also improved T2DM by increasing L-glutamine, short-chain fatty acids, and bile acids and decreasing branched-chain amino acids. This study underscores the role of intestinal rearrangement in reshaping gut microbiota composition and enhancing gut barrier function, thereby contributing to the amelioration of T2DM following bariatric surgery, and providing new insights for further research on bariatric surgery.
Collapse
Affiliation(s)
- Heng Li
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jipei He
- Department of Basic Medical Research, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Jie Hou
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengjun He
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojiang Dai
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigao Song
- Department of Cardiovascular Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangzhou, China
| | - Zixin Wang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyan Huang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunfa Ding
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tengfei Qi
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongbin Zhang
- Department of Basic Medical Research, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Liangping Wu
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Hualiang Qingying Biotechnology Co. Ltd, Guangzhou, China
| |
Collapse
|
3
|
Geng S, Yang S, Tang X, Xue S, Li K, Liu D, Chen C, Zhu Z, Zheng H, Wang Y, Yang G, Li L, Yang M. Intestinal NUCB2/nesfatin-1 regulates hepatic glucose production via the MC4R-cAMP-GLP-1 pathway. EMBO J 2025; 44:54-74. [PMID: 39562740 PMCID: PMC11696497 DOI: 10.1038/s44318-024-00300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Communication of gut hormones with the central nervous system is important to regulate systemic glucose homeostasis, but the precise underlying mechanism involved remain little understood. Nesfatin-1, encoded by nucleobindin-2 (NUCB2), a potent anorexigenic peptide hormone, was found to be released from the gastrointestinal tract, but its specific function in this context remains unclear. Herein, we found that gut nesfatin-1 can sense nutrients such as glucose and lipids and subsequently decreases hepatic glucose production. Nesfatin-1 infusion in the small intestine of NUCB2-knockout rats reduced hepatic glucose production via a gut - brain - liver circuit. Mechanistically, NUCB2/nesfatin-1 interacted directly with melanocortin 4 receptor (MC4R) through its H-F-R domain and increased cyclic adenosine monophosphate (cAMP) levels and glucagon-like peptide 1 (GLP-1) secretion in the intestinal epithelium, thus inhibiting hepatic glucose production. The intestinal nesfatin-1 -MC4R-cAMP-GLP-1 pathway and systemic gut-brain communication are required for nesfatin-1 - mediated regulation of liver energy metabolism. These findings reveal a novel mechanism of hepatic glucose production control by gut hormones through the central nervous system.
Collapse
Affiliation(s)
- Shan Geng
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shan Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuejiao Tang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyao Xue
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Hoyt JA, Cozzi E, D'Alessio DA, Thompson CC, Aroda VR. A look at duodenal mucosal resurfacing: Rationale for targeting the duodenum in type 2 diabetes. Diabetes Obes Metab 2024; 26:2017-2028. [PMID: 38433708 DOI: 10.1111/dom.15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Affecting 5%-10% of the world population, type 2 diabetes (T2DM) is firmly established as one of the major health burdens of modern society. People with T2DM require long-term therapies to reduce blood glucose, an approach that can mitigate the vascular complications. However, fewer than half of those living with T2DM reach their glycaemic targets despite the availability of multiple oral and injectable medications. Adherence and access to medications are major barriers contributing to suboptimal diabetes treatment. The gastrointestinal tract has recently emerged as a target for treating T2DM and altering the underlying disease course. Preclinical and clinical analyses have elucidated changes in the mucosal layer of the duodenum potentially caused by dietary excess and obesity, which seem to be prevalent among individuals with metabolic disease. Supporting these findings, gastric bypass, a surgical procedure which removes the duodenum from the intestinal nutrient flow, has remarkable effects that improve, and often cause remission of, diabetes. From this perspective, we explore the rationale for targeting the duodenum with duodenal mucosal resurfacing (DMR). We examine the underlying physiology of the duodenum and its emerging role in T2DM pathogenesis, the rationale for targeting the duodenum by DMR as a potential treatment for T2DM, and current data surrounding DMR. Importantly, DMR has been demonstrated to change mucosal abnormalities common in those with obesity and diabetes. Given the multifactorial aetiology of T2DM, understanding proximate contributors to disease pathogenesis opens the door to rethinking therapeutic approaches to T2DM, from symptom management toward disease modification.
Collapse
Affiliation(s)
- Jonah A Hoyt
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Emily Cozzi
- Research and Development, Fractyl Health, Inc, Lexington, Massachusetts, USA
| | - David A D'Alessio
- Division of Endocrinology and Metabolism, Dept. of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Chris C Thompson
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Vanita R Aroda
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Baptista Pereira P, Torrejón E, Ferreira I, Carvalho AS, Teshima A, Sousa-Lima I, Beck HC, Costa-Silva B, Matthiesen R, Macedo MP, de Oliveira RM. Proteomic Profiling of Plasma- and Gut-Derived Extracellular Vesicles in Obesity. Nutrients 2024; 16:736. [PMID: 38474865 DOI: 10.3390/nu16050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity entails metabolic alterations across multiple organs, highlighting the role of inter-organ communication in its pathogenesis. Extracellular vesicles (EVs) are communication agents in physiological and pathological conditions, and although they have been associated with obesity comorbidities, their protein cargo in this context remains largely unknown. To decipher the messages encapsulated in EVs, we isolated plasma-derived EVs from a diet-induced obese murine model. Obese plasma EVs exhibited a decline in protein diversity while control EVs revealed significant enrichment in protein-folding functions, highlighting the importance of proper folding in maintaining metabolic homeostasis. Previously, we revealed that gut-derived EVs' proteome holds particular significance in obesity. Here, we compared plasma and gut EVs and identified four proteins exclusively present in the control state of both EVs, revealing the potential for a non-invasive assessment of gut health by analyzing blood-derived EVs. Given the relevance of post-translational modifications (PTMs), we observed a shift in chromatin-related proteins from glycation to acetylation in obese gut EVs, suggesting a regulatory mechanism targeting DNA transcription during obesity. This study provides valuable insights into novel roles of EVs and protein PTMs in the intricate mechanisms underlying obesity, shedding light on potential biomarkers and pathways for future research.
Collapse
Affiliation(s)
- Pedro Baptista Pereira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Estefania Torrejón
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Ferreira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Akiko Teshima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Sousa-Lima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, DK-5000 Odense, Denmark
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Paula Macedo
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Rita Machado de Oliveira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
6
|
Muilwijk M, Beulens JWJ, Groeneveld L, Rutters F, Blom MT, Agamennone V, van den Broek T, Keijser BJF, Hoevenaars F. The entero-endocrine response following a mixed-meal tolerance test with a non-nutritive pre-load in participants with pre-diabetes and type 2 diabetes: A crossover randomized controlled trial proof of concept study. PLoS One 2023; 18:e0290261. [PMID: 37624823 PMCID: PMC10456129 DOI: 10.1371/journal.pone.0290261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION This crossover randomized controlled trial (RCT) investigated differences in short-term entero-endocrine response to a mixed-meal tolerance test preceded by nutrient sensing between participants with pre-diabetes (pre-T2D) and type 2 diabetes (T2D). Additionally, differences in gut and oral microbiome composition between participants with a high and low entero-endocrine response were investigated. RESEARCH DESIGN AND METHODS Ten participants with pre-T2D and ten with T2D underwent three test days with pre-loads consisting of either swallowing water (control), or rinsing with a non-nutritive sweetener solution, or swallowing the sweetener solution before a mixed-meal tolerance test. Blood glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon, glucose, insulin and peptide YY (PYY) were determined at t = -20, 0, 15, 30, 60, 120 and 240 minutes. The composition of the oral and gut microbiome at baseline were also determined. RESULTS The entero-endocrine response differed by pre-loads, e.g. a lower PYY response after swallowing the non-nutritive sweetener (-3585.2pg/mL [95% CI: -6440.6; -729.8]; p = 0.01). But it also differed by T2D status, e.g. a higher glucose, glucagon and PYY response was found in participants with T2D, compared to those with pre-T2D. Evidence for associations between the oral and gut microbiome composition and the entero-endocrine response was limited. Still, the level of entero-endocrine response was associated with several oral microbiome measures. Higher oral anterior α-diversity was associated with a lower PYY response (e.g. Inverse Simpson index -1357pg/mL [95% CI -2378; -336; 1.24]), and higher oral posterior α-diversitywith a higher GIP response (e.g. Inverse Simpson index 6773pg/mL [95% CI 132; 13414]) in models adjusted for sex, age and T2D status. CONCLUSIONS Non-nutritive pre-loads influence the entero-endocrine response to a mixed-meal, and this effect varies based on (pre-)T2D status. The entero-endocrine response is likely not associated with the gut microbiome, and there is limited evidence for association with the α-diversity of the oral microbiome composition. TRIAL REGISTRATION Trial register: Netherlands Trial Register NTR7212, accessible through International Clinical Trials Registry Platform: ICTRP Search Portal (who.int).
Collapse
Affiliation(s)
- Mirthe Muilwijk
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Health Behaviours & Cardiovascular Diseases, Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
| | - Joline W. J. Beulens
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Health Behaviours & Cardiovascular Diseases, Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
| | - Lenka Groeneveld
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Health Behaviours & Cardiovascular Diseases, Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
| | - Femke Rutters
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Health Behaviours & Cardiovascular Diseases, Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
| | - Marieke T. Blom
- Amsterdam Public Health, Health Behaviours & Cardiovascular Diseases, Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Department of General Practice, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Valeria Agamennone
- Department of Microbiology & Systems Biology, TNO, Leiden, The Netherlands
| | - Tim van den Broek
- Department of Microbiology & Systems Biology, TNO, Leiden, The Netherlands
| | - Bart J. F. Keijser
- Department of Microbiology & Systems Biology, TNO, Leiden, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Femke Hoevenaars
- Department of Microbiology & Systems Biology, TNO, Leiden, The Netherlands
| |
Collapse
|
7
|
Li Z, Tian J, Cheng Z, Teng W, Zhang W, Bao Y, Wang Y, Song B, Chen Y, Li B. Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways. Crit Rev Food Sci Nutr 2022; 63:7878-7895. [PMID: 35333674 DOI: 10.1080/10408398.2022.2055526] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated interrelationships responsible for initiating its pathogenesis. Novel strategies for the treatment of this devastating disease have attracted increasing attention worldwide. Anthocyanins are bioactive compounds that are widely distributed in the plant kingdom, and multiple studies have elucidated their beneficial role in preventing and managing T2DM. This review summarizes and comments on the hypoglycemic actions of anthocyanins from the perspective of molecular mechanisms and different target-related signaling pathways in vitro, in vivo, and clinical trials. Anthocyanins can ameliorate T2DM by functioning as carbohydrate digestive enzyme inhibitors, facilitating glucose transporter 4 (GLUT4) translocation, suppressing the effectiveness of dipeptidyl peptidase IV (DPP-IV), promoting glucagon-like peptide-1 (GLP-1) secretion, inhibiting protein tyrosine phosphatase 1B (PTP1B) overexpression, and interacting with sodium-glucose co-transporter (SGLT) to delay glucose absorption in various organs and tissues. In summary, anthocyanin is a promising and practical small molecule that can hyperglycemic symptoms and accompanying complications suffered by patients with diabetes. However, rational and potent doses for daily intake and clinical studies are required in the future.
Collapse
Affiliation(s)
- Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Wei Teng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Walker EG, Lo KR, Pahl MC, Shin HS, Lang C, Wohlers MW, Poppitt SD, Sutton KH, Ingram JR. An extract of hops (Humulus lupulus L.) modulates gut peptide hormone secretion and reduces energy intake in healthy-weight men: a randomized, crossover clinical trial. Am J Clin Nutr 2022; 115:925-940. [PMID: 35102364 DOI: 10.1093/ajcn/nqab418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gastrointestinal enteroendocrine cells express chemosensory bitter taste receptors that may play an important role in regulating energy intake (EI) and gut function. OBJECTIVES To determine the effect of a bitter hop extract (Humulus lupulus L.) on acute EI, appetite, and hormonal responses. METHODS Nineteen healthy-weight men completed a randomized 3-treatment, double-blind, crossover study with a 1-wk washout between treatments. Treatments comprised either placebo or 500 mg of hop extract administered in delayed-release capsules (duodenal) at 11:00 h or quick-release capsules (gastric) at 11:30 h. Ad libitum EI was recorded at the lunch (12:00 h) and afternoon snack (14:00 h), with blood samples taken and subjective ratings of appetite, gastrointestinal (GI) discomfort, vitality, meal palatability, and mood assessed throughout the day. RESULTS Total ad libitum EI was reduced following both the gastric (4473 kJ; 95% CI: 3811, 5134; P = 0.006) and duodenal (4439 kJ; 95% CI: 3777, 5102; P = 0.004) hop treatments compared with the placebo (5383 kJ; 95% CI: 4722, 6045). Gastric and duodenal treatments stimulated prelunch ghrelin secretion and postprandial cholecystokinin, glucagon-like peptide 1, and peptide YY responses compared with placebo. In contrast, postprandial insulin, glucose-dependent insulinotropic peptide, and pancreatic polypeptide responses were reduced in gastric and duodenal treatments without affecting glycemia. In addition, gastric and duodenal treatments produced small but significant increases in subjective measures of GI discomfort (e.g., nausea, bloating, abdominal discomfort) with mild to severe adverse GI symptoms reported in the gastric treatment only. However, no significant treatment effects were observed for any subjective measures of appetite or meal palatability. CONCLUSIONS Both gastric and duodenal delivery of a hop extract modulates the release of hormones involved in appetite and glycemic regulation, providing a potential "bitter brake" on EI in healthy-weight men.
Collapse
Affiliation(s)
- Edward G Walker
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Kim R Lo
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Malcolm C Pahl
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Hyun S Shin
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Claudia Lang
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mark W Wohlers
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin H Sutton
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - John R Ingram
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
9
|
The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress. Nat Commun 2022; 13:692. [PMID: 35121731 PMCID: PMC8816919 DOI: 10.1038/s41467-022-28268-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractThe intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined. Here we show that the endocrine cells of the Drosophila gut sense nutrient stress through a mechanism that involves the TOR pathway and in response secrete the peptide hormone allatostatin C, a Drosophila somatostatin homolog. Gut-derived allatostatin C induces secretion of glucagon-like adipokinetic hormone to coordinate food intake and energy mobilization. Loss of gut Allatostatin C or its receptor in the adipokinetic-hormone-producing cells impairs lipid and sugar mobilization during fasting, leading to hypoglycemia. Our findings illustrate a nutrient-responsive endocrine mechanism that maintains energy homeostasis under nutrient-stress conditions, a function that is essential to health and whose failure can lead to metabolic disorders.
Collapse
|
10
|
Jiang B, Wang H, Li N, Yan Q, Wang W, Wang Y, Xue H, Ma S, Li X, Diao W, Pan R, Gao Z, Qu MH. Role of Proximal Intestinal Glucose Sensing and Metabolism in the Blood Glucose Control in Type 2 Diabetic Rats After Duodenal Jejunal Bypass Surgery. Obes Surg 2022; 32:1119-1129. [PMID: 35080701 DOI: 10.1007/s11695-021-05871-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although gastric surgery can significantly improve blood glucose homeostasis in type 2 diabetes mellitus (T2DM), its mechanism remains unclear. This study evaluated the role of intestinal glucose sensing, glucose transport, and metabolism in the alimentary limb (A limb) of T2DM rats after duodenal jejunal bypass (DJB) surgery. METHODS A T2DM rat model was induced via a high-glucose high-fat diet and low-dose streptozotocin injection. The diabetic rats were divided into two groups: the DJB surgery (T2DM-DJB) group and the sham surgery (T2DM-Sham) group. Wistar rats were used as wild-type control (Control). Small animal PET was used to assess the change in glucose metabolic status in the intestine. The intestinal villi height and the number of EECs after DJB were evaluated. The expressions of sweet taste receptors (T1R2/T1R3), glucose transporters (SGLT1/GLUT2), and key enzymes involved in glucose metabolism (HK2, PFK2, PKM2, G6Pase, and PCK1) in the A limb after DJB was detected by Western blot and qRT-PCR. RESULTS Small animal PET analysis showed the intestinal glucose metabolism increased significantly 6 weeks after DJB surgery. The intestinal villi height and the number of EECs in the A limb 6 weeks after surgery increased significantly in T2DM-DJB rats comparing to T2DM-Sham rats. The mRNA and protein expression of T1R1/T1R3 and SGLT1/GLUT2 were downregulated in DJB-T2DM rats, while enzymes involved in glucose metabolism was upregulated in the A limb in T2DM-DJB rats. CONCLUSION Proximal intestinal glucose sensing and metabolism play an important role in blood glucose homeostasis by DJB.
Collapse
Affiliation(s)
- Bin Jiang
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Huaijie Wang
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
| | - Na Li
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
| | - Qingtao Yan
- Department of Pediatric Surgery, Weifang People's Hospital, The First Affiliated Hospital of Weifang Medical University, Weifang, 261041, China
| | - Weiyu Wang
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
| | - Yubing Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Hantao Xue
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Shengyao Ma
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Xiaocheng Li
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Wenbin Diao
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| | - Zhiqin Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Mei-Hua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang, 261041, China.
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
11
|
Hypothalamic detection of macronutrients via multiple gut-brain pathways. Cell Metab 2021; 33:676-687.e5. [PMID: 33450178 PMCID: PMC7933100 DOI: 10.1016/j.cmet.2020.12.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
Food intake is tightly regulated by complex and coordinated gut-brain interactions. Nutrients rapidly modulate activity in key populations of hypothalamic neurons that regulate food intake, including hunger-sensitive agouti-related protein (AgRP)-expressing neurons. Because individual macronutrients engage specific receptors in the gut to communicate with the brain, we reasoned that macronutrients may utilize different pathways to reduce activity in AgRP neurons. Here, we revealed that AgRP neuron activity in hungry mice is inhibited by site-specific intestinal detection of different macronutrients. We showed that vagal gut-brain signaling is required for AgRP neuron inhibition by fat. In contrast, spinal gut-brain signaling relays the presence of intestinal glucose. Further, we identified glucose sensors in the intestine and hepatic portal vein that mediate glucose-dependent AgRP neuron inhibition. Therefore, distinct pathways are activated by individual macronutrients to inhibit AgRP neuron activity.
Collapse
|
12
|
McDougle M, Quinn D, Diepenbroek C, Singh A, de la Serre C, de Lartigue G. Intact vagal gut-brain signalling prevents hyperphagia and excessive weight gain in response to high-fat high-sugar diet. Acta Physiol (Oxf) 2021; 231:e13530. [PMID: 32603548 PMCID: PMC7772266 DOI: 10.1111/apha.13530] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023]
Abstract
Aim The tools that have been used to assess the function of the vagus nerve lack specificity. This could explain discrepancies about the role of vagal gut‐brain signalling in long‐term control of energy balance. Here we use a validated approach to selectively ablate sensory vagal neurones that innervate the gut to determine the role of vagal gut‐brain signalling in the control of food intake, energy expenditure and glucose homoeostasis in response to different diets. Methods Rat nodose ganglia were injected bilaterally with either the neurotoxin saporin conjugated to the gastrointestinal hormone cholecystokinin (CCK), or unconjugated saporin as a control. Food intake, body weight, glucose tolerance and energy expenditure were measured in both groups in response to chow or high‐fat high‐sugar (HFHS) diet. Willingness to work for fat or sugar was assessed by progressive ratio for orally administered solutions, while post‐ingestive feedback was tested by measuring food intake after an isocaloric lipid or sucrose pre‐load. Results Vagal deafferentation of the gut increases meal number in lean chow‐fed rats. Switching to a HFHS diet exacerbates overeating and body weight gain. The breakpoint for sugar or fat solution did not differ between groups, suggesting that increased palatability may not drive HFHS‐induced hyperphagia. Instead, decreased satiation in response to intra‐gastric infusion of fat, but not sugar, promotes hyperphagia in CCK‐Saporin‐treated rats fed with HFHS diet. Conclusions We conclude that intact sensory vagal neurones prevent hyperphagia and exacerbation of weight gain in response to a HFHS diet by promoting lipid‐mediated satiation.
Collapse
Affiliation(s)
- Molly McDougle
- Department of Pharmacodynamics University of Florida Gainesville FL USA
- Center for Integrative Cardiovascular and Metabolic Disease University of Florida Gainesville FL USA
- The John B. Pierce Laboratory New Haven CT USA
| | | | - Charlene Diepenbroek
- The John B. Pierce Laboratory New Haven CT USA
- Department of Cellular and Molecular Physiology Yale Medical School New Haven CT USA
| | - Arashdeep Singh
- Department of Pharmacodynamics University of Florida Gainesville FL USA
- Center for Integrative Cardiovascular and Metabolic Disease University of Florida Gainesville FL USA
| | | | - Guillaume de Lartigue
- Department of Pharmacodynamics University of Florida Gainesville FL USA
- Center for Integrative Cardiovascular and Metabolic Disease University of Florida Gainesville FL USA
- The John B. Pierce Laboratory New Haven CT USA
- Department of Cellular and Molecular Physiology Yale Medical School New Haven CT USA
| |
Collapse
|
13
|
Hu G, Wang Z, Zhang R, Sun W, Chen X. The Role of Apelin/Apelin Receptor in Energy Metabolism and Water Homeostasis: A Comprehensive Narrative Review. Front Physiol 2021; 12:632886. [PMID: 33679444 PMCID: PMC7928310 DOI: 10.3389/fphys.2021.632886] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The apelin receptor (APJ) is a member of the family A of G-protein-coupled receptors (GPCRs) and is involved in range of physiological and pathological functions, including fluid homeostasis, anxiety, and depression, as well as cardiovascular and metabolic disorders. APJ was classically described as a monomeric transmembrane receptor that forms a ternary complex together with its ligand and associated G proteins. More recently, increasing evidence indicates that APJ may interact with other GPCRs to form heterodimers, which may selectively modulate distinct intracellular signal transduction pathways. Besides, the apelin/APJ system plays important roles in the physiology and pathophysiology of several organs, including regulation of blood pressure, cardiac contractility, angiogenesis, metabolic balance, and cell proliferation, apoptosis, or inflammation. Additionally, the apelin/APJ system is widely expressed in the central nervous system, especially in neurons and oligodendrocytes. This article reviews the role of apelin/APJ in energy metabolism and water homeostasis. Compared with the traditional diuretics, apelin exerts a positive inotropic effect on the heart, while increases water excretion. Therefore, drugs targeting apelin/APJ system undoubtedly provide more therapeutic options for patients with congestive heart failure accompanied with hyponatremia. To provide more precise guidance for the development of clinical drugs, further in-depth studies are warranted on the metabolism and signaling pathways associated with apelin/APJ system.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Zhen Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Wenping Sun
- Department of Pathology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| |
Collapse
|
14
|
O’Brien P, Han G, Ganpathy P, Pitre S, Zhang Y, Ryan J, Sim PY, Harding SV, Gray R, Preedy VR, Sanders TAB, Corpe CP. Chronic Effects of a High Sucrose Diet on Murine Gastrointestinal Nutrient Sensor Gene and Protein Expression Levels and Lipid Metabolism. Int J Mol Sci 2020; 22:E137. [PMID: 33375525 PMCID: PMC7794826 DOI: 10.3390/ijms22010137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract (GIT) plays a key role in regulating nutrient metabolism and appetite responses. This study aimed to identify changes in the GIT that are important in the development of diet related obesity and diabetes. GIT samples were obtained from C57BL/6J male mice chronically fed a control diet or a high sucrose diet (HSD) and analysed for changes in gene, protein and metabolite levels. In HSD mice, GIT expression levels of fat oxidation genes were reduced, and increased de novo lipogenesis was evident in ileum. Gene expression levels of the putative sugar sensor, slc5a4a and slc5a4b, and fat sensor, cd36, were downregulated in the small intestines of HSD mice. In HSD mice, there was also evidence of bacterial overgrowth and a lipopolysaccharide activated inflammatory pathway involving inducible nitric oxide synthase (iNOS). In Caco-2 cells, sucrose significantly increased the expression levels of the nos2, iNOS and nitric oxide (NO) gas levels. In conclusion, sucrose fed induced obesity/diabetes is associated with changes in GI macronutrient sensing, appetite regulation and nutrient metabolism and intestinal microflora. These may be important drivers, and thus therapeutic targets, of diet-related metabolic disease.
Collapse
Affiliation(s)
- Patrick O’Brien
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Ge Han
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Priya Ganpathy
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Shweta Pitre
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Yi Zhang
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - John Ryan
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Pei Ying Sim
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Scott V. Harding
- Department of Biochemistry, Memorial University, Elizabeth Avenue, St. John’s, NL A1C5S7, Canada;
| | - Robert Gray
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Victor R. Preedy
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Thomas A. B. Sanders
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| | - Christopher P. Corpe
- Nutritional Sciences Division, Faculty of Life Sciences and Medicine, School of Life Courses, King’s College London, Room 3.114, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (P.O.); (G.H.); (P.G.); (S.P.); (Y.Z.); (J.R.); (P.Y.S.); (R.G.); (V.R.P.); (T.A.B.S.)
| |
Collapse
|
15
|
A hindbrain inhibitory microcircuit mediates vagally-coordinated glucose regulation. Sci Rep 2019; 9:2722. [PMID: 30804396 PMCID: PMC6389891 DOI: 10.1038/s41598-019-39490-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Neurons in the brainstem dorsal vagal complex integrate neural and humoral signals to coordinate autonomic output to viscera that regulate a variety of physiological functions, but how this circuitry regulates metabolism is murky. We tested the hypothesis that premotor, GABAergic neurons in the nucleus tractus solitarius (NTS) form a hindbrain micro-circuit with preganglionic parasympathetic motorneurons of the dorsal motor nucleus of the vagus (DMV) that is capable of modulating systemic blood glucose concentration. In vitro, neuronal activation or inhibition using either excitatory or inhibitory designer receptor exclusively activated by designer drugs (DREADDs) constructs expressed in GABAergic NTS neurons increased or decreased, respectively, action potential firing of GABAergic NTS neurons and downstream synaptic inhibition of the DMV. In vivo, DREADD-mediated activation of GABAergic NTS neurons increased systemic blood glucose concentration, whereas DREADD-mediated silencing of these neurons was without effect. The DREADD-induced hyperglycemia was abolished by blocking peripheral muscarinic receptors, consistent with the hypothesis that altered parasympathetic drive mediated the response. This effect was paralleled by elevated serum glucagon and hepatic phosphoenolpyruvate carboxykinase 1 (PEPCK1) expression, without affecting insulin levels or muscle metabolism. Activity in a hindbrain inhibitory microcircuit is sufficient to modulate systemic glucose concentration, independent of insulin secretion or utilization.
Collapse
|
16
|
Ding L, Fang Z, Liu Y, Zhang E, Huang T, Yang L, Wang Z, Huang W. Targeting Bile Acid-Activated Receptors in Bariatric Surgery. Handb Exp Pharmacol 2019; 256:359-378. [PMID: 31144046 DOI: 10.1007/164_2019_229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bariatric surgical procedures, including Roux-en-Y gastric bypass and vertical sleeve gastrectomy, are currently the most effective clinical approaches to achieve a significant and sustainable weight loss. Bariatric surgery also concomitantly improves type 2 diabetes and other metabolic diseases such as nonalcoholic steatohepatitis, cardiovascular diseases, and hyperlipidemia. However, despite the recent exciting progress in the understanding how bariatric surgery works, the underlying molecular mechanisms of bariatric surgery remain largely unknown. Interestingly, bile acids are emerging as potential signaling molecules to mediate the beneficial effects of bariatric surgery. In this review, we summarize the recent findings on bile acids and their activated receptors in mediating the beneficial metabolic effects of bariatric surgery. We also discuss the potential to target bile acid-activated receptors in order to treat obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Lili Ding
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yanjun Liu
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tracy Huang
- Eugene and Roth Roberts Summer Student Academy, City of Hope, Duarte, CA, USA
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
17
|
Ohara T, Suzutani T. Intake of Bifidobacterium longum and Fructo-oligosaccharides prevents Colorectal Carcinogenesis. Euroasian J Hepatogastroenterol 2018; 8:11-17. [PMID: 29963455 PMCID: PMC6024036 DOI: 10.5005/jp-journals-10018-1251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION We aimed to investigate the effects of intake of yogurt containing Bifidobacterium longum (BB536-y) and fructo-oligosaccharides (FOS) in preventing colorectal carcinogenesis in healthy subjects, and the preventive effects of short-chain fatty acids (SCFA), whose production was enhanced by the intake of BB536-y and FOS, in human colon cancer cell lines. MATERIALS AND METHODS The subjects were 27 healthy persons who were divided into a group taking yogurt containing BB536 (BB536-y group; n = 14) and a group taking yogurt containing BB536 and FOS (BB536-y with FOS group; n = 13) once a day for 5 weeks. The feces were sampled before and after the intake to analyze the amount of SCFA in the feces and the profile of intestinal flora, such as putrefactive bacteria and Bacteroides fragilis enterotoxin (ETBF). Subsequently, human colon cancer cell lines (DLD-1 cells, WirDr cells) were cultured in the presence of SCFA (butyric acid, isobutyric acid, acetic acid) in order to evaluate the cell growth-inhibitory activity of SCFA (WST-8 assay) by calculating the IC50 value from the dose-response curve. RESULTS Intake of BB536-y increased the total amount of SCFA in the feces and significantly suppressed the detection rate of ETBF and growth of putrefactive bacteria. Intake of BB536-y with FOS was associated with a higher Bifidobacterium detection rate than that of BB536-y alone. The contents of butyric acid, isobutyric acid, and acetic acid, namely, of SCFA, were also decreased. Analysis of the results of culture of DLD-1 cells and WirDr cells in the presence of butyric acid, isobutyric acid, and acetic acid revealed that each of the substances showed significant cell growth-inhibitory activity, with the activity being the highest for butyric acid, followed by that for isobutyric acid and acetic acid. CONCLUSION These findings suggest that intake of both BB536-y and BB536-y with FOS prevents colorectal carcinogenesis.How to cite this article: Ohara T, Suzutani T. Intake of Bifidobacterium longum and Fructo-oligosaccharides prevents Colorectal Carcinogenesis. Euroasian J Hepato-Gastroenterol 2018;8(1):11-17.
Collapse
Affiliation(s)
- Tadashi Ohara
- Department of Intestinal Bioscience and Medicine, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University, Fukushima City, Fukushima, Japan
| |
Collapse
|
18
|
Abstract
A hypercaloric diet combined with a sedentary lifestyle is a major risk factor for the development of insulin resistance, type 2 diabetes mellitus (T2DM) and associated comorbidities. Standard treatment for T2DM begins with lifestyle modification, and includes oral medications and insulin therapy to compensate for progressive β-cell failure. However, current pharmaceutical options for T2DM are limited in that they do not maintain stable, durable glucose control without the need for treatment intensification. Furthermore, each medication is associated with adverse effects, which range from hypoglycaemia to weight gain or bone loss. Unexpectedly, fibroblast growth factor 1 (FGF1) and its low mitogenic variants have emerged as potentially safe candidates for restoring euglycaemia, without causing overt adverse effects. In particular, a single peripheral injection of FGF1 can lower glucose to normal levels within hours, without the risk of hypoglycaemia. Similarly, a single intracerebroventricular injection of FGF1 can induce long-lasting remission of the diabetic phenotype. This Review discusses potential mechanisms by which centrally administered FGF1 improves central glucose-sensing and peripheral glucose uptake in a sustained manner. Specifically, we explore the potential crosstalk between FGF1 and glucose-sensing neuronal circuits, hypothalamic neural stem cells and synaptic plasticity. Finally, we highlight therapeutic considerations of FGF1 and compare its metabolic actions with FGF15 (rodents), FGF19 (humans) and FGF21.
Collapse
Affiliation(s)
- Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies
| | - Christopher P Moutos
- Gene Expression Laboratory, Salk Institute for Biological Studies
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
- College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
19
|
Onishi JC, Campbell S, Moreau M, Patel F, Brooks AI, Zhou YX, Häggblom MM, Storch J. Bacterial communities in the small intestine respond differently to those in the caecum and colon in mice fed low- and high-fat diets. MICROBIOLOGY-SGM 2017; 163:1189-1197. [PMID: 28742010 DOI: 10.1099/mic.0.000496] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial communities in the mouse caecum and faeces are known to be altered by changes in dietary fat. The microbiota of the mouse small intestine, by contrast, has not been extensively profiled and it is unclear whether small intestinal bacterial communities shift with dietary fat levels. We compared the microbiota in the small intestine, caecum and colon in mice fed a low-fat (LF) or high-fat (HF) diet using 16S rRNA gene sequencing. The relative abundance of major phyla in the small intestine, Bacteriodetes, Firmicutes and Proteobacteria, was similar to that in the caecum and colon; the relative abundance of Verrucomicrobia was significantly reduced in the small intestine compared to the large intestine. Several genera were uniquely detected in the small intestine and included the aerotolerant anaerobe, Lactobacillus spp. The most abundant genera in the small intestine were accounted for by anaerobic bacteria and were identical to those identified in the large intestine. An HF diet was associated with significant weight gain and adiposity and with changes in the bacterial communities throughout the intestine, with changes in the small intestine differing from those in the caecum and colon. Prominent Gram-negative bacteria including genera of the phylum Bacteroidetes and a genus of Proteobacteria significantly changed in the large intestine. The mechanistic links between these changes and the development of obesity, perhaps involving metabolic endotoxemia, remain to be determined.
Collapse
Affiliation(s)
- Janet C Onishi
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Sara Campbell
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | | - Yin Xiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
20
|
Muscogiuri G, Balercia G, Barrea L, Cignarelli A, Giorgino F, Holst JJ, Laudisio D, Orio F, Tirabassi G, Colao A. Gut: A key player in the pathogenesis of type 2 diabetes? Crit Rev Food Sci Nutr 2017; 58:1294-1309. [PMID: 27892685 DOI: 10.1080/10408398.2016.1252712] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes which may be related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal microbiota includes trillions of microorganisms but its composition and function may be adversely affected in type 2 diabetes. The intestinal microbiota may be responsible of the secretion of molecules that may impair insulin secretion/action. At the same time, intestinal milieu regulates the secretion of hormones such as GLP-1, GIP, ghrelin, gastrin, somatostatin, CCK, serotonin, peptide YY, GLP-2, all of which importantly influence metabolism in general and in particular glucose metabolism. Thus, the aim of this paper is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes, taking into account both hormonal and microbiological aspects.
Collapse
Affiliation(s)
| | - Giancarlo Balercia
- b Division of Endocrinology, Department of Clinical and Molecular Sciences , Umberto I Hospital, Polytechnic University of Marche , Ancona , Italy
| | | | - Angelo Cignarelli
- c Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases , University of Bari Aldo Moro , Bari , Italy
| | - Francesco Giorgino
- c Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases , University of Bari Aldo Moro , Bari , Italy
| | - Jens J Holst
- d NNF Center for Basic Metabolic Research and Department of Biomedical Sciences , Panum Institute, University of Copenhagen, Copenhagen , Denmark
| | | | - Francesco Orio
- e Endocrinology, Department of Sports Science and Wellness , "Parthenope" University Naples , Naples , Italy
| | - Giacomo Tirabassi
- b Division of Endocrinology, Department of Clinical and Molecular Sciences , Umberto I Hospital, Polytechnic University of Marche , Ancona , Italy
| | - Annamaria Colao
- f Department of Clinical Medicine and Surgery , "Federico II" University of Naples , Naples , Italy
| |
Collapse
|
21
|
Increases in circulating amino acids with in-feed antibiotics correlated with gene expression of intestinal amino acid transporters in piglets. Amino Acids 2017. [PMID: 28623466 DOI: 10.1007/s00726-017-2451-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In-feed antibiotics have been commonly used to promote the growth performance of piglets. The antibiotics can increase protein utilization, but the underlying mechanism is largely unknown. The present study investigated the effects of in-feed antibiotics on intestinal AA transporters and receptors to test the hypothesis that the alteration of circulating AA profiles may be concomitant with the change of intestinal AA transporters and receptors. Sixteen litters of piglets at day 7 started to receive creep feed with (Antibiotic) or without (Control) antibiotic. Piglets were weaned at day 23 after birth, and fed the same diets until day 42. In-feed antibiotics did not affect the BW of 23-day-old (P = 0.248), or 42-day-old piglets (P = 0.089), but increased the weight gain to feed ratio from day 23 to 42 (P = 0.020). At day 42 after birth, antibiotic treatment increased the concentrations of most AAs in serum (P < 0.05), and decreased the concentrations of most AAs in jejunal and ileal digesta. Antibiotics upregulated (P < 0.05) the mRNA expression levels for jejunal AAs transporters (CAT1, EAAC1, ASCT2, y+LAT1), peptide transporters (PepT1), and Na+-K+-ATPase (ATP1A1), and ileal AA transporters (ASCT2, y+LAT1, b0,+AT, and B0AT1), and ATP1A1. The antibiotics also upregulated the mRNA expression of jejunal AAs receptors T1R3 and CaSR, and ileal T1R3. Protein expression levels for jejunal AA transporters (EAAC1, b0,+AT, and ASCT2) and PepT1 were also upregulated. Correlation analysis revealed that the alterations of AA profiles in serum after the in-feed antibiotics were correlated with the upregulations of mRNA expression levels for key AA transporters and receptors in the small intestine. In conclusion, the in-feed antibiotics increased serum level of most AAs and decreased most AAs in the small intestine. These changes correlated with the upregulations of mRNA expression levels for key AA transporters and receptors in the small intestine. The findings provide further insights into the mechanism of in-feed antibiotics, which may provide new framework for designing alternatives to antibiotics in animal feed in the future.
Collapse
|
22
|
Micó V, Berninches L, Tapia J, Daimiel L. NutrimiRAging: Micromanaging Nutrient Sensing Pathways through Nutrition to Promote Healthy Aging. Int J Mol Sci 2017; 18:E915. [PMID: 28445443 PMCID: PMC5454828 DOI: 10.3390/ijms18050915] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Current sociodemographic predictions point to a demographic shift in developed and developing countries that will result in an unprecedented increase of the elderly population. This will be accompanied by an increase in age-related conditions that will strongly impair human health and quality of life. For this reason, aging is a major concern worldwide. Healthy aging depends on a combination of individual genetic factors and external environmental factors. Diet has been proved to be a powerful tool to modulate aging and caloric restriction has emerged as a valuable intervention in this regard. However, many questions about how a controlled caloric restriction intervention affects aging-related processes are still unanswered. Nutrient sensing pathways become deregulated with age and lose effectiveness with age. These pathways are a link between diet and aging. Thus, fully understanding this link is a mandatory step before bringing caloric restriction into practice. MicroRNAs have emerged as important regulators of cellular functions and can be modified by diet. Some microRNAs target genes encoding proteins and enzymes belonging to the nutrient sensing pathways and, therefore, may play key roles in the modulation of the aging process. In this review, we aimed to show the relationship between diet, nutrient sensing pathways and microRNAs in the context of aging.
Collapse
Affiliation(s)
- Víctor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Laura Berninches
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Javier Tapia
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Lidia Daimiel
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
- Department of Nutrition and Bromatology, CEU San Pablo University, Boadilla del Monte, 28668 Madrid, Spain.
| |
Collapse
|
23
|
Fournel A, Drougard A, Duparc T, Marlin A, Brierley SM, Castro J, Le-Gonidec S, Masri B, Colom A, Lucas A, Rousset P, Cenac N, Vergnolle N, Valet P, Cani PD, Knauf C. Apelin targets gut contraction to control glucose metabolism via the brain. Gut 2017; 66:258-269. [PMID: 26565000 PMCID: PMC5284480 DOI: 10.1136/gutjnl-2015-310230] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The gut-brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. DESIGN We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. RESULTS In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. CONCLUSIONS Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders.
Collapse
Affiliation(s)
- Audren Fournel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Anne Drougard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Thibaut Duparc
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Alysson Marlin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia,Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia,Discipline of Physiology, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sophie Le-Gonidec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Bernard Masri
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), CHU Rangueil, Toulouse, Cedex 4, France
| | - André Colom
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Perrine Rousset
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Nicolas Cenac
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Nathalie Vergnolle
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| |
Collapse
|
24
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
25
|
Du G, Zhao Y, Feng L, Yang Z, Shi J, Huang C, Li B, Guo F, Zhu W, Li Y. Design, Synthesis, and Structure-Activity Relationships of Bavachinin Analogues as Peroxisome Proliferator-Activated Receptor γ Agonists. ChemMedChem 2016; 12:183-193. [DOI: 10.1002/cmdc.201600554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Guoxin Du
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Yuanyuan Zhao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Li Feng
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Zhuo Yang
- Key Laboratory of Receptor Research & Drug Discovery and Design Center; Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 555 Zuchongzhi Road Shanghai 201203 China
| | - Jiye Shi
- Informatics Department; UCB Pharma; 216 Bath Road Slough SL1 4EN UK
| | - Cheng Huang
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Bo Li
- Key Laboratory of Receptor Research & Drug Discovery and Design Center; Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 555 Zuchongzhi Road Shanghai 201203 China
| | - Fujiang Guo
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Weiliang Zhu
- Key Laboratory of Receptor Research & Drug Discovery and Design Center; Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 555 Zuchongzhi Road Shanghai 201203 China
| | - Yiming Li
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| |
Collapse
|
26
|
Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Blasi C. The Role of the Vagal Nucleus Tractus Solitarius in the Therapeutic Effects of Obesity Surgery and Other Interventional Therapies on Type 2 Diabetes. Obes Surg 2016; 26:3045-3057. [DOI: 10.1007/s11695-016-2419-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Oh YT, Oh HH, Nguyen AK, Choi CS, Youn JH. Circulating free fatty acids inhibit food intake in an oleate-specific manner in rats. Physiol Behav 2016; 167:194-201. [PMID: 27654062 DOI: 10.1016/j.physbeh.2016.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
Previous rodent studies showed that when injected into the brain, free fatty acids (FFAs) reduced food intake in an oleate-specific manner. The present study was performed to test whether food intake is regulated by circulating FFAs in an oleate-specific manner. Male Wistar rats received an intravenous infusion of olive, safflower, or coconut oil (100mg/h), together with heparin, to raise circulating oleate, linoleate, or palmitate, respectively, and their effects on overnight food intake were evaluated. Compared to other oils, olive oil infusion showed a significantly greater effect to reduce food intake (P<0.01). Total caloric intake, the sum of the calories from the diet and infused oil, was significantly reduced with olive oil (P<0.01) but not with coconut or safflower oil infusion, suggesting an oleate-specific effect on caloric intake. To further test this idea, different groups of rats received an intravenous infusion of oleate, linoleate, or octanoate (0.5mg/h). Oleate infusion decreased overnight food intake by 26% (P<0.001), but no significant effect was seen with linoleate, octanoate, or vehicle infusion (P>0.05). The effects of olive oil or oleate infusion could not be explained by changes in plasma glucose, insulin, leptin, or total FFA levels. The olive oil effect on food intake was not reduced in vagotomized rats, suggesting that oleate sensing may not involve peripheral sensors. In contrast, olive oil's effect was attenuated in high-fat-fed rats, suggesting that this effect is regulated (or impaired) under physiological (or pathological) conditions. Taken together, the present study provides evidence that circulating oleate is sensed by the brain differentially from other FFAs to control feeding in rats.
Collapse
Affiliation(s)
- Young Taek Oh
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Hyun Hee Oh
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Anh-Khoi Nguyen
- Department of Exercise Sciences, University of Southern California, Los Angeles, CA, USA
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Jang H Youn
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Genser L, Casella Mariolo JR, Castagneto-Gissey L, Panagiotopoulos S, Rubino F. Obesity, Type 2 Diabetes, and the Metabolic Syndrome. Surg Clin North Am 2016; 96:681-701. [DOI: 10.1016/j.suc.2016.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Boychuk CR, Smith BN. Glutamatergic drive facilitates synaptic inhibition of dorsal vagal motor neurons after experimentally induced diabetes in mice. J Neurophysiol 2016; 116:1498-506. [PMID: 27385796 DOI: 10.1152/jn.00325.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022] Open
Abstract
The role of central regulatory circuits in modulating diabetes-associated glucose dysregulation has only recently been under rigorous investigation. One brain region of interest is the dorsal motor nucleus of the vagus (DMV), which contains preganglionic parasympathetic motor neurons that regulate subdiaphragmatic visceral function. Previous research has demonstrated that glutamatergic and GABAergic neurotransmission are independently remodeled after chronic hyperglycemia/hypoinsulinemia. However, glutamatergic circuitry within the dorsal brain stem impinges on GABAergic regulation of the DMV. The present study investigated the role of glutamatergic neurotransmission in synaptic GABAergic control of DMV neurons after streptozotocin (STZ)-induced hyperglycemia/hypoinsulinemia by using electrophysiological recordings in vitro. The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was elevated in DMV neurons from STZ-treated mice. The effect was abolished in the presence of the ionotropic glutamate receptor blocker kynurenic acid or the sodium channel blocker tetrodotoxin, suggesting that after STZ-induced hyperglycemia/hypoinsulinemia, increased glutamatergic receptor activity occurs at a soma-dendritic location on local GABA neurons projecting to the DMV. Although sIPSCs in DMV neurons normally demonstrated considerable amplitude variability, this variability was significantly increased after STZ-induced hyperglycemia/hypoinsulinemia. The elevated amplitude variability was not related to changes in quantal release, but rather correlated with significantly elevated frequency of sIPSCs in these mice. Taken together, these findings suggest that GABAergic regulation of central vagal circuitry responsible for the regulation of energy homeostasis undergoes complex functional reorganization after several days of hyperglycemia/hypoinsulinemia, including both glutamate-dependent and -independent forms of plasticity.
Collapse
Affiliation(s)
- Carie R Boychuk
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Bret N Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
31
|
Amato A, Baldassano S, Mulè F. GLP2: an underestimated signal for improving glycaemic control and insulin sensitivity. J Endocrinol 2016; 229:R57-66. [PMID: 27048234 DOI: 10.1530/joe-16-0035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells and by a discrete population of neurons in the brainstem, which projects mainly to the hypothalamus. The main biological actions of GLP2 are related to the regulation of energy absorption and maintenance of mucosal morphology, function and integrity of the intestine; however, recent experimental data suggest that GLP2 exerts beneficial effects on glucose metabolism, especially in conditions related to increased uptake of energy, such as obesity, at least in the animal model. Indeed, mice lacking GLP2 receptor selectively in hypothalamic neurons that express proopiomelanocortin show impaired postprandial glucose tolerance and hepatic insulin resistance (by increased gluconeogenesis). Moreover, GLP2 acts as a beneficial factor for glucose metabolism in mice with high-fat diet-induced obesity. Thus, the aim of this review is to update and summarize current knowledge about the role of GLP2 in the control of glucose homeostasis and to discuss how this molecule could exert protective effects against the onset of related obesity type 2 diabetes.
Collapse
Affiliation(s)
- Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| | - Sara Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università di Palermo, Palermo, Italy
| |
Collapse
|
32
|
Abstract
Gastric electrical stimulation has been applied to treat human obesity since 1995. Dilatation of the stomach causes a series of neural reflexes which result in satiation and satiety. In non-obese individuals food ingestion is limited in part by this mechanism. In obese individuals, satiation and satiety are defective and unable to limit energy intake and prevent excessive weight gain. Several gastric electrical stimulatory (GES) devices have been developed, tested in clinical trials and even approved for the treatment of obesity. The design and clinical utility of three devices (Transend®, Maestro® and DIAMOND®) that have been extensively studied are presented as well as that of a new device (abiliti®) which is in early development. The Transcend®, a low energy GES device, showed promising results in open label studies but failed to show a difference from placebo in decreasing weight in obese subjects. The results of the clinical trials in treating obese subjects with the Maestro®, a vagal nerve stimulator, were sufficient to gain approval for marketing the device. The DIAMOND®, a multi-electrode GES device, has been used to treat type 2 diabetes and an associated benefit is to reduce body weight and lower systolic blood pressure.
Collapse
Affiliation(s)
- Harold E Lebovitz
- State University of New York Health Science Center at Brooklyn, 450 Clarkson Avenue, Box 1205, Brooklyn, New York, 11203, USA.
| |
Collapse
|
33
|
Zhang G, Hasek LY, Lee BH, Hamaker BR. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food Funct 2016; 6:1072-89. [PMID: 25686469 DOI: 10.1039/c4fo00803k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.
Collapse
Affiliation(s)
- Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
34
|
Folgueira C, Beiroa D, Callon A, Al-Massadi O, Barja-Fernandez S, Senra A, Fernø J, López M, Dieguez C, Casanueva FF, Rohner-Jeanrenaud F, Seoane LM, Nogueiras R. Uroguanylin Action in the Brain Reduces Weight Gain in Obese Mice via Different Efferent Autonomic Pathways. Diabetes 2016; 65:421-32. [PMID: 26566631 DOI: 10.2337/db15-0889] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/06/2015] [Indexed: 11/13/2022]
Abstract
The gut-brain axis is of great importance in the control of energy homeostasis. The identification of uroguanylin (UGN), a peptide released in the intestines that is regulated by nutritional status and anorectic actions, as the endogenous ligand for the guanylyl cyclase 2C receptor has revealed a new system in the regulation of energy balance. We show that chronic central infusion of UGN reduces weight gain and adiposity in diet-induced obese mice. These effects were independent of food intake and involved specific efferent autonomic pathways. On one hand, brain UGN induces brown adipose tissue thermogenesis, as well as browning and lipid mobilization in white adipose tissue through stimulation of the sympathetic nervous system. On the other hand, brain UGN augments fecal output through the vagus nerve. These findings are of relevance as they suggest that the beneficial metabolic actions of UGN through the sympathetic nervous system do not involve nondesirable gastrointestinal adverse effects, such as diarrhea. The present work provides mechanistic insights into how UGN influences energy homeostasis and suggests that UGN action in the brain represents a feasible pharmacological target in the treatment of obesity.
Collapse
Affiliation(s)
- Cintia Folgueira
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo, Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Daniel Beiroa
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Aurelie Callon
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Omar Al-Massadi
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Silvia Barja-Fernandez
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo, Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Spain Department of Pediatrics, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Johan Fernø
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Carlos Dieguez
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición, Spain Department of Medicine, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Françoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo, Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Ruben Nogueiras
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| |
Collapse
|
35
|
Zietek T, Rath E, Haller D, Daniel H. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci Rep 2015; 5:16831. [PMID: 26582215 PMCID: PMC4652176 DOI: 10.1038/srep16831] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
Intestinal nutrient transport and sensing are of emerging interest in research on obesity and diabetes and as drug targets. Appropriate in vitro models are lacking that allow both, studies on transport processes as well as sensing and subsequent incretin hormone secretion including intracellular signaling. We here demonstrate that murine small-intestinal organoids are the first in vitro model system enabling concurrent investigations of nutrient and drug transport, sensing and incretin hormone secretion as well as fluorescent live-cell imaging of intracellular signaling processes. By generating organoid cultures from wild type mice and animals lacking different nutrient transporters, we show that organoids preserve the main phenotypic features and functional characteristics of the intestine. This turns them into the best in vitro model currently available and opens new avenues for basic as well as medical research.
Collapse
Affiliation(s)
- Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München, 85350 Freising, Germany.,ZIEL-Institute for Food &Health, 85350 Freising, Germany
| | - Eva Rath
- ZIEL-Institute for Food &Health, 85350 Freising, Germany.,Chair of Nutrition and Immunology, Technische Universität München, 85350 Freising, Germany
| | - Dirk Haller
- ZIEL-Institute for Food &Health, 85350 Freising, Germany.,Chair of Nutrition and Immunology, Technische Universität München, 85350 Freising, Germany
| | - Hannelore Daniel
- Department of Nutritional Physiology, Technische Universität München, 85350 Freising, Germany.,ZIEL-Institute for Food &Health, 85350 Freising, Germany
| |
Collapse
|
36
|
Angelakis E, Armougom F, Carrière F, Bachar D, Laugier R, Lagier JC, Robert C, Michelle C, Henrissat B, Raoult D. A Metagenomic Investigation of the Duodenal Microbiota Reveals Links with Obesity. PLoS One 2015; 10:e0137784. [PMID: 26356733 PMCID: PMC4565581 DOI: 10.1371/journal.pone.0137784] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/28/2015] [Indexed: 01/16/2023] Open
Abstract
Background Few studies have tested the small intestine microbiota in humans, where most nutrient digestion and absorption occur. Here, our objective was to examine the duodenal microbiota between obese and normal volunteers using metagenomic techniques. Methodology/Principal Findings We tested duodenal samples from five obese and five normal volunteers using 16S rDNA V6 pyrosequencing and Illumina MiSeq deep sequencing. The predominant phyla of the duodenal microbiota were Firmicutes and Actinobacteria, whereas Bacteroidetes were absent. Obese individuals had a significant increase in anaerobic genera (p < 0.001) and a higher abundance of genes encoding Acyl-CoA dehydrogenase (p = 0.0018) compared to the control group. Obese individuals also had a reduced abundance of genes encoding sucrose phosphorylase (p = 0.015) and 1,4-alpha-glucan branching enzyme (p = 0.05). Normal weight people had significantly increased FabK (p = 0.027), and the glycerophospholipid metabolism pathway revealed the presence of phospholipase A1 only in the control group (p = 0.05). Conclusions/Significance The duodenal microbiota of obese individuals exhibit alterations in the fatty acid and sucrose breakdown pathways, probably induced by diet imbalance.
Collapse
Affiliation(s)
- Emmanouil Angelakis
- URMITE CNRS-IRD 198 UMR 6236, Aix Marseille Université, Faculté de Médecine, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Fabrice Armougom
- URMITE CNRS-IRD 198 UMR 6236, Aix Marseille Université, Faculté de Médecine, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Frédéric Carrière
- CNRS, Aix Marseille Université, UMR7282 Enzymology at Interfaces and Physiology of Lipolysis, 13009, Marseille, France
| | - Dipankar Bachar
- URMITE CNRS-IRD 198 UMR 6236, Aix Marseille Université, Faculté de Médecine, 27 Bd Jean Moulin, 13385, Marseille, France
| | - René Laugier
- Hepato-gastroenterology Department, Hôpital de la Timone, Marseille, France
| | - Jean-Christophe Lagier
- URMITE CNRS-IRD 198 UMR 6236, Aix Marseille Université, Faculté de Médecine, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Catherine Robert
- URMITE CNRS-IRD 198 UMR 6236, Aix Marseille Université, Faculté de Médecine, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Caroline Michelle
- URMITE CNRS-IRD 198 UMR 6236, Aix Marseille Université, Faculté de Médecine, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Didier Raoult
- URMITE CNRS-IRD 198 UMR 6236, Aix Marseille Université, Faculté de Médecine, 27 Bd Jean Moulin, 13385, Marseille, France
- * E-mail:
| |
Collapse
|
37
|
Yamamoto K, E S, Hatakeyama Y, Sakamoto Y, Tsuduki T. High-fat diet intake from senescence inhibits the attenuation of cell functions and the degeneration of villi with aging in the small intestine, and inhibits the attenuation of lipid absorption ability in SAMP8 mice. J Clin Biochem Nutr 2015; 57:204-11. [PMID: 26566305 PMCID: PMC4639591 DOI: 10.3164/jcbn.15-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022] Open
Abstract
We examined the effect of a high-fat diet from senescence as a means of preventing malnutrition among the elderly. The senescence-accelerated mouse P8 was used and divided into three groups. The 6C group was given a normal diet until 6 months old. The 12N group was given a normal diet until 12 months old. The 12F group was given a normal diet until 6 months old and then a high-fat diet until 12 months old. In the oral fat tolerance test, there was a decrease in area under the curve for serum triacylglycerol level in the 12N group and a significant increase in the 12F group, suggesting that the attenuation of lipid absorption ability with aging was delayed by a high-fat diet from senescence. To examine this mechanism, histological analysis in the small intestine was performed. As a result, the degeneration of villi with aging was inhibited by the high-fat diet. There was also a significant decrease in length of villus in the small intestine in the 12N group and a significant increase in the 12F group. The high-fat diet from senescence inhibited the degeneration of villi with aging in the small intestine, and inhibited the attenuation of lipid absorption ability.
Collapse
Affiliation(s)
- Kazushi Yamamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Shuang E
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Yu Hatakeyama
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Yu Sakamoto
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
38
|
Xiao C, Dash S, Morgantini C, Koulajian K, Lewis GF. Evaluation of the Effect of Enteral Lipid Sensing on Endogenous Glucose Production in Humans. Diabetes 2015; 64:2939-43. [PMID: 25754959 DOI: 10.2337/db15-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/04/2015] [Indexed: 11/13/2022]
Abstract
Administration of lipids into the upper intestine of rats has been shown to acutely decrease endogenous glucose production (EGP) in the preabsorptive state, postulated to act through a gut-brain-liver axis involving accumulation of long-chain fatty acyl-CoA, release of cholecystokinin, and subsequent neuronal signaling. It remains unknown, however, whether a similar gut-brain-liver axis is operative in humans. Here, we infused 20% Intralipid (a synthetic lipid emulsion) or saline intraduodenally for 90 min at 30 mL/h, 4 to 6 weeks apart, in random order, in nine healthy men. EGP was assessed under pancreatic clamp conditions with stable isotope enrichment techniques. Under these experimental conditions, intraduodenal infusion of Intralipid, compared with saline, did not affect plasma glucose concentration or EGP throughout the study period. We conclude that Intralipid infusion into the duodenum at this rate does not elicit detectable effects on glucose homeostasis or EGP in healthy men, which may reflect important interspecies differences between rodents and humans with respect to the putative gut-brain-liver axis.
Collapse
Affiliation(s)
- Changting Xiao
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Satya Dash
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Cecilia Morgantini
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Khajag Koulajian
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Gary F Lewis
- Division of Endocrinology & Metabolism, Departments of Medicine and Physiology, University of Toronto, Toronto, Canada, and Banting & Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Nutrient-specific sensor systems in enteroendocrine cells detect intestinal contents and cause gut hormone release upon activation. Among these peptide hormones, the incretins glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 are of particular interest by their role in glucose homeostasis, metabolic control and for proper ß-cell function. This review focuses on intestinal nutrient-sensing processes and their role in health and disease. RECENT FINDINGS All macronutrients, respectively, their digestion products can cause incretin release by targeting specific sensors. Luminal glucose is the strongest stimulant for incretin release with the Na-dependent glucose transporter as the prime sensor. For peptides, the H-dependent peptide transporter together with calcium-sensing-receptor act as a sensing system. That transporters can function as nutrient-sensing 'transceptors' is conceptually new as G-protein coupled receptors so far were thought to be the sensing entities. This still holds true for GPR40 and GPR120 as sensors for medium/long-chain fatty acids and GPR41 and GPR43 for microbiota-derived short-chain fatty acids. Synthetic agonists for these receptors show impressive effects on glucagon-like peptide 1 output and glycemic control. Moreover, the remarkable and immediate antidiabetic effects of bariatric surgery/gastric bypass put intestinal nutrient sensing into focus of new strategies for metabolic control. SUMMARY Targeting the intestinal nutrient-sensing machinery by dietary and/or pharmacological means holds promises in particular for treatment of type 2 diabetes. This interest may help to better understand the nutrient-sensing processes and the involvement of the intestine in overall endocrine, neuronal and metabolic control.
Collapse
Affiliation(s)
- Tamara Zietek
- ZIEL - Institute for Food & Health, Technische Universität München, Freising, Germany
| | | |
Collapse
|
40
|
Boychuk CR, Halmos KC, Smith BN. Diabetes induces GABA receptor plasticity in murine vagal motor neurons. J Neurophysiol 2015; 114:698-706. [PMID: 25995347 DOI: 10.1152/jn.00209.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 01/07/2023] Open
Abstract
Autonomic dysregulation accompanies type-1 diabetes, and synaptic regulation of parasympathetic preganglionic motor neurons in the dorsal motor nucleus of the vagus (DMV) is altered after chronic hyperglycemia/hypoinsulinemia. Tonic gamma-aminobutyric acid A (GABAA) inhibition prominently regulates DMV neuron activity, which contributes to autonomic control of energy homeostasis. This study investigated persistent effects of chronic hyperglycemia/hypoinsulinemia on GABAA receptor-mediated inhibition in the DMV after streptozotocin-induced type-1 diabetes using electrophysiological recordings in vitro, quantitative (q)RT-PCR, and immunohistochemistry. Application of the nonspecific GABAA receptor agonist muscimol evoked an outward current of significantly larger amplitude in DMV neurons from diabetic mice than controls. Results from application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride (THIP), a δ-subunit agonist, suggested that GABAA receptors containing δ-subunits contributed to the enhanced inducible tonic GABA current in diabetic mice. Sensitivity to THIP of inhibitory postsynaptic currents in DMV neurons from diabetic mice was also increased. Results from qRT-PCR and immunohistochemical analyses indicated that the altered GABAergic inhibition may be related to increased trafficking of GABAA receptors that contain the δ-subunit, rather than an expression change. Overall these findings suggest increased sensitivity of δ-subunit containing GABAA receptors after several days of hyperglycemia/hypoinsulinemia, which dramatically alters GABAergic inhibition of DMV neurons and could contribute to diabetic autonomic dysregulation.
Collapse
Affiliation(s)
- C R Boychuk
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - K Cs Halmos
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - B N Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
41
|
Lee EY, Kaneko S, Jutabha P, Zhang X, Seino S, Jomori T, Anzai N, Miki T. Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion. J Endocrinol 2015; 224:205-14. [PMID: 25486965 PMCID: PMC4324305 DOI: 10.1530/joe-14-0555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral ingestion of carbohydrate triggers glucagon-like peptide 1 (GLP1) secretion, but the molecular mechanism remains elusive. By measuring GLP1 concentrations in murine portal vein, we found that the ATP-sensitive K(+) (KATP) channel is not essential for glucose-induced GLP1 secretion from enteroendocrine L cells, while the sodium-glucose co-transporter 1 (SGLT1) is required, at least in the early phase (5 min) of secretion. By contrast, co-administration of the α-glucosidase inhibitor (α-GI) miglitol plus maltose evoked late-phase secretion in a glucose transporter 2-dependent manner. We found that GLP1 secretion induced by miglitol plus maltose was significantly higher than that by another α-GI, acarbose, plus maltose, despite the fact that acarbose inhibits maltase more potently than miglitol. As miglitol activates SGLT3, we compared the effects of miglitol on GLP1 secretion with those of acarbose, which failed to depolarize the Xenopus laevis oocytes expressing human SGLT3. Oral administration of miglitol activated duodenal enterochromaffin (EC) cells as assessed by immunostaining of phosphorylated calcium-calmodulin kinase 2 (phospho-CaMK2). In contrast, acarbose activated much fewer enteroendocrine cells, having only modest phospho-CaMK2 immunoreactivity. Single administration of miglitol triggered no GLP1 secretion, and GLP1 secretion by miglitol plus maltose was significantly attenuated by atropine pretreatment, suggesting regulation via vagal nerve. Thus, while α-GIs generally delay carbohydrate absorption and potentiate GLP1 secretion, miglitol also activates duodenal EC cells, possibly via SGLT3, and potentiates GLP1 secretion through the parasympathetic nervous system.
Collapse
Affiliation(s)
- Eun Young Lee
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Shuji Kaneko
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Promsuk Jutabha
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Xilin Zhang
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Susumu Seino
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Takahito Jomori
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Naohiko Anzai
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Takashi Miki
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| |
Collapse
|
42
|
Scarlett JM, Schwartz MW. Gut-brain mechanisms controlling glucose homeostasis. F1000PRIME REPORTS 2015; 7:12. [PMID: 25705395 PMCID: PMC4311273 DOI: 10.12703/p7-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our current understanding of glucose homeostasis is centered on glucose-induced secretion of insulin from pancreatic islets and insulin action on glucose metabolism in peripheral tissues. In addition, however, recent evidence suggests that neurocircuits located within a brain-centered glucoregulatory system work cooperatively with pancreatic islets to promote glucose homeostasis. Among key observations is evidence that, in addition to insulin-dependent mechanisms, the brain has the capacity to potently lower blood glucose levels via mechanisms that are insulin-independent, some of which are activated by signals emanating from the gastrointestinal tract. This review highlights evidence supporting a key role for a “gut-brain-liver axis” in control of glucose homeostasis by the brain-centered glucoregulatory system and the implications of this regulatory system for diabetes pathogenesis and treatment.
Collapse
Affiliation(s)
- Jarrad M. Scarlett
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington at South Lake Union850 Republican Street, N335, Box 358055, Seattle, WA 98195USA
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's HospitalOB.9.620.1, P.O. Box 5371, Seattle, WA 98105USA
| | - Michael W. Schwartz
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington at South Lake Union850 Republican Street, N335, Box 358055, Seattle, WA 98195USA
| |
Collapse
|
43
|
Clemente-Postigo M, Roca-Rodriguez MDM, Camargo A, Ocaña-Wilhelmi L, Cardona F, Tinahones FJ. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery. Surg Obes Relat Dis 2014; 11:933-9. [PMID: 25737102 DOI: 10.1016/j.soard.2014.11.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/31/2014] [Accepted: 11/26/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Bariatric surgery usually results in metabolic improvements within a few days from intervention, but the underlying mechanism is not completely understood and may vary depending on the bariatric procedure. Lipopolysaccharides (LPS) from gut microbiota have been proposed as a triggering factor for the inflammatory state in obesity. Roux-en-Y Gastric Bypass (RYGB) leads to a LPS decrease in the medium-term. OBJECTIVE To analyze LPS and LPS-binding protein (LBP) in normoglycemic (NG) and diabetic morbidly obese patients in the short-term after 2 different bariatric surgery procedures. SETTING University Hospital, Spain. METHODS Fifty morbidly obese patients underwent bariatric surgery: 24 with sleeve gastrectomy (SG) and 26 with biliopancreatic diversion (BPD). Patients were classified according to their glycemic status as NG or prediabetic/diabetic. LPS and LBP levels and biochemical and anthropometric variables were determined before and at days 15 and 90 after surgery. RESULTS A significant LPS reduction was seen only in the prediabetic/diabetic patients at 90 days after SG. LBP levels rose at 15 days after BPD but at 90 days returned to baseline in both NG and prediabetic/diabetic patients. At 90 days after SG, LBP levels significantly decreased compared to baseline in NG and prediabetic/diabetic patients. After multivariate analysis only the change in BMI was independently associated with the change in LBP levels at 90 days. None of the changes in biochemical or anthropometrical variables were significantly associated with the changes in LPS levels at 15 days or 90 days. CONCLUSION This is the first study showing that the short-term LPS decrease after bariatric surgery depends on the surgical procedure used as well as on the previous glycemic status of the patient, with SG having the greatest short-term effect on LPS and LBP levels. LBP is closely related to anthropometric variables and may be an inflammatory marker in bariatric surgery patients.
Collapse
Affiliation(s)
- Mercedes Clemente-Postigo
- Unidad de Gestión Clínica Endocrinología y Nutrición. Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Málaga (Spain); CIBER Pathophysiology of obesity and nutrition (CB06/03), Spain.
| | - Maria del Mar Roca-Rodriguez
- Unidad de Gestión Clínica Endocrinología y Nutrición. Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Málaga (Spain); CIBER Pathophysiology of obesity and nutrition (CB06/03), Spain
| | - Antonio Camargo
- Lipid and Atherosclerosis Research Unit (IMIBIC). Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Luis Ocaña-Wilhelmi
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes. Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria), Málaga, Spain
| | - Fernando Cardona
- Unidad de Gestión Clínica Endocrinología y Nutrición. Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Málaga (Spain); CIBER Pathophysiology of obesity and nutrition (CB06/03), Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición. Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Málaga (Spain); CIBER Pathophysiology of obesity and nutrition (CB06/03), Spain.
| |
Collapse
|
44
|
Abstract
Overconsumption of dietary fat contributes to the development of obesity and metabolic syndrome. Recent evidence suggests that high dietary fat may promote these metabolic states not only by providing calories but also by inducing impaired control of energy balance. In normal metabolic states, fat interacts with various organs or receptors to generate signals for the regulation of energy balance. Many of these interactions are impaired by high-fat diets or in obesity, contributing to the development or maintenance of obesity. These impairments may arise largely from fundamental alterations in the hypothalamus where all peripheral signals are integrated to regulate energy balance. This review focuses on various mechanisms by which fat is sensed at different stages of ingestion, circulation, storage, and utilization to regulate food intake, and how these individual mechanisms are altered by high-fat diets or in obesity.
Collapse
Affiliation(s)
- Jang H Youn
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA,
| |
Collapse
|
45
|
Zhong W, Zhou Z. Alterations of the gut microbiome and metabolome in alcoholic liver disease. World J Gastrointest Pathophysiol 2014; 5:514-522. [PMID: 25400995 PMCID: PMC4231516 DOI: 10.4291/wjgp.v5.i4.514] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/01/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is one of the leading causes of liver diseases and liver-related death worldwide. The gut is a habitat for billions of microorganisms which promotes metabolism and digestion in their symbiotic relationship with the host. Alterations of gut microbiome by alcohol consumption are referred to bacterial overgrowth, release of bacteria-derived products, and/or changed microbiota equilibrium. Alcohol consumption also perturbs the function of gastrointestinal mucosa and elicits a pathophysiological condition. These adverse effects caused by alcohol may ultimately result in a broad change of gastrointestinal luminal metabolites such as bile acids, short chain fatty acids, and branched chain amino acids. Gut microbiota alterations, metabolic changes produced in a dysbiotic intestinal environment, and the host factors are all critical contributors to the development and progression of alcoholic liver disease. This review summarizes recent findings of how alcohol-induced alterations of gut microbiota and metabolome, and discusses the mechanistic link between gastrointestinal dyshomeostasis and alcoholic liver injury.
Collapse
|
46
|
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
47
|
van der Wielen N, van Avesaat M, de Wit NJW, Vogels JTWE, Troost F, Masclee A, Koopmans SJ, van der Meulen J, Boekschoten MV, Müller M, Hendriks HFJ, Witkamp RF, Meijerink J. Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine. PLoS One 2014; 9:e107531. [PMID: 25216051 PMCID: PMC4162619 DOI: 10.1371/journal.pone.0107531] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/12/2014] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Intestinal chemosensory receptors and transporters are able to detect food-derived molecules and are involved in the modulation of gut hormone release. Gut hormones play an important role in the regulation of food intake and the control of gastrointestinal functioning. This mechanism is often referred to as "nutrient sensing". Knowledge of the distribution of chemosensors along the intestinal tract is important to gain insight in nutrient detection and sensing, both pivotal processes for the regulation of food intake. However, most knowledge is derived from rodents, whereas studies in man and pig are limited, and cross-species comparisons are lacking. AIM To characterize and compare intestinal expression patterns of genes related to nutrient sensing in mice, pigs and humans. METHODS Mucosal biopsy samples taken at six locations in human intestine (n = 40) were analyzed by qPCR. Intestinal scrapings from 14 locations in pigs (n = 6) and from 10 locations in mice (n = 4) were analyzed by qPCR and microarray, respectively. The gene expression of glucagon, cholecystokinin, peptide YY, glucagon-like peptide-1 receptor, taste receptor T1R3, sodium/glucose cotransporter, peptide transporter-1, GPR120, taste receptor T1R1, GPR119 and GPR93 was investigated. Partial least squares (PLS) modeling was used to compare the intestinal expression pattern between the three species. RESULTS AND CONCLUSION The studied genes were found to display specific expression patterns along the intestinal tract. PLS analysis showed a high similarity between human, pig and mouse in the expression of genes related to nutrient sensing in the distal ileum, and between human and pig in the colon. The gene expression pattern was most deviating between the species in the proximal intestine. Our results give new insights in interspecies similarities and provide new leads for translational research and models aiming to modulate food intake processes in man.
Collapse
Affiliation(s)
- Nikkie van der Wielen
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark van Avesaat
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nicole J. W. de Wit
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Jack T. W. E. Vogels
- Netherlands Organisation for Applied Scientific Research, TNO, Zeist, The Netherlands
| | - Freddy Troost
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ad Masclee
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sietse-Jan Koopmans
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
- Animal Sciences Group, Wageningen University and Research centre, Lelystad, The Netherlands
| | - Jan van der Meulen
- Animal Sciences Group, Wageningen University and Research centre, Lelystad, The Netherlands
| | - Mark V. Boekschoten
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Michael Müller
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Henk F. J. Hendriks
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Netherlands Organisation for Applied Scientific Research, TNO, Zeist, The Netherlands
| | - Renger F. Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
48
|
Abstract
The gut microbiota affects numerous biological functions throughout the body and its characterisation has become a major research area in biomedicine. Recent studies have suggested that gut bacteria play a fundamental role in diseases such as obesity, diabetes and cardiovascular disease. Data are accumulating in animal models and humans suggesting that obesity and type 2 diabetes (T2D) are associated with a profound dysbiosis. First human metagenome-wide association studies demonstrated highly significant correlations of specific intestinal bacteria, certain bacterial genes and respective metabolic pathways with T2D. Importantly, especially butyrate-producing bacteria such as Roseburia intestinalis and Faecalibacterium prausnitzii concentrations were lower in T2D subjects. This supports the increasing evidence, that butyrate and other short-chain fatty acids are able to exert profound immunometabolic effects. Endotoxaemia, most likely gut-derived has also been observed in patients with metabolic syndrome and T2D and might play a key role in metabolic inflammation. A further hint towards an association between microbiota and T2D has been derived from studies in pregnancy showing that major gut microbial shifts occurring during pregnancy affect host metabolism. Interestingly, certain antidiabetic drugs such as metformin also interfere with the intestinal microbiota. Specific members of the microbiota such as Akkermansia muciniphila might be decreased in diabetes and when administered to murines exerted antidiabetic effects. Therefore, as a 'gut signature' becomes more evident in T2D, a better understanding of the role of the microbiota in diabetes might provide new aspects regarding its pathophysiological relevance and pave the way for new therapeutic principles.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Ogata H, Seino Y, Harada N, Iida A, Suzuki K, Izumoto T, Ishikawa K, Uenishi E, Ozaki N, Hayashi Y, Miki T, Inagaki N, Tsunekawa S, Hamada Y, Seino S, Oiso Y. KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state. J Endocrinol 2014; 222:191-200. [PMID: 24891433 DOI: 10.1530/joe-14-0161] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP), a gut hormone secreted from intestinal K-cells, potentiates insulin secretion. Both K-cells and pancreatic β-cells are glucose-responsive and equipped with a similar glucose-sensing apparatus that includes glucokinase and an ATP-sensitive K(+) (KATP) channel comprising KIR6.2 and sulfonylurea receptor 1. In absorptive epithelial cells and enteroendocrine cells, sodium glucose co-transporter 1 (SGLT1) is also known to play an important role in glucose absorption and glucose-induced incretin secretion. However, the glucose-sensing mechanism in K-cells is not fully understood. In this study, we examined the involvement of SGLT1 (SLC5A1) and the KATP channels in glucose sensing in GIP secretion in both normal and streptozotocin-induced diabetic mice. Glimepiride, a sulfonylurea, did not induce GIP secretion and pretreatment with diazoxide, a KATP channel activator, did not affect glucose-induced GIP secretion in the normal state. In mice lacking KATP channels (Kir6.2(-/-) mice), glucose-induced GIP secretion was enhanced compared with control (Kir6.2(+) (/) (+)) mice, but was completely blocked by the SGLT1 inhibitor phlorizin. In Kir6.2(-/-) mice, intestinal glucose absorption through SGLT1 was enhanced compared with that in Kir6.2(+) (/) (+) mice. On the other hand, glucose-induced GIP secretion was enhanced in the diabetic state in Kir6.2(+) (/) (+) mice. This GIP secretion was partially blocked by phlorizin, but was completely blocked by pretreatment with diazoxide in addition to phlorizin administration. These results demonstrate that glucose-induced GIP secretion depends primarily on SGLT1 in the normal state, whereas the KATP channel as well as SGLT1 is involved in GIP secretion in the diabetic state in vivo.
Collapse
Affiliation(s)
- Hidetada Ogata
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Seino
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, JapanDepartments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Norio Harada
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Iida
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuyo Suzuki
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Takako Izumoto
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, JapanDepartments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Kota Ishikawa
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Eita Uenishi
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Ozaki
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, JapanDepartments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshitaka Hayashi
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Miki
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuya Inagaki
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Shin Tsunekawa
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Hamada
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Susumu Seino
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Oiso
- Departments of Endocrinology and DiabetesMetabolic MedicineNagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, JapanDepartment of DiabetesEndocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, JapanDepartment of Oral and Maxillofacial SurgeryNagoya University Graduate School of Medicine, Nagoya, JapanResearch Center of HealthPhysical Fitness, and SportsDivision of Stress Adaptation and RecognitionDepartment of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, JapanDepartment of Medical PhysiologyGraduate School of Medicine, Chiba University, Chiba, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
50
|
Sweeney TE, Morton JM. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract Res Clin Gastroenterol 2014; 28:727-40. [PMID: 25194186 PMCID: PMC4399638 DOI: 10.1016/j.bpg.2014.07.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 01/31/2023]
Abstract
Obesity and type 2 diabetes remain epidemic problems. Different bariatric surgical techniques causes weight loss and diabetes remission to varying degrees. The underlying mechanisms of the beneficial effects of bariatric surgery are complex, and include changes in diet and behaviour, as well as changes in hormones, bile acid flow, and gut bacteria. We summarized the effects of multiple different bariatric procedures, and their resulting effects on several hormones (leptin, ghrelin, adiponectin, glucagon-like peptide 1 (GLP-1), peptide YY, and glucagon), bile acid changes in the gut and the serum, and resulting changes to the gut microbiome. As much as possible, we have tried to incorporate multiple studies to try to explain underlying mechanistic changes. What emerges from the data is a picture of clear differences between restrictive and metabolic procedures. The latter, in particular the roux-en-Y gastric bypass, induces large and distinctive changes in most measured fat and gut hormones, including early and sustained increase in GLP-1, possible through intestinal bile acid signalling. The changes in bile flow and the gut microbiome are causally inseparable so far, but new studies show that each contributes to the effects of weight loss and diabetes resolution.
Collapse
Affiliation(s)
- Timothy E Sweeney
- Stanford University, Department of General Surgery, Section of Bariatric and Minimally Invasive (BMI) Surgery, 300 Pasteur Drive, H3680, Stanford, CA 94025, USA
| | - John M Morton
- Stanford University, Department of General Surgery, Section of Bariatric and Minimally Invasive (BMI) Surgery, 300 Pasteur Drive, H3680, Stanford, CA 94025, USA.
| |
Collapse
|