1
|
Qiu C, Liu Z. Positive selection and functional diversification of transcription factor Cmr1 homologs in Alternaria. Appl Microbiol Biotechnol 2024; 108:133. [PMID: 38229332 DOI: 10.1007/s00253-023-12893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
Transcription factor Cmr1 (Colletotrichum melanin regulation 1) and its homologs in several plant fungal pathogens are the regulators of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis pathway and have evolved functional diversification in morphology and pathogenicity. The fungal genus Alternaria comprises the group of "black fungi" that are rich in DHN-melanin in the primary cell wall and septa of the conidia. Some Alternaria species cause many economically important plant diseases worldwide. However, the evolution and function of Cmr1 homologs in Alternaria remain poorly understood. Here, we identified a total of forty-two Cmr1 homologs from forty-two Alternaria spp. and all contained one additional diverse fungal specific transcription factor motif. Phylogenetic analysis indicated the division of these homologs into five major clades and three branches. Dated phylogeny showed the A and D clades diverged latest and earliest, respectively. Molecular evolutionary analyses revealed that three amino acid sites of Cmr1 homologs in Alternaria were the targets of positive selection. Asmr1, the homolog of Cmr1 in the potato early blight pathogen, Alternaria solani was amplified and displayed the sequence conservation at the amino acid level in different A. solani isolates. Asmr1 was further confirmed to have the transcriptional activation activity and was upregulated during the early stage of potato infection. Deletion of asmr1 led to the decreased melanin content and pathogenicity, deformed conidial morphology, and responses to cell wall and fungicide stresses in A. solani. These results suggest positive selection and functional divergence have played a role in the evolution of Cmr1 homologs in Alternaria. KEY POINTS: • Cmr1 homologs were under positive selection in Alternaria species • Asmr1 is a functional transcription factor, involved in spore development, melanin biosynthesis, pathogenicity, and responses to cell wall and fungicide stresses in A. solani • Cmr1 might be used as a potential taxonomic marker of the genus Alternaria.
Collapse
Affiliation(s)
- Chaodong Qiu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhenyu Liu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China.
- Anhui Province Key Laboratory of Integrated Pest Management On Crops, Hefei, Anhui, 230036, China.
| |
Collapse
|
2
|
Qiu C, Zhang H, Liu Z. Alternaria solani core effector Aex59 is a new member of the Alt a 1 protein family and is recognized as a PAMP. Int J Biol Macromol 2024; 278:134918. [PMID: 39179073 DOI: 10.1016/j.ijbiomac.2024.134918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Early blight caused by Alternaria solani is a destructive disease in potato production. Here, through systematically screening of an effector protein pool consisting of 115 small cysteine-containing candidate Aex (Alternariaextracellular proteins) in A. solani, we identified a core effector protein named Aex59, a pathogen-associated molecular pattern (PAMP) molecule. Aex59 is uniquely present in the Ascomycota of fungi and can activate defense responses in multiple plants. Targeted gene disruption showed that Aex59 is a virulence factor and participates in spore development. Perception of Aex59 in Nicotiana benthamiana does not depend on the receptor-like kinases Brassinosteroid-associated kinase1 (BAK1) and Suppressor of BIR1-1 (SOBIR1), which are required for multiple pattern recognition receptors (PRR) pathways. Sequence analysis revealed that Aex59 is a new member of the Alt a 1 protein family and is a potential molecular marker capable of aiding in the classification of the fungi Alternaria spp.
Collapse
Affiliation(s)
- Chaodong Qiu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huajian Zhang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui 230036, China
| | - Zhenyu Liu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Toporek SM, Reich J, Keinath AP. Recovery of Alternaria brassicicola from Chopped, Bagged Kale ( Brassica oleracea var. sabellica). PLANT DISEASE 2024; 108:2989-2992. [PMID: 38764345 DOI: 10.1094/pdis-01-24-0030-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Alternaria brassicicola was found on pieces of chopped, bagged kale held 1 week beyond the typical postharvest storage period. Three of 11 Alternaria isolates were identified as A. brassicicola based on species-specific primers and multilocus genotyping with the translation elongation factor 1-alpha, RNA polymerase second largest subunit, and glyceraldehyde-3-phosphate dehydrogenase gene regions. Four isolates of A. alternata and four isolates comprising two unidentified species also were found. A. brassicicola also was found in a production field on the same farm. In the greenhouse, only A. brassicicola isolates caused disease on inoculated kale plants. As previously reported, A. brassicicola isolates had larger colony diameters on semiselective Chen and Wu medium than the nonpathogenic isolates. Black spot caused by A. brassicicola on kale leaves in the field can lead to black spot on harvested kale.
Collapse
Affiliation(s)
- Sean M Toporek
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007
| | - Joelle Reich
- Department of Biological Sciences, Rutgers University, Piscataway, NJ 08854
| | - Anthony P Keinath
- Department of Plant and Environmental Sciences, Clemson University, Coastal Research and Education Center, Charleston, SC 29414
| |
Collapse
|
4
|
Zhang X, Liu J, Li Y, Xue B, Bai Y. Identification, Characteristics, and Fungicide Efficacy of Seed-Associated Fungi of Saposhnikovia divaricata in Northeast China. PLANT DISEASE 2024; 108:3123-3132. [PMID: 38902881 DOI: 10.1094/pdis-01-24-0257-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Saposhnikovia divaricata (Trucz.) Schischk. is one of the traditional medicinal herbs in Northeast China, and its roots are used for medicinal purposes. In 2020, a fungus isolated from S. divaricata seeds was observed to cause root rot of seedlings and leaf and stem spot of adult plants in Shuangyashan, Heilongjiang, China. Based on morphological and molecular data, isolates of all fungi were identified as Alternaria alternata. To our knowledge, this is the first report of A. alternata isolated from S. divaricata seeds in China. The carrying rate of S. divaricata seeds from 20 different collection sites reached 100% in 70% of the sites in Hulunbeier area, Inner Mongolia, China. The A. alternata isolate could infect the roots of cucumber, sorghum, mung bean, and maize seedlings and cause root rot. Considering the control of seed-associated fungal diseases, prochloraz 45% EW had the best control effect of 92.6%, followed by flusilazole 400 g liter-1 EC (88.9%) and azoxystrobin + propiconazole 18.7% SE (70.7%) of 15 fungicides. Further field control efficacy showed that 45% prochloraz EW had an 80% control efficacy on the disease at a dose of 0.225 g liter-1. It is recommended that soaking seeds and spraying are the best treatments for controlling seed-associated fungi and leaf spot on S. divaricata caused by A. alternata. Therefore, the aforementioned methods can effectively prevent the occurrence of fungal diseases of S. divaricata and provide a way to reduce reinfestation in the field.
Collapse
Affiliation(s)
- Xue Zhang
- College of Plant Protection, Northeast Agricultural University, 150030 Harbin, China
| | - Jinxin Liu
- College of Plant Protection, Northeast Agricultural University, 150030 Harbin, China
| | - Yonggang Li
- College of Plant Protection, Northeast Agricultural University, 150030 Harbin, China
| | - Baiyan Xue
- College of Plant Protection, Northeast Agricultural University, 150030 Harbin, China
| | - Yunlong Bai
- Cooperation of Green Source Chinese Herbal Medicine Planting Professional Cooperative in Sihe Village 155100 Shuangyashan, China
| |
Collapse
|
5
|
Sánchez Espinosa KC, Aira MJ, Fernández-González M, Rodríguez-Rajo FJ. Airborne Alternaria Spores: 70 Annual Records in Northwestern Spain. J Fungi (Basel) 2024; 10:681. [PMID: 39452633 PMCID: PMC11508870 DOI: 10.3390/jof10100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
This study presents data on the concentration of Alternaria spores in the atmosphere of the northwestern Iberian Peninsula. A non-viable volumetric method was used to collect the samples, resulting in a database of 70 annual. When the annual averages for each locality are calculated, Ourense stands out with 2152 spores/m3, followed by Vigo and Lugo, while Santiago de Compostela recorded the lowest concentrations. Focusing on the total data for each locality, the main sporulation period started in May and ended in October in all localities, centered on a single phase, with an earlier onset and longer duration in Ourense and Vigo. The number of days with concentrations in excess of 100 spores/m3 was very low in Santiago de Compostela, Ourense, and Vigo and null in Lugo. Temperature was the meteorological parameter for which the highest statistical correlation was obtained in all locations, being favorable to the concentration of spores in the air. Temperature ranges favorable to the presence of airborne spores in the study area ranged from 25.5 to 31.2 °C. Based on the analysis of the data collected, it is concluded that Alternaria spore concentrations are low throughout most of the year.
Collapse
Affiliation(s)
- Kenia C. Sánchez Espinosa
- Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain; (M.F.-G.); (F.J.R.-R.)
| | - María Jesús Aira
- Department of Botany, Faculty of Biology, University of Santiago de Compostela, C/ Lope Gómez de Marzoa, s/n., 15782 Santiago de Compostela, Spain;
| | - María Fernández-González
- Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain; (M.F.-G.); (F.J.R.-R.)
| | - Francisco Javier Rodríguez-Rajo
- Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain; (M.F.-G.); (F.J.R.-R.)
| |
Collapse
|
6
|
Liu C, Ding N, Lu P, Yuan B, Li Y, Jiang K. The Effects of swnN Gene Function of Endophytic Fungus Alternaria oxytropis OW 7.8 on Its Swainsonine Biosynthesis. Int J Mol Sci 2024; 25:10310. [PMID: 39408639 PMCID: PMC11477355 DOI: 10.3390/ijms251910310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The swnN gene in the endophytic fungus Alternaria oxytropis OW 7.8 isolated from Oxytropis glabra was identified, and the gene knockout mutant ΔswnN was first constructed in this study. Compared with A. oxytropis OW 7.8, the ΔswnN mutant exhibited altered colony and mycelia morphology, slower growth rate, and no swainsonine (SW) in mycelia. SW was detected in the gene function complementation strain ΔswnN/swnN, indicating that the function of the swnN gene promoted SW biosynthesis. Six differentially expressed genes (DEGs) closely associated with SW synthesis were identified by transcriptomic analysis of A. oxytropis OW 7.8 and ΔswnN, with P5CR, swnR, swnK, swnH2, and swnH1 down-regulating, and sac up-regulating. The expression levels of the six genes were consistent with the transcriptomic analysis results. Five differential metabolites (DEMs) closely associated with SW synthesis were identified by metabolomic analysis, with L-glutamate, α-ketoglutaric acid, and L-proline up-regulating, and phosphatidic acid (PA) and 2-aminoadipic acid down-regulating. The SW biosynthetic pathways in A. oxytropis OW 7.8 were predicted and refined. The results lay the foundation for in-depth elucidation of molecular mechanisms and the SW synthesis pathway in fungi. They are also of importance for the prevention of locoism in livestock, the control and utilization of locoweeds, and the protection and sustainable development of grassland ecosystems.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (C.L.); (N.D.); (B.Y.); (Y.L.); (K.J.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Ning Ding
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (C.L.); (N.D.); (B.Y.); (Y.L.); (K.J.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Ping Lu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (C.L.); (N.D.); (B.Y.); (Y.L.); (K.J.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Bo Yuan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (C.L.); (N.D.); (B.Y.); (Y.L.); (K.J.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Yuling Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (C.L.); (N.D.); (B.Y.); (Y.L.); (K.J.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Kai Jiang
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (C.L.); (N.D.); (B.Y.); (Y.L.); (K.J.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| |
Collapse
|
7
|
Apangu GP, Frisk CA, Petch GM, Hanson M, Skjøth CA. Unmanaged grasslands are a reservoir of Alternaria and other important fungal species with differing emission patterns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122416. [PMID: 39255575 DOI: 10.1016/j.jenvman.2024.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Alternaria is a ubiquitous fungal genus with many allergenic and pathogenic species inhabiting grasslands. We hypothesise that grasslands (natural/man-made) host a diversity of fungal species whose spores have varying emission patterns. Therefore, the purpose of this study was to examine the potential of grasslands for emission, diversity and composition of Alternaria and other fungal species. To test the hypothesis, Hirst-type and multi-vial Cyclone samplers collected air samples from two grassland sites (unmanaged and managed) and a non-grassland site at Lakeside campus of the University of Worcester, United Kingdom for the period May to September 2019. The unmanaged grassland was originally planted with grasses and left uncut for three years. The managed grassland was a roadside verge that was cut once every year, typically after most grasses have flowered. We used optical microscopy and Illumina MiSeq sequencing to investigate the emission, abundance, diversity and composition of the fungal spores from each site alongside meteorological variables. Kruskal-Wallis and Wilcoxon tests examined differences in the bi-hourly Alternaria concentrations between the sites. Shannon's and Simpson's Index determined the diversity of the fungal spores between the unmanaged and non-grassland sites. The results showed that grasslands are a strong source of Alternaria spores with considerably higher numbers of clinically important days compared with the non-grassland site. The managed grassland varied in Alternaria spore emission pattern from the unmanaged, probably due to differences in environmental variables and cutting frequency. The unmanaged grassland and non-grassland sites showed a high diversity of fungi including Alternaria, Cladosporium, Ascochyta, Botrytis and Aureobasidium. Overall, the study shows that grasslands are a strong source of fungal spores with allergenic and pathogenic potential and have varying emission patterns, compared with nearby urban areas where monitoring stations are located. This information is useful for atmospheric modelling of airborne fungal spore sources and has implications for allergy sufferers in particular.
Collapse
Affiliation(s)
- Godfrey Philliam Apangu
- University of Worcester, School of Science and the Environment, Henwick Grove, WR2 6AJ, Worcester, United Kingdom.
| | - Carl Alexander Frisk
- University of Worcester, School of Science and the Environment, Henwick Grove, WR2 6AJ, Worcester, United Kingdom
| | - Geoffrey M Petch
- University of Worcester, School of Science and the Environment, Henwick Grove, WR2 6AJ, Worcester, United Kingdom
| | - Mary Hanson
- University of Worcester, School of Science and the Environment, Henwick Grove, WR2 6AJ, Worcester, United Kingdom
| | - Carsten Ambelas Skjøth
- University of Worcester, School of Science and the Environment, Henwick Grove, WR2 6AJ, Worcester, United Kingdom
| |
Collapse
|
8
|
Dettman JR, Gerdis S. Alternaria sections Infectoriae and Pseudoalternaria: New genomic resources, phylogenomic analyses, and biodiversity. Mycologia 2024; 116:659-672. [PMID: 38884943 DOI: 10.1080/00275514.2024.2354149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024]
Abstract
Species in Alternaria sections Infectoriae and Pseudoalternaria are commonly isolated from agricultural crops and a variety of other plant hosts. With the increasing appreciation that species from these two sections are often the dominant taxa recovered from important cereal crops, the need for improved understanding of their biodiversity and taxonomy has grown. Given that morphological characteristics and existing molecular markers are not sufficient for distinguishing among species, we expanded the genomic resources for these sections to support research in biosystematics and species diagnostics. Whole genome assemblies for 22 strains were generated, including the first genomes from section Infectoriae or Pseudoalternaria strains sampled from Canada, which significantly increases the number of publicly released genomes, particularly for section Pseudoalternaria. We performed comprehensive phylogenomic analyses of all available genomes (n = 39) and present the first robust phylogeny for these taxa. The segregation of the two sections was strongly supported by genomewide data, and multiple lineages were detected within each section. We then provide an overview of the biosystematics of these groups by analyzing two standard molecular markers from the largest sample of section Infectoriae and Pseudoalternaria strains studied to date. The patterns of relative diversity suggest that, in many cases, multiple species described based on minor morphological differences may actually represent different strains of the same species. A list of candidate loci for development into new informative molecular markers, which are diagnostic for sections and lineages, was created from analyses of phylogenetic signals from individual genes across the entire genome.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Suzanne Gerdis
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| |
Collapse
|
9
|
Gannibal PB, Gomzhina MM. Revision of Alternaria sections Pseudoulocladium and Ulocladioides: Assessment of species boundaries, determination of mating-type loci, and identification of Russian strains. Mycologia 2024; 116:744-763. [PMID: 39024131 DOI: 10.1080/00275514.2024.2363152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Alternaria is a large genus within Pleosporaceae and consists of fungi that have up to recently been considered to be 15 separate genera, including Ulocladium. The majority of Ulocladium species after incorporation into Alternaria were placed in three sections: Ulocladioides, Pseudoulocladium, and Ulocladium. In this study, phylogeny of 26 reference strains of 22 species and 20 Russian Ulocladium-like isolates was recovered. The partial actin gene (act), Alternaria major allergen (alta1), calmodulin (cal), glyceraldehyde-3-phosphate dehydrogenase (gapdh), RNA polymerase II second largest subunit (rpb2), and translation elongation factor 1-α (tef1) were sequenced for Russian isolates. All these fungi were examined using multilocus phylogenetic analysis according to the genealogical concordance phylogenetic species recognition (GCPSR) principle and the coalescent-based model Poisson tree processes (PTP, mPTP) and evaluated for the presence of recombination. All strains were combined into two clades that corresponded to the Pseudoulocladium and Ulocladioides sections. The Pseudoulocladium clade included four reference strains and nine local isolates and considered to be a single species, whereas the Ulocladioides section comprises 11 species, instead of 17 names previously adopted. Nine species were abolished by joining four other species. Species A. atra and A. multiformis were combined into the single species A. atra. Five species, A. brassicae-pekinensis, A. consortialis, A. cucurbitae, A. obovoidea, and A. terricola, were united in the species A. consortialis. Alternaria heterospora and A. subcucurbitae were combined into one species, A. subcucurbitae. Alternaria aspera, A. chartarum, A. concatenata, and A. septospora were combined into a single species, A. chartarum. Also, amplification with two different primer sets was performed to define mating-type locus 1 (MAT1) idiomorph. All studied isolates were heterothallic, contradicting some prior studies. Twenty Russian Ulocladium-like isolates were assigned to five species of two sections, A. atra, A. cantlous, A. chartarum, A. consortialis, and A. subcucurbitae. Species A. cantlous and A. subcucurbitae were found in Russia for the first time.
Collapse
Affiliation(s)
- Philipp B Gannibal
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, shosse Podbelskogo 3, Saint Petersburg 196608, Russia
| | - Maria M Gomzhina
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, shosse Podbelskogo 3, Saint Petersburg 196608, Russia
| |
Collapse
|
10
|
Podlech J. Natural resorcylic lactones derived from alternariol. Beilstein J Org Chem 2024; 20:2171-2207. [PMID: 39224229 PMCID: PMC11368053 DOI: 10.3762/bjoc.20.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In this overview, naturally occurring resorcylic lactones biosynthetically derived from alternariol and almost exclusively produced by fungi, are discussed with view on their isolation, structure, biological activities, biosynthesis, and total syntheses. This class of compounds consists until now of 127 naturally occurring compounds, with very divers structural motifs. Although only a handful of these toxins (i.e., alternariol and its 9-O-methyl ether, altenusin, dehydroaltenusin, altertenuol, and altenuene) were frequently found and isolated as fungal contaminants in food and feed and have been investigated in significant detail, further metabolites, which were much more rarely found as natural products, similarly show interesting biological activities.
Collapse
Affiliation(s)
- Joachim Podlech
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Landeta C, Medina-Ortiz D, Escobar N, Valdez I, González-Troncoso MP, Álvares-Saravia D, Aldridge J, Gómez C, Lienqueo ME. Integrative workflows for the characterization of hydrophobin and cerato-platanin in the marine fungus Paradendryphiella salina. Arch Microbiol 2024; 206:385. [PMID: 39177836 DOI: 10.1007/s00203-024-04087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
Hydrophobins (HFBs) and cerato-platanins (CPs) are surface-active extracellular proteins produced by filamentous fungi. This study identified two HFB genes (pshyd1 and pshyd2) and one CP gene (pscp) in the marine fungus Paradendryphiella salina. The proteins PsCP, PsHYD2, and PsHYD1 had molecular weights of 12.70, 6.62, and 5.98 kDa, respectively, with isoelectric points below 7. PsHYD1 and PsHYD2 showed hydrophobicity (GRAVY score 0.462), while PsCP was hydrophilic (GRAVY score - 0.202). Stability indices indicated in-solution stability. Mass spectrometry identified 2,922 proteins, including CP but not HFB proteins. qPCR revealed differential gene expression influenced by developmental stage and substrate, with pshyd1 consistently expressed. These findings suggest P. salina's adaptation to marine ecosystems with fewer hydrophobin genes than other fungi but capable of producing surface-active proteins from seaweed carbohydrates. These proteins have potential applications in medical biocoatings, food industry foam stabilizers, and environmental bioremediation.
Collapse
Affiliation(s)
- Catalina Landeta
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - David Medina-Ortiz
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Natalia Escobar
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Iván Valdez
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - María Paz González-Troncoso
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - Diego Álvares-Saravia
- Teaching and Research Assistance Center, CADI, University of Magallanes, Av. los Flamencos, Punta Arenas, 01364, Chile
| | - Jacqueline Aldridge
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Carlos Gómez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Chile
| | - María Elena Lienqueo
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile.
| |
Collapse
|
12
|
Solano-Báez AR, Trejo-Tapia G, Kolařík M, Ortiz-Álvarez J, Trejo-Espino JL, Márquez-Licona G. Etiology of Foliar Blight of Indian Paintbrush ( Castilleja tenuiflora) in Mexico. Microorganisms 2024; 12:1714. [PMID: 39203556 PMCID: PMC11357565 DOI: 10.3390/microorganisms12081714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Castilleja tenuiflora is a native perennial plant used in traditional Mexican medicine. In June 2022, leaf blight symptoms were observed in a wild population of C. tenuiflora plants. Disease incidence was 80% and disease intensity reached up to 5% of the leaf area. Currently, there are no reports of pathogens causing leaf blight in this plant; therefore, this work aimed to identify the fungi responsible for the disease. The fungi recovered from the diseased tissue were characterized by means of pathogenicity tests and cultural, morphological, and molecular characterization. The information obtained revealed that Alternaria alternata and Alternaria gossypina are the pathogens responsible for the disease. This is the first report implicating species of Alternaria in causing leaf blight of C. tenuiflora in Mexico, as well as the first report of Alternaria gossypina also in Mexico. These pathogens may threaten the in situ conservation of native C. tenuiflora populations and limit their in vitro propagation. Future research lines should focus on determining the effect of these pathogens on metabolite production.
Collapse
Affiliation(s)
- Alma Rosa Solano-Báez
- Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos, Yautepec 62731, Morelos, Mexico; (A.R.S.-B.); (G.T.-T.); (J.L.T.-E.)
| | - Gabriela Trejo-Tapia
- Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos, Yautepec 62731, Morelos, Mexico; (A.R.S.-B.); (G.T.-T.); (J.L.T.-E.)
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic;
| | - Jossue Ortiz-Álvarez
- Research Program: “Investigadoras e Investigadores por México” Consejo Nacional de Humanidades, Ciencias, Tecnologías e Innovación (CONAHCyT), Ciudad de México 03940, Mexico;
| | - José Luis Trejo-Espino
- Instituto Politécnico Nacional, Centro de Desarrollo de Productos Bióticos, Yautepec 62731, Morelos, Mexico; (A.R.S.-B.); (G.T.-T.); (J.L.T.-E.)
| | | |
Collapse
|
13
|
Yan S, Yu P, Liang G, Zhang D, Timko MP, Guo Q, Wu D. Three Alternaria Species, Including a New Species, Causing Leaf Spot Disease of Loquat ( Eriobotrya japonica) in China. PLANT DISEASE 2024; 108:2354-2366. [PMID: 38301220 DOI: 10.1094/pdis-07-23-1368-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Loquat (Eriobotrya japonica) is an economically important subtropical fruit crop in China. Field surveys conducted in different loquat orchards located in Chongqing, Sichuan, and Fujian provinces between 2017 and 2020 resulted in a collection of 56 Alternaria-like isolates from trees exhibiting symptoms of loquat leaf spot. Multigene phylogenetic analyses using seven gene regions, namely, ITS, gapdh, RPB2, tef1, Alt a 1, endoPG, and OPA10-2, showed that all the isolates belonged to the genus Alternaria, and supporting morphological analysis identified them as members of species A. alternata, A. gaisen, and A. chongqingensis sp. nov. In vitro and in vivo pathogenicity tests showed all the identified species to be pathogenic and able to cause leaf spot disease on loquat. Moreover, comprehensive phylogenetic analyses employing all combinations of the above seven gene sequences revealed the capability of Alt a 1-tef1-endoPG to provide a well-resolved gene tree for Alternaria spp. at the species level. This study adds to the current knowledge on an unknown species (A. chongqingensis sp. nov.) and is the first report of A. gaisen in loquat worldwide.
Collapse
Affiliation(s)
- Shuang Yan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Institute of Fruit Science, Guizhou Academy of Agricultural Science, Guiyang, Guizhou 550006, China
| | - Peng Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Danhua Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, U.S.A
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, U.S.A
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Di Wu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Aung SLL, Liu FY, Gou YN, Nwe ZM, Yu ZH, Deng JX. Morphological and phylogenetic analyses reveal two new Alternaria species (Pleosporales, Pleosporaceae) in Alternaria section from Cucurbitaceae plants in China. MycoKeys 2024; 107:125-139. [PMID: 39081831 PMCID: PMC11287080 DOI: 10.3897/mycokeys.107.124814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Alternaria species are commonly found as saprophytes, endophytes and plant pathogens. During a survey of small-spored Alternaria in China, two new species were discovered from Cucurbitaceae plants collected in Hubei and Sichuan provinces. This study identified two new species of Alternaria using seven genes (ITS, GAPDH, TEF1, RPB2, Alt a 1, EndoPG, and OPA10-2) for phylogenetic analyses and morphological characteristics. The two new species A.jingzhouensis and A.momordicae were described and illustrated. Alternariajingzhouensis sp. nov., associated with Citrulluslanatus, is characterized by producing muriform, ellipsoidal, flask-shaped, rostrate, and beaked conidia. It differs from A.koreana, A.ovoidea, and A.baoshanensis by bearing conidia in a simple conidiogenous locus with occasionally longer beaks in a chain, and from A.momordicae sp. nov. by having shorter beaks. Alternariamomordicae sp. nov. from Momordicacharantia was distinct from A.koreana, A.ovoidea, and A.baoshanensis by producing muriform, long ellipsoid or ovoid to obclavate, sometimes inverted club-shaped conidia on a single conidiogenous locus with a wider body and longer beak in a chain, and distinct from A.jingzhouensis sp. nov. by a longer beak conidia. These two species were clearly distinguished from other species in the section Alternaria based on DNA based phylogeny and morphological characteristics. The morphological features were discussed and compared to relevant species in the present paper.
Collapse
Affiliation(s)
- Sein Lai Lai Aung
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Feng-Yin Liu
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Ya-Nan Gou
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Zin Mar Nwe
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Zhi-He Yu
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Jian-Xin Deng
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| |
Collapse
|
15
|
Gómez-Zapata PA, Díaz-Valderrama JR, Fatemi S, Ruiz-Castro CO, Aime MC. Characterization of the fungal genus Sphaerellopsis associated with rust fungi: species diversity, host-specificity, biogeography, and in-vitro mycoparasitic events of S. macroconidialis on the southern corn rust, Puccinia polysora. IMA Fungus 2024; 15:18. [PMID: 38961514 PMCID: PMC11223437 DOI: 10.1186/s43008-024-00145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Sphaerellopsis species are putative hyperparasites of rust fungi and may be promising biological control agents (BCA) of rust diseases. However, few detailed studies limit potential BCA development in Sphaerellopsis. Here, we explored the biogeography, host-specificity, and species diversity of Sphaerellopsis and examined the early infection stage of one species, S. macroconidialis, to infer its trophic status. We randomly screened 5,621 rust specimens spanning 99 genera at the Arthur Fungarium for the presence of Sphaerellopsis. We identified 199 rust specimens infected with Sphaerellopsis species on which we conducted morphological and multi-locus phylogenetic analyses. Five Sphaerellopsis species were recovered, infecting a total of 122 rust species in 18 genera from 34 countries. Sphaerellopsis melampsorinearum sp. nov. is described as a new species based on molecular phylogenetic data and morphological features of the sexual and asexual morphs. Sphaerellopsis paraphysata was the most commonly encountered species, found on 77 rust specimens, followed by Sphaerellopsis macroconidialis on 56 and S. melampsorinearum on 55 examined specimens. The type species, Sphaerellopsis filum, was found on 12 rust specimens and Sphaerellopsis hakeae on a single specimen. We also recovered and documented for the first time, the sexual morph of S. macroconidialis, from a specimen collected in Brazil. Our data indicate that Sphaerellopsis species are not host specific and furthermore that most species are cosmopolitan in distribution. However, S. paraphysata is more abundant in the tropics, and S. hakeae may be restricted to Australia. Finally, we confirm the mycoparasitic strategy of S. macroconidialis through in-vitro interaction tests with the urediniospores of Puccinia polysora. Shortly after germination, hyphae of S. macroconidialis began growing along the germ tubes of P. polysora and coiling around them. After 12 days of co-cultivation, turgor loss was evident in the germ tubes of P. polysora, and appressorium-like structures had formed on urediniospores. The interaction studies indicate that Sphaerellopsis species may be more effective as a BCA during the initial stages of rust establishment.
Collapse
Affiliation(s)
| | - Jorge Ronny Díaz-Valderrama
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Amazonas, Chachapoyas, Amazonas, Peru
| | - Samira Fatemi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | | | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
16
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
17
|
Chen H, Zhu R. Alternaria Allergy and Immunotherapy. Int Arch Allergy Immunol 2024; 185:964-974. [PMID: 38865977 DOI: 10.1159/000539237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Allergen immunotherapy (AIT) is the only known causative treatment for Alternaria allergy, but the difficulty in standardizing Alternaria extracts hampers its effectiveness and safety. SUMMARY Alternaria, a potent airborne allergen, has a high sensitization rate and is known to trigger the onset and exacerbation of respiratory allergies, even inducing fungal food allergy syndrome in some cases. It can trigger a type 2 inflammatory response, leading to an increase in the secretion of type 2 inflammatory cytokines and eosinophils, which are the culprits behind allergic symptoms. Diagnosing Alternaria allergy is a multistep process, involving a careful examination of clinical symptoms, medical history, skin prick tests, serum-specific IgE detection, or provocation tests. Alt a1, the major component of Alternaria, is a vital player in diagnosing Alternaria allergy through component-resolved diagnosis. Interestingly, Alternaria can reduce the protein activity of other allergens like pollen and cat dander when mixed with them. In order to solve the problems of standardization, efficacy and safety of traditional Alternaria AIT, novel AIT methods targeting Alt a1 and innovative vaccines such as epitope, DNA, and mRNA vaccines seem promising in bypassing the standardization issue of Alternaria extracts. But these studies are in early stages, and most researches are still focused on animal models, calling for more evidence to validate their use in humans. KEY MESSAGES This review delves into the various aspects of Alternaria allergy, including characteristics, epidemiology, immune mechanisms, diagnosis, clinical manifestations, and the application and limitations of Alternaria AIT, aiming to provide a foundation for the management of patients with Alternaria allergy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Nwe ZM, Htut KN, Aung SLL, Gou YN, Huang CX, Deng JX. Two novel species and a new host record of Alternaria (Pleosporales, Pleosporaceae) from sunflower (Compositae) in Myanmar. MycoKeys 2024; 105:337-354. [PMID: 38883863 PMCID: PMC11179095 DOI: 10.3897/mycokeys.105.123790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Sunflower (Helianthusannuus L.) is a widely cultivated, fast-growing crop known for its seeds and oil, with substantial ecological and economic importance globally. However, it faces challenges from leaf diseases caused by Alternaria species, which threaten its yield. Three small-spored Alternaria species were isolated from leaf spot and blight symptoms on sunflower in Myanmar. All the species were determined based on morphological characterization and a multi-locus phylogenetic assessment of seven genes, including the internal transcribed spacer of rDNA region (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase second largest subunit (RPB2), translation elongation factor 1-α (TEF1), Alternaria major allergen gene (Alt a 1), endopolygalacturonase gene (EndoPG), and an anonymous gene region (OPA10-2). The results introduced two new Alternaria species, A.myanmarensis sp. nov. and A.yamethinensis sp. nov., and a known species of A.burnsii, firstly reported from sunflower.
Collapse
Affiliation(s)
- Zin Mar Nwe
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Khin Nayyi Htut
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Yangtze University, Jingzhou 434025, China
| | - Sein Lai Lai Aung
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ya-Nan Gou
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Cheng-Xin Huang
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jian-Xin Deng
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
19
|
Yang G, Cui S, Huang W, Wang S, Ma J, Zhang Y, Xu J. Greenhouses represent an important evolutionary niche for Alternaria alternata. Microbiol Spectr 2024; 12:e0039024. [PMID: 38727239 PMCID: PMC11237460 DOI: 10.1128/spectrum.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/03/2024] [Indexed: 06/06/2024] Open
Abstract
Alternaria alternata is a ubiquitous soil-borne fungus capable of causing diseases in a variety of plants and occasionally in humans. While populations of A. alternata from infected plants have received significant attention, relatively little is known about its soil populations, including its population genetic structure and antifungal susceptibilities. In addition, over the last two decades, greenhouses have become increasingly important for food and ornamental plant production throughout the world, but how greenhouses might impact microbial pathogens such as A. alternata populations remains largely unknown. Different from open crop fields, greenhouses are often more intensively cultivated, with each greenhouse being a relatively small and isolated space where temperature and humidity are higher than surrounding environments. Previous studies have shown that greenhouse populations of two common molds, Aspergillus fumigatus and A. alternata, within a small community in southwestern China were variably differentiated. However, the relative contribution of physical separation among local greenhouses to the large-scale population structure remains unknown. Here, we isolated strains of A. alternata from seven greenhouses in Shijiazhuang, northeast China. Their genetic diversity and triazole susceptibilities were analyzed and compared with each other and with 242 isolates from nine greenhouses in Kunming, southwest China. Results showed that the isolation of greenhouses located <1 km from each other locally contributed similarly to the overall genetic variation as that between the two distant geographic regions. In addition, our results indicate that greenhouses could be significant sources of triazole resistance, with greenhouses often differing in their frequencies of resistant strains to different triazoles. IMPORTANCE Greenhouses have become increasingly important for food production and food security. However, our understanding of how greenhouses may contribute to genetic variations in soil microbial populations is very limited. In this study, we obtained and analyzed soil populations of the cosmopolitan fungal pathogen Alternaria alternata in seven greenhouses in Shijiazhuang, northeast China. Our analyses revealed high proportions of isolates being resistant to agricultural triazole fungicides and medical triazole drugs, including cross-resistance to both groups of triazoles. In addition, we found that greenhouse populations of A. alternata located within a few kilometers showed similar levels of genetic differentiation as those separated by over 2,000 km between northeast and southwest China. Our study suggests that greenhouse populations of this and potentially other fungal pathogens represent an important ecological niche and an emerging threat to food security and human health.
Collapse
Affiliation(s)
- Guangzhu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
- College of Life Science, Yunnan University, Kunming, Yunnan, China
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Sai Cui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
- College of Life Science, Yunnan University, Kunming, Yunnan, China
| | - Wenjing Huang
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shutong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Jun Ma
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Rodríguez-Sanz A, Fuciños C, Soares C, Torrado AM, Lima N, Rúa ML. A comprehensive method for the sequential separation of extracellular xylanases and β-xylosidases/arabinofuranosidases from a new Fusarium species. Int J Biol Macromol 2024; 272:132722. [PMID: 38821304 DOI: 10.1016/j.ijbiomac.2024.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Several fungal species produce diverse carbohydrate-active enzymes useful for the xylooligosaccharide biorefinery. These enzymes can be isolated by different purification methods, but fungi usually produce other several compounds which interfere in the purification process. So, the present work has three interconnected aims: (i) compare β-xylosidase production by Fusarium pernambucanum MUM 18.62 with other crop pathogens; (ii) optimise F. pernambucanum xylanolytic enzymes expression focusing on the pre-inoculum media composition; and (iii) design a downstream strategy to eliminate interfering substances and sequentially isolate β-xylosidases, arabinofuranosidases and endo-xylanases from the extracellular media. F. pernambucanum showed the highest β-xylosidase activity among all the evaluated species. It also produced endo-xylanase and arabinofuranosidase. The growth and β-xylosidase expression were not influenced by the pre-inoculum source, contrary to endo-xylanase activity, which was higher with xylan-enriched agar. Using a sequential strategy involving ammonium sulfate precipitation of the extracellular interferences, and several chromatographic steps of the supernatant (hydrophobic chromatography, size exclusion chromatography, and anion exchange chromatography), we were able to isolate different enzyme pools: four partially purified β-xylosidase/arabinofuranoside; FpXylEAB trifunctional GH10 endo-xylanase/β-xylosidase/arabinofuranoside enzyme (39.8 kDa) and FpXynE GH11 endo-xylanase with molecular mass (18.0 kDa). FpXylEAB and FpXynE enzymes were highly active at pH 5-6 and 60-50 °C.
Collapse
Affiliation(s)
- Andrea Rodríguez-Sanz
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Clara Fuciños
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Célia Soares
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana M Torrado
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Nelson Lima
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - María L Rúa
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain.
| |
Collapse
|
21
|
Chauhan P, Gupta AK, Sharma JN, Sharma M. Characterization of Alternaria blotch disease of apple in Himachal Pradesh, India: insights on morphology, pathogenicity, and molecular features. Mol Biol Rep 2024; 51:687. [PMID: 38796652 DOI: 10.1007/s11033-024-09625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Alternaria blotch disease in Himachal Pradesh, India, caused by Alternaria spp., adversely affects apple cultivars, resulting in reduced fruit size and quality accompanied by premature leaf fall. METHODS AND RESULTS Sixteen Alternaria isolates from apple growing regions underwent comprehensive analysis including morphology, pathogenicity, and molecular characterization. Variations in conidiophore and conidia dimensions, shapes, and divisions were observed among isolates. Pathogenicity assays revealed differences in incubation periods, latent phases, and disease responses. Molecular characterization via nuclear ITS rDNA and RAPD analysis indicated 99-100% homology with Alternaria alternata, Alternaria mali, and other Alternaria spp., with a close phylogenetic relationship to Chinese isolates. Differentiation of isolates based on origin, cultural characteristics, and morphology was achieved using RAPD markers. CONCLUSIONS The study identifies diverse genotypes and morphotypes of Alternaria contributing to apple blotch disease in Himachal Pradesh. These findings highlight the complexity of the pathogenic environment and hold significant implications for disease management in apple orchards.
Collapse
Affiliation(s)
- Praneet Chauhan
- Department of Plant Pathology, Dr Khem Singh Gill Akal College of Agriculture, Eternal University, BaruSahib, Sirmour, Himachal Pradesh, India.
- Department of Plant Pathology, College of Horticulture, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India.
| | - Arvind Kumar Gupta
- Department of Plant Pathology, College of Horticulture, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Jagan Nath Sharma
- Department of Plant Pathology, College of Horticulture, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Monica Sharma
- Department of Plant Pathology, College of Horticulture, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| |
Collapse
|
22
|
Djokić I, Knežević A, Savković Ž, Ljaljević Grbić M, Dimkić I, Bukvički D, Gavrilović D, Unković N. Characterization of Culturable Mycobiome of Newly Excavated Ancient Wooden Vessels from the Archeological Site of Viminacium, Serbia. J Fungi (Basel) 2024; 10:343. [PMID: 38786698 PMCID: PMC11122453 DOI: 10.3390/jof10050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Two ancient wooden vessels, specifically a monoxyle (1st century BCE to 1st century CE) and shipwreck (15th to 17th century CE), were excavated in a well-preserved state east of the confluence of the old Mlava and the Danube rivers (Serbia). The vessels were found in the ground that used to be river sediment and were temporarily stored within the semi-underground exhibition space of Mammoth Park. As part of the pre-conservation investigations, the primary aim of the research presented was to characterize the culturable mycobiomes of two excavated wooden artifacts so that appropriate conservation procedures for alleviating post-excavation fungal infestation could be formulated. Utilizing culture-based methods, a total of 32 fungi from 15 genera were identified, mainly Ascomycota and to a lesser extent Mucoromycota sensu stricto. Soft-rot Ascomycota of genus Penicillium, followed by Aspergillus and Cephalotrichum species, were the most diverse of the isolated fungi. Out of a total of 38 isolates, screened on 7 biodegradation plate assays, 32 (84.21%) demonstrated at least one degradative property. Penicillium solitum had the highest deterioration potential, with a positive reaction in 5 separate plate assays. The obtained results further broaden the limited knowledge on the peculiarities of post-excavation soft-rot decay of archaeological wood and indicate the biochemical mechanisms at the root of post-excavation fungal deterioration.
Collapse
Affiliation(s)
- Ivana Djokić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Aleksandar Knežević
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Željko Savković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Milica Ljaljević Grbić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | - Danka Bukvički
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| | | | - Nikola Unković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (I.D.); (A.K.); (Ž.S.); (M.L.G.); (I.D.); (N.U.)
| |
Collapse
|
23
|
Tuluhong M, Mu M, Wang S, Li Y, Cui G. Identification and Characterization of Colletotrichum truncatum and C. destructivum Causing Stem Rot of White Clover in China. PLANT DISEASE 2024; 108:1236-1245. [PMID: 38085967 DOI: 10.1094/pdis-05-23-0956-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
White clover (Trifolium repens L.) is an excellent quality forage legume species with superior planting efficiency, which reduces the cost of artificial weeding and nitrogen fertilizer inputs, and has feeding and economic value. However, from June to September 2022, severe stem rot affected the yield and quality of white clover crops in Harbin, Heilongjiang Province, China. The aim of this study was to identify the causative agents of the disease. Overall, Colletotrichum truncatum (6 isolates) and C. destructivum (10 isolates) were obtained from rotten white clover stems and identified based on morpho-molecular characteristics and phylogenetic analyses. Pathogenicity tests of the isolates revealed that C. destructivum had a higher pathogenicity to white clover than C. truncatum. In addition, all isolates were highly pathogenic to broad bean, fodder soybean, soybean, pak choi, and chickpea, were pathogenic to mint, and did not infect corn, wheat, or cilantro. C. destructivum and C. truncatum isolates were very sensitive to tebuconazole and pyraclostrobin, with EC50 values of 0.54 to 0.70 μg/ml and 0.42 to 0.62 μg/ml, respectively, efficacies ranging between 93.2 to 94.9% and 90.2 to 95.2% at 600 μg/ml and 450 μg/ml, respectively, and EC90 values of 1.88 to 13.36 μg/ml and 1.32 to 23.39 μg/ml, respectively. Therefore, intercropping of host and nonhost plants and chemicals can be considered to control stem rot in white clover. These results provide a basis for controlling C. destructivum and C. truncatum in white clover in China.
Collapse
Affiliation(s)
- Muzhapaer Tuluhong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang Province 150036, China
| | - Meiqi Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang Province 150036, China
| | - Shuni Wang
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Yonggang Li
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang Province 150036, China
| |
Collapse
|
24
|
Bashiri S, Abdollahzadeh J. Taxonomy and pathogenicity of fungi associated with oak decline in northern and central Zagros forests of Iran with emphasis on coelomycetous species. FRONTIERS IN PLANT SCIENCE 2024; 15:1377441. [PMID: 38708399 PMCID: PMC11067508 DOI: 10.3389/fpls.2024.1377441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Oak decline is a complex disorder that seriously threatens the survival of Zagros forests. In an extensive study on taxonomy and pathology of fungi associated with oak decline in the central and northern part of Zagros forests, 462 fungal isolates were obtained from oak trees showing canker, gummosis, dieback, defoliation, and partial or total death symptoms. Based on inter-simple sequence repeat (ISSR) fingerprinting patterns, morphological characteristics, and sequences of ribosomal DNA (28S rDNA and ITS) and protein coding loci (acl1, act1, caM, tef-1α, rpb1, rpb2, and tub2), 24 fungal species corresponding to 19 genera were characterized. Forty percent of the isolates were placed in eight coelomycetous species from seven genera, namely, Alloeutypa, Botryosphaeria, Cytospora, Didymella, Gnomoniopsis, Kalmusia, and Neoscytalidium. Of these, four species are new to science, which are introduced here as taxonomic novelties: Alloeutypa iranensis sp. nov., Cytospora hedjaroudei sp. nov., Cytospora zagrosensis sp. nov., and Gnomoniopsis quercicola sp. nov. According to pathogenicity trials on leaves and stems of 2-year-old Persian oak (Quercus brantii) seedlings, Alternaria spp. (A. alternata, A. atra, and A. contlous), Chaetomium globosum, and Parachaetomium perlucidum were recognized as nonpathogenic. All coelomycetous species were determined as pathogenic in both pathogenicity trials on leaves and seedling stems, of which Gnomoniopsis quercicola sp. nov., Botryosphaeria dothidea, and Neoscytalidium dimidiatum were recognized as the most virulent species followed by Biscogniauxia rosacearum.
Collapse
Affiliation(s)
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
25
|
Phookamsak R, Hongsanan S, Bhat DJ, Wanasinghe DN, Promputtha I, Suwannarach N, Kumla J, Xie N, Dawoud TM, Mortimer PE, Xu J, Lumyong S. Exploring ascomycete diversity in Yunnan II: Introducing three novel species in the suborder Massarineae (Dothideomycetes, Pleosporales) from fern and grasses. MycoKeys 2024; 104:9-50. [PMID: 38665970 PMCID: PMC11040200 DOI: 10.3897/mycokeys.104.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 04/28/2024] Open
Abstract
This article presents the results of an ongoing inventory of Ascomycota in Yunnan, China, carried out as part of the research project series "Exploring ascomycete diversity in Yunnan". From over 100 samples collected from diverse host substrates, microfungi have been isolated, identified and are currently being documented. The primary objective of this research is to promote the discovery of novel taxa and explore the ascomycete diversity in the region, utilising a morphology-phylogeny approach. This article represents the second series of species descriptions for the project and introduces three undocumented species found in the families Bambusicolaceae, Dictyosporiaceae and Periconiaceae, belonging to the suborder Massarineae (Pleosporales, Dothideomycetes). These novel taxa exhibit typical morphological characteristics of Bambusicola, Periconia and Trichobotrys, leading to their designation as Bambusicolahongheensis, Periconiakunmingensis and Trichobotryssinensis. Comprehensive multigene phylogenetic analyses were conducted to validate the novelty of these species. The results revealed well-defined clades that are clearly distinct from other related species, providing robust support for their placement within their respective families. Notably, this study unveils the phylogenetic affinity of Trichobotrys within Dictyosporiaceae for the first time. Additionally, the synanamorphism for the genus Trichobotrys is also reported for the first time. Detailed descriptions, illustrations and updated phylogenies of the novel species are provided, and thus presenting a valuable resource for researchers and mycologists interested in the diversity of ascomycetes in Yunnan. By enhancing our understanding of the Ascomycota diversity in this region, this research contributes to the broader field of fungal taxonomy and their phylogenetic understanding.
Collapse
Affiliation(s)
- Rungtiwa Phookamsak
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
| | - Sinang Hongsanan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Darbhe Jayarama Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Ashoke, Gokarna 581326, India
| | - Dhanushka N. Wanasinghe
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan Province, China
- Center for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Itthayakorn Promputtha
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Peter E. Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan Province, China
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Li E, Liu J, Zhang S, Xu B. Identification the Pathogen Cause a New Apple Leaf Blight in China and Determination the Controlling Efficacy for Five Botanical Fungicides. J Fungi (Basel) 2024; 10:255. [PMID: 38667926 PMCID: PMC11051572 DOI: 10.3390/jof10040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Alternaria leaf blight has recently been described as an emerging fungal disease of apple trees which is causing the significant damage in the apple-growing areas of Tianshui and Jingning, Gansu, China. In the present study, the pathogen species involved in apple leaf blight and its biological characteristics were identified, and the inhibitory activity of different botanical fungicides against the pathogen was evaluated in vitro. Four strains were isolated from the symptomatic areas of necrotic apple leaves, and initially healthy leaves showed similar symptoms to those observed in orchards after inoculation with the ABL2 isolate. The ABL2 isolate was identified as Alternaria tenuissima based on the morphological characteristics of its colonies, conidiophores, and conidia, and this was also confirmed by multi-gene sequence (ITS, OPA10-2, Alta-1, and endoPG) analysis and phylogenic analysis. The optimum temperature, pH, carbon source, and nitrogen source for the growth of A. tenuissima mycelia were 28 °C, 6-7, soluble starch, and soy flour, respectively. In addition, the botanical fungicide eugenol exhibited the highest inhibitory effect on the mycelial growth and conidia germination of A. tenuissima, and the median effective concentration (EC50) values were 0.826 and 0.755 μg/mL, respectively. The protective and curative efficacy of eugenol were 86.85% and 76.94% after inoculation in detached apple leaves at a concentration of 4 μg/mL. Our research provides new insights into the control of apple leaf blight disease by applying botanical fungicides.
Collapse
Affiliation(s)
- Enchen Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (J.L.)
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
| | - Jia Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (J.L.)
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
| | - Shuwu Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (J.L.)
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (J.L.)
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
27
|
Rodríguez-Fernández A, Aloisi I, Blanco-Alegre C, Vega-Maray AM, Valencia-Barrera RM, Suanno C, Calvo AI, Fraile R, Fernández-González D. Identifying key environmental factors to model Alt a 1 airborne allergen presence and variation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170597. [PMID: 38307265 DOI: 10.1016/j.scitotenv.2024.170597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Fungal spores, commonly found in the atmosphere, can trigger important respiratory disorders. The glycoprotein Alt a 1 is the major allergen present in conidia of the genus Alternaria and has a high clinical relevance for people sensitized to fungi. Exposure to this allergen has been traditionally assessed by aerobiological spore counts, although this does not always offer an accurate estimate of airborne allergen load. This study aims to pinpoint the key factors that explain the presence and variation of Alt a 1 concentration in the atmosphere in order to establish exposure risk periods and improve forecasting models. Alternaria spores were sampled using a Hirst-type volumetric sampler over a five-year period. The allergenic fraction from the bioaerosol was collected using a low-volume cyclone sampler and Alt a 1 quantified by Enzyme-Linked ImmunoSorbent Assay. A cluster analysis was executed in order to group days with similar environmental features and then analyze days with the presence of the allergen in each of them. Subsequently, a quadratic discriminant analysis was performed to evaluate if the selected variables can predict days with high Alt a 1 load. The results indicate that higher temperatures and absolute humidity favor the presence of Alt a 1 in the atmosphere, while time of precipitation is related to days without allergen. Moreover, using the selected parameters, the quadratic discriminant analysis to predict days with allergen showed an accuracy rate between 67 % and 85 %. The mismatch between daily airborne concentration of Alternaria spores and allergen load can be explained by the greater contribution of medium-to-long distance transport of the allergen from the major emission sources as compared with spores. Results highlight the importance of conducting aeroallergen quantification studies together with spore counts to improve the forecasting models of allergy risk, especially for fungal spores.
Collapse
Affiliation(s)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Ana María Vega-Maray
- Department of Biodiversity and Environmental Management (Botany), University of León, León, Spain
| | | | - Chiara Suanno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | | | - Delia Fernández-González
- Department of Biodiversity and Environmental Management (Botany), University of León, León, Spain; Institute of Atmospheric Sciences and Climate-CNR, Bologna, Italy
| |
Collapse
|
28
|
Alijani Mamaghani N, Masiello M, Somma S, Moretti A, Saremi H, Haidukowski M, Altomare C. Endophytic Alternaria and Fusarium species associated to potato plants ( Solanum tuberosum L.) in Iran and their capability to produce regulated and emerging mycotoxins. Heliyon 2024; 10:e26385. [PMID: 38434378 PMCID: PMC10907534 DOI: 10.1016/j.heliyon.2024.e26385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Endophytic fungi live inside virtually every plant species, without causing any apparent disease or damage to the host. Nevertheless, under particular conditions, mutualistic lifestyle of endophytes may change to pathogenic. In this study, the biodiversity of Alternaria and Fusarium species, the two most abundant endophytic fungi isolated from healthy potato plants in two climatically different regions of Iran, Ardebil in the north-west and Kerman in the south-east, was investigated. Seventy-five Fusarium strains and 83 Alternaria strains were molecularly characterized by multi-locus gene sequencing. Alternaria strains were characterized by the sequences of gpd and caM gene fragments and the phylogenetic tree was resolved in 3 well-separated clades. Seventy-three strains were included in the clade A, referred as Alternaria section, 6 strains were included in clade B, referred as Ulocladioides section, and 4 strains were included in clade C, referred as Infectoriae section. Fusarium strains, identified by sequencing the translation elongation factor 1α (tef1), β-tubulin (tub2) and internal transcribed spacer (ITS) genomic regions, were assigned to 13 species, viz. F. brachygibosum, F. clavum, F. equiseti, F. flocciferum, F. incarnatum, F. nirenbergiae, F. nygamai, F. oxysporum, F. proliferatum, F. redolens, F. sambucinum, F. solani and F. thapsinum. Twenty-six selected strains, representative of F. equiseti, F. nirenbergiae, F. oxysporum, F. nygamai, F. proliferatum, and F. sambucinum, were also tested for production of the mycotoxins deoxynivalenol (DON), nivalenol (NIV), diacetoxyscirpenol (DAS), T-2 toxin (T-2), beauvericin (BEA), enniatins (ENNs), fumonisins (FBs), fusaric acid (FA) and moniliformin (MON). None of the tested strains produced trichothecene toxins (DON, NIV, DAS and T-2). Two out of 2 F. equiseti isolates, 1/6 F. oxysporum, 1/3 F. proliferatum, and 1/9 F. nygamai did not produce any of the tested toxins; the rest of strains produced one or more BEA, ENNs, FBs, FA and MON toxins. The most toxigenic strain, F. nygamai ITEM-19012, produced the highest quantities of FBs (7946, 4693 and 4333 μg/g of B1, B2, and B3 respectively), along with the highest quantities of both BEA (4190 μg/g) and MON (538 μg/g). These findings suggest that contamination of potato tubers with mycotoxins in the field or at post-harvest, due to a change in lifestyle of endophytic microflora, should be carefully considered and furtherly investigated.
Collapse
Affiliation(s)
- Nasim Alijani Mamaghani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Mario Masiello
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Stefania Somma
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Hossein Saremi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| |
Collapse
|
29
|
Schmey T, Tominello‐Ramirez CS, Brune C, Stam R. Alternaria diseases on potato and tomato. MOLECULAR PLANT PATHOLOGY 2024; 25:e13435. [PMID: 38476108 PMCID: PMC10933620 DOI: 10.1111/mpp.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Alternaria spp. cause different diseases in potato and tomato crops. Early blight caused by Alternaria solani and brown spot caused by Alternaria alternata are most common, but the disease complex is far more diverse. We first provide an overview of the Alternaria species infecting the two host plants to alleviate some of the confusion that arises from the taxonomic rearrangements in this fungal genus. Highlighting the diversity of Alternaria fungi on both solanaceous hosts, we review studies investigating the genetic diversity and genomes, before we present recent advances from studies elucidating host-pathogen interactions and fungicide resistances. TAXONOMY Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Pleosporales, Family Pleosporaceae, Genus Alternaria. BIOLOGY AND HOST RANGE Alternaria spp. adopt diverse lifestyles. We specifically review Alternaria spp. that cause disease in the two solanaceous crops potato (Solanum tuberosum) and tomato (Solanum lycopersicum). They are necrotrophic pathogens with no known sexual stage, despite some signatures of recombination. DISEASE SYMPTOMS Symptoms of the early blight/brown spot disease complex include foliar lesions that first present as brown spots, depending on the species with characteristic concentric rings, which eventually lead to severe defoliation and considerable yield loss. CONTROL Good field hygiene can keep the disease pressure low. Some potato and tomato cultivars show differences in susceptibility, but there are no fully resistant varieties known. Therefore, the main control mechanism is treatment with fungicides.
Collapse
Affiliation(s)
- Tamara Schmey
- TUM School of Life Science WeihenstephanTechnical University of MunichFreisingGermany
| | | | - Carolin Brune
- TUM School of Life Science WeihenstephanTechnical University of MunichFreisingGermany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityKielGermany
| |
Collapse
|
30
|
Kumar R, Singh A, Shukla E, Singh P, Khan A, Singh NK, Srivastava A. Siderophore of plant growth promoting rhizobacterium origin reduces reactive oxygen species mediated injury in Solanum spp. caused by fungal pathogens. J Appl Microbiol 2024; 135:lxae036. [PMID: 38341275 DOI: 10.1093/jambio/lxae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
AIMS The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Ekta Shukla
- Department of Botany, Sunbeam College for Women, U.P., Bhagwanpur, Varanasi 221005, India
| | - Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Naveen Kumar Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| |
Collapse
|
31
|
Xu R, Su W, Wang Y, Tian S, Li Y, Phukhamsakda C. Morphological characteristics and phylogenetic evidence reveal two new species and the first report of Comoclathris (Pleosporaceae, Pleosporales) on dicotyledonous plants from China. MycoKeys 2024; 101:95-112. [PMID: 38250088 PMCID: PMC10799302 DOI: 10.3897/mycokeys.101.113040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Two novel Comoclathris species were identified from dicotyledonous plants (Clematis sp. and Xanthocerassorbifolium) in China. The results were supported by morphological characters and Maximum Likelihood (ML) and Bayesian Inference (BI) analyses. Multi-gene phylogenetic analyses of the ITS, LSU, SSU and rpb2 sequences revealed two new species Comoclathrisclematidis and C.xanthoceratis, which are phylogenetically distinct. The new species are phylogenetically closely related to C.arrhenatheri. However, they are distinguishable from C.arrhenatheri by having comparatively larger asci and ascospores. This study improves our knowledge of Comoclathris as no species has been previously described from China. This suggests such taxa may be rare and it is likely that new taxa will be discovered from hosts and environments that have not yet been extensively investigated.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, ChinaJilin Agricultural UniversityChangchunChina
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
| | - Yang Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, ChinaShenyang Agricultural UniversityShenyangChina
| | - Shangqing Tian
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
| | - Yu Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, ChinaJilin Agricultural UniversityChangchunChina
| | - Chayanard Phukhamsakda
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandMae Fah Luang UniversityChiang RaiThailand
| |
Collapse
|
32
|
He J, Li DW, Cui WL, Huang L. Seven new species of Alternaria (Pleosporales, Pleosporaceae) associated with Chinese fir, based on morphological and molecular evidence. MycoKeys 2024; 101:1-44. [PMID: 38222042 PMCID: PMC10787357 DOI: 10.3897/mycokeys.101.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024] Open
Abstract
Chinese fir (Cunninghamialanceolata) is a special fast-growing commercial tree species in China and has significant ecological and economic value. However, it experienced damage from leaf blight caused by pathogenic fungi of the genus Alternaria. To determine the diversity of Alternaria species associated with leaf blight of Chinese fir in China, infected leaves were collected from five major cultivation provinces (Fujian, Henan, Hunan, Jiangsu and Shandong provinces). A total of 48 fungal strains of Alternaria were obtained. Comparison of morphology and phylogenetic analyses, based on nine loci (ITS, SSU, LSU, GAPDH, RPB2, TEF1, Alt a1, endoPG and OPA10-2) of the representative isolates as well as the pairwise homoplasy index tests, revealed that the fungal strains belonged to seven undescribed taxa of Alternaria, which are described here and named as Alternariacunninghamiicolasp. nov., A.dongshanqiaoensissp. nov., A.hunanensissp. nov., A.kunyuensissp. nov., А. longqiaoensissp. nov., A.shandongensissp. nov. and A.xinyangensissp. nov. In order to prove Koch's postulates, pathogenicity tests on detached Chinese fir leaves revealed significant pathogenicity amongst these species, of which A.hunanensis is the most pathogenic to Chinese fir. This study represents the first report of A.cunninghamiicola, A.dongshanqiaoensis, A.hunanensis, A.kunyuensis, A.longqiaoensis, A.shandongensis and A.xinyangensis causing leaf blight on Chinese fir. Knowledge obtained in this study enhanced our understanding of Alternaria species causing leaf blight on Chinese fir and was crucial for the disease management and the further studies in the future.
Collapse
Affiliation(s)
- Jiao He
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USAThe Connecticut Agricultural Experiment Station Valley LaboratoryWindsorUnited States of America
| | - Wen-Li Cui
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
33
|
Almiman B. Glimpse into phytopathogenic fungal species in Al Baha Province, Saudi Arabia; identification from molecular and morphological characteristics. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2164458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Bandar Almiman
- Department of Biology, Faculty of Science, Al Baha University, Alaqiq, Al Baha, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Agrawal S, Khumlianlal J, Devi SI. Uncovering the Fungal Diversity and Biodeterioration Phenomenon on Archaeological Carvings of the Badami Cave Temples: A Microcosm Study. Life (Basel) 2023; 14:28. [PMID: 38255644 PMCID: PMC10820822 DOI: 10.3390/life14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The Badami Caves are a significant example of ancient Indian rock-cut architecture, dating back to the 6th century. These caves are situated in the Malaprabha River valley and are part of the candidate UNESCO World Heritage Site known as the "Evolution of Temple Architecture-Aihole-Badami-Pattadakal", which is considered to be the cradle of temple architecture in India. Our study aimed to investigate the diversity, distribution, and biodeterioration phenomena of the fungal communities present on the cave surfaces. The study also conducted a comprehensive analysis of fungal biodeterioration on the cave carvings. Utilizing specialized techniques, the dissolution of calcite, alterations in pH levels, and biomineralization capabilities of isolated fungal strains were monitored. Additionally, this study analyzed fungal acid production using high-performance liquid chromatography (HPLC). Our findings revealed that the major genera of fungi found on the cave surfaces included Acremonium, Curvularia, Cladosporium, Penicillium, and Aspergillus. These isolated fungi were observed to produce acids, leading to the dissolution of calcium carbonate and subsequent decrease in pH values. Notably, the dominant genus responsible for acid production and the promotion of biomineralization was Aspergillus. These discoveries provide valuable insight into the ecology and functions of fungi inhabiting stone surfaces, contributing to our understanding of how to preserve and protect sculptures from biodeterioration.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Department of Phytochemistry, ICMR-National Institute of Traditional Medicine, Belagavi 590010, India
| | - Joshua Khumlianlal
- Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Imphal 795001, India
| | - Sarangthem Indira Devi
- Institute of Bioresources and Sustainable Development (Department of Biotechnology, Government of India), Imphal 795001, India
| |
Collapse
|
35
|
Castañares E, Dinolfo MI, Patriarca A, Stenglein SA. SRAP markers as an alternative tool for Alternaria classification. Food Microbiol 2023; 116:104370. [PMID: 37689421 DOI: 10.1016/j.fm.2023.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Alternaria is one of the main fungal contaminants of cereal grains worldwide with the potential to produce mycotoxins hazardous to human and animal health. Many studies have been carried out to characterize Alternaria sp.-grp. using traditional morphology or polyphasic approach, but a good correlation between morphological sp.-grp., molecular, and chemotaxonomic groups has not always been achieved. For this reason, this study aimed to investigate the usefulness of a cheaper alternative tool, SRAP markers, in identifying Alternaria sp.-grps. obtained from Argentinean barley grains and to compare it with preliminary characterization using morphological traits, phylogeny, and metabolite profiles. Fifty-three Alternaria isolates from barley grains of the main producing regions of Argentina were analyzed with four combinations of SRAP markers. The UPGMA dendrogram, based on the Simple Matching similarity coefficient, revealed three distinct groups. SRAP markers allowed the separation of Alternaria from Infectoriae sections in agreement with the results of a polyphasic approach previously made. Besides, isolates of A. arborescens sp.-grp. were clustered in a separate group from isolates of A. tenuissima and A. alternata sp.-grp., which were grouped in the same cluster. SRAP markers are a recommended tool for classifying Alternaria isolates because of its simplicity, reliability, and cost-effectiveness compared to other molecular markers.
Collapse
Affiliation(s)
- E Castañares
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul, 7300, Buenos Aires, Argentina.
| | - M I Dinolfo
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul, 7300, Buenos Aires, Argentina
| | - A Patriarca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Laboratorio de Microbiología de Alimentos, CONICET, Instituto de Micología y Botánica (INMIBO), Buenos Aires, Argentina; Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, College Road, Bedford, MK43 0AL, United Kingdom
| | - S A Stenglein
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul, 7300, Buenos Aires, Argentina
| |
Collapse
|
36
|
Li Z, Yu X, Zhang W, Han R, Zhang J, Ma Y, Guo L, Wang X, Zhao J, Xiang W. Identification, Characterization, and Pathogenicity of Fungi Associated with Strawberry Fruit Rot in Shandong Province, China. PLANT DISEASE 2023; 107:3773-3782. [PMID: 37408124 DOI: 10.1094/pdis-04-23-0696-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
China is the largest strawberry producer and exporter worldwide and has been constantly challenged by fruit rot diseases in recent years. Symptoms of various diseases on strawberry fruits were observed in Huangqiyuan Base, an important strawberry-producing region in Shandong Province, and symptomatic samples were collected from January to April 2021 for follow-up studies. In the present study, 137 isolates were obtained and classified into nine species based on morphological characteristics and multilocus phylogenetic analysis (ITS, GAPDH, HIS3, RPB2, EF-1α, HSP60, G3PDH, and/or TUB2), namely, Botrytis cinerea, B. fabiopsis, Alternaria alternata, A. tenuissima, Fusarium proliferatum, F. graminearum, F. ipomoeae, F. incarnatum, and Colletotrichum siamense. Pathogenicity results suggested that all nine pathogenic species could induce fruits to exhibit symptoms similar to those naturally infected in fields. The symptoms around the inoculation points varied, including dense white mycelia caused by Botrytis spp., fading and depression caused by Fusarium spp., black-brown rot caused by Alternaria spp., and shrinkage and dehydration caused by Colletotrichum spp. Overall, B. cinerea was the dominant pathogen, accounting for 61.3% of the total isolates, and showed significantly higher virulence against strawberry fruits than other species. In addition, this is the first report to identify B. fabiopsis, A. alternata, A. tenuissima, F. proliferatum, F. graminearum, F. ipomoeae, and F. incarnatum as causal agents of strawberry fruit rot in Shandong Province, China.
Collapse
Affiliation(s)
- Zhihua Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiaoyan Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Weiqian Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Rui Han
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jing Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yue Ma
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
37
|
Ghoneem KM, Al-Askar AA, El-Gamal SMA, Rashad EM, Elsherbiny EA, Ibrahim SD, Marey SA, Saber WIA. Lytic and Molecular Evidence of the Widespread Coriander Leaf Spot Disease Caused by Alternaria dauci. PLANTS (BASEL, SWITZERLAND) 2023; 12:3872. [PMID: 38005769 PMCID: PMC10674545 DOI: 10.3390/plants12223872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Coriandrum sativum L. is a globally significant economic herb with medicinal and aromatic properties. While coriander leaf blight disease was previously confined to India and the USA, this study presents new evidence of its outbreak in Africa and the Middle East caused by Alternaria dauci. Infected leaves display irregular chlorotic to dark brown necrotic lesions along their edges, resulting in leaf discoloration, collapse, and eventual death. The disease also impacts inflorescences and seeds, significantly reducing seed quality. Koch's postulates confirmed the pathogenicity of the fungus through the re-isolation of A. dauci from artificially infected leaves, and its morphology aligns with typical A. dauci features. Notably, this study identified strong lytic activity (cellulase: 23.76 U, xylanase: 12.83 U, pectinase: 51.84 U, amylase: 9.12 U, and proteinase: 5.73 U), suggesting a correlation with pathogenicity. Molecular characterization using ITS (ON171224) and the specific Alt-a-1 gene (OR236142) supports the fungal morphology. This research provides the first comprehensive documentation of the pathological, lytic, and molecular evidence of A. dauci leaf blight disease on coriander. Future investigations should prioritize the development of resistant coriander varieties and sustainable disease management strategies, including the use of advanced molecular techniques for swift and accurate disease diagnosis to protect coriander from the devastating impact of A. dauci.
Collapse
Affiliation(s)
- Khalid M. Ghoneem
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (K.M.G.); (E.M.R.)
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seham M. A. El-Gamal
- Department of Medicinal and Aromatic Plants Research, Horticulture Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Ehsan M. Rashad
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; (K.M.G.); (E.M.R.)
| | - Elsherbiny A. Elsherbiny
- Department of Biology, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU), 67663 Kaiserslautern, Germany
| | - Shafik D. Ibrahim
- Department of Genome Mapping, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | | | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
38
|
Molnár A, Knapp DG, Lovas M, Tóth G, Boldizsár I, Váczy KZ, Kovács GM. Untargeted metabolomic analyses support the main phylogenetic groups of the common plant-associated Alternaria fungi isolated from grapevine (Vitis vinifera). Sci Rep 2023; 13:19298. [PMID: 37935846 PMCID: PMC10630412 DOI: 10.1038/s41598-023-46020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Alternaria, a cosmopolitan fungal genus is a dominant member of the grapevine (Vitis vinifera) microbiome. Several Alternaria species are known to produce a variety of secondary metabolites, which are particularly relevant to plant protection and food safety in field crops. According to previous findings, the majority of Alternaria species inhabiting grapevine belong to Alternaria sect. Alternaria. However, the phylogenetic diversity and secondary metabolite production of the distinct Alternaria species has remained unclear. In this study, our aim was to examine the genetic and metabolic diversity of endophytic Alternaria isolates associated with the above-ground tissues of the grapevine. Altogether, 270 Alternaria isolates were collected from asymptomatic leaves and grape clusters of different grapevine varieties in the Eger wine region of Hungary. After analyses of the nuclear ribosomal DNA internal transcribed spacer (ITS) and RNA polymerase second largest subunit (rpb2) sequences, 170 isolates were chosen for further analyses. Sequences of the Alternaria major allergen gene (Alt a 1), endopolygalacturonase (endoPG), OPA10-2, and KOG1058 were also included in the phylogenetic analyses. Identification of secondary metabolites and metabolite profiling of the isolates were performed using high-performance liquid chromatography (HPLC)-high-resolution tandem mass spectrometry (HR-MS/MS). The multilocus phylogeny results revealed two distinct groups in grapevine, namely A. alternata and the A. arborescens species complex (AASC). Eight main metabolites were identified in all collected Alternaria isolates, regardless of their affiliation to the species and lineages. Multivariate analyses of untargeted metabolites found no clear separations; however, a partial least squares-discriminant analysis model was able to successfully discriminate between the metabolic datasets from isolates belonging to the AASC and A. alternata. By conducting univariate analysis based on the discriminant ability of the metabolites, we also identified several features exhibiting large and significant variation between A. alternata and the AASC. The separation of these groups may suggest functional differences, which may also play a role in the functioning of the plant microbiome.
Collapse
Affiliation(s)
- Anna Molnár
- Centre for Research and Development, Eszterházy Károly Catholic University, Leányka utca 6, Eger, 3300, Hungary.
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| | - Dániel G Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Miklós Lovas
- Centre for Research and Development, Eszterházy Károly Catholic University, Leányka utca 6, Eger, 3300, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Gergő Tóth
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, Budapest, 1092, Hungary
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Kálmán Zoltán Váczy
- Centre for Research and Development, Eszterházy Károly Catholic University, Leányka utca 6, Eger, 3300, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Budapest, 1525, Hungary
| |
Collapse
|
39
|
Fernandes C, Casadevall A, Gonçalves T. Mechanisms of Alternaria pathogenesis in animals and plants. FEMS Microbiol Rev 2023; 47:fuad061. [PMID: 37884396 DOI: 10.1093/femsre/fuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Alternaria species are cosmopolitan fungi darkly pigmented by melanin that infect numerous plant species causing economically important agricultural spoilage of various food crops. Alternaria spp. also infect animals, being described as entomopathogenic fungi but also infecting warm-blooded animals, including humans. Their clinical importance in human health, as infection agents, lay in the growing number of immunocompromised patients. Moreover, Alternaria spp. are considered some of the most abundant and potent sources of airborne sensitizer allergens causing allergic respiratory diseases, as severe asthma. Among the numerous strategies deployed by Alternaria spp. to attack their hosts, the production of toxins, carrying critical concerns to public health as food contaminant, and the production of hydrolytic enzymes such as proteases, can be highlighted. Alternaria proteases also trigger allergic symptoms in individuals with fungal sensitization, acting as allergens and facilitating antigen access to the host subepithelium. Here, we review the current knowledge about the mechanisms of Alternaria pathogenesis in plants and animals, the strategies used by Alternaria to cope with the host defenses, and the involvement Alternaria allergens and mechanisms of sensitization.
Collapse
Affiliation(s)
- Chantal Fernandes
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Wolfe Street, Room E5132, Baltimore, Maryland 21205, USA
| | - Teresa Gonçalves
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
40
|
Sun W, Feng M, Zhu N, Leng F, Yang M, Wang Y. Genomic Characteristics and Comparative Genomics Analysis of the Endophytic Fungus Paraphoma chrysanthemicola DS-84 Isolated from Codonopsis pilosula Root. J Fungi (Basel) 2023; 9:1022. [PMID: 37888278 PMCID: PMC10607767 DOI: 10.3390/jof9101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Paraphoma chrysanthemicola is a newly identified endophytic fungus. The focus of most studies on P. chrysanthemicola has been on its isolation, identification and effects on plants. However, the limited genomic information is a barrier to further research. Therefore, in addition to studying the morphological and physiological characteristics of P. chrysanthemicola, we sequenced its genome and compared it with that of Paraphoma sp. The results showed that sucrose, peptone and calcium phosphate were suitable sources of carbon, nitrogen and phosphorus for this strain. The activities of amylase, cellulase, chitosanase, lipase and alkaline protease were also detected. Sequencing analysis revealed that the genome of P. chrysanthemicola was 44.1 Mb, with a scaffold N50 of 36.1 Mb and 37,077 protein-coding genes. Gene Ontology (GO) annotation showed that mannose-modified glycosylation was predominant in monosaccharide utilisation. The percentage of glycoside hydrolase (GH) modules was the highest in the carbohydrate-active enzymes database (CAZy) analysis. Secondary metabolite-associated gene cluster analysis identified melanin, dimethylcoprogen and phyllostictine A biosynthetic gene clusters (>60% similarity). The results indicated that P. chrysanthemicola had a mannose preference in monosaccharide utilisation and that melanin, dimethylcoprogen and phyllostictine A were important secondary metabolites for P. chrysanthemicola as an endophytic fungus.
Collapse
Affiliation(s)
| | | | | | | | | | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.S.); (M.F.); (N.Z.); (F.L.); (M.Y.)
| |
Collapse
|
41
|
Waqas M, Prencipe S, Guarnaccia V, Spadaro D. Molecular Characterization and Pathogenicity of Alternaria spp. Associated with Black Rot of Sweet Cherries in Italy. J Fungi (Basel) 2023; 9:992. [PMID: 37888248 PMCID: PMC10607616 DOI: 10.3390/jof9100992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Black rot is limiting the production of sweet cherries in Italy. Dark brown to black patches and sunken lesions on fruits are the most common symptoms of Alternaria black rot on sweet cherry fruits. We isolated 180 Alternaria spp. from symptomatic cherry fruits 'Kordia', 'Ferrovia', and 'Regina' harvested in Northern Italy, over three years, from 2020 to 2022. The aim was to identify and characterize a selection of forty isolates of Alternaria spp. based on morphology, pathogenicity, and combined analysis of rpb2, Alt-a1, endoPG and OPA10-2. The colonies were dark greyish in the center with white margins. Ellipsoidal or ovoid shaped conidia ranging from 19.8 to 21.7 μm in length were observed under a microscope. Based on the concatenated session of four gene regions, thirty-three out of forty isolates were identified as A. arborescens species complex (AASC), and seven as A. alternata. Pathogenicity was evaluated on healthy 'Regina' sweet cherry fruits. All the tested strains were pathogenic on their host. This study represents the first characterization of Alternaria spp. associated with black rot of cherries in Italy and, to the best of our knowledge, it is also the first report of AASC as an agent of black rot of sweet cherries in Italy.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (M.W.); (S.P.); (V.G.)
| | - Simona Prencipe
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (M.W.); (S.P.); (V.G.)
| | - Vladimiro Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (M.W.); (S.P.); (V.G.)
- AGROINNOVA—Interdepartmental Centre for Innovation in the Agro-environmental Sector, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (M.W.); (S.P.); (V.G.)
- AGROINNOVA—Interdepartmental Centre for Innovation in the Agro-environmental Sector, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
42
|
Schmey T, Small C, Einspanier S, Hoyoz LM, Ali T, Gamboa S, Mamani B, Sepulveda GC, Thines M, Stam R. Small-spored Alternaria spp. (section Alternaria) are common pathogens on wild tomato species. Environ Microbiol 2023; 25:1830-1846. [PMID: 37171093 DOI: 10.1111/1462-2920.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
The wild relatives of modern tomato crops are native to South America. These plants occur in habitats as different as the Andes and the Atacama Desert and are, to some degree, all susceptible to fungal pathogens of the genus Alternaria. Alternaria is a large genus. On tomatoes, several species cause early blight, leaf spots and other diseases. We collected Alternaria-like infection lesions from the leaves of eight wild tomato species from Chile and Peru. Using molecular barcoding markers, we characterized the pathogens. The infection lesions were caused predominantly by small-spored species of Alternaria of the section Alternaria, like A. alternata, but also by Stemphylium spp., Alternaria spp. from the section Ulocladioides and other related species. Morphological observations and an infection assay confirmed this. Comparative genetic diversity analyses show a larger diversity in this wild system than in studies of cultivated Solanum species. As A. alternata has been reported to be an increasing problem in cultivated tomatoes, investigating the evolutionary potential of this pathogen is not only interesting to scientists studying wild plant pathosystems. It could also inform crop protection and breeding programs to be aware of potential epidemics caused by species still confined to South America.
Collapse
Affiliation(s)
- Tamara Schmey
- Chair of Phytopathology, TUM School of Life Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Corinn Small
- Chair of Phytopathology, TUM School of Life Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Severin Einspanier
- Department for Phytopathology and Crop Protection, Institute for Phytopathology, Faculty of Agricultural and Nutritional Sciences, Christian Albrechts University, Kiel, Germany
| | - Lina Muñoz Hoyoz
- Chair of Phytopathology, TUM School of Life Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tahir Ali
- Translational Biodiversity Genomics Centre, Senckenberg Institute, Frankfurt am Main, Germany
- Institute of Plant Sciences, University of Cologne, Cologne, Germany
| | - Soledad Gamboa
- Plant Pathology and Bacteriology, International Potato Centre, Lima, Peru
| | - Betty Mamani
- Instituto Basadre de Investigación en Agrobiotecnología y Recursos Genéticos, Escuela de Agronomía, Facultad Ciencias Agropecuarias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Peru
| | - German C Sepulveda
- Departmento de recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Arapacá, Arica, Chile
| | - Marco Thines
- Translational Biodiversity Genomics Centre, Senckenberg Institute, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department of Biology, Institute of Ecology, Evolution, and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Remco Stam
- Department for Phytopathology and Crop Protection, Institute for Phytopathology, Faculty of Agricultural and Nutritional Sciences, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
43
|
Stupar M, Savković Ž, Popović S, Simić GS, Grbić ML. Speleomycology of Air in Stopića Cave (Serbia). MICROBIAL ECOLOGY 2023; 86:2021-2031. [PMID: 37000232 PMCID: PMC10064612 DOI: 10.1007/s00248-023-02214-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Fungi can colonize organic matter present in subterranean sites and have a significant role as dwellers in different microniches of cave habitats. In order to analyze the content of airborne fungal propagules in different parts of "Stopića Cave," a touristic site in Serbia, air sampling was carried out in three seasons during 2020, prior to and during the onset of COVID-19 pandemic. Culturable mycobiota was identified using both microscopic techniques and ITS region/BenA gene barcoding, while multivariate analyses were employed to establish the link between fungal taxa and different environmental factors. The maximal measured fungal propagule concentrations were recorded during spring sampling which were based on fungal propagule concentration categories; the cave environment matches the category V. A total of 29 fungal isolates were identified, while Aspergillus, Cladosporium, Fusarium, Lecanicillium, Mucor, and Penicillium were the most diverse genera. According to the trophic mode, most of the isolated fungal species were pathotrophs (75.86%), but when regarding ecological guilds, the most dominant were undefined saprobes and animal pathogens (41.38% for each). Show caves are especially vulnerable to human impacts, and the fungal propagules' concentration within the caves could be good indices for the level of ecological disturbance.
Collapse
Affiliation(s)
- Miloš Stupar
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia.
| | - Željko Savković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Slađana Popović
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | - Gordana Subakov Simić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia
| | | |
Collapse
|
44
|
Achilonu CC, Gryzenhout M, Marais GJ, Madisha MT, Ghosh S. Random amplified microsatellites (RAMS) analysis ascertains genetic variation of Alternaria alternata causing black spot disease on Carya illinoinensis in South Africa. Front Genet 2023; 14:1213102. [PMID: 37842646 PMCID: PMC10569608 DOI: 10.3389/fgene.2023.1213102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Limited information regarding the occurrence of black spot disease of pecan (Carya illinoinensis), caused by A. alternata, in South Africa is known. The pecan industry is growing rapidly, so it is essential to understand the impact of the fungal pathogen to pecan health. In this study, the genetic variation of 364 A. alternata isolates was investigated by two RAMS primers (CCA5 and CGA5). In total, 6,525 alleles were produced, with a minimum of 3,182 alleles on the CGA5 primer and maximum of 3,343 alleles for CCA5 primer. Further analysis of the primers showed relatively low genetic diversity of A. alternata isolate populations, with mean values; (H = 0.12) and Shannon's information index (I = 0.20). The analysis of molecular variance (AMOVA) revealed significant differences between populations, with 88% of the genetic variation was found within populations (Nm = 3.59, PhiPT = 0.12), and were not significantly different (p > 0.001). While 12% variation was observed among populations (Nm = 2.89, PhiPT = 0.08) and the estimates were statistically significant (p < 0.001). STRUCTURE HARVESTER output showed that K value is K = 8, where ΔK cannot find the true number of populations because of less variation. The dendrogram cluster tree generated by Ward's analysis unveiled two main distinct clades and 10 sub-clades, revealing similar findings as those of PCoA analysis clusters. Therefore, it was evident that these analyses depicted no distinct relationship between the A. alternata isolates and their geographic locations or the prevalence of distribution among the populations.
Collapse
Affiliation(s)
- Conrad Chibunna Achilonu
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Gert Johannes Marais
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
45
|
Colque-Little C, Lund OS, Andreasen C, Amby DB. Chenopodium quinoa, a New Host for Alternaria Section Alternata and Alternaria Section Infectoriae Causing Yellow Leaf Blotch Disease. PLANT DISEASE 2023; 107:2628-2632. [PMID: 36880865 DOI: 10.1094/pdis-10-22-2320-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a native American crop mainly grown in the Andes of Bolivia and Peru. During the last decades, the cultivation of quinoa has expanded to more than 125 countries. Since then, several diseases of quinoa have been characterized. A leaf disease was observed on quinoa plants growing in an experimental plot in Eastern Denmark in 2018. The symptoms produced by the associated fungi consisted of small yellow blotches on the upper surface of leaves with a pale chlorotic halo surrounding the lesion. These studies used a combination of morphology, molecular diagnostics, and pathogenicity tests to identify two different Alternaria species belonging to Alternaria sections Infectoriae and Alternata as the causal agent of observed disease symptoms. To the best of our knowledge, this is the first report of Alternaria spp. as foliar pathogens of quinoa. Our findings indicate the need for additional studies to determine potential risks to quinoa production.
Collapse
Affiliation(s)
- Carla Colque-Little
- Department of Plant and Environmental Sciences, Section of Crop Sciences, Faculty of Science, University of Copenhagen, DK2630 Taastrup, Denmark
| | - Ole Søgaard Lund
- Laboratory of the Danish Food and Veterinary Administration, DK4100 Ringsted, Denmark
| | - Christian Andreasen
- Department of Plant and Environmental Sciences, Section of Crop Sciences, Faculty of Science, University of Copenhagen, DK2630 Taastrup, Denmark
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, Section of Crop Sciences, Faculty of Science, University of Copenhagen, DK2630 Taastrup, Denmark
- Department of Plant and Environmental Sciences, Section for Organismal Biology, Faculty of Science, University of Copenhagen, DK1871 Frederiksberg, Denmark
| |
Collapse
|
46
|
Xia X, Liu Z, Shen H. Subcutaneous phaeohyphomycosis caused by Alternaria section Alternaria. Int J Infect Dis 2023; 134:99-101. [PMID: 37268101 DOI: 10.1016/j.ijid.2023.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
A woman presented with purulent infiltrating plaques on her hands and arms after a 7-year history of nephrotic syndrome. She was ultimately diagnosed with subcutaneous phaeohyphomycosis, which is caused by Alternaria section Alternaria. The lesions completely resolved after 2 months of antifungal treatment. Interestingly, spores (round-shaped cells) and hyphae were observed in the biopsy and pus specimens, respectively. This case report highlights that distinguishing subcutaneous phaeohyphomycosis from chromoblastomycosis may be difficult if the diagnosis is solely based on pathological findings. It also emphasizes that the parasitic forms of the dematiaceous fungi in immunosuppressed hosts may vary with the site and environment.
Collapse
Affiliation(s)
- Xiujiao Xia
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Rd 38, Hangzhou 310009, China.
| | - Zehu Liu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Rd 38, Hangzhou 310009, China
| | - Hong Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Rd 38, Hangzhou 310009, China
| |
Collapse
|
47
|
Liao YCZ, Cao YJ, Wan Y, Li H, Li DW, Zhu LH. Alternaria arborescens and A. italica Causing Leaf Blotch on Celtis julianae in China. PLANTS (BASEL, SWITZERLAND) 2023; 12:3113. [PMID: 37687359 PMCID: PMC10489861 DOI: 10.3390/plants12173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Celtis julianae Schneid. is widely planted as a versatile tree species with ecological and economic significance. In September 2022, a leaf blotch disease of C. julianae was observed in Nanjing, Jiangsu, China, with an infection incidence of 63%. The disease led to severe early defoliation, significantly affecting the ornamental and ecological value of the host tree. The accurate identification of pathogens is imperative to conducting further research and advancing disease control. Koch's postulates confirmed that the fungal isolates (B1-B9) were pathogenic to C. julianae. The morphology of the characteristics of the pathogen matched those of Alternaria spp. The internal transcribed spacer region (ITS), large subunit (LSU) and small subunit (SSU) regions of rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Alternaria major allergen gene (Alt a 1), RNA polymerase second largest subunit (RPB2), and portions of translation elongation factor 1-alpha (TEF1-α) genes were sequenced. Based on multi-locus phylogenetic analyses and morphology, the pathogenic fungi were identified as Alternaria arborescens and A. italica. The findings provided useful information for disease management and enhanced the understanding of Alternaria species diversity in China. This is the first report of A. arborescens and A. italica causing leaf blotch of C. julianae in China and worldwide.
Collapse
Affiliation(s)
- Yang-Chun-Zi Liao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.-J.C.); (Y.W.); (H.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yi-Jia Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.-J.C.); (Y.W.); (H.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Wan
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.-J.C.); (Y.W.); (H.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Li
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.-J.C.); (Y.W.); (H.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USA
| | - Li-Hua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.-J.C.); (Y.W.); (H.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
48
|
Gou Y, Aung SLL, Guo Z, Li Z, Shen S, Deng J. Four New Species of Small-Spored Alternaria Isolated from Solanum tuberosum and S. lycopersicum in China. J Fungi (Basel) 2023; 9:880. [PMID: 37754988 PMCID: PMC10532295 DOI: 10.3390/jof9090880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Small-spored Alternaria species have been frequently isolated from diseased leaves of Solanum plants. To clarify the diversity of small-spored Alternaria species, a total of 118 strains were obtained from leaf samples of S. tuberosum and S. lycopersicum in six provinces of China during 2022-2023. Based on morphological characterization and multi-locus phylogenetic analysis of the internal transcribed spacer of the rDNA region (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1 alpha (TEF1), RNA polymerase second largest subunit (RPB2), Alternaria major allergen gene (Alt a 1), endopolygalacturonase gene (EndoPG) and an anonymous gene region (OPA10-2), seven species were determined, including four novel species and three known species (A. alternata, A. gossypina and A. arborescens). The novel species were described and illustrated as A. longxiensis sp. nov., A. lijiangensis sp. nov., A. lycopersici sp. nov. and A. solanicola sp. nov.. In addition, the pathogenicity of the seven species was evaluated on potato leaves. The species exhibited various aggressiveness, which could help in disease management.
Collapse
Affiliation(s)
- Yanan Gou
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.G.); (S.L.L.A.); (Z.G.); (Z.L.); (S.S.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Yangtze University, Jingzhou 434025, China
| | - Sein Lai Lai Aung
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.G.); (S.L.L.A.); (Z.G.); (Z.L.); (S.S.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Yangtze University, Jingzhou 434025, China
| | - Zhuanjun Guo
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.G.); (S.L.L.A.); (Z.G.); (Z.L.); (S.S.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Yangtze University, Jingzhou 434025, China
| | - Zhi Li
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.G.); (S.L.L.A.); (Z.G.); (Z.L.); (S.S.)
| | - Shulin Shen
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.G.); (S.L.L.A.); (Z.G.); (Z.L.); (S.S.)
| | - Jianxin Deng
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.G.); (S.L.L.A.); (Z.G.); (Z.L.); (S.S.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Yangtze University, Jingzhou 434025, China
| |
Collapse
|
49
|
Nemchinov LG, Irish BM, Uschapovsky IV, Grinstead S, Shao J, Postnikova OA. Composition of the alfalfa pathobiome in commercial fields. Front Microbiol 2023; 14:1225781. [PMID: 37692394 PMCID: PMC10491455 DOI: 10.3389/fmicb.2023.1225781] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Through the recent advances of modern high-throughput sequencing technologies, the "one microbe, one disease" dogma is being gradually replaced with the principle of the "pathobiome". Pathobiome is a comprehensive biotic environment that not only includes a diverse community of all disease-causing organisms within the plant but also defines their mutual interactions and resultant effect on plant health. To date, the concept of pathobiome as a major component in plant health and sustainable production of alfalfa (Medicago sativa L.), the most extensively cultivated forage legume in the world, is non-existent. Here, we approached this subject by characterizing the biodiversity of the alfalfa pathobiome using high-throughput sequencing technology. Our metagenomic study revealed a remarkable abundance of different pathogenic communities associated with alfalfa in the natural ecosystem. Profiling the alfalfa pathobiome is a starting point to assess known and identify new and emerging stress challenges in the context of plant disease management. In addition, it allows us to address the complexity of microbial interactions within the plant host and their impact on the development and evolution of pathogenesis.
Collapse
Affiliation(s)
- Lev G. Nemchinov
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Brian M. Irish
- Plant Germplasm Introduction and Testing Research Unit, Prosser, WA, United States
| | | | - Sam Grinstead
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Jonathan Shao
- United States Department of Agriculture, Agricultural Research Service, Office of The Area Director, Beltsville, MD, United States
| | - Olga A. Postnikova
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
50
|
Khazaal HT, Khazaal MT, Abdel-Razek AS, Hamed AA, Ebrahim HY, Ibrahim RR, Bishr M, Mansour YE, El Dib RA, Soliman HSM. Antimicrobial, antiproliferative activities and molecular docking of metabolites from Alternaria alternata. AMB Express 2023; 13:68. [PMID: 37414961 DOI: 10.1186/s13568-023-01568-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Endophytic fungi allied to plants have sparked substantial promise in discovering new bioactive compounds. In this study, propagation of the endophytic fungus Alternaria alternata HE11 obtained from Colocasia esculanta leaves led to the isolation of Ergosterol (1), β-Sitosterol (2), Ergosterol peroxide (3), in addition to three dimeric naphtho-γ-pyrones, namely Fonsecinone A (4), Asperpyrone C (5), and Asperpyrone B (6), which were isolated from genus Alternaria for the first time. Structures of the isolated compounds were established on the basis of extensive 1D and 2D NMR and, MS measurements. The ethyl acetate extract, as well as compounds 1, 3, 4 and 6 were evaluated for their antimicrobial activity using agar well-diffusion and broth microdilution assays. Molecular docking study was carried out to explore the pharmacophoric moieties that governed the binding orientation of antibacterial active compounds to multidrug efflux transporter AcrB and the ATP binding site to E. coli DNA gyrase using MOE software. Results revealed that the most active antibacterial compounds 4 and 6 bind with high affinity in the phenylalanine-rich cage and are surrounded with other hydrophobic residues. The antiproliferative activity of all isolated compounds was in vitro evaluated using the human prostatic adenocarcinoma cell lines DU-145, PC-3, PC-3 M, 22Rv1 and CWR-R1ca adopting MTT assay. Compound 4 was the most active against almost all tested cell lines, with IC50 values 28.6, 21.6, 17.1 and 13.3 against PC-3, PC-3 M, 22Rv1 and CWR-R1ca cell lines, respectively.
Collapse
Affiliation(s)
- Heba T Khazaal
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Mohamed T Khazaal
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Ahmed S Abdel-Razek
- Microbial Chemistry Department, National Research Center, 33 El-Buhouth Street, Giza, 12622, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, National Research Center, 33 El-Buhouth Street, Giza, 12622, Egypt
| | - Hassan Y Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Reham R Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Mokhtar Bishr
- Plant General Manager and Technical Director of the Arab Company for Pharmaceuticals and Medicinal, Plants, Cairo, Egypt
| | - Yara E Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Rabab A El Dib
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Hesham S M Soliman
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
- PharmD program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|