1
|
Li W, Zhang X, Zhou Z, Guo W, Wang M, Zhou T, Liu M, Wu Q, Dong N. Cardiac corin and atrial natriuretic peptide regulate liver glycogen metabolism and glucose homeostasis. Cardiovasc Diabetol 2024; 23:383. [PMID: 39468553 PMCID: PMC11520433 DOI: 10.1186/s12933-024-02475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cardiovascular function and metabolic homeostasis are closely linked, but the underlying mechanisms are not fully understood. Corin is a protease that activates atrial natriuretic peptide (ANP), an essential hormone for normal blood pressure and cardiac function. The goal of this study is to investigate a potential corin and ANP function in regulating liver glycogen metabolism and glucose homeostasis. METHODS Liver glycogen and blood glucose levels were analyzed in Corin or Nppa (encoding ANP) knockout (KO) mice. ANP signaling was examined in livers from Corin and Nppa KO mice and in cultured human and mouse hepatocytes by western blotting. RESULTS We found that Corin and Nppa KO mice had reduced liver glycogen contents and increased blood glucose levels. By analyzing conditional KO mice lacking either cardiac or renal Corin, we showed that cardiac corin and ANP act in an endocrine manner to enhance cGMP-protein kinase G (PKG)-AKT-GSK3 signaling in hepatocytes. In cultured hepatocytes, ANP treatment stimulated PKG signaling, glucose uptake, and glycogen production, which could be blocked by small molecule PKG and AKT inhibitors. CONCLUSIONS Our results indicate that corin and ANP are important regulators in liver glycogen metabolism and glucose homeostasis, suggesting that defects in the corin and ANP pathway may contribute to both cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Wenguo Li
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xianrui Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zibin Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjun Guo
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Ningzheng Dong
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 374] [Impact Index Per Article: 374.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
3
|
Ma X, McKie PM, Iyer SR, Scott C, Bailey K, Johnson BK, Benike SL, Chen H, Miller WL, Cabassi A, Burnett JC, Cannone V. MANP in Hypertension With Metabolic Syndrome: Proof-of-Concept Study of Natriuretic Peptide-Based Therapy for Cardiometabolic Disease. JACC Basic Transl Sci 2024; 9:18-29. [PMID: 38362338 PMCID: PMC10864980 DOI: 10.1016/j.jacbts.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 02/17/2024]
Abstract
Hypertension and metabolic syndrome frequently coexist to increase the risk for adverse cardiometabolic outcomes. To date, no drug has been proven to be effective in treating hypertension with metabolic syndrome. M-atrial natriuretic peptide is a novel atrial natriuretic peptide analog that activates the particulate guanylyl cyclase A receptor. This study conducted a double-blind, placebo-controlled trial in 22 patients and demonstrated that a single subcutaneous injection of M-atrial natriuretic peptide was safe, well-tolerated, and exerted pleiotropic properties including blood pressure-lowering, lipolytic, and insulin resistance-improving effects. (MANP in Hypertension and Metabolic Syndrome [MANP-HTN-MS]; NCT03781739).
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul M. McKie
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Seethalakshmi R. Iyer
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher Scott
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Kent Bailey
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Bradley K. Johnson
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Sherry L. Benike
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Horng Chen
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wayne L. Miller
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aderville Cabassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - John C. Burnett
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Ichiki T, Cannone V, Scott CG, Iyer SR, Sangaralingham SJ, Bailey KR, Goetze JP, Tsuji Y, Rodeheffer RJ, Burnett JC. Sex-based differences in metabolic protection by the ANP genetic variant rs5068 in the general population. Am J Physiol Heart Circ Physiol 2023; 325:H545-H552. [PMID: 37417873 PMCID: PMC10538992 DOI: 10.1152/ajpheart.00321.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are produced in the heart and secreted into the circulation. As hormones, both peptides activate the guanylyl cyclase receptor A (GC-A), playing a role in blood pressure (BP) regulation. A significant role for ANP and BNP includes favorable actions in metabolic homeostasis. Sex-based high prevalence of risk factors for cardiovascular disease in males compared with females is well established, but sex-based differences on cardiometabolic protection have not been investigated in relation to ANP (NPPA) and BNP (NPPB) gene variants. We included 1,146 subjects in the general population from Olmsted County, Minnesota. Subjects were genotyped for the ANP gene variant rs5068 and BNP gene variant rs198389. Cardiometabolic parameters and medical records were reviewed. In the presence of the minor allele of rs5068, diastolic BP, creatinine, body mass index (BMI), waist measurement, insulin, and prevalence of obesity and metabolic syndrome were lower, whereas HDL was higher in males with only trends observed in females. We observed no associations of the minor allele with echocardiographic parameters in either males or females. Regarding rs198389 genotype, the minor allele was not associated with any BP, metabolic, renal, or echocardiographic parameters in either sex. In the general community, the minor allele of the ANP gene variant rs5068 is associated with a favorable metabolic phenotype in males. No associations were observed with the BNP gene variant rs198389. These studies support a protective role of the ANP pathway on metabolic function and underscore the importance of sex in relationship to natriuretic peptide responses.NEW & NOTEWORTHY Males are characterized by lower ANP and BNP with greater prevalence of cardiometabolic disease. The ANP genetic variant rs5068 was associated with less metabolic dysfunction in males, whereas no metabolic profile was related to the BNP genetic variant rs198389 in the general population. ANP may play a more biological role in metabolic homeostasis compared with BNP in the general population with greater physiological metabolic actions in males compared with females.
Collapse
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Community and General Medicine, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christopher G Scott
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Kent R Bailey
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yoshihisa Tsuji
- Department of Community and General Medicine, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Richard J Rodeheffer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
5
|
Gallo G, Rubattu S, Autore C, Volpe M. Natriuretic Peptides: It Is Time for Guided Therapeutic Strategies Based on Their Molecular Mechanisms. Int J Mol Sci 2023; 24:5131. [PMID: 36982204 PMCID: PMC10049669 DOI: 10.3390/ijms24065131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Natriuretic peptides (NPs) are the principal expression products of the endocrine function of the heart. They exert several beneficial effects, mostly mediated through guanylate cyclase-A coupled receptors, including natriuresis, diuresis, vasorelaxation, blood volume and blood pressure reduction, and regulation of electrolyte homeostasis. As a result of their biological functions, NPs counterbalance neurohormonal dysregulation in heart failure and other cardiovascular diseases. NPs have been also validated as diagnostic and prognostic biomarkers in cardiovascular diseases such as atrial fibrillation, coronary artery disease, and valvular heart disease, as well as in the presence of left ventricular hypertrophy and severe cardiac remodeling. Serial measurements of their levels may be used to contribute to more accurate risk stratification by identifying patients who are more likely to experience death from cardiovascular causes, heart failure, and cardiac hospitalizations and to guide tailored pharmacological and non-pharmacological strategies with the aim to improve clinical outcomes. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new targeted cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors to the current management of heart failure, novel promising molecules including M-atrial natriuretic peptide (a novel atrial NP-based compound) have been tested for the treatment of human hypertension with promising results. Moreover, different therapeutic strategies based on the molecular mechanisms involved in NP regulation and function are under development for the management of heart failure, hypertension, and other cardiovascular conditions.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, RM, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, RM, Italy
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Camillo Autore
- IRCCS San Raffaele Cassino, Via G. Di Biasio 1, 03043 Cassino, FR, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, RM, Italy
- IRCCS San Raffaele Roma, Via della Pisana 235, 00163 Rome, RM, Italy
| |
Collapse
|
6
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1764] [Impact Index Per Article: 882.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
7
|
Volpe M, Gallo G, Rubattu S. Endocrine functions of the heart: from bench to bedside. Eur Heart J 2023; 44:643-655. [PMID: 36582126 DOI: 10.1093/eurheartj/ehac759] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Heart has a recognized endocrine function as it produces several biologically active substances with hormonal properties. Among these hormones, the natriuretic peptide (NP) system has been extensively characterized and represents a prominent expression of the endocrine function of the heart. Over the years, knowledge about the mechanisms governing their synthesis, secretion, processing, and receptors interaction of NPs has been intensively investigated. Their main physiological endocrine and paracrine effects on cardiovascular and renal systems are mostly mediated through guanylate cyclase-A coupled receptors. The potential role of NPs in the pathophysiology of heart failure and particularly their counterbalancing action opposing the overactivation of renin-angiotensin-aldosterone and sympathetic nervous systems has been described. In addition, NPs are used today as key biomarkers in cardiovascular diseases with both diagnostic and prognostic significance. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors in the current management of heart failure, novel promising molecules, including M-atrial natriuretic peptide (a novel atrial NP-based compound), have been tested for the treatment of human hypertension. The development of new drugs is currently underway, and we are probably only at the dawn of novel NPs-based therapeutic strategies. The present article also provides an updated overview of the regulation of NPs synthesis and secretion by microRNAs and epigenetics as well as interactions of cardiac hormones with other endocrine systems.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS San Raffaele, Via della Pisana 235, 00163 Rome, Italy
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy
| |
Collapse
|
8
|
Sangaralingham SJ, Kuhn M, Cannone V, Chen HH, Burnett JC. Natriuretic peptide pathways in heart failure: further therapeutic possibilities. Cardiovasc Res 2022; 118:3416-3433. [PMID: 36004816 PMCID: PMC9897690 DOI: 10.1093/cvr/cvac125] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the heart as an endocrine organ resulted in a remarkable recognition of the natriuretic peptide system (NPS). Specifically, research has established the production of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) from the heart, which exert pleiotropic cardiovascular, endocrine, renal, and metabolic actions via the particulate guanylyl cyclase A receptor (GC-A) and the second messenger, cGMP. C-type natriuretic peptide (CNP) is produced in the endothelium and kidney and mediates important protective auto/paracrine actions via GC-B and cGMP. These actions, in part, participate in the efficacy of sacubitril/valsartan in heart failure (HF) due to the augmentation of the NPS. Here, we will review important insights into the biology of the NPS, the role of precision medicine, and focus on the phenotypes of human genetic variants of ANP and BNP in the general population and the relevance to HF. We will also provide an update of the existence of NP deficiency states, including in HF, which provide the rationale for further therapeutics for the NPS. Finally, we will review the field of peptide engineering and the development of novel designer NPs for the treatment of HF. Notably, the recent discovery of a first-in-class small molecule GC-A enhancer, which is orally deliverable, will be highlighted. These innovative designer NPs and small molecule possess enhanced and novel properties for the treatment of HF and cardiovascular diseases.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic 200 1st St SW, Rochester MN 55905, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Wuerzburg, Roentgenring 9, D-97070 Wuerzburg, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - John C Burnett
- Corresponding author. Tel: 507 284-4343; fax: 507 266-4710; E-mail:
| |
Collapse
|
9
|
Petraina A, Nogales C, Krahn T, Mucke H, Lüscher TF, Fischmeister R, Kass DA, Burnett JC, Hobbs AJ, Schmidt HHHW. Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovasc Res 2022; 118:2085-2102. [PMID: 34270705 PMCID: PMC9302891 DOI: 10.1093/cvr/cvab240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments centred around the second messenger cyclic guanosine-3'-5'-monophosphate (cGMP), which is regulating a number of cardiovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular disease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
Collapse
Affiliation(s)
- Alexandra Petraina
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Thomas Krahn
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hermann Mucke
- H.M. Pharma Consultancy, Enenkelstrasse 28/32, A-1160, Vienna, Austria
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospitals, Heart Division and National Heart and Lung Institute, Guy Scadding Building, Imperial College, Dovehouse Street London SW3 6LY, United Kingdom
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistreet 12, CH-8952 Schlieren, Switzerland
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - David A Kass
- Division of Cardiology, Department of Medicine, Ross Research Building, Rm 858, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - John C Burnett
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
10
|
Cataloging the potential SNPs (single nucleotide polymorphisms) associated with quantitative traits, viz. BMI (body mass index), IQ (intelligence quotient) and BP (blood pressure): an updated review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single nucleotide polymorphism (SNP) variants are abundant, persistent and widely distributed across the genome and are frequently linked to the development of genetic diseases. Identifying SNPs that underpin complex diseases can aid scientists in the discovery of disease-related genes by allowing for early detection, effective medication and eventually disease prevention.
Main body
Various SNP or polymorphism-based studies were used to categorize different SNPs potentially related to three quantitative traits: body mass index (BMI), intelligence quotient (IQ) and blood pressure, and then uncovered common SNPs for these three traits. We employed SNPedia, RefSNP Report, GWAS Catalog, Gene Cards (Data Bases), PubMed and Google Scholar search engines to find relevant material on SNPs associated with three quantitative traits. As a result, we detected three common SNPs for all three quantitative traits in global populations: SNP rs6265 of the BDNF gene on chromosome 11p14.1, SNP rs131070325 of the SL39A8 gene on chromosome 4p24 and SNP rs4680 of the COMT gene on chromosome 22q11.21.
Conclusion
In our review, we focused on the prevalent SNPs and gene expression activities that influence these three quantitative traits. These SNPs have been used to detect and map complex, common illnesses in communities for homogeneity testing and pharmacogenetic studies. High blood pressure, diabetes and heart disease, as well as BMI, schizophrenia and IQ, can all be predicted using common SNPs. Finally, the results of our work can be used to find common SNPs and genes that regulate these three quantitative features across the genome.
Collapse
|
11
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 2834] [Impact Index Per Article: 944.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
12
|
ASA Status, NPPA/NPPB Haplotype and Coronary Artery Disease Have an Impact on BNP/NT-proBNP Plasma Levels. Cells 2022; 11:cells11050766. [PMID: 35269388 PMCID: PMC8909668 DOI: 10.3390/cells11050766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
Plasma concentrations of natriuretic peptides (NP) contribute to risk stratification and management of patients undergoing non-cardiac surgery. However, genetically determined variability in the levels of these biomarkers has been described previously. In the perioperative setting, genetic contribution to NP plasma level variability has not yet been determined. A cohort of 427 patients presenting for non-cardiac surgery was genotyped for single-nucleotide polymorphisms (SNPs) from the NPPA/NPPB locus. Haplotype population frequencies were estimated and adjusted haplotype trait associations for brain natriuretic peptide (BNP) and amino-terminal pro natriuretic peptide (NT-proBNP) were calculated. Five SNPs were included in the analysis. Compared to the reference haplotype TATAT (rs198358, rs5068, rs632793, rs198389, rs6676300), haplotype CACGC, with an estimated frequency of 4%, showed elevated BNP and NT-proBNP plasma concentrations by 44% and 94%, respectively. Haplotype CGCGC, with an estimated frequency of 9%, lowered NT-proBNP concentrations by 28%. ASA classification status III and IV, as well as coronary artery disease, were the strongest predictors of increased NP plasma levels. Inclusion of genetic information might improve perioperative risk stratification of patients based on adjusted thresholds of NP plasma levels.
Collapse
|
13
|
Cannone V, Burnett JC. Natriuretic Peptides and Blood Pressure Homeostasis: Implications for MANP, a Novel Guanylyl Cyclase a Receptor Activator for Hypertension. Front Physiol 2022; 12:815796. [PMID: 35222065 PMCID: PMC8878907 DOI: 10.3389/fphys.2021.815796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
The heart serves as an endocrine organ producing the hormones atrial natriuretic peptide (ANP) and b-type natriuretic peptide (BNP) which via the guanylyl cyclase A (GC-A) receptor and the second messenger cGMP participate in blood pressure homeostasis under physiologic conditions. Genetic models of the ANP gene or the GCA receptor together with genomic medicine have solidified the concept that both cardiac hormones are fundamental for blood pressure homeostasis and when deficient or disrupted they may contribute to human hypertension. Advances in peptide engineering have led to novel peptide therapeutics including the ANP-analog MANP for human hypertension. Most importantly a first in human study of MANP in essential hypertension has demonstrated its unique properties of aldosterone suppression and blood pressure reduction. Physiology and pharmacology ultimately lead us to innovative peptide-based therapeutics to reduce the burden of cardiovascular disease.
Collapse
Affiliation(s)
- Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- *Correspondence: Valentina Cannone,
| | - John C. Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
14
|
Alves DT, Mendes LF, Sampaio WO, Coimbra-Campos LMC, Vieira MAR, Ferreira AJ, Martins AS, Popova E, Todiras M, Qadri F, Alenina N, Bader M, Santos RAS, Campagnole-Santos MJ. Hemodynamic phenotyping of transgenic rats with ubiquitous expression of an angiotensin-(1-7)-producing fusion protein. Clin Sci (Lond) 2021; 135:2197-2216. [PMID: 34494083 DOI: 10.1042/cs20210599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
Activation of the angiotensin (Ang)-converting enzyme (ACE) 2/Ang-(1-7)/MAS receptor pathway of the renin-angiotensin system (RAS) induces protective mechanisms in different diseases. Herein, we describe the cardiovascular phenotype of a new transgenic rat line (TG7371) that expresses an Ang-(1-7)-producing fusion protein. The transgene-specific mRNA and the corresponding protein were shown to be present in all evaluated tissues of TG7371 with the highest expression in aorta and brain. Plasma Ang-(1-7) levels, measured by radioimmunoassay (RIA) were similar to control Sprague-Dawley (SD) rats, however high Ang-(1-7) levels were found in the hypothalamus. TG7371 showed lower baseline mean arterial pressure (MAP), assessed in conscious or anesthetized rats by telemetry or short-term recordings, associated with increased plasma atrial natriuretic peptide (ANP) and higher urinary sodium concentration. Moreover, evaluation of regional blood flow and hemodynamic parameters with fluorescent microspheres showed a significant increase in blood flow in different tissues (kidneys, mesentery, muscle, spleen, brown fat, heart and skin), with a resulting decrease in total peripheral resistance (TPR). TG7371 rats, on the other hand, also presented increased cardiac and global sympathetic tone, increased plasma vasopressin (AVP) levels and decreased free water clearance. Altogether, our data show that expression of an Ang-(1-7)-producing fusion protein induced a hypotensive phenotype due to widespread vasodilation and consequent fall in peripheral resistance. This phenotype was associated with an increase in ANP together with an increase in AVP and sympathetic drive, which did not fully compensate the lower blood pressure (BP). Here we present the hemodynamic impact of long-term increase in tissue expression of an Ang-(1-7)-fusion protein and provide a new tool to investigate this peptide in different pathophysiological conditions.
Collapse
Affiliation(s)
- Daniele T Alves
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
| | - Luiz Felipe Mendes
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walkyria O Sampaio
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leda M C Coimbra-Campos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson J Ferreira
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Almir S Martins
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elena Popova
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
| | | | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité, University Medicine Berlin, Berlin, Germany
| | - Robson A S Santos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Rukavina Mikusic NL, Kouyoumdzian NM, Puyó AM, Fernández BE, Choi MR. Role of natriuretic peptides in the cardiovascular-adipose communication: a tale of two organs. Pflugers Arch 2021; 474:5-19. [PMID: 34173888 DOI: 10.1007/s00424-021-02596-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in the energy metabolism of several substrates in humans and animals, thus interrelating the heart, as an endocrine organ, with various insulin-sensitive tissues and organs such as adipose tissue, muscle skeletal, and liver. Adipose tissue dysfunction is associated with altered regulation of the natriuretic peptide system, also indicated as a natriuretic disability. Evidence points to a contribution of this natriuretic disability to the development of obesity, type 2 diabetes mellitus, and cardiometabolic complications; although the causal relationship is not fully understood at present. However, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on the current literature on the metabolic functions of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Natriuretic peptide system alterations could be proposed as one of the linking mechanisms between adipose tissue dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Natalia Lucía Rukavina Mikusic
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Nicolás Martín Kouyoumdzian
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María Puyó
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
16
|
Geelhoed B, Börschel CS, Niiranen T, Palosaari T, Havulinna AS, Fouodo CJK, Scheinhardt MO, Blankenberg S, Jousilahti P, Kuulasmaa K, Zeller T, Salomaa V, Schnabel RB. Assessment of causality of natriuretic peptides and atrial fibrillation and heart failure: a Mendelian randomization study in the FINRISK cohort. Europace 2021; 22:1463-1469. [PMID: 32830215 PMCID: PMC7544535 DOI: 10.1093/europace/euaa158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Natriuretic peptides are extensively studied biomarkers for atrial fibrillation (AF) and heart failure (HF). Their role in the pathogenesis of both diseases is not entirely understood and previous studies several single-nucleotide polymorphisms (SNPs) at the NPPA-NPPB locus associated with natriuretic peptides have been identified. We investigated the causal relationship between natriuretic peptides and AF as well as HF using a Mendelian randomization approach. METHODS AND RESULTS N-terminal pro B-type natriuretic peptide (NT-proBNP) (N = 6669), B-type natriuretic peptide (BNP) (N = 6674), and mid-regional pro atrial natriuretic peptide (MR-proANP) (N = 6813) were measured in the FINRISK 1997 cohort. N = 30 common SNPs related to NT-proBNP, BNP, and MR-proANP were selected from studies. We performed six Mendelian randomizations for all three natriuretic peptide biomarkers and for both outcomes, AF and HF, separately. Polygenic risk scores (PRSs) based on multiple SNPs were used as genetic instrumental variable in Mendelian randomizations. Polygenic risk scores were significantly associated with the three natriuretic peptides. Polygenic risk scores were not significantly associated with incident AF nor HF. Most cardiovascular risk factors showed significant confounding percentages, but no association with PRS. A causal relation except for small causal betas is unlikely. CONCLUSION In our Mendelian randomization approach, we confirmed an association between common genetic variation at the NPPA-NPPB locus and natriuretic peptides. A strong causal relationship between natriuretic peptides and incidence of AF as well as HF at the community-level was ruled out. Therapeutic approaches targeting natriuretic peptides will therefore very likely work through indirect mechanisms.
Collapse
Affiliation(s)
- Bastiaan Geelhoed
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christin S Börschel
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Teemu Niiranen
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Tarja Palosaari
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Aki S Havulinna
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Césaire J K Fouodo
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Markus O Scheinhardt
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Pekka Jousilahti
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Kari Kuulasmaa
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
17
|
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021; 143:e254-e743. [PMID: 33501848 DOI: 10.1161/cir.0000000000000950] [Citation(s) in RCA: 3314] [Impact Index Per Article: 828.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. RESULTS Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
18
|
Guo Q, Zhang Q, He Y, Shi J, Li H, Peng H. Gender difference of association between plasma N-terminal pro-atrial natriuretic peptide and metabolic syndrome. Hormones (Athens) 2020; 19:541-548. [PMID: 32617886 DOI: 10.1007/s42000-020-00222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The natriuretic peptides (NPs) system, and mainly atrial natriuretic peptide (ANP), plays a key role in human metabolism and cardiometabolic disorders. Due to differences in NP levels and in prevalence of metabolic syndrome (MetS) between men and women, we aimed to explore the gender difference of association between N-terminal pro-atrial natriuretic peptide (NT-proANP) and MetS in a general population in China. METHODS Participants' weight, height, waist circumference, blood pressure, plasma NT-proANP, and other traditional biomarkers were measured. Multivariate logistic regression models were used to determine the association between plasma NT-proANP and MetS, and the odds ratio (OR) and 95% confidence interval (CI) were calculated for men and women, respectively. RESULTS Among 2203 participants, 1361 (61.78%) were women, 687(30.77%) participants had MetS, and the average age was 53 years. Women had a higher level of NT-proANP than men. However, adjusted logistic regression demonstrated that men in the upper quartile group of NT-proANP had 0.60 (95% CI 0.39-0.92) times the risk of having MetS, while women in the upper quartile group had 1.10 (95% CI 0.77-1.56) times the risk of having MetS compared to the lower quartile group. Furthermore, with the increase of the level of NT-proANP, the ORs showed a declining trend in men (P = 0.017), but it was not statistically significant among women (P = 0.700). CONCLUSIONS There are gender differences in the relationship between NT-proANP and MetS, while an inverse association between plasma NT-proANP and MetS in men suggests that higher levels of NT-proANP may be a protective factor for MetS.
Collapse
Affiliation(s)
- Qianlan Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Qiu Zhang
- Center for Disease Prevention and Control of Gusu District, Suzhou, China
| | - Yan He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jijun Shi
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongmei Li
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
19
|
Rubattu S, Stanzione R, Cotugno M, Bianchi F, Marchitti S, Forte M. Epigenetic control of natriuretic peptides: implications for health and disease. Cell Mol Life Sci 2020; 77:5121-5130. [PMID: 32556416 PMCID: PMC11105024 DOI: 10.1007/s00018-020-03573-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
The natriuretic peptides (NPs) family, including a class of hormones and their receptors, is largely known for its beneficial effects within the cardiovascular system to preserve regular functions and health. The concentration level of each component of the family is of crucial importance to guarantee a proper control of both systemic and local cardiovascular functions. A fine equilibrium between gene expression, protein secretion and clearance is needed to achieve the final optimal level of NPs. To this aim, the regulation of gene expression and translation plays a key role. In this regard, we know the existence of fine regulatory mechanisms, the so-called epigenetic mechanisms, which target many genes at either the promoter or the 3'UTR region to inhibit or activate their expression. The gene encoding ANP (NPPA) is regulated by histone modifications, DNA methylation, distinct microRNAs and a natural antisense transcript (NPPA-AS1) with consequent implications for both health and disease conditions. Notably, ANP modulates microRNAs on its own. Histone modifications of BNP gene (NPPB) are associated with several cardiomyopathies. The proBNP processing is regulated by miR30-GALNT1/2 axis. Among other components of the NPs family, CORIN, NPRA, NPRC and NEP may undergo epigenetic regulation. A better understanding of the epigenetic control of the NPs family will allow to gain more insights on the pathological basis of common cardiovascular diseases and to identify novel therapeutic targets. The present review article aims to discuss the major achievements obtained so far with studies on the epigenetic modulation of the NPs family.
Collapse
Affiliation(s)
- Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Laird E, O'halloran AM, Fedorowski A, Melander O, Hever A, Sjögren M, Carey D, Kenny RA. Orthostatic Hypotension and Novel Blood Pressure Associated Gene Variants in Older Adults: Data From the TILDA Study. J Gerontol A Biol Sci Med Sci 2020; 75:2074-2080. [PMID: 31821404 DOI: 10.1093/gerona/glz286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 11/14/2022] Open
Abstract
Orthostatic hypotension (OH) is associated with increased risk of trauma and cardiovascular events. Recent studies have identified new genetic variants that influence orthostatic blood pressure (BP). The aim of this study was to investigate the associations of candidate gene loci with orthostatic BP responses in older adults. A total of 3,430 participants aged ≥50 years from The Irish Longitudinal Study on Ageing (TILDA) with BP measures and genetic data from 12 single-nucleotide polymorphism (SNP) linked to BP responses were analyzed. Orthostatic BP responses were recorded at each 10 s interval and were defined as OH (SBP drop ≥20 mmHg or DBP drop ≥10 mmHg) at the time-points 40, 90, and 110 s. We defined sustained OH (SOH) as a drop that exceeded consensus BP thresholds for OH at 40, 90, and 110 s after standing. Logistic regression analyses modeled associations between the candidate SNP alleles and OH. We report no significant associations between OH and measured SNPs after correction for multiple comparisons apart from the SNP rs5068 where proportion of the minor allele was significantly different between cases and controls for SOH 40 (p = .002). After adjustment for covariates in a logistic regression, those with the minor G allele (compared to the A allele) had a decreased incidence rate ratio (IRR) for SOH 40 (IRR 0.45, p = .001, 95% CI 0.29-0.72). Only one SNP linked with increased natriuretic peptide concentrations was associated with OH. These results suggest that genetic variants may have a weak impact on OH but needs verification in other population studies.
Collapse
Affiliation(s)
- Eamon Laird
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland
| | | | - Artur Fedorowski
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Ann Hever
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland
| | - Marketa Sjögren
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Daniel Carey
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland.,Mercer's Institute for Successful Ageing, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
21
|
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020; 141:e139-e596. [PMID: 31992061 DOI: 10.1161/cir.0000000000000757] [Citation(s) in RCA: 5112] [Impact Index Per Article: 1022.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports on the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2020 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, metrics to assess and monitor healthy diets, an enhanced focus on social determinants of health, a focus on the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors, implementation strategies, and implications of the American Heart Association's 2020 Impact Goals. RESULTS Each of the 26 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, healthcare administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
22
|
Spannella F, Giulietti F, Bordicchia M, Burnett JC, Sarzani R. Association Between Cardiac Natriuretic Peptides and Lipid Profile: a Systematic Review and Meta-Analysis. Sci Rep 2019; 9:19178. [PMID: 31844088 PMCID: PMC6915780 DOI: 10.1038/s41598-019-55680-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Cardiac natriuretic peptides (NPs) play a fundamental role in maintaining cardiovascular (CV) and renal homeostasis. Moreover, they also affect glucose and lipid metabolism. We performed a systematic review and meta-analysis of studies investigating the association of NPs with serum lipid profile. A PubMed and Scopus search (2005–2018) revealed 48 studies reporting the association between NPs and components of lipid profile [total cholesterol (TC), low-density lipoprotein cholesterol (LDLc), high-density lipoprotein cholesterol (HDLc) and triglycerides (TG)]. Despite high inconsistency across studies, NPs levels were inversely associated with TC [k = 32; pooled r = −0.09; I2 = 90.26%], LDLc [k = 31; pooled r = −0.09; I2 = 82.38%] and TG [k = 46; pooled r = −0.11; I2 = 94.14%], while they were directly associated with HDLc [k = 41; pooled r = 0.06; I2 = 87.94%]. The relationship with LDLc, HDLc and TG lost significance if only studies on special populations (works including subjects with relevant acute or chronic conditions that could have significantly affected the circulating levels of NPs or lipid profile) or low-quality studies were taken into account. The present study highlights an association between higher NP levels and a favorable lipid profile. This confirms and extends our understanding of the metabolic properties of cardiac NPs and their potential in CV prevention.
Collapse
Affiliation(s)
- Francesco Spannella
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, Ancona, Italy.,Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Via Tronto 10/a, Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, Ancona, Italy.,Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Via Tronto 10/a, Ancona, Italy
| | - Marica Bordicchia
- Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Via Tronto 10/a, Ancona, Italy
| | - John C Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic and Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Riccardo Sarzani
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, Ancona, Italy. .,Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Via Tronto 10/a, Ancona, Italy.
| |
Collapse
|
23
|
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019; 139:e56-e528. [PMID: 30700139 DOI: 10.1161/cir.0000000000000659] [Citation(s) in RCA: 5537] [Impact Index Per Article: 922.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Fu S, Chang Z, Luo L, Deng J. Therapeutic Progress and Knowledge Basis on the Natriuretic Peptide System in Heart Failure. Curr Top Med Chem 2019; 19:1850-1866. [PMID: 31448711 DOI: 10.2174/1568026619666190826163536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023]
Abstract
Notwithstanding substantial improvements in diagnosis and treatment, Heart Failure (HF) remains a major disease burden with high prevalence and poor outcomes worldwide. Natriuretic Peptides (NPs) modulate whole cardiovascular system and exhibit multiple cardio-protective effects, including the counteraction of the Renin-Angiotensin-Aldosterone System (RAAS) and Sympathetic Nervous System (SNS), promotion of vasodilatation and natriuresis, and inhibition of hypertrophy and fibrosis. Novel pharmacological therapies based on NPs may achieve a valuable shift in managing patients with HF from inhibiting RAAS and SNS to a reversal of neurohormonal imbalance. Enhancing NP bioavailability through exogenous NP administration and inhibiting Neutral Endopeptidase (NEP) denotes valuable therapeutic strategies for HF. On the one hand, NEP-resistant NPs may be more specific as therapeutic choices in patients with HF. On the other hand, NEP Inhibitors (NEPIs) combined with RAAS inhibitors have proved to exert beneficial effects and reduce adverse events in patients with HF. Highly effective and potentially safe Angiotensin Receptor Blocker Neprilysin Inhibitors (ARNIs) have been developed after the failure of NEPIs and Vasopeptidase Inhibitors (VPIs) due to lacking efficacy and safety. Therapeutic progress and knowledge basis on the NP system in HF are summarized in the current review.
Collapse
Affiliation(s)
- Shihui Fu
- Department of Geriatric Cardiology, National Clinical Research Center of Geriatrics Disease, Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhenyu Chang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Leiming Luo
- Department of Geriatric Cardiology, National Clinical Research Center of Geriatrics Disease, Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Juelin Deng
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
25
|
Prickett TCR, Spittlehouse JK, Miller AL, Liau Y, Kennedy MA, Cameron VA, Pearson JF, Boden JM, Troughton RW, Espiner EA. Contrasting signals of cardiovascular health among natriuretic peptides in subjects without heart disease. Sci Rep 2019; 9:12108. [PMID: 31431677 PMCID: PMC6702214 DOI: 10.1038/s41598-019-48553-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023] Open
Abstract
Natriuretic Peptides (NP) are important in maintaining normal cardiac and metabolic status and have been used to predict cardiovascular events. Whether plasma concentrations of NP products within the normal range reflect cardio-metabolic health is unknown. Plasma NTproANP, NTproBNP and NTproCNP and their bioactive counterparts were measured in a random sample of 348 community dwellers aged 49-51 yr without heart disease and associations sought with established vascular risk factors, echocardiographic indices and a genetic variant previously linked with BNP. Stratified by sex, each of ten vascular risk factors were positively associated with NTproCNP whereas associations with NTproBNP and NTproANP were all negative. In both sexes, higher plasma NTproCNP was associated with higher arterial elastance, lower LV stroke volume and lower LV end diastolic volume. Exactly opposite associations were found with plasma NTproBNP or NTproANP. Sex specific differences were identified: positive association of NTproBNP with LV end systolic volume and the negative association with LV elastance were found only in males. The genetic variant rs198358 was independently associated with NTproBNP but not with NTproANP. In conclusion, higher NTproCNP is likely to be an adaptive response to impaired LV relaxation whereas genetic factors likely contribute to higher NTproBNP and improved cardio-metabolic health at midlife.
Collapse
Affiliation(s)
| | | | - Allison L Miller
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Yusmiati Liau
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Vicky A Cameron
- Departments of Medicine, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Joseph M Boden
- Psychological Medicine, University of Otago, Christchurch, New Zealand
| | | | - Eric A Espiner
- Departments of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
26
|
Pandey KN. Genetic Ablation and Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Impact on the Pathophysiology of Cardiovascular Dysfunction. Int J Mol Sci 2019; 20:ijms20163946. [PMID: 31416126 PMCID: PMC6721781 DOI: 10.3390/ijms20163946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mice bearing targeted gene mutations that affect the functions of natriuretic peptides (NPs) and natriuretic peptide receptors (NPRs) have contributed important information on the pathogenesis of hypertension, kidney disease, and cardiovascular dysfunction. Studies of mice having both complete gene disruption and tissue-specific gene ablation have contributed to our understanding of hypertension and cardiovascular disorders. These phenomena are consistent with an oligogenic inheritance in which interactions among a few alleles may account for genetic susceptibility to hypertension, renal insufficiency, and congestive heart failure. In addition to gene knockouts conferring increased risks of hypertension, kidney disorders, and cardiovascular dysfunction, studies of gene duplications have identified mutations that protect against high blood pressure and cardiovascular events, thus generating the notion that certain alleles can confer resistance to hypertension and heart disease. This review focuses on the intriguing phenotypes of Npr1 gene disruption and gene duplication in mice, with emphasis on hypertension and cardiovascular events using mouse models carrying Npr1 gene knockout and/or gene duplication. It also describes how Npr1 gene targeting in mice has contributed to our knowledge of the roles of NPs and NPRs in dose-dependently regulating hypertension and cardiovascular events.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
27
|
Cannone V, Cabassi A, Volpi R, Burnett JC. Atrial Natriuretic Peptide: A Molecular Target of Novel Therapeutic Approaches to Cardio-Metabolic Disease. Int J Mol Sci 2019; 20:E3265. [PMID: 31269783 PMCID: PMC6651335 DOI: 10.3390/ijms20133265] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone with pleiotropic cardiovascular and metabolic properties including vasodilation, natriuresis and suppression of the renin-angiotensin-aldosterone system. Moreover, ANP induces lipolysis, lipid oxidation, adipocyte browning and ameliorates insulin sensitivity. Studies on ANP genetic variants revealed that subjects with higher ANP plasma levels have lower cardio-metabolic risk. In vivo and in humans, augmenting the ANP pathway has been shown to exert cardiovascular therapeutic actions while ameliorating the metabolic profile. MANP is a novel designer ANP-based peptide with greater and more sustained biological actions than ANP in animal models. Recent studies also demonstrated that MANP lowers blood pressure and inhibits aldosterone in hypertensive subjects whereas cardiometabolic properties of MANP are currently tested in an on-going clinical study in hypertension and metabolic syndrome. Evidence from in vitro, in vivo and in human studies support the concept that ANP and related pathway represent an optimal target for a comprehensive approach to cardiometabolic disease.
Collapse
Affiliation(s)
- Valentina Cannone
- Cardiorenal Research Laboratory, Circulatory Failure Division, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Aderville Cabassi
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Riccardo Volpi
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - John C Burnett
- Cardiorenal Research Laboratory, Circulatory Failure Division, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
28
|
Rubattu S, Forte M, Marchitti S, Volpe M. Molecular Implications of Natriuretic Peptides in the Protection from Hypertension and Target Organ Damage Development. Int J Mol Sci 2019; 20:E798. [PMID: 30781751 PMCID: PMC6412747 DOI: 10.3390/ijms20040798] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of hypertension, as a multifactorial trait, is complex. High blood pressure levels, in turn, concur with the development of cardiovascular damage. Abnormalities of several neurohormonal mechanisms controlling blood pressure homeostasis and cardiovascular remodeling can contribute to these pathological conditions. The natriuretic peptide (NP) family (including ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), and CNP (C-type natriuretic peptide)), the NP receptors (NPRA, NPRB, and NPRC), and the related protease convertases (furin, corin, and PCSK6) constitute the NP system and represent relevant protective mechanisms toward the development of hypertension and associated conditions, such as atherosclerosis, stroke, myocardial infarction, heart failure, and renal injury. Initially, several experimental studies performed in different animal models demonstrated a key role of the NP system in the development of hypertension. Importantly, these studies provided relevant insights for a better comprehension of the pathogenesis of hypertension and related cardiovascular phenotypes in humans. Thus, investigation of the role of NPs in hypertension offers an excellent example in translational medicine. In this review article, we will summarize the most compelling evidence regarding the molecular mechanisms underlying the physiological and pathological impact of NPs on blood pressure regulation and on hypertension development. We will also discuss the protective effect of NPs toward the increased susceptibility to hypertensive target organ damage.
Collapse
Affiliation(s)
- Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| | | | | | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| |
Collapse
|
29
|
Cannone V, Buglioni A, Sangaralingham SJ, Scott C, Bailey KR, Rodeheffer R, Redfield MM, Sarzani R, Burnett JC. Aldosterone, Hypertension, and Antihypertensive Therapy: Insights From a General Population. Mayo Clin Proc 2018; 93:980-990. [PMID: 30077215 PMCID: PMC6203321 DOI: 10.1016/j.mayocp.2018.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the relationships among aldosterone level, use of antihypertensive (anti-HTN) medications, clinical profile, and atrial natriuretic peptide (ANP) level in individuals with HTN. PARTICIPANTS AND METHODS In a community-based cohort, we analyzed aldosterone plasma levels based on the presence (n=477) or absence (n=1073) of HTN. In individuals with HTN, we evaluated circulating aldosterone levels according to the number of anti-HTN drugs used, analyzed the associated clinical characteristics, and determined the relationship to the counterregulatory cardiac hormone ANP. Data were collected from August 25, 1997, through September 5, 2000. RESULTS Participants with HTN had higher serum aldosterone levels than those without HTN (6.4 vs 4.1 ng/dL [to convert to pmol/L, multiply by 27.74]; P<.001). When individuals with HTN were stratified according to the number of anti-HTN medications used, the increase in number of medications (0, 1, 2, and ≥3) was associated with higher aldosterone levels (4.8, 6.4, 7.10, and 7.9 ng/dL, respectively; P=.002), worse metabolic profile, and higher prevalence of cardiovascular, renal, and metabolic disease. In participants with HTN, ANP plasma levels were inversely related to aldosterone levels when the latter was divided into tertiles. CONCLUSION In this randomly selected general population cohort, aldosterone levels were higher in individuals with HTN compared with normotensive participants. Aldosterone levels increased with anti-HTN medication use. These findings also suggest a relative ANP deficiency with increasing aldosterone levels and anti-HTN drug use. These studies have pathophysiologic and therapeutic implications for targeting aldosterone in the clinical treatment of HTN.
Collapse
Affiliation(s)
- Valentina Cannone
- Cardiorenal Research Laboratory, Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Alessia Buglioni
- Cardiorenal Research Laboratory, Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Christopher Scott
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Kent R Bailey
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | | | - Margaret M Redfield
- Cardiorenal Research Laboratory, Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Riccardo Sarzani
- Internal Medicine and Geriatrics and "Hypertension Excellence Centre" of the European Society of Hypertension, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy; Italian National Research Centre on Aging "U. Sestilli", IRCCS-INRCA, Ancona, Italy
| | - John C Burnett
- Cardiorenal Research Laboratory, Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
30
|
Fu S, Ping P, Wang F, Luo L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J Biol Eng 2018; 12:2. [PMID: 29344085 PMCID: PMC5766980 DOI: 10.1186/s13036-017-0093-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
As a family of hormones with pleiotropic effects, natriuretic peptide (NP) system includes atrial NP (ANP), B-type NP (BNP), C-type NP (CNP), dendroaspis NP and urodilatin, with NP receptor-A (guanylate cyclase-A), NP receptor-B (guanylate cyclase-B) and NP receptor-C (clearance receptor). These peptides are genetically distinct, but structurally and functionally related for regulating circulatory homeostasis in vertebrates. In humans, ANP and BNP are encoded by NP precursor A (NPPA) and NPPB genes on chromosome 1, whereas CNP is encoded by NPPC on chromosome 2. NPs are synthesized and secreted through certain mechanisms by cardiomyocytes, fibroblasts, endotheliocytes, immune cells (neutrophils, T-cells and macrophages) and immature cells (embryonic stem cells, muscle satellite cells and cardiac precursor cells). They are mainly produced by cardiovascular, brain and renal tissues in response to wall stretch and other causes. NPs provide natriuresis, diuresis, vasodilation, antiproliferation, antihypertrophy, antifibrosis and other cardiometabolic protection. NPs represent body's own antihypertensive system, and provide compensatory protection to counterbalance vasoconstrictor-mitogenic-sodium retaining hormones, released by renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). NPs play central roles in regulation of heart failure (HF), and are inactivated through not only NP receptor-C, but also neutral endopeptidase (NEP), dipeptidyl peptidase-4 and insulin degrading enzyme. Both BNP and N-terminal proBNP are useful biomarkers to not only make the diagnosis and assess the severity of HF, but also guide the therapy and predict the prognosis in patients with HF. Current NP-augmenting strategies include the synthesis of NPs or agonists to increase NP bioactivity and inhibition of NEP to reduce NP breakdown. Nesiritide has been established as an available therapy, and angiotensin receptor blocker NEP inhibitor (ARNI, LCZ696) has obtained extremely encouraging results with decreased morbidity and mortality. Novel pharmacological approaches based on NPs may promote a therapeutic shift from suppressing the RAAS and SNS to re-balancing neuroendocrine dysregulation in patients with HF. The current review discussed the synthesis, secretion, function and metabolism of NPs, and their diagnostic, therapeutic and prognostic values in HF.
Collapse
Affiliation(s)
- Shihui Fu
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, 100853 China
- Department of Cardiology and Hainan Branch, Chinese People’s Liberation Army, General Hospital, Beijing, China
| | - Ping Ping
- Department of Pharmaceutical Care, Chinese People’s, Liberation Army General Hospital, Beijing, China
| | - Fengqi Wang
- Department of Cardiology and Hainan Branch, Chinese People’s Liberation Army, General Hospital, Beijing, China
| | - Leiming Luo
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, 100853 China
| |
Collapse
|
31
|
Cannone V, Scott CG, Decker PA, Larson NB, Palmas W, Taylor KD, Wang TJ, Gupta DK, Bielinski SJ, Burnett JC. A favorable cardiometabolic profile is associated with the G allele of the genetic variant rs5068 in African Americans: The Multi-Ethnic Study of Atherosclerosis (MESA). PLoS One 2017; 12:e0189858. [PMID: 29253899 PMCID: PMC5734753 DOI: 10.1371/journal.pone.0189858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
In whites, the minor G allele of the atrial natriuretic peptide (ANP) genetic variant rs5068 is associated with higher circulating levels of ANP and B-type natriuretic peptide (BNP), lower risk of hypertension, higher high-density lipoprotein (HDL) cholesterol plasma levels, and lower prevalence of obesity and metabolic syndrome. The observed phenotype is consistent with the blood pressure lowering and metabolic properties of ANP and BNP. The cardiovascular and metabolic phenotype associated with rs5068 genotypes in African Americans is undefined. We genotyped 1631 African Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) for rs5068 and investigated their phenotype. Genotype frequencies of rs5068 were 93.2% AA (n = 1520), 6.7% AG (n = 110) and 0.1% GG (n = 1). All subsequent analyses are AG + GG versus AA genotype. Using a Bonferroni corrected level of significance of 0.005, the prevalence of metabolic syndrome (23% vs 38%, age-sex-adjusted p = 0.002) and triglycerides plasma values (76 vs 90 mg/dl, age-sex-BMI adjusted p = 0.004) were both significantly lower in the AG+GG genotypes. In the AG+GG genotypes, the prevalence of diabetes (8% vs 18%, age-sex-BMI-adjusted p = 0.02) and insulin plasma levels tended to be lower (4.8 vs 5.7 μU/ml, age-sex-BMI adjusted p = 0.04) whereas HDL-cholesterol levels tended to be higher (55 vs 50 mg/dl, age-sex-BMI-adjusted p = 0.04). No association was found with hypertension. The association between the rs5068 G allele and a favorable metabolic phenotype is now shown in African Americans. The rs5068 AG+GG genotypes are associated with lower prevalence of metabolic syndrome and lower triglycerides values.
Collapse
Affiliation(s)
- Valentina Cannone
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, Parma, Italy
- * E-mail:
| | - Christopher G. Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Paul A. Decker
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Nicholas B. Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Walter Palmas
- Department of Medicine Columbia University College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Kent D. Taylor
- Los Angeles Biomedical Research Institute (LA BioMed), Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Thomas J. Wang
- Vanderbilt Translational and Clinical Cardiovascular Research Center and Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Deepak K. Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center and Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Suzette J. Bielinski
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John C. Burnett
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
32
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
33
|
Tsaban G, Wolak A, Avni-Hassid H, Gepner Y, Shelef I, Henkin Y, Schwarzfuchs D, Cohen N, Bril N, Rein M, Serfaty D, Kenigsbuch S, Tene L, Zelicha H, Yaskolka-Meir A, Komy O, Bilitzky A, Chassidim Y, Ceglarek U, Stumvoll M, Blüher M, Thiery J, Dicker D, Rudich A, Stampfer MJ, Shai I. Dynamics of intrapericardial and extrapericardial fat tissues during long-term, dietary-induced, moderate weight loss. Am J Clin Nutr 2017; 106:984-995. [PMID: 28814394 DOI: 10.3945/ajcn.117.157115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/10/2017] [Indexed: 11/14/2022] Open
Abstract
Background: In view of evidence linking pericardial fat accumulation with increased cardiovascular disease risk, strategies to reduce its burden are needed. Data comparing the effects of specific long-term dietary interventions on pericardial fat tissue mobilization are sparse.Objective: We sought to evaluate intrapericardial-fat (IPF) and extrapericardial-fat (EPF) changes during weight-loss interventions by different dietary regimens.Design: During 18 mo of a randomized controlled trial, we compared a Mediterranean/low-carbohydrate (MED/LC) diet plus 28 g walnuts/d with a calorically equal low-fat (LF) diet among randomly assigned participants with moderate abdominal obesity. We performed whole-body MRI and volumetrically quantified IPF and EPF among 80 participants to follow the 18-mo changes.Results: The participants [mean age: 48.6 y; mean body mass index (BMI; in kg/m2); 31.7; 90% men] had baseline IPF and EPF (mean ± SD) volumes of 172.4 ± 53.3 mL and 194.9 ± 71.5 mL, respectively. The 18-mo moderate weight loss of 3.7 kg was similar in both groups, but the reduction in waist circumference was higher in the MED/LC group (-6.9 ± 6.6 cm) than in the LF diet group (-2.3 ± 6.5 cm; P = 0.01). After 18 mo, the IPF volume had reduced twice as much in the MED/LC group compared with the LF group [-37 ± 26.2 mL (-22% ± 15%) compared with -15.5 ± 26.2 mL (-8% ± 15%), respectively; P < 0.05, after adjustment for changes in weight or visceral adipose tissue]. The EPF volume had reduced similarly in both groups [-41.6 ± 30.2 mL (-23% ± 16%) in the MED/LC group compared with -37.9 ± 28.3 mL (-19% ± 14%) in the LF group; P > 0.1]. After controlling for weight loss, IPF and EPF volume reduction paralleled changes in lipid profile but not with improved glycemic profile variables: the IPF relative reduction was associated with a decrease in triglycerides (TGs) (β = 0.090; 95% CI: 0.026, 0.154; P = 0.007) and the ratio of TGs to high-density lipoprotein (HDL) cholesterol (β = 2.689; 95% CI: 0.373, 5.003; P = 0.024), and the EPF relative reduction was associated with an increase in HDL cholesterol (β = -0.452; 95% CI: -0.880, -0.023; P = 0.039) and a decrease in total cholesterol and HDL cholesterol (β = 3.766; 95% CI: 1.092, 6.440; P = 0.007).Conclusions: Moderate but persistent dietary-induced weight loss substantially decreased both IPF and EPF volumes. Reduction of pericardial adipose tissues is independently associated with an improved lipid profile. The Mediterranean diet, rich in unsaturated fats and restricted carbohydrates, is superior to an LF diet in terms of the IPF burden reduction. This trial was registered at clinicaltrials.gov as NCT01530724.
Collapse
Affiliation(s)
- Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Soroka University Medical Center, Beer-Sheva, Israel
| | - Arik Wolak
- Cardiac Imaging Unit, Department of Cardiology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Hila Avni-Hassid
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yftach Gepner
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Soroka University Medical Center, Beer-Sheva, Israel
| | - Yaakov Henkin
- Soroka University Medical Center, Beer-Sheva, Israel
| | - Dan Schwarzfuchs
- Soroka University Medical Center, Beer-Sheva, Israel.,Nuclear Research Center Negev, Dimona, Israel
| | - Noa Cohen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nitzan Bril
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Rein
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dana Serfaty
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shira Kenigsbuch
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lilac Tene
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Yaskolka-Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oded Komy
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avital Bilitzky
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Uta Ceglarek
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Dror Dicker
- Internal Medicine D, Rabin Medical Center, Campus Golda, Petach Tikva, Israel; and
| | - Assaf Rudich
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Meir J Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard School of Public Health, Boston, MA
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel;
| |
Collapse
|
34
|
Sarzani R, Spannella F, Giulietti F, Balietti P, Cocci G, Bordicchia M. Cardiac Natriuretic Peptides, Hypertension and Cardiovascular Risk. High Blood Press Cardiovasc Prev 2017; 24:115-126. [PMID: 28378069 PMCID: PMC5440492 DOI: 10.1007/s40292-017-0196-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 02/08/2023] Open
Abstract
Prevalence of cardiovascular (CV) disease is increasing worldwide. One of the most important risk factors for CV disease is hypertension that is very often related to obesity and metabolic syndrome. The search for key mechanisms, linking high blood pressure (BP), glucose and lipid dysmetabolism together with higher CV risk and mortality, is attracting increasing attention. Cardiac natriuretic peptides (NPs), including ANP and BNP, may play a crucial role in maintaining CV homeostasis and cardiac health, given their impact not only on BP regulation, but also on glucose and lipid metabolism. The summa of all metabolic activities of cardiac NPs, together with their CV and sodium balance effects, may be very important in decreasing the overall CV risk. Therefore, in the next future, cardiac NPs system, with its two receptors and a neutralizing enzyme, might represent one of the main targets to treat these multiple related conditions and to reduce hypertension and metabolic-related CV risk.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy.
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy.
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Paolo Balietti
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Guido Cocci
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
- Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS-INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Marica Bordicchia
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| |
Collapse
|
35
|
Glöde A, Naumann J, Gnad T, Cannone V, Kilic A, Burnett JC, Pfeifer A. Divergent effects of a designer natriuretic peptide CD-NP in the regulation of adipose tissue and metabolism. Mol Metab 2017; 6:276-287. [PMID: 28271034 PMCID: PMC5323888 DOI: 10.1016/j.molmet.2016.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023] Open
Abstract
Objective Obesity is defined as an abnormal increase in white adipose tissue (WAT) and is a major risk factor for type 2 diabetes and cardiovascular disease. Brown adipose tissue (BAT) dissipates energy and correlates with leanness. Natriuretic peptides have been shown to be beneficial for brown adipocyte differentiation and browning of WAT. Methods Here, we investigated the effects of an optimized designer natriuretic peptide (CD-NP) on murine adipose tissues in vitro and in vivo. Results In murine brown and white adipocytes, CD-NP activated cGMP production, promoted adipogenesis, and increased thermogenic markers. Consequently, mice treated for 10 days with CD-NP exhibited increased “browning” of WAT. To study CD-NP effects on diet-induced obesity (DIO), we delivered CD-NP for 12 weeks. Although CD-NP reduced inflammation in WAT, CD-NP treated DIO mice exhibited a significant increase in body mass, worsened glucose tolerance, and hepatic steatosis. Long-term CD-NP treatment resulted in an increased expression of the NP scavenging receptor (NPR-C) and decreased lipolytic activity. Conclusions NP effects differed depending on the duration of treatment raising questions about the rational of natriuretic peptide treatment in obese patients. The optimized designer natriuretic peptide CD-NP promotes adipogenesis. Duration of treatment is decisive: short-term promotes browning whereas long-term treatment exacerbates obesity and diabetes. Long-term CD-NP treatment reduces WAT inflammation and increases adiponectin expression.
Collapse
Affiliation(s)
- Anja Glöde
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany
| | - Jennifer Naumann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Ana Kilic
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany; Bonn International Graduate School of Drug Sciences BIGSDrugS, University of Bonn, Bonn, Germany.
| |
Collapse
|
36
|
Ichiki T, Burnett Jr JC. Atrial Natriuretic Peptide ― Old But New Therapeutic in Cardiovascular Diseases ―. Circ J 2017; 81:913-919. [DOI: 10.1253/circj.cj-17-0499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| | - John C. Burnett Jr
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| |
Collapse
|
37
|
Noto D, Cefalù AB, Barbagallo CM, Ganci A, Cavera G, Fayer F, Palesano O, Spina R, Valenti V, Altieri GI, Caldarella R, Giammanco A, Termini R, Burrascano M, Crupi G, Falletta A, Scafidi V, Sbordone D, La Seta F, Averna MR. Baseline metabolic disturbances and the twenty-five years risk of incident cancer in a Mediterranean population. Nutr Metab Cardiovasc Dis 2016; 26:1020-1025. [PMID: 27511705 DOI: 10.1016/j.numecd.2016.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Obesity is predictive of metabolic syndrome (metS), type 2 diabetes, cardiovascular (CV) disease and cancer. The aim of the study is to assess the risk of incident cancer connected to obesity and metS in a Mediterranean population characterized by a high prevalence of obesity. METHODS AND RESULTS As many as 1133 subjects were enrolled in two phases and followed for 25 years (859 subjects) or 11 years (274 subjects) and incident cancer was registered in the follow-up period. Anthropometric measures and biochemical parameters were filed at baseline and evaluated as predictors of incident cancer by measuring hazards ratios (HR) using multivariate Cox parametric hazards models. Best predictive threshold for metabolic parameters and metS criteria were recalculated by ROC analysis. Fasting Blood Glucose >5.19 mmol/L [HR = 1.58 (1.0-2.4)] and the TG/HDL ratio (log10) (Males > 0.225, Females > 0.272) [HR = 2.44 (1.3-4.4)] resulted independent predictors of survival free of cancer with a clear additive effect together with age classes [45-65 years, HR = 2.47 (1.3-4.4), 65-75 years HR = 3.80 (2.0-7.1)] and male gender [HR = 2.07 (2.3-3.1)]. CONCLUSIONS Metabolic disturbances are predictive of cancer in a 25 years follow-up of a Mediterranean population following a traditional Mediterranean diet. The high prevalence of obesity and metS and the observed underlying condition of insulin resistance expose this population to an increased risk of cardiovascular disease and cancer despite the healthy nutritional habits.
Collapse
Affiliation(s)
- D Noto
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - A B Cefalù
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - C M Barbagallo
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - A Ganci
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - G Cavera
- Department of Geriatrics, "Villa Sofia-Cervello" Hospital, Palermo, Italy
| | - F Fayer
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - O Palesano
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - R Spina
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - V Valenti
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - G I Altieri
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - R Caldarella
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - A Giammanco
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - R Termini
- Department of Geriatrics, "A.U.S.L. 6", Palermo, Italy
| | - M Burrascano
- Department of Geriatrics, "A.U.S.L. 6", Palermo, Italy
| | - G Crupi
- Department of Geriatrics, "A.U.S.L. 6", Palermo, Italy
| | - A Falletta
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - V Scafidi
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy
| | - D Sbordone
- Department of Geriatrics, "A.U.S.L. 6", Palermo, Italy
| | - F La Seta
- Department of Geriatrics, "A.U.S.L. 6", Palermo, Italy
| | - M R Averna
- Department of Biomedicine, Internal Medicine and Specialties (Di.Bi.MIS), University of Palermo, Palermo, Italy.
| |
Collapse
|
38
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Bordicchia M, Ceresiani M, Pavani M, Minardi D, Polito M, Wabitsch M, Cannone V, Burnett JC, Dessì-Fulgheri P, Sarzani R. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway. Am J Physiol Regul Integr Comp Physiol 2016; 311:R104-14. [PMID: 27101299 DOI: 10.1152/ajpregu.00499.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/12/2016] [Indexed: 11/22/2022]
Abstract
Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes.
Collapse
Affiliation(s)
- M Bordicchia
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| | - M Ceresiani
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| | - M Pavani
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| | - D Minardi
- Department of Urology, University Politecnica delle Marche, Ancona, Italy
| | - M Polito
- Department of Urology, University Politecnica delle Marche, Ancona, Italy
| | - M Wabitsch
- Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany; and
| | - V Cannone
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - J C Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - P Dessì-Fulgheri
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy; Italian National Research Center on Aging INRCA-IRCCS Ospedale "U. Sestilli"
| | - R Sarzani
- Internal Medicine and Geriatrics, Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy; Italian National Research Center on Aging INRCA-IRCCS Ospedale "U. Sestilli";
| |
Collapse
|
40
|
Ramos HR, Birkenfeld AL, de Bold AJ. INTERACTING DISCIPLINES: Cardiac natriuretic peptides and obesity: perspectives from an endocrinologist and a cardiologist. Endocr Connect 2015; 4:R25-36. [PMID: 26115665 PMCID: PMC4485177 DOI: 10.1530/ec-15-0018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1981, the cardiac natriuretic peptides (cNP) atrial natriuretic peptide (also referred to as atrial natriuretic factor) and brain natriuretic peptide have been well characterised in terms of their renal and cardiovascular actions. In addition, it has been shown that cNP plasma levels are strong predictors of cardiovascular events and mortality in populations with no apparent heart disease as well as in patients with established cardiac pathology. cNP secretion from the heart is increased by humoral and mechanical stimuli. The clinical significance of cNP plasma levels has been shown to differ in obese and non-obese subjects. Recent lines of evidence suggest important metabolic effects of the cNP system, which has been shown to activate lipolysis, enhance lipid oxidation and mitochondrial respiration. Clinically, these properties lead to browning of white adipose tissue and to increased muscular oxidative capacity. In human association studies in patients without heart disease higher cNP concentrations were observed in lean, insulin-sensitive subjects. Highly elevated cNP levels are generally observed in patients with systolic heart failure or high blood pressure, while obese and type-2 diabetics display reduced cNP levels. Together, these observations suggest that the cNP system plays a role in the pathophysiology of metabolic vascular disease. Understanding this role should help define novel principles in the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Hugo R Ramos
- Department of Internal Medicine, Faculty of Medicine, Hospital de Urgencias, National University of Córdoba, Córdoba, X5000,
Argentina
- Correspondence should be addressed to H R Ramos or A L Birkenfeld or
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden (PLID), Dresden University School of Medicine, 01307 DresdenGermany
- Division of Diabetes and Nutritional Sciences, King's College London, Rayne Institute, London, SE5 9NU, UK
- Correspondence should be addressed to H R Ramos or A L Birkenfeld or
| | - Adolfo J de Bold
- Cardiovascular Endocrinology Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
41
|
Abstract
Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. Their actions are mediated through membrane-bound guanylyl cyclases that lead to production of the intracellular second-messenger cyclic guanosine monophosphate. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers, and augmenting natriuretic peptides is a target for therapeutic strategies in cardiometabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology.
Collapse
Affiliation(s)
- Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine
| | | |
Collapse
|
42
|
Song W, Wang H, Wu Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene 2015; 569:1-6. [PMID: 26074089 DOI: 10.1016/j.gene.2015.06.029] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates salt-water balance and blood pressure by promoting renal sodium and water excretion and stimulating vasodilation. ANP also has an anti-hypertrophic function in the heart, which is independent of its systemic blood pressure-lowering effect. In mice, ANP deficiency causes salt-sensitive hypertension and cardiac hypertrophy. Recent studies have shown that ANP plays an important role in regulating vascular remodeling and energy metabolism. Variants in the human NPPA gene, encoding the ANP precursor, are associated with hypertension, stroke, coronary artery disease, heart failure (HF) and obesity. ANP and related peptides are used as biomarkers for heart disease. Recombinant proteins and small molecules that enhance the ANP pathway have been developed to treat patients with HF. In this review, we discuss the role of ANP in cardiovascular biology and disease.
Collapse
Affiliation(s)
- Wei Song
- Departments of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hao Wang
- Departments of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Chemistry, Cleveland State University, Cleveland, OH 44155, USA
| | - Qingyu Wu
- Departments of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Chemistry, Cleveland State University, Cleveland, OH 44155, USA; Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China.
| |
Collapse
|
43
|
Gruden G, Landi A, Bruno G. Natriuretic peptides, heart, and adipose tissue: new findings and future developments for diabetes research. Diabetes Care 2014; 37:2899-908. [PMID: 25342830 DOI: 10.2337/dc14-0669] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Natriuretic peptides (NPs) play a key role in cardiovascular homeostasis, counteracting the deleterious effects of volume and pressure overload and activating antibrotic and antihypertrophic pathways in the heart. N-terminal B-type NP (NT-proBNP) also is a promising biomarker of global cardiovascular risk in the general population, and there is increasing interest on its potential use in diabetic patients for screening of silent cardiovascular abnormalities, cardiovascular risk stratification, and guided intervention. Recently, both atrial NP (ANP) and B-type NP (BNP) have emerged as key mediators in the control of metabolic processes including the heart in the network of organs that regulate energy usage and metabolism. Epidemiological studies have shown that ANP and BNP are reduced in people with obesity, insulin resistance, and diabetes, and this deficiency may contribute to enhance their global cardiovascular risk. Moreover, ANP and BNP have receptors in the adipose tissue, enhance lipolysis and energy expenditure, and modulate adipokine release and food intake. Therefore, low ANP and BNP levels may be not only a consequence but also a cause of obesity, and recent prospective studies have shown that low levels of NT-proBNP and midregional proANP (MR-proANP) are a strong predictor of type 2 diabetes onset. Whether ANP and BNP supplementation may result in either cardiovascular or metabolic benefits in humans remains, however, to be established.
Collapse
Affiliation(s)
- Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Landi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Graziella Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Lanfear DE, Chow S, Padhukasahasram B, Li J, Langholz D, Tang WHW, Williams LK, Sabbah HN. Genetic and nongenetic factors influencing pharmacokinetics of B-type natriuretic peptide. J Card Fail 2014; 20:662-8. [PMID: 24983826 PMCID: PMC4189182 DOI: 10.1016/j.cardfail.2014.06.357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/30/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Natriuretic peptides (NPs) represent a critical pathway in heart failure (HF). However, there is wide individual variability in NP system activity, which could be partly genetic in origin. We explored genetic and nongenetic contributions to B-type natriuretic peptide (BNP) inactivation. METHODS Chronic HF patients (n = 95) received recombinant human BNP (nesiritide) at standard doses, and BNP levels were measured at baseline, after 2 hours of infusion, and 30 minutes after discontinuation. Genomic DNA was genotyped for 91 single-nucleotide polymorphisms (SNP) in 2 candidate genes. We tested the association of patient characteristics and genotype with 5 pharmacokinetics (PK) parameters: elimination rate constant, ΔBNP, BNP clearance, adjusted BNP clearance, and half-life. Linear regression with pleiotropic analysis was used to test genotype associations with PK. RESULTS Participants' mean age was 63 years, 44% were female, and 46% were African American. PK parameters varied widely, some >10-fold. HF type (preserved vs reduced) was associated with PK (P < .01), whereas renal function, demographics, and body mass index and were not. Two SNPs in MME (rs989692, rs6798179) and 2 in NPR3 (rs6880564, rs2062708) also had associations with PK (P < .05). CONCLUSIONS The pharmacokinetics of BNP varies greatly in HF patients, differs by HF type, and possibly by MME or NPR3 genotype. Additional study is warranted.
Collapse
Affiliation(s)
- David E Lanfear
- Advanced Heart Failure and Transplant Cardiology, Section, Cardiology Division, Department of Medicine, Henry Ford Hospital, Detroit, Michigan.
| | - Sheryl Chow
- Advanced Heart Failure and Transplant Cardiology, Section, Cardiology Division, Department of Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Badri Padhukasahasram
- Advanced Heart Failure and Transplant Cardiology, Section, Cardiology Division, Department of Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jia Li
- Advanced Heart Failure and Transplant Cardiology, Section, Cardiology Division, Department of Medicine, Henry Ford Hospital, Detroit, Michigan
| | - David Langholz
- Advanced Heart Failure and Transplant Cardiology, Section, Cardiology Division, Department of Medicine, Henry Ford Hospital, Detroit, Michigan
| | - W H Wilson Tang
- Advanced Heart Failure and Transplant Cardiology, Section, Cardiology Division, Department of Medicine, Henry Ford Hospital, Detroit, Michigan
| | - L Keoki Williams
- Advanced Heart Failure and Transplant Cardiology, Section, Cardiology Division, Department of Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Hani N Sabbah
- Advanced Heart Failure and Transplant Cardiology, Section, Cardiology Division, Department of Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
45
|
Cannone V, Barlera S, Pileggi S, Masson S, Franzosi MG, Latini R, Scardulla C, Clemenza F, Maggioni AP, Nicolosi GL, Tavazzi L, Burnett JC. The Anp genetic variant Rs5068 and circulating levels of natriuretic peptides in patients with chronic heart failure. Int J Cardiol 2014; 176:1249-51. [PMID: 25129277 DOI: 10.1016/j.ijcard.2014.07.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/27/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Valentina Cannone
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, MN, United States.
| | - Simona Barlera
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Silvana Pileggi
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Serge Masson
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | | | - Roberto Latini
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Cesare Scardulla
- Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Francesco Clemenza
- Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | | | | | - Luigi Tavazzi
- GVM Hospitals of Care and Research, E.S. Health Science Foundation, Cotignola, Italy
| | - John C Burnett
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
46
|
Hoffmann LS, Chen HH. cGMP: transition from bench to bedside: a report of the 6th International Conference on cGMP Generators, Effectors and Therapeutic Implications. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:707-18. [PMID: 24927824 DOI: 10.1007/s00210-014-0999-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
Essential physiological homeostatic processes such as vascular tone, fluid balance, cardiorenal function, and sensory processes are regulated by the second messenger cyclic guanosine 3', 5'-monophosphate (cGMP). Dysregulation of cGMP-dependent pathways plays an important role in cardiovascular diseases such as hypertension, pulmonary hypertension, heart failure, or erectile dysfunction. Thus, the cGMP pathway consisting of the cGMP-generating guanylyl cyclases, protein kinases, and phosphodiesterases (PDE) has evolved to an important drug target and is the focus of a wide variety of research fields ranging from unraveling mechanisms on the molecular level to understanding the regulation of physiological and pathophysiological processes by cGMP. Based on the results from basic and preclinical research, therapeutic drugs have been developed which modulate the cGMP pathway and are investigated in clinical trials. Riociguat, a nitric oxide (NO)-independent soluble guanylyl cyclase stimulator; recombinant B-type natriuretic peptide (BNP); or recombinant atrial natriuretic peptide (ANP) and PDE5 inhibitors are cGMP-modulating drugs that are already available for the treatment of pulmonary hypertension, acute heart failure, and erectile dysfunction, respectively. The latest results from basic to clinical research on cGMP were presented on the 6th International Conference on cGMP in Erfurt, Germany, and are summarized in this article.
Collapse
Affiliation(s)
- Linda S Hoffmann
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany,
| | | |
Collapse
|
47
|
Atrial natriuretic peptide gene variants and circulating levels: implications in cardiovascular diseases. Clin Sci (Lond) 2014; 127:1-13. [PMID: 24611929 DOI: 10.1042/cs20130427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ANP (atrial natriuretic peptide), discovered 30 years ago in rat cardiac atria, has been extensively investigated with regard to physiology, pathophysiology, cardiovascular disease therapeutics and molecular genetic aspects. Besides its diuretic, natriuretic and vasorelaxant effects, novel properties of this hormone have been described. Thus anti-hypertrophic, anti-fibrotic, anti-proliferative and anti-inflammatory actions suggest that ANP contributes not only to haemodynamic homoeostasis and adjustments, but has also a role in cardiovascular remodelling. Circulating ANP levels represent a valuable biomarker in cardiovascular diseases. ANP structure is highly conserved among species, indicating a key role in cardiovascular health. Thus an abnormal ANP structure may contribute to an increased risk of disease due to altered functions at either the vascular or cardiac level. Among others, the 2238T>C exon 3 variant has been associated with endothelial cell damage and dysfunction and with an increased risk of acute cardiovascular events, a frameshift mutation within exon 3 has been related to increased risk of atrial fibrillation, and ANP gene variants have been linked to increased risk of hypertension in different ethnic groups. On the other hand, the rs5068 variant, falling within the 3' UTR and associated with higher circulating ANP levels, has been shown to have a beneficial cardioprotective and metabolic effect. Dissecting out the disease mechanisms dependent on specific ANP molecular variants may reveal information useful in the clinical setting for diagnostic, prognostic and therapeutic purposes. Furthermore, insights from molecular genetic analysis of ANP may well integrate advancing knowledge on the role of ANP as a significant biomarker in patients affected by cardiovascular diseases.
Collapse
|
48
|
Schlueter N, de Sterke A, Willmes DM, Spranger J, Jordan J, Birkenfeld AL. Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol Ther 2014; 144:12-27. [PMID: 24780848 DOI: 10.1016/j.pharmthera.2014.04.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 12/26/2022]
Abstract
Natriuretic peptides (NPs) are a group of peptide-hormones mainly secreted from the heart, signaling via c-GMP coupled receptors. NP are well known for their renal and cardiovascular actions, reducing arterial blood pressure as well as sodium reabsorption. Novel physiological functions have been discovered in recent years, including activation of lipolysis, lipid oxidation, and mitochondrial respiration. Together, these responses promote white adipose tissue browning, increase muscular oxidative capacity, particularly during physical exercise, and protect against diet-induced obesity and insulin resistance. Exaggerated NP release is a common finding in congestive heart failure. In contrast, NP deficiency is observed in obesity and in type-2 diabetes, pointing to an involvement of NP in the pathophysiology of metabolic disease. Based upon these findings, the NP system holds the potential to be amenable to therapeutical intervention against pandemic diseases such as obesity, insulin resistance, and arterial hypertension. Various therapeutic approaches are currently under development. This paper reviews the current knowledge on the metabolic effects of the NP system and discusses potential therapeutic applications.
Collapse
Affiliation(s)
- Nina Schlueter
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany
| | - Anita de Sterke
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany
| | - Diana M Willmes
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany
| | - Jens Jordan
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Andreas L Birkenfeld
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité, University School of Medicine, Berlin, Germany.
| |
Collapse
|
49
|
Atrial natriuretic peptide and type 2 diabetes development--biomarker and genotype association study. PLoS One 2014; 9:e89201. [PMID: 24586593 PMCID: PMC3929630 DOI: 10.1371/journal.pone.0089201] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/17/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We have recently shown that low plasma levels of mid-regional atrial natriuretic peptide (MR-ANP) predict development of diabetes and glucose progression over time, independently of known risk factors for diabetes development. However, since MR-ANP levels might be influenced by unknown factors causing diabetes, we cannot rule out that such relationship might be confounded. Previous studies have shown an association of a single nucleotide polymorphism rs5068 on the natriuretic peptide precursor A (NPPA) locus gene with higher levels of circulating ANP. Since gene variants are inherited randomly and not subject to confounding, we aimed to investigate whether the variant rs5068 within the NPPA locus is associated with incident type 2 diabetes. METHODS We genotyped the variant rs5068 within the NPPA locus in 27,307 individuals without known diabetes from the Malmö Diet Cancer Study. Incident diabetes was retrieved through national and regional registers (median follow-up time of 14 years, 2,823 incident diabetes cases). RESULTS In Cox regression analysis adjusted for age, sex and BMI, we found that the carriers of at least one copy of the G allele of rs5068 had lower likelihood of incident diabetes within 14 years (HR = 0.88, 95% CI 0.78-0.99, p = 0.037). CONCLUSION Our results indicate a role of the ANP system in the etiology of type 2 diabetes and might help provide insight in the metabolic actions of natriuretic peptides and the pathophysiology of type 2 diabetes.
Collapse
|
50
|
Cannone V, Huntley BK, Olson TM, Heublein DM, Scott CG, Bailey KR, Redfield MM, Rodeheffer RJ, Burnett JC. Atrial natriuretic peptide genetic variant rs5065 and risk for cardiovascular disease in the general community: a 9-year follow-up study. Hypertension 2013; 62:860-5. [PMID: 24041948 DOI: 10.1161/hypertensionaha.113.01344] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We analyzed the phenotype associated with the atrial natriuretic peptide (ANP) genetic variant rs5065 in a random community-based sample. We also assessed and compared the biological action of 2 concentrations (10(-10) mol/L, 10(-8) mol/L) of ANP and ANP-RR, the protein variant encoded by the minor allele of rs5065, on activation of the guanylyl cyclase (GC)-A and GC-B receptors, production of the second messenger 3',5'-cGMP in endothelial cells, and endothelial permeability. rs5065 genotypes were determined in a cross-sectional adult cohort from Olmsted County, MN (n=1623). Genotype frequencies for rs5065 were 75%, 24%, and 1% for TT, TC, and CC, respectively. Multivariate analysis showed that the C allele was associated with increased risk of cerebrovascular accident (hazard ratio, 1.43; 95% confidence interval, 1.09-1.86; P=0.009) and higher prevalence of myocardial infarction (odds ratio, 1.82; 95% confidence interval, 1.07-3.09; P=0.026). ANP-RR 10(-8) mol/L activated the GC-A receptor (83.07±8.31 versus no treatment 0.18±0.04 per 6 wells; P=0.006), whereas ANP-RR 10(-10) mol/L did not. Neither 10(-8) mol/L nor 10(-10) mol/L ANP-RR activated GC-B receptor (P=0.10, P=0.35). ANP 10(-8) mol/L and ANP-RR 10(-8) mol/L stimulated 3',5'-cGMP production in endothelial cells similarly (P=0.58). Both concentrations of ANP-RR significantly enhanced human aortic endothelial cell permeability (69 versus 29 relative fluorescence units [RFUs], P=0.012; 58 versus 39 RFUs, P=0.015) compared with ANP. The minor allele of rs5065 was associated with increased cardiovascular risk. ANP-RR activated the GC-A receptor, increased 3',5'-cGMP in endothelial cells, and when compared with ANP, augmented endothelial cell permeability.
Collapse
Affiliation(s)
- Valentina Cannone
- Cardiorenal Research Laboratory, Guggenheim 915, Mayo Clinic and Foundation, 200 First St SW, Rochester, MN 55905.
| | | | | | | | | | | | | | | | | |
Collapse
|