1
|
Castillo-Mendieta T, Bautista-Poblet G, Coyoy-Salgado A, Castillo-García EL, Pinto-Almazán R, Fuentes-Venado CE, Neri-Gómez T, Guerra-Araiza C. Effect of Chronic Tibolone Administration on Memory and Choline Acetyltransferase and Tryptophan Hydroxylase Content in Aging Mice. Brain Sci 2024; 14:903. [PMID: 39335399 PMCID: PMC11430777 DOI: 10.3390/brainsci14090903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Gonadal steroids exert different effects on the central nervous system (CNS), such as preserving neuronal function and promoting neuronal survival. Estradiol, progesterone, and testosterone reduce neuronal loss in the CNS in animal models of neurodegeneration. However, hormone replacement therapy has been associated with higher rates of endometrial, prostate, and breast cancer. Tibolone (TIB), the metabolites of which show estrogenic and progestogenic effects, is an alternative to reduce this risk. However, the impact of TIB on memory and learning, as well as on choline acetyltransferase (ChAT) and tryptophan hydroxylase (TPH) levels in the hippocampus of aging males, is unknown. We administered TIB to aged C57BL/6J male mice at different doses (0.01 or 1.0 mg/kg per day for 12 weeks) and evaluated its effects on memory and learning and the content of ChAT and TPH. We assessed memory and learning with object recognition and elevated T-maze tasks. Additionally, we determined ChAT and TPH protein levels in the hippocampus by Western blotting. TIB administration increased the percentage of time spent on the novel object in the object recognition task. In addition, the latency of leaving the enclosed arm increased in both TIB groups, suggesting an improvement in fear-based learning. We also observed decreased ChAT content in the group treated with the 0.01 mg/kg TIB dose. In the case of TPH, no changes were observed with either TIB dose. These results show that long-term TIB administration improves memory without affecting locomotor activity and modulates cholinergic but not serotonergic systems in the hippocampus of aged male mice.
Collapse
Affiliation(s)
- Tzayaka Castillo-Mendieta
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 03940, Mexico
| | - Guadalupe Bautista-Poblet
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
- Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City C.P. 09340, Mexico
| | - Angélica Coyoy-Salgado
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
| | - Emily L. Castillo-García
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
- Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City C.P. 09340, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City C.P. 11340, Mexico; (R.P.-A.)
| | - Claudia Erika Fuentes-Venado
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City C.P. 11340, Mexico; (R.P.-A.)
- Servicio de Medicina Física y Rehabilitación, Hospital General de Zona No 197 IMSS, Texcoco C.P. 56108, Mexico
| | - Teresa Neri-Gómez
- Laboratorio de Patología Molecular, Unidad de Investigación Biomolecular en Cardiología, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 03940, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
| |
Collapse
|
2
|
Liu H, He Y, Liu H, Brouwers B, Yin N, Lawler K, Keogh JM, Henning E, Lee DK, Yu M, Tu L, Zhang N, Conde KM, Han J, Yan Z, Scarcelli NA, Liao L, Xu J, Tong Q, Zheng H, Sun Z, Yang Y, Wang C, He Y, Farooqi IS, Xu Y. Neural circuits expressing the serotonin 2C receptor regulate memory in mice and humans. SCIENCE ADVANCES 2024; 10:eadl2675. [PMID: 38941473 PMCID: PMC11212768 DOI: 10.1126/sciadv.adl2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/22/2024] [Indexed: 06/30/2024]
Abstract
Declined memory is a hallmark of Alzheimer's disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT2CR) in regulating memory. Transgenic mice expressing a humanized HTR2C mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT2CRs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT2CR agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT2CR signaling regulates memory, which may inform the use of 5-HT2CR agonists in the treatment of dementia.
Collapse
Affiliation(s)
- Hesong Liu
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang He
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bas Brouwers
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Na Yin
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Dong-Kee Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng Yu
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nan Zhang
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristine M. Conde
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zili Yan
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nikolas A. Scarcelli
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunmei Wang
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA 70808, USA
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Yong Xu
- USDA/ARS, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Yin L, Yu Y, Han F, Wang Q. Unveiling serotonergic dysfunction of obsessive-compulsive disorder on prefrontal network dynamics: a computational perspective. Cereb Cortex 2024; 34:bhae258. [PMID: 38904079 DOI: 10.1093/cercor/bhae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Serotonin (5-HT) regulates working memory within the prefrontal cortex network, which is crucial for understanding obsessive-compulsive disorder. However, the mechanisms how network dynamics and serotonin interact in obsessive-compulsive disorder remain elusive. Here, we incorporate 5-HT receptors (5-HT1A, 5-HT2A) and dopamine receptors into a multistable prefrontal cortex network model, replicating the experimentally observed inverted U-curve phenomenon. We show how the two 5-HT receptors antagonize neuronal activity and modulate network multistability. Reduced binding of 5-HT1A receptors increases global firing, while reduced binding of 5-HT2A receptors deepens attractors. The obtained results suggest reward-dependent synaptic plasticity mechanisms may attenuate 5-HT related network impairments. Integrating serotonin-mediated dopamine release into circuit, we observe that decreased serotonin concentration triggers the network into a deep attractor state, expanding the domain of attraction of stable nodes with high firing rate, potentially causing aberrant reverse learning. This suggests a hypothesis wherein elevated dopamine concentrations in obsessive-compulsive disorder might result from primary deficits in serotonin levels. Findings of this work underscore the pivotal role of serotonergic dysregulation in modulating synaptic plasticity through dopamine pathways, potentially contributing to learned obsessions. Interestingly, serotonin reuptake inhibitors and antidopaminergic potentiators can counteract the over-stable state of high-firing stable points, providing new insights into obsessive-compulsive disorder treatment.
Collapse
Affiliation(s)
- Lining Yin
- Department of Dynamics and Control, Beihang University, No. 37 Xueyuan Road, HaiDian District, Beijing 100191, China
| | - Ying Yu
- Department of Dynamics and Control, Beihang University, No. 37 Xueyuan Road, HaiDian District, Beijing 100191, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, No. 2999 Renmin North Road, Songjiang District, Shanghai 201620, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, No. 37 Xueyuan Road, HaiDian District, Beijing 100191, China
- Ningxia Basic Science Research Center of Mathematics, Ningxia University, No. 217 Wencui North Street, Xixia District, Yinchuan 750021, China
| |
Collapse
|
4
|
Siddiqui N, Sharma A, Kesharwani A, Anurag, Parihar VK. Exploring role of natural compounds in molecular alterations associated with brain ageing: A perspective towards nutrition for ageing brain. Ageing Res Rev 2024; 97:102282. [PMID: 38548242 DOI: 10.1016/j.arr.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Aging refers to complete deterioration of physiological integrity and function. By midcentury, adults over 60 years of age and children under 15 years will begin to outnumber people in working age. This shift will bring multiple global challenges for economy, health, and society. Eventually, aging is a natural process playing a vital function in growth and development during pediatric stage, maturation during adult stage, and functional depletion. Tissues experience negative consequences with enhanced genomic instability, deregulated nutrient sensing, mitochondrial dysfunction, and decline in performance on cognitive tasks. As brain ages, its volume decreases, neurons & glia get inflamed, vasculature becomes less developed, blood pressure increases with a risk of stroke, ischemia, and cognitive deficits. Diminished cellular functions leads to progressive reduction in functional and emotional capacity with higher possibility of disease and finally death. This review overviews cellular as well as molecular aspects of aging, biological pathway related to accelerated brain aging, and strategies minimizing cognitive aging. Age-related changes include altered bioenergetics, decreased neuroplasticity and flexibility, aberrant neural activity, deregulated Ca2+ homeostasis in neurons, buildup of reactive oxygen species, and neuro-inflammation. Unprecedented progress has been achieved in recent studies, particularly in terms of how herbal or natural substances affect genetic pathways and biological functions that have been preserved through evolution. Herein, the present work provides an overview of ageing and age-related disorders and explore the molecular mechanisms that underlie therapeutic effects of herbal and natural chemicals on neuropathological signs of brain aging.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India.
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
5
|
Di Castro MA, Garofalo S, Mormino A, Carbonari L, Di Pietro E, De Felice E, Catalano M, Maggi L, Limatola C. Interleukin-15 alters hippocampal synaptic transmission and impairs episodic memory formation in mice. Brain Behav Immun 2024; 115:652-666. [PMID: 37992787 DOI: 10.1016/j.bbi.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Cytokines are potent immunomodulators exerting pleiotropic effects in the central nervous system (CNS). They influence neuronal functions and circuit activities with effects on memory processes and behaviors. Here, we unravel a neuromodulatory activity of interleukin-15 (IL-15) in mouse brain. Acute exposure of hippocampal slices to IL-15 enhances gamma-aminobutyricacid (GABA) release and reduces glutamatergic currents, while chronic treatment with IL-15 increases the frequency of hippocampal miniature inhibitory synaptic transmission and impairs memory formation in the novel object recognition (NOR) test. Moreover, we describe that serotonin is involved in mediating the hippocampal effects of IL-15, because a selective 5-HT3A receptor antagonist prevents the effects on inhibitory neurotransmission and ameliorates mice performance in the NOR test. These findings provide new insights into the modulatory activities of cytokines in the CNS, with implications on behavior.
Collapse
Affiliation(s)
- Maria Amalia Di Castro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Laura Carbonari
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Erika Di Pietro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Cristina Limatola
- IRCCS Neuromed Via Atinese 18, 86077 Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur, Italy.
| |
Collapse
|
6
|
Grzesiuk M, Grabska M, Pawelec A. Fluoxetine may interfere with learning in fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104358. [PMID: 38154759 DOI: 10.1016/j.etap.2023.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Our study aimed to test whether fluoxetine impairs learning in fish and whether this potential impairment is reversible. Learning efficiency, with no aversive stimuli, of the Carassius carassius was analysed under different pharmaceutical conditions: (i) fish cultured without antidepressant (control), (ii) fish exposed to fluoxetine for 21 days (fluoxetine), and (iii) fish exposed to fluoxetine for 21 days and then cultured without fluoxetine for another 21 days (recovery). We exposed animals to environmental concentrations (360 ng L-1) of antidepressant. The learning rate was measured by timing how long it took the individual fish to find food and start feeding, six days in a row. The control and recovery fish took significantly less time to start eating over the six days. Control fish start eating 14 times faster than the fluoxetine fish. Fluoxetine can significantly affect learning and 21-day recovery period is not enough to fully restore the original learning abilities.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Alicja Pawelec
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
7
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Transcranial ultrasound neuromodulation facilitates isoflurane-induced general anesthesia recovery and improves cognition in mice. ULTRASONICS 2023; 135:107132. [PMID: 37604030 DOI: 10.1016/j.ultras.2023.107132] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Delayed arousal and cognitive dysfunction are common, especially in older patients after general anesthesia (GA). Elevating central nervous system serotonin (5-HT) levels can promote recovery from GA and increase synaptic plasticity to improve cognition. Ultrasound neuromodulation has become a noninvasive physical intervention therapy with high spatial resolution and penetration depth, which can modulate neuronal excitability to treat psychiatric and neurodegenerative diseases. This study aims to use ultrasound to noninvasively modulate the brain 5-HT levels of mice to promote recovery from GA and improve cognition in mice. The dorsal raphe nucleus (DRN) of mice during GA was stimulated by the 1.1 MHz ultrasound with a negative pressure of 356 kPa, and the liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) method was used to measure the DRN 5-HT concentrations. The mice's recovery time from GA was assessed, and the cognition was evaluated through spontaneous alternation Y-maze and novel object recognition (NOR) tests. After ultrasound stimulation, the mice's DRN 5-HT levels were significantly increased (control: 554.0 ± 103.2 ng/g, anesthesia + US: 664.2 ± 84.1 ng/g, *p = 0.0389); the GA recovery time (return of the righting reflex (RORR) emergence latency time) of mice was significantly reduced (anesthesia: 331.6 ± 70 s, anesthesia + US: 223.2 ± 67.7 s, *p = 0.0215); the spontaneous rotation behavior score of mice was significantly increased (anesthesia: 59.46 ± 5.26 %, anesthesia + US: 68.55 ± 5.24 %; *p = 0.0126); the recognition index was significantly increased (anesthesia: 55.02 ± 6.23 %, anesthesia + US: 78.52 ± 12.21 %; ***p = 0.0009). This study indicates that ultrasound stimulation of DRN increases serotonin levels, accelerates recovery from anesthesia, and improves cognition, which could be an important strategy for treating delayed arousal, postoperative delirium, or even lasting cognitive dysfunction after GA.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Suzuki M, Pennartz CMA, Aru J. How deep is the brain? The shallow brain hypothesis. Nat Rev Neurosci 2023; 24:778-791. [PMID: 37891398 DOI: 10.1038/s41583-023-00756-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today's dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities.
Collapse
Affiliation(s)
- Mototaka Suzuki
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Cyriel M A Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
9
|
Dave BP, Shah YB, Maheshwari KG, Mansuri KA, Prajapati BS, Postwala HI, Chorawala MR. Pathophysiological Aspects and Therapeutic Armamentarium of Alzheimer's Disease: Recent Trends and Future Development. Cell Mol Neurobiol 2023; 43:3847-3884. [PMID: 37725199 DOI: 10.1007/s10571-023-01408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Yesha B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Bhadrawati S Prajapati
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Humzah I Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
10
|
Liu EY, Yang CL, Tsai JC, Cheng HY, Peng WH. Antidepressive mechanisms of rhynchophylline in mice with chronic unpredictable stress-induced depression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116302. [PMID: 36842720 DOI: 10.1016/j.jep.2023.116302] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria rhynchophylla ([Mi] Jack) (gouteng) exerts antidepressive effects. Rhynchophylline (RH), a major component of U. rhynchophylla, exerts similar pharmacological effects to those of gouteng. Thus, RH may have antidepressive effects. AIM OF THE STUDY To investigate the anti-depressive effects of RH in chronic unpredictable mild stress (CUMS)-induced depressive mice. The anti-depressive mechanism of RH determined by measuring the 5-HT levels, the expressions of cAMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in cortex and hippocampus. MATERIALS AND METHODS The behaviors of CUMS-induced depressive mice were measured using an open field test (OFT), forced swimming test (FST), and tail suspension test (TST). 5-HT levels were measured using an ELISA kits. The expressions of BDNF and CREB were determined using western blot test. RESULTS RH increased the frequency of rearing and grooming in the OFT and decreased the immobility time in the FST and TST. RH effectively increased the 5-HT level and BDNF and CREB expressions in the cortex and hippocampus. CONCLUSION Our findings indicate that the antidepressive mechanism of RH is related to increased levels of 5-HT from regulating CREB and BDNF expressions in cortex and hippocampus.
Collapse
Affiliation(s)
- En-Yu Liu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicines, China Medical University, Taichung, 40402, Taiwan.
| | - Chao-Lin Yang
- Ph.D. Program for Biotechnology Industry, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, 40402, Taiwan.
| | - Jen-Chieh Tsai
- Department of Medicinal Botanical and Health Applications, Da-Yeh University, Dacun, Changhua, 51500, Taiwan.
| | - Hao-Yuan Cheng
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City, 62241, Taiwan.
| | - Wen-Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicines, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
11
|
Zeng J, Li X, Zhang R, Lv M, Wang Y, Tan K, Xia X, Wan J, Jing M, Zhang X, Li Y, Yang Y, Wang L, Chu J, Li Y, Li Y. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. Neuron 2023; 111:1118-1135.e5. [PMID: 36706757 PMCID: PMC11152601 DOI: 10.1016/j.neuron.2022.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/03/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
The coincidence between conditioned stimulus (CS) and unconditioned stimulus (US) is essential for associative learning; however, the mechanism regulating the duration of this temporal window remains unclear. Here, we found that serotonin (5-HT) bi-directionally regulates the coincidence time window of olfactory learning in Drosophila and affects synaptic plasticity of Kenyon cells (KCs) in the mushroom body (MB). Utilizing GPCR-activation-based (GRAB) neurotransmitter sensors, we found that KC-released acetylcholine (ACh) activates a serotonergic dorsal paired medial (DPM) neuron, which in turn provides inhibitory feedback to KCs. Physiological stimuli induce spatially heterogeneous 5-HT signals, which proportionally gate the intrinsic coincidence time windows of different MB compartments. Artificially reducing or increasing the DPM neuron-released 5-HT shortens or prolongs the coincidence window, respectively. In a sequential trace conditioning paradigm, this serotonergic neuromodulation helps to bridge the CS-US temporal gap. Altogether, we report a model circuitry for perceiving the temporal coincidence and determining the causal relationship between environmental events.
Collapse
Affiliation(s)
- Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China
| | - Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiuning Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
12
|
Grosu ȘA, Chirilă M, Rad F, Enache A, Handra CM, Ghiță I. The Effects of Four Compounds That Act on the Dopaminergic and Serotonergic Systems on Working Memory in Animal Studies; A Literature Review. Brain Sci 2023; 13:brainsci13040546. [PMID: 37190512 DOI: 10.3390/brainsci13040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The dopaminergic and serotonergic systems are two of the most important neuronal pathways in the human brain. Almost all psychotropic medications impact at least one neurotransmitter system. As a result, investigating how they affect memory could yield valuable insights into potential therapeutic applications or unanticipated side effects. The aim of this literature review was to collect literature data from animal studies regarding the effects on memory of four drugs known to act on the serotonergic and dopaminergic systems. The studies included in this review were identified in the PubMed database using selection criteria from the PRISMA protocol. We analyzed 29 articles investigating one of four different dopaminergic or serotonergic compounds. Studies conducted on bromocriptine have shown that stimulating D2 receptors may enhance working memory in rodents, whereas inhibiting these receptors could have the opposite effect, reducing working memory performance. The effects of serotonin on working memory are not clearly established as studies on fluoxetine and ketanserin have yielded conflicting results. Further studies with better-designed methodologies are necessary to explore the impact of compounds that affect both the dopaminergic and serotonergic systems on working memory.
Collapse
|
13
|
Banerjee M, Shenoy RR. Emphasizing roles of BDNF promoters and inducers in Alzheimer's disease for improving impaired cognition and memory. J Basic Clin Physiol Pharmacol 2023; 34:125-136. [PMID: 34751526 DOI: 10.1515/jbcpp-2021-0182] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophic factor adding to neurons' development and endurance. The amount of BDNF present in the brain determines susceptibility to various neurodegenerative diseases. In Alzheimer's disease (AD), often it is seen that low levels of BDNF are present, which primarily contributes to cognition deficit by regulating long-term potentiation (LTP) and synaptic plasticity. Molecular mechanisms underlying the synthesis, storage and release of BDNF are widely studied. New molecules are found, which contribute to the signal transduction pathway. Two important receptors of BDNF are TrkB and p75NTR. When BDNF binds to the TrkB receptor, it activates three main signalling pathways-phospholipase C, MAPK/ERK, PI3/AKT. BDNF holds an imperative part in LTP and dendritic development, which are essential for memory formation. BDNF supports synaptic integrity by influencing LTP and LTD. This action is conducted by modulating the glutamate receptors; AMPA and NMDA. This review paper discusses the aforesaid points along with inducers of BDNF. Drugs and herbals promote neuroprotection by increasing the hippocampus' BDNF level in various disease-induced animal models for neurodegeneration. Advancement in finding pertinent molecules contributing to the BDNF signalling pathway has been discussed, along with the areas that require further research and study.
Collapse
Affiliation(s)
- Madhuparna Banerjee
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi District, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi District, Karnataka, India
| |
Collapse
|
14
|
Chen R, Lin Q, Wu J, Lin Y, Lin T, Wu W, Chen X, Wu S, Zeng G, Lin X, Wu Y, Liu N, Xiao Y, Chen H. Augmentation therapy with tandospirone citrate in vascular depression patients with mild cognitive impairment: A prospective randomized clinical trial. J Psychiatr Res 2023; 159:274-282. [PMID: 36774768 DOI: 10.1016/j.jpsychires.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Cognitive impairment is a prominent clinical manifestation of vascular depression (VaDep). The current study aimed to assess the efficacy of tandospirone citrate in VaDep cases with mild cognitive impairment (VaDep-MCI) as well as the role of plasma monoamine neurotransmitters during the treatment. In this single-blind, randomized controlled study, 116 participants were randomly assigned to the tandospirone (tandospirone citrate-escitalopram) and control (escitalopram) groups. The primary endpoints were changes in cognitive test scores from baseline to Week 8, including the Rey Auditory Verbal Learning Test (RAVLT), Semantic Verbal Fluency (SVF) test, Trail Making Test (TMT), Digital Span Test (DST) and Clock Drawing Test (CDT) scores. Generalized estimating equation models were used to examine repeated measures. The results showed that compared with the changes in the control group from baseline to Week 8, the tandospirone group showed more significant changes in SVF score at Weeks 4 (p < 0.05) and 8 (p < 0.001), and TMT (B-A) score at Week 8 (p < 0.05). RAVLT, DST and DCT scores were relatively stable in both groups during the study period. Moreover, mediation analysis showed that these results were not mediated by the alleviation of depression symptoms. Partial Spearman correlation analysis showed that only plasma 5-hydroxytryptamine (5-HT) was positively correlated with Hamilton Depression Rating Scale score after Bonferroni correction (r = 0.347, p < 0.001). Augmentation therapy with tandospirone citrate improved the executive and language functions of VaDep-MCI patients. Additionally, plasma 5-HT levels may serve as a potential biomarker of VaDep severity. These findings may provide clinical insights into the treatment of vascular depression.
Collapse
Affiliation(s)
- Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qianwen Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Department of Sleep Center, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Juan Wu
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yongsen Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ting Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Weiwei Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xinyan Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Shufang Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Guiying Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxi Wu
- Department of Sleep Center, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| | - Yingchun Xiao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
15
|
Evsiukova VS, Arefieva AB, Sorokin IE, Kulikov AV. Age-Related Alterations in the Level and Metabolism of Serotonin in the Brain of Males and Females of Annual Turquoise Killifish ( Nothobranchius furzeri). Int J Mol Sci 2023; 24:ijms24043185. [PMID: 36834593 PMCID: PMC9959878 DOI: 10.3390/ijms24043185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The annual turquoise killifish (Nothobranchius furzeri) is a laboratory model organism for neuroscience of aging. In the present study, we investigated for the first time the levels of serotonin and its main metabolite, 5-hydroxyindoleacetic acid, as well as the activities of the key enzymes of its synthesis, tryptophan hydroxylases, and degradation, monoamine oxidase, in the brains of 2-, 4- and 7-month-old male and female N. furzeri. The marked effect of age on the body mass and the level of serotonin, as well as the activities of tryptophan hydroxylases and monoamine oxidase in the brain of killifish were revealed. The level of serotonin decreased in the brain of 7-month-old males and females compared with 2-month-old ones. A significant decrease in the tryptophan hydroxylase activity and an increase in the monoamine oxidase activity in the brain of 7-month-old females compared to 2-month-old females was shown. These findings agree with the age-related alterations in expression of the genes encoding tryptophan hydroxylases and monoamine oxidase. N. furzeri is a suitable model with which to study the fundamental problems of age-related changes of the serotonin system in the brain.
Collapse
Affiliation(s)
- Valentina S. Evsiukova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla B. Arefieva
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ivan E. Sorokin
- Department of Monogenic Forms of Human Common Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V. Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-3833636187
| |
Collapse
|
16
|
Swer NM, Venkidesh BS, Murali TS, Mumbrekar KD. Gut microbiota-derived metabolites and their importance in neurological disorders. Mol Biol Rep 2023; 50:1663-1675. [PMID: 36399245 PMCID: PMC9889412 DOI: 10.1007/s11033-022-08038-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022]
Abstract
Microbial-derived metabolites are the intermediate or end products of bacterial digestion. They are one of the most important molecules for the gut to connect with the brain. Depending on the levels of specific metabolites produced in the host, it can exert beneficial or detrimental effects on the brain and have been linked to several neurodegenerative and neuropsychiatric disorders. However, the underlying mechanisms remain largely unexplored. Insight into these mechanisms could reveal new pathways or targets, resulting in novel treatment approaches targeting neurodegenerative diseases. We have reviewed selected metabolites, including short-chain fatty acids, aromatic amino acids, trimethylamine-N-oxide, urolithin A, anthocyanins, equols, imidazole, and propionate to highlight their mechanism of action, underlying role in maintaining intestinal homeostasis and regulating neuro-immunoendocrine function. Further discussed on how altered metabolite levels can influence the gut-brain axis could lead to new prevention strategies or novel treatment approaches to neural disorders.
Collapse
Affiliation(s)
- Nicole Mary Swer
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - B S Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
17
|
Mathew A, Balaji E V, Pai SRK, Kishore A, Pai V, Pemmireddy R, K S C. Current Drug Targets in Alzheimer's Associated Memory Impairment: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:255-275. [PMID: 35366787 DOI: 10.2174/1871527321666220401124719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia among geriatrics. It is a progressive, degenerative neurologic disorder that causes memory and cognition loss. The accumulation of amyloid fibrils and neurofibrillary tangles in the brain of AD patients is a distinguishing feature of the disease. Therefore, most of the current therapeutic goals are targeting inhibition of beta-amyloid synthesis and aggregation as well as tau phosphorylation and aggregation. There is also a loss of the cholinergic neurons in the basal forebrain, and first-generation therapeutic agents were primarily focused on compensating for this loss of neurons. However, cholinesterase inhibitors can only alleviate cognitive symptoms of AD and cannot reduce the progression of the disease. Understanding the molecular and cellular changes associated with AD pathology has advanced significantly in recent decades. The etiology of AD is complex, with a substantial portion of sporadic AD emerging from unknown reasons and a lesser proportion of early-onset familial AD (FAD) caused by a mutation in several genes, such as the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) genes. Hence, efforts are being made to discover novel strategies for these targets for AD therapy. A new generation of AChE and BChE inhibitors is currently being explored and evaluated in human clinical trials for AD symptomatic treatment. Other approaches for slowing the progression of AD include serotonergic modulation, H3 receptor antagonism, phosphodiesterase, COX-2, and MAO-B inhibition. The present review provides an insight into the possible therapeutic strategies and their molecular mechanisms, enlightening the perception of classical and future treatment approaches.
Collapse
Affiliation(s)
- Anna Mathew
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vasudev Pai
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Ramadevi Pemmireddy
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandrashekar K S
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
18
|
Hydroxy Pentacyclic Triterpene Acid, Kaempferol, Inhibits the Human 5-Hydroxytryptamine Type 3A Receptor Activity. Int J Mol Sci 2022; 23:ijms23010544. [PMID: 35008969 PMCID: PMC8745345 DOI: 10.3390/ijms23010544] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 12/31/2022] Open
Abstract
Monoamine serotonin is a major neurotransmitter that acts on a wide range of central nervous system and peripheral nervous system functions and is known to have a role in various processes. Recently, it has been found that 5-HT is involved in cognitive and memory functions through interaction with cholinergic pathways. The natural flavonoid kaempferol (KAE) extracted from Cudrania tricuspidata is a secondary metabolite of the plant. Recently studies have confirmed that KAE possesses a neuroprotective effect because of its strong antioxidant activity. It has been confirmed that KAE is involved in the serotonergic pathway through an in vivo test. However, these results need to be confirmed at the molecular level, because the exact mechanism that is involved in such effects of KAE has not yet been elucidated. Therefore, the objective of this study is to confirm the interaction of KAE with 5-HT3A through electrophysiological studies at the molecular level using KAE extracted from Cudrania tricuspidata. This study confirmed the interaction between 5-HT3A and KAE at the molecular level. KAE inhibited 5-HT3A receptors in a concentration-dependent and voltage-independent manner. Site-directed mutagenesis and molecular-docking studies confirmed that the binding sites D177 and F199 are the major binding sites of human 5-HT3A receptors of KAE.
Collapse
|
19
|
Reisi P, Imanpour V. The effect of orexin-2 and endocannabinoid-1 antagonists on neuronal activity of hippocampal CA1 pyramidal neurons in response to tramadol in rats. Adv Biomed Res 2022; 11:26. [PMID: 35720213 PMCID: PMC9201222 DOI: 10.4103/abr.abr_65_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/03/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: CA1, as a major structure involved in learning and memory, has been shown to be affected by tramadol addiction. Both orexin and endocannabinoid receptors express in CA1 and play an important role in drug dependency. The aim of this study was to evaluate the modulatory effects of orexin-2 (OX2R) and endocannabinoid-1 (CB1R) receptors on neuronal activity in CA1, in response to tramadol in rats. Materials and Methods: Male Wistar rats were divided into 8 groups (n = 6–7); saline-dimethyl sulfoxide (DMSO), tramadol-DMSO, saline-TCS-OX2-29, saline-AM251, tramadol-TCS-OX2-29, tramadol-AM251, saline-TCS-OX2-29-AM251, tramadol-TCS-OX2-29-AM251. Tramadol was injected intraperitoneally, and then, AM251 (1 nmol/0.3 μL), CB1R antagonist and TCS-OX2-29 (1 nmol/0.3 μL), OX2R antagonist, were microinjected individually or concurrently into the CA1. Using in vivo extracellular single-unit recording, the firing of CA1 pyramidal neurons was investigated. Results: Tramadol decreased neuronal activity in CA1 (P < 0.01) but increased it after micro-injection of DMSO. TCS-OX2-29 increased neuronal activity in saline group (P < 0.05) but decreased it in tramadol group. AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05). Concurrent micro-injection of TCS-OX2-29 and AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05). Conclusions: Our findings suggest that neural activity in CA1 is rapidly affected by acute use of tramadol, and some of these effects may be induced through the endocannabinoid and orexin systems. Thus, the function of endocannabinoid and orexin systems in CA1 may play a role in tramadol addiction.
Collapse
|
20
|
Li X, Li J, Huang Y, Gong Q, Fu Y, Xu Y, Huang J, You H, Zhang D, Zhang D, Mao F, Zhu J, Wang H, Zhang H, Li J. The novel therapeutic strategy of vilazodone-donepezil chimeras as potent triple-target ligands for the potential treatment of Alzheimer's disease with comorbid depression. Eur J Med Chem 2021; 229:114045. [PMID: 34922191 DOI: 10.1016/j.ejmech.2021.114045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Depression is one of the most frequent comorbid psychiatric symptoms of Alzheimer's disease (AD), and no efficacious drugs have been approved specifically for this purpose thus far. Herein, we proposed a novel therapeutic strategy that merged the key pharmacophores of the antidepressant vilazodone (5-HT1A receptor partial agonist and serotonin transporter inhibitor) and the anti-AD drug donepezil (acetylcholinesterase inhibitor) together to develop a series of multi-target-directed ligands for potential therapy of the comorbidity of AD and depression. Accordingly, 55 vilazodone-donepezil chimeric derivatives were designed and synthesized, and their triple-target activities against acetylcholinesterase, 5-HT1A receptor, and serotonin transporter were systematically evaluated. Among them, compound 5 displayed strong triple-target bioactivities in vitro, low hERG potassium channel inhibition and acceptable brain distribution. Importantly, oral intake of 5 mg/kg of the compound 5 dihydrochloride significantly alleviated the depressive symptoms and ameliorated cognitive dysfunction in mouse models. In brief, these results highlight vilazodone-donepezil chimeras as a prospective therapeutic approach for the treatment of the comorbidity of AD and depression.
Collapse
Affiliation(s)
- Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jinwen Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yunyuan Huang
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yan Fu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Junyang Huang
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Haolan You
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Dong Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Dan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Huan Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, 5 Xue Ren Road, Dali, Yunnan, 671000, China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
21
|
Role of Receptors in Relation to Plaques and Tangles in Alzheimer's Disease Pathology. Int J Mol Sci 2021; 22:ijms222312987. [PMID: 34884789 PMCID: PMC8657621 DOI: 10.3390/ijms222312987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the identification of Aβ plaques and NFTs as biomarkers for Alzheimer’s disease (AD) pathology, therapeutic interventions remain elusive, with neither an absolute prophylactic nor a curative medication available to impede the progression of AD presently available. Current approaches focus on symptomatic treatments to maintain AD patients’ mental stability and behavioral symptoms by decreasing neuronal degeneration; however, the complexity of AD pathology requires a wide range of therapeutic approaches for both preventive and curative treatments. In this regard, this review summarizes the role of receptors as a potential target for treating AD and focuses on the path of major receptors which are responsible for AD progression. This review gives an overall idea centering on major receptors, their agonist and antagonist and future prospects of viral mimicry in AD pathology. This article aims to provide researchers and developers a comprehensive idea about the different receptors involved in AD pathogenesis that may lead to finding a new therapeutic strategy to treat AD.
Collapse
|
22
|
Memory Disorders Related to Hippocampal Function: The Interest of 5-HT 4Rs Targeting. Int J Mol Sci 2021; 22:ijms222112082. [PMID: 34769511 PMCID: PMC8584667 DOI: 10.3390/ijms222112082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The hippocampus has long been considered as a key structure for memory processes. Multilevel alterations of hippocampal function have been identified as a common denominator of memory impairments in a number of psychiatric and neurodegenerative diseases. For many years, the glutamatergic and cholinergic systems have been the main targets of therapeutic treatments against these symptoms. However, the high rate of drug development failures has left memory impairments on the sideline of current therapeutic strategies. This underscores the urgent need to focus on new therapeutic targets for memory disorders, such as type 4 serotonin receptors (5-HT4Rs). Ever since the discovery of their expression in the hippocampus, 5-HT4Rs have gained growing interest for potential use in the treatment of learning and memory impairments. To date, much of the researched information gathered by scientists from both animal models and humans converge on pro-mnesic and anti-amnesic properties of 5-HT4Rs activation, although the mechanisms at work require more work to be fully understood. This review addresses a fundamental, yet poorly understood set of evidence of the potential of 5-HT4Rs to re-establish or limit hippocampal alterations related to neurological diseases. Most importantly, the potential of 5-HT4Rs is translated by refining hypotheses regarding the benefits of their activation in memory disorders at the hippocampal level.
Collapse
|
23
|
Senft RA, Dymecki SM. Neuronal pericellular baskets: neurotransmitter convergence and regulation of network excitability. Trends Neurosci 2021; 44:915-924. [PMID: 34565612 PMCID: PMC8551026 DOI: 10.1016/j.tins.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
A pericellular basket is a presynaptic configuration of numerous axonal boutons outlining a target neuron soma and its proximal dendrites. Recent studies show neurochemical diversity of pericellular baskets and suggest that neurotransmitter usage together with the dense, soma-proximal boutons may permit strong input effects on different timescales. Here we review the development, distribution, neurochemical phenotypes, and possible functions of pericellular baskets. As an example, we highlight pericellular baskets formed by projections of certain Pet1/Fev neurons of the serotonergic raphe nuclei. We propose that pericellular baskets represent convergence sites of competition or facilitation between neurotransmitter systems on downstream circuitry, especially in limbic brain regions, where pericellular baskets are widespread. Study of these baskets may enhance our understanding of monoamine regulation of memory, social behavior, and brain oscillations.
Collapse
Affiliation(s)
- Rebecca A Senft
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susan M Dymecki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Tu R, Zhang C, Feng L, Wang H, Wang W, Li P. Impact of selenium on cerebellar injury and mRNA expression in offspring of rat exposed to methylmercury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112584. [PMID: 34365210 DOI: 10.1016/j.ecoenv.2021.112584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
During the fetal development stage, the Central Nervous System (CNS) is particularly sensitive to methylmercury (MeHg). However, the mechanism underlying the antagonistic effect of selenium (Se) on MeHg toxicity is still not fully understood. In this study, female rat models with MeHg and Se co-exposure were developed. Pathological changes in the cerebellum and differential mRNA expression profiles in offspring rats were studied. In the MeHg-exposed group, a large number of Purkinje cells showed pathological changes and mitochondria were significantly swollen; co-exposure with Se significantly improved the structure and organization of the cerebellum. In total, 378 differentially expressed genes (DEGs) (including 284 up-regulated genes and 94 down-regulated genes) in the cerebellum of the MeHg-exposed group and 210 DEGs (including 84 up-regulated genes and 126 down-regulated genes) in the cerebellum of the MeHg+Se co-exposed group were identified. The genes involved in neurotransmitter synthesis and release and calcium ion balance in the cerebellum were significantly up-regulated in the MeHg-exposed group. These genes in the MeHg+Se co-exposed group were not changed or down-regulated. These findings demonstrate that the neurotoxicity caused by MeHg exposure is related to the up-regulation of multiple genes in the nerve signal transduction and calcium ion signal pathways, which are closely related to impairments in cell apoptosis and learning and memory. Supplementation with Se can mitigate the changes to related genes and protect neurons in the mammalian brain (especially the developing cerebellum) from MeHg toxicity. Se provides a potential intervention strategy for MeHg toxicity.
Collapse
Affiliation(s)
- Rui Tu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control/School of Public Health, Guizhou Medical University, Guiyang 550025, China; Division of Infection Management, Guiyang First People's Hospital, Guiyang 550000, China
| | - Chanchan Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control/School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ling Feng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control/School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Huiqun Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control/School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Wenjuan Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control/School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
25
|
Attaran A, Salahinejad A, Naderi M, Crane AL, Chivers DP, Niyogi S. Transgenerational effects of selenomethionine on behaviour, social cognition, and the expression of genes in the serotonergic pathway in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117289. [PMID: 33971468 DOI: 10.1016/j.envpol.2021.117289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Elevated levels of contaminants from human activities have become a major threat to animals, particularly within aquatic ecosystems. Selenium (Se) is a naturally occurring element with a narrow range of safe intake, but excessive Se has toxicological effects, as it can bioaccumulate and cause cognitive and behavioural impairments. In this study, we investigated whether exposure to Se would also have transgenerational effects, causing changes in the descendants of exposed individuals. We exposed adult female zebrafish to either a control diet or environmentally relevant concentrations of dietary Se-Met (3.6, 12.8, 34.1 μg Se/g dry weight) for 90 days. Then, females from each treatment group were bred with untreated males, and the offspring (F1-generation) were raised to adulthood (6 months old) without Se exposure. In behavioural tests, offspring that were maternally exposed to 34.1 μg Se/g showed signs of elevated stress, weaker group preferences, and impaired social learning. Maternal exposure to high levels of Se-Met also led to dysregulation of the serotonergic system via changes in mRNA expression of serotonin receptors, including the 5-HT1A, 5-HT1B, and 5-HT1D subtypes, the serotonin transporter, and monoamine oxidase (MAO). Such perturbations in the serotonergic system, thus, appear to underlie the neurobehavioural deficits that we observed. These findings suggest that Se contamination can have important transgenerational consequences on social behaviour and cognition.
Collapse
Affiliation(s)
- Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Mohammad Naderi
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Adam L Crane
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan, S7N 5B3, Canada
| |
Collapse
|
26
|
Age-Related Alterations in the Behavior and Serotonin-Related Gene mRNA Levels in the Brain of Males and Females of Short-Lived Turquoise Killifish ( Nothobranchius furzeri). Biomolecules 2021; 11:biom11101421. [PMID: 34680051 PMCID: PMC8533623 DOI: 10.3390/biom11101421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Short-lived turquoise killifish (Nothobranchius furzeri) have become a popular model organism for neuroscience. In the present paper we study for the first time their behavior in the novel tank diving test and the levels of mRNA of various 5-HT-related genes in brains of 2-, 4- and 6-month-old males and females of N. furzeri. The marked effect of age on body mass, locomotor activity and the mRNA level of Tph1b, Tph2, Slc6a4b, Mao, Htr1aa, Htr2a, Htr3a, Htr3b, Htr4, Htr6 genes in the brains of N. furzeri males was shown. Locomotor activity and expression of the Mao gene increased, while expression of Tph1b, Tph2, Slc6a4b, Htr1aa, Htr2a, Htr3a, Htr3b, Htr4, Htr6 genes decreased in 6-month-old killifish. Significant effects of sex on body mass as well as on mRNA level of Tph1a, Tph1b, Tph2, Slc6a4b, Htr1aa, 5-HT2a, Htr3a, Htr3b, Htr4, and Htr6 genes were revealed: in general both the body mass and the expression of these genes were higher in males. N. furzeri is a suitable model with which to study the fundamental problems of age-related alterations in various mRNA levels related with the brains 5-HT system.
Collapse
|
27
|
Solas M, Van Dam D, Janssens J, Ocariz U, Vermeiren Y, De Deyn PP, Ramirez MJ. 5-HT 7 receptors in Alzheimer's disease. Neurochem Int 2021; 150:105185. [PMID: 34555475 DOI: 10.1016/j.neuint.2021.105185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Even though the involvement of serotonin (5-hydroxytryptamine; 5-HT) and its receptors in Alzheimer's disease (AD) is widely accepted, data on the expression and the role of 5-HT7 receptors in AD is relatively limited. Therefore, the objective of the present work was to study the expression of serotonergic 5-HT7 receptors in postmortem samples of AD brains and correlate it with neurotransmitter levels, cognition and behavior. The study population consisted of clinically well-characterized and neuropathologically confirmed AD patients (n = 42) and age-matched control subjects (n = 18). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and high-performance liquid chromatography were performed on Brodmann area (BA) 7, BA10, BA22, BA24, hippocampus, amygdala, thalamus and cerebellum to measure mRNA levels of 5-HT7 receptors (HTR7), as well as the concentrations of various monoamine neurotransmitters and their metabolites. Decreased levels of HTR7 mRNA were observed in BA10. A significant association was observed between HTR7 levels in BA10 and BEHAVE-AD cluster B (hallucinations) (rs(28) = 0.444, P < 0.05). In addition, a negative correlation was observed between HTR7 levels in BA10 and both MHPG concentrations in this brain region (rs(45) = -0.311; P < 0.05), and DOPAC levels in the amygdala (rs(42) = -0.311; P < 0.05). Quite surprisingly, no association was found between HTR7 levels and cognitive status. Altogether, this study supports the notion of the involvement of 5-HT7 receptors in psychotic symptoms in AD, suggesting the interest of testing antagonist acting at this receptor to specifically treat psychotic symptoms in this illness.
Collapse
Affiliation(s)
- Maite Solas
- Dpt Pharmacology and Toxicology, University of Navarra, 31008, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Alzheimer Center Groningen, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Jana Janssens
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - U Ocariz
- Dpt Pharmacology and Toxicology, University of Navarra, 31008, Pamplona, Spain
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Alzheimer Center Groningen, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Alzheimer Center Groningen, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Maria J Ramirez
- Dpt Pharmacology and Toxicology, University of Navarra, 31008, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.
| |
Collapse
|
28
|
Marazziti D, Torrigiani S, Carbone MG, Mucci F, Flamini W, Ivaldi T, Osso LD. Neutrophil/lymphocyte, platelet/lymphocyte and monocyte/lymphocyte ratios in mood disorders. Curr Med Chem 2021; 29:5758-5781. [PMID: 34551689 DOI: 10.2174/0929867328666210922160116] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorders (BDs), the most severe types of mood disorders (MDs), are considered as among the most disabling illnesses worldwide. Several studies suggested that inflammatory neuroinflammation might be involved in the pathophysiology of MDs, while reporting increasing data on the relationships between these processes and classical neurotransmitters, hypothalamus-pituitary-adrenal axis (HPA), and neurotrophic factors. The assessment of neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) in peripheral blood represents a simple method to evaluate the inflammatory status. The aim of the present paper was to review the literature on the possible relationships between NLR, PLR and MLR in MDs, and to comment on their possible wider use in clinical research. Thirty-five studies were included in the present review. The majority of them higher values of these parameters, particularly NLR values, in patients with MDs, when compared to healthy subjects. The increase would appear more robust in patients with BD during a manic episode, thus indicating that it could be considered as both state and trait markers. In addition, increased NLR and PLR levels seem to represent prognostic elements for the early discovery of post-stroke depression. The findings of the present review would indicate the need to carry our further studies in this field. In particular, NLR, PLR and MLR seem to be promising tools to detect economically and easily the activation of the inflammatory system, and to perhaps evaluate the etiology and course of MDs. Again, they could suggest some information to better understand the relationship between inflammatory and cardiovascular disease and MDs, and thus, to provide clinical implications in terms of management and treatment.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Samuele Torrigiani
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese. Italy
| | - Federico Mucci
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese. Italy
| | - Walter Flamini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Tea Ivaldi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Liliana Dell' Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| |
Collapse
|
29
|
Abstract
OBJECTIVE Whereas numerous experimental and clinical studies suggest a complex involvement of serotonin in the regulation of anxiety, it remains to be clarified if the dominating impact of this transmitter is best described as anxiety-reducing or anxiety-promoting. The aim of this study was to assess the impact of serotonin depletion on acquisition, consolidation, and expression of conditioned fear. METHODS Male Sprague-Dawley rats were exposed to foot shocks as unconditioned stimulus and assessed with respect to freezing behaviour when re-subjected to context. Serotonin depletion was achieved by administration of a serotonin synthesis inhibitor, para-chlorophenylalanine (PCPA) (300 mg/kg daily × 3), (i) throughout the period from (and including) acquisition to (and including) expression, (ii) during acquisition but not expression, (iii) after acquisition only, and (iv) during expression only. RESULTS The time spent freezing was significantly reduced in animals that were serotonin-depleted during the entire period from (and including) acquisition to (and including) expression, as well as in those being serotonin-depleted during either acquisition only or expression only. In contrast, PCPA administrated immediately after acquisition, that is during memory consolidation, did not impact the expression of conditioned fear. CONCLUSION Intact serotonergic neurotransmission is important for both acquisition and expression of context-conditioned fear.
Collapse
|
30
|
Kumari N, Kaul A, Varshney R, Singh VK, Srivastava K, Bhagat S, Mishra AK, Tiwari AK. Synthesis and evaluation of technetium-99m labelled 1-(2-methoxyphenyl)piperazine derivative for single photon emission computed tomography imaging for targeting 5-HT 1A. Bioorg Chem 2021; 111:104972. [PMID: 33993020 DOI: 10.1016/j.bioorg.2021.104972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/17/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Quantitative changes in expression level of 5HT1A are somewhere related to common neurological disorders such as anxiety, major depression and schizophrenia. We have designed EDTA conjugated SPECT imaging probe for localization of 5HT1A receptor in brain. For designing SPECT probe we have employed the concept of bivalent approach and a homodimeric system with desirable pharmacokinetics of 5HT1A imaging. 99mTc-EDHT was also evaluated for its stability through serum stability assay and glutathione challenge experiment. Biodistribution study showed the highest accumulation of radioactivity in kidney which depicted the renal mode of excretion from the body. However in brain the uptake of 1.21% ID per gram was observed in initial 5 min of drug administration. On blocking the receptor this percent get decreased to 0.97% ID per gram. The regional distribution in brain was also performed which showed the accumulation of drug in cerebellum, cortex and hippocampus part, which are already known for 5HT1A expression. Dynamic study in rabbit is also in support of results derived from biodistribution and blood kinetics experiment. These finding suggest that 99mTc-EDHT holds promising place for further optimization before nuclear medicine applications in different animal species.
Collapse
Affiliation(s)
- Neelam Kumari
- Department of Chemistry, School of Physical & Decision Sciences (SPDS), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226025, UP, India; Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India; Department of Chemistry, University of Delhi, Delhi 110054, India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India
| | - Raunak Varshney
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India
| | - Vinay Kumar Singh
- Department of Chemistry, Dr. S.M.N.R University, Lucknow 226018, India
| | - Krishna Srivastava
- Faculty of Chemical Sciences, Shri Ramswaroop Memorial University, Lucknow 225003, UP, India
| | - Sunita Bhagat
- Department of Chemistry, University of Delhi, Delhi 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India
| | - Anjani Kumar Tiwari
- Department of Chemistry, School of Physical & Decision Sciences (SPDS), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226025, UP, India; Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India.
| |
Collapse
|
31
|
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Curr Med Chem 2021; 29:1757-1803. [PMID: 33982650 DOI: 10.2174/0929867328666210512005508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder, and multiple pathological factors are believed to be involved in the genesis and progression of the disease. A number of hypotheses, including Acetylcholinesterase, Monoamine oxidase, β-Amyloid, Tau protein, etc., have been proposed for the initiation and progression of the disease. At present, acetylcholine esterase inhibitors and memantine (NMDAR antagonist) are the only approved therapies for the symptomatic management of AD. Most of these single-target drugs have miserably failed in the treatment or halting the progression of the disease. Multi-factorial diseases like AD require complex treatment strategies that involve simultaneous modulation of a network of interacting targets. Since the last few years, Multi-Target-Directed Ligands (MTDLs) strategy, drugs that can simultaneously hit multiple targets, is being explored as an effective therapeutic approach for the treatment of AD. In the current review article, the authors have briefly described various pathogenic pathways associated with AD. The importance of Multi-Target-Directed Ligands and their design strategies in recently reported articles have been discussed in detail. Potent leads are identified through various structure-activity relationship studies, and their drug-like characteristics are described. Recently developed promising compounds have been summarized in the article. Some of these MTDLs with balanced activity profiles against different targets have the potential to be developed as drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | - Amandeep Thakur
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | | | - Rakesh Kumar
- Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
32
|
Kalinichenko LS, Abdel-Hafiz L, Wang AL, Mühle C, Rösel N, Schumacher F, Kleuser B, Smaga I, Frankowska M, Filip M, Schaller G, Richter-Schmidinger T, Lenz B, Gulbins E, Kornhuber J, Oliveira AWC, Barros M, Huston JP, Müller CP. Neutral Sphingomyelinase is an Affective Valence-Dependent Regulator of Learning and Memory. Cereb Cortex 2021; 31:1316-1333. [PMID: 33043975 DOI: 10.1093/cercor/bhaa298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids and enzymes of the sphingolipid rheostat determine synaptic appearance and signaling in the brain, but sphingolipid contribution to normal behavioral plasticity is little understood. Here we asked how the sphingolipid rheostat contributes to learning and memory of various dimensions. We investigated the role of these lipids in the mechanisms of two different types of memory, such as appetitively and aversively motivated memory, which are considered to be mediated by different neural mechanisms. We found an association between superior performance in short- and long-term appetitively motivated learning and regionally enhanced neutral sphingomyelinase (NSM) activity. An opposite interaction was observed in an aversively motivated task. A valence-dissociating role of NSM in learning was confirmed in mice with genetically reduced NSM activity. This role may be mediated by the NSM control of N-methyl-d-aspartate receptor subunit expression. In a translational approach, we confirmed a positive association of serum NSM activity with long-term appetitively motivated memory in nonhuman primates and in healthy humans. Altogether, these data suggest a new sphingolipid mechanism of de-novo learning and memory, which is based on NSM activity.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Nadine Rösel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Gerd Schaller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0558, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - André W C Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil.,Primate Center, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| |
Collapse
|
33
|
Shao S, Cui Y, Chen ZB, Zhang B, Huang SM, Liu XW. Androgen deficit changes the response to antidepressant drugs in tail suspension test in mice. Aging Male 2020; 23:1259-1265. [PMID: 32396485 DOI: 10.1080/13685538.2020.1762074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Depressive symptoms are throughout our life, especially in the older population, the sex hormones reduction link to a high risk of depression. In this study, we investigated whether bilateral orchiectomy (ORX) modifies mice behaviors and antidepressant drugs effects through tail suspension test (TST). We evaluated behavioral changes at 1 week, 2 weeks, 1 month, and up to 2 months after ORX. The behavior responses to doxepin, fluoxetine, and venlafaxine at 1 week, 2 weeks, 1 month, and 2 months after ORX were evaluated. No apparent difference was detected among the durations of immobility of the control group, sham operation group, and ORX group in the TST at 1 week and 2 weeks after ORX. But the immobility time of ORX group was obvious longer than that of both control group and sham operation group at 1 month and 2 months after ORX. Only the antidepressant effect of venlafaxine was observed at 1 week and 2 weeks after ORX, while the antidepressant response to fluoxetine decreased 1 month and 2 months after ORX. The response to antidepressant drugs was strongly modified in ORX mice. Our results suggest that not all antidepressant drugs are suitable for depression with androgen deficiency.HighlightsMice with low androgen were more prone to depression-like behaviors.The response to antidepressants changed under the condition of low androgen in mice.Not all antidepressant drugs are appropriate for patients with low androgen.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Cui
- Department of Veterinary Medcine, College of Agriculture, Hainan University, Haikou, China
| | - Zhao-Bin Chen
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Marketing, China Medical System Co, LTD, Shenzhen, China
| | - Bo Zhang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue-Wei Liu
- Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
34
|
Poolakkandy RR, Menamparambath MM. Transition metal oxide based non‐enzymatic electrochemical sensors: An arising approach for the meticulous detection of neurotransmitter biomarkers. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
35
|
Acute EPA-induced learning and memory impairment in mice is prevented by DHA. Nat Commun 2020; 11:5465. [PMID: 33122660 PMCID: PMC7596714 DOI: 10.1038/s41467-020-19255-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Eicosapentaenoic acid (EPA), an omega-3 fatty acid, has been widely used to prevent cardiovascular disease (CVD) and treat brain diseases alone or in combination with docosahexaenoic acid (DHA). However, the impact of EPA and DHA supplementation on normal cognitive function and the molecular targets of EPA and DHA are still unknown. We show that acute administration of EPA impairs learning and memory and hippocampal LTP in adult and prepubescent mice. Similar deficits are duplicated by endogenously elevating EPA in the hippocampus in the transgenic fat-1 mouse. Furthermore, the damaging effects of EPA are mediated through enhancing GABAergic transmission via the 5-HT6R. Interestingly, DHA can prevent EPA-induced impairments at a ratio of EPA to DHA similar to that in marine fish oil via the 5-HT2CR. We conclude that EPA exhibits an unexpected detrimental impact on cognitive functions, suggesting that caution must be exercised in omega-3 fatty acid supplementation and the combination of EPA and DHA at a natural ratio is critical for learning and memory and synaptic plasticity. Acute administration of EPA impairs learning and memory and hippocampal LTP in mice that was mediated through enhancing GABAergic transmission via the 5-HT6R. DHA can prevent EPA-induced impairments at a ratio of EPA to DHA similar to that in marine fish oil via the 5-HT2CR.
Collapse
|
36
|
Eom TM, Kwon HH, Shin N, Kim DW, Fang Z, Seol IC, Kim YS, Kim HG, Yoo HR. Traditional Korean herbal formulae, Yuk-Mi-Ji-Hwang-Tang, ameliorates impairment of hippocampal memory ability by chronic restraint stress of mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113102. [PMID: 32544420 DOI: 10.1016/j.jep.2020.113102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yuk-Mi-Jihwang-Tang (YJT) has been popularly prescribed to treat aging related disorders over than hundreds of years in East Asia countries. AIM OF THE STUDY To investigate possible modulatory actions of YJT on chronic restraint stress (CRS)-induced neurodegeneration on hippocampus neuronal injuries. MATERIALS AND METHODS Mice were orally administered with YJT (100, 200, or 400 mg/kg) or ascorbic acid (100 mg/kg) before 4 h of stress for 28 days. Morris water maze task was completed from day 24th to 28th, and stress hormones and biochemical analyzes were measured. RESULTS Four weeks of the CRS abnormally affected memory impairments by measurement of escape latency and time spent in the target quadrant. Additionally, neurotransmitters were also drastically altered in serum or hippocampus protein levels by CRS. Gene expressions for 5-hydroxytryptamine (5-HT) receptor, 5-HT-transport, and tryptophan hydroxylase were also altered, whereas YJT led to normalize the above alterations. Additionally, YJT also beneficially worked on endogenous redox system as well as inflammatory reactions in the hippocampal neurons. We observed that hippocampal excitotoxicity was induced by CRS which were evidenced by depletion of phosphor-cAMP response element-binding protein, brain-derived neurotrophic factor, nuclear factor erythroid-2-related factor 2, heme oxygenase-1 and abnormally increases of acetylcholine esterase activities in hippocampus protein levels; however, YJT considerably improved the above pathological conditions. CONCLUSIONS Our findings supported YJT enhance memory function via regulation of hippocampal excitotoxicity-derived memory impairment, stress hormone, and endogenous redox, respectively.
Collapse
Affiliation(s)
- Tae-Min Eom
- Department of Neurology Disorders, Dunsan Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Hyeok-Hee Kwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Dong-Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Zhigang Fang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - In-Chan Seol
- Department of Neurology Disorders, Dunsan Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Yoon-Sik Kim
- Department of Neurology Disorders, Dunsan Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Ho-Ryong Yoo
- Department of Neurology Disorders, Dunsan Hospital, Daejeon University, Daejeon, Republic of Korea.
| |
Collapse
|
37
|
Rehman NU, Esmaeilpour K, Joushi S, Abbas M, Al-Rashida M, Rauf K, Masoumi-Ardakani Y. Effect of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide on cognitive deficits and hippocampal plasticity during nicotine withdrawal in rats. Biomed Pharmacother 2020; 131:110783. [PMID: 33152941 DOI: 10.1016/j.biopha.2020.110783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Withdrawal from chronic nicotine has damaging effects on a variety of learning and memory tasks. Various Sulfonamides that act as carbonic anhydrase inhibitors have documented role in modulation of various cognitive, learning, and memory processing. We investigated the effects of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS) on nicotine withdrawal impairments in rats using Morris water maze (MWM), Novel object recognition, Passive avoidance, and open field tasks. Also, Brain-derived neurotrophic factor (BDNF) profiling and in vivo field potential recording were assessed. Rats were exposed to saline or chronic nicotine 3.8 mg/kg subcutaneously for 14 days in four divided doses, spontaneous nicotine withdrawal was induced by quitting nicotine for 72 h (hrs). Animals received 4-FBS at 20, 40, and 60 mg/kg after 72 h of withdrawal in various behavioral and electrophysiological paradigms. Nicotine withdrawal causes a deficit in learning and long-term memory in the MWM task. No significant difference was found in novel object recognition tasks among all groups while in passive avoidance task nicotine withdrawal resulted in a deficit of hippocampus-dependent fear learning. Anxiety like behavior was observed during nicotine withdrawal. Plasma BDNF level was reduced during nicotine withdrawal as compared to the saline group reflecting mild cognitive impairment, stress, and depression. Withdrawal from chronic nicotine altered hippocampal plasticity, caused suppression of long-term potentiation (LTP) in the CA1 area of the hippocampus. Our results showed that 4-FBS at 40 and 60 mg/kg significantly prevented nicotine withdrawal-induced cognitive deficits in behavioral as well as electrophysiological studies. 4-FBS at 60 mg/kg upsurge nicotine withdrawal-induced decrease in plasma BDNF. We conclude that 4-FBS at 40 and 60 mg /kg effectively prevented chronic nicotine withdrawal-induced impairment in long term potentiation and cognitive performance.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
Zhang SR, Wu JL, Chen H, Luo R, Chen WJ, Tang LJ, Li XW, Yang JM, Gao TM. ErbB4 knockdown in serotonergic neurons in the dorsal raphe induces anxiety-like behaviors. Neuropsychopharmacology 2020; 45:1698-1706. [PMID: 31905370 PMCID: PMC7419508 DOI: 10.1038/s41386-020-0601-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
There is a close relationship between serotonergic (5-HT) activity and anxiety. ErbB4, a receptor tyrosine kinase, is expressed in 5-HT neurons. However, whether ErbB4 regulates 5-HT neuronal function and anxiety-related behaviors is unclear. Here, using transgenic and viral approaches, we show that mice with ErbB4 deficiency in 5-HT neurons exhibit heightened anxiety-like behavior and impaired fear extinction, possibly due to an increased excitability of 5-HT neurons in the dorsal raphe nucleus (DRN). Notably, the chemogenetic inhibition of 5-HT neurons in the DRN of ErbB4 mutant mice rescues anxiety-like behaviors. Altogether, our results unravel a previously unknown role of ErbB4 signaling in the regulation of DRN 5-HT neuronal function and anxiety-like behaviors, providing novel insights into the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Sheng-Rong Zhang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Lin Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rong Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Jun Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li-Juan Tang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
39
|
Hirst RB, Jordan JT, Rose SMSF, Schneider L, Kawai M, Gould C, Anker L, Chick CF, Beaudreau S, Hallmayer J, O’Hara R. The 5-HTTLPR long allele predicts two-year longitudinal increases in cortisol and declines in verbal memory in older adults. Int J Geriatr Psychiatry 2020; 35:982-988. [PMID: 32400901 PMCID: PMC7755300 DOI: 10.1002/gps.5319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The short form or s-allele variant of the serotonin transporter polymorphism (5-HTTLPR), as compared with the long-form or l-allele variant, has been associated with the presence of cognitive dysfunction, and particularly memory impairment in older adults. This body of cross-sectional work has culminated in the hypothesis that presence of the s-allele predicts greater memory decline in older adults. Yet, to date, there are no longitudinal studies that have investigated this issue. METHODS/DESIGN Here, we examine 109 community-dwelling older adults (mean and SD of age = 70.7 ± 8.7 years) who underwent blood draw for genotyping, cognitive, and psychological testing at baseline, 12-, and 24-monthfollow-ups. RESULTS Multilevel modeling found that s-allele carriers (ss or ls) performed worse than ll homozygotes at baseline on delayed verbal recall. Yet, s-allele carriers' memory performance was stable over the two-yearfollow-up period, while l-allele homozygotes experienced significant memory decline. l-allele homozygote status was associated with both increased cortisol and decreased memory over time, resulting in attenuated verbal memory performance differences compared to s-allele carriers with age. CONCLUSIONS Overall, our findings do not support the hypothesis that presence of the 5-HTTLPRs-allele is a marker for memory decline in older adults. J Am Geriatr Soc 68:-, 2020.
Collapse
Affiliation(s)
- Rayna B. Hirst
- Palo Alto University,Corresponding author: Rayna B. Hirst, PhD, Palo Alto University, 1791 Arastradero Road, Palo Alto, California 94304, Ph. 650-417-2025,
| | - Joshua T. Jordan
- Department of Psychiatry and Behavioral Sciences, Stanford University,Department of Psychiatry, University of California, San Francisco
| | | | - Logan Schneider
- Department of Psychiatry and Behavioral Sciences, Stanford University,Stanford/VA State of California, Alzheimer Disease Center, VA Palo Alto Health Care System,Stanford University Sleep Center,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Makoto Kawai
- Department of Psychiatry and Behavioral Sciences, Stanford University,Stanford/VA State of California, Alzheimer Disease Center, VA Palo Alto Health Care System,Stanford University Sleep Center,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Christine Gould
- Department of Psychiatry and Behavioral Sciences, Stanford University,Geriatric Research, Education and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, CA
| | - Lauren Anker
- Department of Psychiatry and Behavioral Sciences, Stanford University,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Christina F. Chick
- Department of Psychiatry and Behavioral Sciences, Stanford University,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Sherry Beaudreau
- Department of Psychiatry and Behavioral Sciences, Stanford University,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Ruth O’Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University,Stanford/VA State of California, Alzheimer Disease Center, VA Palo Alto Health Care System,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| |
Collapse
|
40
|
Atik YT, Gokce A, Halis F, Cimen HI. Can low serum brain-derived neurotrophic factor levels be associated with lifelong premature ejaculation?; A pilot study. Andrologia 2020; 52:e13746. [PMID: 32654287 DOI: 10.1111/and.13746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
This study aimed to present the association between the serum level of brain-derived neurotrophic factor (BDNF) and the lifelong pre-mature ejaculation (PE). The data of 40 patients with lifelong PE and 40 healthy controls were evaluated prospectively. PE diagnostic tool and patient-reported outcome measures were performed to the participants. The serum BDNF level measurement was made after the collecting of blood samples in both groups. The mean ± SD age of the PE and control group was 34.43 ± 5.71 and 33.03 ± 3.97 years respectively (p = .228). Only the participant who has been married included in the study, and there was no difference in the mean marriage duration. In both groups, smoking status, alcohol use and body mass index were similar. The median PE diagnostic tool scores were 15 (11-20), and serum BDNF levels were 225.3 (26.1-689.6) ng/ml in the PE group, 5 (0-9) and 540.9 (102.9-769.2) ng/ml in the control group respectively (p < .001 for both). The patients with PE had significantly lower serum BDNF levels. Our study suggests that lower serum BDNF levels may be directly related to lifelong PE.
Collapse
Affiliation(s)
- Yavuz T Atik
- Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Ahmet Gokce
- Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Fikret Halis
- Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Haci Ibrahim Cimen
- Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| |
Collapse
|
41
|
Protective action of Grewia asiatica (phalsa) berries against scopolamine-induced deficit in learning and memory using behavior paradigms in rats. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00376-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Szőke H, Kovács Z, Bókkon I, Vagedes J, Szabó AE, Hegyi G, Sterner MG, Kiss Á, Kapócs G. Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain. Rev Neurosci 2020; 31:415-425. [DOI: 10.1515/revneuro-2019-0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
AbstractThe microbiota and microbiome and disruption of the gut-brain axis were linked to various metabolic, immunological, physiological, neurodevelopmental, and neuropsychiatric diseases. After a brief review of the relevant literature, we present our hypothesis that intestinal serotonin, produced by intestinal enterochromaffin cells, picked up and stored by circulating platelets, participates and has an important role in the regulation of membrane permeability in the intestine, brain, and other organs. In addition, intestinal serotonin may act as a hormone-like continuous regulatory signal for the whole body, including the brain. This regulatory signal function is mediated by platelets and is primarily dependent on and reflects the intestine’s actual health condition. This hypothesis may partially explain why gut dysbiosis could be linked to various human pathological conditions as well as neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Henrik Szőke
- Department of CAM, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Doctorate School, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Zoltán Kovács
- Doctorate School, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - István Bókkon
- Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
- Psychosomatic Outpatient Clinics, Budapest, Hungary
| | - Jan Vagedes
- University of Tübingen, Children’s Hospital, Tübingen, Germany
- ARCIM Institute (Academic Research in Complementary and Integrative Medicine), Filderstadt, Germany
| | | | - Gabriella Hegyi
- Department of CAM, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Doctorate School, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | | | - Ágnes Kiss
- Doctorate School, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kapócs
- Buda Family-Centered Mental Health Centre, Department of Psychiatry and Psychiatric Rehabilitation, Teaching Department of Semmelweis University, New Saint John Hospital, Budapest, Hungary
- Institute for Behavioral Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
43
|
Effects of Oral Branched-Chain Amino Acids (BCAAs) Intake on Muscular and Central Fatigue During an Incremental Exercise. J Hum Kinet 2020; 72:69-78. [PMID: 32269649 PMCID: PMC7126259 DOI: 10.2478/hukin-2019-0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to investigate the effects of oral branched-chain amino acids (BCAAs) intake on muscular (creatine kinase and myoglobin) and central (serotonin) fatigue during an incremental exercise protocol and to determine the time to exhaustion. Sixteen male long-distance runners (25.7 ± 2.0 yrs) performed two trials, 14 days apart. Using a double-blind, placebo-controlled, randomised crossover design, participants ingested either 20 g of BCAAs (BCAA trial) or a placebo 1 hour prior to performing an incremental exercise session on a treadmill. The starting speed was 8 km/h and this was increased by 1 km/h every 5 minutes until volitional exhaustion. Blood analysis indicated that plasma levels of serotonin were lower in the BCAA trial (259.3 ± 13.5 ng/ml) than the placebo trial (289.1 ± 14.5 ng/ml) (p < 0.05). There was a similar pattern of results for free fatty acid (p < 0.05). The creatine kinase level was higher in the BCAA trial (346.1 ± 33.7 U/L) than the placebo trial (307.3 ± 30.2 U/L). No significant difference between trials was observed regarding the level of myoglobin (p = 0.139). Time to exhaustion was longer in the BCAA trial (50.4 ± 2.3 min) than the placebo trial (46.6 ± 3.2 min). In conclusion, oral intake of 20 g of BCAAs 1 hour prior to an incremental treadmill exercise session increased time to exhaustion, probably due to the reduction in serotonin concentration. As myoglobin levels were within the normal range in both trials, we conclude that the participants did not reach muscular fatigue.
Collapse
|
44
|
Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits. Cells 2020; 9:cells9020506. [PMID: 32102186 PMCID: PMC7072884 DOI: 10.3390/cells9020506] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals. Here, GPCRs’ role in the pathophysiology of different neurodegenerative disease progressions and cognitive deficits has been highlighted, and an emphasis has been placed on the current pharmacological developments with GPCRs to provide an insight into a potential therapeutic target in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Ezazul Haque
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - Md. Jakaria
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Song-Hee Jo
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (S.A.); (M.E.H.); (M.J.); (S.-H.J.)
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| |
Collapse
|
45
|
Wang L, He Z, Zhu Z, Yuan W, Cai W, Li L, Zhang J, Hou W, Yang Y, Zhang X, Guo Q, Wang X, Lian Z, Tai F. The serotonin system in the hippocampus CA3 involves in effects of CSDS on social recognition in adult female mandarin voles (Microtus mandarinus). Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109704. [PMID: 31330217 DOI: 10.1016/j.pnpbp.2019.109704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Chronic social defeat stress (CSDS) exacerbated the development of stress-related psychiatric disorders, and the social recognition dysfunction is the core feature of many psychiatric disorders. However, the effects of CSDS on female social recognition and the underlying neural mechanisms remain unclear. Using highly aggressive adult female mandarin voles (Microtus mandarinus) as animal model, the aim of this work is to investigate the effects of CSDS on social recognition in adult female rodents and the neurobiological mechanisms underlying these effects. Our results indicate the CSDS disrupted the normal social recognition in adult female voles. Meanwhile, defeated voles exhibited increased neural activity in the DG, CA1 and CA3 of the hippocampus. Furthermore, CSDS reduced levels of serotonin (5-HT) and serotonin 1A receptors (5-HT1AR) in the CA3. We also discovered that microinjection of 8-OH-DPAT into the CA3 effectively reversed the social recognition deficits induced by CSDS, and an infusion of WAY-100635 into the CA3 of control female voles impaired social recognition. Moreover, targeted activation of the 5-HT neuron projection from the DRN to CA3 by long-term administration of CNO significantly prevented the CSDS induced social recognition deficits. Taken together, our study demonstrated that CSDS induced social recognition deficits in adult female voles, and these effects were mediated by the action of 5-HT on the 5-HT1AR in the hippocampus CA3. The projection from the DRN to CA3 may be involved in social recognition deficits induced by CSDS.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xia Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
46
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
47
|
van der Zee S, Vermeiren Y, Fransen E, Van Dam D, Aerts T, Gerritsen MJ, Spikman JM, van Laar T, De Deyn PP. Monoaminergic Markers Across the Cognitive Spectrum of Lewy Body Disease. JOURNAL OF PARKINSONS DISEASE 2019; 8:71-84. [PMID: 29480224 DOI: 10.3233/jpd-171228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Lewy body disorders, including Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), are characterized by profound central and peripheral monoaminergic dysfunction. OBJECTIVE To investigate whether these alterations depend on dementia status, we measured cerebrospinal fluid (CSF) and serum monoamine and metabolite levels across subgroups of the cognitive spectrum, and evaluated their marker potential afterwards. METHODS In total, 153 subjects were included, of which 43 healthy controls (HC), 28 PD patients with normal cognition (PD-NC), 26 patients with PD and mild cognitive impairment (PD-MCI), 18 PDD patients, and 38 DLB patients. The levels of monoamines and metabolites in paired CSF and serum samples were analyzed applying reversed-phase high-performance liquid chromatography with electrochemical detection. RESULTS Firstly, when comparing subgroups, CSF 3-methoxy-4-hydroxyphenylglycol (MHPG) levels were found lowest in HC and PD-NC groups and significantly higher in PDD/DLB patients. In addition, CSF 5-hydroxyindoleacetic acid (5-HIAA) levels differed significantly between HC and PD-MCI/PDD, and DLB patients (P≤0.001), but not between HC and PD-NC patients. Secondly, when performing logistic regression, it was shown that particularly CSF/serum MHPG levels and the serum MHPG to noradrenaline (NA) ratio effectively differentiated between HC and (non-)pooled PD subgroups (AUC = 0.914-0.956), and PDD and DLB patients (AUC = 0.822), respectively. Furthermore, CSF 5-HIAA was the most discriminative parameter to differentiate between PD-NC and PD-MCI (AUC = 0.808), and, PD-NC and PDD subgroups (AUC = 0.916). CONCLUSIONS Our data revealed that especially alterations of the noradrenergic neurotransmitter system could distinguish between Lewy body disorder subtypes, pinpointing CSF/serum MHPG and NA as potential stage markers across the cognitive spectrum.
Collapse
Affiliation(s)
- Sygrid van der Zee
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Yannick Vermeiren
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Debby Van Dam
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Tony Aerts
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium
| | - Marleen J Gerritsen
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Jacoba M Spikman
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Department of Clinical and Developmental Neuropsychology, Faculty of Behavioral and Social Sciences, University of Groningen, Groningen, Netherlands
| | - Teus van Laar
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Peter P De Deyn
- Department of Neurology, Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands.,Department of Biomedical Sciences, Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
48
|
Allopregnanolone reversion of estrogen and progesterone memory impairment: interplay with serotonin release. J Neural Transm (Vienna) 2019; 126:1321-1328. [DOI: 10.1007/s00702-019-02052-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
|
49
|
Maurus I, Hasan A, Röh A, Takahashi S, Rauchmann B, Keeser D, Malchow B, Schmitt A, Falkai P. Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:499-515. [PMID: 31115660 DOI: 10.1007/s00406-019-01025-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disease that is associated with neurobiological alterations in multiple brain regions and peripheral organs. Negative symptoms and cognitive deficits are present in about half of patients and are difficult to treat, leading to an unfavorable functional outcome. To investigate the impact of aerobic exercise on various neurobiological parameters, we conducted a narrative review. Add-on aerobic exercise was shown to be effective in improving negative and general symptoms, cognition, global functioning, and quality of life in schizophrenia patients. Based on findings in healthy individuals and animal models, this qualitative review gives an overview of different lines of evidence on how aerobic exercise impacts brain structure and function and molecular mechanisms in patients with schizophrenia and how its effects could be related to clinical and functional outcomes. Structural magnetic resonance imaging studies showed a volume increase in the hippocampus and cortical regions in schizophrenia patients and healthy controls after endurance training. However, results are inconsistent and individual risk factors may influence neuroplastic processes. Animal studies indicate that alterations in epigenetic mechanisms and synaptic plasticity are possible underlying mechanisms, but that differentiation of glial cells, angiogenesis, and possibly neurogenesis may also be involved. Clinical and animal studies also revealed effects of aerobic exercise on the hypothalamus-pituitary-adrenal axis, growth factors, and immune-related mechanisms. Some findings indicate effects on neurotransmitters and the endocannabinoid system. Further research is required to clarify how individual risk factors in schizophrenia patients mediate or moderate the neurobiological effects of exercise on brain and cognition. Altogether, aerobic exercise is a promising candidate in the search for pathophysiology-based add-on interventions in schizophrenia.
Collapse
Affiliation(s)
- Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Astrid Röh
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| |
Collapse
|
50
|
El Khiat A, Tamegart L, Draoui A, El Fari R, Sellami S, Rais H, El Hiba O, Gamrani H. Kinetic deterioration of short memory in rat with acute hepatic encephalopathy: Involvement of astroglial and neuronal dysfunctions. Behav Brain Res 2019; 367:201-209. [DOI: 10.1016/j.bbr.2019.03.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|