1
|
Tong H, Capuano AW, Mehta RI, Sood A, Bennett DA, Ahima RS, Arnold SE, Arvanitakis Z. Associations of renin-angiotensin system inhibitor use with brain insulin signaling and neuropathology. Ann Clin Transl Neurol 2024; 11:2112-2122. [PMID: 38952081 PMCID: PMC11330222 DOI: 10.1002/acn3.52132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE To examine the associations of renin-angiotensin system (RAS) inhibitor use with postmortem brain insulin signaling and neuropathology. METHODS Among Religious Orders Study participants, 150 deceased and autopsied older individuals (75 with diabetes matched to 75 without by age at death, sex, and education) had measurements of insulin receptor substrate-1 (IRS-1) and RAC-alpha serine/threonine protein kinase (AKT1) collected in the prefrontal cortex using ELISA and immunohistochemistry. Alzheimer's disease (AD), brain infarcts, and cerebral vessel pathology data were assessed by systematic neuropathologic evaluations. RAS inhibitor use was determined based on visual inspection of medication containers during study visits. The associations of RAS inhibitor use with brain insulin signaling measures and neuropathology were examined using adjusted regression analyses. RESULTS Of the 90 RAS inhibitor users (54 with diabetes), 65 had used only angiotensin-converting enzyme inhibitors, 11 only angiotensin II receptor blockers, and 14 used both. RAS inhibitor use was associated with lower pT308AKT1/total AKT1, but not with pS307IRS-1/total IRS-1 or the density of cells stained positive for pS616 IRS-1. RAS inhibitor use was not associated with the level of global AD pathology or amyloid beta burden, but it was associated with a lower tau-neurofibrillary tangle density. Additionally, we found a significant interaction between diabetes and RAS inhibitors on tangle density. Furthermore, AKT1 phosphorylation partially mediated the association of RAS inhibitor use with tau tangle density. Lastly, RAS inhibitor use was associated with more atherosclerosis, but not with other cerebral blood vessel pathologies or cerebral infarcts. INTERPRETATION Late-life RAS inhibitor use may be associated with lower brain AKT1 phosphorylation and fewer neurofibrillary tangles.
Collapse
Affiliation(s)
- Han Tong
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Ana W. Capuano
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Rupal I. Mehta
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Ajay Sood
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes, & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Steven E. Arnold
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
2
|
Batista JPT, Faria AOVD, Ribeiro TFS, Simões E Silva AC. The Role of Renin-Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life (Basel) 2023; 13:1598. [PMID: 37511973 PMCID: PMC10381689 DOI: 10.3390/life13071598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic cardiomyopathy refers to myocardial dysfunction in type 2 diabetes, but without the traditional cardiovascular risk factors or overt clinical atherosclerosis and valvular disease. The activation of the renin-angiotensin system (RAS), oxidative stress, lipotoxicity, maladaptive immune responses, imbalanced mitochondrial dynamics, impaired myocyte autophagy, increased myocyte apoptosis, and fibrosis contribute to diabetic cardiomyopathy. This review summarizes the studies that address the link between cardiomyopathy and the RAS in humans and presents proposed pathophysiological mechanisms underlying this association. The RAS plays an important role in the development and progression of diabetic cardiomyopathy. The over-activation of the classical RAS axis in diabetes leads to the increased production of angiotensin (Ang) II, angiotensin type 1 receptor activation, and aldosterone release, contributing to increased oxidative stress, fibrosis, and cardiac remodeling. In contrast, Ang-(1-7) suppresses oxidative stress, inhibits tissue fibrosis, and prevents extensive cardiac remodeling. Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers improve heart functioning and reduce the occurrence of diabetic cardiomyopathy. Experimental studies also show beneficial effects for Ang-(1-7) and angiotensin-converting enzyme 2 infusion in improving heart functioning and tissue injury. Further research is necessary to fully understand the pathophysiology of diabetic cardiomyopathy and to translate experimental findings into clinical practice.
Collapse
Affiliation(s)
- João Pedro Thimotheo Batista
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - André Oliveira Vilela de Faria
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Thomas Felipe Silva Ribeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| |
Collapse
|
3
|
Zhu J, Han J, Liu L, Liu Y, Xu W, Li X, Yang L, Gu Y, Tang W, Shi Y, Ye S, Hua F, Xiang G, Liu M, Sun Z, Su Q, Li X, Li Y, Li Y, Li H, Li Y, Yang T, Yang J, Shi L, Yu X, Chen L, Shao J, Liang J, Han X, Xue Y, Ma J, Zhu D, Mu Y. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res Clin Pract 2023; 197:110568. [PMID: 36738836 DOI: 10.1016/j.diabres.2023.110568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Islet β-cell dysfunction is a basic pathophysiological characteristic of type 2 diabetes mellitus (T2DM). Appropriate assessment of islet β-cell function is beneficial to better management of T2DM. Protecting islet β-cell function is vital to delay the progress of type 2 diabetes mellitus. Therefore, the Pancreatic Islet β-cell Expert Panel of the Chinese Diabetes Society and Endocrinology Society of Jiangsu Medical Association organized experts to draft the "Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus." This consensus suggests that β-cell function can be clinically assessed using blood glucose-based methods or methods that combine blood glucose and endogenous insulin or C-peptide levels. Some measures, including weight loss and early and sustained euglycemia control, could effectively protect islet β-cell function, and some newly developed drugs, such as Sodium-glucose cotransporter-2 inhibitor and Glucagon-like peptide-1 receptor agonists, could improve islet β-cell function, independent of glycemic control.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Liehua Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- Endocrinology Department, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomu Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Gu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Fei Hua
- Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command of Chinese People' s Liberation Army, Wuhan, China
| | - Ming Liu
- Department of Endocrinology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxiu Li
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lixin Shi
- Department of Endocrinology, Guiqian International General Hospital, Guiyang 550018, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaqing Shao
- Department of Endocrinology, the Affiliated Jinling Hospital of Nanjing Medical University, General Hospital of Eastern Theater Command, Nanjing, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yaomin Xue
- The First Clinical Medical Institute, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China.
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Wang R, Ye H, Zhao Y, Wei J, Wang Y, Zhang X, Wang L. Effect of sacubitril/valsartan and ACEI/ARB on glycaemia and the development of diabetes: a systematic review and meta-analysis of randomised controlled trials. BMC Med 2022; 20:487. [PMID: 36527023 PMCID: PMC9758945 DOI: 10.1186/s12916-022-02682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sacubitril/valsartan and angiotensin-converting enzyme inhibitor (ACEI)/angiotensin-receptor blocker (ARB) therapies were reported to affect glycaemic control and the development of diabetes mellitus (DM), but the findings are inconsistent. We examined the evidence for the effects of sacubitril/valsartan and ACEI/ARB in DM by conducting a meta-analysis. METHODS The Cochrane Central Register of Controlled Trials (The Cochrane Library), Embase, PubMed, and ClinicalTrials.gov were searched for data from randomised clinical trials (RCTs) that evaluated the efficacy of sacubitril/valsartan and ACEI/ARB in patients, as of May 25, 2022. Patients were grouped by their disease background at baseline. The main outcomes were the number of new-onset DM and hypoglycaemia, elevated glycaemia, inadequate DM control, diabetes treatment, and diabetic complications, from baseline to the end of the trials. The risk of bias was assessed using the revised Cochrane risk-of-bias tool for randomized trials (ROB 2). The quality of the evidence was evaluated according to the Recommendations for Assessment, Development, and Evaluation guidelines. The meta-analysis of the incidence of various outcomes was conducted using fixed or random effects models. The results are expressed as binary risk, 95% confidence interval (CI), and relative risk (RR). The Mantel-Haenszel method and Z test were used to determine the overall results and determine the significance of the RR. RESULTS This study included 31 RCTs and 86,809 subjects. Compared with placebo, sacubitril/valsartan treatment significantly reduced the risk of new-onset DM among all patients (RR = 0.78, 95% CI: 0.64-0.95), patients with heart failure (HF) (RR = 0.24, 95% CI: 0.12-0.48), HF with reduced ejection fraction (HFrEF) (RR = 0.24, 95% CI: 0.12-0.50), and HF with preserved ejection fraction (HFpEF) (RR = 0.54, 95% CI 0.34-0.85). In contrast, sacubitril/valsartan treatment significantly increased the risk of hypoglycaemia among all patients (RR = 1.91, 95% CI: 1.05-3.47), patients with not all-DM (defined as part of the study population having DM at baseline) (RR = 5.71, 95% CI: 2.02-16.21), and patients with HFpEF (RR = 7.06, 95% CI: 2.10-23.76). Compared with ACEI/ARB, sacubitril/valsartan treatment significantly increased the risk of hypoglycaemia among patients with HF (RR 1.85, 95% CI 1.12-3.06, p = 0.02) and HFpEF (RR 3.59, 95% CI 1.51-8.55, p = 0.004). Compared with placebo, ACEI/ARB treatment did significantly reduce the risk of new-onset DM among all patients (RR 0.85, 95% CI 0.77-0.93, p = 0.0007) and patients with not all-HF (defined as part of the study population having HF at baseline) (RR 0.87, 95% CI 0.82-0.93, p<0.0001) and HFpEF (RR 0.60, 95% CI 0.44-0.83, p = 0.002), diabetes complications among patients with non-HF (/not all-DM) (RR 0.87, 95% CI 0.76-0.99, p = 0.04), and subsequent diabetes treatment among patients with new-onset DM (RR 0.70, 95% CI 0.58-0.84, p = 0.0002) and significantly increased the risk of hypoglycaemia among patients with not all-DM (RR 2.06, 95% CI 1.172-3.61, p = 0.01). CONCLUSIONS The results of our study, especially in reducing glycaemia and new-onset DM, revealed that sacubitril/valsartan had a positive effect on the control of glycaemia and the development of DM. ACEI/ARB also had a beneficial effect but the effect was weaker than that of sacubitril/valsartan. The above effects varied across diseases but the evidence was strongest in patients with HF. TRIAL REGISTRATION CRD42022336311.
Collapse
Affiliation(s)
- Ruxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No. 613, Huang pu Avenue West, Guangzhou, Guangdong, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No. 613, Huang pu Avenue West, Guangzhou, Guangdong, China
| | - Yongting Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Harbin, China
| | - Jinjing Wei
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No. 613, Huang pu Avenue West, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No. 613, Huang pu Avenue West, Guangzhou, Guangdong, China
| | - Xiaofang Zhang
- Clinical Experimental Center, The First Affiliated Hospital of Jinan University, No. 613, Huang pu Avenue West, Guangzhou, Guangdong, China.
| | - Lihong Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, No. 613, Huang pu Avenue West, Guangzhou, Guangdong, China.
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Esser N, Schmidt C, Barrow BM, Cronic L, Hackney DJ, Mongovin SM, Hogan MF, Templin AT, Castillo JJ, Hull RL, Zraika S. Insulinotropic Effects of Neprilysin and/or Angiotensin Receptor Inhibition in Mice. Front Endocrinol (Lausanne) 2022; 13:888867. [PMID: 35733766 PMCID: PMC9207331 DOI: 10.3389/fendo.2022.888867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment of heart failure with the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan improved glycemic control in individuals with type 2 diabetes. The relative contribution of neprilysin inhibition versus angiotensin II receptor antagonism to this glycemic benefit remains unknown. Thus, we sought to determine the relative effects of the neprilysin inhibitor sacubitril versus the angiotensin II receptor blocker valsartan on beta-cell function and glucose homeostasis in a mouse model of reduced first-phase insulin secretion, and whether any beneficial effects are additive/synergistic when combined in sacubitril/valsartan. High fat-fed C57BL/6J mice treated with low-dose streptozotocin (or vehicle) were followed for eight weeks on high fat diet alone or supplemented with sacubitril, valsartan or sacubitril/valsartan. Body weight and fed glucose levels were assessed weekly. At the end of the treatment period, insulin release in response to intravenous glucose, insulin sensitivity, and beta-cell mass were determined. Sacubitril and valsartan, but not sacubitril/valsartan, lowered fasting and fed glucose levels and increased insulin release in diabetic mice. None of the drugs altered insulin sensitivity or beta-cell mass, but all reduced body weight gain. Effects of the drugs on insulin release were reproduced in angiotensin II-treated islets from lean C57BL/6J mice, suggesting the insulin response to each of the drugs is due to a direct effect on islets and mechanisms therein. In summary, sacubitril and valsartan each exert beneficial insulinotropic, glycemic and weight-reducing effects in obese and/or diabetic mice when administered alone; however, when combined, mechanisms within the islet contribute to their inability to enhance insulin release.
Collapse
Affiliation(s)
- Nathalie Esser
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
- Laboratory of Immunometabolism and Nutrition, GIGA Infection, Immunity and Inflammation, University of Liège, Liège, Belgium
| | - Christine Schmidt
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Breanne M. Barrow
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Laura Cronic
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Daryl J. Hackney
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Stephen M. Mongovin
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Meghan F. Hogan
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Andrew T. Templin
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Joseph J. Castillo
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Rebecca L. Hull
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Sakeneh Zraika
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
de Campos Zani SC, Son M, Bhullar KS, Chan CB, Wu J. IRW (Isoleucine-Arginine-Tryptophan) Improves Glucose Tolerance in High Fat Diet Fed C57BL/6 Mice via Activation of Insulin Signaling and AMPK Pathways in Skeletal Muscle. Biomedicines 2022; 10:biomedicines10061235. [PMID: 35740257 PMCID: PMC9220315 DOI: 10.3390/biomedicines10061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
IRW (Isoleucine−Arginine−Tryptophan), has antihypertensive and anti-inflammatory properties in cells and animal models and prevents angiotensin-II- and tumor necrosis factor (TNF)-α-induced insulin resistance (IR) in vitro. We investigated the effects of IRW on body composition, glucose homeostasis and insulin sensitivity in a high-fat diet (HFD) induced insulin resistant (IR) model. C57BL/6 mice were fed HFD for 6 weeks, after which IRW was incorporated into the diet (45 or 15 mg/kg body weight (BW)) until week 14. IRW45 (at a dose of 45 mg/kg BW) reduced BW (p = 0.0327), fat mass gain (p = 0.0085), and preserved lean mass of HFD mice (p = 0.0065), concomitant with enhanced glucose tolerance and reduced fasting glucose (p < 0.001). In skeletal muscle, IRW45 increased insulin-stimulated protein kinase B (AKT) phosphorylation (p = 0.0132) and glucose transporter 4 (GLUT4) translocation (p < 0.001). Angiotensin 2 receptor (AT2R) (p = 0.0024), phosphorylated 5′-AMP-activated protein kinase (AMPKα) (p < 0.0124) and peroxisome proliferator-activated receptor gamma (PPARγ) (p < 0.001) were enhanced in skeletal muscle of IRW45-treated mice, as was the expression of genes involved in myogenesis. Plasma angiotensin converting enzyme-2 (ACE2) activity was increased (p = 0.0016). Uncoupling protein-1 in white adipose tissue (WAT) was partially restored after IRW supplementation. IRW improves glucose tolerance and body composition in HFD-fed mice and promotes glucose uptake in skeletal muscle via multiple signaling pathways, independent of angiotensin converting enzyme (ACE) inhibition.
Collapse
Affiliation(s)
| | - Myoungjin Son
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.S.); (K.S.B.)
| | - Khushwant S. Bhullar
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.S.); (K.S.B.)
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Catherine B. Chan
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (S.C.d.C.Z.); (C.B.C.)
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.S.); (K.S.B.)
| | - Jianping Wu
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.S.); (K.S.B.)
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-4346
| |
Collapse
|
7
|
Kashiwagi Y, Nagoshi T, Ogawa K, Kawai M, Yoshimura M. Heart Failure Treatments Such As Angiotensin Receptor/Neprilysin Inhibitor Improve Heart Failure Status and Glucose Metabolism. Cureus 2022; 14:e22762. [PMID: 35371876 PMCID: PMC8971101 DOI: 10.7759/cureus.22762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 11/05/2022] Open
Abstract
A recent study suggested that angiotensin receptor/neprilysin inhibitor (ARNI; sacubitril/valsartan) can improve functional capacity and cardiac reverse remodeling in patients with heart failure with reduced ejection fraction (HFrEF). Another study suggested that ARNI reduced glycated hemoglobin (HbA1c) in patients with diabetes and HFrEF; however, the details of its efficacy are unknown. We herein report a case of HFrEF with abnormal glucose metabolism in which ARNI was initiated. On the 7th day of admission (before the initiation of ARNI), blood tests showed an abnormal glucose metabolism as follows: fasting blood glucose 134 mg/dL; and fasting blood insulin 11.4 µU/mL (homeostasis model assessment of insulin resistance (HOMA-IR) index 3.77; homeostasis model assessment of β-cell function (HOMA-β), 57.8%). On the 23rd day after the initiation of ARNI, even though the patient was not using hypoglycemic drugs, his fasting blood glucose markedly decreased to 70 mg/dL without hypoglycemic symptoms, and his fasting blood insulin decreased to 5.4 µU/mL (HOMA-IR decreased to 0.93, HOMA-β increased to 277.7%). These results imply that ARNI has the potential to improve insulin resistance and the islet beta-cell function in patients with heart failure, in addition to the original effect of improving the hemodynamics, although the effect of improving the glucose metabolism is also considered to have been influenced by the improvement of the heart failure status and other drugs that the patient was taking.
Collapse
|
8
|
Cloro C, Zaffina I, Sacchetta L, Arturi F, Clausi C, Lucà S, Pelle MC, Giofrè F, Armentaro G, Forte V, De Rosa FM, Sciacqua A, Arturi F. Effects of sacubitril/valsartan on both metabolic parameters and insulin resistance in prediabetic non-obese patients with heart failure and reduced ejection fraction. Front Endocrinol (Lausanne) 2022; 13:940654. [PMID: 36034421 PMCID: PMC9402256 DOI: 10.3389/fendo.2022.940654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The effects of sacubitril/valsartan (sac/val) on metabolic parameters and insulin resistance (IR) in non-obese/prediabetic patients have not been previously described. AIM To evaluate the effects of sac/val on glycemic and metabolic parameters, Homeostatic Model Assessment of IR (HOMA-IR), and echocardiographic parameters in prediabetic patients with heart failure with reduced ejection fraction (HFrEF). METHODS Fifty-nine patients with HFrEF (EF < 35%) but without obesity and/or type 2 diabetes mellitus have been enrolled. All the patients at baseline and week 24 underwent complete anthropometrical evaluation and were subjected to an echocardiogram test. IR has been assessed by HOMA-IR. RESULTS After 24-week of treatment with sac/val, a significant reduction in fasting plasma glucose (109 ± 9 vs 103 ± 8 mg/dl, p < 0.0001), fasting plasma insulin (16 ± 4 vs 10 ± 4 UI/L), and hemoglobin A1c (HbA1c) value (6% ± 0.5% vs 5.3% ± 0.3%, p < 0.0001) was observed. Similarly, we observed a significant improvement in IR (HOMA-IR, 4.4 ± 0.9 vs 2.5 ± 0.6, p < 0.0001). The echocardiogram evaluation showed a significant reduction of the left ventricular end-diastolic volume (168 ± 24 vs 158 ± 22 ml, p < 0.05), a significant reduction of the left ventricular end-systolic volume (111 ± 26 vs 98 ± 22 ml, p < 0.005), and a significant reduction of E/e' ratio. Sac/val use was also associated with an average 5.1% increase in ejection fraction. CONCLUSIONS Our data seem to indicate that sal/val enhances metabolic control and improves insulin resistance also in prediabetic non-obese patients with HFrEF.
Collapse
Affiliation(s)
- Cosima Cloro
- Unit of Cardiology, Annunziata Hospital, Cosenza, Italy
| | - Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Luca Sacchetta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Stefania Lucà
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Giuseppe Armentaro
- Geriatric Unit, Department of Medical and Surgical Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Valentina Forte
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Magna Graecia, Catanzaro, Italy
| | | | - Angela Sciacqua
- Geriatric Unit, Department of Medical and Surgical Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Magna Graecia, Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University of Magna Graecia, Catanzaro, Italy
- *Correspondence: Franco Arturi,
| |
Collapse
|
9
|
Memon B, Abdelalim EM. ACE2 function in the pancreatic islet: Implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol (Oxf) 2021; 233:e13733. [PMID: 34561952 PMCID: PMC8646749 DOI: 10.1111/apha.13733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023]
Abstract
The molecular link between SARS-CoV-2 infection and susceptibility is not well understood. Nonetheless, a bi-directional relationship between SARS-CoV-2 and diabetes has been proposed. The angiotensin-converting enzyme 2 (ACE2) is considered as the primary protein facilitating SARS-CoV and SARS-CoV-2 attachment and entry into the host cells. Studies suggested that ACE2 is expressed in the endocrine cells of the pancreas including beta cells, in addition to the lungs and other organs; however, its expression in the islets, particularly beta cells, has been met with some contradiction. Importantly, ACE2 plays a crucial role in glucose homoeostasis and insulin secretion by regulating beta cell physiology. Given the ability of SARS-CoV-2 to infect human pluripotent stem cell-derived pancreatic cells in vitro and the presence of SARS-CoV-2 in pancreatic samples from COVID-19 patients strongly hints that SARS-CoV-2 can invade the pancreas and directly cause pancreatic injury and diabetes. However, more studies are required to dissect the underpinning molecular mechanisms triggered in SARS-CoV-2-infected islets that lead to aggravation of diabetes. Regardless, it is important to understand the function of ACE2 in the pancreatic islets to design relevant therapeutic interventions in combatting the effects of SARS-CoV-2 on diabetes pathophysiology. Herein, we detail the function of ACE2 in pancreatic beta cells crucial for regulating insulin sensitivity, secretion, and glucose metabolism. Also, we discuss the potential role played by ACE2 in aiding SARS-COV-2 entry into the pancreas and the possibility of ACE2 cooperation with alternative entry factors as well as how that may be linked to diabetes pathogenesis.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences Hamad Bin Khalifa University (HBKU)Qatar Foundation Doha Qatar
- Diabetes Research Center Qatar Biomedical Research Institute (QBRI)Hamad Bin KhalifaUniversity (HBKU)Qatar Foundation (QF) Doha Qatar
| | - Essam M. Abdelalim
- College of Health and Life Sciences Hamad Bin Khalifa University (HBKU)Qatar Foundation Doha Qatar
- Diabetes Research Center Qatar Biomedical Research Institute (QBRI)Hamad Bin KhalifaUniversity (HBKU)Qatar Foundation (QF) Doha Qatar
| |
Collapse
|
10
|
Liu T, Cui L, Xue H, Yang X, Liu M, Zhi L, Yang H, Liu Z, Zhang M, Guo Q, He P, Liu Y, Zhang Y. Telmisartan Potentiates Insulin Secretion via Ion Channels, Independent of the AT1 Receptor and PPARγ. Front Pharmacol 2021; 12:739637. [PMID: 34594226 PMCID: PMC8477257 DOI: 10.3389/fphar.2021.739637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/30/2021] [Indexed: 01/15/2023] Open
Abstract
Angiotensin II type 1 (AT1) receptor blockers (ARBs), as antihypertensive drugs, have drawn attention for their benefits to individuals with diabetes and prediabetes. However, the direct effects of ARBs on insulin secretion remain unclear. In this study, we aimed to investigate the insulinotropic effect of ARBs and the underlying electrophysiological mechanism. We found that only telmisartan among the three ARBs (telmisartan, valsartan, and irbesartan) exhibited an insulin secretagogue role in rat islets. Independent of AT1 receptor and peroxisome proliferator-activated receptor γ (PPARγ), telmisartan exerted effects on ion channels including voltage-dependent potassium (Kv) channels and L-type voltage-gated calcium channels (VGCCs) to promote extracellular Ca2+ influx, thereby potentiating insulin secretion in a glucose-dependent manner. Furthermore, we identified that telmisartan directly inhibited Kv2.1 channel on a Chinese hamster ovary cell line with Kv2.1 channel overexpression. Acute exposure of db/db mice to a telmisartan dose equivalent to therapeutic doses in humans resulted in lower blood glucose and increased plasma insulin concentration in OGTT. We further observed the telmisartan-induced insulinotropic and electrophysiological effects on pathological pancreatic islets or β-cells isolated from db/db mice. Collectively, our results establish an important insulinotropic function of telmisartan distinct from other ARBs in the treatment of diabetes.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of General Surgery, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Mengmeng Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Min Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Qing Guo
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
de Ligt M, Hesselink MKC, Jorgensen J, Jocken JWE, Blaak EE, Goossens GH. The angiotensin II type 1 receptor blocker valsartan in the battle against COVID-19. Obesity (Silver Spring) 2021; 29:1423-1426. [PMID: 33955183 PMCID: PMC8242711 DOI: 10.1002/oby.23221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) uses the host's angiotensin-converting enzyme 2 (ACE2) as a cellular entry point. Therefore, modulating ACE2 might impact SARS-CoV-2 viral replication, shedding, and coronavirus disease 2019 (COVID-19) severity. Here, it was investigated whether the angiotensin II type 1 receptor blocker valsartan alters the expression of renin-angiotensin system (RAS) components, including ACE2, in human adipose tissue (AT) and skeletal muscle. METHODS A randomized, double-blind, placebo-controlled clinical trial was performed, in which 36 participants (BMI 31.0 ± 0.8 kg/m2 ) with impaired glucose metabolism received either valsartan or placebo for 26 weeks. Before and after 26 weeks' treatment, abdominal subcutaneous AT and skeletal muscle biopsies were obtained, and gene expression of RAS components was measured by quantitative reverse transcription polymerase chain reaction. RESULTS Valsartan treatment did not significantly impact the expression of RAS components, including ACE2, in AT and skeletal muscle. CONCLUSIONS Given the pivotal role of ACE2 in SARS-CoV-2 spread and the clinical outcomes in COVID-19 patients, the data suggest that the putative beneficial effects of angiotensin II type 1 receptor blockers on the clinical outcomes of patients with COVID-19 may not be mediated through altered ACE2 expression in abdominal subcutaneous AT.
Collapse
Affiliation(s)
- Marlies de Ligt
- Department of Nutrition and Movement SciencesNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Matthijs K. C. Hesselink
- Department of Nutrition and Movement SciencesNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Johanna Jorgensen
- Department of Nutrition and Movement SciencesNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Johan W. E. Jocken
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Ellen E. Blaak
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Gijs H. Goossens
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| |
Collapse
|
12
|
Shah S, Feher M, McGovern A, Sherlock J, Whyte MB, Munro N, Hinton W, Gatenby P, de Lusignan S. Diabetic retinopathy in newly diagnosed Type 2 diabetes mellitus: Prevalence and predictors of progression; a national primary network study. Diabetes Res Clin Pract 2021; 175:108776. [PMID: 33753173 DOI: 10.1016/j.diabres.2021.108776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/23/2022]
Abstract
AIMS To determine, inreal-world primary care settings, the prevalence of, and risk factors for, retinopathy atType 2 diabetes mellitus diagnosis and report cumulative incidence and progression of retinopathy seven years after diabetes diagnosis. METHODS Retrospective cohort analysis of people with newly diagnosed Type 2 diabetesrecorded bythe Royal College of General Practitioners Research and Surveillance Centre(between 2005 and 2009, n=11,399).Outcomes included; retinopathy prevalence atdiabetesdiagnosis (baseline) and cumulative incidence or progression of retinopathy at seven years. Retinopathy prevalence was compared with the United Kingdom Prospective Diabetes Study (UKPDS-1998). Factors influencing retinopathy incidence and progression were analysed using logistic regression. RESULTS Baseline retinopathy prevalencewas 18% (n=2,048) versus 37% in UKPDS. At seven years, 11.6% (n=237) of those with baseline retinopathyhad progression of retinopathy. In those without baseline retinopathy, 46.4% (n=4,337/9,351) developed retinopathy by seven years. Retinopathy development (OR: 1.05 [95%CI: 1.02-1.07] per mmol/mol increase) and progression (OR: 1.05 [1.04-1.06]) at seven years was associated with higher HbA1catdiabetesdiagnosis. Obesity (OR: 0.88 [0.79-0.98]) and high socioeconomic status (OR: 0.63 [0.53-0.74]) were negatively associated with retinopathy development at seven years. CONCLUSIONS Baseline retinopathy prevalence has declined since UKPDS. Additionally, HbA1c at diabetes diagnosis remains important for retinopathy development and progression.
Collapse
Affiliation(s)
- Savan Shah
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| | - Michael Feher
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK; Nuffield Department of Primary Care Health Sciences, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, University of Oxford, Oxford OX2 6GG, UK
| | - Andrew McGovern
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK; University of Exeter Medical School, The Institute of Clinical and Biological Sciences, RILD Building, RD&E Hospital, Wonford, Barrack Road, Exeter EX2 5DW, UK
| | - Julian Sherlock
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Martin B Whyte
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Neil Munro
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK; Diabetes Centre, Dumfries & Galloway Royal Infirmary, A75, Cargenbridge, Dumfries DG2 8RX, UK
| | - William Hinton
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK; Nuffield Department of Primary Care Health Sciences, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, University of Oxford, Oxford OX2 6GG, UK
| | - Piers Gatenby
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Simon de Lusignan
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK; Nuffield Department of Primary Care Health Sciences, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
13
|
Jia G, Lockette W, Sowers JR. Mineralocorticoid receptors in the pathogenesis of insulin resistance and related disorders: from basic studies to clinical disease. Am J Physiol Regul Integr Comp Physiol 2021; 320:R276-R286. [PMID: 33438511 DOI: 10.1152/ajpregu.00280.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldosterone is a steroid hormone that regulates blood pressure and cardiovascular function by acting on renal and vascular mineralocorticoid receptors (MRs) to promote sodium retention and modulate endothelial function. Indeed, MRs are expressed in endothelial cells, vascular smooth muscle cells, adipocytes, immune cells, skeletal muscle cells, and cardiomyocytes. Excessive aldosterone and associated MR activation impair insulin secretion, insulin metabolic signaling to promote development of diabetes, and the related cardiometabolic syndrome. These adverse effects of aldosterone are mediated, in part, via increased inflammation, oxidative stress, dyslipidemia, and ectopic fat deposition. Therefore, inhibition of MR activation may have a beneficial effect in prevention of impaired insulin metabolic signaling, type 2 diabetes, and cardiometabolic disorders. This review highlights findings from the recent surge in research regarding MR-related cardiometabolic disorders as well as our contemporary understanding of the detrimental effects of excess MR activation on insulin metabolic signaling.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Research Service, Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Warren Lockette
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Medicine and Physiology, Wayne State University, Detroit, Michigan
| | - James R Sowers
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
14
|
ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders. Clin Sci (Lond) 2021; 135:535-554. [PMID: 33533405 DOI: 10.1042/cs20200752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) has currently attracted increasing attention due to its potential function in regulating energy homeostasis, other than the actions on cellular growth, blood pressure, fluid, and electrolyte balance. The existence of RAS is well established in metabolic organs, including pancreas, liver, skeletal muscle, and adipose tissue, where activation of angiotensin-converting enzyme (ACE) - angiotensin II pathway contributes to the impairment of insulin secretion, glucose transport, fat distribution, and adipokines production. However, the activation of angiotensin-converting enzyme 2 (ACE2) - angiotensin (1-7) pathway, a novel branch of the RAS, plays an opposite role in the ACE pathway, which could reverse these consequences by improving local microcirculation, inflammation, stress state, structure remolding, and insulin signaling pathway. In addition, new studies indicate the protective RAS arm possesses extraordinary ability to enhance brown adipose tissue (BAT) activity and induces browning of white adipose tissue, and consequently, it leads to increased energy expenditure in the form of heat instead of ATP synthesis. Interestingly, ACE2 is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is threating public health worldwide. The main complications of SARS-CoV-2 infected death patients include many energy metabolism-related chronic diseases, such as diabetes. The specific mechanism leading to this phenomenon is largely unknown. Here, we summarize the latest pharmacological and genetic tools on regulating ACE/ACE2 balance and highlight the beneficial effects of the ACE2 pathway axis hyperactivity on glycolipid metabolism, as well as the thermogenic modulation.
Collapse
|
15
|
Gao Z, Yan W, Fang Z, Zhang Z, Yuan L, Wang X, Jia Z, Zhu Y, Miller JD, Yuan X, Li F, Lou Q. Annual decline in β-cell function in patients with type 2 diabetes in China. Diabetes Metab Res Rev 2021; 37:e3364. [PMID: 32515043 DOI: 10.1002/dmrr.3364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study was to investigate the annual decline of β-cell function correlated with disease duration in patients with type 2 diabetes in China. METHODS This cross-sectional study included 4792 adults with type 2 diabetes who were recruited from four university hospital diabetes clinics between April 2018 and November 2018. Baseline data were collected from electric medical records. Participants were divided into 21 groups with 1-year diabetes duration interval to assess the decline rate of β-cell function. Homeostatic model assessment model (HOMA 2) model was applied to assess β-cell function. Multiple linear regression model was used to evaluate the association between biochemical and clinical variables and β-cell function. RESULTS In Chinese patients with type 2 diabetes, β-cell function declined by 2% annually. Using angiotensin receptor blockade (ARB) (β = .048; P = .011), metformin (β = .138; P = .021), or insulin (β = .142; P = .018) was associated with increased β-cell function. However, increased BMI (β = -.215; P = .022), alcohol consumption (β = -.331; P < .001), haemoglobin A1c (β = -.104; P = .027), or increased diabetes duration (β = -.183; P = .003) was significantly and negatively associated with β-cell function. CONCLUSIONS We determined that the annual rate of the β-cell function decline was 2% in patients with type 2 diabetes in China. Moreover, we confirmed a positive relationship between ARB treatment and β-cell function, while BMI and alcohol consumption were significantly and negatively associated with the β-cell function.
Collapse
Affiliation(s)
- Zhenxiu Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nursing College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zongjun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Yuan
- West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Endocrinology, Shan'xi Provincial People's Hospital, Taiyuan, China
| | - Zhumin Jia
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yuanyuan Zhu
- Nursing College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Joshua D Miller
- Stony Brook University Hospital, New York City, New York, USA
| | - Xiaodan Yuan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Li
- College of Nursing, University of Missouri St. Louis, St. Louis, Missouri, USA
| | - Qingqing Lou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Zheng J, Ding J, Liao M, Qiu Z, Yuan Q, Mai W, Dai Y, Zhang H, Wu H, Wang Y, Liao Y, Chen X, Cheng X. Immunotherapy against angiotensin II receptor ameliorated insulin resistance in a leptin receptor-dependent manner. FASEB J 2020; 35:e21157. [PMID: 33155736 DOI: 10.1096/fj.202000300r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
The angiotensin II type 1 receptor (AT1R) signaling pathway is reported to modulate glucose metabolism. Targeting AT1R, our group invented ATRQβ-001 vaccine, a novel immunotherapeutic strategy to block the activation of AT1R. Here, we evaluated the therapeutic efficacy of ATRQβ-001 vaccine in insulin resistance, and investigated the mechanism. Our results showed that ATRQβ-001 vaccine and specific monoclonal antibody against epitope ATR-001 (McAb-ATR) decreased fasting serum insulin concentration and improved glucose and insulin tolerance in ob/ob mice. These beneficial effects were verified in high-fat diet-induced obese mice. McAb-ATR activated insulin signaling in skeletal muscle and insulin-resistant C2C12 myotubes without affecting liver or white adipose tissue of ob/ob mice. Mechanistically, the favorable impact of McAb-ATR on insulin resistance was abolished in db/db mice and in C2C12 myotubes with leptin receptor knockdown. AT1R knockdown also eradicated the effects of McAb-ATR in C2C12 myotubes. Furthermore, McAb-ATR treatment was able to activate the leptin receptor-mediated JAK2/STAT3 signaling in skeletal muscle of ob/ob mice and C2C12 myotubes. Additionally, angiotensin II downregulated the leptin signaling in skeletal muscle of ob/ob and diet-induced obese mice. We demonstrated that ATRQβ-001 vaccine and McAb-ATR improved whole-body insulin resistance and regulated glucose metabolism in skeletal muscle in a leptin receptor-dependent manner. Our data suggest that immunotherapy targeting AT1R is a novel strategy for treating insulin resistance.
Collapse
Affiliation(s)
- Jiayu Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxing Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyang Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchen Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wuqian Mai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Dai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongrong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailang Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Butler J, Januzzi JL, Rosenstock J. Management of heart failure and type 2 diabetes mellitus: Maximizing complementary drug therapy. Diabetes Obes Metab 2020; 22:1243-1262. [PMID: 32243706 DOI: 10.1111/dom.14042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease and occurs in ~25% of patients with heart failure (HF). Patients with co-morbid HF and T2DM are at elevated risk of adverse outcomes, making optimization of complementary drug therapies essential. While research is ongoing, recent advances in drug therapy, including the introduction of sacubitril/valsartan for HF with reduced ejection fraction and the finding of positive cardiovascular effects of glucose-lowering agents (particularly sodium-glucose co-transporter-2 [SGLT2] inhibitors) have the potential to transform pharmacologic management of co-morbid HF and T2DM. In this review, we provide a comprehensive overview of cardiovascular clinical trials of therapies for HF and diabetes mellitus to date and identify areas requiring further investigation. We also discuss the pathophysiologic overlap of the two diseases and explore the complementary therapeutic effects of HF and T2DM drugs, with a particular focus on sacubitril/valsartan and SGLT2 inhibitors.
Collapse
|
18
|
Yang Y, Kim J, Park H, Lee E, Yoon K. Pancreatic stellate cells in the islets as a novel target to preserve the pancreatic β-cell mass and function. J Diabetes Investig 2020; 11:268-280. [PMID: 31872946 PMCID: PMC7078117 DOI: 10.1111/jdi.13202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
There are numerous lines of clinical evidence that inhibition of the renin-angiotensin system (RAS) can prevent and delay the development of diabetes. Also, the role of RAS in the pathogenesis of diabetes, including insulin resistance and β-cell dysfunction, has been extensively investigated. Nevertheless, this role had not yet been fully shown. A variety of possible protective mechanisms for RAS blockers in the regulation of glucose homeostasis have been suggested. However, the direct effect on pancreatic islet fibrosis has only recently been spotlighted. Various degrees of islet fibrosis are often observed in the islets of patients with type 2 diabetes mellitus, which can be associated with a decrease in β-cell mass and function in these patients. Pancreatic stellate cells are thought to be deeply involved in this islet fibrosis. In this process, the activation of RAS in islets is shown to transform quiescent pancreatic stellate cells into the activated form, stimulates their proliferation and consequently leads to islet fibrotic destruction. In this article, we introduce existing clinical and experimental evidence for diabetes prevention through inhibition of RAS, and review the responsible local RAS signaling pathways in pancreatic stellate cells. Finally, we propose possible targets for the prevention of islet fibrosis.
Collapse
Affiliation(s)
- Yeoree Yang
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| | - Ji‐Won Kim
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| | - Heon‐Seok Park
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| | - Eun‐Young Lee
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| | - Kun‐Ho Yoon
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
19
|
Ramalingam L, Sopontammarak B, Menikdiwela KR, Moustaid-Moussa N. Endoplasmic Reticulum (ER) Stress in Part Mediates Effects of Angiotensin II in Pancreatic Beta Cells. Diabetes Metab Syndr Obes 2020; 13:2843-2853. [PMID: 32884312 PMCID: PMC7443445 DOI: 10.2147/dmso.s257797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The renin angiotensin aldosterone system (RAAS) is a hormone system known for its role in regulating blood pressure and fluid balance. Numerous RAAS inhibitors routinely prescribed for hypertension have also beneficial effects in type 2 diabetes (T2D) prevention. RAAS components are expressed locally in many tissues, including adipose tissue and pancreas, where they exert metabolic effects through RAAS bioactive hormone angiotensin II (Ang II). Pancreatic beta cells are specialized insulin-producing cells; they have also developed endoplasmic reticulum (ER), which contributes to beta cell dysfunction, when proteins are misfolded in disease states such as T2D. However, no studies have investigated the relationship between RAAS and ER stress in beta cells as a mechanism linking pancreatic RAAS to T2D. Hence, we hypothesized that Ang II treatment of beta cells increases ER stress and inflammation leading to reduced insulin secretion. METHODS To test this hypothesis, we treated clonal INS-1E beta cells and human islets with Ang II and assessed changes in ER stress markers. INS-1E beta cells were also used for measuring insulin secretion and for assessing the effects of various RAAS and ER stress inhibitors. RESULTS We demonstrated that Ang II significantly increased the expression of ER stress genes such as Chop and Atf4 and reduced insulin secretion. Furthermore, inhibition of Ang II production with an angiotensin converting enzyme inhibitor (ACEi, captopril) significantly reduced ER stress. Moreover, the Ang II receptor blockade reduced ER stress significantly and rescued insulin secretion. DISCUSSION This research provides new mechanistic insight into the role of RAAS activation via ER stress on beta cell dysfunction and provides additional evidence for protective effects of RAAS inhibition in T2D.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Nutritional Sciences, And Obesity Research Institute, Texas Tech University, Lubbock, TX79424, USA
| | - Boontharick Sopontammarak
- Department of Nutritional Sciences, And Obesity Research Institute, Texas Tech University, Lubbock, TX79424, USA
| | - Kalhara R Menikdiwela
- Department of Nutritional Sciences, And Obesity Research Institute, Texas Tech University, Lubbock, TX79424, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, And Obesity Research Institute, Texas Tech University, Lubbock, TX79424, USA
- Correspondence: Naima Moustaid-Moussa Texas Tech University, Department of Nutritional Sciences & Obesity Research Institute, 1301 Akron Street, Lubbock, TX79409-1270, USATel + 806-834-7946 Email
| |
Collapse
|
20
|
Seferovic JP, Solomon SD, Seely EW. Potential mechanisms of beneficial effect of sacubitril/valsartan on glycemic control. Ther Adv Endocrinol Metab 2020; 11:2042018820970444. [PMID: 33489085 PMCID: PMC7768573 DOI: 10.1177/2042018820970444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) and diabetes mellitus (DM) frequently coexist, with a prevalence of DM of 35-40% in patients with HF, independent of the level of impairment of the ejection fraction (EF). Furthermore, DM is considered a strong independent risk factor for the progression of HF with either preserved or reduced EF and is associated with poor prognosis. The ability of neprilysin inhibitors to elevate levels of biologically active natriuretic peptides has made them a potential therapeutic approach in HF. In the Prospective comparison of ARNi with ACEi to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, a dual-acting angiotensin-receptor-neprilysin inhibitor, sacubitril/valsartan was superior to enalapril in reducing the risks of death and HF hospitalization in patients with HF with reduced EF. In addition, in a post-hoc analysis of this trial, among patients with DM, treatment with sacubitril/valsartan resulted in improved glycemic control compared with enalapril. Also, there are additional studies suggesting beneficial metabolic effects of this class of drugs. In this review we discuss potential mechanisms of sacubitril/valsartan effect on glycemic control. Sacubitril/valsartan concomitantly blocks the renin-angiotensin system and inhibits neprilysin, a ubiquitous enzyme responsible for the breakdown of more than 50 vasoactive peptides, including the biologically active natriuretic peptides, bradykinin, angiotensin I and II, endothelin 1, glucagon, glucagon-like peptide-1, insulin-B chain, and others. There are a number of potential mechanisms by which inhibition of neprilysin may lead to improvement in glycemic control, with most evidence suggesting modulation of neprilysin circulating substrates. Although there is some evidence suggesting the improvement of glucose metabolism by renin-angiotensin system inhibition, this effect is most likely modest. As these mechanisms are not fully understood, detailed mechanistic studies, as well as large randomized clinical trials in patients with DM, are needed to further clarify beneficial metabolic properties of sacubitril/valsartan.
Collapse
Affiliation(s)
| | - Scott D. Solomon
- Cardiovascular Division, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen W. Seely
- Endocrinology, Diabetes, and Hypertension
Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,
USA
| |
Collapse
|
21
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
22
|
Improved quantification of muscle insulin sensitivity using oral glucose tolerance test data: the MISI Calculator. Sci Rep 2019; 9:9388. [PMID: 31253846 PMCID: PMC6598992 DOI: 10.1038/s41598-019-45858-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
The Muscle Insulin Sensitivity Index (MISI) has been developed to estimate muscle-specific insulin sensitivity based on oral glucose tolerance test (OGTT) data. To date, the score has been implemented with considerable variation in literature and initial positive evaluations were not reproduced in subsequent studies. In this study, we investigate the computation of MISI on oral OGTT data with differing sampling schedules and aim to standardise and improve its calculation. Seven time point OGTT data for 2631 individuals from the Maastricht Study and seven time point OGTT data combined with a hyperinsulinemic-euglycaemic clamp for 71 individuals from the PRESERVE Study were used to evaluate the performance of MISI. MISI was computed on subsets of OGTT data representing four and five time point sampling schedules to determine minimal requirements for accurate computation of the score. A modified MISI computed on cubic splines of the measured data, resulting in improved identification of glucose peak and nadir, was compared with the original method yielding an increased correlation (ρ = 0.576) with the clamp measurement of peripheral insulin sensitivity as compared to the original method (ρ = 0.513). Finally, a standalone MISI calculator was developed allowing for a standardised method of calculation using both the original and improved methods.
Collapse
|
23
|
Wewer Albrechtsen NJ, Mark PD, Terzic D, Hansen LH, Andersen UØ, Hartmann B, Carr RD, Gustafsson F, Deacon CF, Holst JJ, Goetze JP, Plomgaard P. Sacubitril/valsartan augments postprandial plasma concentrations of active GLP-1 when combined with sitagliptin in men. J Clin Endocrinol Metab 2019; 104:3868-3876. [PMID: 31074791 DOI: 10.1210/jc.2019-00515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT Combined inhibition of neprilysin and dipeptidyl peptidase 4 (DPP-4) has been shown to augment plasma concentrations of glucagon-like peptide-1(GLP-1) in animal models, but whether this occurs in humans is unknown. OBJECTIVE To investigate the effects of inhibition of neprilysin by sacubitril/valsartan alone or in combination with a DPP-4 inhibitor (sitagliptin) on plasma concentrations of GLP-1 in healthy men. DESIGN Two open-labeled crossover studies were performed in human subjects. SETTING General community. PARTICIPANTS Nine and 10 healthy young males were included in study 1 and study 2, respectively. INTERVENTION Study participants received a standardized meal (34% carbohydrates, 45% fat, 21% protein, total caloric content of 2106kJ) combined with a prior dose of either sacubitril/valsartan (194/206mg) or control in study 1, and in study 2, with a prior dose of sitagliptin (2x100mg, given ∼10 hours apart) either alone or with sacubitril/valsartan (194/206mg). MAIN OUTCOME MEASURES Plasma concentrations of total and intact GLP-1. RESULTS Sacubitril/valsartan increased postprandial plasma concentrations of total GLP-1 by 67% (tAUC0-240min: 3929±344 vs. 2348±181 min × pmol/L P=0.0023), and increased concentrations of intact GLP-1 plasma concentrations more than sitagliptin alone (tAUC0-240min: 1021±114 vs. 660±80 min × pmol/L, P=0.01). Plasma concentrations of glucose, insulin, and GIP were not significantly (P>0.10) changed upon sacubitril/valsartan treatment. CONCLUSIONS Sacubitril/valsartan combined with a DPP-4 inhibitor lead to markedly higher concentrations of intact GLP-1 than DPP-4 inhibition alone, supporting a role for both neprilysin and DPP-4 in the metabolism of GLP-1 in humans, a finding which may have therapeutic implications.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter D Mark
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
| | - Dijana Terzic
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
| | - Lasse H Hansen
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Ø Andersen
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard D Carr
- MSD, Copenhagen, Denmark
- University College London, London, UK
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Effects of Irbesartan Pretreatment on Pancreatic β-Cell Apoptosis in STZ-Induced Acute Prediabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8616194. [PMID: 30622676 PMCID: PMC6304884 DOI: 10.1155/2018/8616194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023]
Abstract
The current study was performed to investigate the effects and potential effects of irbesartan pretreatment on pancreatic β-cell apoptosis in a streptozotocin- (STZ-) induced acute mouse model of prediabetes. Twenty-four male BALB/C mice (18–22 g) were randomly divided into three groups: normal control group (NC, n = 6), STZ group (STZ, n = 8), and irbesartan + STZ group (IRB + STZ, n = 10). In the IRB + STZ group, mice were administered irbesartan (300 mg/kg per day) by gavage for one week. The STZ group and IRB + STZ group received STZ (80 mg/kg by intraperitoneal (IP) injection once). The NC group received normal saline (80 mg/kg by IP injection once). Fasting blood glucose prior to STZ injection and presacrifice was analysed using samples withdrawn from the caudal vein to confirm the induction of prediabetes. Haematoxylin and eosin staining, immunohistochemical detection of insulin, and apoptosis analysis were performed. Reverse transcription-quantitative polymerase chain reaction was used to detect angiotensin II type 1 receptor (AT1R), caspase-3, and p38 mitogen-activated protein kinase (MAPK) mRNA expression. Blood glucose was significantly higher in the STZ group (9.01 ± 1.1089 vs 4.78 ± 0.7026) and IRB + STZ group (7.86 ± 1.1811 vs 4.78 ± 0.7026) compared with the NC group (P < 0.05). In comparison to the STZ group, the islet cell damage was marginally improved in the IRB + STZ group, and the IRB + STZ group had a significantly lower apoptotic rate than the STZ group (22.42 ± 8.3675 vs 50.86 ± 5.3395, P < 0.001). AT1R expression in the IRB + STZ group was lower than that in the STZ group (1.56 ± 1.2207 vs 3.92 ± 2.4392, P < 0.05). The mRNA expression of caspase-3 in pancreatic tissue was significantly lower in the IRB + STZ group than in the STZ group (0.90 ± 0.7272 vs 1.88 ± 1.0572, P < 0.05). Similarly, the IRB + STZ group also had lower p38MAPK levels than the STZ group (1.16 ± 1.0642 vs 2.55 ± 1.7925, P > 0.05). In conclusion, irbesartan pretreatment improved glucose levels and insulin secretion and decreased islet β-cell apoptosis to protect islet β cells in an STZ-induced acute prediabetic mouse model.
Collapse
|
25
|
Wharton S, Raiber L, Serodio KJ, Lee J, Christensen RA. Medications that cause weight gain and alternatives in Canada: a narrative review. Diabetes Metab Syndr Obes 2018; 11:427-438. [PMID: 30174450 PMCID: PMC6109660 DOI: 10.2147/dmso.s171365] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cause of the obesity epidemic is multifactorial, but may, in part, be related to medication-induced weight gain. While clinicians may strive to do their best to select pharmacotherapy(ies) that has the least negative impact on weight, the literature regarding the weight effects of medication is often limited and devoid of alternative therapies. RESULTS Antipsychotics, antidepressants, antihyperglycemics, antihypertensives and corticosteroids all contain medications that were associated with significant weight gain. However, there are several medication alternatives within the majority of these classes associated with weight neutral or even weight loss effects. Further, while not all of the classes of medication examined in this review have weight-favorable alternatives, there exist many other tools to mitigate weight gain associated with medication use, such as changes in dosing, medication delivery or the use of adjunctive therapies. CONCLUSION Medication-induced weight gain can be frustrating for both the patient and the clinician. As the use of pharmaceuticals continues to increase, it is pertinent for clinicians to consider the weight effects of medications prior to prescribing or in the course of treatment. In the case where it is not feasible to make changes to medication, adjunctive therapies should be considered.
Collapse
Affiliation(s)
- Sean Wharton
- The Wharton Medical Clinic, Toronto, Canada,
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | | | | | - Jasmine Lee
- The Wharton Medical Clinic, Toronto, Canada,
| | | |
Collapse
|
26
|
Yang YS, Lim MH, Lee SO, Roh E, Ahn CH, Kwak SH, Cho YM, Kim S, Mari A, Park KS, Jung HS. Fimasartan increases glucose-stimulated insulin secretion in patients with type 2 diabetes and hypertension compared with amlodipine. Diabetes Obes Metab 2018; 20:1670-1677. [PMID: 29546730 DOI: 10.1111/dom.13282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/21/2018] [Accepted: 03/04/2018] [Indexed: 12/22/2022]
Abstract
AIM To study the effects of angiotensin receptor blockers (ARBs) on insulin secretion in hypertensive patients with type 2 diabetes. MATERIALS AND METHODS A total of 41 patients were enrolled in this open-label, active comparator-controlled, crossover study. After a 2-week run-in period with amlodipine, the participants were assigned to receive either fimasartan (60-120 mg daily) or amlodipine (5-10 mg daily) for 16 weeks. Thereafter, they were treated with the other drug for another 16 weeks. Physical examinations and laboratory tests were performed before and after each treatment. RESULTS Blood pressure, glycated haemoglobin and oral glucose tolerance test (OGTT) values were similar with each treatment. Fimasartan treatment significantly increased median (range) homeostatic assessment of β-cell function values (49.9 [22.5-174.4] vs 46.9 [15.6-148.0]), area under the curve of insulin during OGTT (27 284 [9501-94 525] vs 26 818 [8112-76 704] pmol/L × min), insulinogenic index at 60 minutes (19.7 [3.0-131.2] vs 15.0 [2.4-103.8] pmol/mmol) and at 120 minutes (19.1 [1.9-85.5] vs 12.6 [-4.3-178.8] pmol/mmol) compared with those with amlodipine (all P < .05); however, acute insulin response and insulin resistance indices were similar for both agents. CONCLUSIONS Compared with amlodipine, fimasartan increased late-phase glucose-stimulated insulin secretion in patients with type 2 diabetes and hypertension. This finding suggests that ARBs would be more beneficial in such patients compared with other classes of anti-hypertensives.
Collapse
Affiliation(s)
- Ye Seul Yang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Hyuk Lim
- Departments of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Ok Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Roh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungwan Kim
- Departments of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The following is a review of the current concepts on the relationship between hypertension (HTN) and diabetes mellitus with a focus on the epidemiology and cardiovascular prognostic implications of coexistent HTN and diabetes mellitus, shared mechanisms underlying both conditions and pathophysiology of increased risk of cardiovascular disease, treatment of HTN in individuals with diabetes mellitus, and effects of anti-diabetic medications on blood pressure (BP). RECENT FINDINGS Diabetes mellitus and HTN often coexist in the same individual. They share numerous risk factors and underlying pathophysiologic mechanisms, most important of which are insulin resistance and inappropriate activation of the rennin-angiotensin-aldosterone system. Recently updated guidelines recommend a BP goal of 140/90 mmHg in most individuals with diabetes mellitus. A new class of anti-diabetic medications, sodium-glucose co-transporter 2 inhibitors, has shown favorable effects on BP. SUMMARY HTN affects the majority of individuals with diabetes mellitus. Coexistence of diabetes mellitus and HTN, especially if BP is not well controlled, dramatically increases the risk of morbidity and mortality from cardiovascular disease. BP control is an essential part of management of patients with diabetes mellitus, because it is one of the most effective ways to prevent vascular complications and death.
Collapse
|
28
|
Stinkens R, van der Kolk BW, Jordan J, Jax T, Engeli S, Heise T, Jocken JW, May M, Schindler C, Havekes B, Schaper N, Albrecht D, Kaiser S, Hartmann N, Letzkus M, Langenickel TH, Goossens GH, Blaak EE. The effects of angiotensin receptor neprilysin inhibition by sacubitril/valsartan on adipose tissue transcriptome and protein expression in obese hypertensive patients. Sci Rep 2018; 8:3933. [PMID: 29500454 PMCID: PMC5834447 DOI: 10.1038/s41598-018-22194-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/19/2018] [Indexed: 01/30/2023] Open
Abstract
Increased activation of the renin-angiotensin system is involved in the onset and progression of cardiometabolic diseases, while natriuretic peptides (NP) may exert protective effects. We have recently demonstrated that sacubitril/valsartan (LCZ696), a first-in-class angiotensin receptor neprilysin inhibitor, which blocks the angiotensin II type-1 receptor and augments natriuretic peptide levels, improved peripheral insulin sensitivity in obese hypertensive patients. Here, we investigated the effects of sacubitril/valsartan (400 mg QD) treatment for 8 weeks on the abdominal subcutaneous adipose tissue (AT) phenotype compared to the metabolically neutral comparator amlodipine (10 mg QD) in 70 obese hypertensive patients. Abdominal subcutaneous AT biopsies were collected before and after intervention to determine the AT transcriptome and expression of proteins involved in lipolysis, NP signaling and mitochondrial oxidative metabolism. Both sacubitril/valsartan and amlodipine treatment did not significantly induce AT transcriptional changes in pathways related to lipolysis, NP signaling and oxidative metabolism. Furthermore, protein expression of adipose triglyceride lipase (ATGL) (Ptime*group = 0.195), hormone-sensitive lipase (HSL) (Ptime*group = 0.458), HSL-ser660 phosphorylation (Ptime*group = 0.340), NP receptor-A (NPRA) (Ptime*group = 0.829) and OXPHOS complexes (Ptime*group = 0.964) remained unchanged. In conclusion, sacubitril/valsartan treatment for 8 weeks did not alter the abdominal subcutaneous AT transcriptome and expression of proteins involved in lipolysis, NP signaling and oxidative metabolism in obese hypertensive patients.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - B W van der Kolk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Jordan
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany.,Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - T Jax
- Profil GmbH, Neuss, Germany
| | - S Engeli
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | | - J W Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M May
- Clinical Research Center Hannover, Hannover Medical School, Hannover, Germany
| | - C Schindler
- Clinical Research Center Hannover, Hannover Medical School, Hannover, Germany
| | - B Havekes
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - N Schaper
- Department of Internal Medicine, Division of Endocrinology, Maastricht University Medical Center+, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - D Albrecht
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - S Kaiser
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - N Hartmann
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - M Letzkus
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - T H Langenickel
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
29
|
Oktay AA, Akturk HK, Esenboğa K, Javed F, Polin NM, Jahangir E. Pathophysiology and Prevention of Heart Disease in Diabetes Mellitus. Curr Probl Cardiol 2018; 43:68-110. [DOI: 10.1016/j.cpcardiol.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Shinohara K, Nakagawa P, Gomez J, Morgan DA, Littlejohn NK, Folchert MD, Weidemann BJ, Liu X, Walsh SA, Ponto LL, Rahmouni K, Grobe JL, Sigmund CD. Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism. Hypertension 2017; 70:990-997. [PMID: 28874461 DOI: 10.1161/hypertensionaha.117.09923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
The brain-specific isoform of renin (Ren-b) has been proposed as a negative regulator of the brain renin-angiotensin system (RAS). We analyzed mice with a selective deletion of Ren-b which preserved expression of the classical renin (Ren-a) isoform. We reported that Ren-bNull mice exhibited central RAS activation and hypertension through increased expression of Ren-a, but the dipsogenic and metabolic effects in Ren-bNull mice are unknown. Fluid intake was similar in control and Ren-bNull mice at baseline and both exhibited an equivalent dipsogenic response to deoxycorticosterone acetate-salt. Dehydration promoted increased water intake in Ren-bNull mice, particularly after deoxycorticosterone acetate-salt. Ren-bNull and control mice exhibited similar body weight when fed a chow diet. However, when fed a high-fat diet, male Ren-bNull mice gained significantly less weight than control mice, an effect blunted in females. This difference was not because of changes in food intake, energy absorption, or physical activity. Ren-bNull mice exhibited increased resting metabolic rate concomitant with increased uncoupled protein 1 expression and sympathetic nerve activity to the interscapular brown adipose tissue, suggesting increased thermogenesis. Ren-bNull mice were modestly intolerant to glucose and had normal insulin sensitivity. Another mouse model with markedly enhanced brain RAS activity (sRA mice) exhibited pronounced insulin sensitivity concomitant with increased brown adipose tissue glucose uptake. Altogether, these data support the hypothesis that the brain RAS regulates energy homeostasis by controlling resting metabolic rate, and that Ren-b deficiency increases brain RAS activity. Thus, the relative level of expression of Ren-b and Ren-a may control activity of the brain RAS.
Collapse
Affiliation(s)
- Keisuke Shinohara
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Pablo Nakagawa
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Javier Gomez
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Donald A Morgan
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Nicole K Littlejohn
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Matthew D Folchert
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Benjamin J Weidemann
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Xuebo Liu
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Susan A Walsh
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Laura L Ponto
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Kamal Rahmouni
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Justin L Grobe
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Departments of Pharmacology (K.S., P.N., J.G., D.A.M., N.K.L., M.D.F., B.J.W., X.L., K.R., J.L.G., C.D.S.), Radiology (S.A.W., L.L.P.), and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (K.R., J.L.G., C.D.S.).
| |
Collapse
|
31
|
D'Elia JA, Segal AR, Bayliss GP, Weinrauch LA. Sodium-glucose cotransporter-2 inhibition and acidosis in patients with type 2 diabetes: a review of US FDA data and possible conclusions. Int J Nephrol Renovasc Dis 2017; 10:153-158. [PMID: 28670136 PMCID: PMC5479258 DOI: 10.2147/ijnrd.s135899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective To evaluate whether adverse event reports to the US Food and Drug Administration on incidents of ketoacidosis from use of sodium glucose cotransport inhibitors (SGLT2 inhibitors) provide insight into ways this new class of drugs is being prescribed with other antihyperglycemic agents; to examine possible mechanisms to explain ketoacidosis. Design and methods Reports of adverse events concerned to SGLT2 inhibitors, namely, empagliflozin, dapagliflozin, and canagliflozin were obtained under the Freedom of Information Act for 5 years ending in August 31, 2015. The data were evaluated for incidents of ketoacidosis by looking for keywords such as diabetic ketoacidosis, ketoacidosis, lactic acidosis, acidosis, and metabolic acidosis. Results were tabulated individually for empagliflozin (n=260 adverse event reports), dapagliflozin (n=520), and canagliflozin (n=2159). Adverse events were categorized according to age, gender, and insulin use. Results There were 46, 144, and 450 reports of ketoacidosis concerned with the use of empagliflozin, dapagliflozin, and canagliflozin, respectively. The use of SGLT2 inhibitors was not strictly limited to patients with type 2 diabetes but was cut across categories of insulin use, including a total of 172 cases of SGLT2-related ketoacidosis in individuals above the age of 40 who were not on insulin. Conclusion Further studies should focus to detect pleiotropic effects of SGLT2 inhibitors, particularly with other oral antihyperglycemic drugs or insulin. A review of the literature suggests that patients with type 2 diabetes with low C-peptide level may be at increased risk of ketoacidosis, particularly if they are on statins and diuretics due to hypokalemia and impaired release of insulin. More studies are warranted to further clarify these mechanisms.
Collapse
Affiliation(s)
- John A D'Elia
- Kidney and Hypertension Section, Joslin Diabetes Center, Harvard Medical School
| | - Alissa R Segal
- Kidney and Hypertension Section, Joslin Diabetes Center, Harvard Medical School.,Department of Pharmacy Practice, MCPHS University, Boston, MA
| | - George P Bayliss
- Division of Kidney Diseases and Hypertension, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI, USA
| | - Larry A Weinrauch
- Kidney and Hypertension Section, Joslin Diabetes Center, Harvard Medical School
| |
Collapse
|
32
|
Reduced water intake deteriorates glucose regulation in patients with type 2 diabetes. Nutr Res 2017; 43:25-32. [PMID: 28739050 DOI: 10.1016/j.nutres.2017.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Epidemiological research has demonstrated that low daily total water intake is associated with increased diagnosis of hyperglycemia. Possible mechanisms for this increase include hormones related to the hypothalamic pituitary axis as well as the renin-angiotensin-aldosterone system (RAAS). Therefore, the hypothesis of the present study was that acute low water intake would result in differential hormonal profiles and thus impaired blood glucose regulation during an oral glucose tolerance test (OGTT) in people with type 2 diabetes mellitus (T2DM). Nine men (53 ± 9 years, 30.0 ± 4.3 m∙kg-2, 32% ± 6% body fat) diagnosed with T2DM completed OGTTs in euhydrated (EUH) and hypohydrated (HYP) states in counterbalanced order. Water restriction led to hypohydration of -1.6% of body weight, with elevated plasma (EUH: 288 ± 4, HYP: 298 ± 6 mOsm·kg-1; P < .05) and urine (EUH: 512 ± 185, HYP: 994 ± 415 mOsm·kg-1; P < .05) osmolality. There was a significant main effect of condition for serum glucose (at time 0 minute 9.5 ± 4.2 vs 10.4 ± 4.4 mmol∙L-1 and at time 120 minutes 19.1 ± 4.8 vs 21.0 ± 4.1 mmol∙L-1 for EUH and HYP, respectively; P < .001) but not insulin (mean difference between EUH and HYP -12.1 ± 44.9 pmol∙L-1, P = .390). An interaction between time and condition was observed for cortisol: decrease from minute 0 to 120 in EUH (-85.3 ± 82.1 nmol∙L-1) vs HYP (-25.0 ± 43.0 nmol∙L-1; P = .017). No differences between conditions were found within RAAS-related hormones. Therefore, we can conclude that 3 days of low total water intake in people with T2DM acutely impairs blood glucose response during an OGTT via cortisol but not RAAS-mediated glucose regulation.
Collapse
|
33
|
Seferovic JP, Claggett B, Seidelmann SB, Seely EW, Packer M, Zile MR, Rouleau JL, Swedberg K, Lefkowitz M, Shi VC, Desai AS, McMurray JJV, Solomon SD. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol 2017; 5:333-340. [PMID: 28330649 PMCID: PMC5534167 DOI: 10.1016/s2213-8587(17)30087-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Diabetes is an independent risk factor for heart failure progression. Sacubitril/valsartan, a combination angiotensin receptor-neprilysin inhibitor, improves morbidity and mortality in patients with heart failure with reduced ejection fraction (HFrEF), compared with the angiotensin-converting enzyme inhibitor enalapril, and improves peripheral insulin sensitivity in obese hypertensive patients. We aimed to investigate the effect of sacubitril/valsartan versus enalapril on HbA1c and time to first-time initiation of insulin or oral antihyperglycaemic drugs in patients with diabetes and HFrEF. METHODS In a post-hoc analysis of the PARADIGM-HF trial, we included 3778 patients with known diabetes or an HbA1c ≥6·5% at screening out of 8399 patients with HFrEF who were randomly assigned to treatment with sacubitril/valsartan or enalapril. Of these patients, most (98%) had type 2 diabetes. We assessed changes in HbA1c, triglycerides, HDL cholesterol and BMI in a mixed effects longitudinal analysis model. Time to initiation of oral antihyperglycaemic drugs or insulin in subjects previously not treated with these agents were compared between treatment groups. FINDINGS There were no significant differences in HbA1c concentrations between randomised groups at screening. During the first year of follow-up, HbA1c concentrations decreased by 0·16% (SD 1·40) in the enalapril group and 0·26% (SD 1·25) in the sacubitril/valsartan group (between-group reduction 0·13%, 95% CI 0·05-0·22, p=0·0023). HbA1c concentrations were persistently lower in the sacubitril/valsartan group than in the enalapril group over the 3-year follow-up (between-group reduction 0·14%, 95% CI 0·06-0·23, p=0·0055). New use of insulin was 29% lower in patients receiving sacubitril/valsartan (114 [7%] patients) compared with patients receiving enalapril (153 [10%]; hazard ratio 0·71, 95% CI 0·56-0·90, p=0·0052). Similarly, fewer patients were started on oral antihyperglycaemic therapy (0·77, 0·58-1·02, p=0·073) in the sacubitril/valsartan group. INTERPRETATION Patients with diabetes and HFrEF enrolled in PARADIGM-HF who received sacubitril/valsartan had a greater long-term reduction in HbA1c than those receiving enalapril. These data suggest that sacubitril/valsartan might enhance glycaemic control in patients with diabetes and HFrEF. FUNDING Novartis.
Collapse
Affiliation(s)
- Jelena P Seferovic
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Claggett
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara B Seidelmann
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen W Seely
- Endocrinology, Diabetes, and Hypertension Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Michael R Zile
- The Medical University of South Carolina and RHJ Department of Veterans Administration Medical Center, Charleston, SC, USA
| | - Jean L Rouleau
- Université de Montréal, Institut de Cardiologie, Montréal, QC, Canada
| | - Karl Swedberg
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | - Victor C Shi
- Novartis Pharmaceutical Corporation, East Hanover, NJ, USA
| | - Akshay S Desai
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John J V McMurray
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Moon JS, Won KC. Oxidative stress: link between hypertension and diabetes. Korean J Intern Med 2017; 32:439-441. [PMID: 28490720 PMCID: PMC5432812 DOI: 10.3904/kjim.2017.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
| | - Kyu Chang Won
- Correspondence to Kyu Chang Won, M.D. Department of Internal Medicine, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea Tel: +82-53-620-3846 Fax: +82-53-654-3486 E-mail:
| |
Collapse
|
35
|
Imbalzano E, Vatrano M, Quartuccio S, Di Stefano R, Aragona CO, Mamone F, D’Ascola A, Scuruchi M, Felice F, Trapani G, Alibrandi A, Ciconte VA, Ceravolo R, Saitta A, Mandraffino G. Clinical impact of angiotensin I converting enzyme polymorphisms in subjects with resistant hypertension. Mol Cell Biochem 2017; 430:91-98. [DOI: 10.1007/s11010-017-2957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/28/2017] [Indexed: 01/08/2023]
|
36
|
Jordan J, Stinkens R, Jax T, Engeli S, Blaak EE, May M, Havekes B, Schindler C, Albrecht D, Pal P, Heise T, Goossens GH, Langenickel TH. Improved Insulin Sensitivity With Angiotensin Receptor Neprilysin Inhibition in Individuals With Obesity and Hypertension. Clin Pharmacol Ther 2016; 101:254-263. [DOI: 10.1002/cpt.455] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/27/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022]
Affiliation(s)
- J Jordan
- Institute for Clinical Pharmacology, Hannover Medical School; Hannover Germany
| | - R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University Medical Center; Maastricht The Netherlands
| | | | - S Engeli
- Institute for Clinical Pharmacology, Hannover Medical School; Hannover Germany
| | - EE Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University Medical Center; Maastricht The Netherlands
| | - M May
- Institute for Clinical Pharmacology, Hannover Medical School; Hannover Germany
| | - B Havekes
- Department of Internal Medicine, Division of Endocrinology; Maastricht University Medical Center; Maastricht The Netherlands
| | - C Schindler
- Institute for Clinical Pharmacology, Hannover Medical School; Hannover Germany
| | - D Albrecht
- Translational Medicine, Novartis Pharma AG; Basel Switzerland
| | - P Pal
- Biostatistical Sciences, Integrated Development Functions and Regions; Novartis Healthcare Pvt. Ltd; Hyderabad India
| | | | - GH Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University Medical Center; Maastricht The Netherlands
| | - TH Langenickel
- Translational Medicine, Novartis Pharma AG; Basel Switzerland
| |
Collapse
|
37
|
Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G, Kalupahana N, Moustaid-Moussa N. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1106-1114. [PMID: 27497523 DOI: 10.1016/j.bbadis.2016.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Obesity is a complex disease characterized by excessive expansion of adipose tissue and is an important risk factor for chronic diseases such as cardiovascular disorders, hypertension and type 2 diabetes. Moreover, obesity is a major contributor to inflammation and oxidative stress, all of which are key underlying causes for diabetes and insulin resistance. Specifically, adipose tissue secretes bioactives molecules such as inflammatory hormone angiotensin II, generated in the Renin Angiotensin System (RAS) from its precursor angiotensinogen. Accumulated evidence suggests that RAS may serve as a strong link between obesity and insulin resistance. Dysregulation of RAS also occurs in several other tissues including those involved in regulation of glucose and whole body homeostasis as well as insulin sensitivity such as muscle, liver and pancreas and heart. Here we review the scientific evidence for these interactions and potential roles for oxidative stress, inflammation and mitochondrial dysfunction in these target tissues which may mediate effects of RAS in metabolic diseases. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States
| | - Kalhara Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Monique LeMieux
- Department of Nutrition and Food Sciences, Texas Women's University, Denton, TX, United States
| | - Jannette M Dufour
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States; Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gurvinder Kaur
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States; Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Nishan Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States; Department of Physiology, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
38
|
Altered Skeletal Muscle Fatty Acid Handling in Subjects with Impaired Glucose Tolerance as Compared to Impaired Fasting Glucose. Nutrients 2016; 8:164. [PMID: 26985905 PMCID: PMC4808892 DOI: 10.3390/nu8030164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/24/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
Altered skeletal muscle fatty acid (FA) metabolism contributes to insulin resistance. Here, we compared skeletal muscle FA handling between subjects with impaired fasting glucose (IFG; n = 12 (7 males)) and impaired glucose tolerance (IGT; n = 14 (7 males)) by measuring arterio-venous concentration differences across forearm muscle. [²H₂]-palmitate was infused intravenously, labeling circulating endogenous triacylglycerol (TAG) and free fatty acids (FFA), whereas [U-(13)C]-palmitate was incorporated in a high-fat mixed-meal, labeling chylomicron-TAG. Skeletal muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid content, their fractional synthetic rate (FSR) and degree of saturation, and gene expression. Insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp. Net skeletal muscle glucose uptake was lower (p = 0.018) and peripheral insulin sensitivity tended to be reduced (p = 0.064) in IGT as compared to IFG subjects. Furthermore, IGT showed higher skeletal muscle extraction of VLDL-TAG (p = 0.043), higher muscle TAG content (p = 0.025), higher saturation of FFA (p = 0.004), lower saturation of TAG (p = 0.017) and a tendency towards a lower TAG FSR (p = 0.073) and a lower saturation of DAG (p = 0.059) versus IFG individuals. Muscle oxidative gene expression was lower in IGT subjects. In conclusion, increased liver-derived TAG extraction and reduced lipid turnover of saturated FA, rather than DAG content, in skeletal muscle accompany the more pronounced insulin resistance in IGT versus IFG subjects.
Collapse
|
39
|
Abstract
Abdominal obesity and elevated blood pressure commonly occur in the same patient and are key components of the metabolic syndrome. However, the association between obesity and increased blood pressure is variable. We review mechanisms linking cardiovascular and metabolic disease in such patients including altered systemic and regional hemodynamic control, neurohumoral activation, and relative natriuretic peptide deficiency. Moreover, we discuss recent results using omics techniques providing insight in molecular pathways linking adiposity, metabolic disease, and arterial hypertension. Recognition of the mechanisms orchestrating the crosstalk between cardiovascular and metabolic regulation in individual patients may lead to better and more precise treatments. It is reassuring that recently developed cardiovascular and metabolic medications may in fact ameliorate, both, cardiovascular and metabolic risks.
Collapse
Affiliation(s)
- Jens Jordan
- Institute for Clinical Pharmacology, Medical School Hannover, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Dresden, TU, Germany
- Center for Clinical Studies, GWT-TUD GmbH, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), A Member of the German Center for Diabetes Research (DZD e.V.), Dresden, Germany
| |
Collapse
|
40
|
The impacts of obesity on the cardiovascular and renal systems: cascade of events and therapeutic approaches. Curr Hypertens Rep 2016; 17:7. [PMID: 25620635 DOI: 10.1007/s11906-014-0520-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a neglected epidemic of both obesity and metabolic syndrome in industrialized and unindustrialized countries all over the globe. Both conditions are associated with a high incidence of other serious pathologies, such as cardiovascular and renal diseases. In this article, we review the potential underlying mechanisms by which obesity and metabolic syndrome promote hypertension, including changes in cardiovascular-renal physiology induced by leptin, the sympathetic nervous system, the renin-angiotensin-aldosterone system, insulin resistance, free fatty acids, natriuretic peptides, and proinflammatory cytokines. We also discuss the potential underlying mechanisms by which obesity promotes other cardiovascular and renal conditions, as well as available nonpharmacologic and pharmacologic approaches for treating obesity-induced hypertension. The findings presented herein suggest that adipocytes may be a key regulator of cardiovascular and renal function.
Collapse
|
41
|
Wang B, Wang F, Zhang Y, Zhao SH, Zhao WJ, Yan SL, Wang YG. Effects of RAS inhibitors on diabetic retinopathy: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2015; 3:263-74. [PMID: 25660574 DOI: 10.1016/s2213-8587(14)70256-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Results of several studies have shown a possible beneficial effect of renin-angiotensin system (RAS) inhibitors on diabetic retinopathy, but the findings were contradictory. We did a systematic review and meta-analysis to assess the effect of RAS inhibitors on diabetic retinopathy. METHODS We identified relevant publications in PubMed, Embase, Cochrane Library Central Register of Controlled Trials, and abstracts from main annual meetings. Only randomised controlled trials comparing angiotensin-converting enzyme (ACE) inhibitor or angiotensin-receptor blocker (ARB) monotherapy with other antihypertensive drugs or placebo in type 1 or type 2 diabetes were eligible for inclusion in the analysis. The primary outcomes were progression and regression of diabetic retinopathy in all patients and several subgroups. Risk ratios (RRs) with corresponding 95% CIs were pooled. We also did a network meta-analysis to assess the effect of different antihypertensive drugs on diabetic retinopathy by ranking order. This study is registered with the International Prospective Register of Systematic Reviews (PROSPERO), number CRD42013004548. FINDINGS 21 randomised clinical trials with 13,823 participants were included in the meta-analysis. RAS inhibitors were associated with reduced risk of progression (absolute risk difference -3%, 95% CI -5 to -1; pooled RR 0.87, 95% CI 0.80-0.95; p=0.002) and increased possibility of regression of diabetic retinopathy (8%, 1-16; RR 1.39, 95% CI 1.19-1.61; p=0.00002). In normotensive patients, RAS inhibitors decreased risk of diabetic retinopathy progression (0.81, 0.69-0.94; p=0.007) and increased possibility of regression (1.43, 1.14-1.79; p=0.002). In hypertensive patients, RAS inhibitors were not associated with difference in risk of progression of diabetic retinopathy (0.93, 0.79-1.10; p=0.42) or possibility of diabetic retinopathy regression (2.21, 0.92-5.31; p=0.08). ACE inhibitors were associated with reduced risk of diabetic retinopathy progression (0.84, 0.75-0.94; p=0.002) and higher possibility of disease regression (1.50, 1.20-1.86; p=0.0003). ARBs were associated with a higher possibility of diabetic retinopathy regression (1.32, 1.07-1.61; p=0.008), but had no effect on disease progression (0.92, 0.80-1.06; p=0.25). Network meta-analysis showed the association of antihypertensive drugs with risk of diabetic retinopathy progression was lowest for ACE inhibitors, followed by ARBs, β blockers, calcium channel blockers, and placebo in rank order. The association of antihypertensive drugs with possibility of diabetic retinopathy regression was highest for ACE inhibitors, followed by ARBs, placebo, and calcium channel blockers in rank order. INTERPRETATION In patients with diabetes, RAS inhibitors reduce the risk of diabetic retinopathy, and increase the possibility of diabetic retinopathy regression. ACE inhibitors might be better than ARBs for treating diabetic retinopathy, and might exert the most beneficial effect on diabetic retinopathy of all widely used antihypertensive drug classes.
Collapse
Affiliation(s)
- Bin Wang
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fang Wang
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Zhang
- Department of Pathology, Shanghai University of Chinese Medicine, Shanghai, China
| | - Shi-Hua Zhao
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-Juan Zhao
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng-Li Yan
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Gang Wang
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
42
|
Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab 2015; 308:E435-49. [PMID: 25564475 DOI: 10.1152/ajpendo.00391.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is an enzymatic cascade functioning in a paracrine and autocrine fashion. In animals and humans, RAAS intrinsic to tissues modulates food intake, metabolic rate, adiposity, insulin sensitivity, and insulin secretion. A large array of observations shows that dysregulation of RAAS in the metabolic syndrome favors type 2 diabetes. Remarkably, angiotensin-converting enzyme inhibitors, suppressing the synthesis of angiotensin II (ANG II), and angiotensin receptor blockers, targeting the ANG II type 1 receptor, prevent diabetes in patients with hypertensive or ischemic cardiopathy. These drugs interrupt the negative feedback loop of ANG II on the RAAS cascade, which results in increased production of angiotensins. In addition, they change the tissue expression of RAAS components. Therefore, the concept of a dual axis of RAAS regarding glucose homeostasis has emerged. The RAAS deleterious axis increases the production of inflammatory cytokines and raises oxidative stress, exacerbating the insulin resistance and decreasing insulin secretion. The beneficial axis promotes adipogenesis, blocks the production of inflammatory cytokines, and lowers oxidative stress, thereby improving insulin sensitivity and secretion. Currently, drugs targeting RAAS are not given for the purpose of preventing diabetes in humans. However, we anticipate that in the near future the discovery of novel means to modulate the RAAS beneficial axis will result in a decisive therapeutic breakthrough.
Collapse
Affiliation(s)
- Guillaume A Favre
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Vincent L M Esnault
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Emmanuel Van Obberghen
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
43
|
Furuhashi M, Mita T, Moniwa N, Hoshina K, Ishimura S, Fuseya T, Watanabe Y, Yoshida H, Shimamoto K, Miura T. Angiotensin II receptor blockers decrease serum concentration of fatty acid-binding protein 4 in patients with hypertension. Hypertens Res 2015; 38:252-9. [PMID: 25672659 DOI: 10.1038/hr.2015.2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/04/2014] [Accepted: 11/30/2014] [Indexed: 01/08/2023]
Abstract
Elevated circulating fatty acid-binding protein 4 (FABP4/A-FABP/aP2), an adipokine, is associated with obesity, insulin resistance, hypertension and cardiovascular events. However, how circulating FABP4 level is modified by pharmacological agents remains unclear. We here examined the effects of angiotensin II receptor blockers (ARBs) on serum FABP4 level. First, essential hypertensives were treated with ARBs: candesartan (8 mg day(-1); n=7) for 2 weeks, olmesartan (20 mg day(-1); n=9) for 12 weeks, and valsartan (80 mg day(-1); n=94) or telmisartan (40 mg day(-1); n=91) for 8 weeks added to amlodipine (5 mg day(-1)). Treatment with ARBs significantly decreased blood pressure and serum FABP4 concentrations by 8-20% without significant changes in adiposity or lipid variables, though the M value determined by hyperinsulinemic-euglycemic glucose clamp, a sensitive index of insulin sensitivity, was significantly increased by candesartan. Next, alterations in FABP4 secretion from 3T3-L1 adipocytes were examined under several agents. Lipolytic stimulation of the β-adrenoceptor in 3T3-L1 adipocytes by isoproterenol increased FABP4 secretion, and conversely, insulin suppressed FABP4 secretion. However, treatment of 3T3-L1 adipocytes with angiotensin II or ARBs for 2 h had no effect on gene expression or secretion of FABP4 regardless of β-adrenoceptor stimulation. In conclusion, treatment with structurally different ARBs similarly decreases circulating FABP4 concentrations in hypertensive patients as a class effect of ARBs, which is not attributable to blockade of the angiotensin II receptor in adipocytes. Reduction of FABP4 levels by ARBs might be involved in suppression of cardiovascular events.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohiro Mita
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norihito Moniwa
- Department of Nephrology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Kyoko Hoshina
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shutaro Ishimura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Fuseya
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Watanabe
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hideaki Yoshida
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
44
|
Burns SM, Vetere A, Walpita D, Dančík V, Khodier C, Perez J, Clemons PA, Wagner BK, Altshuler D. High-throughput luminescent reporter of insulin secretion for discovering regulators of pancreatic Beta-cell function. Cell Metab 2015; 21:126-37. [PMID: 25565210 DOI: 10.1016/j.cmet.2014.12.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/14/2014] [Accepted: 12/13/2014] [Indexed: 12/16/2022]
Abstract
Defects in insulin secretion play a central role in the pathogenesis of type 2 diabetes, yet the mechanisms driving beta-cell dysfunction remain poorly understood, and therapies to preserve glucose-dependent insulin release are inadequate. We report a luminescent insulin secretion assay that enables large-scale investigations of beta-cell function, created by inserting Gaussia luciferase into the C-peptide portion of proinsulin. Beta-cell lines expressing this construct cosecrete luciferase and insulin in close correlation, under both standard conditions or when stressed by cytokines, fatty acids, or ER toxins. We adapted the reporter for high-throughput assays and performed a 1,600-compound pilot screen, which identified several classes of drugs inhibiting secretion, as well as glucose-potentiated secretagogues that were confirmed to have activity in primary human islets. Requiring 40-fold less time and expense than the traditional ELISA, this assay may accelerate the identification of pathways governing insulin secretion and compounds that safely augment beta-cell function in diabetes.
Collapse
Affiliation(s)
- Sean M Burns
- Diabetes Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Medical and Population Genetics Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Amedeo Vetere
- Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Deepika Walpita
- Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vlado Dančík
- Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Carol Khodier
- Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jose Perez
- Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Paul A Clemons
- Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bridget K Wagner
- Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - David Altshuler
- Diabetes Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Medical and Population Genetics Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
45
|
Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids 2014; 91:54-60. [PMID: 25194457 PMCID: PMC4252580 DOI: 10.1016/j.steroids.2014.08.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/25/2014] [Accepted: 08/17/2014] [Indexed: 12/19/2022]
Abstract
Dr. Conn originally reported an increased risk of diabetes in patients with hyperaldosteronism in the 1950s, although the mechanism remains unclear. Aldosterone-induced hypokalemia was initially described to impair glucose tolerance by impairing insulin secretion. Correction of hypokalemia by potassium supplementation only partially restored insulin secretion and glucose tolerance, however. Aldosterone also impairs glucose-stimulated insulin secretion in isolated pancreatic islets via reactive oxygen species in a mineralocorticoid receptor-independent manner. Aldosterone-induced mineralocorticoid receptor activation also impairs insulin sensitivity in adipocytes and skeletal muscle. Aldosterone may produce insulin resistance secondarily by altering potassium, increasing inflammatory cytokines, and reducing beneficial adipokines such as adiponectin. Renin-angiotensin system antagonists reduce circulating aldosterone concentrations and also the risk of type 2 diabetes in clinical trials. These data suggest that primary and secondary hyperaldosteronism may contribute to worsening glucose tolerance by impairing insulin sensitivity or insulin secretion in humans. Future studies should define the effects of MR antagonists and aldosterone on insulin secretion and sensitivity in humans.
Collapse
Affiliation(s)
- James M Luther
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
46
|
Luther JM, Byrne LM, Yu C, Wang TJ, Brown NJ. Dietary sodium restriction decreases insulin secretion without affecting insulin sensitivity in humans. J Clin Endocrinol Metab 2014; 99:E1895-902. [PMID: 25029426 PMCID: PMC4184066 DOI: 10.1210/jc.2014-2122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CONTEXT Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. OBJECTIVE To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. DESIGN We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. SETTING Academic clinical research center. PARTICIPANTS Healthy, nondiabetic, normotensive volunteers. INTERVENTIONS Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5-7 days. MAIN OUTCOME MEASURES Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. RESULTS A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (-16.0 ± 5.6%; P = .007) and C-peptide responses (-21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (-1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. CONCLUSIONS Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity.
Collapse
Affiliation(s)
- James M Luther
- Divisions of Clinical Pharmacology, Department of Medicine (J.M.L., L.M.B., N.J.B.), Nephrology and Hypertension (J.M.L.), and Cardiovascular Medicine (T.J.W.), and Departments of Biostatistics (C.Y.) and Pharmacology (J.M.L.), Vanderbilt University Medical Center, Nashville, Tennessee 37232-6602
| | | | | | | | | |
Collapse
|
47
|
Abstract
The incretin hormone, glucagon-like peptide-1 (GLP-1), stimulates insulin secretion and forms the basis of a new drug class for diabetes treatment. GLP-1 has several extra-pancreatic properties which include effects on kidney function. Although renal GLP-1 receptors have been identified, their exact localization and physiological role are incompletely understood. GLP-1 increases natriuresis through inhibition of the sodium-hydrogen ion exchanger isoform 3 in the proximal tubule. This may in part explain why GLP-1 receptor agonists have antihypertensive effects. Glomerular filtration rate is regulated by GLP-1, but the mechanisms are complex and may depend on e.g. glycaemic conditions. Atrial natriuretic peptide or the renin-angiotensin system may be involved in the signalling of GLP-1-mediated renal actions. Several studies in rodents have shown that GLP-1 therapy is renoprotective beyond metabolic improvements in models of diabetic nephropathy and acute kidney injury. Inhibition of renal inflammation and oxidative stress probably mediate this protection. Clinical studies supporting GLP-1-mediated renal protection exist, but they are few and with limitations. However, acute and chronic kidney diseases are major global health concerns and measures improving renal outcome are highly needed. Therefore, the renoprotective potential of GLP-1 therapy need to be thoroughly investigated in humans.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, 8000, Aarhus, Denmark,
| |
Collapse
|
48
|
Skov J, Persson F, Frøkiær J, Christiansen JS. Tissue Renin-Angiotensin systems: a unifying hypothesis of metabolic disease. Front Endocrinol (Lausanne) 2014; 5:23. [PMID: 24592256 PMCID: PMC3938116 DOI: 10.3389/fendo.2014.00023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 01/11/2023] Open
Abstract
The actions of angiotensin peptides are diverse and locally acting tissue renin-angiotensin systems (RAS) are present in almost all tissues of the body. An activated RAS strongly correlates to metabolic disease (e.g., diabetes) and its complications and blockers of RAS have been demonstrated to prevent diabetes in humans. Hyperglycemia, obesity, hypertension, and cortisol are well-known risk factors of metabolic disease and all stimulate tissue RAS whereas glucagon-like peptide-1, vitamin D, and aerobic exercise are inhibitors of tissue RAS and to some extent can prevent metabolic disease. Furthermore, an activated tissue RAS deteriorates the same risk factors creating a system with several positive feedback pathways. The primary effector hormone of the RAS, angiotensin II, stimulates reactive oxygen species, induces tissue damage, and can be associated to most diabetic complications. Based on these observations, we hypothesize that an activated tissue RAS is the principle cause of metabolic syndrome and type 2 diabetes, and additionally is mediating the majority of the metabolic complications. The involvement of positive feedback pathways may create a self-reinforcing state and explain why metabolic disease initiate and progress. The hypothesis plausibly unifies the major predictors of metabolic disease and places tissue RAS regulation in the center of metabolic control.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
- *Correspondence: Jeppe Skov, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, Aarhus DK-8000, Denmark e-mail:
| | | | - Jørgen Frøkiær
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
49
|
Miyagawa K, Kondo T, Goto R, Matsuyama R, Ono K, Kitano S, Kawasaki S, Igata M, Kawashima J, Matsumura T, Motoshima H, Araki E. Effects of combination therapy with vildagliptin and valsartan in a mouse model of type 2 diabetes. Cardiovasc Diabetol 2013; 12:160. [PMID: 24188631 PMCID: PMC4176757 DOI: 10.1186/1475-2840-12-160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/20/2013] [Indexed: 01/13/2023] Open
Abstract
Background Dipeptidyl peptidase-4 (DPP-4) inhibitors modulate incretin hormones and exert anti-diabetic effects in type 2 diabetes mellitus. Treatment with angiotensin II type 1 receptor blockers (ARB) is a proven successful intervention for hypertension with type 2 diabetes. The present study investigated the combined effects of the DPP-4 inhibitor vildagliptin and the ARB valsartan in a mouse model of type 2 diabetes. Methods C57BL/6 J mice fed with high-fat diet (HFD) or db/db mice were treated with placebo, phloridzin (PHZ), vildagliptin alone (ViL), valsartan alone (VaL) or ViL with VaL (ViLVaL) for 8 weeks. Results Glucose metabolism was improved in response to PHZ, ViL and ViLVaL in both HFD and db/db mice. Upon glucose challenge, ViLVaL showed the greatest suppression of blood glucose excursions, with increased insulin secretion, in db/db mice. ViLVaL treatment also showed an improvement of insulin sensitivity in db/db mice. Serum inflammatory cytokines were significantly decreased, and adiponectin was highest, in the ViLVaL group. ViLVaL improved insulin signaling and attenuated stress signaling in liver with amelioration of hepatic steatosis due to activated fatty acid oxidation in db/db mice. Furthermore, immunohistochemical analysis of the pancreas revealed that the combination treatment resulted in an increased expression of insulin and PDX-1, and increased insulin content. Conclusions The combination therapy of ViL and VaL improves both pancreatic beta-cell function and insulin sensitivity, with a reduction of the inflammatory and cell stress milieu in mouse models of T2DM. Our results suggest that this combination therapy exerts additive or even synergistic benefits to treat T2DM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo Ward, Kumamoto 860-8556, Japan.
| |
Collapse
|
50
|
Muniyappa R, Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol 2013; 378:59-69. [PMID: 22684034 PMCID: PMC3478427 DOI: 10.1016/j.mce.2012.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023]
Abstract
Metabolic actions of insulin to promote glucose disposal are augmented by nitric oxide (NO)-dependent increases in microvascular blood flow to skeletal muscle. The balance between NO-dependent vasodilator actions and endothelin-1-dependent vasoconstrictor actions of insulin is regulated by phosphatidylinositol 3-kinase-dependent (PI3K)--and mitogen-activated protein kinase (MAPK)-dependent signaling in vascular endothelium, respectively. Angiotensin II acting on AT₂ receptor increases capillary blood flow to increase insulin-mediated glucose disposal. In contrast, AT₁ receptor activation leads to reduced NO bioavailability, impaired insulin signaling, vasoconstriction, and insulin resistance. Insulin-resistant states are characterized by dysregulated local renin-angiotensin-aldosterone system (RAAS). Under insulin-resistant conditions, pathway-specific impairment in PI3K-dependent signaling may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased blood flow, which worsens insulin resistance. Similarly, excess AT₁ receptor activity in the microvasculature may selectively impair vasodilation while simultaneously potentiating the vasoconstrictor actions of insulin. Therapeutic interventions that target pathway-selective impairment in insulin signaling and the imbalance in AT₁ and AT₂ receptor signaling in microvascular endothelium may simultaneously ameliorate endothelial dysfunction and insulin resistance. In the present review, we discuss molecular mechanisms in the endothelium underlying microvascular and metabolic actions of insulin and Angiotensin II, the mechanistic basis for microvascular endothelial dysfunction and insulin resistance in RAAS dysregulated clinical states, and the rationale for therapeutic strategies that restore the balance in vasodilator and constrictor actions of insulin and Angiotensin II in the microvasculature.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Blood Flow Velocity
- Capillaries/metabolism
- Capillaries/pathology
- Capillaries/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- Insulin/metabolism
- Insulin Resistance
- MAP Kinase Signaling System
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Nitric Oxide/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System
- Vasoconstriction
- Vasodilation
Collapse
Affiliation(s)
- Ranganath Muniyappa
- Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | | |
Collapse
|