1
|
McNabb L, Durr PA, Lunt R, Barr J, Adams TE, Pearce L, Poon LLM, Perera RAM, Demissie GF, Bowden TR. Development and preliminary validation of a MERS-CoV ELISA for serological testing of camels and alpacas. J Virol Methods 2024; 327:114923. [PMID: 38561124 DOI: 10.1016/j.jviromet.2024.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
This study describes the development and preliminary validation of a new serological assay using MERS-CoV S1 protein in an indirect enzyme-linked immunosorbent assay (ELISA) format. This assay has the advantage of being able to test MERS-CoV serum samples in a PC2 laboratory without the need for a high-level biocontainment laboratory (PC3 or PC4), which requires highly trained and skilled staff and a high level of resources and equipment. Furthermore, this MERS-CoV S1 ELISA enables a larger number of samples to be tested quickly, with results obtained in approximately five hours. The MERS-CoV S1 ELISA demonstrated high analytical specificity, with no cross-reactivity observed in serum of animals infected with other viruses, including different coronaviruses. We tested 166 positive and 40 negative camel serum samples and have estimated the diagnostic sensitivity (DSe) to be 99.4% (95% CI: 96.7 - 100.0%) and diagnostic specificity (DSp) to be 100% (95% CI: 97.2%-100.0%) relative to the assigned serology results (ppNT and VNT) using a S/P ratio cut-off value of >0.58. The findings of this study showed that our MERS-CoV S1 ELISA was more sensitive than the commercial EUROIMMUN ELISA (Se 99.4% vs 84.9%) and comparable to the ppNT assay, and therefore could be used as a diagnostic aid in countries in the Middle East where MERS-CoV is endemic in dromedary camels. The assay reagents and protocol were easily adapted and transferred from an Australian laboratory to a laboratory in the University of Hong Kong. Thus, the results described here show that the MERS-CoV S1 ELISA represents a cheap, rapid, robust, and reliable assay to support surveillance of MERS-CoV in camels in endemic regions.
Collapse
Affiliation(s)
- Leanne McNabb
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia.
| | - Peter A Durr
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia
| | - Ross Lunt
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia
| | - Jennifer Barr
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia
| | | | | | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Ranawaka Ap M Perera
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Getnet Fekadu Demissie
- College of Veterinary Medicine, Department of Veterinary Epidemiology, Microbiology and Public Health, Haramaya University, Haramaya, Ethiopia
| | - Timothy R Bowden
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia
| |
Collapse
|
2
|
Rodon J, Te N, Segalés J, Vergara-Alert J, Bensaid A. Enhanced antiviral immunity and dampened inflammation in llama lymph nodes upon MERS-CoV sensing: bridging innate and adaptive cellular immune responses in camelid reservoirs. Front Immunol 2023; 14:1205080. [PMID: 37388723 PMCID: PMC10300347 DOI: 10.3389/fimmu.2023.1205080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infection can cause fatal pulmonary inflammatory disease in humans. Contrarily, camelids and bats are the main reservoir hosts, tolerant for MERS-CoV replication without suffering clinical disease. Here, we isolated cervical lymph node (LN) cells from MERS-CoV convalescent llamas and pulsed them with two different viral strains (clades B and C). Viral replication was not supported in LN, but a cellular immune response was mounted. Reminiscent Th1 responses (IFN-γ, IL-2, IL-12) were elicited upon MERS-CoV sensing, accompanied by a marked and transient peak of antiviral responses (type I IFNs, IFN-λ3, ISGs, PRRs and TFs). Importantly, expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8) or inflammasome components (NLRP3, CASP1, PYCARD) was dampened. The role of IFN-λ3 to counterbalance inflammatory processes and bridge innate and adaptive immune responses in camelid species is discussed. Our findings shed light into key mechanisms on how reservoir species control MERS-CoV in the absence of clinical disease.
Collapse
Affiliation(s)
- Jordi Rodon
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| | - Nigeer Te
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| | - Albert Bensaid
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Catalonia, Spain
| |
Collapse
|
3
|
Islam MM, Khanom H, Farag E, Mim ZT, Naidoo P, Mkhize-Kwitshana ZL, Tibbo M, Islam A, Soares Magalhaes RJ, Hassan MM. Global patterns of Middle East respiratory syndrome coronavirus (MERS-CoV) prevalence and seroprevalence in camels: A systematic review and meta-analysis. One Health 2023; 16:100561. [PMID: 37200564 PMCID: PMC10166617 DOI: 10.1016/j.onehlt.2023.100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The Middle East respiratory syndrome Coronavirus (MERS-CoV) is one of the human coronaviruses that causes severe respiratory infection. Bats are considered to be the natural reservoir, where dromedary camels (DC) are the intermediate hosts of the virus. The current study was undertaken to provide an update on global distribution of the virus in camels, and to investigate the pooled prevalence and camel-associated risk factors of infection. After registration of the review protocol in the Open Science Framework, data searches were conducted on 18 April 2023 through Embase, PubMed, Scopus, and Web of Science. Considering only natural MERS-CoV infection in camels, 94 articles were selected for data curation through blind screening by two authors. Meta-analysis was conducted to estimate the pooled prevalence and to evaluate camel-associated risk factors. Finally, the results were presented in forest plots. The reviewed articles tested 34 countries, of which camels of 24 countries were seropositive and in 15 countries they were positive by molecular method. Viral RNA was detected in DC. Non-DC, such as bactrian camels, alpaca, llama, and hybrid camels were only seropositive. The global estimated pooled seroprevalence and viral RNA prevalence in DC were 77.53% and 23.63%, respectively, with the highest prevalence in West Asia (86.04% and 32.37% respectively). In addition, 41.08% of non-DC were seropositive. The estimated pooled prevalence of MERS-CoV RNA significantly varied by sample types with the highest in oral (45.01%) and lowest in rectal (8.42%) samples; the estimated pooled prevalence in nasal (23.10%) and milk (21.21%) samples were comparable. The estimated pooled seroprevalence in <2 years, 2-5 years, and > 5 years age groups were 56.32%, 75.31%, and 86.31%, respectively, while viral RNA prevalence was 33.40%, 15.87%, and 13.74%, respectively. Seroprevalence and viral RNA prevalence were generally higher in females (75.28% and 19.70%, respectively) than in males (69.53% and 18.99%, respectively). Local camels had lower estimated pooled seroprevalence (63.34%) and viral RNA prevalence (17.78%) than those of imported camels (89.17% and 29.41%, respectively). The estimated pooled seroprevalence was higher in camels of free-herds (71.70%) than confined herds (47.77%). Furthermore, estimated pooled seroprevalence was higher in samples from livestock markets, followed by abattoirs, quarantine, and farms but viral RNA prevalence was the highest in samples from abattoirs, followed by livestock markets, quarantine, and farms. Risk factors, such as sample type, young age, female sex, imported camels, and camel management must be considered to control and prevent the spread and emergence of MERS-CoV.
Collapse
Affiliation(s)
| | - Hamida Khanom
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | | | - Zarin Tasnim Mim
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Pragalathan Naidoo
- Discipline of Medical Microbiology, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Division of Research Capacity Development, Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Discipline of Medical Microbiology, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Division of Research Capacity Development, Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Markos Tibbo
- Food and Agriculture Organization of the United Nations (FAO), Subregional Office for the Gulf Cooperation Council States and Yemen, Abu Dhabi, United Arab Emirates
| | | | - Ricardo J. Soares Magalhaes
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, QLD 4343, Australia
- Children Health and Environment Program, UQ Child Health Research Centre, The University of Queensland, QLD 4343, Australia
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, QLD 4343, Australia
| |
Collapse
|
4
|
Kane Y, Wong G, Gao GF. Animal Models, Zoonotic Reservoirs, and Cross-Species Transmission of Emerging Human-Infecting Coronaviruses. Annu Rev Anim Biosci 2023; 11:1-31. [PMID: 36790890 DOI: 10.1146/annurev-animal-020420-025011] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Over the past three decades, coronavirus (CoV) diseases have impacted humans more than any other emerging infectious disease. The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease 2019), has resulted in huge economic disruptions and loss of human lives. The SARS-CoV-2 genome was found to mutate more rapidly due to sustained transmission in humans and potentially animals, resulting in variants of concern (VOCs) that threaten global human health. However, the primary difficulties are filling in the current knowledge gaps in terms of the origin and modalities of emergence for these viruses. Because many CoVs threatening human health are suspected to have a zoonotic origin, identifying the animal hosts implicated in the spillover or spillback events would be beneficial for current pandemic management and to prevent future outbreaks. In this review, wesummarize the animal models, zoonotic reservoirs, and cross-species transmission of the emerging human CoVs. Finally, we comment on potential sources of SARS-CoV-2 Omicron VOCs and the new SARS-CoV-2 recombinants currently under investigation.
Collapse
Affiliation(s)
- Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; , .,University of Chinese Academy of Sciences, Beijing, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; ,
| | - George F Gao
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; .,Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Tissue distribution of angiotensin-converting enzyme 2 (ACE2) receptor in wild animals with a focus on artiodactyls, mustelids and phocids. One Health 2023; 16:100492. [PMID: 36710856 PMCID: PMC9873367 DOI: 10.1016/j.onehlt.2023.100492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Natural cases of zooanthroponotic transmission of SARS-CoV-2 to animals have been reported during the COVID-19 pandemic, including to free-ranging white-tailed deer (Odocoileus virginianus) in North America and farmed American mink (Neovison vison) on multiple continents. To understand the potential for angiotensin-converting enzyme 2 (ACE2)-mediated viral tropism we characterised the distribution of ACE2 receptors in the respiratory and intestinal tissues of a selection of wild and semi-domesticated mammals including artiodactyls (cervids, bovids, camelids, suids and hippopotamus), mustelid and phocid species using immunohistochemistry. Expression of the ACE2 receptor was detected in the bronchial or bronchiolar epithelium of several European and Asiatic deer species, Bactrian camel (Camelus bactrianus), European badger (Meles meles), stoat (Mustela erminea), hippopotamus (Hippopotamus amphibious), harbor seal (Phoca vitulina), and hooded seal (Cystophora cristata). Further receptor mapping in the nasal turbinates and trachea revealed sparse ACE2 receptor expression in the mucosal epithelial cells and occasional occurrence in the submucosal glandular epithelium of Western roe deer (Capreolus capreolus), moose (Alces alces alces), and alpaca (Vicunga pacos). Only the European badger and stoat expressed high levels of ACE2 receptor in the nasal mucosal epithelium, which could suggest high susceptibility to ACE2-mediated respiratory infection. Expression of ACE2 receptor in the intestinal cells was ubiquitous across multiple taxa examined. Our results demonstrate the potential for ACE2-mediated viral infection in a selection of wild mammals and highlight the intra-taxon variability of ACE2 receptor expression, which might influence host susceptibility and infection.
Collapse
|
6
|
Te N, Rodon J, Creve R, Pérez M, Segalés J, Vergara-Alert J, Bensaid A. Evaluation of alpaca tracheal explants as an ex vivo model for the study of Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vet Res 2022; 53:67. [PMID: 36056449 PMCID: PMC9438371 DOI: 10.1186/s13567-022-01084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) poses a serious threat to public health. Here, we established an ex vivo alpaca tracheal explant (ATE) model using an air-liquid interface culture system to gain insights into MERS-CoV infection in the camelid lower respiratory tract. ATE can be infected by MERS-CoV, being 103 TCID50/mL the minimum viral dosage required to establish a productive infection. IFNs and antiviral ISGs were not induced in ATE cultures in response to MERS-CoV infection, strongly suggesting that ISGs expression observed in vivo is rather a consequence of the IFN induction occurring in the nasal mucosa of camelids.
Collapse
Affiliation(s)
- Nigeer Te
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jordi Rodon
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Rhea Creve
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Mónica Pérez
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinàriaia, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, 08193, Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain. .,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| | - Albert Bensaid
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.,IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| |
Collapse
|
7
|
Rodon J, Mykytyn AZ, Cantero G, Albulescu IC, Bosch BJ, Brix A, Audonnet JC, Bensaid A, Vergara-Alert J, Haagmans BL, Segalés J. Protective efficacy of an RBD-based Middle East respiratory syndrome coronavirus (MERS-CoV) particle vaccine in llamas. ONE HEALTH OUTLOOK 2022; 4:12. [PMID: 35739576 PMCID: PMC9225808 DOI: 10.1186/s42522-022-00068-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Ongoing outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) continue posing a global health threat. Vaccination of livestock reservoir species is a recommended strategy to prevent spread of MERS-CoV among animals and potential spillover to humans. Using a direct-contact llama challenge model that mimics naturally occurring viral transmission, we tested the efficacy of a multimeric receptor binding domain (RBD) particle-display based vaccine candidate. While MERS-CoV was transmitted to naïve animals exposed to virus-inoculated llamas, immunization induced robust virus-neutralizing antibody responses and prevented transmission in 1/3 vaccinated, in-contact animals. Our exploratory study supports further improvement of the RBD-based vaccine to prevent zoonotic spillover of MERS-CoV.
Collapse
Affiliation(s)
- Jordi Rodon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB),Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Anna Z Mykytyn
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, CA, 3000, The Netherlands
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB),Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Irina C Albulescu
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, 3584, The Netherlands
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, 3584, The Netherlands
| | - Alexander Brix
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hanover, Germany
| | - Jean-Christophe Audonnet
- Boehringer Ingelheim Animal Health, Global Innovation, 813 Cours du 3ème millénaire, Saint-Priest, 69380, France
| | - Albert Bensaid
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB),Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB),Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, CA, 3000, The Netherlands.
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain.
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Catalonia, 08193, Spain.
| |
Collapse
|
8
|
Te N, Ciurkiewicz M, van den Brand JMA, Rodon J, Haverkamp AK, Vergara-Alert J, Bensaid A, Haagmans BL, Baumgartner W, Segalés J. Middle East respiratory syndrome coronavirus infection in camelids. Vet Pathol 2022; 59:546-555. [PMID: 35001773 DOI: 10.1177/03009858211069120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a severe respiratory disease with a high case fatality rate in humans. Since its emergence in mid-2012, 2578 laboratory-confirmed cases in 27 countries have been reported by the World Health Organization, leading to 888 known deaths due to the disease and related complications. Dromedary camels are considered the major reservoir host for this virus leading to zoonotic infection in humans. Dromedary camels, llamas, and alpacas are susceptible to MERS-CoV, developing a mild-to-moderate upper respiratory tract infection characterized by epithelial hyperplasia as well as infiltration of neutrophils, lymphocytes, and some macrophages within epithelium, lamina propria, in association with abundant viral antigen. The very mild lesions in the lower respiratory tract of these camelids correlate with absence of overt illness following MERS-CoV infection. Unfortunately, there is no approved antiviral treatment or vaccine for MERS-CoV infection in humans. Thus, there is an urgent need to develop intervention strategies in camelids, such as vaccination, to minimize virus spillover to humans. Therefore, the development of camelid models of MERS-CoV infection is key not only to assess vaccine prototypes but also to understand the biologic mechanisms by which the infection can be naturally controlled in these reservoir species. This review summarizes information on virus-induced pathological changes, pathogenesis, viral epidemiology, and control strategies in camelids, as the intermediate hosts and primary source of MERS-CoV infection in humans.
Collapse
Affiliation(s)
- Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Singh S, Kumar A, Sharma H. In-vitro and In-vivo Experimental Models for MERS-CoV, SARSCoV, and SARS-CoV-2 Viral Infection: A Compendious Review. Recent Pat Biotechnol 2022; 16:82-101. [PMID: 35068398 DOI: 10.2174/1872208316666220124101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 belongs to the Coronaviridae family of coronaviruses. This novel virus has predominantly affected a vast world population and was declared a pandemic outbreak. The clinical and scientific communities strive to develop and validate potential treatments and therapeutic measures. The comparative study of existing synthetic drugs, evaluation of safety aspects, and the devel opment of novel vaccines can be efficiently achieved by using suitable animal models of primary infection and validating translational findings in human cell lines and tissues. The current paper explores varied animal and cell/tissue models employed and recapitulate various critical issues of ailment manifestation in humans to develop and evaluate novel therapeutic countermeasures and even include some novel patent developed in this regard.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road, Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Aman Kumar
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road, Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| |
Collapse
|
10
|
Te N, Rodon J, Pérez M, Segalés J, Vergara-Alert J, Bensaid A. Enhanced replication fitness of MERS-CoV clade B over clade A strains in camelids explains the dominance of clade B strains in the Arabian Peninsula. Emerg Microbes Infect 2021; 11:260-274. [PMID: 34918620 PMCID: PMC8812806 DOI: 10.1080/22221751.2021.2019559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) continues infecting humans and dromedary camels. While MERS-CoV strains from the Middle East region are subdivided into two clades (A and B), all the contemporary epidemic viruses belong to clade B. Thus, MERS-CoV clade B strains may display adaptive advantages over clade A in humans and/or reservoir hosts. To test this hypothesis in vivo, we compared an early epidemic clade A strain (EMC/2012) with a clade B strain (Jordan-1/2015) in an alpaca model monitoring virological and immunological parameters. Further, the Jordan-1/2015 strain has a partial amino acid (aa) deletion in the double-stranded (ds) RNA binding motif of the open reading frame ORF4a protein. Animals inoculated with the Jordan-1/2015 variant had higher MERS-CoV replicative capabilities in the respiratory tract and larger nasal viral shedding. In the nasal mucosa, the Jordan-1/2015 strain caused an early IFN response, suggesting a role for ORF4a as a moderate IFN antagonist in vivo. However, both strains elicited maximal transcription of antiviral interferon-stimulated genes (ISGs) at the peak of infection on 2 days post inoculation, correlating with subsequent decreases in tissular viral loads. Genome alignment analysis revealed several clade B-specific amino acid substitutions occurring in the replicase and the S proteins, which could explain a better adaptation of clade B strains in camelid hosts. Differences in replication and shedding reported herein indicate a better fitness and transmission capability of MERS-CoV clade B strains than their clade A counterparts.
Collapse
Affiliation(s)
- Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
11
|
Nova N. Cross-Species Transmission of Coronaviruses in Humans and Domestic Mammals, What Are the Ecological Mechanisms Driving Transmission, Spillover, and Disease Emergence? Front Public Health 2021; 9:717941. [PMID: 34660513 PMCID: PMC8514784 DOI: 10.3389/fpubh.2021.717941] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses cause respiratory and digestive diseases in vertebrates. The recent pandemic, caused by the novel severe acute respiratory syndrome (SARS) coronavirus 2, is taking a heavy toll on society and planetary health, and illustrates the threat emerging coronaviruses can pose to the well-being of humans and other animals. Coronaviruses are constantly evolving, crossing host species barriers, and expanding their host range. In the last few decades, several novel coronaviruses have emerged in humans and domestic animals. Novel coronaviruses have also been discovered in captive wildlife or wild populations, raising conservation concerns. The evolution and emergence of novel viruses is enabled by frequent cross-species transmission. It is thus crucial to determine emerging coronaviruses' potential for infecting different host species, and to identify the circumstances under which cross-species transmission occurs in order to mitigate the rate of disease emergence. Here, I review (broadly across several mammalian host species) up-to-date knowledge of host range and circumstances concerning reported cross-species transmission events of emerging coronaviruses in humans and common domestic mammals. All of these coronaviruses had similar host ranges, were closely related (indicative of rapid diversification and spread), and their emergence was likely associated with high-host-density environments facilitating multi-species interactions (e.g., shelters, farms, and markets) and the health or well-being of animals as end- and/or intermediate spillover hosts. Further research is needed to identify mechanisms of the cross-species transmission events that have ultimately led to a surge of emerging coronaviruses in multiple species in a relatively short period of time in a world undergoing rapid environmental change.
Collapse
Affiliation(s)
- Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Goraichuk IV, Arefiev V, Stegniy BT, Gerilovych AP. Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2. Virus Res 2021; 302:198473. [PMID: 34118360 PMCID: PMC8188804 DOI: 10.1016/j.virusres.2021.198473] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) is the first known pandemic caused by a coronavirus. Its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appears to be capable of infecting different mammalian species. Recent detections of this virus in pet, zoo, wild, and farm animals have compelled inquiry regarding the zoonotic (animal-to-human) and reverse zoonotic (human-to-animal) transmissibility of SARS-CoV-2 with the potential of COVID-19 pandemic evolving into a panzootic. It is important to monitor the global spread of disease and to assess the significance of genomic changes to support prevention and control efforts during a pandemic. An understanding of the SARS-CoV-2 epidemiology provides opportunities to prevent the risk of repeated re-infection of humans and requires a robust One Health-based investigation. This review paper describes the known properties and the existing gaps in scientific knowledge about the zoonotic and reverse zoonotic transmissibility of the novel virus SARS-CoV-2 and the COVID-19 disease it causes.
Collapse
Affiliation(s)
- Iryna V Goraichuk
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Vasiliy Arefiev
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Borys T Stegniy
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Anton P Gerilovych
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| |
Collapse
|
13
|
Te N, Rodon J, Ballester M, Pérez M, Pailler-García L, Segalés J, Vergara-Alert J, Bensaid A. Type I and III IFNs produced by the nasal epithelia and dimmed inflammation are features of alpacas resolving MERS-CoV infection. PLoS Pathog 2021; 17:e1009229. [PMID: 34029358 PMCID: PMC8195365 DOI: 10.1371/journal.ppat.1009229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/11/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10. Middle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient type I and III interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. Meanwhile, a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes was observed along the whole respiratory mucosa with a rapid clearance of the virus in tissues. Thus, innate immune responses occurring in the nasal mucosa might be key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Caldes de Montbui, Spain
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Lola Pailler-García
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, UAB, Cerdanyola del Vallès, Spain
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
- * E-mail:
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| |
Collapse
|
14
|
Alnaeem A, Kasem S, Qasim I, Refaat M, Alhufufi AN, Al-Doweriej A, Al-Shabebi A, Hereba AERT, Hemida MG. Scanning Electron Microscopic Findings on Respiratory Organs of Some Naturally Infected Dromedary Camels with the Lineage-B of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Saudi Arabia-2018. Pathogens 2021; 10:pathogens10040420. [PMID: 33916036 PMCID: PMC8065699 DOI: 10.3390/pathogens10040420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
The currently known animal reservoir for MERS-CoV is the dromedary camel. The clinical pattern of the MERS-CoV field infection in dromedary camels is not yet fully studied well. Some pathological changes and the detection of the MERS-CoV antigens by immunohistochemistry have been recently reported. However, the nature of these changes by the scanning electron microscope (SEM) was not revealed. The objective of this study was to document some changes in the respiratory organs induced by the natural MERS-CoV infection using the SEM. We previously identified three positive animals naturally infected with MERS-CoV and two other negative animals. Previous pathological studies on the positive animals showed varying degrees of alterations. MERS-CoV-S and MERS-CoV-Nc proteins were detected in the organs of positive animals. In the current study, we used the same tissues and sections for the SEM examination. We established a histopathology lesion scoring system by the SEM for the nasal turbinate and trachea. Our results showed various degrees of involvement per animal. The main observed characteristic findings are massive ciliary loss, ciliary disorientation, and goblet cell hyperplasia, especially in the respiratory organs, particularly the nasal turbinate and trachea in some animals. The lungs of some affected animals showed signs of marked interstitial pneumonia with damage to the alveolar walls. The partial MERS-CoV-S gene sequencing from the nasal swabs of some dromedary camels admitted to this slaughterhouse confirms the circulating strains belong to clade-B of MERS-CoV. These results confirm the respiratory tropism of the virus and the detection of the virus in the nasal cavity. Further studies are needed to explore the pathological alterations induced by MERS-CoV infection in various body organs of the MERS-CoV naturally infected dromedary camels.
Collapse
Affiliation(s)
- Abdelmohsen Alnaeem
- Department of Clinical Studies, College of Veterinary Medicine, King Faisal University, Al-Haa 400, Saudi Arabia;
| | - Samy Kasem
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Ibrahim Qasim
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
| | - Mohamed Refaat
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
- Department of Pathology, Animal Health Research Institute, Dokki, Cairo 12618, Egypt
| | - Ali Nasser Alhufufi
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
| | - Ali Al-Doweriej
- Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, Riyadh 11195, Saudi Arabia; (S.K.); (I.Q.); (M.R.); (A.N.A.); (A.A.-D.)
| | - Abdulkareem Al-Shabebi
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Haa 400, Saudi Arabia;
| | - Abd-El Rahman Taha Hereba
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Maged Gomaa Hemida
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Haa 400, Saudi Arabia
- Correspondence:
| |
Collapse
|
15
|
Hedman HD, Krawczyk E, Helmy YA, Zhang L, Varga C. Host Diversity and Potential Transmission Pathways of SARS-CoV-2 at the Human-Animal Interface. Pathogens 2021; 10:180. [PMID: 33567598 PMCID: PMC7915269 DOI: 10.3390/pathogens10020180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging infectious diseases present great risks to public health. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has become an urgent public health issue of global concern. It is speculated that the virus first emerged through a zoonotic spillover. Basic research studies have suggested that bats are likely the ancestral reservoir host. Nonetheless, the evolutionary history and host susceptibility of SARS-CoV-2 remains unclear as a multitude of animals has been proposed as potential intermediate or dead-end hosts. SARS-CoV-2 has been isolated from domestic animals, both companion and livestock, as well as in captive wildlife that were in close contact with human COVID-19 cases. Currently, domestic mink is the only known animal that is susceptible to a natural infection, develop severe illness, and can also transmit SARS-CoV-2 to other minks and humans. To improve foundational knowledge of SARS-CoV-2, we are conducting a synthesis review of its host diversity and transmission pathways. To mitigate this COVID-19 pandemic, we strongly advocate for a systems-oriented scientific approach that comprehensively evaluates the transmission of SARS-CoV-2 at the human and animal interface.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Summit County Local Public Health Agency, Summit County, Frisco, CO 80443, USA;
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Yosra A. Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA;
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA;
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
16
|
Banerjee A, Doxey AC, Tremblay BJM, Mansfield MJ, Subudhi S, Hirota JA, Miller MS, McArthur AG, Mubareka S, Mossman K. Predicting the recombination potential of severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus. J Gen Virol 2020; 101:1251-1260. [PMID: 32902372 PMCID: PMC7819352 DOI: 10.1099/jgv.0.001491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/12/2020] [Indexed: 01/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged to cause widespread infections in humans. SARS-CoV-2 infections have been reported in the Kingdom of Saudi Arabia, where Middle East respiratory syndrome coronavirus (MERS-CoV) causes seasonal outbreaks with a case fatality rate of ~37 %. Here we show that there exists a theoretical possibility of future recombination events between SARS-CoV-2 and MERS-CoV RNA. Through computational analyses, we have identified homologous genomic regions within the ORF1ab and S genes that could facilitate recombination, and have analysed co-expression patterns of the cellular receptors for SARS-CoV-2 and MERS-CoV, ACE2 and DPP4, respectively, to identify human anatomical sites that could facilitate co-infection. Furthermore, we have investigated the likely susceptibility of various animal species to MERS-CoV and SARS-CoV-2 infection by comparing known virus spike protein-receptor interacting residues. In conclusion, we suggest that a recombination between SARS-CoV-2 and MERS-CoV RNA is possible and urge public health laboratories in high-risk areas to develop diagnostic capability for the detection of recombined coronaviruses in patient samples.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | | | - Michael J. Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Sonu Subudhi
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Jeremy A. Hirota
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Matthew S. Miller
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Andrew G. McArthur
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Samira Mubareka
- Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Karen Mossman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
17
|
Adney DR, Clancy CS, Bowen RA, Munster VJ. Camelid Inoculation With Middle East Respiratory Syndrome Coronavirus: Experimental Models of Reservoir Host Infection. Viruses 2020; 12:v12121370. [PMID: 33266124 PMCID: PMC7759921 DOI: 10.3390/v12121370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Within the past two decades, three zoonotic betacoronaviruses have been associated with outbreaks causing severe respiratory disease in humans. Of these, Middle East respiratory s yndrome coronavirus (MERS-CoV) is the only zoonotic coronavirus that is known to consistently result in frequent zoonotic spillover events from the proximate reservoir host—the dromedary camel. A comprehensive understanding of infection in dromedaries is critical to informing public health recommendations and implementing intervention strategies to mitigate spillover events. Experimental models of reservoir disease are absolutely critical in understanding the pathogenesis and transmission, and are key to testing potential dromedary vaccines against MERS-CoV. In this review, we describe experimental infections of dromedary camels as well as additional camelid models used to further understand the camel’s role in MERS-CoV spillover to humans.
Collapse
Affiliation(s)
- Danielle R. Adney
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA;
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA;
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
- Correspondence: ; Tel.: +406-375-7489
| |
Collapse
|
18
|
Alnaeem A, Kasem S, Qasim I, Al-Doweriej A, Al-Houfufi A, Alwazan A, Albadrani A, Alshaammari K, Refaat M, Al-Shabebi A, Hemida MG. Some pathological observations on the naturally infected dromedary camels (Camelus dromedarius) with the Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia 2018-2019. Vet Q 2020; 40:190-197. [PMID: 32543343 PMCID: PMC7734115 DOI: 10.1080/01652176.2020.1781350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The natural MERS-CoV infection in dromedary camels is understudied. Recent experimental studies showed no obvious clinical signs in the infected dromedary camels. Aim To study the pathological changes associated with natural MERS-CoV infection in dromedary camels. Methods Tissues from three MERS-CoV positive animals as well as two negative animals were collected and examined for the presence of pathological changes. The screening of the animals was carried out first by the rapid agglutination test and then confirmed by the RT-PCR. The selected animals ranged from six to twelve months in age. The sensitivity of the latter technique was much higher in the detection of MERS-CoV than the Rapid test (14 out of 75 animals positive or 18% versus 31 out of 75 positive or 41%). Results MERS-CoV induced marked desquamation of the respiratory epithelium accompanied by lamina propria and submucosal mononuclear cells infiltration, epithelial hyperplasia in the respiratory tract, and interstitial pneumonia. Ciliary cell loss was seen in the trachea and turbinate. In addition, degeneration of glomerular capillaries with the complete destruction of glomerular tufts that were replaced with fibrinous exudate in renal corpuscles in the renal cortex were noticed. Expression of the MERS-CoV-S1 and MERS-CoV-N proteins was revealed in respiratory tract, and kidneys. Conclusion To our knowledge, this is the first study describing the pathological changes of MERS-CoV infection in dromedary camels under natural conditions. In contrast to experimental infection in case of spontaneous infection interstitial pneumonea is evident at least in some affected animals.
Collapse
Affiliation(s)
- Abdelmohsen Alnaeem
- Department of clinical studies, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| | - Samy Kasem
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ibrahim Qasim
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Ali Al-Doweriej
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Ali Al-Houfufi
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Abdulatif Alwazan
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Abdalaziz Albadrani
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Khuzayyim Alshaammari
- Department of Veterinary Services, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Mohamed Refaat
- Department of Pathology, Animal Health Research Institute, Dokki, Cairo, Egypt.,Department of Pathology, Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Hasa, Saudi Arabia
| | - Abdulkareem Al-Shabebi
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.,Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| |
Collapse
|
19
|
A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol 2020; 38:1073-1078. [PMID: 32704169 DOI: 10.1038/s41587-020-0631-z] [Citation(s) in RCA: 842] [Impact Index Per Article: 210.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
A robust serological test to detect neutralizing antibodies to SARS-CoV-2 is urgently needed to determine not only the infection rate, herd immunity and predicted humoral protection, but also vaccine efficacy during clinical trials and after large-scale vaccination. The current gold standard is the conventional virus neutralization test requiring live pathogen and a biosafety level 3 laboratory. Here, we report a SARS-CoV-2 surrogate virus neutralization test that detects total immunodominant neutralizing antibodies targeting the viral spike (S) protein receptor-binding domain in an isotype- and species-independent manner. Our simple and rapid test is based on antibody-mediated blockage of the interaction between the angiotensin-converting enzyme 2 (ACE2) receptor protein and the receptor-binding domain. The test, which has been validated with two cohorts of patients with COVID-19 in two different countries, achieves 99.93% specificity and 95-100% sensitivity, and differentiates antibody responses to several human coronaviruses. The surrogate virus neutralization test does not require biosafety level 3 containment, making it broadly accessible to the wider community for both research and clinical applications.
Collapse
|
20
|
Singh A, Singh RS, Sarma P, Batra G, Joshi R, Kaur H, Sharma AR, Prakash A, Medhi B. A Comprehensive Review of Animal Models for Coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol Sin 2020; 35:290-304. [PMID: 32607866 PMCID: PMC7324485 DOI: 10.1007/s12250-020-00252-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
21
|
Selection of viral variants during persistent infection of insectivorous bat cells with Middle East respiratory syndrome coronavirus. Sci Rep 2020; 10:7257. [PMID: 32350357 PMCID: PMC7190632 DOI: 10.1038/s41598-020-64264-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are speculated to have originated in bats. The mechanisms by which these viruses are maintained in individuals or populations of reservoir bats remain an enigma. Mathematical models have predicted long-term persistent infection with low levels of periodic shedding as a likely route for virus maintenance and spillover from bats. In this study, we tested the hypothesis that bat cells and MERS coronavirus (CoV) can co-exist in vitro. To test our hypothesis, we established a long-term coronavirus infection model of bat cells that are persistently infected with MERS-CoV. We infected cells from Eptesicus fuscus with MERS-CoV and maintained them in culture for at least 126 days. We characterized the persistently infected cells by detecting virus particles, protein and transcripts. Basal levels of type I interferon in the long-term infected bat cells were higher, relative to uninfected cells, and disrupting the interferon response in persistently infected bat cells increased virus replication. By sequencing the whole genome of MERS-CoV from persistently infected bat cells, we identified that bat cells repeatedly selected for viral variants that contained mutations in the viral open reading frame 5 (ORF5) protein. Furthermore, bat cells that were persistently infected with ΔORF5 MERS-CoV were resistant to superinfection by wildtype virus, likely due to reduced levels of the virus receptor, dipeptidyl peptidase 4 (DPP4) and higher basal levels of interferon in these cells. In summary, our study provides evidence for a model of coronavirus persistence in bats, along with the establishment of a unique persistently infected cell culture model to study MERS-CoV-bat interactions.
Collapse
|
22
|
Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review. Epidemiol Infect 2020; 147:e84. [PMID: 30869000 PMCID: PMC6518605 DOI: 10.1017/s095026881800345x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels vs. locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections.
Collapse
|
23
|
Rodon J, Okba NMA, Te N, van Dieren B, Bosch BJ, Bensaid A, Segalés J, Haagmans BL, Vergara-Alert J. Blocking transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) in llamas by vaccination with a recombinant spike protein. Emerg Microbes Infect 2020; 8:1593-1603. [PMID: 31711379 PMCID: PMC6853226 DOI: 10.1080/22221751.2019.1685912] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ongoing Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks pose a worldwide public health threat. Blocking MERS-CoV zoonotic transmission from dromedary camels, the animal reservoir, could potentially reduce the number of primary human cases. Here we report MERS-CoV transmission from experimentally infected llamas to naïve animals. Directly inoculated llamas shed virus for at least 6 days and could infect all in-contact naïve animals 4–5 days after exposure. With the aim to block virus transmission, we examined the efficacy of a recombinant spike S1-protein vaccine. In contrast to naïve animals, in-contact vaccinated llamas did not shed infectious virus upon exposure to directly inoculated llamas, consistent with the induction of strong virus neutralizing antibody responses. Our data provide further evidence that vaccination of the reservoir host may impede MERS-CoV zoonotic transmission to humans.
Collapse
Affiliation(s)
- Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain
| | - Nisreen M A Okba
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain
| | - Brenda van Dieren
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra (Cerdanyola del Vallès), Spain
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
24
|
Hemida MG. Middle East Respiratory Syndrome Coronavirus and the One Health concept. PeerJ 2019; 7:e7556. [PMID: 31497405 PMCID: PMC6708572 DOI: 10.7717/peerj.7556] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is one of the major threats to the healthcare systems in some countries, especially in the Arabian Peninsula. MERS-CoV is considered an ideal example of the One Health concept. This is due to the animals, especially dromedary camels, play important roles in the transmission and sustainability of the virus, and the virus can be transmitted through aerosols of infected patients into the environment. However, there is some debate regarding the origin of MERS-CoV either from bats or other unknown reservoirs. The dromedary camel is the only identified animal reservoir to date. These animals play important roles in sustaining the virus in certain communities and may act as an amplifier of the virus by secreting it in their body fluids, especially in nasal and rectal discharges. MERS-CoV has been detected in the nasal and rectal secretions of infected camels, and MERS-CoV of this origin has full capacity to infect human airway epithelium in both in vitro and in vivo models. Other evidence confirms the direct transmission of MERS-CoV from camels to humans, though the role of camel meat and milk products has yet to be well studied. Human-to-human transmission is well documented through contact with an active infected patient or some silently infected persons. Furthermore, there are some significant risk factors of individuals in close contact with a positive MERS-CoV patient, including sleeping in the same patient room, removing patient waste (urine, stool, and sputum), and touching respiratory secretions from the index case. Outbreaks within family clusters have been reported, whereby some blood relative patients were infected through their wives in the same house were not infected. Some predisposing genetic factors favor MERS-CoV infection in some patients, which is worth investigating in the near future. The presence of other comorbidities may be another factor. Overall, there are many unknown/confirmed aspects of the virus/human/animal network. Here, the most recent advances in this context are discussed, and the possible reasons behind the emergence and sustainability of MERS-CoV in certain regions are presented. Identification of the exact mechanism of transmission of MERS-CoV from camels to humans and searching for new reservoir/s are of high priority. This will reduce the shedding of the virus into the environment, and thus the risk of human infection can be mitigated.
Collapse
Affiliation(s)
- Maged Gomaa Hemida
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Al-Hasa, Saudi Arabia.,Department of Virology, faculty of veterinary medicine, Kafrelsheikh University, Egypt, Kafrelsheikh University, Kafrelsheikh, Kafrelsheikh, Egypt
| |
Collapse
|
25
|
Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review - CORRIGENDUM. Epidemiol Infect 2019; 147:e198. [PMID: 31364519 PMCID: PMC6536756 DOI: 10.1017/s0950268819000669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Widagdo W, Okba NMA, Richard M, de Meulder D, Bestebroer TM, Lexmond P, Farag EABA, Al-Hajri M, Stittelaar KJ, de Waal L, van Amerongen G, van den Brand JMA, Haagmans BL, Herfst S. Lack of Middle East Respiratory Syndrome Coronavirus Transmission in Rabbits. Viruses 2019; 11:v11040381. [PMID: 31022948 PMCID: PMC6520746 DOI: 10.3390/v11040381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) transmission from dromedaries to humans has resulted in major outbreaks in the Middle East. Although some other livestock animal species have been shown to be susceptible to MERS-CoV, it is not fully understood why the spread of the virus in these animal species has not been observed in the field. In this study, we used rabbits to further characterize the transmission potential of MERS-CoV. In line with the presence of MERS-CoV receptor in the rabbit nasal epithelium, high levels of viral RNA were shed from the nose following virus inoculation. However, unlike MERS-CoV-infected dromedaries, these rabbits did not develop clinical manifestations including nasal discharge and did shed only limited amounts of infectious virus from the nose. Consistently, no transmission by contact or airborne routes was observed in rabbits. Our data indicate that despite relatively high viral RNA levels produced, low levels of infectious virus are excreted in the upper respiratory tract of rabbits as compared to dromedary camels, thus resulting in a lack of viral transmission.
Collapse
Affiliation(s)
- W Widagdo
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Nisreen M A Okba
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | | | | | | | - Leon de Waal
- Viroclinics Biosciences BV, Rotterdam 3029 AK, The Netherlands.
| | | | | | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Widagdo W, Sooksawasdi Na Ayudhya S, Hundie GB, Haagmans BL. Host Determinants of MERS-CoV Transmission and Pathogenesis. Viruses 2019; 11:E280. [PMID: 30893947 PMCID: PMC6466079 DOI: 10.3390/v11030280] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that causes respiratory infection in humans, ranging from asymptomatic to severe pneumonia. In dromedary camels, the virus only causes a mild infection but it spreads efficiently between animals. Differences in the behavior of the virus observed between individuals, as well as between humans and dromedary camels, highlight the role of host factors in MERS-CoV pathogenesis and transmission. One of these host factors, the MERS-CoV receptor dipeptidyl peptidase-4 (DPP4), may be a critical determinant because it is variably expressed in MERS-CoV-susceptible species as well as in humans. This could partially explain inter- and intraspecies differences in the tropism, pathogenesis, and transmissibility of MERS-CoV. In this review, we explore the role of DPP4 and other host factors in MERS-CoV transmission and pathogenesis-such as sialic acids, host proteases, and interferons. Further characterization of these host determinants may potentially offer novel insights to develop intervention strategies to tackle ongoing outbreaks.
Collapse
Affiliation(s)
- W Widagdo
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | - Gadissa B Hundie
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Adney DR, Wang L, van Doremalen N, Shi W, Zhang Y, Kong WP, Miller MR, Bushmaker T, Scott D, de Wit E, Modjarrad K, Petrovsky N, Graham BS, Bowen RA, Munster VJ. Efficacy of an Adjuvanted Middle East Respiratory Syndrome Coronavirus Spike Protein Vaccine in Dromedary Camels and Alpacas. Viruses 2019; 11:E212. [PMID: 30832356 PMCID: PMC6466352 DOI: 10.3390/v11030212] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
MERS-CoV is present in dromedary camels throughout the Middle East and Africa. Dromedary camels are the primary zoonotic reservoir for human infections. Interruption of the zoonotic transmission chain from camels to humans, therefore, may be an effective strategy to control the ongoing MERS-CoV outbreak. Here we show that vaccination with an adjuvanted MERS-CoV Spike protein subunit vaccine confers complete protection from MERS-CoV disease in alpaca and results in reduced and delayed viral shedding in the upper airways of dromedary camels. Protection in alpaca correlates with high serum neutralizing antibody titers. Lower titers of serum neutralizing antibodies correlate with delayed and significantly reduced shedding in the nasal turbinates of dromedary camels. Together, these data indicate that induction of robust neutralizing humoral immune responses by vaccination of naïve animals reduces shedding that potentially could diminish the risk of zoonotic transmission.
Collapse
Affiliation(s)
- Danielle R Adney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA.
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| | - Megan R Miller
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Dana Scott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Kayvon Modjarrad
- Military HIV Research, Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Nikolai Petrovsky
- Flinders University and Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| | - Richard A Bowen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA.
| | - Vincent J Munster
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, USA.
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
29
|
From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses 2019; 11:v11010059. [PMID: 30646565 PMCID: PMC6357155 DOI: 10.3390/v11010059] [Citation(s) in RCA: 686] [Impact Index Per Article: 137.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 11/30/2022] Open
Abstract
Coronaviruses (CoVs) have formerly been regarded as relatively harmless respiratory pathogens to humans. However, two outbreaks of severe respiratory tract infection, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), as a result of zoonotic CoVs crossing the species barrier, caused high pathogenicity and mortality rates in human populations. This brought CoVs global attention and highlighted the importance of controlling infectious pathogens at international borders. In this review, we focus on our current understanding of the epidemiology, pathogenesis, prevention, and treatment of SARS-CoV and MERS-CoV, as well as provides details on the pivotal structure and function of the spike proteins (S proteins) on the surface of each of these viruses. For building up more suitable animal models, we compare the current animal models recapitulating pathogenesis and summarize the potential role of host receptors contributing to diverse host affinity in various species. We outline the research still needed to fully elucidate the pathogenic mechanism of these viruses, to construct reproducible animal models, and ultimately develop countermeasures to conquer not only SARS-CoV and MERS-CoV, but also these emerging coronaviral diseases.
Collapse
|
30
|
MERS: Progress on the global response, remaining challenges and the way forward. Antiviral Res 2018; 159:35-44. [PMID: 30236531 PMCID: PMC7113883 DOI: 10.1016/j.antiviral.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023]
Abstract
This article summarizes progress in research on Middle East Respiratory Syndrome (MERS) since a FAO-OIE-WHO Global Technical Meeting held at WHO Headquarters in Geneva on 25-27 September 2017. The meeting reviewed the latest scientific findings and identified and prioritized the global activities necessary to prevent, manage and control the disease. Critical needs for research and technical guidance identified during the meeting have been used to update the WHO R&D MERS-CoV Roadmap for diagnostics, therapeutics and vaccines and a broader public health research agenda. Since the 2017 meeting, progress has been made on several key actions in animal populations, at the animal/human interface and in human populations. This report also summarizes the latest scientific studies on MERS since 2017, including data from more than 50 research studies examining the presence of MERS-CoV infection in dromedary camels.
Collapse
|
31
|
Wang Y, Sun J, Zhu A, Zhao J, Zhao J. Current understanding of middle east respiratory syndrome coronavirus infection in human and animal models. J Thorac Dis 2018; 10:S2260-S2271. [PMID: 30116605 DOI: 10.21037/jtd.2018.03.80] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a novel betacoronavirus (MERS coronavirus, MERS-CoV). Since its first emergence in 2012, multiple transmission events of MERS-CoV (dromedary to human and human to human) have been reported, indicating that MERS-CoV has the potential to cause widespread outbreak. However, the epidemiology of MERS as well as immune responses against the virus in animal models and patients are still not well understood, hindering the vaccine and therapeutic developments. In this review, we summarize recent genetic and epidemic findings of MERS-CoV and the progress in animal model development, immune response studies in both animals and humans. At last, we discussed the breakthrough on vaccine and therapeutic development which are important against potential future MERS outbreak.
Collapse
Affiliation(s)
- Yanqun Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital, Guangzhou 510120, China.,Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
32
|
Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels. One Health 2018; 5:65-68. [PMID: 29911167 PMCID: PMC6000904 DOI: 10.1016/j.onehlt.2018.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/11/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022] Open
Abstract
Thus far, no human MERS-CoV infections have been reported from Israel. Evidence for the circulation of MERS-CoV in dromedaries has been reported from almost all the countries of the Middle East, except Israel. Therefore, we aimed to analyze MERS-CoV infection in Israeli camelids, sampled between 2012 and 2017. A total of 411 camels, 102 alpacas and 19 llamas' sera were tested for the presence of antibodies to MERS-CoV. Our findings indicate a lower MERS-CoV seropositivity among Israeli dromedaries than in the surrounding countries, and for the first time naturally infected llamas were identified. In addition, nasal swabs of 661 camels, alpacas and lamas, obtained from January 2015 to December 2017, were tested for the presence of MERS-CoV RNA. All nasal swabs were negative, indicating no evidence for MERS-CoV active circulation in these camelids during that time period.
Collapse
|
33
|
Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA Viruses Candidate Agents for the Next Global Pandemic? A Review. ILAR J 2017; 58:343-358. [PMID: 28985316 PMCID: PMC7108571 DOI: 10.1093/ilar/ilx026] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenic RNA viruses are potentially the most important group involved in zoonotic disease transmission, and they represent a challenge for global disease control. Their biological diversity and rapid adaptive rates have proved to be difficult to overcome and to anticipate by modern medical technology. Also, the anthropogenic change of natural ecosystems and the continuous population growth are driving increased rates of interspecies contacts and the interchange of pathogens that can develop into global pandemics. The combination of molecular, epidemiological, and ecological knowledge of RNA viruses is therefore essential towards the proper control of these emergent pathogens. This review outlines, throughout different levels of complexity, the problems posed by RNA viral diseases, covering some of the molecular mechanisms allowing them to adapt to new host species-and to novel pharmaceutical developments-up to the known ecological processes involved in zoonotic transmission.
Collapse
Affiliation(s)
- R Carrasco-Hernandez
- R. Carrasco-Hernandez, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Rodrigo Jácome
- Rodrigo Jácome, MD, PhD, is a postdoctoral research fellow at the Microbiome Laboratory in the Postgraduate Division of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Yolanda López Vidal
- Yolanda López-Vidal, MD, PhD, is an associate professor “C” and is responsible for the Program of Microbial Molecular Immunology in the Department of Microbiology and Parasitology of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| | - Samuel Ponce de León
- Samuel Ponce-de-León, MD, MSc, is an associate professor “C”, is responsible for the Microbiome Laboratory and Coordinator of the University Program for Health Research of the Faculty of Medicine at the Universidad Nacional Autónoma de México, CDMX
| |
Collapse
|
34
|
Yusof MF, Queen K, Eltahir YM, Paden CR, Al Hammadi ZMAH, Tao Y, Li Y, Khalafalla AI, Shi M, Zhang J, Mohamed MSAE, Abd Elaal Ahmed MH, Azeez IA, Bensalah OK, Eldahab ZS, Al Hosani FI, Gerber SI, Hall AJ, Tong S, Al Muhairi SS. Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates. Emerg Microbes Infect 2017; 6:e101. [PMID: 29116217 PMCID: PMC5717090 DOI: 10.1038/emi.2017.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 02/08/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) was identified on the Arabian Peninsula in 2012 and is still causing cases and outbreaks in the Middle East. When MERS-CoV was first identified, the closest related virus was in bats; however, it has since been recognized that dromedary camels serve as a virus reservoir and potential source for human infections. A total of 376 camels were screened for MERS-Cov at a live animal market in the Eastern Region of the Emirate of Abu Dhabi, UAE. In all, 109 MERS-CoV-positive camels were detected in week 1, and a subset of positive camels were sampled again weeks 3 through 6. A total of 126 full and 3 nearly full genomes were obtained from 139 samples. Spike gene sequences were obtained from 5 of the 10 remaining samples. The camel MERS-CoV genomes from this study represent 3 known and 2 potentially new lineages within clade B. Within lineages, diversity of camel and human MERS-CoV sequences are intermixed. We identified sequences from market camels nearly identical to the previously reported 2015 German case who visited the market during his incubation period. We described 10 recombination events in the camel samples. The most frequent recombination breakpoint was the junctions between ORF1b and S. Evidence suggests MERS-CoV infection in humans results from continued introductions of distinct MERS-CoV lineages from camels. This hypothesis is supported by the camel MERS-CoV genomes sequenced in this study. Our study expands the known repertoire of camel MERS-CoVs circulating on the Arabian Peninsula.
Collapse
Affiliation(s)
| | - Krista Queen
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Associated Universities Fellow, Oak Ridge, TN, USA
| | | | - Clinton R Paden
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Associated Universities Fellow, Oak Ridge, TN, USA
| | | | - Ying Tao
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yan Li
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mang Shi
- University of Sydney, Sydney, NSW, Australia
| | - Jing Zhang
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- IHRC Inc., Atlanta, GA, USA
| | | | | | | | | | | | | | - Susan I Gerber
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
35
|
Maslow JN. Vaccine development for emerging virulent infectious diseases. Vaccine 2017; 35:5437-5443. [PMID: 28216184 PMCID: PMC7115543 DOI: 10.1016/j.vaccine.2017.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
Abstract
The recent outbreak of Zaire Ebola virus in West Africa altered the classical paradigm of vaccine development and that for emerging infectious diseases (EIDs) in general. In this paper, the precepts of vaccine discovery and advancement through pre-clinical and clinical assessment are discussed in the context of the recent Ebola virus, Middle East Respiratory Syndrome coronavirus (MERS-CoV), and Zika virus outbreaks. Clinical trial design for diseases with high mortality rates and/or high morbidity in the face of a global perception of immediate need and the factors that drive design in the face of a changing epidemiology are presented. Vaccines for EIDs thus present a unique paradigm to standard development precepts.
Collapse
Affiliation(s)
- Joel N Maslow
- GeneOne Life Science Inc., United States; Division of Infectious Diseases, Morristown Medical Center, United States; St. Georges University School of Medicine, United States.
| |
Collapse
|
36
|
Maslow JN. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus. Hum Vaccin Immunother 2017; 13:2918-2930. [PMID: 28846484 PMCID: PMC5718785 DOI: 10.1080/21645515.2017.1358325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized by novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed.
Collapse
|
37
|
Vergara-Alert J, Raj VS, Muñoz M, Abad FX, Cordón I, Haagmans BL, Bensaid A, Segalés J. Middle East respiratory syndrome coronavirus experimental transmission using a pig model. Transbound Emerg Dis 2017; 64:1342-1345. [PMID: 28653496 PMCID: PMC7169730 DOI: 10.1111/tbed.12668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 01/18/2023]
Abstract
Dromedary camels are the main reservoir of Middle East respiratory syndrome coronavirus (MERS-CoV), but other livestock species (i.e., alpacas, llamas, and pigs) are also susceptible to infection with MERS-CoV. Animal-to-animal transmission in alpacas was reported, but evidence for transmission in other species has not been proved. This study explored pig-to-pig MERS-CoV transmission experimentally. Virus was present in nasal swabs of infected animals, and limited amounts of viral RNA, but no infectious virus were detected in the direct contact pigs. No virus was detected in the indirect contact group. Furthermore, direct and indirect contact pigs did not develop specific antibodies against MERS-CoV. Therefore, the role of pigs as reservoir is probably negligible, although it deserves further confirmation.
Collapse
Affiliation(s)
- J Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - V S Raj
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M Muñoz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - F X Abad
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - I Cordón
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - B L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - J Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain.,Facultat de Veterinària, Departament de Sanitat i Anatomia Animals, UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
38
|
Hemida MG, Alnaeem A, Chu DK, Perera RA, Chan SM, Almathen F, Yau E, Ng BC, Webby RJ, Poon LL, Peiris M. Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014-2015. Emerg Microbes Infect 2017. [PMID: 28634355 PMCID: PMC5520318 DOI: 10.1038/emi.2017.44] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two herds of dromedary camels were longitudinally sampled with nasal and rectal swabs and serum, between September 2014 and May 2015, and the samples were tested for Middle East Respiratory Syndrome (MERS) coronavirus RNA and antibodies. Evidence of MERS-CoV infection was confirmed in one herd on the basis of detection of virus RNA in nasal swabs from three camels and significant increases in the antibody titers from three others. The three viruses were genetically identical, thus indicating introduction of a single virus into this herd. There was evidence of reinfection of camels that were previously seropositive, thus suggesting that prior infection does not provide complete immunity from reinfection, a finding that is relevant to camel vaccination strategies as a means to prevent zoonotic transmission.
Collapse
Affiliation(s)
- Maged Gomaa Hemida
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Alhufuf, Al-Ahsa 31982, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Abdulmohsen Alnaeem
- Department of Clinical Studies, College of Veterinary Medicine, King Faisal University, Alhufuf, Al-Ahsa 31982, Saudi Arabia
| | - Daniel Kw Chu
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | | | - Samuel Ms Chan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Faisal Almathen
- Department of Public Health and Animal Welfare, College of Veterinary Medicine, King Faisal University, Alhufuf, Al-Ahsa 31982, Saudi Arabia
| | - Emily Yau
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Brian Cy Ng
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Richard J Webby
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leo Lm Poon
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
39
|
Widagdo W, Okba NM, Stalin Raj V, Haagmans BL. MERS-coronavirus: From discovery to intervention. One Health 2017; 3:11-16. [PMID: 28616497 PMCID: PMC5454172 DOI: 10.1016/j.onehlt.2016.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/16/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) still causes outbreaks despite public awareness and implementation of health care measures, such as rapid viral diagnosis and patient quarantine. Here we describe the current epidemiological picture of MERS-CoV, focusing on humans and animals affected by this virus and propose specific intervention strategies that would be appropriate to control MERS-CoV. One-third of MERS-CoV patients develop severe lower respiratory tract infection and succumb to a fatal outcome; these patients would require effective therapeutic antiviral therapy. Because of the lack of such intervention strategies, supportive care is the best that can be offered at the moment. Limiting viral spread from symptomatic human cases to health care workers and family members, on the other hand, could be achieved through prophylactic administration of MERS-CoV neutralizing antibodies and vaccines. To ultimately prevent spread of the virus into the human population, however, vaccination of dromedary camels - currently the only confirmed animal host for MERS-CoV - may be the best option to achieve a sustained drop in human MERS cases in time. In the end, a One Health approach combining all these different efforts is needed to tackle this zoonotic outbreak.
Collapse
Affiliation(s)
| | | | | | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Vergara-Alert J, Vidal E, Bensaid A, Segalés J. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus. One Health 2017; 3:34-40. [PMID: 28616501 PMCID: PMC5454147 DOI: 10.1016/j.onehlt.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013-2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.
Collapse
Key Words
- Animal model
- BSL, biosafety level
- Coronavirus (CoV)
- DPP4, dipeptidyl peptidase-4
- Emerging pathogen
- FDA, Food and Drug Administration
- HCoV, human coronaviruses
- MERS-CoV, Middle East respiratory syndrome coronavirus
- Middle East respiratory syndrome (MERS)
- NHP, Nonhuman primates
- PI, post-inoculation
- RDB, receptor binding domain
- Reservoir
- SARS-CoV, severe acute respiratory syndrome coronavirus
- URT, upper respiratory tract
- WHO, World Health Organization
- hDPP4, human dipeptidyl peptidase-4
Collapse
Affiliation(s)
- Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
41
|
Vergara-Alert J, van den Brand JMA, Widagdo W, Muñoz M, Raj S, Schipper D, Solanes D, Cordón I, Bensaid A, Haagmans BL, Segalés J. Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus. Emerg Infect Dis 2017; 23:232-240. [PMID: 27901465 PMCID: PMC5324816 DOI: 10.3201/eid2302.161239] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible.
Collapse
|
42
|
Inoculation of Goats, Sheep, and Horses with MERS-CoV Does Not Result in Productive Viral Shedding. Viruses 2016; 8:v8080230. [PMID: 27548203 PMCID: PMC4997592 DOI: 10.3390/v8080230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/26/2016] [Accepted: 08/13/2016] [Indexed: 01/21/2023] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) was first recognized in 2012 and can cause severe disease in infected humans. Dromedary camels are the reservoir for the virus, although, other than nasal discharge, these animals do not display any overt clinical disease. Data from in vitro experiments suggest that other livestock such as sheep, goats, and horses might also contribute to viral transmission, although field data has not identified any seropositive animals. In order to understand if these animals could be infected, we challenged young goats and horses and adult sheep with MERS-CoV by intranasal inoculation. Minimal or no virus shedding was detected in all of the animals. During the four weeks following inoculation, neutralizing antibodies were detected in the young goats, but not in sheep or horses.
Collapse
|
43
|
Uyeki TM, Erlandson KJ, Korch G, O’Hara M, Wathen M, Hu-Primmer J, Hojvat S, Stemmy EJ, Donabedian A. Development of Medical Countermeasures to Middle East Respiratory Syndrome Coronavirus. Emerg Infect Dis 2016; 22:e160022. [PMID: 27191188 PMCID: PMC4918159 DOI: 10.3201/eid2207.160022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Preclinical development of and research on potential Middle East respiratory syndrome coronavirus (MERS-CoV) medical countermeasures remain preliminary; advancements are needed before most countermeasures are ready to be tested in human clinical trials. Research priorities include standardization of animal models and virus stocks for studying disease pathogenesis and efficacy of medical countermeasures; development of MERS-CoV diagnostics; improved access to nonhuman primates to support preclinical research; studies to better understand and control MERS-CoV disease, including vaccination studies in camels; and development of a standardized clinical trial protocol. Partnering with clinical trial networks in affected countries to evaluate safety and efficacy of investigational therapeutics will strengthen efforts to identify successful medical countermeasures.
Collapse
Affiliation(s)
| | - Karl J. Erlandson
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T.M. Uyeki)
- Office of the Assistant Secretary of Preparedness and Response, Washington, DC, USA (K.J. Erlandson, G. Korch, M. O’Hara, M. Wathen, J. Hu-Primmer, A. Donabedian)
- Food and Drug Administration, Silver Spring, Maryland, USA (S. Hojvat)
- National Institutes of Health, Rockville, Maryland, USA (E.J. Stemmy)
| | - George Korch
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T.M. Uyeki)
- Office of the Assistant Secretary of Preparedness and Response, Washington, DC, USA (K.J. Erlandson, G. Korch, M. O’Hara, M. Wathen, J. Hu-Primmer, A. Donabedian)
- Food and Drug Administration, Silver Spring, Maryland, USA (S. Hojvat)
- National Institutes of Health, Rockville, Maryland, USA (E.J. Stemmy)
| | - Michael O’Hara
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T.M. Uyeki)
- Office of the Assistant Secretary of Preparedness and Response, Washington, DC, USA (K.J. Erlandson, G. Korch, M. O’Hara, M. Wathen, J. Hu-Primmer, A. Donabedian)
- Food and Drug Administration, Silver Spring, Maryland, USA (S. Hojvat)
- National Institutes of Health, Rockville, Maryland, USA (E.J. Stemmy)
| | - Michael Wathen
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T.M. Uyeki)
- Office of the Assistant Secretary of Preparedness and Response, Washington, DC, USA (K.J. Erlandson, G. Korch, M. O’Hara, M. Wathen, J. Hu-Primmer, A. Donabedian)
- Food and Drug Administration, Silver Spring, Maryland, USA (S. Hojvat)
- National Institutes of Health, Rockville, Maryland, USA (E.J. Stemmy)
| | - Jean Hu-Primmer
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T.M. Uyeki)
- Office of the Assistant Secretary of Preparedness and Response, Washington, DC, USA (K.J. Erlandson, G. Korch, M. O’Hara, M. Wathen, J. Hu-Primmer, A. Donabedian)
- Food and Drug Administration, Silver Spring, Maryland, USA (S. Hojvat)
- National Institutes of Health, Rockville, Maryland, USA (E.J. Stemmy)
| | - Sally Hojvat
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T.M. Uyeki)
- Office of the Assistant Secretary of Preparedness and Response, Washington, DC, USA (K.J. Erlandson, G. Korch, M. O’Hara, M. Wathen, J. Hu-Primmer, A. Donabedian)
- Food and Drug Administration, Silver Spring, Maryland, USA (S. Hojvat)
- National Institutes of Health, Rockville, Maryland, USA (E.J. Stemmy)
| | - Erik J. Stemmy
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T.M. Uyeki)
- Office of the Assistant Secretary of Preparedness and Response, Washington, DC, USA (K.J. Erlandson, G. Korch, M. O’Hara, M. Wathen, J. Hu-Primmer, A. Donabedian)
- Food and Drug Administration, Silver Spring, Maryland, USA (S. Hojvat)
- National Institutes of Health, Rockville, Maryland, USA (E.J. Stemmy)
| | | |
Collapse
|
44
|
Adney DR, Bielefeldt-Ohmann H, Hartwig AE, Bowen RA. Infection, Replication, and Transmission of Middle East Respiratory Syndrome Coronavirus in Alpacas. Emerg Infect Dis 2016; 22:1031-7. [PMID: 27070385 DOI: 10.3201/2206.160192] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Middle East respiratory syndrome coronavirus is a recently emerged pathogen associated with severe human disease. Zoonotic spillover from camels appears to play a major role in transmission. Because of logistic difficulties in working with dromedaries in containment, a more manageable animal model would be desirable. We report shedding and transmission of this virus in experimentally infected alpacas (n = 3) or those infected by contact (n = 3). Infectious virus was detected in all infected animals and in 2 of 3 in-contact animals. All alpacas seroconverted and were rechallenged 70 days after the original infection. Experimentally infected animals were protected against reinfection, and those infected by contact were partially protected. Necropsy specimens from immunologically naive animals (n = 3) obtained on day 5 postinfection showed virus in the upper respiratory tract. These data demonstrate efficient virus replication and animal-to-animal transmission and indicate that alpacas might be useful surrogates for camels in laboratory studies.
Collapse
|
45
|
Adney DR, Bielefeldt-Ohmann H, Hartwig AE, Bowen RA. Infection, Replication, and Transmission of Middle East Respiratory Syndrome Coronavirus in Alpacas. Emerg Infect Dis 2016. [PMID: 27070385 PMCID: PMC4880070 DOI: 10.3201/eid2206.160192] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Middle East respiratory syndrome coronavirus is a recently emerged pathogen associated with severe human disease. Zoonotic spillover from camels appears to play a major role in transmission. Because of logistic difficulties in working with dromedaries in containment, a more manageable animal model would be desirable. We report shedding and transmission of this virus in experimentally infected alpacas (n = 3) or those infected by contact (n = 3). Infectious virus was detected in all infected animals and in 2 of 3 in-contact animals. All alpacas seroconverted and were rechallenged 70 days after the original infection. Experimentally infected animals were protected against reinfection, and those infected by contact were partially protected. Necropsy specimens from immunologically naive animals (n = 3) obtained on day 5 postinfection showed virus in the upper respiratory tract. These data demonstrate efficient virus replication and animal-to-animal transmission and indicate that alpacas might be useful surrogates for camels in laboratory studies.
Collapse
|