1
|
McGee SL, Hargreaves M. Exercise performance and health: Role of GLUT4. Free Radic Biol Med 2024; 224:479-483. [PMID: 39243828 DOI: 10.1016/j.freeradbiomed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The glucose transporter GLUT4 is integral for optimal skeletal muscle performance during exercise, as well as for metabolic health. Physiological regulation of GLUT4 translocation during exercise and increased GLUT4 expression following exercise involves multiple, redundant signalling pathways. These include effects of reactive oxygen species (ROS). ROS contribute to GLUT4 translocation that increases skeletal muscle glucose uptake during exercise and stimulate signalling pathways that increase GLUT4 expression. Conversely, ROS can also inhibit GLUT4 translocation and expression in metabolic disease states. The opposing roles of ROS in GLUT4 regulation are ultimately linked to the metabolic state of skeletal muscle and the intricate mechanisms involved give insights into pathways critical for exercise performance and implicated in metabolic health and disease.
Collapse
Affiliation(s)
- Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, 3217, Australia.
| | - Mark Hargreaves
- Department of Anatomy & Physiology, University of Melbourne, 3010, Australia.
| |
Collapse
|
2
|
Mann G, Adegoke OAJ. Elevated BCAA catabolism reverses the effect of branched-chain ketoacids on glucose transport in mTORC1-dependent manner in L6 myotubes. J Nutr Sci 2024; 13:e66. [PMID: 39464407 PMCID: PMC11503859 DOI: 10.1017/jns.2024.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024] Open
Abstract
Plasma levels of branched-chain amino acids (BCAA) and their metabolites, branched-chain ketoacids (BCKA), are increased in insulin resistance. We previously showed that ketoisocaproic acid (KIC) suppressed insulin-stimulated glucose transport in L6 myotubes, especially in myotubes depleted of branched-chain ketoacid dehydrogenase (BCKD), the enzyme that decarboxylates BCKA. This suggests that upregulating BCKD activity might improve insulin sensitivity. We hypothesised that increasing BCAA catabolism would upregulate insulin-stimulated glucose transport and attenuate insulin resistance induced by BCKA. L6 myotubes were either depleted of BCKD kinase (BDK), the enzyme that inhibits BCKD activity, or treated with BT2, a BDK inhibitor. Myotubes were then treated with KIC (200 μM), leucine (150 μM), BCKA (200 μM), or BCAA (400 μM) and then treated with or without insulin (100 nM). BDK depletion/inhibition rescued the suppression of insulin-stimulated glucose transport by KIC/BCKA. This was consistent with the attenuation of IRS-1 (Ser612) and S6K1 (Thr389) phosphorylation but there was no effect on Akt (Ser473) phosphorylation. The effect of leucine or BCAA on these measures was not as pronounced and BT2 did not influence the effect. Induction of the mTORC1/IRS-1 (Ser612) axis abolished the attenuating effect of BT2 treatment on glucose transport in cells treated with KIC. Surprisingly, rapamycin co-treatment with BT2 and KIC further reduced glucose transport. Our data suggests that the suppression of insulin-stimulated glucose transport by KIC/BCKA in muscle is mediated by mTORC1/S6K1 signalling. This was attenuated by upregulating BCAA catabolic flux. Thus, interventions targeting BCAA metabolism may provide benefits against insulin resistance and its sequelae.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Olasunkanmi A. John Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Carapeto P, Iwasaki K, Hela F, Kahng J, Alves-Wagner AB, Middelbeek RJW, Hirshman MF, Rutter GA, Goodyear LJ, Aguayo-Mazzucato C. Exercise activates AMPK in mouse and human pancreatic islets to decrease senescence. Nat Metab 2024; 6:1976-1990. [PMID: 39317751 DOI: 10.1038/s42255-024-01130-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Beta (β)-cell senescence contributes to type 2 diabetes mellitus (T2DM). While exercise is vital for T2DM management and significantly affects cellular ageing markers, its effect on β-cell senescence remains unexplored. Here, we show that short-term endurance exercise training (treadmill running, 1 h per day for 10 days) in two male and female mouse models of insulin resistance decreases β-cell senescence. In vivo and in vitro experiments revealed that this effect is mediated, at least in part, by training-induced increases in serum glucagon, leading to activation of 5'-AMP-activated protein kinase (AMPK) signalling in β-cells. AMPK activation resulted in the nuclear translocation of NRF2 and decreased expression of senescence markers and effectors. Remarkably, human islets from male and female donors with T2DM treated with serum collected after a 10-week endurance exercise training programme showed a significant decrease in the levels of senescence markers. These findings indicate that exercise training decreases senescence in pancreatic islets, offering promising therapeutic implications for T2DM.
Collapse
Affiliation(s)
- Priscila Carapeto
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- CRCHUM, Faculté de Médicine, Université de Montréal, Montreal, Quebec, Canada
| | - Kanako Iwasaki
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Francesko Hela
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jiho Kahng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Guy A Rutter
- CRCHUM, Faculté de Médicine, Université de Montréal, Montreal, Quebec, Canada
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
- Lee Kong Chian Medical School, Nanyang Technological University, Singapore, Singapore
| | | | | |
Collapse
|
4
|
Chen K, Wang Y, Li D, Li J, Huang Y, Huang M, Ma H. Impact of diverse aerobic exercise plans on glycemic control, lipid levels, and functional activity in stroke patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1389538. [PMID: 39359413 PMCID: PMC11446103 DOI: 10.3389/fendo.2024.1389538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Aims This study aimed to assess the effects of Low-to-Moderate Intensity Continuous Training (LMICT), Moderate-Intensity Interval Training (MIIT), and Reduced-Exertion High-Intensity Training (REHIT) on blood glucose regulation, functional recovery, and lipid levels in individuals who have experienced a stroke and are diagnosed with Type 2 Diabetes Mellitus (T2DM). Methods Forty-two T2DM stroke patients were randomly allocated to four groups: LMICT, MIIT, REHIT, and a control group (CON). Participants continuously monitored their blood glucose levels throughout the intervention using continuous glucose monitoring (CGM) devices. The study comprised two exercise intervention cycles: the first lasting from Day 3 to Day 14 and the second from Day 15 to Day 28, with the initial two days serving as contrasting periods. Primary outcomes encompassed CGM-derived blood glucose measurements, the Barthel Index (BI), Fugl-Meyer Assessment lower-extremity subscale (FMA-LE), and alterations in triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c). Results Compared with the CON, the MIIT group showed significant improvements in mean glucose (MG), glucose standard deviation (SD), time above range (TAR), and time in range (TIR). The REHIT group exhibited significantly reduced time below range (TBR), glucose SD, and coefficient of variation (CV). Regarding lipid levels, although the REHIT group achieved a significant reduction in TG levels compared with the CON, the overall effects of LMICT, MIIT, and REHIT on lipid profiles were relatively modest. Concerning functional recovery, the REHIT group significantly improved the BI and FMA-LE. Conclusion Although the short-term quantitative impact of exercise on lipid levels may be limited, both REHIT and MIIT significantly improved glycemic management and reduced glucose variability in post-stroke patients with Type 2 Diabetes Mellitus. Additionally, REHIT notably enhanced functional recovery.
Collapse
Affiliation(s)
- Kangcheng Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Yulong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Dongxia Li
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jun Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Yong Huang
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Meiling Huang
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Haifeng Ma
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Mastrototaro L, Roden M. The effects of extracellular vesicles and their cargo on metabolism and its adaptation to physical exercise in insulin resistance and type 2 diabetes. Proteomics 2024; 24:e2300078. [PMID: 37525338 DOI: 10.1002/pmic.202300078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Lifestyle modification represents the first-line strategy for the prevention and treatment of type 2 diabetes mellitus (T2DM), which is frequently associated with obesity and characterized by defective pancreatic insulin secretion and/or insulin resistance. Exercise training is an essential component of lifestyle modification and has been shown to ameliorate insulin resistance by reducing body fat mass and by enhancing skeletal muscle mitochondrial biogenesis and insulin-independent glucose uptake. Additionally, exercising stimulates the release of exerkines such as metabolites or cytokines, but also long non-coding RNA, microRNAs, cell-free DNA (cf-DNA), and extracellular vesicles (EVs), which contribute to inter-tissue communication. There is emerging evidence that EV number and content are altered in obesity and T2DM and may be involved in several metabolic processes, specifically either worsening or improving insulin resistance. This review summarizes the current knowledge on the metabolic effects of exercise training and on the potential role of humoral factors and EV as new biomarkers for early diagnosis and tailored treatment of T2DM.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Tian Y, Shi D, Liao H, Lu B, Pang Z. The role of Huidouba in regulating skeletal muscle metabolic disorders in prediabetic mice through AMPK/PGC-1α/PPARα pathway. Diabetol Metab Syndr 2023; 15:145. [PMID: 37391779 PMCID: PMC10314379 DOI: 10.1186/s13098-023-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/23/2023] [Indexed: 07/02/2023] Open
Abstract
Prediabetes is a transitional state between normal blood glucose levels and diabetes, but it is also a reversible process. At the same time, as one of the most important tissues in the human body, the metabolic disorder of skeletal muscle is closely related to prediabetes. Huidouba (HDB) is a clinically proven traditional Chinese medicine with significant effects in regulating disorders of glucose and lipid metabolism. Our study aimed to investigate the efficacy and mechanism of HDB in prediabetic model mice from the perspective of skeletal muscle. C57BL/6J mice (6 weeks old) were fed a high-fat diet (HFD) for 12 weeks to replicate the prediabetic model. Three concentrations of HDB were treated with metformin as a positive control. After administration, fasting blood glucose was measured as an indicator of glucose metabolism, as well as lipid metabolism indicators such as total triglyceride (TG), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), free fatty acid (FFA), and lactate dehydrogenase (LDH). Muscle fat accumulation and glycogen accumulation were observed. The protein expression levels of p-AMPK, AMPK, PGC-1α, PPAR-α, and GLUT-4 were detected. After HDB treatment, fasting blood glucose was significantly improved, and TG, LDL-C, FFA, and LDH in serum and lipid accumulation in muscle tissue were significantly reduced. In addition, HDB significantly upregulated the expression levels of p-AMPK/AMPK, PGC-1α, PPAR-α, and GLUT-4 in muscle tissue. In conclusion, HDB can alleviate the symptoms of prediabetic model mice by promoting the AMPK/PGC-1α/PPARα pathway and upregulating the expression of GLUT-4 protein.
Collapse
Affiliation(s)
- Yu Tian
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Dongxu Shi
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Haiying Liao
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| |
Collapse
|
7
|
Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, Zhang C, Guo HY. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem 2022; 37:2452-2477. [PMID: 36093586 PMCID: PMC9481144 DOI: 10.1080/14756366.2022.2115035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arctium lappa L. is a prevalent medicinal herb and a health supplement that is commonly used in Asia. Over the last few decades, the bioactive component arctigenin has attracted the attention of researchers because of its anti-inflammatory, antioxidant, immunomodulatory, multiple sclerosis fighting, antitumor, and anti-leukemia properties. After summarising the research and literature on arctigenin, this study outlines the current status of research on pharmacological activity, total synthesis, and structural modification of arctigenin. The purpose of this study is to assist academics in obtaining a more comprehensive understanding of the research progress on arctigenin and to provide constructive suggestions for further investigation of this useful molecule.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Qing-kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe-shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
8
|
Structural functionality of skeletal muscle mitochondria and its correlation with metabolic diseases. Clin Sci (Lond) 2022; 136:1851-1871. [PMID: 36545931 DOI: 10.1042/cs20220636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
The skeletal muscle is one of the largest organs in the mammalian body. Its remarkable ability to swiftly shift its substrate selection allows other organs like the brain to choose their preferred substrate first. Healthy skeletal muscle has a high level of metabolic flexibility, which is reduced in several metabolic diseases, including obesity and Type 2 diabetes (T2D). Skeletal muscle health is highly dependent on optimally functioning mitochondria that exist in a highly integrated network with the sarcoplasmic reticulum and sarcolemma. The three major mitochondrial processes: biogenesis, dynamics, and mitophagy, taken together, determine the quality of the mitochondrial network in the muscle. Since muscle health is primarily dependent on mitochondrial status, the mitochondrial processes are very tightly regulated in the skeletal muscle via transcription factors like peroxisome proliferator-activated receptor-γ coactivator-1α, peroxisome proliferator-activated receptors, estrogen-related receptors, nuclear respiratory factor, and Transcription factor A, mitochondrial. Physiological stimuli that enhance muscle energy expenditure, like cold and exercise, also promote a healthy mitochondrial phenotype and muscle health. In contrast, conditions like metabolic disorders, muscle dystrophies, and aging impair the mitochondrial phenotype, which is associated with poor muscle health. Further, exercise training is known to improve muscle health in aged individuals or during the early stages of metabolic disorders. This might suggest that conditions enhancing mitochondrial health can promote muscle health. Therefore, in this review, we take a critical overview of current knowledge about skeletal muscle mitochondria and the regulation of their quality. Also, we have discussed the molecular derailments that happen during various pathophysiological conditions and whether it is an effect or a cause.
Collapse
|
9
|
Mann G, Riddell MC, Adegoke OAJ. Effects of Acute Muscle Contraction on the Key Molecules in Insulin and Akt Signaling in Skeletal Muscle in Health and in Insulin Resistant States. DIABETOLOGY 2022; 3:423-446. [DOI: 10.3390/diabetology3030032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Insulin signaling plays a key role in glucose uptake, glycogen synthesis, and protein and lipid synthesis. In insulin-resistant states like obesity and type 2 diabetes mellitus, these processes are dysregulated. Regular physical exercise is a potential therapeutic strategy against insulin resistance, as an acute bout of exercise increases glucose disposal during the activity and for hours into recovery. Chronic exercise increases the activation of proteins involved in insulin signaling and increases glucose transport, even in insulin resistant states. Here, we will focus on the effect of acute exercise on insulin signaling and protein kinase B (Akt) pathways. Activation of proximal proteins involved in insulin signaling (insulin receptor, insulin receptor substrate-1 (IRS-1), phosphoinoside-3 kinase (PI3K)) are unchanged in response to acute exercise/contraction, while activation of Akt and of its substrates, TBC1 domain family 1 (TBC1D1), and TBC domain family 4 (TBC1D4) increases in response to such exercise/contraction. A wide array of Akt substrates is also regulated by exercise. Additionally, AMP-activated protein kinase (AMPK) seems to be a main mediator of the benefits of exercise on skeletal muscle. Questions persist on how mTORC1 and AMPK, two opposing regulators, are both upregulated after an acute bout of exercise.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | | |
Collapse
|
10
|
Alizadeh H. Meteorin-like protein (Metrnl): A metabolic syndrome biomarker and an exercise mediator. Cytokine 2022; 157:155952. [PMID: 35780711 DOI: 10.1016/j.cyto.2022.155952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Metrnl is a secreted protein able to activate different intracellular signaling pathways in adipocytes, macrophages, myocytes and cardiomyocytes with physiological effects of the browning of white adipose tissue (BWT), insulin sensitivity, inflammation inhibition, skeletal muscle regeneration and heart protection. Shown to be regulated by obesity, diabetes, caloric restriction, weight loss and heart diseases, Metrnl is definitely involved in metabolic turbulences, and may play roles in metabolic syndrome (MetS). However, due to the conflicting data yielded, Metrnl is still far from clinical application as a diagnostic and/or a therapeutic agent or even a therapeutic target in MetS-related diseases such as type 2 diabetes (T2D) and obesity. Nevertheless, blood Metrnl levels as well as Metrnl as a cardiokine have been reported to play cardioprotective roles against heart diseases. Considering the established metabolic and anti-inflammatory hallmarks, exercise-induced Metrnl (as a myokine) is regarded as an exercise mediator in improving obesity-induced complications such as insulin resistance, T2D and inflammation. Besides, due to its healing role in muscle damage, Metrnl is also a potential therapeutic candidate to enhance regeneration with ageing or other inflammatory myopathies like Duchenne muscular dystrophy (DMD). Therefore, there are still many exercise-related questions unanswered on Metrnl, such as Metrnl-mediated fat browning in humans, exercise effects on heart Metrnl production and secretion and the effects of other exercise-induced skeletal muscle stressors like hypoxia and oxidative in Metrnl production other than exercise-induced muscle damage.
Collapse
Affiliation(s)
- Hamid Alizadeh
- Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran.
| |
Collapse
|
11
|
Rothschild JA, Islam H, Bishop DJ, Kilding AE, Stewart T, Plews DJ. Factors Influencing AMPK Activation During Cycling Exercise: A Pooled Analysis and Meta-Regression. Sports Med 2022; 52:1273-1294. [PMID: 34878641 DOI: 10.1007/s40279-021-01610-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that is activated by increases in the cellular AMP/adenosine diphosphate:adenosine triphosphate (ADP:ATP) ratios and plays a key role in metabolic adaptations to endurance training. The degree of AMPK activation during exercise can be influenced by many factors that impact on cellular energetics, including exercise intensity, exercise duration, muscle glycogen, fitness level, and nutrient availability. However, the relative importance of these factors for inducing AMPK activation remains unclear, and robust relationships between exercise-related variables and indices of AMPK activation have not been established. OBJECTIVES The purpose of this analysis was to (1) investigate correlations between factors influencing AMPK activation and the magnitude of change in AMPK activity during cycling exercise, (2) investigate correlations between commonly reported measures of AMPK activation (AMPK-α2 activity, phosphorylated (p)-AMPK, and p-acetyl coenzyme A carboxylase (p-ACC), and (3) formulate linear regression models to determine the most important factors for AMPK activation during exercise. METHODS Data were pooled from 89 studies, including 982 participants (93.8% male, maximal oxygen consumption [[Formula: see text]] 51.9 ± 7.8 mL kg-1 min-1). Pearson's correlation analysis was performed to determine relationships between effect sizes for each of the primary outcome markers (AMPK-α2 activity, p-AMPK, p-ACC) and factors purported to influence AMPK signaling (muscle glycogen, carbohydrate ingestion, exercise duration and intensity, fitness level, and muscle metabolites). General linear mixed-effect models were used to examine which factors influenced AMPK activation. RESULTS Significant correlations (r = 0.19-0.55, p < .05) with AMPK activity were found between end-exercise muscle glycogen, exercise intensity, and muscle metabolites phosphocreatine, creatine, and free ADP. All markers of AMPK activation were significantly correlated, with the strongest relationship between AMPK-α2 activity and p-AMPK (r = 0.56, p < 0.001). The most important predictors of AMPK activation were the muscle metabolites and exercise intensity. CONCLUSION Muscle glycogen, fitness level, exercise intensity, and exercise duration each influence AMPK activity during exercise when all other factors are held constant. However, disrupting cellular energy charge is the most influential factor for AMPK activation during endurance exercise.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
12
|
Performing training in water improves glucose homeostasis and lipocalins in women with type 2 diabetes mellitus. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Frankenberg NT, Mason SA, Wadley GD, Murphy RM. Skeletal muscle cell-specific differences in type 2 diabetes. Cell Mol Life Sci 2022; 79:256. [PMID: 35460430 PMCID: PMC9035013 DOI: 10.1007/s00018-022-04265-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022]
Abstract
Major stores of glucose are found as glycogen in skeletal muscle and liver. Skeletal muscle is a heterogenous tissue, with cellular metabolic and contractile distinctions dependent on whether the cell (fibre) is slow-twitch (Type I) or fast-twitch (Type II). We hypothesised that proteins important for glycogen metabolism would be differentially abundant between these diverse fibres. We further hypothesised that the cellular location of these proteins would be different in muscle samples between control (CON) and individuals with type 2 diabetes (T2D). We dissected individual muscle fibre segments from vastus lateralis skeletal muscle biopsy samples from CON and T2D and used cell-type-specific approaches to address muscle heterogeneity. We measured glycogen and glycogen-related proteins by immunoblotting techniques. A lower proportion of Type I fibres was found in muscle in T2D compared with CON. AMPK-β2, glycogen branching enzyme (GBE), glycogen debranching enzyme (GDE), and glycogen phosphorylase (GP) were differentially localized between fibre types and in fibres from CON and T2D individuals. A key novel finding was that the majority of glycogen is loosely bound or cytosolic in location in human skeletal muscle. The proportion of this diffusible pool of glycogen was significantly lower in Type I fibres in T2D compared to CON. A hyperinsulinaemic, euglycaemic clamp in people with type 2 diabetes had no effect on the proportion of diffusible glycogen. We identify cell-type as an important consideration when assessing glycogen metabolism in muscle. Our findings demonstrate varying glucose handling abilities in specific muscle fibre types in type 2 diabetes. A model is presented to provide an overview of the cell-specific differences in glycogen metabolism in type 2 diabetes.
Collapse
Affiliation(s)
- Noni T Frankenberg
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086, Australia
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, Deakin University, Burwood, 3125, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, Deakin University, Burwood, 3125, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086, Australia.
| |
Collapse
|
14
|
Han Y, Yun CC. Metformin Inhibits Na +/H + Exchanger NHE3 Resulting in Intestinal Water Loss. Front Physiol 2022; 13:867244. [PMID: 35444557 PMCID: PMC9014215 DOI: 10.3389/fphys.2022.867244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Glycemic control is the key to the management of type 2 diabetes. Metformin is an effective, widely used drug for controlling plasma glucose levels in diabetes, but it is often the culprit of gastrointestinal adverse effects such as abdominal pain, nausea, indigestion, vomiting, and diarrhea. Diarrhea is a complex disease and altered intestinal transport of electrolytes and fluid is a common cause of diarrhea. Na+/H+ exchanger 3 (NHE3, SLC9A3) is the major Na+ absorptive mechanism in the intestine and our previous study has demonstrated that decreased NHE3 contributes to diarrhea associated with type 1 diabetes. The goal of this study is to investigate whether metformin regulates NHE3 and inhibition of NHE3 contributes to metformin-induced diarrhea. We first determined whether metformin alters intestinal water loss, the hallmark of diarrhea, in type 2 diabetic db/db mice. We found that metformin decreased intestinal water absorption mediated by NHE3. Metformin increased fecal water content although mice did not develop watery diarrhea. To determine the mechanism of metformin-mediated regulation of NHE3, we used intestinal epithelial cells. Metformin inhibited NHE3 activity and the effect of metformin on NHE3 was mimicked by a 5'-AMP-activated protein kinase (AMPK) activator and blocked by pharmacological inhibition of AMPK. Metformin increased phosphorylation and ubiquitination of NHE3, resulting in retrieval of NHE3 from the plasma membrane. Previous studies have demonstrated the role of neural precursor cell expressed, developmentally down-regulated 4-2 (Nedd4-2) in regulation of human NHE3. Silencing of Nedd4-2 mitigated NHE3 inhibition and ubiquitination by metformin. Our findings suggest that metformin-induced diarrhea in type 2 diabetes is in part caused by reduced Na+ and water absorption that is associated with NHE3 inhibition, probably by AMPK.
Collapse
Affiliation(s)
- Yiran Han
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, GA, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - C. Chris Yun
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, GA, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
15
|
De Sousa RAL, Improta-Caria AC. Regulation of microRNAs in Alzheimer´s disease, type 2 diabetes, and aerobic exercise training. Metab Brain Dis 2022; 37:559-580. [PMID: 35075500 DOI: 10.1007/s11011-022-00903-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. The evolution and aggregation of amyloid beta (β) oligomers is linked to insulin resistance in AD, which is also the major characteristic of type 2 diabetes (T2D). Being physically inactive can contribute to the development of AD and/or T2D. Aerobic exercise training (AET), a type of physical exercise, can be useful in preventing or treating the negative outcomes of AD and T2D. AD, T2D and AET can regulate the expression of microRNAs (miRNAs). Here, we review some of the changes in miRNAs expression regulated by AET, AD and T2D. MiRNAs play an important role in the gene regulation of key signaling pathways in both pathologies, AD and T2D. MiRNA dysregulation is evident in AD and has been associated with several neuropathological alterations, such as the development of a reactive gliosis. Expression of miRNAs are associated with many pathophysiological mechanisms involved in T2D like insulin synthesis, insulin resistance, glucose intolerance, hyperglycemia, intracellular signaling, and lipid profile. AET regulates miRNAs levels. We identified 5 miRNAs (miR-21, miR-29a/b, miR-103, miR-107, and miR-195) that regulate gene expression and are modulated by AET on AD and T2D. The identified miRNAs are potential targets to treat the symptoms of AD and T2D. Thus, AET is a non-pharmacological tool that can be used to prevent and fight the negative outcomes in AD and T2D.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Programa Multicêntrico de Pós-Graduação Em Ciências Fisiológicas- Sociedade Brasileira de Fisiologia (SBFis), Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), Campus JK, Rodovia MGT 367, Km 583, Alto da Jacuba, nº 5000, Diamantina, Minas Gerais, CEP 39100-000, Brazil.
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia, Brazil
| |
Collapse
|
16
|
Lim S, Deaver JW, Rosa-Caldwell ME, Lee DE, Morena da Silva F, Cabrera AR, Schrems ER, Saling LW, Washington TA, Fluckey JD, Greene NP. Muscle miR-16 deletion results in impaired insulin sensitivity and contractile function in a sex-dependent manner. Am J Physiol Endocrinol Metab 2022; 322:E278-E292. [PMID: 35068192 PMCID: PMC8897019 DOI: 10.1152/ajpendo.00333.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
microRNAs (miRs) are linked to various human diseases including type 2 diabetes mellitus (T2DM) and emerging evidence suggests that miRs may serve as potential therapeutic targets. Lower miR-16 content is consistent across different models of T2DM; however, the role of miR-16 in muscle metabolic health is still elusive. Therefore, the purpose of this study was to investigate how deletion of miR-16 in mice affects skeletal muscle metabolic health and contractile function in both sexes. This study was conducted using both 1) in vitro and 2) in vivo experiments. In in vitro experiments, we used C2C12 myoblasts to test if inhibition or overexpression of miR-16 affected insulin-mediated glucose handling. In in vivo experiments, we generated muscle-specific miR-16 knockout (KO) mice fed a high-fat diet (HFD) to assess how miR-16 content impacts metabolic and contractile properties including glucose tolerance, insulin sensitivity, muscle contractile function, protein anabolism, and mitochondrial network health. In in vitro experiments, although inhibition of miR-16 induced impaired insulin signaling (P = 0.002) and glucose uptake (P = 0.014), overexpression of miR-16 did not attenuate lipid overload-induced insulin resistance using the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol. In in vivo experiments, miR-16 deletion induced both impaired muscle contractility (P = 0.031-0.033), and mitochondrial network health (P = 0.008-0.018) in both sexes. However, although males specifically exhibited impaired insulin sensitivity following miR-16 deletion (P = 0.030), female KO mice showed pronounced glucose intolerance (P = 0.046), corresponding with lower muscle weights (P = 0.015), and protein hyperanabolism (P = 0.023). Our findings suggest distinct sex differences in muscle adaptation in response to miR-16 deletion and miR-16 may serve as a key regulator for metabolic dysregulation in T2DM.NEW & NOTEWORTHY We set to investigate the role of miR-16 in skeletal muscle during diet-induced insulin resistance. Our data provide novel evidence that the lack of miR-16 induced multiple aberrations in insulin sensitivity, muscle contractility, mitochondrial network health, and protein turnover in a sex-dependent manner. Interestingly, miR-16 deletion leads to insulin resistance in males and exacerbated glucose intolerance in females, suggesting different mechanisms of metabolic dysregulation with a lack of miR-16 between sexes.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - J William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Landen W Saling
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
17
|
Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, Kirwan JP, Zierath JR. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc 2022; 54:353-368. [PMID: 35029593 PMCID: PMC8802999 DOI: 10.1249/mss.0000000000002800] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT This consensus statement is an update of the 2010 American College of Sports Medicine position stand on exercise and type 2 diabetes. Since then, a substantial amount of research on select topics in exercise in individuals of various ages with type 2 diabetes has been published while diabetes prevalence has continued to expand worldwide. This consensus statement provides a brief summary of the current evidence and extends and updates the prior recommendations. The document has been expanded to include physical activity, a broader, more comprehensive definition of human movement than planned exercise, and reducing sedentary time. Various types of physical activity enhance health and glycemic management in people with type 2 diabetes, including flexibility and balance exercise, and the importance of each recommended type or mode are discussed. In general, the 2018 Physical Activity Guidelines for Americans apply to all individuals with type 2 diabetes, with a few exceptions and modifications. People with type 2 diabetes should engage in physical activity regularly and be encouraged to reduce sedentary time and break up sitting time with frequent activity breaks. Any activities undertaken with acute and chronic health complications related to diabetes may require accommodations to ensure safe and effective participation. Other topics addressed are exercise timing to maximize its glucose-lowering effects and barriers to and inequities in physical activity adoption and maintenance.
Collapse
Affiliation(s)
- Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Sheri R Colberg
- Human Movement Sciences Department, Old Dominion University, Norfolk, VA
| | | | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
| | - Nancy R Rodriguez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Carlos J Crespo
- Oregon Health and Science University-Portland State University School of Public Health, Portland, OR
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, SWEDEN
| |
Collapse
|
18
|
Wang Z, Shen J, Feng E, Jiao Y. AMPK as a Potential Therapeutic Target for Intervertebral Disc Degeneration. Front Mol Biosci 2021; 8:789087. [PMID: 34957218 PMCID: PMC8692877 DOI: 10.3389/fmolb.2021.789087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As the principal reason for low back pain, intervertebral disc degeneration (IDD) affects the health of people around the world regardless of race or region. Degenerative discs display a series of characteristic pathological changes, including cell apoptosis, senescence, remodeling of extracellular matrix, oxidative stress and inflammatory local microenvironment. As a serine/threonine-protein kinase in eukaryocytes, AMP-activated protein kinase (AMPK) is involved in various cellular processes through the modulation of cell metabolism and energy balance. Recent studies have shown the abnormal activity of AMPK in degenerative disc cells. Besides, AMPK regulates multiple crucial biological behaviors in IDD. In this review, we summarize the pathophysiologic changes of IDD and activation process of AMPK. We also attempt to generalize the role of AMPK in the pathogenesis of IDD. Moreover, therapies targeting AMPK in alleviating IDD are analyzed, for better insight into the potential of AMPK as a therapeutic target.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Erwei Feng
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Jiao
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Interactions between insulin and exercise. Biochem J 2021; 478:3827-3846. [PMID: 34751700 DOI: 10.1042/bcj20210185] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
The interaction between insulin and exercise is an example of balancing and modifying the effects of two opposing metabolic regulatory forces under varying conditions. While insulin is secreted after food intake and is the primary hormone increasing glucose storage as glycogen and fatty acid storage as triglycerides, exercise is a condition where fuel stores need to be mobilized and oxidized. Thus, during physical activity the fuel storage effects of insulin need to be suppressed. This is done primarily by inhibiting insulin secretion during exercise as well as activating local and systemic fuel mobilizing processes. In contrast, following exercise there is a need for refilling the fuel depots mobilized during exercise, particularly the glycogen stores in muscle. This process is facilitated by an increase in insulin sensitivity of the muscles previously engaged in physical activity which directs glucose to glycogen resynthesis. In physically trained individuals, insulin sensitivity is also higher than in untrained individuals due to adaptations in the vasculature, skeletal muscle and adipose tissue. In this paper, we review the interactions between insulin and exercise during and after exercise, as well as the effects of regular exercise training on insulin action.
Collapse
|
20
|
Elekofehinti OO, Ayodele OC, Iwaloye O. Momordica charantia nanoparticles promote mitochondria biogenesis in the pancreas of diabetic-induced rats: gene expression study. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00200-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Mitochondria dysfunction is one of the clinical features of diabetes mellitus (DM), which is a hallmark of insulin resistance (IR). This study investigates the therapeutic effect of Momordica charantia nanoparticles on mitochondria biogenesis in diabetic-induced rats. Forty-two adult wistar rats (average weight of 189 ± 10.32) were grouped as follows: STZ (65 mg/kg), control group, STZ + silver nitrate (10 mg/kg), STZ + M. charantia silver nanoparticles (50 mg/kg), STZ + metformin (100 mg/kg), and STZ + M. charantia aqueous extract (100 mg/kg). DM was induced intraperitoneal using freshly prepared solution of STZ (65 mg/kg), and rats with fasting blood sugar (FBS) above 250 mg/dl after 72 h of induction were considered diabetic. Treatment started after the third day of induction and lasted for 11 days. Effect of M. charantia nanoparticles on glucose level and pancreatic expression of genes involved in mitochondria biogenesis (PGC-1α, AMPK, GSK-3β, PPARϒ), inflammation (IL-1B, TNFα) and glucose sensitivity (PI3K, AKT, PTEN Insulin and Glut2) were quantified using reverse-transcriptase polymerase chain reaction (RT-PCR).
Results
The results showed that M. charantia nanoparticles promote mitochondria biogenesis, glucose sensitivity and reverse inflammation in the pancreas of diabetes rat model through upregulation of PGC-1α, AMPK, PPARϒ, AKT, Insulin and Glut2 mRNA expression and downregulation of GSK-3β, PI3K, IL-1B and TNFα mRNA expression in the pancreas of diabetic rats.
Conclusion
This study thus concludes that M. charantia nanoparticles may provide effective therapeutics against mitochondria dysfunction in the pancreas of diabetic model.
Collapse
|
21
|
Ying Q, Chan DC, Barrett PHR, Watts GF. Unravelling lipoprotein metabolism with stable isotopes: tracing the flow. Metabolism 2021; 124:154887. [PMID: 34508741 DOI: 10.1016/j.metabol.2021.154887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Dysregulated lipoprotein metabolism is a major cause of atherosclerotic cardiovascular disease (ASCVD). Use of stable isotope tracers and compartmental modelling have provided deeper understanding of the mechanisms underlying lipid disorders in patients at high risk of ASCVD, including familial hypercholesterolemia (FH), elevated lipoprotein(a) [Lp(a)] and metabolic syndrome (MetS). In patients with FH, deficiency in low-density lipoprotein (LDL) receptor activity not only impairs the catabolism of LDL, but also induces hepatic overproduction and decreases catabolism of triglyceride-rich lipoproteins (TRLs). Patients with elevated Lp(a) are characterized by increased hepatic secretion of Lp(a) particles. Atherogenic dyslipidemia in MetS patients relates to a combination of overproduction of very-low density lipoprotein-apolipoprotein (apo) B-100, decreased catabolism of apoB-100-containing particles, and increased catabolism of high-density lipoprotein-apoA-I particles, as well as to impaired clearance of TRLs in the postprandial state. Kinetic studies show that weight loss, fish oils, statins and fibrates have complementary modes of action that correct atherogenic dyslipidemia. Defining the kinetic mechanisms of action of proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 inhibitors on lipid and lipoprotein mechanism in dyslipidemic subjects will further our understanding of these therapies in decreasing the development of ASCVD. "Everything changes but change itself. Everything flows and nothing remains the same... You cannot step twice into the same river, for other waters and yet others go flowing ever on." Heraclitus (c.535- c. 475 BCE).
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - P Hugh R Barrett
- Faculty of Medicine and Health, University of New England, Armidale, Australia
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
22
|
Choi H, Sung H, Kim GH, Lee O, Moon HY, Kim YS. Associations between Grip Strength and Glycemic Control in Type 2 Diabetes Mellitus: the 2014-2019 Korea National Health and Nutrition Examination Survey. Epidemiol Health 2021; 43:e2021080. [PMID: 34645204 PMCID: PMC8859497 DOI: 10.4178/epih.e2021080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Glycemic control is essential for preventing severe complications in patients with diabetes mellitus. This study investigated the association between grip strength and glycemic control in Korean adults with type 2 diabetes mellitus. METHODS From the Korea National Health and Nutrition Examination Survey, 2,498 participants aged over 19 years that patients with diabetes mellitus who did not have a history of cardiovascular disease or cancer were selected for analysis. Grip strength was assessed using a handheld dynamometer and was represented as age-specific and sex-specific tertiles. Multivariable logistic regression was performed to calculate the odds ratio (OR) and 95% confidence interval (CI) of glycemic control according to the grip strength tertiles. RESULTS A significantly lower probability (OR, 0.67; 95% CI, 0.47 to 0.97) for glycemic control was found in the lowest tertile of grip strength compared to the highest tertile. Furthermore, a subgroup analysis by sex only found significant associations between grip strength and glycemic control in males. CONCLUSIONS Lower grip strength was associated with poor glycemic control in patients with diabetes mellitus, especially in males. However, further studies are needed to confirm the causal relationship between grip strength and glycemic control.
Collapse
Affiliation(s)
- Harim Choi
- Department of Physical Education, College of Education, Seoul National University, Seoul, Korea
| | - Hoyong Sung
- Department of Physical Education, College of Education, Seoul National University, Seoul, Korea
| | - Geon Hui Kim
- Department of Physical Education, College of Education, Seoul National University, Seoul, Korea
| | - On Lee
- Korea Institute of Sport Science, Seoul, Korea
| | - Hyo Youl Moon
- Department of Physical Education, College of Education, Seoul National University, Seoul, Korea.,Institute of Sports Science, Seoul National University, Seoul, Korea
| | - Yeon Soo Kim
- Department of Physical Education, College of Education, Seoul National University, Seoul, Korea.,Institute of Sports Science, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
von Loeffelholz C, Coldewey SM, Birkenfeld AL. A Narrative Review on the Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence from Human Studies. Cells 2021; 10:cells10071822. [PMID: 34359991 PMCID: PMC8306246 DOI: 10.3390/cells10071822] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Department of Therapy of Diabetes, Institute of Diabetes Research and Metabolic Diseases in the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King’s College London, London SE5 9RJ, UK
| |
Collapse
|
24
|
Insulin and glucose regulation at rest and during flight in a Neotropical nectar-feeding bat. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Chávez-Castillo M, Nuñez V, Rojas M, Ortega Á, Durán P, Pirela D, Marquina M, Cano C, Chacín M, Velasco M, Rojas-Quintero J, Bermúdez V. Exploring Phytotherapeutic Alternatives for Obesity, Insulin Resistance and Diabetes Mellitus. Curr Pharm Des 2021; 26:4430-4443. [PMID: 32611293 DOI: 10.2174/1381612826666200701205132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
At present, the pathologic spectrum of obesity-insulin resistance (IR)-diabetes mellitus (DM) represents not only a pressing matter in public health but also a paramount object of study in biomedical research, as they constitute major risk factors for cardiovascular disease (CVD), and other chronic non-communicable diseases (NCD). Phytotherapy, the use of medicinal herbs (MH) with treatment purposes, offers a wide array of opportunities for innovation in the management of these disorders; mainly as pharmacological research on small molecules accumulates. Several MH has displayed varied mechanisms of action relevant to the pathogenesis of obesity, IR and DM, including immunological and endocrine modulation, reduction of inflammation and oxidative stress (OS), regulation of appetite, thermogenesis and energy homeostasis, sensitisation to insulin function and potentiation of insulin release, among many others. However, the clinical correlates of these molecular phenomena remain relatively uncertain, with only a handful of MH boasting convincing clinical evidence in this regard. This review comprises an exploration of currently available preclinical and clinical research on the role of MH in the management of obesity, IR, and DM.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Psychiatric Hospital of Maracaibo, Maracaibo, Venezuela,Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Victoria Nuñez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacology Unit, José María Vargas School of Medicine, Central University of Venezuela, Caracas-Venezuela
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
26
|
Jiang P, Ren L, Zhi L, Yu Z, Lv F, Xu F, Peng W, Bai X, Cheng K, Quan L, Zhang X, Wang X, Zhang Y, Yang D, Hu X, Xiao RP. Negative regulation of AMPK signaling by high glucose via E3 ubiquitin ligase MG53. Mol Cell 2021; 81:629-637.e5. [PMID: 33400924 DOI: 10.1016/j.molcel.2020.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
As a master regulator of metabolism, AMP-activated protein kinase (AMPK) is activated upon energy and glucose shortage but suppressed upon overnutrition. Exaggerated negative regulation of AMPK signaling by nutrient overload plays a crucial role in metabolic diseases. However, the mechanism underlying the negative regulation is poorly understood. Here, we demonstrate that high glucose represses AMPK signaling via MG53 (also called TRIM72) E3-ubiquitin-ligase-mediated AMPKα degradation and deactivation. Specifically, high-glucose-stimulated reactive oxygen species (ROS) signals AKT to phosphorylate AMPKα at S485/491, which facilitates the recruitment of MG53 and the subsequent ubiquitination and degradation of AMPKα. In addition, high glucose deactivates AMPK by ROS-dependent suppression of phosphorylation of AMPKα at T172. These findings not only delineate the mechanism underlying the impairment of AMPK signaling in overnutrition-related diseases but also highlight the significance of keeping the yin-yang balance of AMPK signaling in the maintenance of metabolic homeostasis.
Collapse
Affiliation(s)
- Peng Jiang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Lejiao Ren
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Zhi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhong Yu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Fengli Xu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wei Peng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiaoyu Bai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Kunlun Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Li Quan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiuqin Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China.
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China.
| |
Collapse
|
27
|
Jevtovic F. Combination of Metformin and Exercise in Management of Metabolic Abnormalities Observed in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:4043-4057. [PMID: 34557007 PMCID: PMC8453852 DOI: 10.2147/dmso.s328694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Excess nutrient intake and lack of exercise characterize the problem of obesity and are common factors in insulin resistance (IR). With an increasing number of prediabetic, and type 2 diabetic populations, metformin is still the most prescribed glucose-lowering drug and is often accompanied by recommendations for regular physical exercise. Metformin, by the inhibition of complex 1 of the electron transport chain, and exercise, by increasing energy expenditure, both elicit a low cellular energy state that leads to improvements in glucose control via activation of adenosine 5' monophosphate-activated protein kinase (AMPK). An augmented stimulation of the energy-sensing enzyme AMPK by either of the two modalities leads to an increase in glycogenolysis, glucose uptake, fat oxidation, a decrease in glycogen and protein synthesis, and gluconeogenesis in muscle and the liver, which are remarked as having positive effects on metabolic pathophysiology observed in IR and type 2 diabetes mellitus (T2DM). While both modalities exploit the energy-sensing enzyme AMPK to attain glucose homeostasis, the synergistic effect of these two treatments is not distinctly supported by the literature. Further, an antagonistic dynamic has been observed in cases where metformin and exercise were combined. Reduction of insulin-sensitizing effects of exercise and an overall hindrance of exercise performance and adaptations have been reported and could suggest the possible incongruity of these two modalities. The aim of this review is to elucidate the effect that metformin and exercise have on the management of the metabolic abnormalities observed in T2DM and to provide an insight into the interaction of these two modalities.
Collapse
Affiliation(s)
- Filip Jevtovic
- Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
- Correspondence: Filip Jevtovic East Carolina University; School of Dental Medicine, Ledyard E. Ross Hall; 1851 MacGregor Downs Road, Mail Stop 701, Greenville, NC, 27834, USATel +1 616 844 8323Fax +1 252 737 7024 Email
| |
Collapse
|
28
|
Panagiotou C, Lambadiari V, Maratou E, Geromeriati C, Artemiadis A, Dimitriadis G, Moutsatsou P. Insufficient glucocorticoid receptor signaling and flattened salivary cortisol profile are associated with metabolic and inflammatory indices in type 2 diabetes. J Endocrinol Invest 2021; 44:37-48. [PMID: 32394161 DOI: 10.1007/s40618-020-01260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Impaired negative feedback and hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis characterizes type 2 diabetes mellitus (T2DM). The glucocorticoid receptor (GR) is a key mediator of HPA axis negative feedback; however, its role in linking hypercortisolemia and T2DM-associated hyperglycemia, hyperlipidemia and inflammation is not yet known. METHODS In peripheral mononuclear cells (PBMC) from 31 T2DM patients and 24 healthy controls, we measured various GR-signaling parameters such as phosphorylated GR (pGR-S211), GRα/GRβ gene expression and GC-sensitivity [using the basal and dexamethasone (DEX)-induced leucine zipper (GILZ) and FK506 binding-protein (FKBP5) mRNA levels as well as the basal interleukin (IL)-1β protein levels]. Diurnal salivary cortisol curve parameters such as the cortisol awaking response (CAR) and area under the curve (AUCtotal and AUCi) as well as inflammatory and metabolic indices were also determined. RESULTS T2DM patients exhibited diminished pGR-S211 protein content, increased GRβ, decreased basal GILZ and FKBP5 mRNA levels and increased IL-1β levels. Flattened DEX-induced GILZ and FKBP5 response curves and a flattened salivary cortisol profile characterized T2DM patients. Significant associations of GR measures and saliva cortisol curve parameters with biochemical and clinical characteristics were found. CONCLUSION Our novel data implicate an insufficient GR signaling in PBMCs in T2DM patients and HPA axis dysfunction. The significant associations of GR-signaling parameters with inflammatory and metabolic indices implicate that GR may be the critical link between HPA axis dysfunction, hypercortisolemia and diabetes-associated metabolic disturbances. Our findings provide significant insights into the contribution of GR-mediated mechanisms in T2DM aetiopathology and therapy.
Collapse
Affiliation(s)
- C Panagiotou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Rimini 1, Haidari, 12462, Athens, Greece
| | - V Lambadiari
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, Haidari, Greece
| | - E Maratou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Rimini 1, Haidari, 12462, Athens, Greece
| | - C Geromeriati
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Rimini 1, Haidari, 12462, Athens, Greece
| | - A Artemiadis
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - G Dimitriadis
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, Haidari, Greece
| | - P Moutsatsou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital Attikon, Rimini 1, Haidari, 12462, Athens, Greece.
| |
Collapse
|
29
|
Teixeira GP, Faria RX. Influence of purinergic signaling on glucose transporters: A possible mechanism against insulin resistance? Eur J Pharmacol 2020; 892:173743. [PMID: 33220279 DOI: 10.1016/j.ejphar.2020.173743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023]
Abstract
Metabolic disorders, such as insulin resistance, affect many people worldwide due to the prevalence of obesity and type 2 diabetes, which are pathologies that impair glycemic metabolism. Glucose is the primary energetic substrate of the body and is essential for cellular function. As the cell membrane is not permeable to glucose molecules, there are two distinct groups of glucose transporters: sodium-glucose-linked transporters (SGLTs) and the glucose transporter (GLUT) family. These transporters facilitate the entry of glucose into the bloodstream or cytoplasm where it functions in the production of adenosine 5 ́-triphosphate (ATP). This nucleotide acts in several cellular mechanisms, such as protein phosphorylation and cellular immune processes. ATP directly and indirectly acts as an agonist for purinergic receptors in high concentrations in the extracellular environment. Composed by P1 and P2 groups, the purinoreceptors cover several cellular mechanisms involving cytokines, tumors, and metabolic signaling pathways. Previous publications have indicated that the purinergic signaling activity in insulin resistance and glucose transporters modulates relevant actions on the deregulations that can affect glycemic homeostasis. Thus, this review focuses on the pharmacological influence of purinergic signaling on the modulation of glucose transporters, aiming for a new way to combat insulin resistance and other metabolic disorders.
Collapse
Affiliation(s)
- Guilherme Pegas Teixeira
- Laboratory of Toxoplasmosis and Other Protozoans, Oswaldo Cruz Institute (IOC), Avenida Brasil, 4365, CEP, Rio de Janeiro, Fiocruz, 21040-900, Brazil.
| | - Robson Xavier Faria
- Laboratory of Toxoplasmosis and Other Protozoans, Oswaldo Cruz Institute (IOC), Avenida Brasil, 4365, CEP, Rio de Janeiro, Fiocruz, 21040-900, Brazil.
| |
Collapse
|
30
|
Melo KCB, Araújo FDS, Cordeiro Júnior CCM, de Andrade KTP, Moreira SR. Pilates Method Training: Functional and Blood Glucose Responses of Older Women With Type 2 Diabetes. J Strength Cond Res 2020; 34:1001-1007. [PMID: 29985228 DOI: 10.1519/jsc.0000000000002704] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Melo, KCB, Araújo, FdS, Cordeiro Júnior, CCM, de Andrade, KTP, and Moreira, SR. Pilates method training: Functional and blood glucose responses of older women with type 2 diabetes. J Strength Cond Res 34(4): 1001-1007, 2020-The objective of this study was to investigate the effect of 12 weeks of the Pilates method on the functional capacity (FC) and glycemic control of older women with type 2 diabetes (T2D). Twenty-two women with T2D were randomized into control (CONTROL: 67.5 ± 6.3 years; 154.7 ± 6.1 cm; 73.5 ± 6.1 kg) and Pilates (PILATES: 65.5 ± 5.5 years; 155.0 ± 4.5 cm; 66.2 ± 5.4 kg) groups, which held sessions of 60 minutes at a frequency of 3 times per week during 12 weeks. Blood glucose was measured before and after sessions in PILATES, as well as in moments of pre, rest, 4, 8, and 12 weeks of the PILATES and CONTROL interventions. The glycated hemoglobin (HbA1c) level before and after 12 weeks of the intervention was evaluated. The general index of the FC (GIFC) was obtained through a battery of tests for older patients with T2D. Analysis of variance detected differences in the GIFC for PILATES vs. CONTROL, respectively, in 4 weeks (30.3 ± 4.6 vs. 34.8 ± 4.9 seconds; p < 0.05), 8 weeks (29.2 ± 4.5 vs. 34.6 ± 4.9 seconds; p < 0.05), and 12 weeks (27.2 ± 4.0 vs. 35.3 ± 4.6 seconds; p < 0.05). PILATES presented a difference in postprandial glycemia pre- vs. 4 and 12 weeks (246.1 ± 58.5 vs. 219.9 ± 59.9 and 207.6 ± 49.1 mg·dl, respectively; p < 0.05), as well as in HbA1c pre- vs. 12 weeks (7.8 ± 1.0 vs. 6.7 ± 0.6%, respectively; p < 0.05). Differences in postprandial glycemia (p < 0.05) were found in PILATES before vs. after sessions, respectively, of 1st-12th (217.1 ± 49.1 vs. 157.9 ± 55.7 mg·dl), 13th-24th (204.5 ± 44.7 vs. 146.3 ± 44.5 mg·dl), and 25th-36th (214.3 ± 40.4 vs. 152.7 ± 52.0 mg·dl). A correlation between postprandial glycemia and GIFC after 12 weeks was detected (r = 0.37; p = 0.04). It is concluded that 12 weeks of the Pilates method induces improvement and relationship in the FC and glycemic control in older women with T2D.
Collapse
Affiliation(s)
- Karla Cinara Bezerra Melo
- Graduate Program of Physical Education, Federal University of Vale do São Francisco, UNIVASF, PE, Petrolina, Brazil
| | | | | | | | | |
Collapse
|
31
|
Greger M. A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Am J Lifestyle Med 2020; 14:500-510. [PMID: 32922235 PMCID: PMC7444011 DOI: 10.1177/1559827620912400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
What does the best available balance of scientific evidence show is the optimum way to lose weight? Calorie density, water content, protein source, and other components significantly influence the effectiveness of different dietary regimes for weight loss. By "walling off your calories," preferentially deriving your macronutrients from structurally intact plant foods, some calories remain trapped within indigestible cell walls, which then blunts the glycemic impact, activates the ileal brake, and delivers prebiotics to the gut microbiome. This may help explain why the current evidence indicates that a whole food, plant-based diet achieves greater weight loss compared with other dietary interventions that do not restrict calories or mandate exercise. So, the most effective diet for weight loss appears to be the only diet shown to reverse heart disease in the majority of patients. Plant-based diets have also been found to help treat, arrest, and reverse other leading chronic diseases such as type 2 diabetes and hypertension, whereas low-carbohydrate diets have been found to impair artery function and worsen heart disease, the leading killer of men and women in the United States. A diet centered on whole plant foods appears to be a safe, simple, sustainable solution to the obesity epidemic.
Collapse
|
32
|
McConell GK, Wadley GD, Le Plastrier K, Linden KC. Skeletal muscle AMPK is not activated during 2 h of moderate intensity exercise at ∼65% V ̇ O 2 peak in endurance trained men. J Physiol 2020; 598:3859-3870. [PMID: 32588910 PMCID: PMC7540472 DOI: 10.1113/jp277619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Key points AMP‐activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. However, we previously showed that, although AMPK activity increases by 8–10‐fold during ∼120 min of exercise at ∼65% V˙O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross‐sectional study, we show that there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V˙O2peak in endurance‐trained individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V˙O2peak in endurance trained men. It is important that more energy is directed towards examining other potential regulators of exercise metabolism.
Abstract AMP‐activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. Indeed, AMPK is activated during exercise and activation of AMPK by 5‐aminoimidazole‐4‐carboxyamide‐ribonucleoside (AICAR) increases skeletal muscle glucose uptake and fat oxidation. However, we have previously shown that, although AMPK activity increases by 8–10‐fold during ∼120 min of exercise at ∼65% V˙O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross‐sectional study, we examined whether there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V˙O2peak in endurance‐trained individuals. Eleven untrained (UT; V˙O2peak = 37.9 ± 5.6 ml.kg−1 min−1) and seven endurance trained (ET; V˙O2peak = 61.8 ± 2.2 ml.kg−1 min−1) males completed 120 min of cycling exercise at 66 ± 4% V˙O2peak (UT: 100 ± 21 W; ET: 190 ± 15 W). Muscle biopsies were obtained at rest and following 30 and 120 min of exercise. Muscle glycogen was significantly (P < 0.05) higher before exercise in ET and decreased similarly during exercise in the ET and UT individuals. Exercise significantly increased calculated skeletal muscle free AMP content and more so in the UT individuals. Exercise significantly (P < 0.05) increased skeletal muscle AMPK α2 activity (4‐fold), AMPK αThr172 phosphorylation (2‐fold) and ACCβ Ser222 phosphorylation (2‐fold) in the UT individuals but not in the ET individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V˙O2peak in endurance trained men. AMP‐activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. However, we previously showed that, although AMPK activity increases by 8–10‐fold during ∼120 min of exercise at ∼65% V˙O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross‐sectional study, we show that there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V˙O2peak in endurance‐trained individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V˙O2peak in endurance trained men. It is important that more energy is directed towards examining other potential regulators of exercise metabolism.
Collapse
Affiliation(s)
- Glenn K McConell
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Glenn D Wadley
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | | | - Kelly C Linden
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Science, Charles Sturt University, Albury, NSW, Australia
| |
Collapse
|
33
|
Amaral LSDB, Souza CS, Lima HN, Soares TDJ. Influence of exercise training on diabetic kidney disease: A brief physiological approach. Exp Biol Med (Maywood) 2020; 245:1142-1154. [PMID: 32486850 PMCID: PMC7400720 DOI: 10.1177/1535370220928986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPACT STATEMENT Diabetic kidney disease (DKD) is associated with increased mortality in diabetic patients and has a negative impact on public health. The identification of potential therapies that help the management of DKD can contribute to the improvement of health and quality of life of patients. Thus, this paper is timely and relevant because, in addition to presenting a concise review of the pathogenesis and major pathophysiological mechanisms of DKD, it addresses the most recent findings on the impact of exercise training on this disease. Thus, since non-pharmacological interventions have gained increasing attention in the fight against chronic diseases, this paper appears as an important tool to increase knowledge and stimulate innovative research on the impact of exercise on kidney disease.
Collapse
Affiliation(s)
| | - Cláudia Silva Souza
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo 14049-900, Brazil
| | | | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia 45029-094, Brazil
| |
Collapse
|
34
|
Ferrari F, Bock PM, Motta MT, Helal L. Biochemical and Molecular Mechanisms of Glucose Uptake Stimulated by Physical Exercise in Insulin Resistance State: Role of Inflammation. Arq Bras Cardiol 2020; 113:1139-1148. [PMID: 31644699 PMCID: PMC7021273 DOI: 10.5935/abc.20190224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity associated with systemic inflammation induces insulin resistance (IR), with consequent chronic hyperglycemia. A series of reactions are involved in this process, including increased release of proinflammatory cytokines, and activation of c-Jun N-terminal kinase (JNK), nuclear factor-kappa B (NF-κB) and toll-like receptor 4 (TLR4) receptors. Among the therapeutic tools available nowadays, physical exercise (PE) has a known hypoglycemic effect explained by complex molecular mechanisms, including an increase in insulin receptor phosphorylation, in AMP-activated protein kinase (AMPK) activity, in the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) pathway, with subsequent activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), Rac1, TBC1 domain family member 1 and 4 (TBC1D1 and TBC1D4), in addition to a variety of signaling molecules, such as GTPases, Rab and soluble N-ethylmaleimide-sensitive factor attached protein receptor (SNARE) proteins. These pathways promote greater translocation of GLUT4 and consequent glucose uptake by the skeletal muscle. Phosphoinositide-dependent kinase (PDK), atypical protein kinase C (aPKC) and some of its isoforms, such as PKC-iota/lambda also seem to play a fundamental role in the transport of glucose. In this sense, the association between autophagy and exercise has also demonstrated a relevant role in the uptake of muscle glucose. Insulin, in turn, uses a phosphoinositide 3-kinase (PI3K)-dependent mechanism, while exercise signal may be triggered by the release of calcium from the sarcoplasmic reticulum. The objective of this review is to describe the main molecular mechanisms of IR and the relationship between PE and glucose uptake.
Collapse
Affiliation(s)
- Filipe Ferrari
- Programa de Pós-graduação em Cardiologia e Ciências Cardiovasculares - Faculdade de Medicina - Hospital de Clínicas de Porto Alegre (HCPA) - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS - Brazil.,Grupo de Pesquisa em Cardiologia do Exercício - CardioEx (HCPA/UFRGS), Porto Alegre, RS - Brazil
| | - Patrícia Martins Bock
- Laboratório de Fisiopatologia do Exercício (LaFiEx), (HCPA/UFRGS), Porto Alegre, RS - Brazil.,Instituto de Avaliação de Tecnologias em Saúde (IATS), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS - Brazil.,Faculdades Integradas de Taquara, Taquara, RS - Brazil
| | - Marcelo Trotte Motta
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA - Brazil
| | - Lucas Helal
- Programa de Pós-graduação em Cardiologia e Ciências Cardiovasculares - Faculdade de Medicina - Hospital de Clínicas de Porto Alegre (HCPA) - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS - Brazil.,Laboratório de Fisiopatologia do Exercício (LaFiEx), (HCPA/UFRGS), Porto Alegre, RS - Brazil
| |
Collapse
|
35
|
Huang H, Aminian A, Hassan M, Dan O, Axelrod CL, Schauer PR, Brethauer SA, Kirwan JP. Gastric Bypass Surgery Improves the Skeletal Muscle Ceramide/S1P Ratio and Upregulates the AMPK/ SIRT1/ PGC-1α Pathway in Zucker Diabetic Fatty Rats. Obes Surg 2020; 29:2158-2165. [PMID: 30809769 DOI: 10.1007/s11695-019-03800-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Roux-en-Y gastric bypass (RYGB) is associated with remission of type 2 diabetes. However, the cellular and molecular mechanisms remain unknown. We hypothesized that RYGB would increase peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), sirtuin-1 (SIRT1), AMPK/pAMPK, and citrate synthase (CS) protein expression and decrease insulin resistance and these changes would be mediated by sphingolipids, including ceramides and the sphingolipid metabolite sphingosine-1 phosphate (S1P). MATERIALS AND METHODS Male ZDF rats were randomized to RYGB (n = 7) or sham surgery (n = 7) and harvested after 28 days. Total tissue ceramide, ceramide subspecies (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0, and C24:1), and S1P were quantified in the white gastrocnemius muscle using LC-ESI-MS/MS after separation with HPLC. Total SIRT1, AMPK, PGC-1α, and CS protein expression were measured by Western blot. RESULTS Body weight, fasting glucose, insulin, and HOMA-IR decreased significantly after RYGB compared with sham control. These changes were paralleled by lower total ceramide (483.7 ± 32.3 vs. 280.1 ± 38.8 nmol/g wwt), C18:0 ceramide subspecies (P < 0.05), higher S1P (0.83 ± 0.05 vs. 1.54 ± 0.21 nmol/g wwt, P < 0.05), and a lower ceramide/S1P ratio (P < 0.05) in the RYGB versus sham group. AMPK, pAMPK, SIRT1, PGC-1α, and CS protein expression was also higher after RYGB (P < 0.05). The ceramide/S1P ratio correlated with weight loss (r = 0.48, P = 0.08), insulin resistance (r = 0.61, P = 0.02), PGC-1α (r = - 0.51, P < 0.06), CS (r = - 0.63, P = 0.01), and SIRT1 (r = - 0.54, P < 0.04). CONCLUSION Our data demonstrate that sphingolipid balance, and increased AMPK, SIRT1, PGC-1α, and CS protein expression are part of the mechanism that contributes to the remission of diabetes after RYGB surgery.
Collapse
Affiliation(s)
- Hazel Huang
- Department of Pathobiology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Ali Aminian
- Cleveland Clinic, Bariatric and Metabolic Institute, Cleveland, OH, USA
| | - Monique Hassan
- Cleveland Clinic, Bariatric and Metabolic Institute, Cleveland, OH, USA
| | - Olivia Dan
- Cleveland Clinic, Bariatric and Metabolic Institute, Cleveland, OH, USA
| | - Christopher L Axelrod
- Department of Pathobiology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.,Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, L-4030, Baton Rouge, LA, 70808, USA
| | - Philip R Schauer
- Cleveland Clinic, Bariatric and Metabolic Institute, Cleveland, OH, USA
| | - Stacy A Brethauer
- Cleveland Clinic, Bariatric and Metabolic Institute, Cleveland, OH, USA
| | - John P Kirwan
- Department of Pathobiology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA. .,Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, L-4030, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
36
|
McConell GK. It's well and truly time to stop stating that AMPK regulates glucose uptake and fat oxidation during exercise. Am J Physiol Endocrinol Metab 2020; 318:E564-E567. [PMID: 32017593 DOI: 10.1152/ajpendo.00511.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Glenn K McConell
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Ismail Iid I, Kumar S, Shukla S, Kumar V, Sharma R. Putative antidiabetic herbal food ingredients: Nutra/functional properties, bioavailability and effect on metabolic pathways. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Bao TQ, Li Y, Qu C, Zheng ZG, Yang H, Li P. Antidiabetic Effects and Mechanisms of Rosemary ( Rosmarinus officinalis L.) and its Phenolic Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1353-1368. [PMID: 33016104 DOI: 10.1142/s0192415x20500664] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Diabetes mellitus is a chronic endocrine disease result from absolute or relative insulin secretion deficiency, insulin resistance, or both, and has become a major and growing public healthy menace worldwide. Currently, clinical antidiabetic drugs still have some limitations in efficacy and safety such as gastrointestinal side effects, hypoglycemia, or weight gain. Rosmarinus officinalis is an aromatic evergreen shrub used as a food additive and medicine, which has been extensively used to treat hyperglycemia, atherosclerosis, hypertension, and diabetic wounds. A great deal of pharmacological research showed that rosemary extract and its phenolic constituents, especially carnosic acid, rosmarinic acid, and carnosol, could significantly improve diabetes mellitus by regulating glucose metabolism, lipid metabolism, anti-inflammation, and anti-oxidation, exhibiting extremely high research value. Therefore, this review summarizes the pharmacological effects and underlying mechanisms of rosemary extract and its primary phenolic constituents on diabetes and relative complications both in vitro and in vivo studies from 2000 to 2020, to provide some scientific evidence and research ideas for its clinical application.
Collapse
Affiliation(s)
- Tian-Qi Bao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
39
|
Ren Z, Lan Q, Chen Y, Chan YWJ, Mahady GB, Lee SMY. Low-Magnitude High-Frequency Vibration Decreases Body Weight Gain and Increases Muscle Strength by Enhancing the p38 and AMPK Pathways in db/db Mice. Diabetes Metab Syndr Obes 2020; 13:979-989. [PMID: 32280254 PMCID: PMC7132010 DOI: 10.2147/dmso.s228674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To evaluate the effect LMHFV on body weight gain, NAFLD and muscle strength and explore effect in mitochondrial biogenesis, AMPKα and p38 pathways. METHODS Vibration platform used in this study provides specific whole-body cyclic mechanical stimulation at low magnitude (0.3 g) and high frequency (50 Hz). Diabetic mice (8-9 mice per group) (C57BL/KsJ-m+/+Leprdb) were randomly divided into untreated group (no vibration) and two vibration groups. Lean mice (8 mice) were used as non-diabetic control for both groups. Two diabetic vibration groups received LMHFV every day for 20 min/day and 40 min/day separately. RESULTS After 8 weeks of treatment, results showed that body weight, liver weight, fat pad weight, glucose level and insulin level were lower in vibration group when compared with the untreated group. The ratio of fat in liver was significantly decreased after vibration treatment. Muscle strength was significantly increased after vibration. Mitochondrial biogenesis-related gene expression was increased in soleus, gastrocnemius and liver. AMPKα mRNA expression level was increased in soleus and gastrocnemius after vibration treatment. p38 and AMPKα mRNA expression level and protein expression level in liver were enhanced with vibration treatment. Moreover, phosphorylation of p38 and AMPKα was enhanced in liver. CONCLUSION LMHFV applied in our study decreases body weight gain and improves muscle strength and NAFLD in diabetic mice which were partly through improving mitochondrial biogenesis by enhancing p38 and AMPKα pathway.
Collapse
Affiliation(s)
- Zhitao Ren
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Qingping Lan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Yan Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Yuet Wa Judy Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Gail B Mahady
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Center for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Correspondence: Simon Ming-Yuen Lee Institute of Chinese Medical Sciences, University of Macau, Avenide Da Universidade, Room 7003, N22 Building, Taipa, Macau, People’s Republic of ChinaTel +853-88224695 Email
| |
Collapse
|
40
|
Abstract
Obesity and type 2 diabetes are the most frequent metabolic disorders, but their causes remain largely unclear. Insulin resistance, the common underlying abnormality, results from imbalance between energy intake and expenditure favouring nutrient-storage pathways, which evolved to maximize energy utilization and preserve adequate substrate supply to the brain. Initially, dysfunction of white adipose tissue and circulating metabolites modulate tissue communication and insulin signalling. However, when the energy imbalance is chronic, mechanisms such as inflammatory pathways accelerate these abnormalities. Here we summarize recent studies providing insights into insulin resistance and increased hepatic gluconeogenesis associated with obesity and type 2 diabetes, focusing on data from humans and relevant animal models.
Collapse
|
41
|
Al-Bayati A, Brown A, Walker M. Impaired enhancement of insulin action in cultured skeletal muscle cells from insulin resistant type 2 diabetic patients in response to contraction using electrical pulse stimulation. J Diabetes Complications 2019; 33:107412. [PMID: 31575461 DOI: 10.1016/j.jdiacomp.2019.107412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 11/21/2022]
Abstract
AIMS Skeletal muscle insulin resistance is a characteristic feature of type 2 diabetes. The aim of this study was to examine the effect of contraction on insulin action using electrical pulse stimulation (EPS) in cultured skeletal muscle cells from insulin resistant type 2 diabetic patients. METHODS Skeletal muscle cell cultures were established from 6 insulin resistant type 2 diabetic subjects and age and BMI matched non-diabetic control subjects. Day 7 differentiated myotubes were treated with or without EPS for 16 h, after which glucose uptake and AS160 phosphorylation were measured in the presence or absence of insulin. RESULTS In control myotubes, EPS resulted in increased phosphorylation of AMPKThr172 (vs no EPS; p < 0.01), and this was associated with increased glucose uptake (p < 0.05). Insulin in the absence of EPS increased glucose uptake and AS160Thr642 phosphorylation, and both effects were significantly enhanced by prior EPS. In the absence of EPS, AMPK activation was significantly increased (p < 0.01) in the diabetic vs control myotubes. Despite a comparable degree of AMPK activation following EPS, the action of insulin on glucose uptake (p < 0.05) and AS160Thr642 phosphorylation (p < 0.001) was decreased in the diabetic vs control myotubes. CONCLUSION EPS mediated AMPK activation enhances the effect of insulin on glucose uptake and AS160Thr642 phosphorylation in control myotubes replicating key metabolic benefits of exercise on insulin action in man. Conversely, insulin mediated glucose uptake and AS160Thr642 phosphorylation remain significantly decreased in diabetic vs control myotubes despite a comparable degree of AMPK activation following EPS.
Collapse
Affiliation(s)
- Ali Al-Bayati
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; Mustansiriyah University, College of Medicine, Department of Chemistry and Biochemistry, Baghdad, Iraq.
| | - Audrey Brown
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark Walker
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
42
|
Cruz LCD, Teixeira-Araujo AA, Passos Andrade KT, Rocha TCOG, Puga GM, Moreira SR. Low-Intensity Resistance Exercise Reduces Hyperglycemia and Enhances Glucose Control Over a 24-Hour Period in Women With Type 2 Diabetes. J Strength Cond Res 2019; 33:2826-2835. [DOI: 10.1519/jsc.0000000000002410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Kowalsky RJ, Jakicic JM, Hergenroeder A, Rogers RJ, Gibbs BB. Acute cardiometabolic effects of interrupting sitting with resistance exercise breaks. Appl Physiol Nutr Metab 2019; 44:1025-1032. [DOI: 10.1139/apnm-2018-0633] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interrupting prolonged sitting with light activity breaks, such as short walks, improves cardiometabolic outcomes, yet less is known about the impact of resistance exercise breaks. This study examined the effects of hourly, guidelines-based simple resistance exercise breaks on acute cardiometabolic health outcomes over a simulated work period. Fourteen adults (age: 53.4 ± 9.5 years, body mass index: 30.9 ± 4.8 kg/m2) completed 2 randomized 4-h conditions: prolonged sitting (SIT) and hourly resistance exercise breaks (REX). Glucose, triglycerides, blood pressure, and heart rate were measured at baseline and then hourly. Pulse wave velocity (PWV) was measured before and after each condition. Linear mixed models evaluated overall condition effects and differences at each hour. Cohen’s d estimated magnitude of effects. Four-hour glucose area under the curve (AUC) did not differ by condition (REX vs. SIT: β = –0.35 mmol/L, p = 0.278, d = 0.51). However, an attenuation of postprandial glucose at 1 h (β = –0.69 mg/dL, p = 0.004, d = 1.02) in REX compared with SIT was observed. Triglyceride AUC, mean blood pressure, and PWV did not differ significantly between REX and SIT overall or any time point (all p > 0.05). Heart rate was higher across the experimental period in REX versus SIT (β = 3.3 bpm, p < 0.001, d = 0.35) and individual time points (β ≥ 3.2 bpm, p ≤ 0.044, d ≥ 0.34). Resistance exercise breaks can potentially improve 1-h postprandial glucose, but may not acutely benefit other cardiometabolic outcomes. Future studies employing guidelines-based resistance exercises to interrupt prolonged sitting with a larger sample and longer follow-up are warranted.
Collapse
Affiliation(s)
- Robert J. Kowalsky
- Department of Health & Kinesiology, Texas A&M University Kingsville, Kingsville, TX 78363, USA
- Department of Health & Physical Activity, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John M. Jakicic
- Department of Health & Physical Activity, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Healthy Lifestyle Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrea Hergenroeder
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Renee J. Rogers
- Department of Health & Physical Activity, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Healthy Lifestyle Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bethany Barone Gibbs
- Department of Health & Physical Activity, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
44
|
Zhang Z, Liu H, Liu J. Akt activation: A potential strategy to ameliorate insulin resistance. Diabetes Res Clin Pract 2019; 156:107092. [PMID: 29111280 DOI: 10.1016/j.diabres.2017.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023]
Abstract
Insulin resistance is a hallmark of type 2 diabetes and obesity while the mechanism remains unclear. Current therapy to treat type 2 diabetes is metformin, the 5'-monophosphate-activated protein kinase (AMPK) activator, owing to the ability to augment peripheral glucose uptake. However, metformin also displays limitations, as AMPK activation remains intact and regular in most type 2 diabetes and metformin does not seem to facilitate peripheral insulin resistance. Evidence has shown that PI3K-Akt/PKB pathway could be induced via insulin and act as an important effector. Akt/PKB is capable of inducing a great number of downstream molecules, such as translocating glucose transporters GLUTs to the cell membrane thus increase glucose uptake. Hence, any defect in Akt/PKB pathway along with the downstream molecules could lead to insulin resistance. Inositol pyrophosphates, synthesized by inositol hexakisphosphate (IP6) kinase 1 (IP6K1) and competitive with 3,4,5-bisphosphate (PIP3) to bind the PH domain of Akt/PKB, demonstrate the ability to inhibit Akt signaling. In addition, IP6K1 knockout mice present increased insulin sensitivity and obesity resistance, indicating a novel therapeutic target in confronting insulin resistance. Taken together, we conclude that Akt activation is another potential strategy to ameliorate insulin resistance.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
45
|
Morissette MP, Susser SE, Stammers AN, Moffatt TL, Wigle JT, Wigle TJ, Netticadan T, Premecz S, Jassal DS, O’Hara KA, Duhamel TA. Exercise-induced increases in the expression and activity of cardiac sarcoplasmic reticulum calcium ATPase 2 is attenuated in AMPKα2kinase-dead mice. Can J Physiol Pharmacol 2019; 97:786-795. [DOI: 10.1139/cjpp-2018-0737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise enhances cardiac sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) function through unknown mechanisms. The present study tested the hypothesis that the positive effects of exercise on SERCA2a expression and function in the left ventricle is dependent on adenosine-monophosphate-activated protein kinase (AMPK) α2 function. AMPKα2kinase-dead (KD) transgenic mice, which overexpress inactivated AMPKα2subunit, and wild-type C57Bl/6 (WT) mice were randomized into sedentary groups or groups with access to running wheels. After 5 months, exercised KD mice exhibited shortened deceleration time compared with sedentary KD mice. In left ventricular tissue, the ratio of phosphorylated AMPKαThr172:total AMPKα was 65% lower (P < 0.05) in KD mice compared with WT mice. The left ventricle of KD mice had 37% lower levels of SERCA2a compared with WT mice. Although exercise increased SERCA2a protein levels in WT mice by 53%, this response of exercise was abolished in exercised KD mice. Exercise training reduced total phospholamban protein content by 23% in both the WT and KD mice but remained 20% higher overall in KD mice. Collectively, these data suggest that AMPKα influences SERCA2a and phospholamban protein content in the sedentary and exercised heart, and that exercise-induced changes in SERCA2a protein are dependent on AMPKα function.
Collapse
Affiliation(s)
- Marc P. Morissette
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shanel E. Susser
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Andrew N. Stammers
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Teri L. Moffatt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jeffrey T. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2E 3N4, Canada
| | - Theodore J. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Agriculture and Agri-Food Canada, Winnipeg, MB R3C 3G7, Canada
| | - Sheena Premecz
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Kimberley A. O’Hara
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Todd A. Duhamel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
46
|
Jung TW, Ahn SH, Shin JW, Kim HC, Park ES, Abd El-Aty AM, Hacımüftüoğlu A, Song KH, Jeong JH. Protectin DX ameliorates palmitate-induced hepatic insulin resistance through AMPK/SIRT1-mediated modulation of fetuin-A and SeP expression. Clin Exp Pharmacol Physiol 2019; 46:898-909. [PMID: 31246318 DOI: 10.1111/1440-1681.13131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The role as well as the molecular mechanisms of protectin DX (PDX) in the prevention of hepatic insulin resistance, a hallmark of type 2 diabetes, remains unknown. Therefore, the present study was designed to explore the direct impact of PDX on insulin resistance and to investigate the expression of fetuin-A and selenoprotein P (SeP), hepatokines that are involved in insulin signalling, in hepatocytes. Human serum levels of PDX as well as fetuin-A and SeP were determined by high-performance liquid chromatography (HPLC). Human primary hepatocytes were treated with palmitate and PDX. NF-κB phosphorylation as well as expression of insulin signalling associated genes and hepatokines were determined by Western blotting analysis. FOXO1 binding levels were measured by quantitative real-time PCR. Selected genes from candidate pathways were evaluated by small interfering (si) RNA-mediated gene suppression. Serum PDX levels were significantly (P < 0.05) downregulated, whereas serum fetuin-A and SeP levels were increased (P < 0.05) in obese subjects compared with healthy subjects. In in vitro experiments, PDX treatment increased AMP-activated protein kinase (AMPK) phosphorylation and SIRT1 expression and attenuated palmitate-induced fetuin-A and SeP expression and insulin resistance in hepatocytes. AMPK or SIRT1 siRNA mitigated the suppressive effects of PDX on palmitate-induced fetuin-A through NF-κB and SeP expression linked to FOXO1 and insulin resistance. Recombinant fetuin-A and SeP reversed the suppressive effects of fetuin-A and SeP expression on palmitate-mediated impairment of insulin signalling. The current finding provides novel insight into the underlying mechanism linking hepatokines to the pathogenesis of hepatic insulin resistance.
Collapse
Affiliation(s)
- Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sung Ho Ahn
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jong Wook Shin
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Eon Sub Park
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ki Hak Song
- Department of Urology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
47
|
Kjøbsted R, Roll JLW, Jørgensen NO, Birk JB, Foretz M, Viollet B, Chadt A, Al-Hasani H, Wojtaszewski JFP. AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction. Diabetes 2019; 68:1427-1440. [PMID: 31010958 DOI: 10.2337/db19-0050] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 11/13/2022]
Abstract
Exercise increases glucose uptake in skeletal muscle independently of insulin signaling. This makes exercise an effective stimulus to increase glucose uptake in insulin-resistant skeletal muscle. AMPK has been suggested to regulate muscle glucose uptake during exercise/contraction, but findings from studies of various AMPK transgenic animals have not reached consensus on this matter. Comparing methods used in these studies reveals a hitherto unappreciated difference between those studies reporting a role of AMPK and those that do not. This led us to test the hypothesis that AMPK and downstream target TBC1D1 are involved in regulating muscle glucose uptake in the immediate period after exercise/contraction but not during exercise/contraction. Here we demonstrate that glucose uptake during exercise/contraction was not compromised in AMPK-deficient skeletal muscle, whereas reversal of glucose uptake toward resting levels after exercise/contraction was markedly faster in AMPK-deficient muscle compared with wild-type muscle. Moreover, muscle glucose uptake after contraction was positively associated with phosphorylation of TBC1D1, and skeletal muscle from TBC1D1-deficient mice displayed impaired glucose uptake after contraction. These findings reconcile previous observed discrepancies and redefine the role of AMPK activation during exercise/contraction as being important for maintaining glucose permeability in skeletal muscle in the period after, but not during, exercise/contraction.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Julie L W Roll
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas O Jørgensen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Alexandra Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Parastesh M, Heidarianpour A, Sadegh M. Investigating the effects of endurance, resistance and combined training on reproductive hormones and sperm parameters of streptozotocin-nicotinamide diabetic male rats. J Diabetes Metab Disord 2019; 18:273-279. [PMID: 31890651 DOI: 10.1007/s40200-018-0380-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Purpose Diabetes mellitus type 2 with damaging effects on reproductive hormones and sperm quality parameters can often cause infertility in men. The aim of this study was to evaluate the effects of endurance, resistance and concurrent training on reproductive hormones, sperm parameter in the diabetic type 2 male rats. Methods In this experimental study 60 Wistar rats (200 ± 50 g) were randomly assigned into 5 groups: control; diabetic; diabetic endurance training; diabetic resistance training and diabetic concurrent training. For inducing diabetes, after 12 hours of food starvation nicotinamide (120 mg/kg) and STZ (65 mg/kg) were intraperitoneally injected. Twenty-four hours after the last training session, left epididymis of the rats was examined for studying sperm parameters and blood serum samples were examined for evaluating reproductive hormones. Data were analyzed using one-way ANOVA and Turkey's Post Hoc test. Results Ten weeks of endurance and concurrent training induced significant decrease in the blood glucose in comparison to the diabetic group (P < 0.05). In addition, endurance, resistance and concurrent training induced significant increases in serum testosterone and LH levels in the comparison to the diabetic group (P < 0.005). In addition, sperm parameters revealed significant improvements in compared to the diabetic group (P = 0.002). Conclusion Endurance, resistance and combined training might improve sperm parameters, including viability and motility of sperms through increasing the serum testosterone and LH levels in rat model of diabetes mellitus type 2.
Collapse
Affiliation(s)
- Mohammad Parastesh
- 1Department of Sports Physiology and Pathology, Faculty of Sport Sciences, Arak University, Arak, Iran
| | - Ali Heidarianpour
- 2Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Bu-Ali Sina University, Hamadan, Iran
| | - Mehdi Sadegh
- 3Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, 3848176941 Iran
| |
Collapse
|
49
|
Osei-Yeboah J, Owiredu W, Norgbe G, Obirikorang C, Lokpo S, Ashigbi E, Johnson B, Ussher F, Deku J, Asiamah E, Avorkliyah R, Boakye E, Ntoni T, Nyamadi P. Physical Activity Pattern and Its Association with Glycaemic and Blood Pressure Control among People Living with Diabetes (PLWD) In The Ho Municipality, Ghana. Ethiop J Health Sci 2019; 29:819-830. [PMID: 30700949 PMCID: PMC6341429 DOI: 10.4314/ejhs.v29i1.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Physical activity (PA) offers considerable health benefits for diabetic patients. However, extensive high levels of inactivity has been reported among diabetic patients. This study sought to assess the patterns of physical activity and its relationship with two management-relevant outcomes (glycaemic and blood pressure control)among people living with diabetes in the Ho Municipality, Ghana. Methods A hospital-based cross-sectional study was carried out from January 2017 to April 2017 among 150 purposively recruited diabetic patients who were receiving care at the diabetes clinics of the Volta Regional Hospital and the Ho Municipal Hospital. A semi-structured questionnaire was used in capturing socio-demographic information. Physical activity was assessed using the International Physical Activity Questionnaire Short Form. Glycaemic and blood pressure control were evaluated within a three-month period from patients' records. Results Physical activity estimates among participants were 21.33%, 48% and 30.67% for high, moderate and low PA respectively. Glycaemic control among the study participants was 33.33% and blood pressure control was 58.67%. Both glycaemic and blood pressure control were significantly associated with PA. Conclusion In this group of PLWD in the Ho Municipality, high levels of inactivity, uncontrolled glycaemia and blood pressure exist. However, glycaemic and blood pressure control may be modulated by moderate-intensity physical activity.
Collapse
Affiliation(s)
- James Osei-Yeboah
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - William Owiredu
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Clinical Biochemistry, Diagnostic Directorate, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Gameli Norgbe
- School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Christian Obirikorang
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sylvester Lokpo
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Evans Ashigbi
- Department of Physiotherapy and Rehabilitation Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Beatrice Johnson
- Department of Nursing, School of Nursing and Midwifrey, University of Health and Allied Sciences, Ho, Ghana
| | - Francis Ussher
- Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua, Eastern Region, Ghana
| | - John Deku
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Emmanuel Asiamah
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Roseline Avorkliyah
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Edward Boakye
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Tibemponi Ntoni
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Prince Nyamadi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
50
|
Blanco CL, Gastaldelli A, Anzueto DG, Winter LA, Seidner SR, McCurnin DC, Liang H, Javors MA, DeFronzo RA, Musi N. Effects of intravenous AICAR (5-aminoimidazole-4-carboximide riboside) administration on insulin signaling and resistance in premature baboons, Papio sp. PLoS One 2018; 13:e0208757. [PMID: 30540820 PMCID: PMC6291136 DOI: 10.1371/journal.pone.0208757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Premature baboons exhibit peripheral insulin resistance and impaired insulin signaling. 5' AMP-activated protein kinase (AMPK) activation improves insulin sensitivity by enhancing glucose uptake (via increased glucose transporter type 4 [GLUT4] translocation and activation of the extracellular signal-regulated kinase [ERK]/ atypical protein kinase C [aPKC] pathway), and increasing fatty acid oxidation (via inhibition of acetyl-CoA carboxylase 1 [ACC]), while downregulating gluconeogenesis (via induction of small heterodimer partner [SHP] and subsequent downregulation of the gluconeogenic enzymes: phosphoenolpyruvate carboxykinase [PEPCK], glucose 6-phosphatase [G6PASE], fructose- 1,6-bisphosphatase 1 [FBP1], and forkhead box protein 1 [FOXO1]). The purpose of this study was to investigate whether pharmacologic activation of AMPK with AICAR (5-aminoimidazole-4-carboximide riboside) administration improves peripheral insulin sensitivity in preterm baboons. 11 baboons were delivered prematurely at 125±2 days (67%) gestation. 5 animals were randomized to receive 5 days of continuous AICAR infusion at a dose of 0.5 mg·g-1·day-1. 6 animals were in the placebo group. Euglycemic hyperinsulinemic clamps were performed at 5±2 and 14±2 days of life. Key molecules potentially altered by AICAR (AMPK, GLUT4, ACC, PEPCK, G6PASE, FBP1, and FOXO1), and the insulin signaling molecules: insulin receptor (INSR), insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were measured using RT-PCR and western blotting. AICAR infusion did not improve whole body insulin-stimulated glucose disposal in preterm baboons (12.8±2.4 vs 12.4±2.0 mg/(kg·min), p = 0.8, placebo vs AICAR). One animal developed complications during treatment. In skeletal muscle, AICAR infusion did not increase phosphorylation of ACC, AKT, or AMPK whereas it increased mRNA expression of ACACA (ACC), AKT, and PPARGC1A (PGC1α). In the liver, INSR, IRS1, G6PC3, AKT, PCK1, FOXO1, and FBP1 were unchanged, whereas PPARGC1A mRNA expression increased after AICAR infusion. This study provides evidence that AICAR does not improve insulin sensitivity in premature euglycemic baboons, and may have adverse effects.
Collapse
Affiliation(s)
- Cynthia L. Blanco
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Amalia Gastaldelli
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Institute of Clinical Physiology Consiglio Nazionale delle Ricerche, Pisa Italy
| | - Diana G. Anzueto
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Lauryn A. Winter
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Steven R. Seidner
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Donald C. McCurnin
- Department of Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Hanyu Liang
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Martin A. Javors
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Ralph A. DeFronzo
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Texas Diabetes Institute, San Antonio, TX, United States of America
| | - Nicolas Musi
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Texas Diabetes Institute, San Antonio, TX, United States of America
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States of America
| |
Collapse
|