1
|
Zhao Y, Yue R. Aging adipose tissue, insulin resistance, and type 2 diabetes. Biogerontology 2024; 25:53-69. [PMID: 37725294 DOI: 10.1007/s10522-023-10067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
With the increase of population aging, the prevalence of type 2 diabetes (T2D) is also rising. Aging affects the tissues and organs of the whole body, which is the result of various physiological and pathological processes. Adipose tissue has a high degree of plasticity and changes with aging. Aging changes the distribution of adipose tissue, affects adipogenesis, browning characteristics, inflammatory status and adipokine secretion, and increases lipotoxicity. These age-dependent changes in adipose tissue are an important cause of insulin resistance and T2D. Understanding adipose tissue changes can help promote healthy aging process. This review summarizes changes in adipose tissue ascribable to aging, with a focus on the role of aging adipose tissue in insulin resistance and T2D.
Collapse
Affiliation(s)
- Yixuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
2
|
Zakaria Z, Othman ZA, Nna VU, Mohamed M. The promising roles of medicinal plants and bioactive compounds on hepatic lipid metabolism in the treatment of non-alcoholic fatty liver disease in animal models: molecular targets. Arch Physiol Biochem 2023; 129:1262-1278. [PMID: 34153200 DOI: 10.1080/13813455.2021.1939387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Imbalance in hepatic lipid metabolism can lead to an abnormal triglycerides deposition in the hepatocytes which can cause non-alcoholic fatty liver disease (NAFLD). Four main mechanisms responsible for regulating hepatic lipid metabolism are fatty acid uptake, de novo lipogenesis, lipolysis and fatty acid oxidation. Controlling the expression of transcription factors at molecular level plays a crucial role in NAFLD management. This paper reviews various medicinal plants and their bioactive compounds emphasising mechanisms involved in hepatic lipid metabolism, other important NAFLD pathological features, and their promising roles in managing NAFLD through regulating key transcription factors. Although there are many medicinal plants popularly investigated for NAFLD treatment, there is still little information and scientific evidence available and there has been no research on clinical trials scrutinised on this matter. This review also aims to provide molecular information of medicinal plants in NALFD treatment that might have potentials for future scientifically controlled studies.
Collapse
Affiliation(s)
- Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
3
|
Wong MS, Lo CYJ, Chen YL, Chen FY, Kuo CH, Chen JS, Pei D, Pitrone P, Wu CZ. Gamma-Glutamyltransferase Is a Predictor for Future Changes of Diabetogenic Factors in Aged Chinese-A Four-Year Follow-Up Study. J Clin Med 2023; 12:5606. [PMID: 37685672 PMCID: PMC10488810 DOI: 10.3390/jcm12175606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Glucose homeostasis in the body is determined by four diabetes factors (DFs): insulin resistance (IR), glucose effectiveness (GE), and the two phases of insulin secretion-first phase (FPIS) and second phase (SPIS). Previous research points to a correlation between elevated levels of gamma-glutamyl transferase (γGT) and an increased risk of type 2 diabetes. This study investigates the relationship between γGT and the four DFs in older Chinese individuals. This study involved 2644 men and 2598 women, all of whom were relatively healthy Chinese individuals aged 60 years or more. The DFs were calculated using formulas developed by our research, based on demographic data and factors related to metabolic syndrome. Pearson's correlation was utilized to assess the relationship between γGT and the four DFs. The findings suggested a positive correlation between γGT and IR, FPIS, and SPIS, but a negative correlation with GE in men. Among women, only SPIS and GE were significantly correlated with γGT. The factors showed varying degrees of correlation, listed in descending order as follows: GE, SPIS, FPIS, and IR. This study confirms a significant correlation between γGT and DFs in this population, highlighting the noteworthy role of GE.
Collapse
Affiliation(s)
- Man Sze Wong
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan; (M.S.W.); (C.Y.J.L.); (D.P.)
| | - Chun Yen Jun Lo
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan; (M.S.W.); (C.Y.J.L.); (D.P.)
| | - Yen-Lin Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan;
| | - Fang-Yu Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu Jen Catholic University Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan; (F.-Y.C.); (C.-H.K.)
| | - Chun-Heng Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu Jen Catholic University Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan; (F.-Y.C.); (C.-H.K.)
| | - Jin-Shuen Chen
- Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan;
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City 80424, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Dee Pei
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan; (M.S.W.); (C.Y.J.L.); (D.P.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu Jen Catholic University Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan; (F.-Y.C.); (C.-H.K.)
| | - Pietro Pitrone
- Radiology Department, Papardo Hospital, 98100 Messina, Italy;
| | - Chung-Ze Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
4
|
Kishimoto I. Subclinical Reactive Hypoglycemia with Low Glucose Effectiveness-Why We Cannot Stop Snacking despite Gaining Weight. Metabolites 2023; 13:754. [PMID: 37367911 DOI: 10.3390/metabo13060754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity has grown worldwide owing to modern obesogenic lifestyles, including frequent snacking. Recently, we studied continuous glucose monitoring in obese/overweight men without diabetes and found that half of them exhibit glucose levels less than 70 mg/dL after a 75-g oral glucose load without notable hypoglycemic symptoms. Interestingly, people with "subclinical reactive hypoglycemia (SRH)" snack more frequently than those without it. Since the ingestion of sugary snacks or drinks could further induce SRH, a vicious cycle of "Snacking begets snacking via SRH" can be formed. Glucose effectiveness (Sg) is an insulin-independent mechanism that contributes to most of the whole-body glucose disposal after an oral glucose load in people without diabetes. Our recent data suggest that both higher and lower Sg are associated with SRH, while the latter but not the former is linked to snacking habits, obesity, and dysglycemia. The present review addresses the possible role of SRH in snacking habits in people with obesity/overweight, taking Sg into account. It is concluded that, for those with low Sg, SRH can be regarded as a link between snacking and obesity. Prevention of SRH by raising Sg might be key to controlling snacking habits and body weight.
Collapse
Affiliation(s)
- Ichiro Kishimoto
- Department of Endocrinology and Diabetes, Toyooka Public Hospital, 1094, Tobera, Toyooka 668-8501, Hyogo, Japan
| |
Collapse
|
5
|
Guo H, Wu H, Kong X, Zhang N, Li H, Dong X, Li Z. Oat β-glucan ameliorates diabetes in high fat diet and streptozotocin-induced mice by regulating metabolites. J Nutr Biochem 2023; 113:109251. [PMID: 36513312 DOI: 10.1016/j.jnutbio.2022.109251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Oats are widely distributed worldwide and oat β-glucan has positive effects on human health. Particularly, oat β-glucan is reported to be beneficial in the management of type 2 diabetes. The aim of the present study is to investigate the effects of oat β-glucan and its possible underlying mechanisms on diabetes in type 2 diabetic mice that was induced by streptozotocin/high-fat diet (STZ/HFD). The data indicated that oat β-glucan significantly reduced the fasting blood glucose, improved glucose tolerance, and insulin sensitivity. The results further showed that oat β-glucan remarkably decreased the levels of total cholesterol (TCHO), total triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and free fatty acids. Moreover, oat β-glucan remarkably increased the hepatic glycogen content, but largely decreased the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in STZ/HFD-induced diabetic mice. Histological analysis showed that oat β-glucan alleviated visceral lesions. Finally, the metabolomic analysis indicated that the metabolic profile was remarkably changed after oat β-glucan intervention in diabetic mice. There were 88 and 106 differential metabolites screened as biomarkers in negative ion mode (NEG) and positive ion mode (POS) after oat β-glucan treatment, respectively. In addition, oat β-glucan significantly affected the serum metabolites of amino acids, organic acids and bile acids. Collectively, the current study elucidates oat β-glucan displays an effective nutritional intervention in diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Haili Wu
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Xiangqun Kong
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Nuonuo Zhang
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Hanqing Li
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zhuoyu Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China.
| |
Collapse
|
6
|
Kirwan JP, Heintz EC, Rebello CJ, Axelrod CL. Exercise in the Prevention and Treatment of Type 2 Diabetes. Compr Physiol 2023; 13:4559-4585. [PMID: 36815623 DOI: 10.1002/cphy.c220009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes is a systemic, multifactorial disease that is a leading cause of morbidity and mortality globally. Despite a rise in the number of available medications and treatments available for management, exercise remains a first-line prevention and intervention strategy due to established safety, efficacy, and tolerability in the general population. Herein we review the predisposing risk factors for, prevention, pathophysiology, and treatment of type 2 diabetes. We emphasize key cellular and molecular adaptive processes that provide insight into our evolving understanding of how, when, and what types of exercise may improve glycemic control. © 2023 American Physiological Society. Compr Physiol 13:1-27, 2023.
Collapse
Affiliation(s)
- John P Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Candida J Rebello
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Christopher L Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
7
|
Zhang C, Jia J, Zhang P, Zheng W, Guo X, Ai C, Song S. Fucoidan from Laminaria japonica Ameliorates Type 2 Diabetes Mellitus in Association with Modulation of Gut Microbiota and Metabolites in Streptozocin-Treated Mice. Foods 2022; 12:33. [PMID: 36613249 PMCID: PMC9818518 DOI: 10.3390/foods12010033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic diseases have been a leading cause of death worldwide, and polysaccharide supplementation is an effective therapeutic strategy for chronic diseases without adverse effects. In this study, the beneficial effect of Laminaria japonica fucoidan (LJF) on type 2 diabetes mellitus (T2DM) was evaluated in streptozocin-treated mice. LJF ameliorated the symptoms of T2DM in a dose-dependent manner, involving reduction in weight loss, water intake, triglyceride, blood glucose, cholesterol and free fatty acids, and increases in high-density lipoprotein cholesterol, catalase, glucagon-like peptide-1, and superoxide dismutase. In addition, LJF regulated the balance between insulin resistance and insulin sensitivity, reduced islet necrosis and β-cell damage, and inhibited fat accumulation in T2DM mice. The protective effect of LJF on T2DM can be associated with modulation of the gut microbiota and metabolites, e.g., increases in Lactobacillus and Allobaculum. Untargeted and targeted metabolomics analysis showed that the microbiota metabolite profile was changed with LJF-induced microbiota alterations, mainly involving amino acids, glutathione, and glyoxylate and dicarboxylate metabolism pathways. This study indicates that LJF can be used as a prebiotic agent for the prevention and treatment of diabetes and microbiota-related diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jinhui Jia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Panpan Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
8
|
Huangshan Maofeng Green Tea Extracts Prevent Obesity-Associated Metabolic Disorders by Maintaining Homeostasis of Gut Microbiota and Hepatic Lipid Classes in Leptin Receptor Knockout Rats. Foods 2022; 11:foods11192939. [PMID: 36230016 PMCID: PMC9562686 DOI: 10.3390/foods11192939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Huangshan Maofeng green tea (HMGT) is one of the most well-known green teas consumed for a thousand years in China. Research has demonstrated that consumption of green tea effectively improves metabolic disorders. However, the underlying mechanisms of obesity prevention are still not well understood. This study investigated the preventive effect and mechanism of long-term intervention of Huangshan Maofeng green tea water extract (HTE) on obesity-associated metabolic disorders in leptin receptor knockout (Lepr−/−) rats by using gut microbiota and hepatic lipidomics data. The Lepr−/− rats were administered with 700 mg/kg HTE for 24 weeks. Our results showed that HTE supplementation remarkably reduced excessive fat accumulation, as well as ameliorated hyperlipidemia and hepatic steatosis in Lepr−/− rats. In addition, HTE increased gut microbiota diversity and restored the relative abundance of the microbiota responsible for producing short chain fatty acids, including Ruminococcaceae, Faecalibaculum, Veillonellaceae, etc. Hepatic lipidomics analysis found that HTE significantly recovered glycerolipid and glycerophospholipid classes in the liver of Lepr−/− rats. Furthermore, nineteen lipid species, mainly from phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and triglycerides (TGs), were significantly restored increases, while nine lipid species from TGs and diglycerides (DGs) were remarkably recovered decreases by HTE in the liver of Lepr−/− rats. Our results indicated that prevention of obesity complication by HTE may be possible through maintaining homeostasis of gut microbiota and certain hepatic lipid classes.
Collapse
|
9
|
Al-Harthi S, Chandra K, Jaremko Ł. Lipoic Acid Restores Binding of Zinc Ions to Human Serum Albumin. Front Chem 2022; 10:942585. [PMID: 35898971 PMCID: PMC9309503 DOI: 10.3389/fchem.2022.942585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Human serum albumin (HSA) is the main zinc(II) carrier in blood plasma. The HSA site with the strongest affinity for zinc(II), multi-metal binding site A, is disrupted by the presence of fatty acids (FAs). Therefore, the FA concentration in the blood influences zinc distribution, which may affect both normal physiological processes and a range of diseases. Based on the current knowledge of HSA’s structure and its coordination chemistry with zinc(II), we investigated zinc interactions and the effect of various FAs, including lipoic acid (LA), on the protein structure, stability, and zinc(II) binding. We combined NMR experiments and isothermal titration calorimetry to examine zinc(II) binding to HSA at a sub-atomic level in a quantitative manner as well as the effect of FAs. Free HSA results indicate the existence of one high-affinity zinc(II) binding site and multiple low-affinity sites. Upon the binding of FAs to HSA, we observed a range of behaviors in terms of zinc(II) affinity, depending on the type of FA. With FAs that disrupt zinc binding, the addition of LA restores HSA’s affinity for zinc ions to the levels seen with free defatted HSA, indicating the possible mechanism of LA, which is effective in the treatment of diabetes and cardiovascular diseases.
Collapse
|
10
|
Kong F, Kang S, Zhang J, Zhao H, Peng Y, Yang M, Zheng Y, Shao J, Yue X. Whey protein and xylitol complex alleviate type 2 diabetes in C57BL/6 mice by regulating the intestinal microbiota. Food Res Int 2022; 157:111454. [PMID: 35761691 DOI: 10.1016/j.foodres.2022.111454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disorder that has become a major threat to public health. Epidemiological and experimental studies have suggested that whey protein isolate (WPI) and xylitol (XY) play an important role on T2D. This manuscript hypothesizes the supplementation of whey protein and xylitol complex (WXY) has the hypoglycemic and hyperlipidemia effect of T2D mice induced by the conjoint action of a high-fat diet and streptozotocin (STZ) by modulating of intestinal microbiota. The mice with diabetes displayed higher levels of fasting blood glucose (FBG), insulin, glycosylated hemoglobin, total triglycerides, total cholesterol, aspartate aminotransferase, alanine aminotransferase and other serum parameters than the normal mice. Treatment with WXY for 6 weeks significantly modulated the levels of FBG and insulin, improved insulin sensitivity, pancreas impairment and liver function in T2D mice, and the effect was better than that observed with WPI and XY groups. Moreover, supplementation with WXY significantly changed the diversity and composition of the intestinal microbiota in T2D mice and restored the intestinal bacteria associated with T2D (Firmicutes, Bacteroidetes, and Lactobacillus). This may be a potential mechanism for alleviating T2D symptoms. Spearman correlation analysis showed that the relative abundances of specific genera (Turicibacter, Lachnospiraceae_NK4A136_group, Lactobacillus, Candidatus_Saccharimonas, Faecalibaculum and Coriobacteriaceae_UCG-002) were correlated with the levels of blood glucose and serum parameters. Therefore, WXY may be considered a promising dietary supplement for T2D treatment in the future.
Collapse
Affiliation(s)
- Fanhua Kong
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Shimo Kang
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Juan Zhang
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Huiwen Zhao
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Yanqi Peng
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Mei Yang
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Yan Zheng
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Junhua Shao
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agriculture University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
11
|
Paszkiewicz RL, Burch MA, Asare Bediako I, Mkrtchyan H, Piccinini F, Ader M, Bresee C, Bergman RN. Measures of glucose homeostasis during and after duodenal exclusion using a duodenal-jejunal bypass liner in a normoglycemic, nonobese canine model. Surg Obes Relat Dis 2022; 18:694-702. [PMID: 35361540 PMCID: PMC10013877 DOI: 10.1016/j.soard.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Discovering the role duodenal exclusion plays in weight loss and resolution of type 2 diabetes (T2D) may help refine the surgical and nonsurgical treatment of obesity and T2D. OBJECTIVES To assess changes in glucose homeostasis due to duodenal exclusion using a duodenal-jejunal bypass liner (DJBL) in a nonobese canine model. SETTING Academic laboratory setting. METHODS An intravenous glucose tolerance test (IVGTT), and a mixed-meal tolerance test (MMTT) at baseline, 1, and 6 weeks post DJBL implantation (I1 and I6, respectively), and 1 and 6 weeks post DJBL removal (R1 and R6, respectively) were done in canines (n = 7) fed a normal chow diet. RESULTS Placement of the DJBL induced weight loss that was maintained until 4 weeks post removal (R4), despite normal food intake. Total bile acids (TBA) and glucagon-like peptide-1 (GLP-1) during the MMTT were significantly increased at I1 and were associated with increased lactate and free fatty acids. Hypoglycemia counter-regulation was blunted during the IVGTT at I1 and I6, returning to baseline at R1. While there were no changes to insulin sensitivity during the experiment, glucose tolerance was significantly increased following the removal of the DJBL at R1. CONCLUSION These data show that in a normoglycemic, nonobese canine model, duodenal exclusion induces energy intake-independent weight loss and negative metabolic effects that are reversed following re-exposure of the small intestine to nutrients.
Collapse
Affiliation(s)
- Rebecca L Paszkiewicz
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Miguel A Burch
- Minimally Invasive and GI Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Isaac Asare Bediako
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hasmik Mkrtchyan
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Francesca Piccinini
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marilyn Ader
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Catherine Bresee
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
12
|
Wang R, Zhang L, Zhang Q, Zhang J, Liu S, Li C, Wang L. Glycolipid Metabolism and Metagenomic Analysis of the Therapeutic Effect of a Phenolics-Rich Extract from Noni Fruit on Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2876-2888. [PMID: 35175775 DOI: 10.1021/acs.jafc.1c07441] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The phenolics of noni fruit possess antihyperglycemic activity; however, the molecular mechanisms remain unclear. To understand the potential effects it has on type 2 diabetes (T2D), the glycolipid metabolism and gut microbiota regulation of phenolic-rich extracts from noni fruit (NFEs) were investigated. The results indicated that NFE could remarkably ameliorate hyperglycemia, insulin resistance, oxidative stress, and glycolipid metabolism via the adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway in T2D mice. Furthermore, metagenomic sequencing results revealed that NFE intervention modulated the gut microbiota composition in T2D mice, characterized by increased abundance of unclassified_o_Bacteroidales, Alistipes, Prevotella, Lactobacillus, and Akkermansia and decreased abundance of Oscillibacter, Desulfovibrio, and significantly decreased the pathways related to carbohydrate metabolism, translation, amino acid metabolism, and nucleotide metabolism. Taken together, the results provided new evidence that the hypoglycemic and hypolipidemic activities of NFE in T2D were likely attributed to the activation of the liver AMPK pathway and modulation of gut microbiota.
Collapse
Affiliation(s)
- Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Qingyang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Sixin Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
- School of Science, Hainan University, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| |
Collapse
|
13
|
Kim SY, Song YS, Kim SK, Cho YW, Kim KS. Postprandial Free Fatty Acids at Mid-Pregnancy Increase the Risk of Large-for-Gestational-Age Newborns in Women with Gestational Diabetes Mellitus. Diabetes Metab J 2022; 46:140-148. [PMID: 34365777 PMCID: PMC8831808 DOI: 10.4093/dmj.2021.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To investigate the association between free fatty acid (FFA) level at mid-pregnancy and large-for-gestational-age (LGA) newborns in women with gestational diabetes mellitus (GDM). METHODS We enrolled 710 pregnant women diagnosed with GDM from February 2009 to October 2016. GDM was diagnosed by a 'two-step' approach with Carpenter and Coustan criteria. We measured plasma lipid profiles including fasting and 2-hour postprandial FFA (2h-FFA) levels at mid-pregnancy. LGA was defined if birthweights of newborns were above the 90th percentile for their gestational age. RESULTS Mean age of pregnant women in this study was 33.1 years. Mean pre-pregnancy body mass index (BMI) was 22.4 kg/m2. The prevalence of LGA was 8.3% (n=59). Levels of 2h-FFA were higher in women who delivered LGA newborns than in those who delivered non-LGA newborns (416.7 μEq/L vs. 352.5 μEq/L, P=0.006). However, fasting FFA was not significantly different between the two groups. The prevalence of delivering LGA newborns was increased with increasing tertile of 2h-FFA (T1, 4.3%; T2, 9.8%; T3, 10.7%; P for trend <0.05). After adjustment for maternal age, pre-pregnancy BMI, and fasting plasma glucose, the highest tertile of 2h-FFA was 2.38 times (95% confidence interval, 1.11 to 5.13) more likely to have LGA newborns than the lowest tertile. However, there was no significant difference between groups according to fasting FFA tertiles. CONCLUSION In women with GDM, a high 2h-FFA level (but not fasting FFA) at mid-pregnancy is associated with an increasing risk of delivering LGA newborns.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Young Shin Song
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Soo-Kyung Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Yong-Wook Cho
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
- Corresponding author: Kyung-Soo Kim https://orcid.org/0000-0002-7738-2284 Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam 13496, Korea E-mail:
| |
Collapse
|
14
|
Murai N, Saito N, Kodama E, Iida T, Mikura K, Imai H, Kaji M, Hashizume M, Kigawa Y, Koizumi G, Tadokoro R, Sugisawa C, Endo K, Iizaka T, Saiki R, Otsuka F, Ishibashi S, Nagasaka S. Glucose Effectiveness Decreases in Relationship to a Subtle Worsening of Metabolic Parameters in Young Japanese with Normal Glucose Tolerance. Metab Syndr Relat Disord 2021; 19:409-415. [PMID: 34190620 DOI: 10.1089/met.2021.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The aim of the study was to investigate the relationship between glucose effectiveness (Sg) and some metabolic parameters in male and female young Japanese. Methods: We measured plasma glucose and immunoreactive insulin levels in 1309 young Japanese persons (age <40 years) with normal glucose tolerance (NGT) before and at 30, 60, and 120 min during a 75 gram oral glucose tolerance test. We also measured serum adiponectin and high-sensitivity C-reactive protein (hsCRP) levels and oral glucose effectiveness (SgIO), and investigated factors related to SgIO. Results: The results of Spearman correlation analysis revealed that high-density lipoprotein cholesterol (HDL) and adiponectin were positively correlated with SgIO, whereas the proportion of males, body mass index, waist circumference (WC), systolic blood pressure (SBP), diastolic blood pressure, triglycerides (TG), and hsCRP were inversely correlated with SgIO. The results of multiple regression analysis indicated negative correlations between SgIO and the proportion of males, WC, and SBP and a positive correlation with HDL. The results of multiple regression analysis excluding WC indicated negative correlations between SgIO and the proportion of males, SBP, and TG and positive correlations with HDL and adiponectin. Conclusions: Sg decreased with a subtle worsening of metabolic parameters, even in young persons with NGT. Decreased Sg may be involved in the development of glucose intolerance in individuals with worse metabolic parameters.
Collapse
Affiliation(s)
- Norimitsu Murai
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Naoko Saito
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Eriko Kodama
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Tatsuya Iida
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Kentaro Mikura
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hideyuki Imai
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Mariko Kaji
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Mai Hashizume
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Yasuyoshi Kigawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Go Koizumi
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Rie Tadokoro
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Chiho Sugisawa
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Kei Endo
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Toru Iizaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Ryo Saiki
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Fumiko Otsuka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shoichiro Nagasaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan.,Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
15
|
Ge W, Zhao Y, Yang Y, Ding Z, Xu X, Weng D, Wang S, Cheng R, Zhang J. An insulin-independent mechanism for transcriptional regulation of Foxo1 in type 2 diabetic mice. J Biol Chem 2021; 297:100846. [PMID: 34058194 PMCID: PMC8233149 DOI: 10.1016/j.jbc.2021.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Hepatic gluconeogenesis is the major contributor to the hyperglycemia observed in both patients and animals with type 2 diabetes. The transcription factor FOXO1 plays a dominant role in stimulating hepatic gluconeogenesis. FOXO1 is mainly regulated by insulin under physiological conditions, but liver-specific disruption of Foxo1 transcription restores normal gluconeogenesis in mice in which insulin signaling has been blocked, suggesting that additional regulatory mechanisms exist. Understanding the transcriptional regulation of Foxo1 may be conducive to the development of insulin-independent strategies for the control of hepatic gluconeogenesis. Here, we found that elevated plasma levels of adenine nucleotide in type 2 diabetes are the major regulators of Foxo1 transcription. We treated lean mice with 5'-AMP and examined their transcriptional profiles using RNA-seq. KEGG analysis revealed that the 5'-AMP treatment led to shifted profiles that were similar to db/db mice. Many of the upregulated genes were in pathways associated with the pathology of type 2 diabetes including Foxo1 signaling. As observed in diabetic db/db mice, lean mice treated with 5'-AMP displayed enhanced Foxo1 transcription, involving an increase in cellular adenosine levels and a decrease in the S-adenosylmethionine to S-adenosylhomocysteine ratio. This reduced methylation potential resulted in declining histone H3K9 methylation in the promoters of Foxo1, G6Pc, and Pepck. In mouse livers and cultured cells, 5'-AMP induced expression of more FOXO1 protein, which was found to be localized in the nucleus, where it could promote gluconeogenesis. Our results revealed that adenine nucleotide-driven Foxo1 transcription is crucial for excessive glucose production in type 2 diabetic mice.
Collapse
Affiliation(s)
- Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Dan Weng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
16
|
Lewis GF, Carpentier AC, Pereira S, Hahn M, Giacca A. Direct and indirect control of hepatic glucose production by insulin. Cell Metab 2021; 33:709-720. [PMID: 33765416 DOI: 10.1016/j.cmet.2021.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
There is general agreement that the acute suppression of hepatic glucose production by insulin is mediated by both a direct and an indirect effect on the liver. There is, however, no consensus regarding the relative magnitude of these effects under physiological conditions. Extensive research over the past three decades in humans and animal models has provided discordant results between these two modes of insulin action. Here, we review the field to make the case that physiologically direct hepatic insulin action dominates acute suppression of glucose production, but that there is also a delayed, second order regulation of this process via extrahepatic effects. We further provide our views regarding the timing, dominance, and physiological relevance of these effects and discuss novel concepts regarding insulin regulation of adipose tissue fatty acid metabolism and central nervous system (CNS) signaling to the liver, as regulators of insulin's extrahepatic effects on glucose production.
Collapse
Affiliation(s)
- Gary F Lewis
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Andre C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sandra Pereira
- Centre for Addiction and Mental Health and Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Margaret Hahn
- Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Adria Giacca
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Basal insulin ameliorates post-breakfast hyperglycemia via suppression of post-breakfast proinsulin/C-peptide ratio and fasting serum free fatty acid levels in patients with type 2 diabetes. Diabetol Int 2021; 12:161-170. [PMID: 33786271 DOI: 10.1007/s13340-020-00457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Background In general, basal insulin targets fasting plasma glucose (FPG) levels, and prandial insulin targets postprandial glucose (PPG) levels. However, the effects of basal insulin on PPG levels are controversial. We investigated the effect of basal insulin on postprandial hyperglycemia using a test meal at breakfast as well as compared differences between degludec and glargine. Methods A total of 20 participants with type 2 diabetes were randomly assigned to degludec (n = 10) or glargine (n = 10). We initiated basal-bolus insulin therapy and titrated only basal insulin until FPG was < 6.1 mmol/L. We evaluated changes in post-breakfast glucose levels and changes in clinical parameters such as serum C-peptide (CPR), proinsulin (PI), and free fatty acids (FFA) levels between the pre- and post-titration periods. Differences between degludec and glargine in the post-titration period were also evaluated. Results Post-breakfast glucose levels significantly decreased by 46.1% in the post-titration period compared with the pre-titration period (n = 20, p < 0.001). These decreases correlated positively with decreases in the post-breakfast PI/CPR ratio (r = 0.692, p < 0.001) and in fasting FFA levels (r = 0.720, p < 0.001). There were no significant differences in post-breakfast glucose levels between degludec and glargine. However, the hypoglycemic rate with degludec was significantly lower than with glargine. Conclusion Our results suggest that basal insulin with either degludec or glargine decreases the incidence of post-breakfast hyperglycemia accompanied by decreasing the post-breakfast PI/CPR ratio and fasting FFA levels in patients with type 2 diabetes.
Collapse
|
18
|
Ruknarong L, Boonthongkaew C, Chuangchot N, Jumnainsong A, Leelayuwat N, Jusakul A, Gaudieri S, Leelayuwat C. Vitamin C supplementation reduces expression of circulating miR-451a in subjects with poorly controlled type 2 diabetes mellitus and high oxidative stress. PeerJ 2021; 9:e10776. [PMID: 33604180 PMCID: PMC7868066 DOI: 10.7717/peerj.10776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Vitamin C is an essential element required for normal metabolic function. We investigated the effect of vitamin C supplementation on circulating miRNA (miR) expression in subjects with poorly controlled type 2 diabetes mellitus (T2DM). Changes in miR expression were also correlated with clinical measures of disease. Methods Pre- and post-vitamin C supplementation samples from five participants who had increased vitamin C levels, improved oxidative status and polymorphonuclear (PMN) function after receiving 1,000 mg of vitamin C daily for six weeks were screened for miRNA expression using the NanoString miRNA assay. Differences in miRNA expression identified from the miRNA screen were validated by qRT-PCR. Results Four miRNAs showed significantly different expression post-vitamin C supplementation relative to baseline, including the down-regulation of miR-451a (−1.72 fold change (FC), p = 0.036) and up-regulation of miR-1253 (0.62 FC, p = 0.027), miR-1290 (0.53 FC, p = 0.036) and miR-644a (0.5 FC, p = 0.042). The validation study showed only miR-451a expression was significantly different from baseline with vitamin C supplementation. MiR-451a expression was negatively correlated with vitamin C levels (r = − 0.497, p = 0.049) but positively correlated with levels of malondialdehyde (MDA) (r = 0.584, p = 0.017), cholesterol (r = 0.564, p = 0.022) and low-density lipoproteins (LDL) (r = 0.522, p = 0.037). Bioinformatics analysis of the putative target genes of miR-451a indicated gene functions related to signaling pathways involved in cellular processes, such as the mammalian target of rapamycin (mTOR) signaling pathway. Conclusions Vitamin C supplementation altered circulating miR-451a expression. The results from this pilot study suggest that miRNAs could be used as biomarkers to indicate oxidative status in subjects with T2DM and with poor glycemic control and could lead to a novel molecular strategy to reduce oxidative stress in T2DM.
Collapse
Affiliation(s)
- Laongthip Ruknarong
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Exercise and Sport Sciences Development and Research Group (ESRG), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chongchira Boonthongkaew
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Exercise and Sport Sciences Development and Research Group (ESRG), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisa Chuangchot
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Exercise and Sport Sciences Development and Research Group (ESRG), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Amonrat Jumnainsong
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Naruemon Leelayuwat
- Exercise and Sport Sciences Development and Research Group (ESRG), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, United States of America
| | - Chanvit Leelayuwat
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
19
|
Modulation of Rab7a-mediated growth factor receptor trafficking inhibits islet beta cell apoptosis and autophagy under conditions of metabolic stress. Sci Rep 2020; 10:15741. [PMID: 32978479 PMCID: PMC7519639 DOI: 10.1038/s41598-020-72939-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023] Open
Abstract
Regenerative medicine approaches to enhancing beta cell growth and survival represent potential treatments for diabetes. It is known that growth factors such as insulin, IGF-1 and HGF support beta cell growth and survival, but in people with type 2 diabetes the destructive effects of metabolic stress predominate and beta cell death or dysfunction occurs. In this study we explore the novel hypothesis that regulation of growth factor receptor trafficking can be used to promote islet beta cell survival. Growth factor signalling is dependent on the presence of cell surface receptors. Endosomal trafficking and subsequent recycling or degradation of these receptors is controlled by the Rab GTPase family of proteins. We show that Rab7a siRNA inhibition enhances IGF-1 and HGF signalling in beta cells and increases expression of the growth factor receptors IGF-1R and c-Met. Furthermore, Rab7a inhibition promotes beta cell growth and islet survival, and protects against activation of apoptosis and autophagy pathways under conditions of metabolic stress. This study therefore demonstrates that Rab7a-mediated trafficking of growth factor receptors controls beta cell survival. Pharmaceutical Rab7a inhibition may provide a means to promote beta cell survival in the context of metabolic stress and prevent the onset of type 2 diabetes.
Collapse
|
20
|
Li H, Fang Q, Nie Q, Hu J, Yang C, Huang T, Li H, Nie S. Hypoglycemic and Hypolipidemic Mechanism of Tea Polysaccharides on Type 2 Diabetic Rats via Gut Microbiota and Metabolism Alteration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10015-10028. [PMID: 32811143 DOI: 10.1021/acs.jafc.0c01968] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diabetes mellitus is a serious threat to human health. Tea is cultivated around the world, and its polysaccharide components are reported to be an effective approach for managing type 2 diabetes with fewer adverse effects than medication. To examine the therapeutic effect of tea polysaccharides on diabetes, a type 2 diabetic rat model was generated. We showed that tea polysaccharides remarkably decreased fasting blood glucose and the levels of total cholesterol, total triglyceride, low-density lipoprotein cholesterol, and free fatty acid of type 2 diabetic rats. 16S rRNA sequencing and metabolomics were used to investigate the variation of gut microbiota and the metabolites profiles of diabetic rats after intervention of tea polysaccharides. We found that tea polysaccharides maintained the diversity of gut microbiota and restored the relative abundance of some bacterial genera (Lachnospira, Victivallis, Roseburia, and Fluviicola) which was reduced by diabetes. According to metabolomics analysis, we found that amino acid and other related metabolites was influenced by tea polysaccharides intervention. Correlation analysis among metabolites, gut microbiota, and parameters of hypoglycemic indicated that tea polysaccharides had hypoglycemic and hypolipidemic effect on type 2 diabetes via the modulation of gut microbiota and the improvement of host metabolism.
Collapse
Affiliation(s)
- Haishan Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qingying Fang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chao Yang
- Department of Urology and Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hu Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
21
|
Nakatani S, Mori K, Sonoda M, Nishide K, Uedono H, Tsuda A, Emoto M, Shoji T. Association between Serum Zinc and Calcification Propensity (T 50) in Patients with Type 2 Diabetes Mellitus and In Vitro Effect of Exogenous Zinc on T 50. Biomedicines 2020; 8:biomedicines8090337. [PMID: 32916995 PMCID: PMC7555216 DOI: 10.3390/biomedicines8090337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Zinc inhibits vascular calcification in vivo and in vitro. Patients with type 2 diabetes mellitus show hypozincemia and are at an elevated risk of cardiovascular events. Recently, an in vitro test (T50-test) was developed for determination of serum calcification propensity and a shorter T50 means a higher calcification propensity. This cross-sectional study investigated the association between serum zinc and T50 in 132 type 2 diabetes mellitus patients with various kidney functions. Furthermore, the effect of exogenous zinc on T50 was also investigated in vitro using separately pooled serum samples obtained from healthy volunteers and patients with hemodialysis. We measured T50 levels using the established nephelometric method. The median (interquartile range) levels of T50 and serum zinc were 306 (269 to 332) min, and 80.0 (70.1 to 89.8) µg/dL, respectively. Serum zinc level showed a weak, but positive correlation with T50 (rs = 0.219, p = 0.012). This association remained significant in multivariable-adjusted analysis, and was independent of known factors including phosphate, calcium, and magnesium. Kidney function and glycemic control were not significantly associated with T50. Finally, in vitro experiments showed that addition of a physiological concentration of exogenous zinc chloride significantly increased serum T50. Our results indicate that serum zinc is an independent factor with a potential role in suppressing calcification propensity in serum.
Collapse
Affiliation(s)
- Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
- Correspondence: ; Tel.: +81-6-6645-3806; Fax: +81-6-6645-3808
| | - Mika Sonoda
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
- Division of Internal Medicine, Inoue Hospital, 16-17 enoki-machi, Osaka 564-0053, Japan
| | - Kozo Nishide
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
| | - Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
- Department of Nephrology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Osaka 545-8585, Japan;
- Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
22
|
Pallubinsky H, Phielix E, Dautzenberg B, Schaart G, Connell NJ, Wit‐Verheggen V, Havekes B, Baak MA, Schrauwen P, Marken Lichtenbelt WD. Passive exposure to heat improves glucose metabolism in overweight humans. Acta Physiol (Oxf) 2020; 229:e13488. [PMID: 32359193 PMCID: PMC7379279 DOI: 10.1111/apha.13488] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
AIM Heat exposure has been indicated to positively affect glucose metabolism. An involvement of heat shock protein 72 (HSP72) in the enhancement of insulin sensitivity upon heat exposure has been previously suggested. Here, we performed an intervention study exploring the effect of passive heat acclimation (PHA) on glucose metabolism and intracellular (a) HSP72 concentrations in overweight humans. METHODS Eleven non-diabetic overweight (BMI 27-35 kg/m2 ) participants underwent 10 consecutive days of PHA (4-6 h/day, 34.4 ± 0.2°C, 22.8 ± 2.7%RH). Before and after PHA, whole-body insulin sensitivity was assessed using a one-step hyperinsulinaemic-euglycaemic clamp, skeletal muscle biopsies were taken to measure intracellular iHSP72, energy expenditure and substrate oxidation were measured using indirect calorimetry and blood samples were drawn to assess markers of metabolic health. Thermophysiological adaptations were measured during a temperature ramp protocol before and after PHA. RESULTS Despite a lack of change in iHSP72, 10 days of PHA reduced basal (9.7 ± 1.4 pre- vs 8.4 ± 2.1 μmol · kg-1 · min-1 post-PHA, P = .038) and insulin-stimulated (2.1 ± 0.9 pre- vs 1.5 ± 0.8 μmol · kg-1 · min-1 post-PHA, P = .005) endogenous glucose production (EGP) and increased insulin suppression of EGP (78.5 ± 9.7% pre- vs 83.0 ± 7.9% post-PHA, P = .028). Consistently, fasting plasma glucose (6.0 ± 0.5 pre- vs 5.8 ± 0.4 mmol/L post-PHA, P = .013) and insulin concentrations (97 ± 55 pre- vs 84 ± 49 pmol/L post-PHA, P = .026) decreased significantly. Moreover, fat oxidation increased, and free fatty acids as well as cholesterol concentrations and mean arterial pressure decreased after PHA. CONCLUSION Our results show that PHA for 10 days improves glucose metabolism and enhances fat metabolism, without changes in iHSP72. Further exploration of the therapeutic role of heat in cardio-metabolic disorders should be considered.
Collapse
Affiliation(s)
- Hannah Pallubinsky
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Bas Dautzenberg
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Niels J. Connell
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Vera Wit‐Verheggen
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Bas Havekes
- Department of Internal Medicine Division of Endocrinology Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Marleen A. Baak
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Wouter D. Marken Lichtenbelt
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| |
Collapse
|
23
|
Carey M, Lontchi-Yimagou E, Mitchell W, Reda S, Zhang K, Kehlenbrink S, Koppaka S, Maginley SR, Aleksic S, Bhansali S, Huffman DM, Hawkins M. Central K ATP Channels Modulate Glucose Effectiveness in Humans and Rodents. Diabetes 2020; 69:1140-1148. [PMID: 32217610 PMCID: PMC7243288 DOI: 10.2337/db19-1256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this "glucose effectiveness" is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). KATP channels in the central nervous system have been shown to regulate EGP in humans and rodents. We examined the contribution of central KATP channels to glucose effectiveness. Under fixed hormonal conditions (studies using a pancreatic clamp), hyperglycemia suppressed EGP by ∼50% in both humans without diabetes and normal Sprague-Dawley rats. By contrast, antagonism of KATP channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes were abolished in rats by intracerebroventricular administration of the KATP channel agonist diazoxide. These findings indicate that about half of the suppression of EGP by hyperglycemia is mediated by central KATP channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in subjects with T2D.
Collapse
Affiliation(s)
- Michelle Carey
- Albert Einstein College of Medicine, Bronx, NY
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | | | | | - Sarah Reda
- Albert Einstein College of Medicine, Bronx, NY
| | - Kehao Zhang
- Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lei Y, Gong L, Tan F, Liu Y, Li S, Shen H, Zhu M, Cai W, Xu F, Hou B, Zhou Y, Han H, Qiu L, Sun H. Vaccarin ameliorates insulin resistance and steatosis by activating the AMPK signaling pathway. Eur J Pharmacol 2019; 851:13-24. [DOI: 10.1016/j.ejphar.2019.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/26/2022]
|
25
|
Chen X, Qian L, Wang B, Zhang Z, Liu H, Zhang Y, Liu J. Synergistic Hypoglycemic Effects of Pumpkin Polysaccharides and Puerarin on Type II Diabetes Mellitus Mice. Molecules 2019; 24:E955. [PMID: 30857163 PMCID: PMC6429091 DOI: 10.3390/molecules24050955] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
To investigate the hypoglycemic effect and potential mechanism of pumpkin polysaccharides and puerarin on type II diabetes mellitus (T2DM) mice, mice were fed a high-fat diet and injected intraperitoneally with streptozotacin to induce T2DM. After eight weeks of drug administration, blood samples were withdrawn from tail veins of mice that had been fasted overnight. The results showed that both pumpkin polysaccharides and puerarin, as well as a pumpkin polysaccharides and puerarin combination, could ameliorate T2DM. The pumpkin polysaccharides and puerarin combination had a synergetic hypoglycemic effect on T2DM mice that was greater than the pumpkin polysaccharides' or the puerarin's hypoglycemic effect. Both the pumpkin polysaccharides and the puerarin were found to ameliorate the blood glucose tolerance and insulin resistance of T2DM mice. They showed lipid-lowering activity by reducing the total cholesterol, triglycerides, and low-density lipoprotein levels, and improving the high-density lipoprotein level. They had beneficial effects on the oxidative stress by decreasing the reactive oxygen species and malondialdehyde levels, and increasing the glutathione level and the superoxide dismutase activity. Furthermore, the nuclear factor E2 related factor 2 (Nrf2), heme oxygenase-1, and phosphoinositide-3-kinase (PI3K) levels were upregulated, and the Nrf2 and PI3K signalling pathways might be involved in the hypoglycemic mechanism. The combined administration of pumpkin polysaccharides and puerarin could synergistically ameliorate T2DM.
Collapse
Affiliation(s)
- Xue Chen
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| | - Lei Qian
- Tianjin Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China.
- Key Laboratory of Storage of Agro-products, Ministry of Agriculture, Tianjin 300384, China.
| | - Bujiang Wang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| | - Zhijun Zhang
- Tianjin Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China.
- Key Laboratory of Storage of Agro-products, Ministry of Agriculture, Tianjin 300384, China.
| | - Han Liu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| | - Yeni Zhang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| | - Jinfu Liu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
26
|
Hari A, Fealy C, Solomon TPJ, Haus JM, Kelly KR, Barkoukis H, Kirwan JP. Exercise-induced improvements in glucose effectiveness are blunted by a high glycemic diet in adults with prediabetes. Acta Diabetol 2019; 56:211-217. [PMID: 30612202 PMCID: PMC6530476 DOI: 10.1007/s00592-018-1272-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022]
Abstract
AIMS Glucose effectiveness (GE) refers to the ability of glucose to influence its own metabolism through insulin-independent mechanisms. Diminished GE is a predictor of progression to type 2 diabetes. Exercise training improves GE, however, little is known about how dietary interventions, such as manipulating the glycemic index of diets, interact with exercise-induced improvements in GE in at-risk populations. METHODS We enrolled 33 adults with obesity and pre-diabetes (17 males, 65.7 ± 4.3 years, 34.9 ± 4.2 kg m-2) into a 12-week exercise training program (1 h day-1 and 5 day week-1 at ~ 85% of maximum heart rate) while being randomized to concurrently receive either a low (EX-LOG: 40 ± 0.3 au) or high (EX-HIG: 80 ± 0.6 au) glycemic index diet. A 75-g oral-glucose-tolerance test (OGTT) was performed before and after the intervention and GE was calculated using the Nagasaka equation. Insulin resistance was estimated using a hyperinsulinemic-euglycemic clamp and cardiorespiratory fitness using a VO2max test. RESULTS Both EX-LOG and EX-HIG groups had similar improvements in weight (8.6 ± 5.1 kg, P < 0.001), VO2max (6 ± 3.5 mL kg-1 min-1, P < 0.001) and clamp-measured peripheral insulin resistance (1.7 ± 0.9 mg kg-1 min-1, P < 0.001), relative to baseline data. GE in EX-LOG and EX-HIG was similar at baseline (1.9 ± 0.38 vs. 1.85 ± 0.3 mg dL-1 min-1, respectively; P > 0.05) and increased by ~ 20% post-intervention in the EX-LOG arm (∆GE: 0.07-0.57 mg dL-1 min-1, P < 0.05). Plasma free fatty acid (FFA) concentrations also decreased only in the EX-LOG arm (∆FFA: 0.13 ± 0.23 mmol L-1, P < 0.05). CONCLUSIONS Our data suggest that a high glycemic index diet may suppress exercise-induced enhancement of GE, and this may be mediated through plasma FFAs.
Collapse
Affiliation(s)
- Adithya Hari
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Ciaràn Fealy
- Maastricht University, Maastricht, The Netherlands
| | | | | | - Karen R Kelly
- Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA, USA
| | | | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Western Reserve University, Cleveland, OH, USA.
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
27
|
Barre DE, Mizier-Barre KA. Lignans' Potential in Pre and Post-onset Type 2 Diabetes Management. Curr Diabetes Rev 2019; 16:2-11. [PMID: 30215336 DOI: 10.2174/1573399814666180914094520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/02/2018] [Accepted: 09/07/2018] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Type 2 Diabetes (T2D) cases continue to rise dramatically despite efforts to get people to exercise and eat with a view to health and combatting the cluster of 7 issues (central obesity (elevated waist circumference), hyperglycaemia, hypertension, dyslipidemia, pro-thrombotic state, increased oxidation (including Low-density Lipoprotein (LDL)) and the pro-inflammatory state associated with pre- and post-onset T2D. BACKGROUND There are numerous medications available to deal with these seven major issues. However, each medication currently available manages a maximum of two cluster members at a time. Consequently, polypharmacy is frequently required to manage the cluster of seven. Polypharmacy brings with it high financial costs for numerous medications, the risk of poor compliance (particularly so in older patients), side effects and drug interactions. Thus, there is a search for new agents that reduce the high costs and risks of polypharmacy while at the same time combatting three or more of the cluster of seven. There is very limited evidence to suggest that one or more lignans may efficaciously and safely, in the short and long term, manage at least three of the cluster of seven, pre- and post-T2D onset, thus reducing polypharmacy. However, multi-centre, large clinical trials are required before any definitive conclusions about these lignans can be reached regarding their safe and efficacious polypharmacy reduction potential, both long and short-term, in pre and post-onset T2D management. CONCLUSION It is concluded that some lignans appear to have the potential to manage at least three members of the cluster of seven in pre- or post-T2D onset and hence reduce polypharmacy but much more investigation is required to confirm if such is the case. At the moment, there is not enough evidence that any of the lignans will, in the long or short term, safely and efficaciously manage the cluster of seven via polypharmacy reduction.
Collapse
Affiliation(s)
- Douglas Edward Barre
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia, Canada
| | | |
Collapse
|
28
|
Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:532-542. [PMID: 30266430 PMCID: PMC6372834 DOI: 10.1016/j.bbalip.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
In mammalian blood plasma, serum albumin acts as a transport protein for free fatty acids, other lipids and hydrophobic molecules including neurodegenerative peptides, and essential metal ions such as zinc to allow their systemic distribution. Importantly, binding of these chemically extremely diverse entities is not independent, but linked allosterically. One particularly intriguing allosteric link exists between free fatty acid and zinc binding. Albumin thus mediates crosstalk between energy status/metabolism and organismal zinc handling. In recognition of the fact that even small changes in extracellular zinc concentration and speciation modulate the function of many cell types, the albumin-mediated impact of free fatty acid concentration on zinc distribution may be significant for both normal physiological processes including energy metabolism, insulin activity, heparin neutralisation, blood coagulation, and zinc signalling, and a range of disease states, including metabolic syndrome, cardiovascular disease, myocardial ischemia, diabetes, and thrombosis. Serum albumin binds and transports both free fatty acids and Zn2+ ions Elevated plasma free fatty acids impair Zn2+ binding by albumin through an allosteric mechanism The resulting changes in plasma zinc speciation are thought to impact blood coagulation and may promote thrombosis Increased free Zn2+ may lead to enhanced zinc export from plasma and dysregulation of zinc homeostasis in multiple tissues
Collapse
Affiliation(s)
| | | | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
29
|
Effect of body mass index on diabetogenesis factors at a fixed fasting plasma glucose level. PLoS One 2018; 13:e0189115. [PMID: 29377927 PMCID: PMC5788342 DOI: 10.1371/journal.pone.0189115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
Aim The present study evaluated the relative influence of body mass index (BMI) on insulin resistance (IR), first-phase insulin secretion (FPIS), second-phase insulin secretion (SPIS), and glucose effectiveness (GE) at a fixed fasting plasma glucose level in an older ethnic Chinese population. Methods In total, 265 individuals aged 60 years with a fasting plasma glucose level of 5.56 mmol/L were enrolled. Participants had BMIs of 20.0–34.2 kg/m2. IR, FPIS, SPIS, and GE were estimated using our previously developed equations. Pearson correlation analysis was conducted to assess the correlations between the four diabetogenesis factors and BMI. A general linear model was used to determine the differences in the percentage of change among the four factor slopes against BMI. Results Significant correlations were observed between BMI and FPIS, SPIS, IR, and GE in both women and men, which were higher than those reported previously. In men, BMI had the most profound effect on SPIS, followed by IR, FPIS, and GE, whereas in women, the order was slightly different: IR, followed by FPIS, SPIS, and GE. Significant differences were observed among all these slopes, except for the slopes between FPIS and SPIS in women (p = 0.856) and IR and FPIS in men (p = 0.258). Conclusions The contribution of obesity to all diabetes factors, except GE, was higher than that reported previously. BMI had the most profound effect on insulin secretion in men and on IR in women in this 60-year-old cohort, suggesting that lifestyle modifications for obesity reduction in women remain the most important method for improving glucose metabolism and preventing future type 2 diabetes mellitus.
Collapse
|
30
|
Karstoft K, Clark MA, Jakobsen I, Knudsen SH, van Hall G, Pedersen BK, Solomon TPJ. Glucose effectiveness, but not insulin sensitivity, is improved after short-term interval training in individuals with type 2 diabetes mellitus: a controlled, randomised, crossover trial. Diabetologia 2017; 60:2432-2442. [PMID: 28842722 DOI: 10.1007/s00125-017-4406-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS The role of glucose effectiveness (S G) in training-induced improvements in glucose metabolism in individuals with type 2 diabetes is unknown. The objectives and primary outcomes of this study were: (1) to assess the efficacy of interval walking training (IWT) and continuous walking training (CWT) on S G and insulin sensitivity (S I) in individuals with type 2 diabetes; and (2) to assess the association of changes in S G and S I with changes in glycaemic control. METHODS Fourteen participants with type 2 diabetes underwent three trials (IWT, CWT and no training) in a crossover study. Exclusion criteria were exogenous insulin treatment, smoking, pregnancy, contraindications to structured physical activity and participation in recurrent training (>90 min/week). The trials were performed in a randomised order (computerised-generated randomisation). IWT and CWT consisted of ten supervised treadmill walking sessions, each lasting 60 min, over 2 weeks. IWT was performed as repeated cycles of 3 min slow walking and 3 min fast walking (aiming for 54% and 89% of [Formula: see text], respectively, which was measured during the last minute of each interval), and CWT was performed aiming for a moderate walking speed (73% of [Formula: see text]). A two-step (pancreatic and hyperinsulinaemic) hyperglycaemic clamp was implemented before and after each trial. All data were collected in a hospitalised setting. Neither participants nor assessors were blinded to the trial interventions. RESULTS Thirteen individuals completed all procedures and were included in the analyses. IWT improved S G (mean ± SEM: 0.6 ± 0.1 mg kg-1 min-1, p < 0.05) but not S I (p > 0.05), whereas CWT matched for energy expenditure and time duration improved neither S G nor S I (both p > 0.05). Changes in S G, but not in S I, were associated with changes in mean (β = -0.62 ± 0.23, r 2 = 0.17, p < 0.01) and maximum (β = -1.18 ± 0.52, r 2 = 0.12, p < 0.05) glucose levels during 24 h continuous glucose monitoring. CONCLUSIONS/INTERPRETATION Two weeks of IWT, but not CWT, improves S G but not S I in individuals with type 2 diabetes. Moreover, changes in S G are associated with changes in glycaemic control. Therefore, increased S G is likely an important mechanism by which training improves glycaemic control in individuals with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT02320526 FUNDING: CFAS is supported by a grant from TrygFonden. During the study period, the Centre of Inflammation and Metabolism (CIM) was supported by a grant from the Danish National Research Foundation (DNRF55). The study was further supported by grants from Diabetesforeningen, Augustinusfonden and Krista og Viggo Petersens Fond. CIM/CFAS is a member of DD2-the Danish Center for Strategic Research in Type 2 Diabetes (the Danish Council for Strategic Research, grant no. 09-067009 and 09-075724).
Collapse
Affiliation(s)
- Kristian Karstoft
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Section M7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
- Department of Clinical Pharmacology, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Margaret A Clark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Section M7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Ida Jakobsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Section M7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Sine H Knudsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Section M7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Section M7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Thomas P J Solomon
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Barre DE, Mizier-Barre KA, Griscti O, Hafez K. Flaxseed oil supplementation manipulates correlations between serum individual mol % free fatty acid levels and insulin resistance in type 2 diabetics. Insulin resistance and percent remaining pancreatic β-cell function are unaffected. Endocr Regul 2016; 50:183-193. [DOI: 10.1515/enr-2016-0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Objectives. Elevated total serum free fatty acids (FFAs) concentrations have been suggested, controversially, to enhance insulin resistance and decrease percent remaining β-cell function. However, concentrations of individual serum FFAs have never been published in terms of their relationship (correlation) to homeostatic model assessment-insulin resistance (HOMA-IR) and percent remaining β-cell function (HOMA-%β) in the type 2 diabetics (T2Ds). Alpha-linolenic acid consumption has a negative correlation with the insulin resistance, which in turn is negatively correlated with the remaining β-cell function. The primary objective was to test the hypothesis that there would be different relationship (correlation) between the blood serum individual free FFA mol % levels and HOMA-IR and/or HOMA-%β in T2D. The secondary objective was to test the hypothesis that flaxseed oil, previously being shown to be ineffective in the glycemic control in T2Ds, may alter these correlations in a statistically significant manner as well as HOMA-IR and/or HOMA-%β.
Methods. Patients were recruited via a newspaper advertisement and two physicians have been employed. All the patients came to visit one and three months later for a second visit. At the second visit, the subjects were randomly assigned (double blind) to flaxseed or safflower oil treatment for three months, until the third visit.
Results. Different statistically significant correlations or trends towards among some serum individual free FFA mol % levels and HOMA-IR and HOMA-%β, pre- and post-flaxseed and safflower oil supplementation were found. However, flaxseed oil had no impact on HOMA-IR or HOMA-%β despite statistically significant alterations in correlations compared to baseline HOMA-IR.
Conclusions. The obtained data indicate that high doses of flaxseed oil have no statistically significant effect on HOMA-IR or HOMA-%β in T2Ds, probably due to the additive effects of negative and positive correlations.
Collapse
Affiliation(s)
- DE Barre
- Department of Health Sciences and Emergency Management, Cape Breton University, Sydney, Nova Scotia, Canada
| | - KA Mizier-Barre
- Department of Biology, Cape Breton University, Sydney, Nova Scotia, Canada
| | - O Griscti
- School of Nursing, Cape Breton University, Sydney, Nova Scotia, Canada
| | - K Hafez
- Dr Soliman Faqeeh Hospital/King Abdulla University of Science and Technology, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Dasgupta R, Naik D, Thomas N. Emerging concepts in the pathogenesis of diabetes in fibrocalculous pancreatic diabetes. J Diabetes 2015; 7:754-61. [PMID: 25707547 DOI: 10.1111/1753-0407.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/16/2015] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
Fibrocalcific pancreatic diabetes (FCPD) is a rare form of diabetes affecting people in the tropics and presenting with unique clinical and radiological features. The onset of diabetes usually follows the first few episodes of abdominal pain and develops by the second or third decade of life. Endocrine and exocrine pancreatic insufficiency, brittle glycemic control, and insulin-requiring, ketosis-resistant diabetes are the novel characteristics of FCPD. The etiopathogenetic mechanisms leading to FCPD remain unknown. Although defects in insulin secretion are the major contributors, growing evidence towards a possible role for insulin resistance and body composition abnormalities have added a new dimension to the disease pathogenesis. Deciphering the key pathogenetic mechanisms may have a profound effect on therapeutic strategies in future studies on FCPD.
Collapse
Affiliation(s)
- Riddhi Dasgupta
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | - Nihal Thomas
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| |
Collapse
|
33
|
Park MH, Han JS. Padina arborescens Ameliorates Hyperglycemia and Dyslipidemia in C57BL/KsJ-db/db Mice, a Model of Type 2 Diabetes Mellitus. J Med Food 2015; 18:1088-94. [PMID: 26355834 DOI: 10.1089/jmf.2014.3375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recently, there has been a growing interest in alternative therapies and in the therapeutic use of natural products for the treatment of diabetes. Therefore, in this study, we investigated the hypoglycemic and hypolipidemic effects of brown algae, Padina arborescens, in an animal model of type 2 diabetes. For 6 weeks, male C57BL/KsJ-db/db mice were administrated either control diet with no treatment or were treated with rosiglitazone (RG; 0.005%, w/w) or P. arborescens extract (PAE; 0.5%, w/w). At the end of the experimental period, the blood glucose levels, glycosylated hemoglobin levels, and plasma insulin levels were significantly lower in the RG and PAE groups compared with the control group. In addition, glucose tolerance was significantly improved in the RG and PAE groups. The homeostatic index of insulin resistance was lower in the RG and PAE groups than the diabetic control group. Also, the total cholesterol, LDL-cholesterol, triglyceride, and free fatty acid levels were lower in the PAE group than in the control group, whereas the HDL-C level was higher in the PAE group. Supplementation with PAE significantly lowered hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities, and increased glucokinase activity in the liver. Consequently, these results suggest that PAE may be beneficial in improving insulin resistance, hyperglycemia, and dyslipidemia in type 2 diabetics.
Collapse
Affiliation(s)
- Mi Hwa Park
- 1 Department of Food and Nutrition, College of Medical and Life Science, Silla University , Busan, Korea
| | - Ji-Sook Han
- 2 Department of Food Science and Nutrition, Pusan National University , Busan, Korea
| |
Collapse
|
34
|
Weiss R, Magge SN, Santoro N, Giannini C, Boston R, Holder T, Shaw M, Duran E, Hershkop KJ, Caprio S. Glucose effectiveness in obese children: relation to degree of obesity and dysglycemia. Diabetes Care 2015; 38:689-95. [PMID: 25633663 PMCID: PMC4370330 DOI: 10.2337/dc14-2183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Impaired glucose effectiveness (GE) plays a role in the deterioration of glucose metabolism. Our aim was to validate a surrogate of GE derived from an oral glucose tolerance test (OGTT) and to assess the impact of degrees of obesity and of glucose tolerance on it. RESEARCH DESIGN AND METHODS The OGTT-derived surrogate of GE (oGE) was validated in obese adolescents who underwent an OGTT and an intravenous glucose tolerance test (IVGTT). We then evaluated anthropometric determinants of the oGE and its impact on the dynamics of glucose tolerance in a cohort of children with varying degrees of obesity. RESULTS The correlation of oGE and IVGTT-derived GE in 98 obese adolescents was r = 0.35 (P < 0.001) as a whole and r = 0.51 (P < 0.001) in subjects with normal glucose tolerance. In a cohort of 1,418 children, the adjusted GE was associated with increasing obesity (P < 0.001 for each category of obesity). Quartiles of oGE and the oral disposition index were associated with 2-h glucose levels (P < 0.001 for both). Among 421 nondiabetic obese subjects (276 subjects with normal glucose tolerance/145 subjects with impaired glucose tolerance who repeated their OGTT after a mean time of 28 ± 16 months), oGE changes were tightly associated with weight (r = 0.83, P < 0.001) and waist circumference changes (r = 0.67, P < 0.001). Baseline oGE and changes in oGE over time emerged as significant predictors of the change in 2-h glucose levels (standardized B = -0.76 and B = -0.98 respectively, P < 0.001 for both). CONCLUSIONS The oGE is associated with the degree of and changes in weight and waist circumference and is an independent predictor of glucose tolerance dynamics.
Collapse
Affiliation(s)
- Ram Weiss
- Department of Human Metabolism and Nutrition, Hebrew University, Jerusalem, Israel
| | - Sheela N Magge
- Division of Endocrinology and Diabetes, Center for Translational Science, Children's National, Washington, DC
| | - Nicola Santoro
- Department of Pediatrics, Yale University, New Haven, CT
| | | | - Raymond Boston
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tara Holder
- Department of Pediatrics, Yale University, New Haven, CT
| | - Melissa Shaw
- Department of Pediatrics, Yale University, New Haven, CT
| | - Elvira Duran
- Department of Pediatrics, Yale University, New Haven, CT
| | - Karen J Hershkop
- Department of Human Metabolism and Nutrition, Hebrew University, Jerusalem, Israel
| | - Sonia Caprio
- Department of Pediatrics, Yale University, New Haven, CT
| |
Collapse
|
35
|
Kowalski GM, Bruce CR. The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents. Am J Physiol Endocrinol Metab 2014; 307:E859-71. [PMID: 25205823 DOI: 10.1152/ajpendo.00165.2014] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of insulin resistance and type 2 diabetes (T2D) is increasing at alarming rates. In the quest to understand the underlying causes of and to identify novel therapeutic targets to treat T2D, scientists have become increasingly reliant on the use of rodent models. Here, we provide a discussion on the regulation of rodent glucose metabolism, highlighting key differences and similarities that exist between rodents and humans. In addition, some of the issues and considerations associated with assessing glucose homeostasis and insulin action are outlined. We also discuss the role of the liver vs. skeletal muscle in regulating whole body glucose metabolism in rodents, emphasizing the importance of defective hepatic glucose metabolism in the development of impaired glucose tolerance, insulin resistance, and T2D.
Collapse
Affiliation(s)
- Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
36
|
Ueta K, O'Brien TP, McCoy GA, Kim K, Healey EC, Farmer TD, Donahue EP, Condren AB, Printz RL, Shiota M. Glucotoxicity targets hepatic glucokinase in Zucker diabetic fatty rats, a model of type 2 diabetes associated with obesity. Am J Physiol Endocrinol Metab 2014; 306:E1225-38. [PMID: 24714398 PMCID: PMC4042096 DOI: 10.1152/ajpendo.00507.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A loss of glucose effectiveness to suppress hepatic glucose production as well as increase hepatic glucose uptake and storage as glycogen is associated with a defective increase in glucose phosphorylation catalyzed by glucokinase (GK) in Zucker diabetic fatty (ZDF) rats. We extended these observations by investigating the role of persistent hyperglycemia (glucotoxicity) in the development of impaired hepatic GK activity in ZDF rats. We measured expression and localization of GK and GK regulatory protein (GKRP), translocation of GK, and hepatic glucose flux in response to a gastric mixed meal load (MMT) and hyperglycemic hyperinsulinemic clamp after 1 or 6 wk of treatment with the sodium-glucose transporter 2 inhibitor (canaglifrozin) that was used to correct the persistent hyperglycemia of ZDF rats. Defective augmentation of glucose phosphorylation in response to a rise in plasma glucose in ZDF rats was associated with the coresidency of GKRP with GK in the cytoplasm in the midstage of diabetes, which was followed by a decrease in GK protein levels due to impaired posttranscriptional processing in the late stage of diabetes. Correcting hyperglycemia from the middle diabetic stage normalized the rate of glucose phosphorylation by maintaining GK protein levels, restoring normal nuclear residency of GK and GKRP under basal conditions and normalizing translocation of GK from the nucleus to the cytoplasm, with GKRP remaining in the nucleus in response to a rise in plasma glucose. This improved the liver's metabolic ability to respond to hyperglycemic hyperinsulinemia. Glucotoxicity is responsible for loss of glucose effectiveness and is associated with altered GK regulation in the ZDF rat.
Collapse
Affiliation(s)
- Kiichiro Ueta
- Department of Molecular Physiology and Biophysics and
| | | | | | - Kuikwon Kim
- Department of Molecular Physiology and Biophysics and
| | - Erin C Healey
- Department of Molecular Physiology and Biophysics and
| | - Tiffany D Farmer
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - E Patrick Donahue
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Richard L Printz
- Department of Molecular Physiology and Biophysics and Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics and Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
37
|
Bang CY, Choung SY. Enzogenol improves diabetes-related metabolic change in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. J Pharm Pharmacol 2014; 66:875-85. [DOI: 10.1111/jphp.12211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/07/2013] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
Dietary use of pine bark extract has been associated with reduced risk of inflammation and diabetes. In this study, we investigated the antidiabetic effects of enzogenol, proanthocyanidins-rich bioflavonoid extract derived from the pine bark of New Zealand Pinus radiata trees, using C57BL/KsJ-db/db mice.
Methods
After 1-week acclimation period, the db/db mice were divided into vehicle-treated, Enzogenol-treated (12.5, 25 and 50 mg/kg; EZ) and positive control (tea polyphenol 50 mg/kg; TPP) groups.
Key findings
The administration of EZ improved the glucose tolerance and lowered the glycosylated haemoglobin (HbA1C), insulin and glucagon levels in blood. Interestingly, EZ and TPP treatments resulted in reduced hepatic free fatty acid, cholesterol and triglyceride levels in db/db mice. EZ and TPP treatments significantly elevated hepatic AMPK activity, and the expression of proteins related to glucose homeostasis and lipid metabolism, such as glucokinase, peroxisome proliferator-activated receptor (PPAR)α and long-chain acyl-CoA dehydrogenase protein level with a simultaneous reduction of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase protein expression. In addition, the EZ administration groups had an increased hepatic glycogen synthase expression in db/db mice.
Conclusions
These results suggest that EZ may be beneficial in improving insulin resistance and hyperglycaemia in type 2 diabetic mice by enhancing the glucose and lipids metabolism.
Collapse
Affiliation(s)
- Chae-Young Bang
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Se-Young Choung
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Dobbins RL, Shearn SP, Byerly RL, Gao FF, Mahar KM, Napolitano A, Nachbaur GJ, Le Monnier de Gouville AC. GSK256073, a selective agonist of G-protein coupled receptor 109A (GPR109A) reduces serum glucose in subjects with type 2 diabetes mellitus. Diabetes Obes Metab 2013; 15:1013-21. [PMID: 23701262 DOI: 10.1111/dom.12132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/26/2013] [Accepted: 05/06/2013] [Indexed: 11/30/2022]
Abstract
AIMS This clinical trial assessed whether a potent, selective GPR109A agonist, GSK256073, could, through inhibition of lipolysis, acutely improve glucose homeostasis in subjects with type 2 diabetes mellitus. METHODS Thirty-nine diabetic subjects were enrolled in the randomized, single-blind, placebo-controlled, three-period crossover trial. Each subject received placebo and two of four regimens of GSK256073 for 2 days. GSK256073 was dosed 5 mg every 12 h before breakfast and supper (BID), 10 mg every 24 h before breakfast (QD), 25 mg BID and 50 mg QD. RESULTS The change from baseline weighted mean glucose concentration for an interval from 24 to 48 h after the initial drug dose was significantly reduced for all GSK256073 regimens, reaching a maximum of -0.87 mmol/l (-1.20, -0.52) with the 25 mg BID dose. Sustained suppression of non-esterified fatty acid (NEFA) and glycerol concentrations was observed with all GSK256073 doses throughout the 48-h dosing period. Serum insulin and C-peptide concentrations fell in concert with glucose concentrations and calculated HOMA-IR scores decreased 27-47%, consistent with insulin sensitization. No marked differences were evident between either 10 and 50 mg total daily doses or QD versus BID dosing. CONCLUSIONS Administration of a GPR109A agonist for 2 days significantly decreased serum NEFA and glucose concentrations in diabetic subjects. Glucose improvements were associated with decreased insulin concentrations and measures of enhanced insulin sensitivity. Improved glucose control occurred with GSK256073 doses that were generally safe and not associated with events of flushing or gastrointestinal disturbances.
Collapse
MESH Headings
- C-Peptide/blood
- Cross-Over Studies
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drugs, Investigational/administration & dosage
- Drugs, Investigational/analysis
- Drugs, Investigational/pharmacokinetics
- Drugs, Investigational/therapeutic use
- Fatty Acids, Nonesterified/blood
- Female
- Follow-Up Studies
- Glycerol/blood
- Humans
- Hyperglycemia/prevention & control
- Hyperinsulinism/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/blood
- Hypoglycemic Agents/pharmacokinetics
- Hypoglycemic Agents/therapeutic use
- Hypolipidemic Agents/administration & dosage
- Hypolipidemic Agents/blood
- Hypolipidemic Agents/pharmacokinetics
- Hypolipidemic Agents/therapeutic use
- Insulin Resistance
- Male
- Middle Aged
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Nicotinic/metabolism
- Single-Blind Method
Collapse
Affiliation(s)
- R L Dobbins
- GlaxoSmithKline, Drug Discovery, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fabbrini E, Higgins PB, Magkos F, Bastarrachea RA, Voruganti VS, Comuzzie AG, Shade RE, Gastaldelli A, Horton JD, Omodei D, Patterson BW, Klein S. Metabolic response to high-carbohydrate and low-carbohydrate meals in a nonhuman primate model. Am J Physiol Endocrinol Metab 2013; 304:E444-51. [PMID: 23269412 PMCID: PMC3566507 DOI: 10.1152/ajpendo.00347.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We established a model of chronic portal vein catheterization in an awake nonhuman primate to provide a comprehensive evaluation of the metabolic response to low-carbohydrate/high-fat (LCHF; 20% carbohydrate and 65% fat) and high-carbohydrate/low-fat (HCLF; 65% carbohydrate and 20% fat) meal ingestion. Each meal was given 1 wk apart to five young adult (7.8 ± 1.3 yr old) male baboons. A [U-¹³C]glucose tracer was added to the meal, and a [6,6-²H₂]glucose tracer was infused systemically to assess glucose kinetics. Plasma areas under the curve (AUCs) of glucose, insulin, and C-peptide in the femoral artery and of glucose and insulin in the portal vein were higher (P ≤ 0.05) after ingestion of the HCLF compared with the LCHF meal. Compared with the LCHF meal, the rate of appearance of ingested glucose into the portal vein and the systemic circulation was greater after the HCLF meal (P < 0.05). Endogenous glucose production decreased by ∼40% after ingestion of the HCLF meal but was not affected by the LCHF meal (P < 0.05). Portal vein blood flow increased (P < 0.001) to a similar extent after consumption of either meal. In conclusion, a LCHF diet causes minimal changes in the rate of glucose appearance in both portal and systemic circulations, does not affect the rate of endogenous glucose production, and causes minimal stimulation of C-peptide and insulin. These observations demonstrate that LCHF diets cause minimal perturbations in glucose homeostasis and pancreatic β-cell activity.
Collapse
Affiliation(s)
- Elisa Fabbrini
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Singh AB, Singh N, Akanksha, Jayendra, Maurya R, Srivastava AK. Coagulanolide modulates hepatic glucose metabolism in C57BL/KsJ-db/db mice. Hum Exp Toxicol 2013; 31:1056-65. [PMID: 23060434 DOI: 10.1177/0960327112438289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased hepatic glucose output is one of the major causes of fasting hyperglycemia in diabetic patients. In this study, we investigated the mechanism of action of coagulanolide on hepatic glucose, regulating enzymes in type 2 diabetic C57BL/KsJ-db/db (db/db) mice. Coagulanolide is an active component of Withania coagulans fruit. Oral administration of coagulanolide for 3 weeks decreases fasting blood glucose and plasma insulin significantly, and it improves glucose tolerance in the db/db mice group. The enzyme activity and protein expression of glucokinase and pyruvate kinase was significantly enhanced in coagulanolide-treated db/db group when compared with untreated one. On the other hand, activities and protein expression of fructose-1,6-bisphosphatase, glucose 6-phosphatase, phosphoenolpyruvate carboxykinase, and glycogen phosphorylase enzymes were significantly lowered in treated group. The treatment with coagulanolide also normalizes the concentrations of plasma cholesterol, triglyceride, free fatty acid, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the db/db mice. These findings suggested that the coagulanolide is useful in the control of fasting hyperglycemia in type 2 diabetes by regulating the production of hepatic glucose.
Collapse
Affiliation(s)
- A B Singh
- Biochemistry Division, Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| | | | | | | | | | | |
Collapse
|
41
|
Kehlenbrink S, Koppaka S, Martin M, Relwani R, Cui MH, Hwang JH, Li Y, Basu R, Hawkins M, Kishore P. Elevated NEFA levels impair glucose effectiveness by increasing net hepatic glycogenolysis. Diabetologia 2012; 55:3021-8. [PMID: 22847060 PMCID: PMC6317075 DOI: 10.1007/s00125-012-2662-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/29/2012] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Acute hyperglycaemia rapidly suppresses endogenous glucose production (EGP) in non-diabetic individuals, mainly by inhibiting glycogenolysis. Loss of this 'glucose effectiveness' contributes to fasting hyperglycaemia in type 2 diabetes. Elevated NEFA levels characteristic of type 2 diabetes impair glucose effectiveness, although the mechanism is not fully understood. Therefore we examined the impact of increasing NEFA levels on the ability of hyperglycaemia to regulate pathways of EGP. METHODS We performed 4 h 'pancreatic clamp' studies (somatostatin; basal glucagon/growth hormone/insulin) in seven non-diabetic individuals. Glucose fluxes (D-[6,6-(2)H(2)]glucose) and hepatic glycogen concentrations ((13)C magnetic resonance spectroscopy) were quantified under three conditions: euglycaemia, hyperglycaemia and hyperglycaemia with elevated NEFA (HY-NEFA). RESULTS EGP was suppressed by hyperglycaemia, but not by HY-NEFA. Hepatic glycogen concentration decreased ~14% with prolonged fasting during euglycaemia and increased by ~12% with hyperglycaemia. In contrast, raising NEFA levels in HY-NEFA caused a substantial ~23% reduction in hepatic glycogen concentration. Moreover, rates of gluconeogenesis were decreased with hyperglycaemia, but increased with HY-NEFA. CONCLUSIONS/INTERPRETATION Increased NEFA appear to profoundly blunt the ability of hyperglycaemia to inhibit net glycogenolysis under basal hormonal conditions.
Collapse
Affiliation(s)
- S Kehlenbrink
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Roth J, Qiang X, Marbán SL, Redelt H, Lowell BC. The Obesity Pandemic: Where Have We Been and Where Are We Going? ACTA ACUST UNITED AC 2012; 12 Suppl 2:88S-101S. [PMID: 15601956 DOI: 10.1038/oby.2004.273] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity, a new pandemic, is associated with an increased risk of death, morbidity, and accelerated aging. The multiple therapeutic modalities used to promote weight loss are outlined with caution, especially for patients who are very young or old. Except for very rare single gene defects, the inheritance of obesity is complex and still poorly understood, despite active investigations. Recent advances that have shed light on the pathophysiology of obesity are the recognition that 1) excess fat is deposited in liver, muscle, and pancreatic islets; 2) fat tissue secretes a large number of active signaling molecules including leptin, adiponectin, and resistin, as well as free fatty acids; and 3) activated macrophages colonize the adipose tissue. Other candidates for key roles in the causes and consequences of obesity include 1) metabolic programming, where food acts as a developmental regulator; 2) the constellation of defects known as the "metabolic syndrome;" 3) cortisol overproduction in the adipose tissue; and especially, 4) insulin resistance. The possible etiologies of insulin resistance include cytokine excess, elevated free fatty acids, and hyperinsulinemia itself, as with transgenic overproduction of insulin in mice.
Collapse
Affiliation(s)
- Jesse Roth
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | |
Collapse
|
43
|
Kishore P, Boucai L, Zhang K, Li W, Koppaka S, Kehlenbrink S, Schiwek A, Esterson YB, Mehta D, Bursheh S, Su Y, Gutierrez-Juarez R, Muzumdar R, Schwartz GJ, Hawkins M. Activation of K(ATP) channels suppresses glucose production in humans. J Clin Invest 2011; 121:4916-20. [PMID: 22056385 DOI: 10.1172/jci58035] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 10/05/2011] [Indexed: 12/17/2022] Open
Abstract
Increased endogenous glucose production (EGP) is a hallmark of type 2 diabetes mellitus. While there is evidence for central regulation of EGP by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels in rodents, whether these central pathways contribute to regulation of EGP in humans remains to be determined. Here we present evidence for central nervous system regulation of EGP in humans that is consistent with complementary rodent studies. Oral administration of the K(ATP) channel activator diazoxide under fixed hormonal conditions substantially decreased EGP in nondiabetic humans and Sprague Dawley rats. In rats, comparable doses of oral diazoxide attained appreciable concentrations in the cerebrospinal fluid, and the effects of oral diazoxide were abolished by i.c.v. administration of the K(ATP) channel blocker glibenclamide. These results suggest that activation of hypothalamic K(ATP) channels may be an important regulator of EGP in humans and that this pathway could be a target for treatment of hyperglycemia in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Preeti Kishore
- Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Protein balance in nondiabetic versus diabetic patients undergoing colon surgery: effect of epidural analgesia and amino acids. Reg Anesth Pain Med 2010; 35:355-60. [PMID: 20607877 DOI: 10.1097/aap.0b013e3181e66e4f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Surgical injury provokes a stress response that is thought to be pronounced in patients with diabetes mellitus type 2 (DM2) leading to intensified catabolism. The aim of this study was to compare the effects of perioperative epidural analgesia (EDA) versus patient controlled analgesia (PCA) and amino acid infusion on postoperative metabolism in patients with and without DM2. METHODS For this study, 12 nondiabetic patients and 12 diabetic patients undergoing colorectal surgery were randomly assigned to 4 groups (n = 6 per group) receiving either EDA (nondiabetic EDA and diabetic EDA [DEDA group]) or PCA with morphine (nondiabetic PCA and diabetic PCA) for perioperative pain control. Protein and glucose kinetics were measured on the second postoperative day using L-[1-13C]leucine and [6,6-2H2]glucose infusion during a fasted state and a 3-hr fed state with amino acid infusion. RESULTS The transition from the fasted to fed state suppressed endogenous rate of appearance (Ra) of glucose (P G 0.001) with a distinct effect for the DEDA group (P G 0.001). The Ra of leucine and the endogenous rate of appearance of leucine tended to be lower in the DEDA group(P = 0.056 and P = 0.07). Leucine oxidation was more suppressed in the DEDA group (P = 0.02) and when receiving amino acids(P = 0.001). Diabetic patients achieved a higher protein balance than nondiabetic patients (P = 0.032) and when receiving EDA instead of PCA (P = 0.012) or infusion of amino acids (P = 0.014). CONCLUSIONS A short-term infusion of amino acids reduced protein breakdown, increased protein synthesis, and rendered protein balance positive. This anabolic effect was pronounced in diabetic patients with EDA compared with nondiabetic patients or PCA, respectively, and prevented an undesirable hyperglycemia.
Collapse
|
45
|
Synthesis of novel triterpenoid (lupeol) derivatives and their in vivo antihyperglycemic and antidyslipidemic activity. Bioorg Med Chem Lett 2009; 19:4463-6. [DOI: 10.1016/j.bmcl.2009.05.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/23/2009] [Accepted: 05/11/2009] [Indexed: 11/22/2022]
|
46
|
Bhavsar SK, Singh S, Giri S, Jain MR, Santani DD. Effect of saponins from Helicteres isora on lipid and glucose metabolism regulating genes expression. JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:426-433. [PMID: 19505560 DOI: 10.1016/j.jep.2009.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 05/10/2009] [Accepted: 05/28/2009] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE We characterized saponins as active constituents from traditionally used antidiabetic plant Helicteres isora. AIM OF THE STUDY To evaluate the changes in the gene expression of the glucose and lipid metabolism regulating genes in C57BL/KsJ-db/db mice. MATERIALS AND METHODS C57BL/KsJ-db/db mice were divided into four different groups; one diabetic control, the mice in other three groups were treated with methanol extract (100 mg/kg), saponins (100 mg/kg) and pioglitazone (30 mg/kg) for 14 days. After completion of the treatment period biochemical parameters and the expression levels of adipsin, adiponectin, glucose transporter 4 (Glut4), peroxisome proliferator activated receptor gamma (PPARgamma), fatty acid binding protein 4 (FABP4), lipoprotein lipase (LPL) in adipose tissue and for liver RNA samples glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), glucose transporter 2 (Glut2) and acyl-co-enzyme A oxidase (ACOX) were determined by quantitative real time PCR and angiopoeitin like 3 (ANGPTL3), angiopoeitin like 4 (ANGPTL4) and peroxisome proliferator activated receptor alpha (PPARalpha) by semiquantitative reverse transcription PCR. RESULTS Treatment caused a significant reduction in the serum lipid and glucose levels and increased the expression of adipsin, PPARgamma and Glut4 while reduced expression of FABP4 and G6Pase, whereas there was no effect on the expression levels of adiponectin, LPL, PEPCK, ACOX, Glut2, ANGPTL3, ANGPTL4 and PPARalpha. CONCLUSIONS Saponins are beneficial for improving hyperlipidemia and hyperglycemia by increasing the gene expression of adipsin, Glut4 and PPARgamma and reducing the gene expression of the enzyme G6Pase and FABP4 in C57BL/KsJ-db/db mice.
Collapse
Affiliation(s)
- Shefalee K Bhavsar
- Department of Pharmacology, L. M. College of Pharmacy, Navarangapura, Ahmedabad 380009, Gujarat, India
| | | | | | | | | |
Collapse
|
47
|
Kehlenbrink S, Tonelli J, Koppaka S, Chandramouli V, Hawkins M, Kishore P. Inhibiting gluconeogenesis prevents fatty acid-induced increases in endogenous glucose production. Am J Physiol Endocrinol Metab 2009; 297:E165-73. [PMID: 19417129 PMCID: PMC2711655 DOI: 10.1152/ajpendo.00001.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose effectiveness, the ability of glucose per se to suppress endogenous glucose production (EGP), is lost in type 2 diabetes mellitus (T2DM). Free fatty acids (FFA) may contribute to this loss of glucose effectiveness in T2DM by increasing gluconeogenesis (GNG) and impairing the response to hyperglycemia. Thus, we first examined the effects of increasing plasma FFA levels for 3, 6, or 16 h on glucose effectiveness in nondiabetic subjects. Under fixed hormonal conditions, hyperglycemia suppressed EGP by 61% in nondiabetic subjects. Raising FFA levels with Liposyn infusion for > or =3 h reduced the normal suppressive effect of glucose by one-half. Second, we hypothesized that inhibiting GNG would prevent the negative impact of FFA on glucose effectiveness. Raising plasma FFA levels increased gluconeogenesis by approximately 52% during euglycemia and blunted the suppression of EGP by hyperglycemia. Infusion of ethanol rapidly inhibited GNG and doubled the suppression of EGP by hyperglycemia, thereby restoring glucose effectiveness. In conclusion, elevated FFA levels rapidly increased GNG and impaired hepatic glucose effectiveness in nondiabetic subjects. Inhibiting GNG could have therapeutic potential in restoring the regulation of glucose production in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sylvia Kehlenbrink
- Division of Endocrinology and Diabetes Research and Training Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
48
|
Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci Biotechnol Biochem 2009; 73:1033-41. [PMID: 19420712 DOI: 10.1271/bbb.80805] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effects of a pumpkin paste concentrate and its components on oral glucose tolerance and serum lipid levels were determined in non-obese type 2 diabetic Goto-Kakizaki (GK) rats. In the oral glucose tolerance test, the pumpkin paste concentrate-fed group maintained a lower glucose level than the control group between 15 and 60 min. The compounds considered to be effective in improving glucose tolerance and contained in the methanol extract of the pumpkin in relatively abundant amounts were isolated and identified as trigonelline (TRG) and nicotinic acid (NA).Feeding a diet containing TRG and NA respectively improved and tended to improve glucose tolerance. The insulin level increased after 15 min in the TRG-fed GK rats and then gradually decreased over the next 120 min. In contrast, a gradual increase was seen in the insulin level over 120 min in the control GK rats not fed with TRG, suggesting that TRG could improve the insulin resistance. The serum and liver triglyceride (TG) levels in the TRG- and NA-fed GK rats were lower than those in the control GK rats. Lower activity of liver fatty acid synthase (FAS), and higher activity of liver carnitine palmitoyl transferase (CPT) and glucokinase (GLK) in the TRG- and NA-fed GK rats than in the control GK rats were observed. This suggests that the regulation of these enzyme activities by TRG and NA was closely related to the suppression of both TG accumulation and the progression of diabetes.
Collapse
|
49
|
Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, Lee MK. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res 2009; 52:995-1004. [PMID: 18398869 DOI: 10.1002/mnfr.200700184] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated the effect of curcumin on insulin resistance and glucose homeostasis in male C57BL/KsJ-db/db mice and their age-matched lean non-diabetic db/+ mice. Both db/+ and db/db mice were fed with or without curcumin (0.02%, wt/wt) for 6 wks. Curcumin significantly lowered blood glucose and HbA 1c levels, and it suppressed body weight loss in db/db mice. Curcumin improved homeostasis model assessment of insulin resistance and glucose tolerance, and elevated the plasma insulin level in db/db mice. Hepatic glucokinase activity was significantly higher in the curcumin-supplemented db/db group than in the db/db group, whereas glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities were significantly lower. In db/db mice, curcumin significantly lowered the hepatic activities of fatty acid synthase, beta-oxidation, 3-hydroxy-3-methylglutaryl coenzyme reductase, and acyl-CoA: cholesterol acyltransferase. Curcumin significantly lowered plasma free fatty acid, cholesterol, and triglyceride concentrations and increased the hepatic glycogen and skeletal muscle lipoprotein lipase in db/db mice. Curcumin normalized erythrocyte and hepatic antioxidant enzyme activities (superoxide dismutase, catalase, gluthathione peroxidase) in db/db mice that resulted in a significant reduction in lipid peroxidation. However, curcumin showed no effect on the blood glucose, plasma insulin, and glucose regulating enzyme activities in db/+ mice. These results suggest that curcumin seemed to be a potential glucose-lowering agent and antioxidant in type 2 diabetic db/db mice, but had no affect in non-diabetic db/+ mice.
Collapse
Affiliation(s)
- Kwon-Il Seo
- Department of Food and Nutrition, Sunchon National University, Jeonnam, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Lopez X, Bouché C, Tatro E, Goldfine AB. Family history of diabetes impacts on interactions between minimal model estimates of insulin sensitivity and glucose effectiveness. Diabetes Obes Metab 2009; 11:123-30. [PMID: 18518893 DOI: 10.1111/j.1463-1326.2008.00913.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Insulin resistance and glucose effectiveness (S(G)) are major determinants of glucose tolerance and independently predict the development of type 2 diabetes in individuals with a family history of disease. We examined the inter-relationship between insulin sensitivity (S(I)) and S(G) in offspring of two parents with type 2 diabetes and in individuals with no family history of diabetes. METHODS Fifty non-diabetic individuals, including 26 offspring of two type 2 diabetic parents (family history, FH+) and 24 with no family history of diabetes (FH-) similar in gender, age, ethnicity and body mass index (BMI) were studied. Each subject underwent a 100-g oral glucose tolerance test (OGTT) and insulin modified frequently sampled intravenous glucose tolerance, analysed using the Bergman's minimal model (MINMOD). RESULTS Thirteen subjects of the FH+ group and nine of the FH- group had impaired glucose tolerance (IGT). S(I) and S(G) were independent variables in the FH+ group, while they correlated highly with each other in the FH- group (r = 0.69, p = 0.0002). The relationship between S(I) and S(G) persisted when analysing the IGT and normal glucose tolerance subgroups separately, demonstrating that these associations were not because of differences in glycaemia. Consistently, S(G) strongly correlated with additional measures of insulin resistance only in the FH- group, including fasting insulin (r = 0.56, p = 0.004), homeostasis model assessment of insulin resistance (r = 0.57 p = 0.003) and BMI (r = 0.66, p = 0.0004). CONCLUSIONS These results demonstrate that familial factors impart important physiological differences in the inter-relationship between insulin-dependent and insulin-independent glucose disposal, which may be important in modulating risk for development of disease.
Collapse
Affiliation(s)
- X Lopez
- Department of Clinical Research, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|