1
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Bouazza A, Fontaine E, Leverve X, Koceir EA. Interference of altered plasma trace elements profile with hyperhomocysteinemia and oxidative stress damage to insulin secretion dysfunction in Psammomys obesus: focus on the selenium. Arch Physiol Biochem 2023; 129:505-518. [PMID: 33171059 DOI: 10.1080/13813455.2020.1839501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The objective of this study is to investigate the relationship between altered plasma trace elements, particularly selenium (Se), with Hyper-homocysteinemia (HhCys) as a predictive factor of insulin secretion dysfunction. The study is carried out on adult Psammomys obesus, divided in 4 experimental groups: (I) Normoglycemic/Normoinsulinemic; (II) Normoglycemic/Hyperinsulinemic; (III) Hyperglycaemic/Hyperinsulinemic and (IV) Hyperglycaemic/Insulin deficiency with ketoacidosis. The data showed that a drastic depletion of Se plasma levels is positively correlated with HhCys (>15 µmol/L; p < .001), concomitantly with decreased GPx activity, GSH levels, and GSH/GSSG ratio in group IV both in plasma and liver. In contrast, SOD activity is increased (p ≤ .001) in group IV both in plasma and liver. However, plasma Cu and Mn levels increased, while plasma Zn levels decreased in group IV (p < .001). Our study confirms the increase of plasma hCys levels seemed to be a major contributing factor to antioxidant capacities and alters the availability of selenium metabolism by interference with homocysteine synthesis in the insulin secretion deficiency stage.
Collapse
Affiliation(s)
- Asma Bouazza
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Eric Fontaine
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Xavier Leverve
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
3
|
Mohammed Majid ALQ, Wefak Jbori ALB, Hepa A. AA. The effect of Hyperhomocysteinemia on the Osteoclasts activity in Male New Zealand White Rabbits. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2022:5443-5448. [DOI: 10.52711/0974-360x.2022.00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Methionine is a specific amino acid which contains sulfur, and can be used to make proteins, found in fish, meat, and dairy products, the excess intake of L-methionine lead to elevated homocysteine (Hcy) level that known as Hyperhomocysteinemia (HHcy). Increased Hcy plasma may represent an independent risk factor for osteoporotic fractures, and therefore may also negatively affect bone metabolism. This study was designed to examine the impact of Hcy on osteoclast activity in Male Rabbits, following methionine overload. To achieve this study's aims, we recruiting (20) males of New Zealand white rabbits that were divided into (10/group) control group and a group treated with methionine. Then after the intubation of methionine overload, we measured the "Receptor Activator of Nuclear factor Kappa-b" (RANK) and "Receptor Activator of Nuclear factor Kappa-b ligand" (RANK-L) levels in the blood, in addition to histological examination of the trabecular structure of femur bone. The results show a significant (p≤0.001) increase in serum RANK and RANK-L levels of methionine treated group in comparison with the control group. The histological examination of the trabecular structure of femur bone shows an increase in osteoclasts percentage, activity, and large resorption pits in the methionine treated group. The HHcy that was induced by methionine overload, caused an increase in osteoclast activity and numbers in male rabbits suggested a mechanistic role for bone resorption by Hcy. Future research clarifying the mechanistic function of elevated concentrations of Hcy in osteoporosis may have important therapeutic implications.
Collapse
Affiliation(s)
| | - AL-Bazi Wefak Jbori
- Department of Physiology, College of Veterinary Medicine, University of Kerbala, Iraq
| | | |
Collapse
|
4
|
Vander Velden JW, Osborne DM. Prolonged diet-induced obesity modifies DNA methylation and gene expression in the hippocampus. Neurosci Lett 2022; 780:136656. [DOI: 10.1016/j.neulet.2022.136656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
5
|
Bahadoran Z, Jeddi S, Mirmiran P, Kashfi K, Azizi F, Ghasemi A. Association between serum hydrogen sulfide concentrations and dysglycemia: a population-based study. BMC Endocr Disord 2022; 22:79. [PMID: 35351094 PMCID: PMC8962595 DOI: 10.1186/s12902-022-00995-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIM Hydrogen sulfide (H2S), a signaling gasotransmitter, is involved in carbohydrate metabolism. Here, we aimed to assess the potential association between serum H2S and dysglycemia in the framework of a population-based study. METHODS Adults men and women with completed data (n = 798), who participated in the Tehran Lipid and Glucose Study (2014-2017) were included in the study. Medians of fasting serum H2S concentration were compared across the glycemic status of the participants, defined as type 2 diabetes mellitus (T2DM), isolated impaired fasting glucose (IIFG), isolated impaired glucose tolerance (IIGT), combined IFG-IGT, and normal glycemia [i.e., those with both normal fasting glucose (NFG) and normal glucose tolerance (NGT)]. Multinomial logistic regression was used to assess potential associations between serum H2S and the defined glycemic status. RESULTS Mean age of the participants was 45.1 ± 14.0 y, and 48.1% were men. Prevalence of T2DM, IIFG, IIGT, and combined IFG-IGT was 13.9, 9.1, 8.1, and 4.8% respectively. No significant difference was observed in serum H2S concentrations between the groups. Lower serum H2S (< 39.6 µmol/L) was associated with an increased chance of having IIGT (OR = 1.96, 95% CI = 1.15-3.34) in the adjusted model. CONCLUSION Reduced serum H2S level may be associated with impaired glucose tolerance.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, P.O.Box: 19395-4763, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, P.O.Box: 19395-4763, Tehran, Iran.
| |
Collapse
|
6
|
Mateus I, Prip-Buus C. Hydrogen sulphide in liver glucose/lipid metabolism and non-alcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13680. [PMID: 34519030 PMCID: PMC9285505 DOI: 10.1111/eci.13680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND For a long time, hydrogen sulphide (H2 S) was considered only as a toxic gas, inhibiting mitochondrial respiration at the level of cytochrome c oxidase, and an environmental pollutant. Nowadays, H2 S is recognized as the third mammalian gasotransmitter, playing an important role in inflammation, septic shock, ischaemia reperfusion events, cardiovascular disease and more recently in liver physiology and chronic liver diseases such as non-alcoholic fatty liver disease (NAFLD). METHODS This narrative review is based on literature search using PubMed. RESULTS From a bioenergetic perspective, H2 S is a very unique molecule, serving as a mitochondrial poison at high concentrations or as an inorganic mitochondrial substrate at low concentrations. By using transgenic animal models to specifically modulate liver H2 S biosynthesis or exogenous compounds that release H2 S, several studies demonstrated that H2 S is a key player in liver glucose and lipid metabolism. Liver H2 S content and biosynthesis were also altered in NAFLD animal models with the in vivo administration of H2 S-releasing molecules preventing the further escalation into non-alcoholic-steatohepatitis. Liver steady-state levels of H2 S, and hence its cell signalling properties, are controlled by a tight balance between its biosynthesis, mainly through the transsulphuration pathway, and its mitochondrial oxidation via the sulphide oxidizing unit. However, studies investigating mitochondrial H2 S oxidation in liver dysfunction still remain scarce. CONCLUSIONS Since H2 S emerges as a key regulator of liver metabolism and metabolic flexibility, further understanding the physiological relevance of mitochondrial H2 S oxidation in liver energy homeostasis and its potential implication in chronic liver diseases are of great interest.
Collapse
Affiliation(s)
- Inês Mateus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - Carina Prip-Buus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| |
Collapse
|
7
|
Association between plasma betaine levels and dysglycemia in patients with coronary artery disease. Biosci Rep 2021; 40:225988. [PMID: 32756866 PMCID: PMC7432995 DOI: 10.1042/bsr20200676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Dietary betaine intake was reported to associate with favorable profile of metabolic disorders. However, the role of circulating betaine in coronary artery disease (CAD) patients with dysglycemia is still unknown. The present study aimed to investigate the potential associations between plasma betaine levels and dysglycemia in CAD patients. Methods: Total 307 subjects were enrolled in the present study with 165 CAD patients (57 with dysglycemia and 108 with normal glycemia) and 142 age- and sex-matched controls (CON). Fasting plasma betaine was detected using liquid chromatography tandem mass spectrometry. Results: Plasma betaine was lower in normal glycemia CAD patients (28.29 (22.38–35.73) μM) compared with healthy controls (29.75 (25.32–39.15) μM), and was further decreased in CAD patients with dysglycemia (24.14 (20.84–30.76) μM, P<0.01). Betaine levels were inversely correlated with fasting glucose, glycated hemoglobin% (HbA1c), diastolic blood pressure (DBP), triglyceride (TG) and alanine aminotransferase (ALT) levels (all, P≤0.05). Subjects in the highest betaine tertile group had lowest frequency of CAD and dysglycemia (all, P<0.01). Increased betaine levels were independently associated with low risk of dysglycemia in CAD after adjustment for multiple traditional risk factors (OR = 0.04, 95% CI: 0–0.37, P=0.01). Furthermore, betaine had good performance at distinguishing CAD with dysglycemia from normal glycemia CAD (AUC = 0.62, P<0.01). Conclusion: Plasma betaine levels are independently and inversely associated with dysglycemia in CAD after adjustment for multiple factors, and may be useful for risk stratification of dysglycemia in CAD.
Collapse
|
8
|
Wang Y, Fan X, Fan B, Jiang K, Zhang H, Kang F, Su H, Gu D, Li S, Lin S. Scutellarin Reduce the Homocysteine Level and Alleviate Liver Injury in Type 2 Diabetes Model. Front Pharmacol 2020; 11:538407. [PMID: 33362535 PMCID: PMC7759645 DOI: 10.3389/fphar.2020.538407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Scutellarin (SCU) is an active ingredient extracted from Erigeron breviscapus (Vaniot) Hand.-Mazz. Its main physiological functions are anti-inflammatory and antioxidant. In this study, we established a STZ-induced model of type 2 diabetes (T2DM) and a homocysteine (Hcy)-induced apoptosis model of LO2 to investigate whether SCU can alleviate liver damage by regulating Hcy in type 2 diabetes. Biochemical analysis indicated that SCU could improve the lipid metabolism disorder and liver function in diabetic rats by downregulating the levels of triglycerides (TG), cholesterol (CHO), low-density lipoprotein (LDL), alanine transaminase (ALT) and aspartate transaminase (AST), and by upregulating the level of high-density lipoprotein (HDL). Interestingly, SCU also could down-regulate the levels of Hcy and insulin and enhance the ability of type 2 diabetic rats to regulate blood glucose. Mechanistically, our results indicated that SCU may control the level of Hcy through regulating the levels of β-Cystathionase (CBS), γ-Cystathionase (CSE) and 5,10-methylenetetrahydrofolate (MTHFR) in liver tissue, and up-regulate folic acid, VitB6 and VitB12 levels in serum. Furthermore, SCU inhibits apoptosis in the liver of T2DM rats and in cultured LO2 cells treated with Hcy. Together, our findings suggest that SCU may alleviate the liver injury thorough downregulating the level of Hcy in T2DM rats.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China.,Department of Clinical Laboratory, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, China
| | - Xiaoming Fan
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Biao Fan
- The Center of Basic Experiment, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Kerong Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Haoxin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Feng Kang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Hui Su
- Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Danshan Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Nutrition and Food Safety in Universities, Kunming, China
| | - Shaofang Lin
- Department of Geriatrics, Gan Mei Hospital, The First People Hospital of Kunming City, Kunming, China
| |
Collapse
|
9
|
Sajid M, Biswas K, Singh H, Negi S. Auto-reactivity against gut bacterial peptides in patients with late-onset diabetes. Autoimmunity 2020; 53:385-393. [PMID: 32924613 DOI: 10.1080/08916934.2020.1818232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The depletion of gut mucosal barrier enables exposure of gut microbes/gut microbial products to the host mucosal immunity which may increase the risk of metabolic/inflammatory disorders. These immune responses can lead to the development of mild autoimmunity to metabolic peptides coming from gut bacteria and may result in metabolic diseases like late-onset diabetes (LOD). In the present study, we identified host sera cross-reactivity with gut bacterial peptides similar to host proteins. The interaction between diabetic sera and gut peptides was detected by enzyme-linked immunosorbent assay (ELISA) and results were confirmed using surface plasmon resonance (SPR). The ELISA assay showed a higher level of serum cross-reactivity in LOD patients as compared to non-diabetic controls against three peptides (P-5, P-9, and P-13). SPR analysis confirmed binding-affinity against P-5 and P-13. Also, a significant correlation was observed between inflammatory markers and P-5. This study demonstrates that gut health is important not only for intestinal diseases but also for several late-onset diseases, like, diabetes.
Collapse
Affiliation(s)
- Mohammad Sajid
- National Institute of Pathology, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Krishna Biswas
- Department of Endocrinology, Vardhman Mahavir Medical College, Safdarjung Hospital, New Delhi, India
| | - Harpreet Singh
- AIIMS Computational Genomics Centre, ISRM Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Sapna Negi
- National Institute of Pathology, Indian Council of Medical Research (ICMR), New Delhi, India
| |
Collapse
|
10
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
11
|
Saande CJ, Pritchard SK, Worrall DM, Snavely SE, Nass CA, Neuman JC, Luchtel RA, Dobiszewski S, Miller JW, Vailati-Riboni M, Loor JJ, Schalinske KL. Dietary Egg Protein Prevents Hyperhomocysteinemia via Upregulation of Hepatic Betaine-Homocysteine S-Methyltransferase Activity in Folate-Restricted Rats. J Nutr 2019; 149:1369-1376. [PMID: 31111947 DOI: 10.1093/jn/nxz069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hyperhomocysteinemia is associated with increased cardiovascular disease risk. Whole eggs contain several nutrients known to affect homocysteine regulation, including sulfur amino acids, choline, and B vitamins. OBJECTIVE The aim of this study was to determine the effect of whole eggs and egg components (i.e., egg protein and choline) with respect to 1) homocysteine balance and 2) the hepatic expression and activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in a folate-restricted (FR) rat model of hyperhomocysteinemia. METHODS Male Sprague Dawley rats (n = 48; 6 wk of age) were randomly assigned to a casein-based diet (C; n = 12), a casein-based diet supplemented with choline (C + Cho; 1.3%, wt:wt; n = 12), an egg protein-based diet (EP; n = 12), or a whole egg-based diet (WE; n = 12). At week 2, half of the rats in each of the 4 dietary groups were provided an FR (0 g folic acid/kg) diet and half continued on the folate-sufficient (FS; 0.2 g folic acid/kg) diet for an additional 6 wk. All diets contained 20% (wt:wt) total protein. Serum homocysteine was measured by HPLC and BHMT and CBS expression and activity were evaluated using real-time quantitative polymerase chain reaction, Western blot, and enzyme activity. A 2-factor ANOVA was used for statistical comparisons. RESULTS Rats fed FR-C exhibited a 53% increase in circulating homocysteine concentrations compared with rats fed FS-C (P < 0.001). In contrast, serum homocysteine did not differ between rats fed FS-C and FR-EP (P = 0.078). Hepatic BHMT activity was increased by 45% and 40% by the EP (P < 0.001) and WE (P = 0.002) diets compared with the C diets, respectively. CONCLUSIONS Dietary intervention with egg protein prevented elevated circulating homocysteine concentrations in a rat model of hyperhomocysteinemia, due in part to upregulation of hepatic BHMT. These data may support the inclusion of egg protein for dietary recommendations targeting hyperhomocysteinemia prevention.
Collapse
Affiliation(s)
- Cassondra J Saande
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Samantha K Pritchard
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | | | | | | | - Joshua C Neuman
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Rebecca A Luchtel
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Sarah Dobiszewski
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kevin L Schalinske
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| |
Collapse
|
12
|
Ye G, Gao H, Lin Y, Ding D, Liao X, Zhang H, Chi Y, Dong S. Peroxisome proliferator-activated receptor A/G reprogrammes metabolism associated with lipid accumulation in macrophages. Metabolomics 2019; 15:36. [PMID: 30830452 DOI: 10.1007/s11306-019-1485-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Macrophage metabolism contributes to the progression of metabolic diseases, and peroxisome proliferator-activated receptors (PPARs) play vital roles in macrophage metabolism and the treatment of metabolic diseases. However, the role of PPARs in metabolic reprogramming related to lipid accumulation in macrophages, a key pathological event in metabolic diseases, remains unclear. OBJECTIVES We aimed to identify PPAR-mediated metabolic reprogramming and potential therapeutic targets associated with lipid accumulation in macrophages. METHODS Following treatment with oleate, oleate + WY-14643 and oleate + pioglitazone to induce alterations in PPAR signaling, lipids and relevant metabolism, macrophage samples were analyzed employing an untargeted metabolomics based on gas chromatography-mass spectrometry. RESULTS The metabolomics approach revealed that multiple metabolic pathways were altered during lipid accumulation in oleate-treated macrophages and responsive to WY-14643 and pioglitazone treatment. Notably, levels of most metabolites involved in amino acid metabolism and nucleotide metabolism were accumulated in oleate-treated macrophages, and these effects were alleviated or abolished by PPARA/G activation. Additionally, during oleate-induced lipid accumulation and lipid lowering with WY-14643 and pioglitazone in macrophages, levels of most amino acids were positively associated with neutral lipid, total cholesterol, cholesterol ester, total free fatty acid and triglyceride levels but negatively associated with expression of genes related to PPARA/G signaling. Furthermore, glycine was found to be a potential biomarker for assessing lipid accumulation and the lipid-lowering effects of PPARA/G in oleate-treated macrophages. CONCLUSION The results of this study revealed a high correlation of amino acid metabolism with lipid accumulation and the lipid-lowering effects of PPARA/G in macrophages.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yi Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Dongxiao Ding
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Han Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Yulang Chi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
13
|
Mistry RK, Brewer AC. Redox-Dependent Regulation of Sulfur Metabolism in Biomolecules: Implications for Cardiovascular Health. Antioxid Redox Signal 2019; 30:972-991. [PMID: 28661184 DOI: 10.1089/ars.2017.7224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Sulfur-containing amino acids are integral to the molecular mechanisms that underlie many aspects of cellular function and homeostasis, facilitated by reversible changes in the oxidation states of sulfur atoms. Sulfur-containing amino acids are metabolically linked by interacting pathways that impact the one-carbon metabolic cycle and generation of methyl groups, the folate cycle, and maintenance of the major cellular redox buffer; glutathione. Dysregulation of these pathways is associated with diverse pathologies, notably of the cardiovascular (CV) system, which are typically characterized by inappropriate plasma levels of sulfur-containing amino acids. Recent Advances: Perhaps not surprisingly, the cellular redox state has emerged as a major regulator of many enzymatic processes within these metabolic cycles. The metabolism of cysteine can also result in the production of hydrogen sulfide (H2S), a signaling molecule whose activity is potentially linked to intracellular levels of both reactive oxygen species (ROS) and molecular oxygen. CRITICAL ISSUES In most cases, the endogenous physiological sources of ROS that might mediate the interlinked metabolic pathways of sulfur-containing biomolecules remain unknown. However, the family of NADPH oxidases, and Nox4 in particular, is emerging as a likely candidate. FUTURE DIRECTIONS This review focuses on the current knowledge of key aspects of sulfur metabolism, which are regulated by redox-based chemical reactions, and the likely intracellular oxidant sources that might mediate this regulation. This knowledge will be important to guide future targeted therapeutic interventions in diverse CV disorders.
Collapse
Affiliation(s)
- Rajesh K Mistry
- Department of Cardiology, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Alison C Brewer
- Department of Cardiology, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Spratlen MJ, Grau-Perez M, Umans JG, Yracheta J, Best LG, Francesconi K, Goessler W, Bottiglieri T, Gamble MV, Cole SA, Zhao J, Navas-Acien A. Targeted metabolomics to understand the association between arsenic metabolism and diabetes-related outcomes: Preliminary evidence from the Strong Heart Family Study. ENVIRONMENTAL RESEARCH 2019; 168:146-157. [PMID: 30316100 PMCID: PMC6298442 DOI: 10.1016/j.envres.2018.09.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/02/2018] [Accepted: 09/25/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Inorganic arsenic exposure is ubiquitous and both exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. A more efficient arsenic metabolism profile (lower MMA%, higher DMA%) has been associated with reduced risk for arsenic-related health outcomes. This profile, however, has also been associated with increased risk for diabetes-related outcomes. OBJECTIVES The mechanism behind these conflicting associations is unclear; we hypothesized the one-carbon metabolism (OCM) pathway may play a role. METHODS We evaluated the influence of OCM on the relationship between arsenic metabolism and diabetes-related outcomes (HOMA2-IR, waist circumference, fasting plasma glucose) using metabolomic data from an OCM-specific and P180 metabolite panel measured in plasma, arsenic metabolism measured in urine, and HOMA2-IR and FPG measured in fasting plasma. Samples were drawn from baseline visits (2001-2003) in 59 participants from the Strong Heart Family Study, a family-based cohort study of American Indians aged ≥14 years from Arizona, Oklahoma, and North/South Dakota. RESULTS In unadjusted analyses, a 5% increase in DMA% was associated with higher HOMA2-IR (geometric mean ratio (GMR)= 1.13 (95% CI: 1.03, 1.25)) and waist circumference (mean difference=3.66 (0.95, 6.38). MMA% was significantly associated with lower HOMA2-IR and waist circumference. After adjustment for OCM-related metabolites (SAM, SAH, cysteine, glutamate, lysophosphatidylcholine 18.2, and three phosphatidlycholines), associations were attenuated and no longer significant. CONCLUSIONS These preliminary results indicate that the association of lower MMA% and higher DMA% with diabetes-related outcomes may be influenced by OCM status, either through confounding, reverse causality, or mediation.
Collapse
Affiliation(s)
- Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Fundación Investigación Clínico de Valencia-INCLIVA, Area of Cardiometabolic and Renal Risk, Valencia, Valencia, Spain; University of Valencia, Department of Statistics and Operational Research, Valencia, Valencia, Spain
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA; Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Kevin Francesconi
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | | | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jinying Zhao
- College of Public Health and Health Professions and the College of Medicine at the University of Florida, Gainesville, FL, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
15
|
Spratlen MJ, Grau-Perez M, Umans JG, Yracheta J, Best LG, Francesconi K, Goessler W, Balakrishnan P, Cole SA, Gamble MV, Howard BV, Navas-Acien A. Arsenic, one carbon metabolism and diabetes-related outcomes in the Strong Heart Family Study. ENVIRONMENT INTERNATIONAL 2018; 121:728-740. [PMID: 30321848 PMCID: PMC6221918 DOI: 10.1016/j.envint.2018.09.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Inorganic arsenic exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. A more efficient arsenic metabolism profile (lower MMA%, higher DMA%) has been associated with reduced risk for arsenic-related health outcomes; however, this profile has also been associated with increased risk for diabetes-related outcomes. The mechanism behind these contrasting associations is equivocal; we hypothesized one carbon metabolism (OCM) may play a role. METHODS We evaluated the association between OCM-related variables (nutrient intake and genetic variants) and both arsenic metabolism biomarkers (iAs%, MMA% and DMA%) and diabetes-related outcomes (metabolic syndrome, diabetes, HOMA2-IR and waist circumference) in 935 participants free of prevalent diabetes and metabolic syndrome from the Strong Heart Family Study, a family-based prospective cohort comprised of American Indian tribal members aged 14+ years. RESULTS Of the 935 participants free of both diabetes and metabolic syndrome at baseline, 279 (29.8%) developed metabolic syndrome over a median of 5.3 years of follow-up and of the 1458 participants free of diabetes at baseline, 167 (11.3%) developed diabetes over follow-up. OCM nutrients were not associated with arsenic metabolism, however, higher vitamin B6 was associated with diabetes-related outcomes (higher HOMA2-IR and increased risk for diabetes and metabolic syndrome). A polymorphism in an OCM-related gene, methionine synthase (MTR), was associated with both higher MMA% (β = 2.57, 95% CI: 0.22, 4.92) and lower HOMA2-IR (GMR = 0.79, 95% CI = 0.66, 0.93 per 5 years of follow-up). Adjustment for OCM variables did not affect previously reported associations between arsenic metabolism and diabetes-related outcomes; however, the association between the MTR variant and diabetes-related outcomes were attenuated after adjustment for arsenic metabolism. CONCLUSIONS Our findings suggest MMA% may be a partial mediator in the association between OCM and diabetes-related outcomes. Additional mediation analyses with longer follow-up period are needed to confirm this finding. Further research is needed to determine whether excess B vitamin intake is associated with increased risk for diabetes-related outcomes.
Collapse
Affiliation(s)
- Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America; Fundación Investigación Clínico de Valencia-INCLIVA, Area of Cardiometabolic and Renal Risk, Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, United States of America; Department of Medicine, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, United States of America
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, United States of America
| | - Kevin Francesconi
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | - Poojitha Balakrishnan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, United States of America; Department of Medicine, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| |
Collapse
|
16
|
Betaine treatment decreased serum glucose and lipid levels, hepatic and renal oxidative stress in streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/tjb-2016-0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Objective
The present study was aimed to investigate the effects of betaine (BET) on streptozotocin (STZ)-induced diabetes mellitus (DM) in rats. Additionally, the efficiency of BET was compared with metformin (MET), a standard oral antidiabetic drug.
Methods
STZ (55 mg/kg body weight; i.p.) was injected to male Wistar rats. Rats with DM were treated with BET (1 g/kg body weight/day;) or MET (500 mg/kg body weight/day;) for 4 weeks. Blood glycated hemoglobin (HbA1c), serum glucose, lipids, hepatic and renal function tests and urinary protein levels were examined. Reactive oxygen species (ROS) formation, malondialdehyde (MDA), glutathione (GSH) levels, and ferric reducing antioxidant power (FRAP) were also determined in liver and kidney.
Results
Glucose, HbA1c, and serum lipids increased and liver and kidney function tests were impaired in diabetic rats. Hepatic and renal ROS formation and MDA levels were elevated, hepatic, but not renal GSH and FRAP levels were decreased. BET decreased blood HbA1c, serum glucose and lipid levels and urine protein levels. BET diminished hepatic and renal prooxidant status.
Conclusion
Our results indicate that BET may be effective in decreasing STZ-induced high levels of blood HbA1c, and serum glucose and lipid levels and prooxidant status in liver and kidney tissues.
Collapse
|
17
|
A Possible Mechanism: Vildagliptin Prevents Aortic Dysfunction through Paraoxonase and Angiopoietin-Like 3. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3109251. [PMID: 29951533 PMCID: PMC5989281 DOI: 10.1155/2018/3109251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
The collected data have revealed the beneficial effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on the vascular endothelium, including vildagliptin. However, the involved mechanisms are not yet clear. In this study, Sprague-Dawley rats were randomly divided into the following four groups: control, diabetic, diabetic + low-dose vildagliptin (10 mg/kg/d), and diabetic + high-dose vildagliptin (20 mg/kg/d). The diabetic model was created by feeding a high-fat diet for four weeks and injection of streptozotocin. Then, vildagliptin groups were given oral vildagliptin for twelve weeks, and the control and diabetic groups were given the same volume of saline. The metabolic parameters, endothelial function, and whole genome expression in the aorta were examined. After 12 weeks of treatment, vildagliptin groups showed significantly reduced blood glucose, blood total cholesterol, and attenuated endothelial dysfunction. Notably, vildagliptin may inhibit angiopoietin-like 3 (Angptl3) and betaine-homocysteine S-methyltransferase (Bhmt) expression and activated paraoxonase-1 (Pon1) in the aorta of diabetic rats. These findings may demonstrate the vasoprotective pathway of vildagliptin in vivo.
Collapse
|
18
|
Kim NH, Hyeon JS, Kim NH, Cho A, Lee G, Jang SY, Kim MK, Lee EY, Chung CH, Ha H, Hwang GS. Metabolic changes in urine and serum during progression of diabetic kidney disease in a mouse model. Arch Biochem Biophys 2018; 646:90-97. [PMID: 29621522 DOI: 10.1016/j.abb.2018.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/15/2018] [Accepted: 03/31/2018] [Indexed: 12/29/2022]
Abstract
Diabetic kidney disease (DKD) involves various pathogenic processes during progression to end stage renal disease, and activated metabolic pathways might be changing based on major pathophysiologic mechanisms as DKD progresses. In this study, nuclear magnetic resonance spectroscopy (NMR)-based metabolic profiling was performed in db/db mice to suggest potential biomarkers for early detection and its progression. We compared concentrations of serum and urinary metabolites between db/m and db/db mice at 8 or 20 weeks of age and investigated whether changes between 8 and 20 weeks in each group were significant. The metabolic profiles demonstrated significantly increased urine levels of glucose and tricarboxylic acid cycle intermediates at both 8 and 20 weeks of age in db/db mice. These intermediates also exhibited strong positive associations with urinary albumin excretion, suggesting that they may be potential biomarkers for early diagnosis. On the contrary, branched chain amino acid and homocysteine-methionine metabolism were activated early in the disease, whereas ketone and fatty acid metabolism were significantly changed in the late phase of the disease. We demonstrated phase-specific alterations in metabolites during progression of DKD. This study provides insights into perturbed mechanisms during evolution of the disease and identifies potential novel biomarkers for DKD.
Collapse
Affiliation(s)
- Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jin Seong Hyeon
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ahreum Cho
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Gayoung Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, South Korea
| | - Mi-Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Eun Young Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Choon Hee Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, South Korea.
| | - Geum Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
19
|
Han N, Chae JW, Jeon J, Lee J, Back HM, Song B, Kwon KI, Kim SK, Yun HY. Prediction of Methionine and Homocysteine levels in Zucker diabetic fatty (ZDF) rats as a T2DM animal model after consumption of a Methionine-rich diet. Nutr Metab (Lond) 2018; 15:14. [PMID: 29449868 PMCID: PMC5807833 DOI: 10.1186/s12986-018-0247-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
Background Although alterations in the methionine metabolism cycle (MMC) have been associated with vascular complications of diabetes, there have not been consistent results about the levels of methionine and homocysteine in type 2 diabetes mellitus (T2DM). The aim of the current study was to predict changes in plasma methionine and homocysteine concentrations after simulated consumption of methionine-rich foods, following the development of a mathematical model for MMC in Zucker Diabetic Fatty (ZDF) rats, as a representative T2DM animal model. Method The model building and simulation were performed using NONMEM® (ver. 7.3.0) assisted by Perl-Speaks-NONMEM (PsN, ver. 4.3.0). Model parameters were derived using first-order conditional estimation method with interactions permitted among the parameters (FOCE-INTER). NCA was conducted using Phoenix (ver. 6.4.0). For all tests, we considered a P-value < 0.05 to reflect statistical significance. Results Our model featured seven compartments that considered all parts of the cycle by applying non-linear mixed effects model. Conversion of S-adenosyl-L-homocysteine (SAH) to homocysteine increased and the metabolism of homocysteine was reduced under diabetic conditions, and consequently homocysteine accumulated in the elimination phase. Using our model, we performed simulations to compare the changes in plasma methionine and homocysteine concentrations between ZDF and normal rats, by multiple administrations of the methionine-rich diet of 1 mmol/kg, daily for 60 days. The levels of methionine and homocysteine were elevated approximately two- and three-fold, respectively, in ZDF rats, while there were no changes observed in the normal control rats. Conclusion These results can be interpreted to mean that both methionine and homocysteine will accumulate in patients with T2DM, who regularly consume high-methionine foods.
Collapse
Affiliation(s)
- Nayoung Han
- 1College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 Republic of Korea
| | - Jung-Woo Chae
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Jihyun Jeon
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Jaeyeon Lee
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea.,New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk 28160 Republic of Korea
| | - Hyun-Moon Back
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Byungjeong Song
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea.,Drug Discovery Center, JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul 06725 Republic of Korea
| | - Kwang-Il Kwon
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Sang Kyum Kim
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Hwi-Yeol Yun
- 2College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| |
Collapse
|
20
|
Deutz NE, Simbo SY, Ligthart-Melis GC, Cynober L, Smriga M, Engelen MP. Tolerance to increased supplemented dietary intakes of methionine in healthy older adults. Am J Clin Nutr 2017; 106:675-683. [PMID: 28637772 DOI: 10.3945/ajcn.117.152520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/18/2017] [Indexed: 11/14/2022] Open
Abstract
Background: l-Methionine (Met) is an essential amino acid for humans and is important for protein synthesis and the formation of polyamines and is involved in the synthesis of many metabolites, including homocysteine. Free-Met supplements have been claimed to have multiple positive effects; however, it remains unclear what the exact tolerance level is. With aging, Met metabolism changes, and increased plasma homocysteine is more apparent. High plasma concentrations of homocysteine are assumed to be associated with a high risk of developing atherosclerosis.Objective: We estimated the no-observed-adverse-effect level (NOAEL) and the lowest-observed-adverse-effect level (LOAEL) of supplemented, oral, free Met in healthy older adults by examining the increase in plasma homocysteine as the primary determinant.Design: We provided capsules with free Met to 15 healthy older adult subjects for 4 wk at climbing dosages of, on average, 9.2, 22.5, 46.3 and 91 mg · kg body weight-1 · d-1 with washout periods of 2 wk between each intake. Before, at 2 and 4 wk during, and 2 wk after each dosage, we studied a complete panel of biochemical blood variables to detect possible intolerance to increased Met intake. Plasma homocysteine and body composition were measured, and tolerance, quality of life, and cognitive function were assessed via questionnaires.Results: Plasma homocysteine was elevated with the highest dose of supplemented Met. The estimated NOAEL of supplemented Met was set at 46.3 mg · kg body weight-1 · d-1, and the estimated LOAEL of supplemented Met was set at 91 mg · kg body weight-1 · d-1 (on the basis of the actual intakes) in subjects independent of sex. No signs of intolerance were observed via questionnaires or other blood variables at the LOAEL. There were no meaningful changes in body composition.Conclusions: On the basis of plasma homocysteine, the NOAEL of supplemented Met intake is 46.3 and the LOAEL is 91 mg · kg body weight-1 · d-1 in healthy older adults. Both the NOAEL and LOAEL are not associated with meaningful effects on health and wellbeing. This trial was registered at clinicaltrials.gov as NCT02566434.
Collapse
Affiliation(s)
- Nicolaas Ep Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX;
| | - Sunday Y Simbo
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX
| | - Gerdien C Ligthart-Melis
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX
| | - Luc Cynober
- Department of Clinical Chemistry, Cochin and Hotel-Dieu Hospitals, Assistance Publique - Hôpitaux de Paris, Paris, France.,Department of Biological Nutrition, Faculty of Pharmacy, Paris Descartes University, Paris, France; and
| | - Miro Smriga
- International Council on Amino Acid Science, Brussels, Belgium
| | - Mariëlle Pkj Engelen
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX
| |
Collapse
|
21
|
Epigenetic regulation of skeletal muscle metabolism. Clin Sci (Lond) 2017; 130:1051-63. [PMID: 27215678 DOI: 10.1042/cs20160115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states.
Collapse
|
22
|
Kim Y, Lee IS, Kim KH, Park J, Lee JH, Bang E, Jang HJ, Na YC. Metabolic Profiling of Liver Tissue in Diabetic Mice Treated with Artemisia Capillaris and Alisma Rhizome Using LC-MS and CE-MS. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1639-1661. [PMID: 27852124 DOI: 10.1142/s0192415x16500920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Artemisia Capillaris (AC) and Alisma Rhizome (AR) are natural products for the treatment of liver disorders in oriental medicine clinics. Here, we report metabolomic changes in the evaluation of the treatment effects of AC and AR on fatty livers in diabetic mice, along with a proposition of the underlying metabolic pathway. Hydrophobic and hydrophilic metabolites extracted from mouse livers were analyzed using HPLC-QTOF and CE-QTOF, respectively, to generate metabolic profiles. Statistical analysis of the metabolites by PLS-DA and OPLA-DA fairly discriminated between the diabetic, and the AC- and AR-treated mice groups. Various PEs mostly contributed to the discrimination of the diabetic mice from the normal mice, and besides, DG (18:1/16:0), TG (16:1/16:1/20:1), PE (21:0/20:5), and PA (18:0/21:0) were also associated with discrimination by s-plot. Nevertheless, the effects of AC and AR treatment were indistinct with respect to lipid metabolites. Of the 97 polar metabolites extracted from the CE-MS data, 40 compounds related to amino acid, central carbon, lipid, purine, and pyrimidine metabolism, with [Formula: see text] values less than 0.05, were shown to contribute to liver dysregulation. Following treatment with AC and AR, the metabolites belonging to purine metabolism preferentially recovered to the metabolic state of the normal mice. The AMP/ATP ratio of cellular energy homeostasis in AR-treated mice was more apparently increased ([Formula: see text]) than that of AC-treated mice. On the other hand, amino acids, which showed the main alterations in diabetic mice, did not return to the normal levels upon treatment with AR or AC. In terms of metabolomics, AR was a more effective natural product in the treatment of liver dysfunction than AC. These results may provide putative biomarkers for the prognosis of fatty liver disorder following treatment with AC and AR extracts.
Collapse
Affiliation(s)
- Yumi Kim
- * Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea.,† Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdemun-gu, Seoul 02447, Republic of Korea
| | - In-Seung Lee
- † Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdemun-gu, Seoul 02447, Republic of Korea
| | - Kang-Hoon Kim
- † Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdemun-gu, Seoul 02447, Republic of Korea
| | - Jiyoung Park
- † Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdemun-gu, Seoul 02447, Republic of Korea
| | - Ji-Hyun Lee
- * Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea.,‡ Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Eunjung Bang
- * Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea
| | - Hyeung-Jin Jang
- † Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdemun-gu, Seoul 02447, Republic of Korea
| | - Yun-Cheol Na
- * Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea.,‡ Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
23
|
Deminice R, Comparotto H, Jordao AA. Whey protein supplementation increases methionine intake but not homocysteine plasma concentration in rats. Appl Physiol Nutr Metab 2016; 40:46-50. [PMID: 25485892 DOI: 10.1139/apnm-2014-0175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the effects of whey protein supplementation on homocysteine (Hcy) metabolism and liver oxidative stress in rats. Twenty-four rats were divided into 3 groups (n = 8) to receive one of the following diets for 4 weeks: control diet (C), whey protein-composed diet (WP), and whey protein-supplemented diet (WPS). The C and WP diets consisted of AIN-93 with 20% casein and 20% whey protein as protein source, respectively. WPS was AIN-93 (20% casein) supplemented by the addition of 20% (w/w) whey protein. Four weeks of ingesting a WPS diet resulted in a significantly higher (P < 0.05) total protein and methionine intakes. Although a significant increase (P < 0.05) in the hepatic S-adenosylmethionine and S-adenosylhomocysteine levels occurred in WPS group compared with C and WP, no significant change was observed in plasma Hcy concentration between groups. Furthermore, the levels of lipid hydroperoxides and advanced oxidation protein products, known liver oxidative stress markers, were increased in the WPS group compared with the C group. In addition, no change in glutathione liver concentration was observed in any of the groups studied. In conclusion, whey protein supplementation increases methionine intake substantially; however, it does not change plasma Hcy concentrations. On the other hand, increased hepatic oxidative stress markers were observed in whey protein supplemented rats were probably due to high protein intake.
Collapse
Affiliation(s)
- Rafael Deminice
- a Laboratory of Nutrition and Metabolism, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, Sao Paulo, Brazil
| | | | | |
Collapse
|
24
|
Rosa J, Tiago DM, Marques CL, Vijayakumar P, Fonseca L, Cancela ML, Laizé V. Central role of betaine-homocysteine S-methyltransferase 3 in chondral ossification and evidence for sub-functionalization in neoteleost fish. Biochim Biophys Acta Gen Subj 2016; 1860:1373-87. [PMID: 27036080 DOI: 10.1016/j.bbagen.2016.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND To better understand the complex mechanisms of bone formation it is fundamental that genes central to signaling/regulatory pathways and matrix formation are identified. Cell systems were used to analyze genes differentially expressed during extracellular matrix mineralization and bhmt3, coding for a betaine-homocysteine S-methyltransferase, was shown to be down-regulated in mineralizing gilthead seabream cells. METHODS Levels and sites of bhmt3 expression were determined by qPCR and in situ hybridization throughout seabream development and in adult tissues. Transcriptional regulation of bhmt3 was assessed from the activity of promoter constructs controlling luciferase gene expression. Molecular phylogeny of vertebrate BHMT was determined from maximum likelihood analysis of available sequences. RESULTS bhmt3 transcript is abundant in calcified tissues and localized in cartilaginous structures undergoing endo/perichondral ossification. Promoter activity is regulated by transcription factors involved in bone and cartilage development, further demonstrating the central role of Bhmt3 in chondrogenesis and/or osteogenesis. Molecular phylogeny revealed the explosive diversity of bhmt genes in neoteleost fish, while tissue distribution of bhmt genes in seabream suggested that neoteleostean Bhmt may have undergone several steps of sub-functionalization. CONCLUSIONS Data on bhmt3 gene expression and promoter activity evidences a novel function for betaine-homocysteine S-methyltransferase in bone and cartilage development, while phylogenetic analysis provides new insights into the evolution of vertebrate BHMTs and suggests that multiple gene duplication events occurred in neoteleost fish lineage. GENERAL SIGNIFICANCE High and specific expression of Bhmt3 in gilthead seabream calcified tissues suggests that bone-specific betaine-homocysteine S-methyltransferases could represent a suitable marker of chondral ossification.
Collapse
Affiliation(s)
- Joana Rosa
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Daniel M Tiago
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | | | - Luis Fonseca
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
25
|
Sarna LK, Siow YL, O K. The CBS/CSE system: a potential therapeutic target in NAFLD? Can J Physiol Pharmacol 2016; 93:1-11. [PMID: 25493326 DOI: 10.1139/cjpp-2014-0394] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a broad spectrum liver disorder diagnosed in patients without a history of alcohol abuse. NAFLD is growing at alarming rates worldwide. Its pathogenesis is complex and incompletely understood. The cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) system regulates homocysteine and cysteine metabolism and contributes to endogenous hydrogen sulfide (H2S) biosynthesis. This review summarizes our current understanding of the hepatic CBS/CSE system, and for the first time, positions this system as a potential therapeutic target in NAFLD. As will be discussed, the CBS/CSE system is highly expressed and active in the liver. Its dysregulation, presenting as alterations in circulating homocysteine and (or) H2S levels, has been reported in NAFLD patients and in NAFLD-associated co-morbidities such as obesity and type 2 diabetes. Intricate links between the CBS/CSE system and a number of metabolic and stress related molecular mediators have also emerged. Various dysfunctions in the hepatic CBS/CSE system have been reported in animal models representative of each NAFLD spectrum. It is anticipated that a newfound appreciation for the hepatic CBS/CSE system will emerge that will improve our understanding of NAFLD pathogenesis, and give rise to new prospective targets for management of this disorder.
Collapse
Affiliation(s)
- Lindsei K Sarna
- a Laboratory of Integrative Biology, St. Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | | | | |
Collapse
|
26
|
Murray TVA, Dong X, Sawyer GJ, Caldwell A, Halket J, Sherwood R, Quaglia A, Dew T, Anilkumar N, Burr S, Mistry RK, Martin D, Schröder K, Brandes RP, Hughes RD, Shah AM, Brewer AC. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice. Free Radic Biol Med 2015; 89:918-30. [PMID: 26472193 PMCID: PMC4698376 DOI: 10.1016/j.freeradbiomed.2015.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023]
Abstract
Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins.
Collapse
Affiliation(s)
- Thomas V A Murray
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Xuebin Dong
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Greta J Sawyer
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Anna Caldwell
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street London E1 9NH
| | - John Halket
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street London E1 9NH
| | - Roy Sherwood
- NHS Foundation Trust, King's College Hospital, Denmark Hill, London SE5 9RS
| | - Alberto Quaglia
- Institute of Liver Studies, King's College London, Denmark Hill, London SE5 9RS
| | - Tracy Dew
- NHS Foundation Trust, King's College Hospital, Denmark Hill, London SE5 9RS
| | - Narayana Anilkumar
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Simon Burr
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Rajesh K Mistry
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Daniel Martin
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, 60596 Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, 60596 Frankfurt am Main, Germany
| | - Robin D Hughes
- Institute of Liver Studies, King's College London, Denmark Hill, London SE5 9RS
| | - Ajay M Shah
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Alison C Brewer
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD.
| |
Collapse
|
27
|
Kwak HC, Kim YM, Oh SJ, Kim SK. Sulfur amino acid metabolism in Zucker diabetic fatty rats. Biochem Pharmacol 2015; 96:256-66. [PMID: 26047850 DOI: 10.1016/j.bcp.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
The present study was aimed to investigate the metabolomics of sulfur amino acids in Zucker diabetic fatty (ZDF) rats, an obese type 2 diabetic animal model. Plasma levels of total cysteine, homocysteine and methionine, but not glutathione (GSH) were markedly decreased in ZDF rats. Hepatic methionine, homocysteine, cysteine, betaine, taurine, spermidine and spermine were also decreased. There are no significant difference in hepatic S-adenosylmethionine, S-adenosylhomocysteine, GSH, GSH disulfide, hypotaurine and putrescine between control and ZDF rats. Hepatic SAH hydrolase, betaine-homocysteine methyltransferase and methylene tetrahydrofolate reductase were up-regulated while activities of gamma-glutamylcysteine ligase and methionine synthase were decreased. The area under the curve (AUC) of methionine and methionine-d4 was not significantly different in control and ZDF rats treated with a mixture of methionine (60mg/kg) and methionine-d4 (20mg/kg). Moreover, the AUC of the increase in plasma total homocysteine was comparable between two groups, although the homocysteine concentration curve was shifted leftward in ZDF rats, suggesting that the plasma total homocysteine after the methionine loading was rapidly increased and normalized in ZDF rats. These results show that the AUC of plasma homocysteine is not responsive to the up-regulation of hepatic BHMT in ZDF rats. The present study suggests that the decrease in hepatic methionine may be responsible for the decreases in its metabolites, such as homocysteine, cysteine, and taurine in liver and consequently decreased plasma homocysteine levels.
Collapse
Affiliation(s)
- Hui Chan Kwak
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy, Hanyang University, Ansan, Gyeonggido 426-791, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, KRIBB, Ochang, Chungbuk, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
28
|
Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:758358. [PMID: 26078817 PMCID: PMC4442299 DOI: 10.1155/2015/758358] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 11/18/2022]
Abstract
Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy.
Collapse
|
29
|
Ishikawa K, Tsunekawa S, Ikeniwa M, Izumoto T, Iida A, Ogata H, Uenishi E, Seino Y, Ozaki N, Sugimura Y, Hamada Y, Kuroda A, Shinjo K, Kondo Y, Oiso Y. Long-term pancreatic beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity. PLoS One 2015; 10:e0115350. [PMID: 25658116 PMCID: PMC4319953 DOI: 10.1371/journal.pone.0115350] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/22/2014] [Indexed: 01/06/2023] Open
Abstract
Recent studies have implicated epigenetics in the pathophysiology of diabetes. Furthermore, DNA methylation, which irreversibly deactivates gene transcription, of the insulin promoter, particularly the cAMP response element, is increased in diabetes patients. However, the underlying mechanism remains unclear. We aimed to investigate insulin promoter DNA methylation in an over-nutrition state. INS-1 cells, the rat pancreatic beta cell line, were cultured under normal-culture-glucose (11.2 mmol/l) or experimental-high-glucose (22.4 mmol/l) conditions for 14 days, with or without 0.4 mmol/l palmitate. DNA methylation of the rat insulin 1 gene (Ins1) promoter was investigated using bisulfite sequencing and pyrosequencing analysis. Experimental-high-glucose conditions significantly suppressed insulin mRNA and increased DNA methylation at all five CpG sites within the Ins1 promoter, including the cAMP response element, in a time-dependent and glucose concentration-dependent manner. DNA methylation under experimental-high-glucose conditions was unique to the Ins1 promoter; however, palmitate did not affect DNA methylation. Artificial methylation of Ins1 promoter significantly suppressed promoter-driven luciferase activity, and a DNA methylation inhibitor significantly improved insulin mRNA suppression by experimental-high-glucose conditions. Experimental-high-glucose conditions significantly increased DNA methyltransferase activity and decreased ten-eleven-translocation methylcytosine dioxygenase activity. Oxidative stress and endoplasmic reticulum stress did not affect DNA methylation of the Ins1 promoter. High glucose but not palmitate increased ectopic triacylglycerol accumulation parallel to DNA methylation. Metformin upregulated insulin gene expression and suppressed DNA methylation and ectopic triacylglycerol accumulation. Finally, DNA methylation of the Ins1 promoter increased in isolated islets from Zucker diabetic fatty rats. This study helps to clarify the effect of an over-nutrition state on DNA methylation of the Ins1 promoter in pancreatic beta cells. It provides new insights into the irreversible pathophysiology of diabetes.
Collapse
Affiliation(s)
- Kota Ishikawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
| | - Shin Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
- * E-mail:
| | - Makoto Ikeniwa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
| | - Takako Izumoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Iida
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
| | - Hidetada Ogata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
| | - Eita Uenishi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
| | - Yusuke Seino
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
| | - Nobuaki Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
| | - Yoji Hamada
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Kuroda
- Diabetes Therapeutics and Research Center, The University of Tokushima, Tokushima, Japan
| | - Keiko Shinjo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Kondo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466–8550, Japan
| |
Collapse
|
30
|
Deminice R, Rosa FT, da Silva LECM, Jordao AA. Taurine supplementation does not decrease homocysteine levels and liver injury induced by a choline-deficient diet. Life Sci 2014; 105:43-7. [PMID: 24769283 DOI: 10.1016/j.lfs.2014.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/20/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
AIMS The aim of this study is to examine the effects of taurine supplementation on homocysteine (Hcy) metabolism and liver injury in rats fed a choline-deficient diet. MAIN METHODS Thirty rats were divided into three groups (n=10), to receive one of the following diets for 4 weeks: control diet (C), choline-deficient diet (CDD), or choline-deficient diet supplemented with taurine (CDDT). The CDD and the CDDT consisted of AIN-93 without the recommended choline content of 2.5%, and the CDDT was supplemented by the addition of 2.5% taurine. KEY FINDINGS Four weeks of ingesting a CDD resulted in a significant increase in plasma Hcy (50%) as well as a decrease in liver S-adenosylmethionine (SAM) concentration and S-adenosylmethionine/S-adenosylhomocysteine ratio. No changes were found in plasma methionine and cysteine plasma levels compared to control group. Four weeks of ingesting a CDD also caused a significant (P<0.05) increase in hepatic total fat, hepatic malondialdehyde (MDA), and plasma alanine aminotransferase (ALT) levels. In addition, reduced hepatic glutathione (GSH) levels and reduced/oxidized glutathione ratios (GSH/GSSG) were found in rats fed a CDD compared to controls. Taurine supplementation of the CDD normalized genes involved in the remethylation pathway, BHMT and CHDH, which were impaired by CDD alone. However, taurine supplementation failed to prevent CDD-induced Hcy metabolism disturbances and hepatic injury. Also, taurine added to CDD caused decreased expression of PEMT, CHKa, and CHKb, key genes involved in phosphatidylcholine (PC) synthesis and liver fat accumulation. SIGNIFICANCE Taurine supplementation failed to ameliorate impaired Hcy metabolism and liver injury caused by CDD intake.
Collapse
Affiliation(s)
- Rafael Deminice
- Laboratory of Nutrition and Metabolism, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, São Paulo, Brazil; Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil.
| | - Flávia Troncon Rosa
- Laboratory of Nutrition and Metabolism, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, São Paulo, Brazil
| | - Lilian Eslaine Costa Mendes da Silva
- Laboratory of Nutrition and Metabolism, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, São Paulo, Brazil
| | - Alceu Afonso Jordao
- Laboratory of Nutrition and Metabolism, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, São Paulo, Brazil
| |
Collapse
|
31
|
Martínez JA, Milagro FI, Claycombe KJ, Schalinske KL. Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr 2014; 5:71-81. [PMID: 24425725 PMCID: PMC3884103 DOI: 10.3945/an.113.004705] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them.
Collapse
Affiliation(s)
- J. Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain,CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain,To whom correspondence should be addressed. E-mail:
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain,CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Kate J. Claycombe
- USDA-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND; and
| | - Kevin L. Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA
| |
Collapse
|
32
|
Tekwe CD, Lei J, Yao K, Rezaei R, Li X, Dahanayaka S, Carroll RJ, Meininger CJ, Bazer FW, Wu G. Oral administration of interferon tau enhances oxidation of energy substrates and reduces adiposity in Zucker diabetic fatty rats. Biofactors 2013; 39:552-63. [PMID: 23804503 PMCID: PMC3786024 DOI: 10.1002/biof.1113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/09/2013] [Accepted: 04/25/2013] [Indexed: 01/17/2023]
Abstract
Male Zucker diabetic fatty (ZDF) rats were used to study effects of oral administration of interferon tau (IFNT) in reducing obesity. Eighteen ZDF rats (28 days of age) were assigned randomly to receive 0, 4, or 8 μg IFNT/kg body weight (BW) per day (n = 6/group) for 8 weeks. Water consumption was measured every two days. Food intake and BW were recorded weekly. Energy expenditure in 4-, 6-, 8-, and 10-week-old rats was determined using indirect calorimetry. Starting at 7 weeks of age, urinary glucose, and ketone bodies were tested daily. Rates of glucose and oleate oxidation in liver, brown adipose tissue, and abdominal adipose tissue, as well as leucine catabolism in skeletal muscle, and lipolysis in white and brown adipose tissues were greater for rats treated with 8 μg IFNT/kg BW/day in comparison with control rats. Treatment with 8 μg IFNT/kg BW/day increased heat production, reduced BW gain and adiposity, ameliorated fatty liver syndrome, delayed the onset of diabetes, and decreased concentrations of glucose, free fatty acids, triacylglycerol, cholesterol, and branched-chain amino acids in plasma, compared with control rats. Oral administration of 8 µg IFNT/kg BW/day ameliorated oxidative stress in skeletal muscle, liver, and adipose tissue, as indicated by decreased ratios of oxidized glutathione to reduced glutathione and increased concentrations of tetrahydrobiopterin. These results indicate that IFNT stimulates oxidation of energy substrates and reduces obesity in ZDF rats and may have broad important implications for preventing and treating obesity-related diseases in mammals.
Collapse
Affiliation(s)
- Carmen D. Tekwe
- Department of Animal Science, Texas A&M University, College Station, TX 77843
- Department of Statistics, Texas A&M University, College Station, TX 77843
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843
| | - Jian Lei
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Kang Yao
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Reza Rezaei
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Sudath Dahanayaka
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Raymond J. Carroll
- Department of Statistics, Texas A&M University, College Station, TX 77843
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843
| | - Cynthia J. Meininger
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843
| |
Collapse
|
33
|
Assessment of urinary betaine as a marker of diabetes mellitus in cardiovascular patients. PLoS One 2013; 8:e69454. [PMID: 23936331 PMCID: PMC3735559 DOI: 10.1371/journal.pone.0069454] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 06/09/2013] [Indexed: 01/18/2023] Open
Abstract
Abnormal urinary excretion of betaine has been demonstrated in patients with diabetes or metabolic syndrome. We aimed to identify the main predictors of excretion in cardiovascular patients and to make initial assessment of its feasibility as a risk marker of future diabetes development. We used data from 2396 patients participating in the Western Norway B-vitamin Intervention Trial, who delivered urine and blood samples at baseline, and in the majority at two visits during follow-up of median 39 months. Betaine in urine and plasma were measured by liquid-chromatography-tandem mass spectrometry. The strongest determinants of urinary betaine excretion by multiple regression were diabetes mellitus, age and estimated glomerular filtration rate; all p<0.001. Patients with diabetes mellitus (n = 264) had a median excretion more than three times higher than those without. We found a distinct non-linear association between urinary betaine excretion and glycated hemoglobin, with a break-point at 6.5%, and glycated hemoglobin was the strongest determinant of betaine excretion in patients with diabetes mellitus. The discriminatory power for diabetes mellitus corresponded to an area under the curve by receiver-operating characteristics of 0.82, and betaine excretion had a coefficient of reliability of 0.73. We also found a significant, independent log-linear relation between baseline betaine excretion and the risk of developing new diabetes during follow-up. The good discriminatory power for diabetes, high test-retest stability and independent association with future risk of new diabetes should motivate further investigation on the role of betaine excretion in risk assessment and long-term follow-up of diabetes mellitus.
Collapse
|
34
|
Jung YS, Yun KU, Ryu CS, Oh JM, Kwak HC, Lee JY, Park SK, Kim BH, Oh SJ, Kim SK. Alterations in hepatic metabolism of sulfur amino acids in non-obese type-2 diabetic Goto-Kakizaki rats. Chem Biol Interact 2013; 204:80-7. [DOI: 10.1016/j.cbi.2013.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/21/2013] [Accepted: 04/28/2013] [Indexed: 01/14/2023]
|
35
|
Hwang SY, Sarna LK, Siow YL, O K. High-fat diet stimulates hepatic cystathionine β-synthase and cystathionine γ-lyase expression. Can J Physiol Pharmacol 2013; 91:913-9. [PMID: 24117258 DOI: 10.1139/cjpp-2013-0106] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) catalyze homocysteine (Hcy) metabolism via the trans-sulfuration pathway. They are also responsible for hydrogen sulfide (H2S) production via desulfuration reactions. The liver contributes significantly to the regulation of Hcy and H2S homeostasis, which might participate in many physiological and pathological processes. The aim of this study was to investigate the effect of a high-fat diet (HFD) on hepatic CBS and CSE expression and its impact on Hcy and H2S metabolism. Mice (C57BL/6) fed a HFD (60% kcal fat) for 5 weeks developed fatty liver. The mRNA and protein levels of CBS and CSE in the liver were significantly elevated in mice fed a HFD. Subsequently the metabolism of Hcy by CBS and CSE was increased in the liver, and its level decreased in the circulation. Increased CBS and CSE expression also caused a significant elevation in H2S production in the liver. The level of lipid peroxides was elevated, indicating oxidative stress, while the level of total glutathione remained unchanged in the liver of HFD-fed mice. Upregulation of the trans-sulfuration pathway might play an adaptive role against oxidative stress by maintaining total glutathione levels in the liver.
Collapse
Affiliation(s)
- Sun-Young Hwang
- a Department of Physiology, University of Manitoba, Winnipeg, Manitoba
| | | | | | | |
Collapse
|
36
|
Mello AL, Cunha SFDCD, Foss-Freitas MC, Vannucchi H. Evaluation of plasma homocysteine level according to the C677T and A1298C polymorphism of the enzyme MTHRF in type 2 diabetic adults. ACTA ACUST UNITED AC 2013; 56:429-34. [PMID: 23108747 DOI: 10.1590/s0004-27302012000700004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 08/30/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine plasma homocysteine levels during fasting and after methionine overload, and to correlate homocysteinemia according to methylenetetrahydrofolate reductase (MTHFR) polymorphism in type 2 diabetic adults. SUBJECTS AND METHODS The study included 50 type 2 diabetic adults (DM group) and 52 healthy subjects (Control group). Anthropometric data, and information on food intake, serum levels of vitamin B12, folic acid and plasma homocysteine were obtained. The identification of C677T and A1298C polymorphisms was carried out in the MTHFR gene. RESULTS There was no significant difference in homocysteinemia between the two groups, and hyperhomocysteinemia during fasting occurred in 40% of the diabetic patients and in 23% of the controls. For the same polymorphism, there was not any significant difference in homocysteine between the groups. In the Control group, homocysteinemia was greater in those subjects with C677T and A1298C polymorphisms. Among diabetic subjects, those with the A1298C polymorphism had lower levels of homocysteine compared with individuals with C677T polymorphism. CONCLUSION The MTHFR polymorphism (C677T and A1298C) resulted in different outcomes regarding homocysteinemia among individuals of each group (diabetic and control). These data suggest that metabolic factors inherent to diabetes influence homocysteine metabolism.
Collapse
Affiliation(s)
- Adriana Lima Mello
- Department of Sciences of Nutrition, School of Nutrition, Universidade Federal da Bahia, Salvador, BA, Brazil
| | | | | | | |
Collapse
|
37
|
Dahlhoff C, Desmarchelier C, Sailer M, Fürst RW, Haag A, Ulbrich SE, Hummel B, Obeid R, Geisel J, Bader BL, Daniel H. Hepatic methionine homeostasis is conserved in C57BL/6N mice on high-fat diet despite major changes in hepatic one-carbon metabolism. PLoS One 2013; 8:e57387. [PMID: 23472083 PMCID: PMC3589430 DOI: 10.1371/journal.pone.0057387] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 01/23/2013] [Indexed: 01/29/2023] Open
Abstract
Obesity is an underlying risk factor in the development of cardiovascular disease, dyslipidemia and non-alcoholic fatty liver disease (NAFLD). Increased hepatic lipid accumulation is a hallmark in the progression of NAFLD and impairments in liver phosphatidylcholine (PC) metabolism may be central to the pathogenesis. Hepatic PC biosynthesis, which is linked to the one-carbon (C1) metabolism by phosphatidylethanolamine N-methyltransferase, is known to be important for hepatic lipid export by VLDL particles. Here, we assessed the influence of a high-fat (HF) diet and NAFLD status in mice on hepatic methyl-group expenditure and C1-metabolism by analyzing changes in gene expression, protein levels, metabolite concentrations, and nuclear epigenetic processes. In livers from HF diet induced obese mice a significant downregulation of cystathionine β-synthase (CBS) and an increased betaine-homocysteine methyltransferase (BHMT) expression were observed. Experiments in vitro, using hepatoma cells stimulated with peroxisome proliferator activated receptor alpha (PPARα) agonist WY14,643, revealed a significantly reduced Cbs mRNA expression. Moreover, metabolite measurements identified decreased hepatic cystathionine and L-α-amino-n-butyrate concentrations as part of the transsulfuration pathway and reduced hepatic betaine concentrations, but no metabolite changes in the methionine cycle in HF diet fed mice compared to controls. Furthermore, we detected diminished hepatic gene expression of de novo DNA methyltransferase 3b but no effects on hepatic global genomic DNA methylation or hepatic DNA methylation in the Cbs promoter region upon HF diet. Our data suggest that HF diet induces a PPARα-mediated downregulation of key enzymes in the hepatic transsulfuration pathway and upregulates BHMT expression in mice to accommodate to enhanced dietary fat processing while preserving the essential amino acid methionine.
Collapse
Affiliation(s)
- Christoph Dahlhoff
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Charles Desmarchelier
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Manuela Sailer
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Rainer W. Fürst
- Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Physiology Unit, ZIEL, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Alexander Haag
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Susanne E. Ulbrich
- Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Physiology Unit, ZIEL, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Björn Hummel
- Clinical Chemistry and Laboratory Medicine/Central Laboratory University Hospital of the Saarland, Homburg, Germany
| | - Rima Obeid
- Clinical Chemistry and Laboratory Medicine/Central Laboratory University Hospital of the Saarland, Homburg, Germany
| | - Jürgen Geisel
- Clinical Chemistry and Laboratory Medicine/Central Laboratory University Hospital of the Saarland, Homburg, Germany
| | - Bernhard L. Bader
- Epigenetics, Imprinting and Nutrition, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Nutritional Medicine Unit, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| | - Hannelore Daniel
- Biochemistry Unit, PhD Group, Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
38
|
Pravenec M, Kozich V, Krijt J, Sokolová J, Zídek V, Landa V, Simáková M, Mlejnek P, Silhavy J, Oliyarnyk O, Kazdová L, Kurtz TW. Folate deficiency is associated with oxidative stress, increased blood pressure, and insulin resistance in spontaneously hypertensive rats. Am J Hypertens 2013; 26:135-40. [PMID: 23382337 DOI: 10.1093/ajh/hps015] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The role of folate deficiency and associated hyperhomocysteinemia in the pathogenesis of metabolic syndrome is not fully established. In the current study, we analyzed the role of folate deficiency in pathogenesis of the metabolic syndrome in the spontaneously hypertensive rat (SHR). METHODS Metabolic and hemodynamic traits were assessed in SHR/Ola rats fed either folate-deficient or control diet for 4 weeks starting at the age of 3 months. RESULTS Compared to SHRs fed a folate-replete diet, SHRs fed a folate-deficient diet showed significantly reduced serum folate (104 ± 5 vs. 11 ± 1 nmol/L, P < 0.0005) and urinary folate excretion (4.3 ± 0.6 vs. 1.2 ± 0.1 nmol/16 h, P < 0.0005) together with a near 3-fold increase in plasma total homocysteine concentration (4.5 ± 0.1 vs 13.1 ± 0.7 μmol/L, P < 0.0005), ectopic fat accumulation in liver, and impaired glucose tolerance. Folate deficiency also increased systolic blood pressure by approximately 15 mm Hg (P < 0.01). In addition, the low-folate diet was accompanied by significantly reduced activity of antioxidant enzymes and increased concentrations of lipoperoxidation products in liver, renal cortex, and heart. CONCLUSIONS These findings demonstrate that the SHR model is susceptible to the adverse metabolic and hemodynamic effects of low dietary intake of folate. The results are consistent with the hypothesis that folate deficiency can promote oxidative stress and multiple features of the metabolic syndrome that are associated with increased risk for diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang L, Yang G, Untereiner A, Ju Y, Wu L, Wang R. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology 2013. [PMID: 23183179 DOI: 10.1210/en.2012-1658] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mounting evidence has established hydrogen sulfide (H(2)S) as an important gasotransmitter with multifaceted physiological functions. The aim of the present study was to investigate the role of H(2)S on glucose utilization, glycogen synthesis, as well as gluconeogenesis in both HepG(2) cells and primary mouse hepatocytes. Incubation with NaHS (a H(2)S donor) impaired glucose uptake and glycogen storage in HepG(2) cells via decreasing glucokinase activity. Adenovirus-mediated cystathionine γ-lyase (CSE) overexpression increased endogenous H(2)S production and lowered glycogen content in HepG(2) cells. Glycogen content was significantly higher in liver tissues from CSE knockout (KO) mice compared to that from wild type (WT) mice in fed condition. Glucose consumption was less in primarily cultured hepatocytes isolated from WT mice than those from CSE KO mice, but more glucose was produced by hepatocytes via gluconeogenesis and glycogenolysis pathways in WT mice than in CSE KO mice. NaHS treatment reduced the phosphorylation of AMP-activated protein kinase, whereas stimulation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside reversed H(2)S-impaired glucose uptake. H(2)S-increased glucose production was likely through increased phosphoenolpyruvate carboxykinase activity. In addition, insulin at the physiological range inhibited CSE expression, and H(2)S decreased insulin-stimulated phosphorylation of Akt in HepG(2) cells. CSE expression was increased, however, in insulin-resistant state induced by exposing cells to high levels of insulin (500 nm) and glucose (33 mm) for 24 h. Taken together, these data suggest that the interaction of H(2)S and insulin in liver plays a pivotal role in regulating insulin sensitivity and glucose metabolism.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1
| | | | | | | | | | | |
Collapse
|
40
|
Yun KU, Ryu CS, Lee JY, Noh JR, Lee CH, Lee HS, Kang JS, Park SK, Kim BH, Kim SK. Hepatic metabolism of sulfur amino acids in db/db mice. Food Chem Toxicol 2012; 53:180-6. [PMID: 23220616 DOI: 10.1016/j.fct.2012.11.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/25/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
To determine the effect of type-2 diabetes and obesity on the hepatic metabolism of sulfur amino acids, hepatic sulfur amino acid metabolism was determined in db/db mice. Hepatic methionine was markedly decreased in db/db mice, although the hepatic activity of betaine homocysteine methyltransferase was increased. The decrease in hepatic methionine was reflected by decreased sulfur-containing methionine metabolites, including S-adenosylmethionine, homocysteine, cysteine, and hypotaurine in liver and plasma. In contrast, S-adenosylhomocysteine, putrescine, and spermidine were increased in db/db mice. The hepatic level and activity of methionine adenosyltransferase I/III, an S-adenosylmethionine synthesizing enzyme, were significantly increased. These results suggest that increased polyamine synthesis, in conjunction with decreased hepatic methionine levels, is partly responsible for the reduction in hepatic S-adenosylmethionine. Decreased homocysteine in liver and plasma may be attributable to the decrease in hepatic methionine and upregulation of hepatic betaine homocysteine methyltransferase. Glutathione in liver and plasma did not change despite decreased γ-glutamylcysteine ligase activity. The decreased hepatic hypotaurine may be attributable to the downregulation of cysteine dioxygenase. The major finding of this study is that db/db mice exhibited decreases in hepatic methionine and its sulfurcontaining metabolites.
Collapse
Affiliation(s)
- Kang Uk Yun
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Hydrogen sulfide (H(2)S) has been found to play an important role as a signal molecule in regulating cell survival. It appears paradoxical that, on one side, H(2)S acts as a physiological intercellular messenger to stimulate cell growth, and on the other side, it may display cytotoxic activity. This article summarizes the current body of evidence demonstrating the cytoprotective versus cytotoxic effects of H(2)S in mammalian cells and describes the janus-faced properties of this important gasotransmitter. This article will also provide a brief description of the current signaling mechanisms that have been demonstrated to be responsible for these different actions. The pharmacologic regulation of H(2)S production and the potential clinical significance of H(2)S are highlighted.
Collapse
Affiliation(s)
- Guangdong Yang
- The School of Kinesiology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.
| |
Collapse
|
42
|
Zhao L, Gao H, Zhao Y, Lin D. Metabonomic analysis of the therapeutic effect of Zhibai Dihuang Pill in treatment of streptozotocin-induced diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:647-656. [PMID: 22687255 DOI: 10.1016/j.jep.2012.05.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhibai Dihuang Pill (ZDP) is one of ancient traditional Chinese medicines (TCMs), which is usually used for the treatment of kidney deficiency for thousands of years in China. AIM OF THE STUDY Traditional Chinese medicines (TCMs) usually operate in vivo through multi-components, multi-ways and multi-targets. However, the molecular mechanisms of TCMs remain unclear. In the present work, nuclear magnetic resonance (NMR)-based metabonomic analysis was used to evaluate the therapeutic effect of Zhibai Dihuang Pill (ZDP) on diabetic nephropathy (DN) rats induced by streptozotocin and to address the underlying molecular mechanism. MATERIALS AND METHODS Male rats were divided into three groups: control, DN and ZDP-treated DN (ZDP-DN), respectively. Based on (1)H NMR spectra of sera, urine and kidney extracts from the rats, principle component analysis (PCA) was performed to identify different metabolic profiles. Kidney portions and serum and urine samples were also subjected to histopathological or biochemical examination. RESULTS PCA scores plots demonstrate that the cluster of DN rats is separated from that of control rats, while some of ZDP-DN rats are located close to control rats, indicating that metabolic profiles of these ZDP-DN rats are restored toward those of control rats. Our results illustrate that ZDP treatment could lower the levels of lipids and 3-hydrobutyrate, and raise the level of lactate in sera of DN rats. Moreover, ZDP treatment could also reduce the levels of glucose, 3-hydrobutyrate and lactate, enhance the level of betaine in kidney tissues. CONCLUSION Our study indicates that ZDP treatment can ameliorate DN symptoms by intervening in some dominating metabolic pathways, such as inhibiting glucose and lipid metabolism, enhancing methylamine metabolism. Our work may be of benefit to both evaluation of the therapeutic effect of TCM and elucidation of the underlying molecular mechanism.
Collapse
Affiliation(s)
- Liangcai Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | |
Collapse
|
43
|
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012; 92:791-896. [PMID: 22535897 DOI: 10.1152/physrev.00017.2011] [Citation(s) in RCA: 1393] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrates, and finally to mammals. Over the centuries, however, H(2)S had only been known for its toxicity and environmental hazard. Physiological importance of H(2)S has been appreciated for about a decade. It started by the discovery of endogenous H(2)S production in mammalian cells and gained momentum by typifying this gasotransmitter with a variety of physiological functions. The H(2)S-catalyzing enzymes are differentially expressed in cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems and affect the functions of these systems through the production of H(2)S. The physiological functions of H(2)S are mediated by different molecular targets, such as different ion channels and signaling proteins. Alternations of H(2)S metabolism lead to an array of pathological disturbances in the form of hypertension, atherosclerosis, heart failure, diabetes, cirrhosis, inflammation, sepsis, neurodegenerative disease, erectile dysfunction, and asthma, to name a few. Many new technologies have been developed to detect endogenous H(2)S production, and novel H(2)S-delivery compounds have been invented to aid therapeutic intervention of diseases related to abnormal H(2)S metabolism. While acknowledging the challenges ahead, research on H(2)S physiology and medicine is entering an exponential exploration era.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
44
|
Williams KT, Schalinske KL. Tissue-specific alterations of methyl group metabolism with DNA hypermethylation in the Zucker (type 2) diabetic fatty rat. Diabetes Metab Res Rev 2012; 28:123-31. [PMID: 21818837 DOI: 10.1002/dmrr.1281] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Altered methyl group and homocysteine metabolism were tissue-specific, persistent, and preceded hepatic DNA hypomethylation in type 1 diabetic rats. Similar metabolic perturbations have been shown in the Zucker (type 2) diabetic fatty (ZDF) rat in the pre-diabetic and early diabetic stages, but tissue specificity and potential impact on epigenetic marks are unknown, particularly during pathogenesis. METHODS ZDF (fa/fa) and lean (+/?) control rats were killed at 12 and 21 weeks of age, representing early and advanced diabetic conditions. Blood and tissues were analysed with respect to methyl group and homocysteine metabolism, including DNA methylation. RESULTS At 12 weeks, hepatic glycine N-methyltransferase (GNMT), methionine synthase, and cystathionine β-synthase (CBS) activity and/or abundance were increased in ZDF rats. At 21 weeks, GNMT activity was increased in liver and kidney; however, only hepatic CBS protein abundance (12 weeks) and betaine-homocysteine S-methyltransferase mRNA expression (21 weeks) were significantly elevated (78 and 100%, respectively). Hepatic phosphatidylethanolamine N-methyltransferase expression was also elevated in the ZDF rat. Homocysteine concentrations were decreased in plasma and kidney, but not in liver, at 12 and 21 weeks. In contrast to hepatic DNA hypomethylation in the type 1 diabetic rat, genomic DNA was hypermethylated at 12 and 21 weeks in the liver of ZDF rats, concomitant with an increase in DNA methyltransferase 1 expression at 21 weeks. CONCLUSIONS The pathogenesis of type 2 diabetes in the ZDF rat was associated with tissue and disease stage-specific aberrations of methyl group and homocysteine metabolism, with persistent hepatic global DNA hypermethylation.
Collapse
Affiliation(s)
- Kelly T Williams
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
45
|
Plasma homocysteine level and hepatic sulfur amino acid metabolism in mice fed a high-fat diet. Eur J Nutr 2012; 52:127-34. [DOI: 10.1007/s00394-011-0294-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/15/2011] [Indexed: 11/25/2022]
|
46
|
Abstract
Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder influenced by interactions between genetic and environmental factors. Epigenetics conveys specific environmental influences into phenotypic traits through a variety of mechanisms that are often installed in early life, then persist in differentiated tissues with the power to modulate the expression of many genes, although undergoing time-dependent alterations. There is still no evidence that epigenetics contributes significantly to the causes or transmission of T2DM from one generation to another, thus, to the current environment-driven epidemics, but it has become so likely, as pointed out in this paper, that one can expect an efflorescence of epigenetic knowledge about T2DM in times to come.
Collapse
|
47
|
Tao MH, Marian C, Nie J, Ambrosone C, Krishnan SS, Edge SB, Trevisan M, Shields PG, Freudenheim JL. Body mass and DNA promoter methylation in breast tumors in the Western New York Exposures and Breast Cancer Study. Am J Clin Nutr 2011; 94:831-8. [PMID: 21775555 PMCID: PMC3155934 DOI: 10.3945/ajcn.110.009365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The mechanism of the observed association between body mass, particularly centralized body fat, and postmenopausal breast cancer risk is not well understood. OBJECTIVE We hypothesized that body mass may affect DNA methylation through increased estrogen and chronic inflammation. The association between body mass and promoter methylation in breast tumors was investigated in a population-based, case-control study. DESIGN The promoter methylation of E-cadherin, p16, and RAR-β(2) genes was assessed in breast tumor blocks from 803 pre- and postmenopausal cases by using real-time methylation-specific polymerase chain reaction. Unconditional logistic regression was used to derive the adjusted OR and 95% CI for case-case comparisons of tumors with and without promoter methylation of the genes. RESULTS The frequency of promoter methylation was 20% for E-cadherin, 25.9% for p16, and 27.5% for RAR-β(2). There was no difference in the prevalence of the DNA methylation of individual genes by BMI, waist-to-hip ratio (WHR), or lifetime weight change between the age of 20 y and the present. However, in a case-case comparison of postmenopausal breast cancer, a greater WHR was associated with an increased likelihood of ≥1 of the 3 genes being methylated (OR: 1.85; 95% CI: 1.10, 3.11; P-trend < 0.02). CONCLUSIONS We showed that WHR was associated with DNA promoter methylation of ≥1 of 3 genes in postmenopausal breast tumors. It may be that the association of body fat composition and postmenopausal breast cancer is related to altered DNA methylation. However, future studies in other populations and with an examination of the methylation of more genes are needed.
Collapse
Affiliation(s)
- Meng-Hua Tao
- Department of Social and Preventive Medicine, School of Public Health and Health Professions, University at Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nieman KM, Schalinske KL. Insulin administration abrogates perturbation of methyl group and homocysteine metabolism in streptozotocin-treated type 1 diabetic rats. Am J Physiol Endocrinol Metab 2011; 301:E560-5. [PMID: 21730260 DOI: 10.1152/ajpendo.00105.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modifications in methyl group and homocysteine metabolism are associated with a number of pathologies, including vascular disease, cancer, and neural tube defects. A diabetic state is known to alter both methyl group and homocysteine metabolism, and glycine N-methyltransferase (GNMT) is a major regulatory protein that controls the supply and utilization of methyl groups. We have shown previously that diabetes induces GNMT expression and reduces plasma homocysteine pools by stimulating both its catabolism and folate-independent remethylation. This study was conducted to determine whether insulin plays a role in the control of homocysteine concentrations and GNMT as well as other key regulatory proteins. Male Sprague-Dawley rats were randomly assigned to one of three groups: control, streptozotocin (STZ)-induced diabetic (60 mg/kg body wt), and insulin-treated diabetic (1.0 U bid). After 5 days, rats were anesthetized (ketamine-xylazine) for procurement of blood and tissues. A 1.5-fold elevation in hepatic GNMT activity and hypohomocysteinemia in diabetic rats was completely prevented by insulin treatment. Additionally, diabetes-mediated alterations in methionine synthase, phosphatidylethanolamine N-methyltransferase, and DNA methylation were also prevented by insulin. We hypothesize that the concentration of blood glucose may represent a regulatory signal to modify GNMT and homocysteine. In support of this, blood glucose concentrations were negatively correlated with total plasma homocysteine (r = -0.75, P < 0.001) and positively correlated with GNMT activity (r = 0.77, P < 0.001). Future research will focus on further elucidating the role of glucose or insulin as a signal for regulating homocysteine and methyl group metabolism.
Collapse
Affiliation(s)
- Kristin M Nieman
- Dept. of Food Science and Human Nutrition, Iowa State University, Ames, USA
| | | |
Collapse
|
49
|
The pathogenic role of cystathionine γ-lyase/hydrogen sulfide in streptozotocin-induced diabetes in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:869-79. [PMID: 21718679 DOI: 10.1016/j.ajpath.2011.04.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/30/2011] [Accepted: 04/18/2011] [Indexed: 01/01/2023]
Abstract
Reduced β-cell mass and increased activities of ATP-sensitive K(+) channels in pancreatic β cells are associated with the pathogenesis of diabetes. Cystathionine γ-lyase (CSE) is a major hydrogen sulfide (H(2)S)-producing enzyme in pancreatic β cells. Herein, we examine the effects of genetic and pharmacologic ablation of CSE on β-cell functions and their correlation with streptozotocin (STZ)-induced diabetes. Compared with wild-type mice, CSE knockout (CSE KO) mice that received STZ injections exhibited a delayed onset of diabetic status. The application of dl-propargylglycine (PPG) to inhibit CSE activity protected wild-type mice from STZ-induced hyperglycemia and hypoinsulinemia. STZ significantly increased pancreatic H(2)S production in wild-type mice but not in CSE KO mice. STZ induced more apoptotic β-cell death in wild-type mice than in CSE KO mice. STZ exposure decreased the viability of cultured INS-1E cells, which was partly reversed by PPG co-treatment. STZ also significantly stimulated H(2)S production in cultured INS-1E cells. In addition, STZ stimulated ATP-sensitive K(+) currents in pancreatic β cells from wild-type mice but not in the presence of PPG or in β cells from CSE KO mice. Sodium hydrosulfide injection instantly increased blood glucose, decreased plasma insulin, and deteriorated glucose tolerance in mice. Take together, these results provide evidence that the CSE/H(2)S system plays a critical role in regulating β-cell functions.
Collapse
|
50
|
Noll C, Lacraz G, Ehses J, Coulaud J, Bailbe D, Paul JL, Portha B, Homo-Delarche F, Janel N. Early reduction of circulating homocysteine levels in Goto–Kakizaki rat, a spontaneous nonobese model of type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2011; 1812:699-702. [DOI: 10.1016/j.bbadis.2011.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 02/26/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
|