1
|
van Allen KA, Gang N, Hoyeck MP, Perera I, Zhang D, Atlas E, Lynn FC, Bruin JE. Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species. Islets 2024; 16:2361996. [PMID: 38833523 DOI: 10.1080/19382014.2024.2361996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic β-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 μg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat β-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.
Collapse
Affiliation(s)
- Kyle A van Allen
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Noa Gang
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Myriam P Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Dahai Zhang
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Lyu Z, Kobayashi H, Iwase K, Haraguchi K, Fujii Y, Harada KH. Relationships among CYP2B6 genetic variants and serum levels of multiple polychlorinated biphenyls and hydroxylated metabolites in a Japanese population. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136953. [PMID: 39724708 DOI: 10.1016/j.jhazmat.2024.136953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Production of polychlorinated biphenyls (PCBs) has been banned since 2001 but health risks from exposure persist. PCBs are metabolized by cytochrome P450 enzymes, including CYP2B6. However, the link between CYP2B6 gene polymorphisms and PCB metabolisms is poorly characterized. This study investigated the relationships among serum levels of major indicator PCBs and hydroxylated PCBs (OH-PCBs), which are PCB metabolites, and polymorphisms in CYP2B6. Blood samples (n = 129) were analyzed for single nucleotide polymorphisms in CYP2B6 (p.Q172H and p.K262R), and the corresponding haplotypes (*1, *4, *6) were determined. Concentrations of PCBs and OH-PCBs were determined using gas chromatography and mass spectrometer. Congener-specific variations in PCB metabolism were associated with different CYP2B6 genotypes, particularly * 1/* 4 (hypothesized to increased expression) and * 6/* 6 (hypothesized to decreased expression). For certain PCBs, the * 1/* 4 genotype was linked to increased metabolite-to-parent compound ratios, while * 6/* 6 was associated with decreased ratios, as observed for PCB146 (β = 0.192, 95 % CI: [0.100, 0.283], p < 0.0001 for *1/*4; β = -0.235, 95 % CI: [-0.366, -0.105], p = 0.001 for *6/*6). However, other PCBs, such as PCB170 and PCB183, exhibited opposite or more complex patterns. Our findings indicate intricate effects of CYP2B6 gene polymorphisms on PCB metabolism and highlight the potential for genotype-specific risks in PCB-related toxicity.
Collapse
Affiliation(s)
- Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan.
| | - Kodai Iwase
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Koichi Haraguchi
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Grant-Alfieri A, Herman WH, Watkins DJ, Batterman S, Karvonen-Gutierrez C, Park SK. Associations of serum persistent organic pollutant concentrations with incident diabetes in midlife women: The Study of Women's Health Across the Nation Multi-Pollutant Study. ENVIRONMENTAL RESEARCH 2024; 260:119582. [PMID: 38992756 PMCID: PMC11656409 DOI: 10.1016/j.envres.2024.119582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that can negatively impact metabolic health through pathways including endocrine disruption. Few studies have evaluated diabetes risk associated with PBDEs. Little is known about the joint effect of exposure to POP mixtures on diabetes risk. OBJECTIVES We investigated the relationship between POPs, individually and as mixtures, and diabetes development over 18 years (1999-2016) in midlife women. METHODS We measured lipid-standardized serum concentrations of 34 PCBs, 19 OCPs, and 14 PBDEs in 1040 midlife women aged 45-56 years from the Study of Women's Health Across the Nation. We tested the association between POPs measured in 1999/2000 and incident diabetes using Cox proportional hazards models. We evaluated diabetes risk associated with the overall POP mixture using Quantile-Based G-Computation (QBGC). RESULTS For most mixture components, single pollutant and mixtures analyses indicated null associations with diabetes risk, however results were inconsistent. After adjustment, hazard ratios (HRs) of developing diabetes (95% CI) associated with upper exposure tertiles (T2/T3) compared with the first tertile (T1), were 1.7 (1.0, 2.8) at T2 and 1.5 (0.84, 2.7) at T3 for hexachlorobenzene and 1.9 (1.1, 3.3) at T2 and 1.6 (0.88, 2.9) at T3 for PCB 123. A doubling of PBDE 47 was associated with 1.11 (1.00, 1.24) times the risk of T2D. QBGC identified no association for the overall joint effect of the POP mixture on diabetes (HR = 1.04 [0.53, 2.07]). CONCLUSION Exposure to a mixture of PCBs, OCPs, and PBDEs was not associated with incident diabetes in midlife U.S. women, although some individual POPs demonstrated significant yet inconsistent associations with diabetes. Non-linear and non-monotonic dose-response dynamics deserve further exploration. More research is needed on the diabetogenic effects of PBDEs.
Collapse
Affiliation(s)
- Amelia Grant-Alfieri
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - William H Herman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Sung Kyun Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Ying T, Liu X, Zhang L, Cao W, Wen S, Wu Y, He G, Li J. Benchmark Dose for Dioxin Based on Gestational Diabetes Mellitus Using Coexposure Statistical Methods and an Optimized Physiologically Based Toxicokinetic Model. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:661-671. [PMID: 39512389 PMCID: PMC11540123 DOI: 10.1021/envhealth.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 11/15/2024]
Abstract
Dioxins are ubiquitous endocrine-disrupting substances, but determining the effects and benchmark doses in situations of coexposure is highly challenging. The objective of this study was to assess the relationship between dioxin andgestational diabetes mellitus (GDM), calculate the benchmark dose (BMD) of dioxin in coexposure scenarios, and derive a daily exposure threshold using an optimized physiologically based toxicokinetic (PBTK) model. Based on a nested case-control study including 77 cases with GDM and 154 controls, serum levels of 29 dioxin-like compounds (DLCs) along with 10 perfluoroalkyl acids (PFAAs), seven polybrominated diphenyl ethers (PBDEs), and five non-dioxin-like polychlorinated biphenyls (ndl-PCBs) were measured at 9-16 weeks of gestation. Bayesian machine kernel regression (BKMR) was employed to identify significant chemicals, and probit and logistic models were used to calculate BMD adjusted for significant chemicals. A physiologically based toxicokinetic (PBTK) model was optimized using polyfluorinated dibenzo-p-dioxins and dibenzofurans (PFDD/Fs) data by the Bayesian-Monte Carlo Markov chain method and was used to determine the daily dietary exposure threshold. The median serum level of total dioxin toxic equivalent (TEQ) was 7.72 pg TEQ/g fat. Logistic regression analysis revealed that individuals in the fifth quantile of total TEQ level had significantly higher odds of developing GDM compared to those in the first quantile (OR, 8.87; 95% CI 3.19, 27.58). The BKMR analysis identified dioxin TEQ and BDE-153 as the compounds with the greatest influence. The binary logistic and probit models showed that the BMD10 (benchmark dose corresponding to a 10% extra risk) and BMDL10 (lower bound on the BMD10) were 3.71 and 3.46 pg TEQ/g fat, respectively, when accounting for coexposure to BDE-153 up to the 80% level. Using the optimized PBTK model and modifying factor, it was estimated that daily exposure should be below 4.34 pg TEQ kg-1 bw week-1 in order to not reach a harmful serum concentration for GDM. Further studies should utilize coexposure statistical methods and physiologically based pharmacokinetic (PBTK) models in reference dose calculation.
Collapse
Affiliation(s)
- Tao Ying
- School
of Public Health, Key Laboratory of Public Health Safety of the Ministry
of Education, Fudan University, Shanghai 200032, China
| | - Xin Liu
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of
Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
- Key
Laboratory for Deep Processing of Major Grain and Oil (The Chinese
Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Zhang
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of
Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Wencheng Cao
- China
Hubei Provincial Center for Disease Control and Prevention, Hubei
Provincial Academy of Preventive Medicine, Hubei 430023, China
| | - Sheng Wen
- China
Hubei Provincial Center for Disease Control and Prevention, Hubei
Provincial Academy of Preventive Medicine, Hubei 430023, China
| | - Yongning Wu
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of
Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Gengsheng He
- School
of Public Health, Key Laboratory of Public Health Safety of the Ministry
of Education, Fudan University, Shanghai 200032, China
| | - Jingguang Li
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of
Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
5
|
Singh S, Kriti M, K.S. A, Sarma DK, Verma V, Nagpal R, Mohania D, Tiwari R, Kumar M. Deciphering the complex interplay of risk factors in type 2 diabetes mellitus: A comprehensive review. Metabol Open 2024; 22:100287. [PMID: 38818227 PMCID: PMC11137529 DOI: 10.1016/j.metop.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The complex and multidimensional landscape of type 2 diabetes mellitus (T2D) is a major global concern. Despite several years of extensive research, the precise underlying causes of T2D remain elusive, but evidence suggests that it is influenced by a myriad of interconnected risk factors such as epigenetics, genetics, gut microbiome, environmental factors, organelle stress, and dietary habits. The number of factors influencing the pathogenesis is increasing day by day which worsens the scenario; meanwhile, the interconnections shoot up the frame. By gaining deeper insights into the contributing factors, we may pave the way for the development of personalized medicine, which could unlock more precise and impactful treatment pathways for individuals with T2D. This review summarizes the state of knowledge about T2D pathogenesis, focusing on the interplay between various risk factors and their implications for future therapeutic strategies. Understanding these factors could lead to tailored treatments targeting specific risk factors and inform prevention efforts on a population level, ultimately improving outcomes for individuals with T2D and reducing its burden globally.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Mona Kriti
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Anamika K.S.
- Christ Deemed to Be University Bangalore, Karnataka, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Dheeraj Mohania
- Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Rajnarayan Tiwari
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| |
Collapse
|
6
|
Long M, Wielsøe M, Bech BH, Henriksen TB, Bonefeld-Jørgensen EC. Maternal serum dioxin-like activity and gestational age at birth and indices of foetal growth: The Aarhus birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165286. [PMID: 37422229 DOI: 10.1016/j.scitotenv.2023.165286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Human exposure to lipophilic persistent organic pollutants (lipPOP) is ubiquitous and life-long, beginning during foetal development. Exposure to lipPOP elicits a number of species and tissue specific responses including dioxin-like activity which involve the activation of aryl hydrocarbon receptor (AhR). This study aims i) to describe the combined dioxin-like activity in serum from Danish pregnant women collected during 2011-2013; ii) to assess the association between maternal serum dioxin-like activity, gestational age at birth and foetal growth indices. The serum lipPOP fraction was extracted using Solid Phase Extraction and cleaned-up on Supelco multi-layer silica and florisil columns. The combined dioxin-like activity of the extract was determined using the AhR reporter gene bioassay, expressed as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalent (TEQ) [AhR-TEQ (pg/g lipid)]. The associations of AhR-TEQ and foetal growth indices (birth weight, birth length and head circumference) and gestational age were assessed by linear regression models. We detected AhR-TEQ in 93.9 % of maternal first trimester serum samples, with a median level of 185 pg/g lipid. Each ln-unit increase in AhR-TEQ was associated with an increase in birth weight of 36 g (95 % CI: 5; 68), birth length of 0.2 cm (95 % CI: 0.01; 0.3) and pregnancy duration of 1 day (95 % CI: 0; 1.5). In women who never smoked, higher AhR-TEQ values were associated with higher birth weight and longer duration of gestation, while in smokers the association was the opposite. Mediation analyses suggested that gestational age may mediate the association of AhR-TEQ with foetal growth indices. We conclude that AhR activating substances are present in the bloodstream of almost all pregnant women in Denmark and the AhR-TEQ level was around four times higher than previously reported. The AhR-TEQ was associated with slightly longer gestational duration and thereby higher birth weight and birth length.
Collapse
Affiliation(s)
- Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Bodil Hammer Bech
- Research unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland Center for Health Research, University of Greenland, Nuuk, Greenland.
| |
Collapse
|
7
|
Teglas T, Torices S, Taylor M, Coker D, Toborek M. Exposure to polychlorinated biphenyls selectively dysregulates endothelial circadian clock and endothelial toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131499. [PMID: 37126901 PMCID: PMC10202419 DOI: 10.1016/j.jhazmat.2023.131499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) are lipophilic and persistent environmental toxicants, which pose health threats to the exposed population. Among several organs and cell types, vascular tissue and endothelial cells are especially prone to PCB-induced toxicity. Exposure to PCBs can exert detrimental impacts on biological pathways, expression of transcription factors, and tight junction proteins that are integral to the functionality of endothelial cells. Because biological and cellular processes are tightly regulated by circadian rhythms, and disruption of the circadian system may cause several diseases, we evaluated if exposure to PCBs can alter the expression of the major endothelial circadian regulators. In addition, we studied if dysregulation of circadian rhythms by silencing the brain and muscle ARNT-like 1 (Bmal1) gene can contribute to alterations of brain endothelial cells in response to PCB treatment. We demonstrated that diminished expression of Bmal1 enhances PCB-induced dysregulation of tight junction complexes, such as the expression of occludin, JAM-2, ZO-1, and ZO-2 especially at pathologically relevant longer PCB exposure times. Overall, the obtained results imply that dysregulation of the circadian clock is involved in endothelial toxicity of PCBs. The findings provide new insights for toxicological studies focused on the interactions between environmental pollutants and regulation of circadian rhythms.
Collapse
Affiliation(s)
- Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Madison Taylor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Desiree Coker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA; Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
8
|
Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J Endocrinol 2023; 258:e220247. [PMID: 37074385 PMCID: PMC10330380 DOI: 10.1530/joe-22-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
9
|
Haque N, Ojo ES, Krager SL, Tischkau SA. Deficiency of Adipose Aryl Hydrocarbon Receptor Protects against Diet-Induced Metabolic Dysfunction through Sexually Dimorphic Mechanisms. Cells 2023; 12:1748. [PMID: 37443781 PMCID: PMC10340611 DOI: 10.3390/cells12131748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The molecular mechanisms underlying diet-induced obesity are complex and remain unclear. The activation of the aryl hydrocarbon receptor (AhR), a xenobiotic sensor, by obesogens may contribute to diet-induced obesity through influences on lipid metabolism and insulin resistance acting at various sites, including adipose tissue. Thus, our hypothesis was that conditional AhR depletion, specifically from mature adipose tissue (CadKO), would improve high-fat diet (HFD)-induced metabolic dysfunction. CadKO protects mice from HFD-induced weight gain. CadKO females eat fewer calories, leading to increased energy expenditure (EE) and improved glucose tolerance on HFD. Our exploration of adipose tissue biology suggests that the depletion of AhR from adipocytes provides female mice with an increased capacity for adipogenesis and lipolysis, allowing for the maintenance of a healthy adipocyte phenotype. The HFD-induced leptin rise was reduced in CadKO females, but the hypothalamic leptin receptor (LepR) was increased in the energy regulatory regions of the hypothalamus, suggesting an increased sensitivity to leptin. The estrogen receptor α (ERα) was higher in CadKO female adipose tissue and the hypothalamus. CadKO males displayed a delayed progression of obesity and insulin resistance. In males, CadKO ameliorated proinflammatory adipocytokine secretion (such as TNFα, IL1β, IL6) and displayed reduced inflammatory macrophage infiltration into adipose depots. Overall, CadKO improves weight control and systemic glucose homeostasis under HFD challenge but to a more profound extent in females. CadKO facilitates a lean phenotype in females and mediates healthy adipose-hypothalamic crosstalk. In males, adipose-specific AhR depletion delays the development of obesity and insulin resistance through the maintenance of healthy crosstalk between adipocytes and immune cells.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (N.H.); (E.S.O.); (S.L.K.)
| | - Emmanuel S. Ojo
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (N.H.); (E.S.O.); (S.L.K.)
| | - Stacey L. Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (N.H.); (E.S.O.); (S.L.K.)
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (N.H.); (E.S.O.); (S.L.K.)
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
10
|
Dev P, Chakravarty K, Pandey M, Ranjan R, Cyriac M, Mishra VN, Pathak A. Effect Of Persistent Organic Pollutants In Patients With Ischemic Stroke And All Stroke: A Systematic Review And Meta-Analysis. Toxicology 2023:153567. [PMID: 37268249 DOI: 10.1016/j.tox.2023.153567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
The role of environmental contaminants and their association with stroke is still being determined. Association has been shown with air pollution, noise, and water pollution; however, the results are inconsistent across studies. A systematic review and meta-analysis of the effect of persistent organic pollutants (POP) in ischemic stroke patients were conducted; a comprehensive literature search was carried out until 30th June 2021 from different databases. The quality of all the articles which met our inclusion criteria was assessed using Newcastle-Ottawa scaling; five eligible studies were included in our systematic review. The most studied POP in ischemic stroke was polychlorinated biphenyls (PCBs), and they have shown a trend for association with ischemic stroke. The study also revealed that living near a source of POPs contamination constitutes a risk of exposure and an increased risk of ischemic stroke. Although our study provides a strong positive association of POPs with ischemic stroke, more extensive studies must be conducted to prove the association.
Collapse
Affiliation(s)
- Priya Dev
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi-221005.
| | | | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Science, Banaras Hindu University, Varanasi-221005.
| | - Rakesh Ranjan
- Institute of Medical Science, Banaras Hindu University, Varanasi-221005.
| | - Mareena Cyriac
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi-221005.
| | - Vijaya Nath Mishra
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi-221005.
| | - Abhishek Pathak
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi-221005.
| |
Collapse
|
11
|
Critical Overview on Endocrine Disruptors in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054537. [PMID: 36901966 PMCID: PMC10003192 DOI: 10.3390/ijms24054537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases. These chronic metabolic disorders are heterogeneous to which genetic factors contribute, but so do prenatal and postnatal life environmental factors including a sedentary lifestyle, overweight, and obesity. However, these classical risk factors alone cannot explain the rapid evolution of the prevalence of T2D and the high prevalence of type 1 diabetes in particular areas. Among environmental factors, we are in fact exposed to a growing amount of chemical molecules produced by our industries or by our way of life. In this narrative review, we aim to give a critical overview of the role of these pollutants that can interfere with our endocrine system, the so-called endocrine-disrupting chemicals (EDCs), in the pathophysiology of diabetes and metabolic disorders.
Collapse
|
12
|
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health 2023; 11:1140786. [PMID: 36908414 PMCID: PMC9999012 DOI: 10.3389/fpubh.2023.1140786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming increasingly prevalent with the improvement of people's living standards in recent years, especially in urban areas. The emerging environmental contaminant is a newly-proposed concept in the progress of industrialization and modernization, referring to synthetic chemicals that were not noticed or researched before, which may lead to many chronic diseases, including IBD. The emerging contaminants mainly include microplastics, endocrine-disrupting chemicals, chemical herbicides, heavy metals, and persisting organic pollutants. In this review, we summarize the adverse health effect of these emerging contaminants on humans and their relationships with IBD. Therefore, we can better understand the impact of these new emerging contaminants on IBD, minimize their exposures, and lower the future incidence of IBD.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xueyi Mao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Centre for Global Health, Zhejiang University, Hangzhou, China
| | - Angran Zhu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiya Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Peng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
13
|
Rice BB, Sammons KW, Ngo Tenlep SY, Weltzer MT, Reynolds LJ, Rashid CS, Swanson HI, Pearson KJ. Exposure to PCB126 during the nursing period reversibly impacts early-life glucose tolerance. Front Endocrinol (Lausanne) 2023; 14:1085958. [PMID: 37033268 PMCID: PMC10073482 DOI: 10.3389/fendo.2023.1085958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental organic pollutants known to have detrimental health effects. Using a mouse model, we previously demonstrated that PCB126 exposure before and during pregnancy and throughout the perinatal period adversely affected offspring glucose tolerance and/or body composition profiles. The purpose of this study was to investigate the glucose tolerance and body composition of offspring born to dams exposed to PCB126 during the nursing period only. Female ICR mice were bred, and half of the dams were exposed to either vehicle (safflower oil) or 1 µmole PCB126 per kg of body weight via oral gavage on postnatal days (PND) 3, 10, and 17 (n = 9 per group). Offspring body weight, lean and fat mass, and glucose tolerance were recorded every three weeks. PCB126 treatment did not alter dam nor offspring body weight (p > 0.05). PCB126-exposed male and female offspring displayed normal body composition (p > 0.05) relative to vehicle-exposed offspring. However, both male and female offspring that were exposed to PCB126 during the nursing period had significantly impaired glucose tolerance at 3 and 9 weeks of age (p < 0.05). At 6 and 12 weeks of age, no impairments in glucose tolerance existed in offspring (p > 0.05). Our current study demonstrates that exposure to PCB126 through the mother's milk does not affect short- or long-term body composition but impairs glucose tolerance in the short-term.
Collapse
Affiliation(s)
- Brittany B. Rice
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Keegan W. Sammons
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Sara Y. Ngo Tenlep
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Madeline T. Weltzer
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Leryn J. Reynolds
- Human Movement Sciences, Darden College of Education, Old Dominion University, Norfolk, VA, United States
| | - Cetewayo S. Rashid
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Hollie I. Swanson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Kevin J. Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
- *Correspondence: Kevin J. Pearson,
| |
Collapse
|
14
|
Ahmad A, Khan TA, Shahzad S, Ullah S, Shahzadi I, Ali A, Akram W, Yasin NA, Yusuf M. BioClay nanosheets infused with GA3 ameliorate the combined stress of hexachlorobenzene and temperature extremes in Brassica alboglabra plants. FRONTIERS IN PLANT SCIENCE 2022; 13:964041. [PMID: 36275566 PMCID: PMC9583914 DOI: 10.3389/fpls.2022.964041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollutants and climate change are the major cause of abiotic stresses. Hexachlorobenzene (HCB) is an airborne and aero-disseminated persistent organic pollutants (POP) molecule causing severe health issues in humans, and temperature extremes and HCB in combination severely affect the growth and yield of crop plants around the globe. The higher HCB uptake and accumulation by edible plants ultimately damage human health through the contaminated food chain. Hence, confining the passive absorbance of POPs is a big challenge for researchers to keep the plant products safer for human consumption. BioClay functional layered double hydroxide is an effective tool for the stable delivery of acidic molecules on plant surfaces. The current study utilized gibberellic acid (GA3) impregnated BioClay (BioClay GA ) to alleviate abiotic stress in Brassica alboglabra plants. Application of BioClay GA mitigated the deleterious effects of HCB besides extreme temperature stress in B. alboglabra plants. BioClay GA significantly restricted HCB uptake and accumulation in applied plants through increasing the avoidance efficacy (AE) up to 377.61%. Moreover, the exogenously applied GA3 and BioClay GA successfully improved the antioxidative system, physiochemical parameters and growth of stressed B. alboglabra plants. Consequently, the combined application of BioClay and GA3 can efficiently alleviate low-temperature stress, heat stress, and HCB toxicity.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tanveer Alam Khan
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sharoon Shahzad
- Incharge Medical Officer, Basic Health Unit Munday Key District Kasur, Kasur, Pakistan
| | - Sami Ullah
- Department of Forestry, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Iqra Shahzadi
- School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Waheed Akram
- Department of Plant Pathology, Institute of Agricultural Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Gardens, RO-II Wing, University of the Punjab, Lahore, Punjab, Pakistan
| | - Mohammad Yusuf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Baumert BO, Goodrich JA, Hu X, Walker DI, Alderete TL, Chen Z, Valvi D, Rock S, Berhane K, Gilliland FD, Goran MI, Jones DP, Conti DV, Chatzi L. Plasma concentrations of lipophilic persistent organic pollutants and glucose homeostasis in youth populations. ENVIRONMENTAL RESEARCH 2022; 212:113296. [PMID: 35447156 PMCID: PMC9831292 DOI: 10.1016/j.envres.2022.113296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/09/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to lipophilic persistent organic pollutants (POPs) is ubiquitous. POPs are metabolic disrupting chemicals and are potentially diabetogenic. METHODS Using a multi-cohort study including overweight adolescents from the Study of Latino Adolescents at Risk (SOLAR, N = 301, 2001-2012) and young adults from the Southern California Children's Health Study (CHS, N = 135, 2014-2018), we examined associations of POPs and risk factors for type 2 diabetes. SOLAR participants underwent annual visits for a median of 2.2 years and CHS participants performed a single visit, during which a 2-h oral glucose tolerance test was performed. Linear mixed models were used to examine associations between plasma concentrations of POPs [4,4'-dichlorodiphenyldichloroethylene (4,4'-DDE), hexachlorobenzene (HCB), PCBs-153, 138, 118, 180 and PBDEs-154, 153, 100, 85, 47] and changes in glucose homeostasis across age and pubertal stage. RESULTS In SOLAR, exposure to HCB, PCB-118, and PBDE-153 was associated with dysregulated glucose metabolism. For example, each two-fold increase in HCB was associated with approximately 2 mg/dL higher glucose concentrations at 30 min (p = 0.001), 45 min (p = 0.0006), and 60 min (p = 0.03) post glucose challenge. Compared to individuals with low levels of PCB-118, individuals with high levels exhibited a 4.7 mg/dL (p = 0.02) higher glucose concentration at 15 min and a 3.6 mg/dL (p = 0.01) higher glucose concentration at 30 min. The effects observed with exposure to organochlorine compounds were independent of pubertal stages. PBDE-153 was associated with the development of dysregulated glucose metabolism beginning in late puberty. At Tanner stage 4, exposure to PBDE-153 was associated with a 12.7 mg/dL higher 60-min glucose concentration (p = 0.009) and a 16.1 mg*dl-1*hr-1 higher glucose AUC (p = 0.01). These associations persisted at Tanner 5. In CHS, PBDE-153 and total PBDE were associated with similar increases in glucose concentrations. CONCLUSION Our results suggest that childhood exposure to lipophilic POPs is associated with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Brittney O Baumert
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Jesse A Goodrich
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xin Hu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Zhanghua Chen
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Rock
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kiros Berhane
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Frank D Gilliland
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael I Goran
- Department of Pediatrics, Children's Hospital of Los Angeles, The Saban Research Institute, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States
| | - David V Conti
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Leda Chatzi
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Lee S, Lim Y, Kang Y, Jung K, Jee S. The Association between Blood Concentrations of PCDD/DFs, DL-PCBs and the Risk of Type 2 Diabetes Mellitus and Thyroid Cancer in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148745. [PMID: 35886598 PMCID: PMC9320419 DOI: 10.3390/ijerph19148745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023]
Abstract
Background and Objectives: Epidemiological studies have inconsistently shown an association between dioxin and risk of type 2 diabetes mellitus (T2DM) and cancer. This study aims to examine the effects of blood concentration of dioxin-like polychlorinated biphenyls (DL-PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DFs) on T2DM and thyroid cancer. Methods: We conducted a nested case–control study within the Korean cancer prevention study-II (KCPS-II) consisting of 15 thyroid cancer cases, 30 T2DM cases, and 55 controls. A total of 500 samples were used in 100 pooling samples. An average value of a pooled sample was calculated weighted by the blood volume of each sample. Results: The study population included 100 participants from the KCPS-II (median (IQR) baseline age, 54.06 [21.04] years; 48 women). The toxic equivalents of PCDD/DFs showed a significant positive association with T2DM and thyroid cancer, after adjustments for potential confounders (T2DM ORs = 1.23; 95% CI = 1.05–1.43; thyroid cancer ORs = 1.34; 95% CI = 1.12–1.61). Conclusion: In this study, both T2DM and thyroid cancer were associated with the blood concentrations of PCDD/DFs. The association between PCDD/DFs and T2D was found among women but not among men. Our findings suggest that further biochemical in vivo research and epidemiologic studies are needed to clarify the association between dioxins concentrations and diseases.
Collapse
Affiliation(s)
- SuHyun Lee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Korea; (S.L.); (S.J.)
- Department of Public Health, Graduate School, Yonsei University, Seoul 03722, Korea
| | - YoungWook Lim
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - YounSeok Kang
- Environment Testing Division, Eurofins Korea Ltd., Gunpo 15849, Korea;
| | - KeumJi Jung
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Korea; (S.L.); (S.J.)
- Correspondence:
| | - SunHa Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Korea; (S.L.); (S.J.)
- Department of Public Health, Graduate School, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
17
|
Haque N, Tischkau SA. Sexual Dimorphism in Adipose-Hypothalamic Crosstalk and the Contribution of Aryl Hydrocarbon Receptor to Regulate Energy Homeostasis. Int J Mol Sci 2022; 23:ijms23147679. [PMID: 35887027 PMCID: PMC9322714 DOI: 10.3390/ijms23147679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. This review summarizes how adipose tissue crosstalk with homeostatic network control systems in the brain, which includes energy regulatory regions and the hypothalamic–pituitary axis, contribute to energy regulation in a sex-specific manner. Moreover, development of obesity is contingent upon diet and environmental factors. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is currently being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors, and hence, one of the objectives of this review is to explain why investigating sex differences while examining this receptor is crucial. Overall, this review summarizes sex differences in the regulation of energy homeostasis imparted by the adipose–hypothalamic axis and examines how this axis can be affected by xenobiotics that signal through AhR.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence:
| |
Collapse
|
18
|
Ravanipour M, Nabipour I, Yunesian M, Rastkari N, Mahvi AH. Exposure sources of polychlorinated biphenyls (PCBs) and health risk assessment: a systematic review in Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55437-55456. [PMID: 35676570 DOI: 10.1007/s11356-022-21274-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/31/2022] [Indexed: 12/07/2022]
Abstract
This systematic review aims to identify the sources of exposure to polychlorinated biphenyls (PCBs), portioning, and human health risk assessment in Iran. The literature was searched in the international databases of Web of Science, PubMed, Scopus, Google Scholar, and the national databases of SID and MagIran up to November 14, 2020. Among all 153 articles, 21 eligible papers were identified. Among them, only one article was related to drinking water, the rest was related to food and soil, and no article was found on ambient air. The corrected portion of each exposure source was determined to be 90% for food, 9% for water, and 1% for air. The total hazard quotient (HQ) was determined to be within an unsafe range, and the total excess lifetime cancer risk (ELCR) was determined to be at a high risk of oral carcinogenesis. It is suggested that a comprehensive study be conducted in a specific period for all sources of exposure in all counties of Iran. Moreover, it is recommended that the policymakers set national standards for this pollutant in near future in some sources of exposure (e.g., drinking water) which have no standards in Iran.
Collapse
Affiliation(s)
- Masoumeh Ravanipour
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Qods St., Enghelab St, Tehran, 141761315, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Qods St., Enghelab St, Tehran, 141761315, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Qods St., Enghelab St, Tehran, 141761315, Iran.
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Gang N, Van Allen K, Villeneuve PJ, MacDonald H, Bruin JE. Sex-specific Associations Between Type 2 Diabetes Incidence and Exposure to Dioxin and Dioxin-like Pollutants: A Meta-analysis. FRONTIERS IN TOXICOLOGY 2022; 3:685840. [PMID: 35295132 PMCID: PMC8915902 DOI: 10.3389/ftox.2021.685840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The potential for persistent organic pollutants (POPs), including dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs), to increase the risk of incident diabetes in adults has been extensively studied. However, there is substantial variability in the reported associations both between and within studies. Emerging data from rodent studies suggest that dioxin disrupts glucose homeostasis in a sex-specific manner. Thus, we performed a review and meta-analysis of relevant epidemiological studies to investigate sex differences in associations between dioxin or DL-PCB exposure and type 2 diabetes incidence. Articles that met our selection criteria (n = 81) were organized into the following subcategories: data stratified by sex (n = 13), unstratified data (n = 45), and data from only 1 sex (n = 13 male, n = 10 female). We also considered whether exposure occurred either abruptly at high concentrations through a contamination event (“disaster exposure”) or chronically at low concentrations (“non-disaster exposure”). There were 8 studies that compared associations between dioxin/DL-PCB exposure and diabetes risk in males versus females within the same population. When all sex-stratified or single-sex studies were considered in the meta-analysis (n = 18), the summary relative risk (RR) for incident diabetes among those exposed relative to reference populations was 1.78 (95% CI = 1.37–2.31) and 1.95 (95% CI = 1.56–2.43) for female and males, respectively. However, when we restricted the meta-analysis to disaster-exposed populations, the RR was higher in females than males (2.86 versus 1.59, respectively). In contrast, in non-disaster exposed populations the RR for females was lower than males (1.40 and 2.02, respectively). Our meta-analysis suggests that there are sex differences in the associations between dioxin/DL-PCBs exposure and incident diabetes, and that the mode of exposure modifies these differences.
Collapse
Affiliation(s)
- Noa Gang
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kyle Van Allen
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Paul J. Villeneuve
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
- Department of Public Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Heather MacDonald
- Health and Biosciences Librarian, MacOdrum Library, Carleton University, Ottawa, ON, Canada
| | - Jennifer E. Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- *Correspondence: Jennifer E. Bruin,
| |
Collapse
|
21
|
Mouat JS, LaSalle JM. The Promise of DNA Methylation in Understanding Multigenerational Factors in Autism Spectrum Disorders. Front Genet 2022; 13:831221. [PMID: 35242170 PMCID: PMC8886225 DOI: 10.3389/fgene.2022.831221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairments in social reciprocity and communication, restrictive interests, and repetitive behaviors. Most cases of ASD arise from a confluence of genetic susceptibility and environmental risk factors, whose interactions can be studied through epigenetic mechanisms such as DNA methylation. While various parental factors are known to increase risk for ASD, several studies have indicated that grandparental and great-grandparental factors may also contribute. In animal studies, gestational exposure to certain environmental factors, such as insecticides, medications, and social stress, increases risk for altered behavioral phenotypes in multiple subsequent generations. Changes in DNA methylation, gene expression, and chromatin accessibility often accompany these altered behavioral phenotypes, with changes often appearing in genes that are important for neurodevelopment or have been previously implicated in ASD. One hypothesized mechanism for these phenotypic and methylation changes includes the transmission of DNA methylation marks at individual chromosomal loci from parent to offspring and beyond, called multigenerational epigenetic inheritance. Alternatively, intermediate metabolic phenotypes in the parental generation may confer risk from the original grandparental exposure to risk for ASD in grandchildren, mediated by DNA methylation. While hypothesized mechanisms require further research, the potential for multigenerational epigenetics assessments of ASD risk has implications for precision medicine as the field attempts to address the variable etiology and clinical signs of ASD by incorporating genetic, environmental, and lifestyle factors. In this review, we discuss the promise of multigenerational DNA methylation investigations in understanding the complex etiology of ASD.
Collapse
Affiliation(s)
- Julia S Mouat
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Janine M LaSalle
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, United States
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
Yuan TH, Eguchi A, Tai CJ, Tsai CH, Chien JW, Chan CC, Mori C. Comparison of the PCB serum levels among mother-child pairs in areas of Eastern Japan and Central Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150272. [PMID: 34852429 DOI: 10.1016/j.scitotenv.2021.150272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been prohibited for two decades in Japan and Taiwan. The aim of this study was to compare the PCB congeners in maternal and cord serum between two countries. Our study subjects were 248 and 100 mother-child pairs in Japan and Taiwan. The measured levels of 23 serum PCB congeners between two countries were analyzed using gas chromatography-electron capture negative ionization quadrupole mass spectrometry (GC-NICI-qMS). The statistical comparisons were conducted by Student's t-test and principal component analysis with further stratification by maternal age and parity. The maternal total PCBs levels in Japan (426 ± 244 pg/g wet wt) were significantly higher than those in Taiwan (254 ± 155 pg/g wet wt), and the similar results were found in cord total PCBs levels (97 ± 76 and 58 ± 87 pg/g wet wt). It showed different distributions of PCB congeners between two countries. Whether in maternal or cord serum, the CB138, CB153 and CB180 were the highest detectable congeners whether in Japan or Taiwan. And, the CB66, CB99, CB206 and CB209 were only detected in maternal serum of Taiwan. The women of advanced maternal age had higher levels of PCB congeners, especially in Taiwan, and the primiparous women had higher levels of PCB congeners in two countries. In summary, the PCB congeners in Japan's mother-child pairs were with higher levels and different distributions when compared to those in Taiwan, and the maternal age and parity were important factors associated with the PCB levels.
Collapse
Affiliation(s)
- Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taiwan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Japan
| | - Chun-Ju Tai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taiwan
| | | | | | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taiwan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Japan.
| |
Collapse
|
23
|
Rice BB, Ngo Tenlep SY, Tolaymat O, Alvi AT, Slone FR, Crosby CL, Howard SS, Hermanns CL, Montessorie NP, Swanson HI, Pearson KJ. Lack of Offspring Nrf2 Does Not Exacerbate the Detrimental Metabolic Outcomes Caused by In Utero PCB126 Exposure. Front Endocrinol (Lausanne) 2021; 12:777831. [PMID: 34975753 PMCID: PMC8716916 DOI: 10.3389/fendo.2021.777831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Human environmental exposures to toxicants, such as polychlorinated biphenyls (PCBs), increase oxidative stress and disease susceptibility. Such exposures during pregnancy and/or nursing have been demonstrated to adversely affect offspring health outcomes. Nuclear factor erythroid-2-related factor 2 (Nrf2) regulates the antioxidant response and is involved in the detoxification of coplanar PCBs, like PCB126. The purpose of this study was to investigate glucose tolerance and body composition in PCB-exposed offspring expressing or lacking Nrf2. We hypothesized that offspring lacking Nrf2 expression would be more susceptible to the long-term health detriments associated with perinatal PCB exposure. During gestation, whole-body Nrf2 heterozygous (Het) and whole-body Nrf2 knockout (KO) mice were exposed to vehicle or PCB126. Shortly after birth, litters were cross-fostered to unexposed dams to prevent PCB exposure during nursing. Offspring were weaned, and their body weight, body composition, and glucose tolerance were recorded. At two months of age, PCB exposure resulted in a significant reduction in the average body weight of offspring born to Nrf2 Het dams (p < 0.001) that primarily arose from the decrease in average lean body mass in offspring (p < 0.001). There were no differences in average body weight of PCB-exposed offspring born to Nrf2 KO dams (p > 0.05), and this was because offspring of Nrf2 KO dams exposed to PCB126 during pregnancy experienced a significant elevation in fat mass (p = 0.002) that offset the significant reduction in average lean mass (p < 0.001). Regardless, the lack of Nrf2 expression in the offspring themselves did not enhance the differences observed. After an oral glucose challenge, PCB-exposed offspring exhibited significant impairments in glucose disposal and uptake (p < 0.05). Offspring born to Nrf2 Het dams exhibited these impairments at 30 min and 120 min, while offspring born to Nrf2 KO dams exhibited these impairments at zero, 15, 30, 60 and 120 min after the glucose challenge. Again, the interactions between offspring genotype and PCB exposure were not significant. These findings were largely consistent as the offspring reached four months of age and demonstrate that the lack of offspring Nrf2 expression does not worsen the metabolic derangements caused by in utero PCB exposure as we expected. Future directions will focus on understanding how the observed maternal Nrf2 genotypic differences can influence offspring metabolic responses to in utero PCB exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kevin J. Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
24
|
Lei R, Xu Z, Xing Y, Liu W, Wu X, Jia T, Sun S, He Y. Global status of dioxin emission and China's role in reducing the emission. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126265. [PMID: 34102354 DOI: 10.1016/j.jhazmat.2021.126265] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The global status of dioxin emissions across 150 countries/regions were compiled in this study. China, the major emitter of dioxin and the largest developing country, was chosen as an example to illustrate its emission reductions. The global dioxin emissions were about 97.0 kg TEQ/year, Asia and Africa emitted the most dioxins among the continents. Globally, open burning processes were the most important sources of dioxins. Dioxin emissions in developed countries have remained at low and stable level, while those in developing countries have remained at relatively high level or have continued to increase in recent years. It can be speculated that the global dioxin emissions will increase first and then decrease in the future. Chinese dioxin emissions were stable around 9 kg toxic equivalent (TEQ) in recent years, while 17 subcategories are the key sources of dioxin control in the future. Moreover, according to analysis toward China's dioxin emission trend and sources, there is a large space for dioxins reduction in industries such as metal production, waste incineration and disposal. The results indicated that there is at least 30-70% of reduction scope in China based on three scenarios, and this will reduce the world's annual dioxin emissions by 2.7-6.8%.
Collapse
Affiliation(s)
- Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenci Xu
- Department of Geography, The University of Hong Kong, 999077, Hong Kong, China
| | - Ying Xing
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shurui Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Schulz MC, Sargis RM. Inappropriately sweet: Environmental endocrine-disrupting chemicals and the diabetes pandemic. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:419-456. [PMID: 34452693 DOI: 10.1016/bs.apha.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Afflicting hundreds of millions of individuals globally, diabetes mellitus is a chronic disorder of energy metabolism characterized by hyperglycemia and other metabolic derangements that result in significant individual morbidity and mortality as well as substantial healthcare costs. Importantly, the impact of diabetes in the United States is not uniform across the population; rather, communities of color and those with low income are disproportionately affected. While excessive caloric intake, physical inactivity, and genetic susceptibility are undoubted contributors to diabetes risk, these factors alone fail to fully explain the rapid global rise in diabetes rates. Recently, environmental contaminants acting as endocrine-disrupting chemicals (EDCs) have been implicated in the pathogenesis of diabetes. Indeed, burgeoning data from cell-based, animal, population, and even clinical studies now indicate that a variety of structurally distinct EDCs of both natural and synthetic origin have the capacity to alter insulin secretion and action as well as global glucose homeostasis. This chapter reviews the evidence linking EDCs to diabetes risk across this spectrum of evidence. It is hoped that improving our understanding of the environmental drivers of diabetes development will illuminate novel individual-level and policy interventions to mitigate the impact of this devastating condition on vulnerable communities and the population at large.
Collapse
Affiliation(s)
- Margaret C Schulz
- School of Public Health, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, United States
| | - Robert M Sargis
- School of Public Health, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States.
| |
Collapse
|
26
|
Marushka L, Hu X, Batal M, Tikhonov C, Sadik T, Schwartz H, Ing A, Fediuk K, Chan HM. The relationship between dietary exposure to persistent organic pollutants from fish consumption and type 2 diabetes among First Nations in Canada. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2021; 112:168-182. [PMID: 34181231 PMCID: PMC8239090 DOI: 10.17269/s41997-021-00484-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We previously examined the associations between dietary dichlorodiphenyldichloroethylene (DDE) and polychlorinated biphenyls (PCBs) intake from fish consumption and type 2 diabetes (T2D) prevalence in Ontario and Manitoba. This study aims to further explore the relationship in a regionally representative sample of First Nations adults living on-reserve across Canada. METHODS Dietary, health and lifestyle data collected by the cross-sectional First Nations Food, Nutrition and Environment Study (2008-2018) were analyzed. This participatory study included 6091 First Nations adult participants who answered questions on T2D. The consumption of locally caught fish was estimated with a food frequency questionnaire. A total of 551 samples from 96 fish species were collected and analyzed for the presence of DDE and PCBs. The associations between fish and dietary DDE/PCBs intake with self-reported T2D were investigated using multiple logistic regression models adjusted for confounders. RESULTS Dietary exposure to DDE (>2.11 ng/kg/bw) and PCBs (>1.47 ng/kg/bw) vs no exposure was positively associated with T2D with ORs of 2.33 (95% CI: 1.24-4.35) for DDE and 1.43 (95% CI: 1.01-3.59) for PCBs. The associations were stronger among females (DDE OR = 3.11 (1.41-6.88); PCBs OR = 1.76 (1.10-3.65)) and older individuals (DDE OR = 2.64 (1.12-6.20); PCBs OR = 1.44 (1.01-3.91)) as compared with males and younger participants. Also, significant dose-response relationships were found for fish consumption in females only. CONCLUSION This study confirms our previous findings that dietary DDE/PCBs exposure may increase the risk of T2D. The effect of DDE/PCBs from fish consumption is driven by geographical differences in DDE/PCBs concentrations in fish and by the amount of fish consumed, and is more prominent in females than in males.
Collapse
Affiliation(s)
- Lesya Marushka
- Environmental Public Health Division, First Nations and Inuit Health Branch, Indigenous Services Canada, Ottawa, ON, Canada
| | - Xuefeng Hu
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Malek Batal
- Département de Nutrition, Faculté de Médecine, Pavillon Liliane de Stewart, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC, H3T 1A8, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSS du Centre-sud-de-l'Île-de-Montréal (CReSP), 7101 avenue du Parc, Montréal, QC, H3N 1X7, Canada
| | - Constantine Tikhonov
- Environmental Public Health Division, First Nations and Inuit Health Branch, Indigenous Services Canada, Ottawa, ON, Canada
| | - Tonio Sadik
- Assembly of First Nations, 55 Metcalfe Street, Suite 1600, Ottawa, ON, K1P 6L5, Canada
| | - Harold Schwartz
- Environmental Public Health Division, First Nations and Inuit Health Branch, Indigenous Services Canada, Ottawa, ON, Canada
| | - Amy Ing
- Département de Nutrition, Faculté de Médecine, Pavillon Liliane de Stewart, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC, H3T 1A8, Canada
| | - Karen Fediuk
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
27
|
Matteo G, Hoyeck MP, Blair HL, Zebarth J, Rick KRC, Williams A, Gagné R, Buick JK, Yauk CL, Bruin JE. Prolonged Low-Dose Dioxin Exposure Impairs Metabolic Adaptability to High-Fat Diet Feeding in Female but Not Male Mice. Endocrinology 2021; 162:bqab050. [PMID: 33693622 PMCID: PMC8101695 DOI: 10.1210/endocr/bqab050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Human studies consistently show an association between exposure to persistent organic pollutants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, aka "dioxin"), and increased diabetes risk. We previously showed that a single high-dose TCDD exposure (20 µg/kg) decreased plasma insulin levels in male and female mice in vivo, but effects on glucose homeostasis were sex-dependent. OBJECTIVE The current study assessed whether prolonged exposure to a physiologically relevant low-dose of TCDD impacts glucose homeostasis and/or the islet phenotype in a sex-dependent manner in chow-fed or high-fat diet (HFD)-fed mice. METHODS Male and female mice were exposed to 20 ng/kg/d TCDD 2×/week for 12 weeks and simultaneously fed standard chow or a 45% HFD. Glucose homeostasis was assessed by glucose and insulin tolerance tests, and glucose-induced plasma insulin levels were measured in vivo. Histological analysis was performed on pancreas from male and female mice, and islets were isolated from females for TempO-Seq transcriptomic analysis. RESULTS Low-dose TCDD exposure did not lead to adverse metabolic consequences in chow-fed male or female mice, or in HFD-fed males. However, TCDD accelerated the onset of HFD-induced hyperglycemia and impaired glucose-induced plasma insulin levels in females. TCDD caused a modest increase in islet area in males but reduced the percent beta cell area within islets in females. TempO-Seq analysis suggested abnormal changes to endocrine and metabolic pathways in female TCDDHFD islets. CONCLUSION Our data suggest that prolonged low-dose TCDD exposure has minimal effects on glucose homeostasis and islet morphology in chow-fed male and female mice but promotes maladaptive metabolic responses in HFD-fed females.
Collapse
Affiliation(s)
- Geronimo Matteo
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Myriam P Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Hannah L Blair
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Julia Zebarth
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Kayleigh R C Rick
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ontario, KIN 6N5, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
28
|
Seo SH, Kwon SY, Choi SD, Chang YS. Twenty-year trends and exposure assessment of polychlorinated dibenzodioxins and dibenzofurans in human serum from the Seoul citizens. CHEMOSPHERE 2021; 273:128558. [PMID: 33066967 DOI: 10.1016/j.chemosphere.2020.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
This study investigated polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) in air (n = 108) and human serum (n = 1802) samples collected over 20 years to evaluate the long-term exposure to PCDD/Fs and health effects on the Korean general population. The serum PCDD/F levels were higher in males than in females and were significantly correlated with age, body mass index, and manifestation of diabetes mellitus. From 2000 to 2019, the PCDD/F levels declined by 96% in the air, but only by 36% in the serum, because PCDD/Fs are relatively stable in the human body and are exposed to humans after PCDD/Fs are distributed and migrated in various environmental matrices. The PCDD/F levels in other environmental matrices have also decreased at rates that differed among the matrices due to the different retention times and changes in continuous input of contaminants. As PCDD/Fs migrate from environmental matrices to the human body, the fraction of PCDDs increased whereas that of PCDFs decreased because of their relatively short half-lives. This study provides a concrete evidence that PCDD/F emissions by national regulations can achieve long-term reduction in human exposure. To the best of our knowledge, this is the longest and largest study to evaluate the long-term trends and annual changes of PCDD/Fs in the atmosphere and human serum, simultaneously.
Collapse
Affiliation(s)
- Sung-Hee Seo
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sae-Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; National Institute of Environmental Research, Hwangyong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea.
| |
Collapse
|
29
|
Ahmad A, Shahzadi I, Mubeen S, Yasin NA, Akram W, Khan WU, Wu T. Karrikinolide alleviates BDE-28, heat and Cd stressors in Brassica alboglabra by correlating and modulating biochemical attributes, antioxidative machinery and osmoregulators. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112047. [PMID: 33601172 DOI: 10.1016/j.ecoenv.2021.112047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
In this study, we have evaluated the role of karrikin (KAR1) against the absorption and translocation of a persistent organic pollutant (POP), 2,4,4'-Tribromodiphenyl ether (BDE-28) in plants, in the presence of two other stressors, cadmium (Cd) and high temperature. Furthermore, it correlates the physiological damages of Brassica alboglabra with the three stresssors separately. The results revealed that the post-germination application of KAR1 successfully augmented the growth (200%) and pertinent physiochemical parameters of B. alboglabra. KAR1 hindered air absorption of BDE-28 in plant tissues, and reduced its translocation coefficient (TF). Moreover, BDE-28 was the most negatively correlated (-0.9) stressor with chlorophyll contents, while the maximum mitigation by KAR1 was also achieved agaist BDE-28. The effect of temperature was more severe on soluble sugars (0.51), antioxidative machinery (-0.43), and osmoregulators (0.24). Cd exhibited a stronger inverse interrelation with the enzymatic antioxidant cascade. Application of KAR1 mitigated the deleterious effects of Cd and temperature stress on plant physiological parameters along with reduced aero-concentration factor, TF, and metal tolerance index. The phytohormone reduced lipid peroxidation by decreasing synthesis of ROS and persuading its breakdown. The stability of cellular membranes was perhaps due to the commotion of KAR1 as a growth-promoting phytohormone. In the same way, KAR1 supplementation augmented the membrane stability index, antioxidant defense factors, and removal efficiency of the pollutants. Consequently, the exogenously applied KAR1 can efficiently alleviate Cd stress, heat stress, and POP toxicity.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Iqra Shahzadi
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nasim Ahmad Yasin
- Senior Superintendent Gardens, RO II Wing, University of the Punjab, Lahore, Punjab, Pakistan
| | - Waheed Akram
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Waheed Ullah Khan
- Senior Superintendent Gardens, RO II Wing, University of the Punjab, Lahore, Punjab, Pakistan
| | - Tingquan Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| |
Collapse
|
30
|
Djekkoun N, Lalau JD, Bach V, Depeint F, Khorsi-Cauet H. Chronic oral exposure to pesticides and their consequences on metabolic regulation: role of the microbiota. Eur J Nutr 2021; 60:4131-4149. [PMID: 33837455 DOI: 10.1007/s00394-021-02548-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Pesticides have long been used in agriculture and household treatments. Pesticide residues can be found in biological samples for both the agriculture workers through direct exposure but also to the general population by indirect exposure. There is also evidence of pesticide contamination in utero and trans-generational impacts. Whilst acute exposure to pesticides has long been associated with endocrine perturbations, chronic exposure with low doses also increases the prevalence of metabolic disorders such as obesity or type 2 diabetes. Dysmetabolism is a low-grade inflammation disorder and as such the microbiota plays a role in its etiology. It is therefore important to fully understand the role of microbiota on the genesis of subsequent health effects. The digestive tract and mostly microbiota are the first organs of contact after oral exposure. The objective of this review is thus to better understand mechanisms that link pesticide exposure, dysmetabolism and microbiota. One of the key outcomes on the microbiota is the reduced Bacteroidetes and increased Firmicutes phyla, reflecting both pesticide exposure and risk factors of dysmetabolism. Other bacterial genders and metabolic activities are also involved. As for most pathologies impacting microbiota (including inflammatory disorders), the role of prebiotics can be suggested as a prevention strategy and some preliminary evidence reinforces this axis.
Collapse
Affiliation(s)
- Narimane Djekkoun
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France
| | - Jean-Daniel Lalau
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France.,Service Endocrinologie, Diabétologie, Nutrition, CHU Amiens Picardie, Site Nord, 80054, Amiens cedex 1, France
| | - Véronique Bach
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France
| | - Flore Depeint
- Unité Transformations & Agroressources ULR7519, Institut Polytechnique UniLaSalle-Université d'Artois, 60026, Beauvais, France
| | - Hafida Khorsi-Cauet
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France.
| |
Collapse
|
31
|
Pastorino S, Bishop T, Sharp SJ, Pearce M, Akbaraly T, Barbieri NB, Bes-Rastrollo M, Beulens JWJ, Chen Z, Du H, Duncan BB, Goto A, Härkänen T, Hashemian M, Kromhout D, Järvinen R, Kivimaki M, Knekt P, Lin X, Lund E, Magliano DJ, Malekzadeh R, Martínez-González MÁ, O’Donoghue G, O’Gorman D, Poustchi H, Rylander C, Sawada N, Shaw JE, Schmidt M, Soedamah-Muthu SS, Sun L, Wen W, Wolk A, Shu XO, Zheng W, Wareham NJ, Forouhi NG. Heterogeneity of Associations between Total and Types of Fish Intake and the Incidence of Type 2 Diabetes: Federated Meta-Analysis of 28 Prospective Studies Including 956,122 Participants. Nutrients 2021; 13:1223. [PMID: 33917229 PMCID: PMC8068031 DOI: 10.3390/nu13041223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023] Open
Abstract
The association between fish consumption and new-onset type 2 diabetes is inconsistent and differs according to geographical location. We examined the association between the total and types of fish consumption and type 2 diabetes using individual participant data from 28 prospective cohort studies from the Americas (6), Europe (15), the Western Pacific (6), and the Eastern Mediterranean (1) comprising 956,122 participants and 48,084 cases of incident type 2 diabetes. Incidence rate ratios (IRRs) for associations of total fish, shellfish, fatty, lean, fried, freshwater, and saltwater fish intake and type 2 diabetes were derived for each study, adjusting for a consistent set of confounders and combined across studies using random-effects meta-analysis. We stratified all analyses by sex due to observed interaction (p = 0.002) on the association between fish and type 2 diabetes. In women, for each 100 g/week higher intake the IRRs (95% CIs) of type 2 diabetes were 1.02 (1.01-1.03, I2 = 61%) for total fish, 1.04 (1.01-1.07, I2 = 46%) for fatty fish, and 1.02 (1.00-1.04, I2 = 33%) for lean fish. In men, all associations were null. In women, we observed variation by geographical location: IRRs for total fish were 1.03 (1.02-1.04, I2 = 0%) in the Americas and null in other regions. In conclusion, we found evidence of a neutral association between total fish intake and type 2 diabetes in men, but there was a modest positive association among women with heterogeneity across studies, which was partly explained by geographical location and types of fish intake. Future research should investigate the role of cooking methods, accompanying foods and environmental pollutants, but meanwhile, existing dietary regional, national, or international guidelines should continue to guide fish consumption within overall healthy dietary patterns.
Collapse
Affiliation(s)
- Silvia Pastorino
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; (T.B.); (S.J.S.); (M.P.); (N.J.W.)
- Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Tom Bishop
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; (T.B.); (S.J.S.); (M.P.); (N.J.W.)
| | - Stephen J. Sharp
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; (T.B.); (S.J.S.); (M.P.); (N.J.W.)
| | - Matthew Pearce
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; (T.B.); (S.J.S.); (M.P.); (N.J.W.)
| | - Tasnime Akbaraly
- Inserm U 1198, Montpellier University, F-34000 Montpellier, France;
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, UK;
| | - Natalia B. Barbieri
- Postgraduate Program in Epidemiology Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (N.B.B.); (B.B.D.); (M.S.)
| | - Maira Bes-Rastrollo
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain; (M.B.-R.); (M.Á.M.-G.)
- CIBERobn, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Navarra’s Health Research Institute (IdiSNA), 31008 Pamplona, Spain
| | - Joline W. J. Beulens
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC—Amsterdam VUMC, 1081 HV Amsterdam, The Netherlands;
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Zhengming Chen
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (Z.C.); (H.D.)
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Huaidong Du
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (Z.C.); (H.D.)
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Bruce B. Duncan
- Postgraduate Program in Epidemiology Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (N.B.B.); (B.B.D.); (M.S.)
| | - Atsushi Goto
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan; (A.G.); (N.S.)
| | - Tommi Härkänen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland; (T.H.); (P.K.)
| | - Maryam Hashemian
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran 1411713135, Iran; (M.H.); (R.M.); (H.P.)
- Biology Department, School of Arts and Sciences, Utica College, Utica, NY 13502, USA
| | - Daan Kromhout
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ritva Järvinen
- Institute of Public Health and Nutrition, University of Eastern Finland, FI-70211 Kuopio, Finland;
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, UK;
| | - Paul Knekt
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland; (T.H.); (P.K.)
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai, Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (X.L.); (L.S.)
| | - Eiliv Lund
- Department of Community Medicine, Pb. 5060, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (E.L.); (C.R.)
- The Cancer Registry of Norway, 0379 Oslo, Norway
| | - Dianna J. Magliano
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia; (D.J.M.); (J.E.S.)
| | - Reza Malekzadeh
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran 1411713135, Iran; (M.H.); (R.M.); (H.P.)
| | - Miguel Ángel Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain; (M.B.-R.); (M.Á.M.-G.)
- CIBERobn, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Navarra’s Health Research Institute (IdiSNA), 31008 Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Gráinne O’Donoghue
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, DO4 Dublin, Ireland;
| | - Donal O’Gorman
- School of Health & Human Performance, National Institute for Cellular Biotechnology, Dublin City University, Whitehall, DO9 Dublin, Ireland;
| | - Hossein Poustchi
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran 1411713135, Iran; (M.H.); (R.M.); (H.P.)
| | - Charlotta Rylander
- Department of Community Medicine, Pb. 5060, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (E.L.); (C.R.)
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan; (A.G.); (N.S.)
| | - Jonathan E. Shaw
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia; (D.J.M.); (J.E.S.)
| | - Maria Schmidt
- Postgraduate Program in Epidemiology Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (N.B.B.); (B.B.D.); (M.S.)
| | - Sabita S. Soedamah-Muthu
- Center of Research on Psychological and Somatic Disorders (CORPS), Department of Medical and Clinical Psychology, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands;
- Institute for Food, Nutrition and Health, University of Reading, Reading RG6 6AR, UK
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai, Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (X.L.); (L.S.)
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA; (W.W.); (X.-O.S.); (W.Z.)
| | - Alicja Wolk
- Department of Surgical Sciences, Orthopaedics, Uppsala University, 75185 Uppsala, Sweden;
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA; (W.W.); (X.-O.S.); (W.Z.)
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA; (W.W.); (X.-O.S.); (W.Z.)
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; (T.B.); (S.J.S.); (M.P.); (N.J.W.)
| | - Nita G. Forouhi
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK; (T.B.); (S.J.S.); (M.P.); (N.J.W.)
| |
Collapse
|
32
|
Zhang B, Liu L, Guo L, Guo S, Zhao X, Liu G, Li Q, Jiang L, Pan B, Nie J, Yang J. Telomere length mediates the association between polycyclic aromatic hydrocarbons exposure and abnormal glucose level among Chinese coke oven plant workers. CHEMOSPHERE 2021; 266:129111. [PMID: 33310362 DOI: 10.1016/j.chemosphere.2020.129111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Diabetes is a chronic and complex disease determined by environmental and genetic factors. This study aimed to investigate the association between polycyclic aromatic hydrocarbons (PAHs) exposure and fasting blood glucose levels and telomere length among coke-oven plant workers, to explore potential role of telomere length (TL) in the association between PAHs exposure and abnormal glucose level. METHODS The cross-sectional survey was conducted in 2017. The high-performance liquid chromatography mass spectrometry (HPLC-MS) was used to detect 11 urine biomarkers of PAHs exposure. TL was measured using the Real-time quantitative polymerase chain reaction (RT-qPCR) method. Logistic regression model, the modified Poisson regression models, and mediation analysis were used to evaluate the associations between PAHs exposure, TL, and abnormal glucose. RESULTS The results showed that the urinary 1-hydroxypyrene (1-PYR) was positively related to abnormal glucose in a dose-dependent manner (Ptrend = 0.007), the prevalence ratio of abnormal glucose was 8% (95% CI: 1.01-1.16) higher in 3rd tertile of urinary 1-PYR levels. Urinary 1-PYR in the 2nd tertile and 3rd tertile were associated with a 53% (OR = 0.47, 95% CI: 0.28-0.79) and 59% (OR = 0.41, 95% CI: 0.23-0.76) higher risk of shortening TL. And there was a negatively association between 1-PYR and TL in a dose-dependent manner (Ptrend = 0.045). We observed that the association between 1-PYR and abnormal glucose was more significantly positive among participants with median TL level (Ptrend = 0.006). In addition, mediation analysis showed the TL could explain 11.7% of the effect of abnormal glucose related to PAHs exposure. CONCLUSIONS Our findings suggested the effect of abnormal glucose related to PAHs exposure was mediated by telomere length in coke oven plant workers.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Lu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Lan Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Shugang Guo
- Shanxi Provincial Center for Disease Control and Prevention, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Gaisheng Liu
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Qiang Li
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Liuquan Jiang
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Baolong Pan
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd., China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
33
|
MacFarlane EM, Bruin JE. Human Pluripotent Stem Cells: A Unique Tool for Toxicity Testing in Pancreatic Progenitor and Endocrine Cells. Front Endocrinol (Lausanne) 2021; 11:604998. [PMID: 33542706 PMCID: PMC7851047 DOI: 10.3389/fendo.2020.604998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes prevalence is increasing worldwide, and epidemiological studies report an association between diabetes incidence and environmental pollutant exposure. There are >84,000 chemicals in commerce, many of which are released into the environment without a clear understanding of potential adverse health consequences. While in vivo rodent studies remain an important tool for testing chemical toxicity systemically, we urgently need high-throughput screening platforms in biologically relevant models to efficiently prioritize chemicals for in depth toxicity analysis. Given the increasing global burden of obesity and diabetes, identifying chemicals that disrupt metabolism should be a high priority. Pancreatic endocrine cells are key regulators of systemic metabolism, yet often overlooked as a target tissue in toxicology studies. Immortalized β-cell lines and primary human, porcine, and rodent islets are widely used for studying the endocrine pancreas in vitro, but each have important limitations in terms of scalability, lifespan, and/or biological relevance. Human pluripotent stem cell (hPSC) culture is a powerful tool for in vitro toxicity testing that addresses many of the limitations with other β-cell models. Current in vitro differentiation protocols can efficiently generate glucose-responsive insulin-secreting β-like cells that are not fully mature, but still valuable for high-throughput toxicity screening in vitro. Furthermore, hPSCs can be applied as a model of developing pancreatic endocrine cells to screen for chemicals that influence endocrine cell formation during critical windows of differentiation. Given their versatility, we recommend using hPSCs to identify potential β-cell toxins, which can then be prioritized as chemicals of concern for metabolic disruption.
Collapse
Affiliation(s)
| | - Jennifer E. Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
34
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
35
|
Simhadri JJ, Loffredo CA, Trnovec T, Murinova LP, Nunlee-Bland G, Koppe JG, Schoeters G, Jana SS, Ghosh S. Biomarkers of metabolic disorders and neurobehavioral diseases in a PCB- exposed population: What we learned and the implications for future research. ENVIRONMENTAL RESEARCH 2020; 191:110211. [PMID: 32937175 PMCID: PMC7658018 DOI: 10.1016/j.envres.2020.110211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 05/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are one of the original twelve classes of toxic chemicals covered by the Stockholm Convention on Persistent Organic Pollutants (POP), an international environmental treaty signed in 2001. PCBs are present in the environment as mixtures of multiple isomers at different degree of chlorination. These compounds are manmade and possess useful industrial properties including extreme longevity under harsh conditions, heat absorbance, and the ability to form an oily liquid at room temperature that is useful for electrical utilities and in other industrial applications. They have been widely used for a wide range of industrial purposes over the decades. Despite a ban in production in 1979 in the US and many other countries, they remain persistent and ubiquitous in environment as contaminants due to their improper disposal. Humans, independent of where they live, are therefore exposed to PCBs, which are routinely found in random surveys of human and animal tissues. The prolonged exposures to PCBs have been associated with the development of different diseases and disorders, and they are classified as endocrine disruptors. Due to its ability to interact with thyroid hormone, metabolism and function, they are thought to be implicated in the global rise of obesity diabetes, and their potential toxicity for neurodevelopment and disorders, an example of gene by environmental interaction (GxE). The current review is primarily intended to summarize the evidence for the association of PCB exposures with increased risks for metabolic dysfunctions and neurobehavioral disorders. In particular, we present evidence of gene expression alterations in PCB-exposed populations to construct the underlying pathways that may lead to those diseases and disorders in course of life. We conclude the review with future perspectives on biomarker-based research to identify susceptible individuals and populations.
Collapse
Affiliation(s)
- Jyothirmai J Simhadri
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC, USA
| | - Tomas Trnovec
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | | | - Gail Nunlee-Bland
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Janna G Koppe
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | - Greet Schoeters
- Dept. Biomedical Sciences, University of Antwerp, Antwerp, Belgium & Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Somiranjan Ghosh
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA; Department of Biology, Howard University, Washington, DC, USA.
| |
Collapse
|
36
|
Female mice exposed to low doses of dioxin during pregnancy and lactation have increased susceptibility to diet-induced obesity and diabetes. Mol Metab 2020; 42:101104. [PMID: 33075544 PMCID: PMC7683344 DOI: 10.1016/j.molmet.2020.101104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Exposure to persistent organic pollutants is consistently associated with increased diabetes risk in humans. We investigated the short- and long-term impact of transient low-dose dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) exposure during pregnancy and lactation on glucose homeostasis and beta cell function in female mice, including their response to a metabolic stressor later in life. Methods Female mice were injected with either corn oil (CO; vehicle control) or 20 ng/kg/d TCDD 2x/week throughout mating, pregnancy and lactation, and then tracked for 6–10 weeks after chemical exposure stopped. A subset of CO- and TCDD-exposed dams was then transferred to a 45% high-fat diet (HFD) or remained on a standard chow diet for an additional 11 weeks to assess the long-term effects of TCDD on adaptability to a metabolic stressor. To summarize, female mice were transiently exposed to TCDD and then subsequently tracked beyond when TCDD had been excreted to identify lasting metabolic effects of TCDD exposure. Results TCDD-exposed dams were hypoglycemic at birth but otherwise had normal glucose homeostasis during and post-TCDD exposure. However, TCDD-exposed dams on a chow diet were modestly heavier than controls starting 5 weeks after the last TCDD injection, and their weight gain accelerated after transitioning to a HFD. TCDD-exposed dams also had an accelerated onset of hyperglycemia, impaired glucose-induced plasma insulin levels, reduced islet size, increased MAFA-ve beta cells, and increased proinsulin accumulation following HFD feeding compared to controls. Overall, our study demonstrates that low-dose TCDD exposure during pregnancy has minimal effects on metabolism during the period of active exposure, but has detrimental long-term effects on metabolic adaptability to HFD feeding. Conclusions Our study suggests that transient low-dose TCDD exposure in female mice impairs metabolic adaptability to HFD feeding, demonstrating that dioxin exposure may be a contributing factor to obesity and diabetes pathogenesis in females. Female mice exposed to TCDD during pregnancy are hypoglycemic at birth. TCDD exposure promotes weight gain long after exposure ceases. TCDD-exposed dams fed a high-fat diet have accelerated onset of glucose intolerance. TCDDHFD dams have defects in islet morphology and beta cell function.
Collapse
|
37
|
Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, Tiwari R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front Public Health 2020; 8:553850. [PMID: 33072697 PMCID: PMC7541969 DOI: 10.3389/fpubh.2020.553850] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023] Open
Abstract
The exponential growth of pollutant discharges into the environment due to increasing industrial and agricultural activities is a rising threat for human health and a biggest concern for environmental health globally. Several synthetic chemicals, categorized as potential environmental endocrine-disrupting chemicals (EDCs), are evident to affect the health of not only livestock and wildlife but also humankind. In recent years, human exposure to environmental EDCs has received increased awareness due to their association with altered human health as documented by several epidemiological and experimental studies. EDCs are associated with deleterious effects on male and female reproductive health; causes diabetes, obesity, metabolic disorders, thyroid homeostasis and increase the risk of hormone-sensitive cancers. Sewage effluents are a major source of several EDCs, which eventually reach large water bodies and potentially contaminate the drinking water supply. Similarly, water storage material such as different types of plastics also leaches out EDCs in drinking Water. Domestic wastewater containing pharmaceutical ingredients, metals, pesticides and personal care product additives also influences endocrine activity. These EDCs act via various receptors through a variety of known and unknown mechanisms including epigenetic modification. They differ from classic toxins in several ways such as low-dose effect, non-monotonic dose and trans-generational effects. This review aims to highlight the hidden burden of EDCs on human health and discusses the non-classical toxic properties of EDCs in an attempt to understand the magnitude of the exposome on human health. Present data on the environmental EDCs advocate that there may be associations between human exposure to EDCs and several undesirable health outcomes that warrants further human bio-monitoring of EDCs.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Vinod Verma
- Department of Stem Cell Research Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anil Prakash
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Rajnarayan Tiwari
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| |
Collapse
|
38
|
Zhang J, Powell CA, Kay MK, Park MH, Meruvu S, Sonkar R, Choudhury M. A moderate physiological dose of benzyl butyl phthalate exacerbates the high fat diet-induced diabesity in male mice. Toxicol Res (Camb) 2020; 9:353-370. [PMID: 32905190 DOI: 10.1093/toxres/tfaa037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022] Open
Abstract
Exposure to endocrine disrupting chemicals (EDCs) used in plastic manufacturing processes may be contributing to the current increase in metabolic disorders. Here, we determined that benzyl butyl phthalate (BBP), a common EDC and food packaging plasticizer, mixed into chow diet (CD) and high fat diets (HFD) at varying concentrations (4 μg/kg body weight (bw)/day, 169 μg/kg bw/day, 3 mg/kg bw/day, 50 mg/kg bw/day) produced a number of detrimental and sex-specific metabolic effects in C57BL/6 male and female mice after 16 weeks. Male mice exposed to moderate (3 mg/kg bw/day) concentrations of BBP in an HFD were especially affected, with significant increases in body weight due to significant increases in weight of liver and adipose tissue. Other doses did not show any significant changes when compared to only CD or HFD alone. HFD in the presence of 3 mg/kg bw/day BBP showed significant increases in fasting blood glucose, glucose intolerance, and insulin intolerance when compared to HFD alone. Furthermore, this group significantly alters transcriptional regulators involved in hepatic lipid synthesis and its downstream pathway. Interestingly, most of the BBP doses had no phenotypic effect when mixed with CD and compared to CD alone. The female mice did not show a similar response as the male population even though they consumed a similar amount of food. Overall, these data establish a dose which can be used for a BBP-induced metabolic research model and suggest that a moderate dosage level of EDC exposure can contribute to widely ranging metabolic effects.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Catherine A Powell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Matthew K Kay
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Min Hi Park
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Sunitha Meruvu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Ravi Sonkar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| |
Collapse
|
39
|
Dai Q, Xu X, Eskenazi B, Asante KA, Chen A, Fobil J, Bergman Å, Brennan L, Sly PD, Nnorom IC, Pascale A, Wang Q, Zeng EY, Zeng Z, Landrigan PJ, Bruné Drisse MN, Huo X. Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. ENVIRONMENT INTERNATIONAL 2020; 139:105731. [PMID: 32315892 DOI: 10.1016/j.envint.2020.105731] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Electrical and electronic waste (e-waste) burning and recycling activities have become one of the main emission sources of dioxin-like compounds (DLCs). Workers involved in e-waste recycling operations and residents living near e-waste recycling sites (EWRS) are exposed to high levels of DLCs. Epidemiological and experimental in vivo studies have reported a range of interconnected responses in multiple systems with DLC exposure. However, due to the compositional complexity of DLCs and difficulties in assessing mixture effects of the complex mixture of e-waste-related contaminants, there are few studies concerning human health outcomes related to DLC exposure at informal EWRS. In this paper, we have reviewed the environmental levels and body burdens of DLCs at EWRS and compared them with the levels reported to be associated with observable adverse effects to assess the health risks of DLC exposure at EWRS. In general, DLC concentrations at EWRS of many countries have been decreasing in recent years due to stricter regulations on e-waste recycling activities, but the contamination status is still severe. Comparison with available data from industrial sites and well-known highly DLC contaminated areas shows that high levels of DLCs derived from crude e-waste recycling processes lead to elevated body burdens. The DLC levels in human blood and breast milk at EWRS are higher than those reported in some epidemiological studies that are related to various health impacts. The estimated total daily intakes of DLCs for people in EWRS far exceed the WHO recommended total daily intake limit. It can be inferred that people living in EWRS with high DLC contamination have higher health risks. Therefore, more well-designed epidemiological studies are urgently needed to focus on the health effects of DLC pollution in EWRS. Continuous monitoring of the temporal trends of DLC levels in EWRS after actions is of highest importance.
Collapse
Affiliation(s)
- Qingyuan Dai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, USA
| | | | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, USA
| | - Julius Fobil
- School of Public Health, University of Ghana, Ghana
| | - Åke Bergman
- Department of Environmental Science, Stockholm University, Sweden; Department of Science and Technology, Örebro University, Sweden; College of Environmental Science and Engineering, Tongji University, China
| | - Lesley Brennan
- Department of Obstetrics and Gynaecology, University of Alberta, Canada
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Australia
| | | | - Antonio Pascale
- Department of Toxicology, University of the Republic, Uruguay
| | - Qihua Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | | | - Marie-Noel Bruné Drisse
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Xia Huo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China.
| |
Collapse
|
40
|
Heiger-Bernays WJ, Tomsho KS, Basra K, Petropoulos ZE, Crawford K, Martinez A, Hornbuckle KC, Scammell MK. Human health risks due to airborne polychlorinated biphenyls are highest in New Bedford Harbor communities living closest to the harbor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135576. [PMID: 31785914 PMCID: PMC7015809 DOI: 10.1016/j.scitotenv.2019.135576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 04/14/2023]
Abstract
In response to concerns raised by communities surrounding the New Bedford Harbor Superfund site, we completed a field and modeling study that concluded the harbor is the primary source of polychlorinated biphenyls (PCBs) in air around the harbor. The follow-up question from residents was whether the PCBs measured in air pose a risk to their health. The US Environmental Protection Agency focuses their site-specific, risk-based decisions for site clean-up on cancers. We focused our assessment on the non-cancer effects on the thyroid based on the congener specific patterns and concentrations of PCBs measured in air near and distant to the harbor. Human and animal studies of PCB-induced effects on the thyroid provide evidence to support our analysis. Drawing from the published toxicological data, we used a Margin of Exposure (MOE) approach to derive a human-equivalent concentration in air associated with human health effects on the thyroid. Based on the MOEs calculated herein, evaluation of the MOE indicates that changes in thyroid hormone levels are possible among people living adjacent to the Harbor. Changes in thyroid hormone levels are more likely among people who live near the harbor compared to residents living in areas distant from the harbor. This risk assessment documents potential health risks associated with proximity to a marine Superfund Site using site-specific ambient air PCB congener data.
Collapse
Affiliation(s)
- Wendy J Heiger-Bernays
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States.
| | - Kathryn Scott Tomsho
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| | - Komal Basra
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| | - Zoe E Petropoulos
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| | - Kathryn Crawford
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| | - Andres Martinez
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, 4105 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, IA 52242, United States
| | - Keri C Hornbuckle
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, 4105 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, IA 52242, United States
| | - Madeleine K Scammell
- Boston University School of Public Health, Department of Environmental Health, 715 Albany St., Talbot Building, Boston, MA 02118, United States
| |
Collapse
|
41
|
Li MH. Applying a social-ecological framework to Yucheng: 40 years after exposure to polychlorinated biphenyls and dibenzofurans. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 75:395-405. [PMID: 32114956 DOI: 10.1080/19338244.2020.1732855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although many epidemiological studies have been conducted on Yucheng cohorts, this incident has rarely been examined from social-ecological perspectives. This study adopted a social-ecological model as a framework to provide a more complete description of Yucheng in order to understand its effects on affected individuals, communities, and society. At first, recent studies on Yucheng victim's health effects was updated. Long-term follow-up studies of Yucheng cohort have revealed the adverse health effects exerted on victims and their children. Subsequently, this study uses the disaster ecology model as a conceptual framework to review Yucheng. The movements of Yucheng victims and their supporters have constituted a primary actor for promoting the personal and legal rights of Yucheng victims. Finally, this study discusses how to improve future studies to effectively assist victims in their recovery from this incident.
Collapse
Affiliation(s)
- Mei-Hui Li
- Department of Geography, National Taiwan University, Taipei, Taiwan, R.O.C
| |
Collapse
|
42
|
Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 2020; 21:127-147. [PMID: 31792807 DOI: 10.1007/s11154-019-09521-z] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine Disrupting Chemicals (EDCs) are a global problem for environmental and human health. They are defined as "an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action". It is estimated that there are about 1000 chemicals with endocrine-acting properties. EDCs comprise pesticides, fungicides, industrial chemicals, plasticizers, nonylphenols, metals, pharmaceutical agents and phytoestrogens. Human exposure to EDCs mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Most EDCs are lipophilic and bioaccumulate in the adipose tissue, thus they have a very long half-life in the body. It is difficult to assess the full impact of human exposure to EDCs because adverse effects develop latently and manifest at later ages, and in some people do not present. Timing of exposure is of importance. Developing fetus and neonates are the most vulnerable to endocrine disruption. EDCs may interfere with synthesis, action and metabolism of sex steroid hormones that in turn cause developmental and fertility problems, infertility and hormone-sensitive cancers in women and men. Some EDCs exert obesogenic effects that result in disturbance in energy homeostasis. Interference with hypothalamo-pituitary-thyroid and adrenal axes has also been reported. In this review, potential EDCs, their effects and mechanisms of action, epidemiological studies to analyze their effects on human health, bio-detection and chemical identification methods, difficulties in extrapolating experimental findings and studying endocrine disruptors in humans and recommendations for endocrinologists, individuals and policy makers will be discussed in view of the relevant literature.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Hakan Terekeci
- Department of Internal Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
43
|
Ishida T, Takechi S. β-Naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor, disrupts zinc homeostasis in human hepatoma HepG2 cells. J Toxicol Sci 2020; 44:711-720. [PMID: 31588062 DOI: 10.2131/jts.44.711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recent studies have demonstrated a relationship between the disruption of zinc homeostasis and the onset of diseases. However, little is known about the factors that disrupt zinc homeostasis. Here, we investigated the effects of β-naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor (AHR), on intracellular zinc levels. Human hepatoma HepG2 cells were treated with β-naphthoflavone for 3 days, and intracellular labile and total zinc levels were assessed through flow cytometry and inductively coupled plasma atom emission spectroscopy, respectively. The mRNA levels of zinc transporters were determined by real-time PCR. Treatment of cells with β-naphthoflavone induced a decrease in intracellular labile zinc in a dose-dependent manner, with significantly decreased levels observed at 1 µM compared with controls. Additionally, intracellular total zinc levels demonstrated a decreasing trend with 10 µM β-naphthoflavone. Zinc pyrithione recovered the decrease in intracellular labile zinc levels induced by β-naphthoflavone, while zinc sulfate had no effect. Moreover, significant decreases in the mRNA levels of zinc transporters ZnT10 and ZIP5 were observed in response to 10 µM β-naphthoflavone. These results demonstrated that β-naphthoflavone has the potential to disrupt zinc homeostasis in hepatocytes. Although the underlying mechanism remains to be determined, suppression of zinc transporter transcription through AHR activation may be involved in the β-naphthoflavone-induced disruption of intracellular zinc levels.
Collapse
|
44
|
Patrick L. Diabetes and Toxicant Exposure. Integr Med (Encinitas) 2020; 19:16-23. [PMID: 32549860 PMCID: PMC7238916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The worldwide prevalence of obesity has near tripled between 1975 and 2016. Diabetes was the direct cause of an estimated 1.6 million deaths in 2015. Diabetogens, otherwise known as toxicants that cause insulin resistance in animal models and humans as a result of pancreatic β-cell damage include the persistent organochlorine pesticides trans-nonachlor, oxychlordane, and DDE -the main metabolite of DDT, as well as another class of persistent organic pollutants, polychlorinated biphenyls (PCBs). Other toxicants that are now considered diabetogens: BPA, arsenic, phthalates, perfluorinates (PFOS), diethyl hexyl phthalate (DEHP), and dioxin (TCDD) are commonly found in the blood and urine in the CDC NHANES populations and presumed to also be commonly found in the U.S. population as a whole. A review of the literature on the risk for diabetes in epidemiologic studies considering these toxicants, challenges for clinicians using lab testing for these diabetogens, and the necessary interventions for lowering body burden of persistent toxicants are discussed.
Collapse
|
45
|
Hoyeck MP, Blair H, Ibrahim M, Solanki S, Elsawy M, Prakash A, Rick KRC, Matteo G, O'Dwyer S, Bruin JE. Long-term metabolic consequences of acute dioxin exposure differ between male and female mice. Sci Rep 2020; 10:1448. [PMID: 31996693 PMCID: PMC6989671 DOI: 10.1038/s41598-020-57973-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/23/2019] [Indexed: 12/04/2022] Open
Abstract
Epidemiological studies have consistently shown an association between exposure to environmental pollutants and diabetes risk in humans. We have previously shown that direct exposure of mouse and human islets (endocrine pancreas) to the highly persistent pollutant TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) causes reduced insulin secretion ex vivo. Furthermore, a single high-dose of TCDD (200 µg/kg) suppressed both fasting and glucose-induced plasma insulin levels and promoted beta-cell apoptosis after 7 days in male mice. The current study investigated the longer-term effects of a single high-dose TCDD injection (20 µg/kg) on glucose metabolism and beta cell function in male and female C57Bl/6 mice. TCDD-exposed males displayed modest fasting hypoglycemia for ~4 weeks post-injection, reduced fasting insulin levels for up to 6 weeks, increased insulin sensitivity, decreased beta cell area, and increased delta cell area. TCDD-exposed females also had long-term suppressed basal plasma insulin levels, and abnormal insulin secretion for up to 6 weeks. Unlike males, TCDD did not impact insulin sensitivity or islet composition in females, but did cause transient glucose intolerance 4 weeks post-exposure. Our results show that a single exposure to dioxin can suppress basal insulin levels long-term in both sexes, but effects on glucose homeostasis are sex-dependent.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Hannah Blair
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Muna Ibrahim
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Shivani Solanki
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Mariam Elsawy
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Arina Prakash
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kayleigh R C Rick
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Geronimo Matteo
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Shannon O'Dwyer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
46
|
Ibrahim M, MacFarlane EM, Matteo G, Hoyeck MP, Rick KRC, Farokhi S, Copley CM, O'Dwyer S, Bruin JE. Functional cytochrome P450 1A enzymes are induced in mouse and human islets following pollutant exposure. Diabetologia 2020; 63:162-178. [PMID: 31776611 PMCID: PMC6890627 DOI: 10.1007/s00125-019-05035-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Exposure to environmental pollution has been consistently linked to diabetes incidence in humans, but the potential causative mechanisms remain unclear. Given the critical role of regulated insulin secretion in maintaining glucose homeostasis, environmental chemicals that reach the endocrine pancreas and cause beta cell injury are of particular concern. We propose that cytochrome P450 (CYP) enzymes, which are involved in metabolising xenobiotics, could serve as a useful biomarker for direct exposure of islets to pollutants. Moreover, functional CYP enzymes in islets could also impact beta cell physiology. The aim of this study was to determine whether CYP1A enzymes are activated in islets following direct or systemic exposure to environmental pollutants. METHODS Immortalised liver (HepG2) and rodent pancreatic endocrine cell lines (MIN6, βTC-6, INS1, α-TC1, α-TC3), as well as human islets, were treated in vitro with known CYP1A inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3-methylcholanthrene (3-MC). In addition, mice were injected with either a single high dose of TCDD or multiple low doses of TCDD in vivo, and islets were isolated 1, 7 or 14 days later. RESULTS CYP1A enzymes were not activated in any of the immortalised beta or alpha cell lines tested. However, both 3-MC and TCDD potently induced CYP1A1 gene expression and modestly increased CYP1A1 enzyme activity in human islets after 48 h. The induction of CYP1A1 in human islets by TCDD was prevented by cotreatment with a cytokine mixture. After a systemic single high-dose TCDD injection, CYP1A1 enzyme activity was induced in mouse islets ~2-fold, ~40-fold and ~80-fold compared with controls after 1, 7 and 14 days, respectively, in vivo. Multiple low-dose TCDD exposure in vivo also caused significant upregulation of Cyp1a1 in mouse islets. Direct TCDD exposure to human and mouse islets in vitro resulted in suppressed glucose-induced insulin secretion. A single high-dose TCDD injection resulted in lower plasma insulin levels, as well as a pronounced increase in beta cell death. CONCLUSIONS/INTERPRETATION Transient exposure to TCDD results in long-term upregulation of CYP1A1 enzyme activity in islets. This provides evidence for direct exposure of islets to lipophilic pollutants in vivo and may have implications for islet physiology.
Collapse
Affiliation(s)
- Muna Ibrahim
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Erin M MacFarlane
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Geronimo Matteo
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Myriam P Hoyeck
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kayleigh R C Rick
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Salar Farokhi
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Catherine M Copley
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Shannon O'Dwyer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer E Bruin
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
47
|
Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, Tong W, Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4361. [PMID: 31717330 PMCID: PMC6888492 DOI: 10.3390/ijerph16224361] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Persistent organic pollutants (POPs) present in foods have been a major concern for food safety due to their persistence and toxic effects. To ensure food safety and protect human health from POPs, it is critical to achieve a better understanding of POP pathways into food and develop strategies to reduce human exposure. POPs could present in food in the raw stages, transferred from the environment or artificially introduced during food preparation steps. Exposure to these pollutants may cause various health problems such as endocrine disruption, cardiovascular diseases, cancers, diabetes, birth defects, and dysfunctional immune and reproductive systems. This review describes potential sources of POP food contamination, analytical approaches to measure POP levels in food and efforts to control food contamination with POPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huixiao Hong
- U.S. Food & Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA; (W.G.); (B.P.); (S.S.); (G.Y.); (W.G.); (W.Z.); (W.T.)
| |
Collapse
|
48
|
Shmarakov IO, Lee YJ, Jiang H, Blaner WS. Constitutive androstane receptor mediates PCB-induced disruption of retinoid homeostasis. Toxicol Appl Pharmacol 2019; 381:114731. [PMID: 31449830 DOI: 10.1016/j.taap.2019.114731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022]
Abstract
Environmental exposure to polychlorinated biphenyls (PCBs) is associated with an increased risk of incidence of metabolic disease, however the molecular mechanisms underlying this phenomenon are not fully understood. Our study provides new insights into molecular interactions between PCBs and retinoids (vitamin A and its metabolites) by defining a role for constitutive androstane receptor (CAR) in the disruption of retinoid homeostasis by non-coplanar 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). Administration of four weekly 50 mg/kg doses of PCB153 to C57BL/6 male mice resulted in a significant decline in the tissue concentrations of retinyl esters, retinol and all-trans-retinoic acid (atRA), while no decline in hepatic and adipose tissue retinoid levels were detected in Car-null littermates. Our data imply that disrupted retinoid homeostasis occurs as a consequence of PCB153-induced activation of CAR, and raise the possibility that CAR signaling can affect atRA homeostasis in vivo. A strong correlation between the changes in retinoid metabolism and extensive upregulation of hepatic CAR-driven Cyp2b10 expression implicates this CYP isoform as contributing to retinoid homeostasis disruption via atRA oxidation during PCB153 exposure. In response to PCB153-induced CAR activation and disruption of retinoid homeostasis, expression of hepatic Pepck, Cd36 and adipose tissue Pparγ, Cd36, Adipoq, and Rbp4 were altered; however, this was reversed by administration of exogenous dietary retinoids (300 IU daily for 4 weeks). Our study establishes that PCB153 exposure enables a significant disruption of retinoid homeostasis in a CAR-dependent manner. We propose that this contributes to the obesogenic properties of PCB153 and may contribute to the predisposition to the metabolic disease.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | - Yun Jee Lee
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Hongfeng Jiang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
49
|
Wolf K, Bongaerts BWC, Schneider A, Huth C, Meisinger C, Peters A, Schneider A, Wittsiepe J, Schramm KW, Greiser KH, Hartwig S, Kluttig A, Rathmann W. Persistent organic pollutants and the incidence of type 2 diabetes in the CARLA and KORA cohort studies. ENVIRONMENT INTERNATIONAL 2019; 129:221-228. [PMID: 31132656 DOI: 10.1016/j.envint.2019.05.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Associations between several persistent organic pollutants (POPs) and type 2 diabetes have been found in humans, but the relationship has rarely been investigated in the general population. The current nested case-control study examined internal exposure to polychlorinated biphenyls (PCB) and pesticides and the incidence of type 2 diabetes among participants of two population-based German cohort studies. METHODS We retrospectively selected 132 incident cases of type 2 diabetes and 264 age- and sex-matched controls from the CARdiovascular Living and Aging in Halle (CARLA) study (2002-2006, East Germany) and the Cooperative Health Research in the Region of Augsburg (KORA) study (1999-2001, South Germany) based on diabetes status at follow-up examinations in 2007-2010 and 2006-08, respectively (60% male, mean age 63 and 54 years). We assessed the association between baseline POP concentrations and incident diabetes by conditional logistic regression adjusted for cohort, BMI, cholesterol, alcohol, smoking, physical activity, and parental diabetes. Additionally, we examined effect modification by sex, obesity, parental diabetes and cohort. RESULTS In both cohorts, diabetes cases showed a higher BMI, a higher frequency of parental diabetes, and higher levels of POPs. We observed an increased chance for incident diabetes for PCB-138 and PCB-153 with an odds ratio (OR) of 1.50 (95%CI: 1.07-2.11) and 1.53 (1.15-2.04) per interquartile range increase in the respective POP. In addition, explorative results suggested higher OR for women and non-obese participants. CONCLUSIONS Our results add to the evidence on diabetogenic effects of POPs in the general population, and warrant both policies to prevent human exposure to POPs and additional research on the adverse effects of more complex chemical mixtures.
Collapse
Affiliation(s)
- Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Brenda W C Bongaerts
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Cornelia Huth
- Institute of Epidemiology, Helmholtz Zentrum München, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Jürgen Wittsiepe
- Former: Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Germany
| | | | - Karin Halina Greiser
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany; Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saskia Hartwig
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Kluttig
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
50
|
Tornevi A, Sommar J, Rantakokko P, Åkesson A, Donat-Vargas C, Kiviranta H, Rolandsson O, Rylander L, Wennberg M, Bergdahl IA. Chlorinated persistent organic pollutants and type 2 diabetes - A population-based study with pre- and post- diagnostic plasma samples. ENVIRONMENTAL RESEARCH 2019; 174:35-45. [PMID: 31029940 DOI: 10.1016/j.envres.2019.04.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/01/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Persistent organic pollutants (POPs) have been associated with type 2 diabetes (T2D), but causality is uncertain. OBJECTIVE Within longitudinal population-based data from northern Sweden, we assessed how POPs associated with T2D prospectively and cross-sectionally, and further investigated factors related to individual changes in POP concentrations. METHODS For 129 case-controls pairs matched by age, sex and date of sampling, plasma concentrations of hexachlorobenzene (HCB), dichlorodiphenyl-dichloroethylene (p,p'-DDE), dioxin-like (DL) polychlorinated biphenyl congeners (PCB-118 and PCB-156), and non-dioxin like (NDL-PCB: PCB-74, -99, -138 -153, -170, -180, -183 and PCB-187) were analyzed twice (baseline and follow-up, 9-20 years apart). The cases received their T2D diagnose between baseline and follow-up. Prospective (using baseline data) and cross-sectional (using follow-up data) odds ratios (ORs) for T2D on lipid standardized POPs (HCB, p,p'-DDE, ∑DL-PCBs, ∑NDL-PCBs) were estimated using conditional logistic regression, adjusting for body mass index (BMI) and plasma lipids. The influence of BMI, weight-change, and plasma lipids on longitudinal changes in POP concentrations were evaluated among non-diabetic individuals (n = 306). RESULTS POPs were associated with T2D in both the prospective and cross-sectional assessments. Of a standard deviation increase in POPs, prospective ORs ranged 1.42 (95% CI: 0.99, 2.06) for ∑NDL-PCBs to 1.55 (95% CI: 1.01, 2.38) for HCB (p < 0.05 only for HCB), and cross-sectional ORs ranged 1.62 (95% CI: 1.13; 2.32) for p,p'-DDE to 2.06 (95% CI: 1.29, 3.28) for ∑DL-PCBs (p < 0.05 for all POPs). In analyses of non-diabetic individuals, higher baseline BMI, decreased weight and decreased plasma lipid concentrations were associated with a slower decrease of POPs. Cases had, besides a higher BMI, reduced cholesterol and weight gain at follow-up compared to controls, which can explain the higher ORs in the cross-sectional assessments. DISCUSSION The association between POPs and T2D was confirmed, but an indication that individuals body fat history might influence POP-T2D associations weakens the epidemiological support for a causal association. It also warrants studies based on other exposure metrics than biomonitoring. In addition, we note that a cross-sectional design overestimates the ORs if T2D cases have successfully intervened on weight and/or blood lipids, as changes in these factors cause changes in POPs.
Collapse
Affiliation(s)
- Andreas Tornevi
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden.
| | - Johan Sommar
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Panu Rantakokko
- Department for Health Security, Environmental Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Agneta Åkesson
- Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Donat-Vargas
- Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannu Kiviranta
- Department for Health Security, Environmental Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Lars Rylander
- Environmental Epidemiology, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| |
Collapse
|