1
|
Perge K, Capel E, Senée V, Julier C, Vigouroux C, Nicolino M. Ciliopathies are responsible for short stature and insulin resistance: A systematic review of this clinical association regarding SOFT syndrome. Rev Endocr Metab Disord 2024; 25:827-838. [PMID: 39017987 PMCID: PMC11470920 DOI: 10.1007/s11154-024-09894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
SOFT syndrome (Short stature-Onychodysplasia-Facial dysmorphism-hypoTrichosis) is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A encoding a centriolar protein. To refine the phenotypic spectrum of SOFT syndrome, recently shown to include metabolic features, we conducted a systematic review of all published cases (19 studies, including 42 patients). The SOFT tetrad affected only 24 patients (57%), while all cases presented with short stature from birth (median height: -5.5SDS([-8.5]-[-2.8])/adult height: 132.5 cm(103.5-148)), which was most often disproportionate (90.5%), with relative macrocephaly. Bone involvement resulted in short hands and feet (100%), brachydactyly (92.5%), metaphyseal (92%) or epiphyseal (84%) anomalies, and/or sacrum/pelvis hypoplasia (58%). Serum IGF-I was increased (median IGF-I level: + 2 SDS ([-0.5]-[+ 3])). Recombinant human growth hormone (rhGH) therapy was stopped for absence/poor growth response (7/9 patients, 78%) and/or hyperglycemia (4/9 patients, 45%). Among 11 patients evaluated, 10 (91%) presented with central distribution of fat (73%), clinical (64%) and/or biological insulin resistance (IR) (100%, median HOMA-IR: 18), dyslipidemia (80%), and hepatic steatosis (100%). Glucose tolerance abnormalities affected 58% of patients aged over 10 years. Patients harbored biallelic missense (52.4%) or truncating (45.2%) POC1A variants. Biallelic null variants, affecting 36% of patients, were less frequently associated with the SOFT tetrad (33% vs 70% respectively, p = 0.027) as compared to other variants, without difference in the prevalence of metabolic abnormalities. POC1A should be sequenced in children with short stature, altered glucose/insulin homeostasis and/or centripetal fat distribution. In patients with SOFT syndrome, rhGH treatment is not indicated, and IR-related complications should be regularly screened and monitored.PROSPERO registration: CRD42023460876.
Collapse
Affiliation(s)
- Kevin Perge
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France.
- Claude Bernard University, Lyon 1, Lyon, France.
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France.
| | - Emilie Capel
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Valérie Senée
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Cécile Julier
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Marc Nicolino
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France
- Claude Bernard University, Lyon 1, Lyon, France
| |
Collapse
|
2
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01036-1. [PMID: 39313573 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Zhao Y, Guo DF, Morgan DA, Cho YE, Rahmouni K. Adipocyte-specific disruption of the BBSome causes metabolic and autonomic dysfunction. Am J Physiol Regul Integr Comp Physiol 2024; 327:R54-R65. [PMID: 38738295 PMCID: PMC11380988 DOI: 10.1152/ajpregu.00039.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Obesity is a major public health issue due to its association with type 2 diabetes, hypertension, and other cardiovascular risks. The BBSome, a complex of eight conserved Bardet-Biedl syndrome (BBS) proteins, has emerged as a key regulator of energy and glucose homeostasis as well as cardiovascular function. However, the importance of adipocyte BBSome in controlling these physiological processes is not clear. Here, we show that adipocyte-specific constitutive disruption of the BBSome through selective deletion of the Bbs1 gene adiponectin (AdipoCre/Bbs1fl/fl mice) does not affect body weight under normal chow or high-fat and high-sucrose diet (HFHSD). However, constitutive BBSome deficiency caused impairment in glucose tolerance and insulin sensitivity. Similar phenotypes were observed after inducible adipocyte-specific disruption of the BBSome (AdipoCreERT2/Bbs1fl/fl mice). Interestingly, a significant increase in renal sympathetic nerve activity, measured using multifiber recording in the conscious state, was observed in AdipoCre/Bbs1fl/fl mice on both chow and HFHSD. A significant increase in tail-cuff arterial pressure was also observed in chow-fed AdipoCre/Bbs1fl/fl mice, but this was not reproduced when arterial pressure was measured by radiotelemetry. Moreover, AdipoCre/Bbs1fl/fl mice had no significant alterations in vascular reactivity. On the other hand, AdipoCre/Bbs1fl/fl mice displayed impaired baroreceptor reflex sensitivity when fed HFHSD, but not on normal chow. Taken together, these data highlight the relevance of the adipocyte BBSome for the regulation of glucose homeostasis and sympathetic traffic. The BBSome also contributes to baroreflex sensitivity under HFHSD, but not normal chow.NEW & NOTEWORTHY The current study show how genetic manipulation of fat cells impacts various functions of the body including sensitivity to the hormone insulin.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Human Toxicology, Iowa City, Iowa, United States
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
| | - Young-Eun Cho
- College of Nursing, University of Iowa, Iowa City, Iowa, United States
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| |
Collapse
|
4
|
Türkkahraman D, Tekin S, Güllü M, Aykal G. Serum Ghrelin and Glucagon-like Peptide 1 Levels in Children with Prader-Willi and Bardet-Biedl Syndromes. J Clin Res Pediatr Endocrinol 2024; 16:146-150. [PMID: 38099591 DOI: 10.4274/jcrpe.galenos.2023.2023-7-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
Abstract
Objective Prader-Willi syndrome (PWS) and Bardet-Biedl syndrome (BBS) are causes of pediatric syndromic obesity. We aimed to investigate a possible role for ghrelin and glucagon-like peptide-1 (GLP-1) in the pathophysiology of PWS and BBS. Methods The study included 12 children with PWS, 12 children with BBS, 13 pediatric obese controls (OC) and 12 pediatric lean controls (LC). Fasting serum ghrelin and GLP-1 levels were measured by ELISA. Results In the PWS group, no significant difference was detected for median ghrelin levels when compared with OC and LC, which were 0.96 (0.69-1.15), 0.92 (0.72-1.20) and 1.13 (0.84-1.29) ng/mL, respectively. Similarly, there was no difference in PWS median GLP-1 levels when compared with OC and LC; 1.86 (1.5-2.94), 2.24 (1.62-2.78) and 2.06 (1.8-3.41) ng/mL, respectively. In the BBS group, there was no difference in median ghrelin levels when compared with OC and LC; 1.05 (0.87-1.51), 0.92 (0.72-1.20) and 1.13 (0.84-1.29) ng/mL, respectively. Neither was there a significant difference in median GLP-1 levels; 2.46 (1.91-4.17), 2.24 (1.62-2.78) and 2.06 (1.8-3.41) ng/mL for BBS, OC and LC, respectively. Conclusion There were no differences in median fasting ghrelin or GLP-1 levels when comparing patients with PWS and BBS with obese or lean peers. However, similar studies with larger series are needed.
Collapse
Affiliation(s)
- Doğa Türkkahraman
- University of Health Sciences Turkey, Antalya Training and Research Hospital, Clinic of Pediatric Endocrinology, Antalya, Turkey
| | - Suat Tekin
- University of Health Sciences Turkey, Antalya Training and Research Hospital, Clinic of Pediatric Endocrinology, Antalya, Turkey
| | - Merve Güllü
- University of Health Sciences Turkey, Antalya Training and Research Hospital, Clinic of Pediatric Endocrinology, Antalya, Turkey
| | - Güzin Aykal
- University of Health Sciences Turkey, Antalya Training and Research Hospital, Clinic of Biochemistry, Antalya, Turkey
| |
Collapse
|
5
|
Jurisch-Yaksi N, Wachten D, Gopalakrishnan J. The neuronal cilium - a highly diverse and dynamic organelle involved in sensory detection and neuromodulation. Trends Neurosci 2024; 47:383-394. [PMID: 38580512 DOI: 10.1016/j.tins.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Cilia are fascinating organelles that act as cellular antennae, sensing the cellular environment. Cilia gained significant attention in the late 1990s after their dysfunction was linked to genetic diseases known as ciliopathies. Since then, several breakthrough discoveries have uncovered the mechanisms underlying cilia biogenesis and function. Like most cells in the animal kingdom, neurons also harbor cilia, which are enriched in neuromodulatory receptors. Yet, how neuronal cilia modulate neuronal physiology and animal behavior remains poorly understood. By comparing ciliary biology between the sensory and central nervous systems (CNS), we provide new perspectives on the functions of cilia in brain physiology.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7491 Trondheim, Norway.
| | - Dagmar Wachten
- Department of Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany; Institute for Human Genetics, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany
| |
Collapse
|
6
|
Tomlinson JW. Bardet-Biedl syndrome: A focus on genetics, mechanisms and metabolic dysfunction. Diabetes Obes Metab 2024; 26 Suppl 2:13-24. [PMID: 38302651 DOI: 10.1111/dom.15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a rare, monogenic, multisystem disorder characterized by retinal dystrophy, renal abnormalities, polydactyly, learning disabilities, as well as metabolic dysfunction, including obesity and an increased risk of type 2 diabetes. It is a primary ciliopathy, and causative mutations in more than 25 different genes have been described. Multiple cellular mechanisms contribute to the development of the metabolic phenotype associated with BBS, including hyperphagia as a consequence of altered hypothalamic appetite signalling as well as alterations in adipocyte biology promoting adipocyte proliferation and adipogenesis. Within this review, we describe in detail the metabolic phenotype associated with BBS and discuss the mechanisms that drive its evolution. In addition, we review current approaches to the metabolic management of patients with BBS, including the use of weight loss medications and bariatric surgery. Finally, we evaluate the potential of targeting hypothalamic appetite signalling to limit hyperphagia and induce clinically significant weight loss.
Collapse
Affiliation(s)
- Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
7
|
Perge K, Capel E, Villanueva C, Gautheron J, Diallo S, Auclair M, Rondeau S, Morichon R, Brioude F, Jéru I, Rossi M, Nicolino M, Vigouroux C. Ciliopathy due to POC1A deficiency: clinical and metabolic features, and cellular modeling. Eur J Endocrinol 2024; 190:151-164. [PMID: 38245004 DOI: 10.1093/ejendo/lvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE SOFT syndrome (MIM#614813), denoting Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis, is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A, encoding a centriolar protein. SOFT syndrome, characterized by severe growth failure of prenatal onset and dysmorphic features, was recently associated with insulin resistance. This study aims to further explore its endocrinological features and pathophysiological mechanisms. DESIGN/METHODS We present clinical, biochemical, and genetic features of 2 unrelated patients carrying biallelic pathogenic POC1A variants. Cellular models of the disease were generated using patients' fibroblasts and POC1A-deleted human adipose stem cells. RESULTS Both patients present with clinical features of SOFT syndrome, along with hyperinsulinemia, diabetes or glucose intolerance, hypertriglyceridemia, liver steatosis, and central fat distribution. They also display resistance to the effects of IGF-1. Cellular studies show that the lack of POC1A protein expression impairs ciliogenesis and adipocyte differentiation, induces cellular senescence, and leads to resistance to insulin and IGF-1. An altered subcellular localization of insulin receptors and, to a lesser extent, IGF1 receptors could also contribute to resistance to insulin and IGF1. CONCLUSIONS Severe growth retardation, IGF-1 resistance, and centripetal fat repartition associated with insulin resistance-related metabolic abnormalities should be considered as typical features of SOFT syndrome caused by biallelic POC1A null variants. Adipocyte dysfunction and cellular senescence likely contribute to the metabolic consequences of POC1A deficiency. SOFT syndrome should be included within the group of monogenic ciliopathies with metabolic and adipose tissue involvement, which already encompasses Bardet-Biedl and Alström syndromes.
Collapse
Affiliation(s)
- Kevin Perge
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron F69500, France
- Claude Bernard University, Lyon 1, Lyon F69100, France
| | - Emilie Capel
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Carine Villanueva
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron F69500, France
| | - Jérémie Gautheron
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Safiatou Diallo
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Martine Auclair
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
| | - Sophie Rondeau
- Department of Molecular Biology, Assistance Publique-Hôpitaux de Paris, Necker Enfants Malades Hospital, Paris F75015, France
| | - Romain Morichon
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Cytometry and Imagery platform Saint-Antoine (CISA), Inserm UMS30 Lumic, Paris F75012, France
| | - Frédéric Brioude
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Armand Trousseau University Hospital, Paris F75012, France
| | - Isabelle Jéru
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris F75012, France
| | - Massimiliamo Rossi
- Genetics Department, Referral Center for Skeletal Dysplasias, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Lyon F69500, France
- UMR5292, Lyon Neuroscience Research Center, INSERM U1028, CNRS, GENDEV Team, Bron F69500, France
| | - Marc Nicolino
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron F69500, France
- Claude Bernard University, Lyon 1, Lyon F69100, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, and Institute of Cardiometabolism and Nutrition, F75012 Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris F75012, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris F75012, France
| |
Collapse
|
8
|
Brewer KK, Brewer KM, Terry TT, Caspary T, Vaisse C, Berbari NF. Postnatal Dynamic Ciliary ARL13B and ADCY3 Localization in the Mouse Brain. Cells 2024; 13:259. [PMID: 38334651 PMCID: PMC10854790 DOI: 10.3390/cells13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024] Open
Abstract
Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. A diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways, including the Hedgehog (Hh) pathway. Defects in cilia structure, protein localization, and function lead to genetic disorders called ciliopathies, which present with various clinical features that include several neurodevelopmental phenotypes and hyperphagia-associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in central nervous system (CNS) development and signaling has proven challenging. We hypothesize that dynamic changes to ciliary protein composition contribute to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established markers of cilia in the brain. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, and ADCY3 is a ciliary adenylyl cyclase. Here, we examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain. We define changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, we identify distinct lengths of cilia within specific brain regions of male and female mice. ARL13B+ cilia become relatively rare with age in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker in the mature adult brain. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional- and developmental-associated cilia protein composition signatures and physiological condition cilia dynamic changes in the CNS may reveal the molecular mechanisms associated with the features commonly observed in ciliopathy models and ciliopathies, like obesity and diabetes.
Collapse
Affiliation(s)
- Katlyn K. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Kathryn M. Brewer
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
| | - Tiffany T. Terry
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (T.T.T.); (T.C.)
| | - Christian Vaisse
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, CA 92697, USA;
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA; (K.K.B.); (K.M.B.)
- Stark Neurosciences Research Institute, Indiana University-Indianapolis, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Guo DF, Williams PA, Laule C, Seaby C, Zhang Q, Sheffield VC, Rahmouni K. POMC Neuron BBSome Regulation of Body Weight is Independent of its Ciliary Function. FUNCTION 2023; 5:zqad070. [PMID: 38223458 PMCID: PMC10787280 DOI: 10.1093/function/zqad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The BBSome, a complex of several Bardet-Biedl syndrome (BBS) proteins including BBS1, has emerged as a critical regulator of energy homeostasis. Although the BBSome is best known for its involvement in cilia trafficking, through a process that involve BBS3, it also regulates the localization of cell membrane receptors underlying metabolic regulation. Here, we show that inducible Bbs1 gene deletion selectively in proopiomelanocortin (POMC) neurons cause a gradual increase in body weight, which was associated with higher fat mass. In contrast, inducible deletion of Bbs3 gene in POMC neurons failed to affect body weight and adiposity. Interestingly, loss of BBS1 in POMC neurons led to glucose intolerance and insulin insensitivity, whereas BBS3 deficiency in these neurons is associated with slight impairment in glucose handling, but normal insulin sensitivity. BBS1 deficiency altered the plasma membrane localization of serotonin 5-HT2C receptor (5-HT2CR) and ciliary trafficking of neuropeptide Y2 receptor (NPY2R).In contrast, BBS3 deficiency, which disrupted the ciliary localization of the BBSome, did not interfere with plasma membrane expression of 5-HT2CR, but reduced the trafficking of NPY2R to cilia. We also show that deficiency in BBS1, but not BBS3, alters mitochondria dynamics and decreased total and phosphorylated levels of dynamin-like protein 1 (DRP1) protein. Importantly, rescuing DRP1 activity restored mitochondria dynamics and localization of 5-HT2CR and NPY2R in BBS1-deficient cells. The contrasting effects on energy and glucose homeostasis evoked by POMC neuron deletion of BBS1 versus BBS3 indicate that BBSome regulation of metabolism is not related to its ciliary function in these neurons.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - Paul A Williams
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Charles Seaby
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Rouabhi Y, Guo DF, Zhao Y, Rahmouni K. Metabolic consequences of skeletal muscle- and liver-specific BBSome deficiency. Am J Physiol Endocrinol Metab 2023; 325:E711-E722. [PMID: 37909854 PMCID: PMC10864019 DOI: 10.1152/ajpendo.00174.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
The BBSome is a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1. Humans and mice lacking a functional BBSome display obesity and type 2 diabetes, highlighting the importance of this protein complex for metabolic regulation. However, the contribution of the BBSome in insulin-sensitive tissues such as skeletal muscle and liver to metabolic regulation is ill-defined. Here, we show that disruption of the BBSome through Bbs1 gene deletion in the skeletal muscle had no effect on body weight or glucose handling, but improved insulin sensitivity of female mice without changing insulin receptor signaling. Interestingly, when fed an obesogenic diet, male mice lacking the Bbs1 gene in skeletal muscle exhibited heightened insulin sensitivity despite the comparable weight gain and glucose tolerance relative to controls. On the other hand, normal chow-fed mice missing the Bbs1 gene in hepatocytes displayed increased body weight, as well as impaired glucose handling and insulin sensitivity. This was associated with attenuated insulin signaling in liver and hepatocytes, but not skeletal muscle and white adipose tissue. Moreover, hepatocytes lacking the Bbs1 gene displayed significant reduction in plasma membrane insulin receptor levels due to the mitochondrial dysfunction evoked by loss of the BBSome. Together, these findings demonstrate that myocyte BBSome is minimally involved in metabolic regulation, whereas the hepatic BBSome plays a critical role in the control of energy homeostasis and insulin sensitivity through its requirement for insulin receptor trafficking.NEW & NOTEWORTHY The ongoing epidemic of obesity and associated illnesses highlights the need to understand the biological processes that regulate energy balance. Here, we identified an important role for a protein complex called BBSome in the control of hepatic function. We show that the liver BBSome is necessary to maintain body weight and blood glucose levels due to its requirements to generate energy and detect insulin, a hormone that is essential for metabolic regulation.
Collapse
Affiliation(s)
- Younes Rouabhi
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
| | - Yuying Zhao
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| |
Collapse
|
11
|
Tian X, Zhao H, Zhou J. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. eLife 2023; 12:e87623. [PMID: 37466224 DOI: 10.7554/elife.87623] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The BBSome is an octameric protein complex that regulates ciliary transport and signaling. Mutations in BBSome subunits are closely associated with ciliary defects and lead to ciliopathies, notably Bardet-Biedl syndrome. Over the past few years, there has been significant progress in elucidating the molecular organization and functions of the BBSome complex. An improved understanding of BBSome-mediated biological events and molecular mechanisms is expected to help advance the development of diagnostic and therapeutic approaches for BBSome-related diseases. Here, we review the current literature on the structural assembly, transport regulation, and molecular functions of the BBSome, emphasizing its roles in cilium-related processes. We also provide perspectives on the pathological role of the BBSome in ciliopathies as well as how these can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Qi Y, Lee NJ, Ip CK, Enriquez R, Tasan R, Zhang L, Herzog H. Agrp-negative arcuate NPY neurons drive feeding under positive energy balance via altering leptin responsiveness in POMC neurons. Cell Metab 2023:S1550-4131(23)00177-8. [PMID: 37201523 DOI: 10.1016/j.cmet.2023.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Neuropeptide Y (NPY) in the arcuate nucleus (ARC) is known as one of the most critical regulators of feeding. However, how NPY promotes feeding under obese conditions is unclear. Here, we show that positive energy balance, induced by high-fat diet (HFD) or in genetically obese leptin-receptor-deficient mice, leads to elevated Npy2r expression especially on proopiomelanocortin (POMC) neurons, which also alters leptin responsiveness. Circuit mapping identified a subset of ARC agouti-related peptide (Agrp)-negative NPY neurons that control these Npy2r expressing POMC neurons. Chemogenetic activation of this newly discovered circuitry strongly drives feeding, while optogenetic inhibition reduces feeding. Consistent with that, lack of Npy2r on POMC neurons leads to reduced food intake and fat mass. This suggests that under energy surplus conditions, when ARC NPY levels generally drop, high-affinity NPY2R on POMC neurons is still able to drive food intake and enhance obesity development via NPY released predominantly from Agrp-negative NPY neurons.
Collapse
Affiliation(s)
- Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Ronaldo Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Ramon Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Stump M, Guo DF, Rahmouni K. T cell-specific deficiency in BBSome component BBS1 interferes with selective immune responses. Am J Physiol Regul Integr Comp Physiol 2023; 324:R161-R170. [PMID: 36534590 PMCID: PMC9844976 DOI: 10.1152/ajpregu.00243.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Bsardet Biedl syndrome (BBS) is a genetic condition associated with various clinical features including cutaneous disorders and certain autoimmune and inflammatory diseases pointing to a potential role of BBS proteins in the regulation of immune function. BBS1 protein, which is a key component of the BBSome, a protein complex involved in the regulation of cilia function and other cellular processes, has been implicated in the immune synapse assembly by promoting the centrosome polarization to the antigen-presenting cells. Here, we assessed the effect of disrupting the BBSome, through Bbs1 gene deletion, in T cells. Interestingly, mice lacking the Bbs1 gene specifically in T cells (T-BBS1-/-) displayed normal body weight, adiposity, and glucose handling, but have smaller spleens. However, T-BBS1-/- mice had no change in the proportion and absolute number of B cells and T cells in the spleen and lymph nodes. There was also no alteration in the CD4/CD8 lineage commitment or survival in the thymus of T-BBS1-/- mice. On the other hand, T-BBS1-/- mice treated with Imiquimod dermally exhibited a significantly higher percentage of CD3-positive splenocytes that was due to CD4 but not CD8 T cell predominance. Notably, we found that T-BBS1-/- mice had significantly decreased wound closure, an effect that was more pronounced in males indicating that the BBSome plays an important role in T cell-mediated skin repair. Together, these findings implicate the BBSome in the regulation of selective functions of T cells.
Collapse
Affiliation(s)
- Madeliene Stump
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Physician Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Dermatology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Deng Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
15
|
Guo DF, Merrill RA, Qian L, Hsu Y, Zhang Q, Lin Z, Thedens DR, Usachev YM, Grumbach I, Sheffield VC, Strack S, Rahmouni K. The BBSome regulates mitochondria dynamics and function. Mol Metab 2023; 67:101654. [PMID: 36513220 PMCID: PMC9792363 DOI: 10.1016/j.molmet.2022.101654] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The essential role of mitochondria in regulation of metabolic function and other physiological processes has garnered enormous interest in understanding the mechanisms controlling the function of this organelle. We assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins, in the control of mitochondria dynamic and function. METHODS We used a multidisciplinary approach that include CRISPR/Cas9 technology-mediated generation of a stable Bbs1 gene knockout hypothalamic N39 neuronal cell line. We also analyzed the phenotype of BBSome deficient mice in presence or absence of the gene encoding A-kinase anchoring protein 1 (AKAP1). RESULTS Our data show that the BBSome play an important role in the regulation of mitochondria dynamics and function. Disruption of the BBSome cause mitochondria hyperfusion in cell lines, fibroblasts derived from patients as well as in hypothalamic neurons and brown adipocytes of mice. The morphological changes in mitochondria translate into functional abnormalities as indicated by the reduced oxygen consumption rate and altered mitochondrial distribution and calcium handling. Mechanistically, we demonstrate that the BBSome modulates the activity of dynamin-like protein 1 (DRP1), a key regulator of mitochondrial fission, by regulating its phosphorylation and translocation to the mitochondria. Notably, rescuing the decrease in DRP1 activity through deletion of one copy of the gene encoding AKAP1 was effective to normalize the defects in mitochondrial morphology and activity induced by BBSome deficiency. Importantly, this was associated with improvement in several of the phenotypes caused by loss of the BBSome such as the neuroanatomical abnormalities, metabolic alterations and obesity highlighting the importance of mitochondria defects in the pathophysiology of BBS. CONCLUSIONS These findings demonstrate a critical role of the BBSome in the modulation of mitochondria function and point to mitochondrial defects as a key disease mechanism in BBS.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Lan Qian
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ying Hsu
- Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Zhihong Lin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Daniel R Thedens
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Yuriy M Usachev
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Isabella Grumbach
- Veterans Affairs Health Care System, Iowa City, IA, USA; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Veterans Affairs Health Care System, Iowa City, IA, USA; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
16
|
Merritt CR, Smith AE, Khanipov K, Golovko G, Dineley KT, Anastasio NC, Cunningham KA. Heightened cocaine-seeking in male rats associates with a distinct transcriptomic profile in the medial prefrontal cortex. Front Pharmacol 2022; 13:1022863. [PMID: 36588704 PMCID: PMC9797046 DOI: 10.3389/fphar.2022.1022863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Drug overdose deaths involving cocaine have skyrocketed, an outcome attributable in part to the lack of FDA-approved medications for the treatment of cocaine use disorder (CUD), highlighting the need to identify new pharmacotherapeutic targets. Vulnerability to cocaine-associated environmental contexts and stimuli serves as a risk factor for relapse in CUD recovery, with individual differences evident in the motivational aspects of these cues. The medial prefrontal cortex (mPFC) provides top-down control of striatal circuitry to regulate the incentive-motivational properties of cocaine-associated stimuli. Clinical and preclinical studies have identified genetic variations that impact the degree of executive restraint over drug-motivated behaviors, and we designed the present study to employ next-generation sequencing to identify specific genes associated with heightened cue-evoked cocaine-seeking in the mPFC of male, outbred rats. Rats were trained to stably self-administer cocaine, and baseline cue-reinforced cocaine-seeking was established. Rats were phenotyped as either high cue (HC) or low cue (LC) responders based upon lever pressing for previously associated cocaine cues and allowed 10 days of abstinence in their home cages prior to mPFC collection for RNA-sequencing. The expression of 309 genes in the mPFC was significantly different in HC vs. LC rats. Functional gene enrichment analyses identified ten biological processes that were overrepresented in the mPFC of HC vs. LC rats. The present study identifies distinctions in mPFC mRNA transcripts that characterizes individual differences in relapse-like behavior and provides prioritized candidates for future pharmacotherapeutics aimed to help maintain abstinence in CUD. In particular the Htr2c gene, which encodes the serotonin 5-HT2C receptor (5-HT2CR), is expressed to a lower extent in HC rats, relative to LC rats. These findings build on a plethora of previous studies that also point to the 5-HT2CR as an attractive target for the treatment of CUD.
Collapse
Affiliation(s)
- Christina R. Merritt
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ashley E. Smith
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kamil Khanipov
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - George Golovko
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kelly T. Dineley
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Noelle C. Anastasio
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
17
|
Brewer KM, Brewer KK, Richardson NC, Berbari NF. Neuronal cilia in energy homeostasis. Front Cell Dev Biol 2022; 10:1082141. [PMID: 36568981 PMCID: PMC9773564 DOI: 10.3389/fcell.2022.1082141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
A subset of genetic disorders termed ciliopathies are associated with obesity. The mechanisms behind cilia dysfunction and altered energy homeostasis in these syndromes are complex and likely involve deficits in both development and adult homeostasis. Interestingly, several cilia-associated gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis, including their roles in centrally mediated food intake and peripheral tissues, many questions remain. Here, we briefly discuss syndromic ciliopathies and monogenic cilia signaling mutations associated with obesity. We then focus on potential ways neuronal cilia regulate energy homeostasis. We discuss the literature around cilia and leptin-melanocortin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We also discuss the different brain regions where cilia are implicated in energy homeostasis and the potential for cilia dysfunction in neural development to contribute to obesity. We close with a short discussion on the challenges and opportunities associated with studies looking at neuronal cilia and energy homeostasis. This review highlights how neuronal cilia-mediated signaling is critical for proper energy homeostasis.
Collapse
Affiliation(s)
- Kathryn M. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Katlyn K. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicholas C. Richardson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Haqq AM, Chung WK, Dollfus H, Haws RM, Martos-Moreno GÁ, Poitou C, Yanovski JA, Mittleman RS, Yuan G, Forsythe E, Clément K, Argente J. Efficacy and safety of setmelanotide, a melanocortin-4 receptor agonist, in patients with Bardet-Biedl syndrome and Alström syndrome: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial with an open-label period. Lancet Diabetes Endocrinol 2022; 10:859-868. [PMID: 36356613 PMCID: PMC9847480 DOI: 10.1016/s2213-8587(22)00277-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Impaired cilial signalling in the melanocortin-4 receptor (MC4R) pathway might contribute to obesity in patients with Bardet-Biedl syndrome and Alström syndrome, rare genetic diseases associated with hyperphagia and early-onset severe obesity. We aimed to evaluate the effect of setmelanotide on bodyweight in these patients. METHODS This multicentre, randomised, 14-week double-blind, placebo-controlled, phase 3 trial followed by a 52-week open-label period, was performed at 12 sites (hospitals, clinics, and universities) in the USA, Canada, the UK, France, and Spain. Patients aged 6 years or older were included if they had a clinical diagnosis of Bardet-Biedl syndrome or Alström syndrome and obesity (defined as BMI >97th percentile for age and sex for those aged 6-15 years and ≥30 kg/m2 for those aged ≥16 years). Patients were randomly assigned (1:1) using a numerical randomisation code to receive up to 3·0 mg of subcutaneous setmelanotide or placebo once per day during the 14-week double-blind period, followed by open-label setmelanotide for 52 weeks. The primary endpoint, measured in the full analysis set, was the proportion of patients aged 12 years or older who reached at least a 10% reduction in bodyweight from baseline after 52 weeks of setmelanotide treatment. This study is registered with ClinicalTrials.gov, NCT03746522. FINDINGS Between Dec 10, 2018, and Nov 25, 2019, 38 patients were enrolled and randomly assigned to receive setmelanotide (n=19) or placebo (n=19; 16 with Bardet-Biedl syndrome and three with Alström syndrome in each group). In terms of the primary endpoint, 32·3% (95% CI 16·7 to 51·4; p=0·0006) of patients aged 12 years or older with Bardet-Biedl syndrome reached at least a 10% reduction in bodyweight after 52 weeks of setmelanotide. The most commonly reported treatment-emergent adverse events were skin hyperpigmentation (23 [61%] of 38) and injection site erythema (18 [48%]). Two patients had four serious adverse events (blindness, anaphylactic reaction, and suicidal ideation); none were considered related to setmelanotide treatment. INTERPRETATION Setmelanotide resulted in significant bodyweight reductions in patients with Bardet-Biedl syndrome; however, these results were inconclusive in patients with Alström syndrome. These results support the use of setmelanotide and provided the necessary evidence for approval of this drug as the first treatment for obesity in patients with Bardet-Biedl syndrome. FUNDING Rhythm Pharmaceuticals.
Collapse
Affiliation(s)
- Andrea M Haqq
- Division of Pediatric Endocrinology, University of Alberta, Edmonton, AB, Canada
| | - Wendy K Chung
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, New York, NY, USA
| | - Hélène Dollfus
- Department of Medical Genetics, CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Robert M Haws
- Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Gabriel Á Martos-Moreno
- Department of Pediatrics and Pediatric Endocrinology, Universidad Autónoma de Madrid, Hospital Infantil Universitario Niño Jesús, CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Christine Poitou
- Department of Nutrition, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, INSERM, NutriOmics Research Unit, Paris, France
| | - Jack A Yanovski
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Elizabeth Forsythe
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Karine Clément
- Department of Nutrition, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, INSERM, NutriOmics Research Unit, Paris, France
| | - Jesús Argente
- Division of Pediatric Endocrinology, University of Alberta, Edmonton, AB, Canada; IMDEA Food Institute, Madrid, Spain.
| |
Collapse
|
19
|
Yang DJ, Tran LT, Yoon SG, Seong JK, Shin DM, Choi YH, Kim KW. Primary cilia regulate adaptive responses to fasting. Metabolism 2022; 135:155273. [PMID: 35926636 DOI: 10.1016/j.metabol.2022.155273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Neuronal primary cilia are known to be a required organelle for energy balance and leptin action. However, whether primary cilia directly mediate adaptive responses during starvation is yet unknown. Therefore, we investigated the counterregulatory roles of primary cilia, and their related leptin action in energy-depleted condition. METHOD We generated leptin receptor (LepR) neuron-specific primary cilia knockout (Ift88 KOLepR) mice. Leptin-mediated electrophysiological properties of the neurons in fasting condition were assessed using patch-clamp technique. Adaptive responses and neuroendocrine reflexes were measured by monitoring counterregulatory hormones. RESULTS In fasting state, the leptin-induced neuronal excitability and leptin homeostasis were impaired in Ift88 KOLepR. In addition, the Ift88 KOLepR exhibited aberrant fasting responses including lesser body weight loss, decreased energy expenditure, and lower heat generation compared to wild-type littermates. Furthermore, the primary cilia in LepR neurons are necessary for counterregulatory responses and leptin-mediated neuroendocrine adaptation to starvation. CONCLUSION Our results demonstrated that the neuronal primary cilia are crucial neuronal components mediating the adaptive counterregulatory responses to starvation.
Collapse
Affiliation(s)
- Dong Joo Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Le Trung Tran
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea; Department of Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Seul Gi Yoon
- Korea Mouse Phenotyping Center, Seoul 08826, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genetics, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul 08826, Republic of Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Yun-Hee Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Ki Woo Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea; Department of Applied Biological Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea.
| |
Collapse
|
20
|
Ávalos Y, Hernández-Cáceres MP, Lagos P, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Joy-Immediato M, Venegas-Zamora L, Lopez-Gallardo E, Kretschmar C, Batista-Gonzalez A, Cifuentes-Araneda F, Toledo-Valenzuela L, Rodriguez-Peña M, Espinoza-Caicedo J, Perez-Leighton C, Bertocchi C, Cerda M, Troncoso R, Parra V, Budini M, Burgos PV, Criollo A, Morselli E. Palmitic acid control of ciliogenesis modulates insulin signaling in hypothalamic neurons through an autophagy-dependent mechanism. Cell Death Dis 2022; 13:659. [PMID: 35902579 PMCID: PMC9334645 DOI: 10.1038/s41419-022-05109-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.
Collapse
Affiliation(s)
- Yenniffer Ávalos
- grid.412179.80000 0001 2191 5013Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Pablo Lagos
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Pinto-Nuñez
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Rivera
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michelle Joy-Immediato
- grid.7870.80000 0001 2157 0406Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leslye Venegas-Zamora
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Erik Lopez-Gallardo
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Ana Batista-Gonzalez
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Flavia Cifuentes-Araneda
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Rodriguez-Peña
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Jasson Espinoza-Caicedo
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- grid.7870.80000 0001 2157 0406Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- grid.7870.80000 0001 2157 0406Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Cerda
- grid.443909.30000 0004 0385 4466Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Center for Medical Informatics and Telemedicine, Facultad de Medicina, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Biomedical Neuroscience Institute, Santiago, Chile
| | - Rodrigo Troncoso
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile
| | - Valentina Parra
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile ,grid.443909.30000 0004 0385 4466Network for the Study of High-Lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Autophagy Research Center, Santiago, Chile ,grid.443909.30000 0004 0385 4466Laboratory of Molecular and Cellular Pathology, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Patricia V. Burgos
- Autophagy Research Center, Santiago, Chile ,grid.442215.40000 0001 2227 4297Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile ,grid.7870.80000 0001 2157 0406Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile
| | - Eugenia Morselli
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile ,grid.442215.40000 0001 2227 4297Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
21
|
Turkkahraman D, Sirazi EC, Aykal G. Serum alpha-melanocyte-stimulating hormone (a-MSH), brain-derived neurotrophic factor (BDNF), and agouti-related protein (AGRP) levels in children with Prader-Willi or Bardet-Biedl syndromes. J Endocrinol Invest 2022; 45:1031-1037. [PMID: 35098494 DOI: 10.1007/s40618-021-01737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although leptin/melanocortin pathway pathologies in hypothalamus are thought to be the main cause of early-onset obesity and hyperphagia in PWS and BBS, the exact mechanism is still not known. OBJECTIVE To measure serum concentrations of a-MSH, BDNF and AGRP in a group of children with BBS or PWS. METHODS We recruited 12 subjects with PWS, 12 subjects with BBS, 28 obese controls (OC) and 26 lean controls (LC) matched for age, sex and puberty. Serum a-MSH, BDNF and AGRP levels were measured by the ELISA method. RESULTS The mean a-MSH level was lower in PWS than those of OC and LC (3729 ± 1319, 5211 ± 829 and 5681 ± 565 pg/ml, respectively, p < 0.001), and mean a-MSH was lower in OC than LC (p < 0.05). The mean BDNF level of PWS was higher than those of OC and LC (565 ± 122, 482 ± 102 and 391 ± 74 pg/ml, respectively, p < 0.001). On the other hand, mean a-MSH level of BBS was lower than those of OC and LC (4543 ± 658, 5211 ± 829 and 5681 ± 565 pg/ml, respectively, p < 0.001), and mean a-MSH was lower in OC than LC (p < 0.05). The mean BDNF level of BBS was higher than those of OC and LC (583 ± 115, 482 ± 102 and 391 ± 74 pg/ml, respectively, p < 0.001). Additionally, both in PWS and BBS, the mean BDNF level was higher in OC than LC (p < 0.01). Regarding AGRP level, there was no difference both in BBS and PWS compared to OC. CONCLUSION We found that the serum a-MSH levels of PWS and BBS groups are significantly lower compared to those of obese and lean controls. Therefore, we can speculate that the circulating a-MSH level does properly reflect its central production, and the serum a-MSH level might be a good biomarker to detect a-MSH deficiency in individuals suspected to have BBS or PWS, and also in those with POMC, PCSK1, and LEPR deficiency.
Collapse
Affiliation(s)
- D Turkkahraman
- Department of Pediatric Endocrinology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey.
| | - E C Sirazi
- Department of Pediatrics, Antalya Training and Research Hospital, Antalya, Turkey
| | - G Aykal
- Department of Biochemistry, Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
22
|
Lee CH, Kang GM, Kim MS. Mechanisms of Weight Control by Primary Cilia. Mol Cells 2022; 45:169-176. [PMID: 35387896 PMCID: PMC9001153 DOI: 10.14348/molcells.2022.2046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.
Collapse
Affiliation(s)
- Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Gil Myoung Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
23
|
Rial-Pensado E, Freire-Agulleiro O, Ríos M, Guo DF, Contreras C, Seoane-Collazo P, Tovar S, Nogueiras R, Diéguez C, Rahmouni K, López M. Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Mol Metab 2022; 59:101465. [PMID: 35218946 PMCID: PMC8933534 DOI: 10.1016/j.molmet.2022.101465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Bone morphogenetic protein 8B (BMP8B) plays a major role in the regulation of energy homeostasis by modulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Here, we investigated whether BMP8B's role in metabolism is affected by obesity and the possible molecular mechanisms underlying that action. Methods Central treatments with BMP8B were performed in rats fed a standard (SD) and high-fat diet (HFD), as well as in genetically modified mice. Energy balance studies, infrared thermographic analysis of BAT and molecular analysis of the hypothalamus, BAT and WAT were carried out. Results We show for the first time that HFD-induced obesity elicits resistance to the central actions of BMP8B on energy balance. This obesity-induced BMP8B resistance is explained by i) lack of effects on AMP-activated protein kinase (AMPK) signaling, ii) decreased BMP receptors signaling and iii) reduced expression of Bardet-Biedl Syndrome 1 (BBS1) protein, a key component of the protein complex BBSome in the ventromedial nucleus of the hypothalamus (VMH). The possible mechanistic involvement of BBS1 in this process is demonstrated by lack of a central response to BMP8B in mice carrying a single missense disease-causing mutation in the Bbs1 gene. Conclusions Overall, our data uncover a new mechanism of central resistance to hormonal action that may be of relevance in the pathophysiology of obesity. Central BMP8B induces BAT activation and browning through hypothalamic AMPK. Obesity elicits resistance to the central effects of BMP8B on energy balance. Obesity impairs the effect of BMP8B on AMPK, BMP Type I receptors signaling and BBS1 in the hypothalamus. Lack of BBS1 function recapitulates the thermogenic-induced resistance to central BMP8B.
Collapse
Affiliation(s)
- Eva Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Oscar Freire-Agulleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Marcos Ríos
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Deng Fu Guo
- Department of Neuroscience & Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Sulay Tovar
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience & Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
24
|
Abstract
The BBSome is an octameric protein complex involved in Bardet-Biedl syndrome (BBS), a human pleiotropic, autosomal recessive condition. Patients with BBS display various clinical features including obesity, hypertension, and renal abnormalities. Association studies have also linked the BBS genes to hypertension and other cardiovascular risks in the general population. The BBSome was originally associated with the function of cilia, a highly specialized organelle that extend from the cell membrane of most vertebrate cells. However, subsequent studies have implicated the BBSome in the control of a myriad of other cellular processes not related to cilia including cell membrane localization of receptors and gene expression. The development of animal models of BBS such as mouse lines lacking various components of the BBSome and associated proteins has facilitated studying their role in the control of cardiovascular function and deciphering the pathophysiological mechanisms responsible for the cardiovascular aberrations associated with BBS. These studies revealed the importance of the neuronal, renal, vascular, and cardiac BBSome in the regulation of blood pressure, renal function, vascular reactivity, and cardiac development. The BBSome has also emerged as a critical regulator of key systems involved in cardiovascular control including the renin-angiotensin system. Better understanding of the influence of the BBSome on the molecular and physiological processes relevant to cardiovascular health and disease has the potential of identifying novel mechanisms underlying hypertension and other cardiovascular risks.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Human Toxicology Graduate Program, University of Iowa Graduate College, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Iowa City VA Health Care System, Iowa City, IA, USA,Corresponding author: Kamal Rahmouni, Ph.D., Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA, , Tel: 319 353 5256, Fax: 319 353 5350
| |
Collapse
|
25
|
Yu X, Yan H, Li W. Recent advances in neuropeptide-related omics and gene editing: Spotlight on NPY and somatostatin and their roles in growth and food intake of fish. Front Endocrinol (Lausanne) 2022; 13:1023842. [PMID: 36267563 PMCID: PMC9576932 DOI: 10.3389/fendo.2022.1023842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Feeding and growth are two closely related and important physiological processes in living organisms. Studies in mammals have provided us with a series of characterizations of neuropeptides and their receptors as well as their roles in appetite control and growth. The central nervous system, especially the hypothalamus, plays an important role in the regulation of appetite. Based on their role in the regulation of feeding, neuropeptides can be classified as orexigenic peptide and anorexigenic peptide. To date, the regulation mechanism of neuropeptide on feeding and growth has been explored mainly from mammalian models, however, as a lower and diverse vertebrate, little is known in fish regarding the knowledge of regulatory roles of neuropeptides and their receptors. In recent years, the development of omics and gene editing technology has accelerated the speed and depth of research on neuropeptides and their receptors. These powerful techniques and tools allow a more precise and comprehensive perspective to explore the functional mechanisms of neuropeptides. This paper reviews the recent advance of omics and gene editing technologies in neuropeptides and receptors and their progresses in the regulation of feeding and growth of fish. The purpose of this review is to contribute to a comparative understanding of the functional mechanisms of neuropeptides in non-mammalians, especially fish.
Collapse
|
26
|
Chandra B, Tung ML, Hsu Y, Scheetz T, Sheffield VC. Retinal ciliopathies through the lens of Bardet-Biedl Syndrome: Past, present and future. Prog Retin Eye Res 2021; 89:101035. [PMID: 34929400 DOI: 10.1016/j.preteyeres.2021.101035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The primary cilium is a highly specialized and evolutionary conserved organelle in eukaryotes that plays a significant role in cell signaling and trafficking. Over the past few decades tremendous progress has been made in understanding the physiology of cilia and the underlying pathomechanisms of various ciliopathies. Syndromic ciliopathies consist of a group of disorders caused by ciliary dysfunction or abnormal ciliogenesis. These disorders have multiorgan involvement in addition to retinal degeneration underscoring the ubiquitous distribution of primary cilia in different cell types. Genotype-phenotype correlation is often challenging due to the allelic heterogeneity and pleiotropy of these disorders. In this review, we discuss the clinical and genetic features of syndromic ciliopathies with a focus on Bardet-Biedl syndrome (BBS) as a representative disorder. We discuss the structure and function of primary cilia and their role in retinal photoreceptors. We describe the progress made thus far in understanding the functional and genetic characterization including expression quantitative trait locus (eQTL) analysis of BBS genes. In the future directions section, we discuss the emerging technologies, such as gene therapy, as well as anticipated challenges and their implications in therapeutic development for ciliopathies.
Collapse
Affiliation(s)
- Bharatendu Chandra
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Todd Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
27
|
Mahmoudinezhad M, Abbasalizad Farhangi M. Association between Ag-RP, alpha-MSH and cardiovascular risk factors regarding adherence to diet quality index-international (DQI-I) among obese individuals. J Cardiovasc Thorac Res 2021; 13:320-329. [PMID: 35047137 PMCID: PMC8749370 DOI: 10.34172/jcvtr.2021.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction: Obesity is a strong promoter of cardiometabolic risk factors and is associated with several chronic comorbidities. Recently, the role of α-melanocyte stimulating hormone (α-MSH) and agouti related peptide (Ag-RP) in regulation of energy balance has attracted much attention. In current study, we evaluated the association between α-MSH and Ag-RP with cardiometabolic factors among obese individuals with different adherence to Diet Quality Index-International (DQI-I) values.
Methods: In this research, 188 obese adults aged between 20 and 50 years old and body mass index (BMI) between 30 and 40 kg/m2 were recruited. Dietary intakes of participants and DQI-I calculation was performed using a semi-quantitative food frequency questionnaire (FFQ) with 132 food items. Serum glucose, lipids, insulin, and plasma α-MSH and Ag-RP levels were measured using ELISA kits. Homeostasis model assessment for insulin resistance index (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) were also calculated.
Results: Among those with the lowest adherence to DQI-I, Ag-RP was positively associated with systolic blood pressure (SBP) (P = 0.03) among males, which was associated with waist circumference (WC) (P = 0.01) and diastolic blood pressure (DBP) (P = 0.01). Moreover, among males with low and moderate adherence to DQI-I, α-MSH was positively associated with insulin (P = 0.04), weight (P = 0.03), WC (P < 0.01), SDP (P = 0.02) and DBP (P = 0.01). Also, Ag-RP showed a positive association with BMI values (R2 = 0.03; P = 0.03).
Conclusion: According to our findings, in obese subjects with poor to moderate adherence to DQI-I, Ag-RP and α-MSH were in positive correlation with cardiometabolic risk factors. These findings further clarify the clinical importance of these parameters as prognostic factors of cardiometabolic abnormalities.
Collapse
Affiliation(s)
- Mahsa Mahmoudinezhad
- Drug Applied Research Center, Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Abbasalizad Farhangi
- Drug Applied Research Center, Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Yang DJ, Hong J, Kim KW. Hypothalamic primary cilium: A hub for metabolic homeostasis. Exp Mol Med 2021; 53:1109-1115. [PMID: 34211092 PMCID: PMC8333261 DOI: 10.1038/s12276-021-00644-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is a global health problem that is associated with adverse consequences such as the development of metabolic disorders, including cardiovascular disease, neurodegenerative disorders, and type 2 diabetes. A major cause of obesity is metabolic imbalance, which results from insufficient physical activity and excess energy intake. Understanding the pathogenesis of obesity, as well as other metabolic disorders, is important in the development of methods for prevention and therapy. The coordination of energy balance takes place in the hypothalamus, a major brain region that maintains body homeostasis. The primary cilium is an organelle that has recently received attention because of its role in controlling energy balance in the hypothalamus. Defects in proteins required for ciliary function and formation, both in humans and in mice, have been shown to cause various metabolic disorders. In this review, we provide an overview of the critical functions of primary cilia, particularly in hypothalamic areas, and briefly summarize the studies on the primary roles of cilia in specific neurons relating to metabolic homeostasis.
Collapse
Affiliation(s)
- Dong Joo Yang
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | | | - Ki Woo Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| |
Collapse
|
29
|
Wang L, Liu Y, Stratigopoulos G, Panigrahi S, Sui L, Zhang Y, Leduc CA, Glover HJ, De Rosa MC, Burnett LC, Williams DJ, Shang L, Goland R, Tsang SH, Wardlaw S, Egli D, Zheng D, Doege CA, Leibel RL. Bardet-Biedl syndrome proteins regulate intracellular signaling and neuronal function in patient-specific iPSC-derived neurons. J Clin Invest 2021; 131:146287. [PMID: 33630762 DOI: 10.1172/jci146287] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.
Collapse
Affiliation(s)
- Liheng Wang
- Naomi Berrie Diabetes Center and.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - George Stratigopoulos
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Sunil Panigrahi
- Naomi Berrie Diabetes Center and.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Lina Sui
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Yiying Zhang
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Charles A Leduc
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Hannah J Glover
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Maria Caterina De Rosa
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Lisa C Burnett
- Naomi Berrie Diabetes Center and.,Levo Therapeutics, Skokie, Illinois, USA
| | - Damian J Williams
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Linshan Shang
- Naomi Berrie Diabetes Center and.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA.,Columbia Stem Cell Initiative and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sharon Wardlaw
- Naomi Berrie Diabetes Center and.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Claudia A Doege
- Naomi Berrie Diabetes Center and.,Columbia Stem Cell Initiative and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center and.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
30
|
Blaess S, Wachten D. The BBSome: a nexus controlling energy metabolism in the brain. J Clin Invest 2021; 131:148903. [PMID: 33855975 DOI: 10.1172/jci148903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a syndromic ciliopathy that has obesity as a cardinal feature. BBS is caused by mutations in BBS genes. BBS proteins control primary cilia function, and BBS mutations therefore lead to dysfunctional primary cilia. Obesity in patients with BBS is mainly caused by hyperphagia due to dysregulated neuronal function in the brain, in particular in the hypothalamus. However, the mechanism by which mutations in BBS genes result in dysfunction in hypothalamic neurons is not well understood. In this issue of the JCI, Wang et al. used BBS and non-BBS patient-derived induced pluripotent stem cells to generate neurons and hypothalamic neurons. Using this human model system, the authors demonstrated that mutations in BBS genes affected primary cilia function, neuronal morphology, and signaling pathways regulating the function of hypothalamic neurons, which control energy homeostasis. This study provides important insights into the mechanisms of BBS-induced obesity.
Collapse
Affiliation(s)
- Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology and
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Day SE, Muller YL, Koroglu C, Kobes S, Wiedrich K, Mahkee D, Kim HI, Van Hout C, Gosalia N, Ye B, Shuldiner AR, Knowler WC, Hanson RL, Bogardus C, Baier LJ. Exome Sequencing of 21 Bardet-Biedl Syndrome (BBS) Genes to Identify Obesity Variants in 6,851 American Indians. Obesity (Silver Spring) 2021; 29:748-754. [PMID: 33616283 PMCID: PMC8048836 DOI: 10.1002/oby.23115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE In an ongoing effort to identify the genetic variation that contributes to obesity in American Indians, known Bardet-Biedl syndrome (BBS) genes were analyzed for an effect on BMI and leptin signaling. METHODS Potentially deleterious variants (Combined Annotation Dependent Depletion score > 20) in BBS genes were identified in whole-exome sequence data from 6,851 American Indians informative for BMI. Common variants (detected in ≥ 10 individuals) were analyzed for association with BMI; rare variants (detected in < 10 individuals) were analyzed for mean BMI of carriers. Functional assessment of variants' effect on signal transducer and activator of transcription 3 (STAT3) activity was performed in vitro. RESULTS One common variant, rs59252892 (Thr549Ile) in BBS9, was associated with BMI (P = 0.0008, β = 25% increase per risk allele). Among rare variants for which carriers had severe obesity (mean BMI > 40 kg/m2 ), four were in BBS9. In vitro analysis of BBS9 found the Ile allele at Thr549Ile had a 20% increase in STAT3 activity compared with the Thr allele (P = 0.01). Western blot analysis showed the Ile allele had a 15% increase in STAT3 phosphorylation (P = 0.006). Comparable functional results were observed with Ser545Gly and Val209Leu but not Leu665Phe and Lys810Glu. CONCLUSIONS Potentially functional variants in BBS genes in American Indians are reported. However, functional evidence supporting a causal role for BBS9 in obesity is inconclusive.
Collapse
Affiliation(s)
- Samantha E. Day
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Yunhua L. Muller
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Cigdem Koroglu
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Kim Wiedrich
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Darin Mahkee
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Hye In Kim
- Regeneron Genetics CenterTarrytownNew YorkUSA
| | | | | | - Bin Ye
- Regeneron Genetics CenterTarrytownNew YorkUSA
| | | | | | - William C. Knowler
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Robert L. Hanson
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| | - Leslie J. Baier
- Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthPhoenixArizonaUSA
| |
Collapse
|
32
|
Haws R, Brady S, Davis E, Fletty K, Yuan G, Gordon G, Stewart M, Yanovski J. Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in Bardet-Biedl syndrome. Diabetes Obes Metab 2020; 22:2133-2140. [PMID: 32627316 PMCID: PMC7689750 DOI: 10.1111/dom.14133] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
Abstract
AIM To report an analysis of ~1 year of setmelanotide treatment for obesity and hunger, as well as metabolic and cardiac outcomes, in individuals with Bardet-Biedl syndrome (BBS). MATERIALS AND METHODS Individuals aged 12 years and older with BBS received once-daily setmelanotide. The dose was titrated every 2 weeks to establish the individual therapeutic dose (≤3 mg); treatment continued for an additional 10 weeks. Participants who lost 5 kg or more (or ≥5% of body weight if <100 kg at baseline) continued into the 52-week extension phase. The primary outcome was mean percent change from baseline in body weight at 3 months. Hunger scores and safety were secondary outcomes. RESULTS From February 2017 and February 2018, 10 individuals were screened; eight completed the 3-month treatment phase and seven completed the extension phase. Mean percent change in body weight from baseline to 3 months was -5.5% (90% CI, -9.3% to -1.6%; n = 8); change from baseline was -11.3% (90% CI, -15.5% to -7.0%; n = 8) at 6 months and -16.3% (90% CI, -19.9% to -12.8%; n = 7) at 12 months. All participants reported at least one treatment-emergent adverse event (AE), most commonly injection-site reaction. No AEs led to study withdrawal or death. Most, morning, and average hunger scores were reduced across time points. CONCLUSIONS Setmelanotide reduced body weight and hunger in individuals with BBS and had a safety profile consistent with previous reports. Setmelanotide may be a treatment option in individuals with BBS-associated obesity and hyperphagia.
Collapse
Affiliation(s)
- Robert Haws
- Marshfield Clinic Research InstituteMarshfieldWisconsinUSA
| | - Sheila Brady
- Section on Growth and ObesityEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMarylandUSA
| | - Elisabeth Davis
- Section on Growth and ObesityEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMarylandUSA
| | | | - Guojun Yuan
- Rhythm PharmaceuticalsBostonMassachusettsUSA
| | | | | | - Jack Yanovski
- Section on Growth and ObesityEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
33
|
Abstract
The BBSome, a complex of 8 BBS (Bardet-Biedl syndrome) proteins known for its role in the control of cilia function and other cellular processes, has been implicated in blood pressure control, but the underlying mechanisms are not fully understood. Here, we show that neuronal BBSome plays an important role in blood pressure regulation. Targeted inactivation of the BBSome in the nervous system through Bbs1 gene deletion causes sympathetically mediated increase in blood pressure in mice. This phenotype is reproduced by selective ablation of the Bbs1 gene from the LRb (leptin receptor)-expressing neurons. Strikingly, the well-known role of the BBSome in the regulation of cilia formation and function is unlikely to account for the prohypertensive effect of BBSome inactivation as disruption of the IFT (intraflagellar transport) machinery required for ciliogenesis by deleting the Ift88 gene in LRb neurons had no effect on arterial pressure and sympathetic nerve activity. Furthermore, we found that Bbs1 gene deletion from AgRP (agouti-related protein) neurons or POMC (proopiomelanocortin) neurons increased renal and splanchnic sympathetic nerve activity without altering blood pressure. This lack of blood pressure increase despite the sympathetic overdrive may be explained by vascular adrenergic desensitization as indicated by the reduced vascular contractile response evoked by phenylephrine and the decreased expression of adrenergic receptors. Our results identify the neuronal BBSome as a new player in hemodynamic, sympathetic, and vascular regulation, in a manner independent of cilia.
Collapse
Affiliation(s)
- Deng-Fu Guo
- From the Department of Neuroscience and Pharmacology (D.-F.G., J.J.R., D.A.M., K.R.), University of Iowa Carver College of Medicine, Iowa City
| | - John J Reho
- From the Department of Neuroscience and Pharmacology (D.-F.G., J.J.R., D.A.M., K.R.), University of Iowa Carver College of Medicine, Iowa City
| | - Donald A Morgan
- From the Department of Neuroscience and Pharmacology (D.-F.G., J.J.R., D.A.M., K.R.), University of Iowa Carver College of Medicine, Iowa City
| | - Kamal Rahmouni
- From the Department of Neuroscience and Pharmacology (D.-F.G., J.J.R., D.A.M., K.R.), University of Iowa Carver College of Medicine, Iowa City.,Department of Internal Medicine (K.R.), University of Iowa Carver College of Medicine, Iowa City.,Obesity Research and Education Initiative (K.R.), University of Iowa Carver College of Medicine, Iowa City.,Fraternal Order of Eagles Diabetes Research Center (K.R.), University of Iowa Carver College of Medicine, Iowa City.,Iowa Neuroscience Institute (K.R.), University of Iowa Carver College of Medicine, Iowa City.,Veterans Affairs Health Care System, Iowa City (K.R.)
| |
Collapse
|