1
|
Curhan SG, Zeleznik OA, Curhan GC. Longitudinal Study of Seafood and Fish Oil Supplement Intake and Risk of Persistent Tinnitus. Am J Clin Nutr 2024:S0002-9165(24)00804-9. [PMID: 39349293 DOI: 10.1016/j.ajcnut.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Persistent tinnitus is common, disabling, and difficult to treat. Diet has been implicated in tinnitus etiology, but studies are inconsistent and longitudinal data are scarce. Seafood intake is associated with lower risk of hearing loss, but the longitudinal association with tinnitus is unknown. OBJECTIVE We examined the independent associations of seafood intake, fish oil supplement use, and risk of developing persistent tinnitus. METHODS This prospective cohort study followed 73,482 females in the Nurses' Health Study II from 1991 to 2021. Diet was assessed using a validated food frequency questionnaire every 4 years. Multivariable-adjusted Cox proportional hazards regression was used to evaluate independent associations between total seafood intake, specific types of fish, shellfish, fish oil supplements, and risk of persistent tinnitus (defined as tinnitus experienced daily). RESULTS After 1,998,421 person-years of follow-up, 9,362 cases of incident persistent tinnitus were reported. Seafood intake was independently associated with lower risk of developing persistent tinnitus. Compared with participants who never or rarely consumed seafood, the multivariable-adjusted hazard ratios (MVHR,95% CI) for tinnitus were 0.87 (0.78, 0.95) among participants who consumed 1 serving/week, 0.77 (0.68, 0.86) for 2-4 servings/week, and 0.79 (0.64, 0.96) for 5+/servings/week (p-trend<0.0001). Examined individually, higher intakes of tuna fish, light-meat fish and shellfish were associated with lower risk. Compared with participants who never or rarely consumed the specific type, the MVHRs for consumption of 1+ servings/week were 0.84 (0.78, 0.90)(p-trend <0.0001) for tuna fish, 0.91 (0.83, 0.99)(p-trend=0.04) for light-meat fish, and 0.82 (0.72, 0.93)(p-trend<0.0001) for shellfish. Higher risk for dark-meat fish intake was suggested (MVHR: 1.09 (0.99,1.21)(p-trend=0.04). Fish oil supplement use (yes/no) was associated with higher risk (MVHR: 1.12 (1.06,1.19)). CONCLUSION Regular consumption of tuna fish, light-meat fish or shellfish is associated with lower risk of developing persistent tinnitus in females. Fish oil supplement use is associated with higher risk.
Collapse
Affiliation(s)
- Sharon G Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gary C Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Yang R, He C, Zhang P, Li Y, Rong S, Chen X, Qi Q, Gao Z, Chi J, Wang L, Cai M, Zhang Y. Plasma sphingolipids, dopaminergic degeneration and clinical progression in idiopathic Parkinson's disease. Parkinsonism Relat Disord 2024; 126:107071. [PMID: 39053098 DOI: 10.1016/j.parkreldis.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Sphingolipid dysregulation in Parkinson's disease (PD) may affect the release and uptake of striatal dopamine. However, the longitudinal relationship between sphingolipids, striatal dopaminergic degeneration, and clinical correlates in idiopathic PD (iPD) remain unclear. OBJECTIVE To investigate the relationship between plasma sphingolipids, striatal dopamine transporter specific binding ratio (DAT-SBR) and clinical symptoms in iPD. METHODS We included 283 iPD patients and 121 healthy controls (HC) from the Parkinson's Progression Markers Initiative (PPMI), utilizing available data on plasma sphingolipids (sphingomyelin [SM] and ceramide [CER]), striatal DAT-SBR and clinical assessments. Linear mixed models and mediation analyses were used to examine the relationship between sphingolipids, DAT-SBR, and clinical progression in iPD. RESULTS Lower baseline SM levels were significantly associated with a faster decline in DAT-SBR in both the caudate (p = 0.015) and putamen (p = 0.002), with the putamen association remaining significant after Bonferroni correction (p = 0.015). No significant association was found for CER. Patients in the lowest quartile of baseline SM showed faster progression in MDS-UPDRS I (p = 0.013) and II (p = 0.011), while those in the lowest quartile of baseline CER showed faster progression in MDS-UPDRS II (p = 0.013) and III (p = 0.033). The progression rate of caudate DAT-SBR partially mediated the relationships between SM and progression in MDS-UPDRS I and II (p < 0.01). CONCLUSION Sphingolipids are associated with worse dopaminergic degeneration and potentially linked to faster progression in iPD, holding the promise for identifying individuals with faster progression in iPD.
Collapse
Affiliation(s)
- Rui Yang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Chentao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Yan Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Siming Rong
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Xi Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Qi Qi
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Ziqi Gao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Jieshan Chi
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Mengfei Cai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China.
| | - Yuhu Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China.
| |
Collapse
|
3
|
Zhu Z, McClintock TS, Bieberich E. Transcriptomics analysis reveals potential regulatory role of nSMase2 (Smpd3) in nervous system development and function of middle-aged mouse brains. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12911. [PMID: 39171374 PMCID: PMC11339599 DOI: 10.1111/gbb.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Neutral sphingomyelinase-2 (nSMase2), gene name sphingomyelin phosphodiesterase-3 (Smpd3), is a key regulatory enzyme responsible for generating the sphingolipid ceramide. The function of nSMase2 in the brain is still controversial. To better understand the functional roles of nSMase2 in the aging mouse brain, we applied RNA-seq analysis, which identified a total of 1462 differentially abundant mRNAs between +/fro and fro/fro, of which 891 were increased and 571 were decreased in nSMase2-deficient mouse brains. The most strongly enriched GO and KEGG annotation terms among transcripts increased in fro/fro mice included synaptogenesis, synapse development, synaptic signaling, axon development, and axonogenesis. Among decreased transcripts, enriched annotations included ribosome assembly and mitochondrial protein complex functions. KEGG analysis of decreased transcripts also revealed overrepresentation of annotations for Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD). Ingenuity Pathway Analysis (IPA) tools predicted lower susceptibility to these neurodegenerative disorders, as well as predictions agreeing with stronger synaptic function, learning, and memory in fro/fro mice. The IPA tools identified signaling proteins, epigenetic regulators, and microRNAs as likely upstream regulators of the broader set of genes encoding the affected transcripts. It also revealed 16 gene networks, each linked to biological processes identified as overrepresented annotations among the affected transcripts by multiple analysis methods. Therefore, the analysis of these RNA-seq data indicates that nSMase2 impacts synaptic function and neural development, and may contribute to the onset and development of neurodegenerative diseases in middle-aged mice.
Collapse
Affiliation(s)
- Zhihui Zhu
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Timothy S. McClintock
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Erhard Bieberich
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| |
Collapse
|
4
|
Peña-Bautista C, Álvarez-Sánchez L, García-Lluch G, Raga L, Quevedo P, Peretó M, Balaguer A, Baquero M, Cháfer-Pericás C. Relationship between Plasma Lipid Profile and Cognitive Status in Early Alzheimer Disease. Int J Mol Sci 2024; 25:5317. [PMID: 38791355 PMCID: PMC11120743 DOI: 10.3390/ijms25105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer disease (AD) is a heterogeneous and complex disease in which different pathophysiological mechanisms are involved. This heterogenicity can be reflected in different atrophy patterns or clinical manifestations. Regarding biochemical pathways involved in early AD, lipid metabolism plays an important role; therefore, lipid levels have been evaluated as potential AD diagnosis biomarkers, and their levels could be related to different AD clinical manifestations. Therefore, the aim of this work is to study AD lipid profiles from early AD patients and evaluate their clinical significance. For this purpose, untargeted plasma lipidomic analysis was carried out in early AD patients (n = 31) diagnosed with cerebrospinal fluid (CSF) biomarkers. Cluster analysis was carried out to define early AD subgroups according to the lipid levels. Then, the clinical significance of each lipid profile subgroup was studied, analyzing differences for other variables (cognitive status, CSF biomarkers, medication, comorbidities, age, and gender). The cluster analysis revealed two different groups of AD patients. Cluster 1 showed higher levels of plasma lipids and better cognitive status than Cluster 2. However, no differences were found for the other variables (age, gender, medication, comorbidities, cholesterol, and triglycerides levels) between both groups. Plasma lipid levels could differentiate two early AD subgroups, which showed different cognitive statuses. However, further research with a large cohort and longitudinal study evaluating the clinical evolution of these patients is required. In general, it would involve a relevant advance in the knowledge of AD pathological mechanisms, potential treatments, and precision medicine.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Lourdes Álvarez-Sánchez
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Gemma García-Lluch
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Luis Raga
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Paola Quevedo
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Mar Peretó
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| | - Angel Balaguer
- Faculty of Mathematical Sciences, University of Valencia, 46100 Burjassot, Spain;
| | - Miguel Baquero
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
- Division of Neurology, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer’s Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (C.P.-B.); (L.Á.-S.); (G.G.-L.); (L.R.); (M.P.)
| |
Collapse
|
5
|
Moseholm KF, Horn JW, Fitzpatrick AL, Djoussé L, Longstreth WT, Lopez OL, Hoofnagle AN, Jensen MK, Lemaitre RN, Mukamal KJ. Circulating sphingolipids and subclinical brain pathology: the cardiovascular health study. Front Neurol 2024; 15:1385623. [PMID: 38765262 PMCID: PMC11099203 DOI: 10.3389/fneur.2024.1385623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/21/2024] Open
Abstract
Background Sphingolipids are implicated in neurodegeneration and neuroinflammation. We assessed the potential role of circulating ceramides and sphingomyelins in subclinical brain pathology by investigating their association with brain magnetic resonance imaging (MRI) measures and circulating biomarkers of brain injury, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in the Cardiovascular Health Study (CHS), a large and intensively phenotyped cohort of older adults. Methods Brain MRI was offered twice to CHS participants with a mean of 5 years between scans, and results were available from both time points in 2,116 participants (mean age 76 years; 40% male; and 25% APOE ε4 allele carriers). We measured 8 ceramide and sphingomyelin species in plasma samples and examined the associations with several MRI, including worsening grades of white matter hyperintensities and ventricular size, number of brain infarcts, and measures of brain atrophy in a subset with quantitative measures. We also investigated the sphingolipid associations with serum NfL and GFAP. Results In the fully adjusted model, higher plasma levels of ceramides and sphingomyelins with a long (16-carbon) saturated fatty acid were associated with higher blood levels of NfL [β = 0.05, false-discovery rate corrected P (PFDR) = 0.004 and β = 0.06, PFDR = < 0.001, respectively]. In contrast, sphingomyelins with very long (20- and 22-carbon) saturated fatty acids tended to have an inverse association with levels of circulating NfL. In secondary analyses, we found an interaction between ceramide d18:1/20:0 and sex (P for interaction = <0.001), such that ceramide d18:1/20:0 associated with higher odds for infarcts in women [OR = 1.26 (95%CI: 1.07, 1.49), PFDR = 0.03]. We did not observe any associations with GFAP blood levels, white matter grade, ventricular grade, mean bilateral hippocampal volume, or total brain volume. Conclusion Overall, our comprehensive investigation supports the evidence that ceramides and sphingomyelins are associated with increased aging brain pathology and that the direction of association depends on the fatty acid attached to the sphingosine backbone.
Collapse
Affiliation(s)
- Kristine F. Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens W. Horn
- Department of Internal Medicine, Levanger Hospital, Health Trust Nord-Trøndelag, Levanger, Norway
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Luc Djoussé
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - W. T. Longstreth
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Majken K. Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
6
|
Alashmali S. Nutritional roles and therapeutic potentials of dietary sphingomyelin in brain diseases. J Clin Biochem Nutr 2024; 74:185-191. [PMID: 38799143 PMCID: PMC11111474 DOI: 10.3164/jcbn.23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
Sphingolipids have recently gained interest as potential players in variety of diseases due to their import roles in human body particularly, the brain. As sphingomyelin is the most common type of sphingolipids, deficits in its distribution to brain cells may contribute to neurological anomalies. However, data is limited regarding the impact of different levels of dietary sphingomyelin intake on neural function especially if this approach can boost cognition and prevent neurological disorders. This review evaluates the effect of dietary sphingomyelin and its metabolites (ceramide and sphingosine-1-phosphate) in animal models and in humans, with a primary focus on its impact on brain health. Additionally, it proposes multiple neuroenhancing effects of sphingomyelin-rich diet. This presents an opportunity to stimulate further research that aims to determine the therapeutic value of dietary sphingomyelin in preventing, improving or slowing the progression of central nervous system disorders.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
8
|
Pausova Z, Sliz E. Large-Scale Population-Based Studies of Blood Metabolome and Brain Health. Curr Top Behav Neurosci 2024. [PMID: 38509405 DOI: 10.1007/7854_2024_463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metabolomics technologies enable the quantification of multiple metabolomic measures simultaneously, which provides novel insights into molecular aspects of human health and disease. In large-scale, population-based studies, blood is often the preferred biospecimen. Circulating metabolome may relate to brain health either by affecting or reflecting brain metabolism. Peripheral metabolites may act at or cross the blood-brain barrier and, subsequently, influence brain metabolism, or they may reflect brain metabolism if similar pathways are engaged. Peripheral metabolites may also include those penetrating the circulation from the brain, indicating, for example, brain damage. Most brain health-related metabolomics studies have been conducted in the context of neurodegenerative disorders and cognition, but some studies have also focused on neuroimaging markers of these disorders. Moreover, several metabolomics studies of neurodevelopmental disorders have been performed. Here, we provide a brief background on the types of blood metabolites commonly assessed, and we review the literature describing the relationships between human blood metabolome (n > 50 metabolites) and brain health reported in large-scale studies (n > 500 individuals).
Collapse
Affiliation(s)
- Zdenka Pausova
- The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Eeva Sliz
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
9
|
Long C, Lin D, Zhang L, Lin Y, Yao Q, Zhang G, Li L, Liu H, Ying J, Wang X, Hua F. Association between human blood metabolome and the risk of delirium: a Mendelian Randomization study. Front Endocrinol (Lausanne) 2024; 14:1332712. [PMID: 38274231 PMCID: PMC10808797 DOI: 10.3389/fendo.2023.1332712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Delirium significantly contributes to both mortality and morbidity among hospitalized older adults. Furthermore, delirium leads to escalated healthcare expenditures, extended hospital stays, and enduring cognitive deterioration, all of which are acknowledged detrimental outcomes. Nonetheless, the current strategies for predicting and managing delirium remain constrained. Our aim was to employ Mendelian randomization (MR) to investigate the potential causal relationship between metabolites and delirium, as well as to identify potential therapeutic targets. Methods We identified 129 distinct blood metabolites from three genome-wide association studies (GWASs) conducted on the metabolome, involving a total of 147,827 participants of European descent. Genetic information pertaining to delirium was sourced from the ninth iteration of the Finngen Biobank, encompassing 359,699 individuals of Finnish ancestry. We conducted MR analyses to evaluate the connections between blood metabolites and delirium. Additionally, we extended our analysis to encompass the entire phenome using MR, aiming to uncover potential on-target consequences resulting from metabolite interventions. Results In our investigation, we discovered three metabolites serving as causal mediators in the context of delirium: clinical low density lipoprotein cholesterol (LDL-C) (odds ratio [OR]: 1.47, 95% confidence interval [CI]: 1.25-1.73, p = 3.92 x 10-6), sphingomyelin (OR: 1.47, 95% CI: 1.25-1.74, p = 5.97 x 10-6), and X-11593-O-methylascorbate (OR: 0.21, 95% CI: 0.10-0.43, p = 1.86 x 10-5). Furthermore, utilizing phenome-wide MR analysis, we discerned that clinical LDL-C, sphingomyelin, and O-methylascorbate not only mediate delirium susceptibility but also impact the risk of diverse ailments. Limitations (1) Limited representation of the complete blood metabolome, (2) reliance on the PheCode system based on hospital diagnoses may underrepresent conditions with infrequent hospital admissions, and (3) limited to European ancestry. Conclusion The genetic prediction of heightened O-methylascorbate levels seems to correspond to a diminished risk of delirium, in contrast to the association of elevated clinical LDL-C and sphingomyelin levels with an amplified risk. A comprehensive analysis of side-effect profiles has been undertaken to facilitate the prioritization of drug targets. Notably, O-methylascorbate emerges as a potentially auspicious target for mitigating and treating delirium, offering the advantage of lacking predicted adverse side effects.
Collapse
Affiliation(s)
- Chubing Long
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dong Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guangyong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Longshan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Zhang T, Kim BM, Lee TH. Death-associated protein kinase 1 as a therapeutic target for Alzheimer's disease. Transl Neurodegener 2024; 13:4. [PMID: 38195518 PMCID: PMC10775678 DOI: 10.1186/s40035-023-00395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly and represents a major clinical challenge in the ageing society. Neuropathological hallmarks of AD include neurofibrillary tangles composed of hyperphosphorylated tau, senile plaques derived from the deposition of amyloid-β (Aβ) peptides, brain atrophy induced by neuronal loss, and synaptic dysfunctions. Death-associated protein kinase 1 (DAPK1) is ubiquitously expressed in the central nervous system. Dysregulation of DAPK1 has been shown to contribute to various neurological diseases including AD, ischemic stroke and Parkinson's disease (PD). We have established an upstream effect of DAPK1 on Aβ and tau pathologies and neuronal apoptosis through kinase-mediated protein phosphorylation, supporting a causal role of DAPK1 in the pathophysiology of AD. In this review, we summarize current knowledge about how DAPK1 is involved in various AD pathological changes including tau hyperphosphorylation, Aβ deposition, neuronal cell death and synaptic degeneration. The underlying molecular mechanisms of DAPK1 dysregulation in AD are discussed. We also review the recent progress regarding the development of novel DAPK1 modulators and their potential applications in AD intervention. These findings substantiate DAPK1 as a novel therapeutic target for the development of multifunctional disease-modifying treatments for AD and other neurological disorders.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Byeong Mo Kim
- Research Center for New Drug Development, AgingTarget Inc., 10F Ace Cheonggye Tower, 53, Seonggogae-Ro, Uiwang-Si, 16006, Gyeonggi-Do, Korea.
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
11
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
12
|
Cho YK, Lee S, Lee J, Doh J, Park JH, Jung YS, Lee YH. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med 2023; 55:1955-1973. [PMID: 37653032 PMCID: PMC10545718 DOI: 10.1038/s12276-023-01071-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Shi L, Xu J, Green R, Wretlind A, Homann J, Buckley NJ, Tijms BM, Vos SJB, Lill CM, Kate MT, Engelborghs S, Sleegers K, Frisoni GB, Wallin A, Lleó A, Popp J, Martinez-Lage P, Streffer J, Barkhof F, Zetterberg H, Visser PJ, Lovestone S, Bertram L, Nevado-Holgado AJ, Proitsi P, Legido-Quigley C. Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer's disease. Alzheimers Dement 2023; 19:3350-3364. [PMID: 36790009 DOI: 10.1002/alz.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023]
Abstract
INTRODUCTION This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.
Collapse
Affiliation(s)
- Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jin Xu
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Rebecca Green
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley Trust, London, UK
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, London, UK
| | | | - Jan Homann
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Betty M Tijms
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Mara Ten Kate
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, UZ Brussel and Center for Neurociences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Kristel Sleegers
- Complex Genetics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giovanni B Frisoni
- University of Geneva, Geneva, Switzerland
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alberto Lleó
- Neurology Department, Centro de Investigación en Red en enfermedades neurodegenerativas (CIBERNED), Hospital Sant Pau, Barcelona, Spain
| | - Julius Popp
- University Hospital of Lausanne, Lausanne, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry and University of Zürich, Zürich, Switzerland
| | | | - Johannes Streffer
- AC Immune SA, formerly Janssen R&D, LLC. Beerse, Belgium at the time of study conduct, Lausanne, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherland
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Pieter Jelle Visser
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, UK
- Janssen Medical (UK), High Wycombe, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Petroula Proitsi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, King's College London, London, UK
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
14
|
Lista S, González-Domínguez R, López-Ortiz S, González-Domínguez Á, Menéndez H, Martín-Hernández J, Lucia A, Emanuele E, Centonze D, Imbimbo BP, Triaca V, Lionetto L, Simmaco M, Cuperlovic-Culf M, Mill J, Li L, Mapstone M, Santos-Lozano A, Nisticò R. Integrative metabolomics science in Alzheimer's disease: Relevance and future perspectives. Ageing Res Rev 2023; 89:101987. [PMID: 37343679 DOI: 10.1016/j.arr.2023.101987] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Alzheimer's disease (AD) is determined by various pathophysiological mechanisms starting 10-25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics - coupled with existing accessible biomarkers used for AD screening and diagnosis - can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain.
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Madrid, Spain
| | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Luana Lionetto
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Maurizio Simmaco
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Miroslava Cuperlovic-Culf
- Digital Technologies Research Center, National Research Council, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jericha Mill
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| |
Collapse
|
15
|
van Kruining D, Losen M, Crivelli SM, de Jong JJA, Jansen JFA, Backes WH, Monereo‐Sánchez J, van Boxtel MPJ, Köhler S, Linden DEJ, Schram MT, Mielke MM, Martinez‐Martinez P. Plasma ceramides relate to mild cognitive impairment in middle-aged men: The Maastricht Study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12459. [PMID: 37675435 PMCID: PMC10478166 DOI: 10.1002/dad2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 09/08/2023]
Abstract
Introduction There is an urgent need for biomarkers identifying individuals at risk of early-stage cognitive impairment. Using cross-sectional data from The Maastricht Study, this study included 197 individuals with mild cognitive impairment (MCI) and 200 cognitively unimpaired individuals aged 40 to 75, matched by age, sex, and educational level. Methods We assessed the association of plasma sphingolipid and ceramide transfer protein (CERT) levels with MCI and adjusted for potentially confounding risk factors. Furthermore, the relationship of plasma sphingolipids and CERTs with magnetic resonance imaging brain volumes was assessed and age- and sex-stratified analyses were performed. Results Associations of plasma ceramide species C18:0 and C24:1 and combined plasma ceramide chain lengths (ceramide risk score) with MCI were moderated by sex, but not by age, and higher levels were associated with MCI in men. No associations were found among women. In addition, higher levels of ceramide C20:0, C22:0, and C24:1, but not the ceramide risk score, were associated with larger volume of the hippocampus after controlling for covariates, independent of MCI. Although higher plasma ceramide C18:0 was related to higher plasma CERT levels, no association of CERT levels was found with MCI or brain volumes. Discussion Our results warrant further analysis of plasma ceramides as potential markers for MCI in middle-aged men. In contrast to previous studies, no associations of plasma sphingolipids with MCI or brain volumes were found in women, independent of age. These results highlight the importance of accounting for sex- and age-related factors when examining sphingolipid and CERT metabolism related to cognitive function.
Collapse
Affiliation(s)
- Daan van Kruining
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtthe Netherlands
| | - Mario Losen
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtthe Netherlands
| | - Simone M. Crivelli
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Joost J. A. de Jong
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center+ (MUMC+)Maastrichtthe Netherlands
| | - Jacobus F. A. Jansen
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center+ (MUMC+)Maastrichtthe Netherlands
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Walter H. Backes
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center+ (MUMC+)Maastrichtthe Netherlands
| | - Jennifer Monereo‐Sánchez
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center+ (MUMC+)Maastrichtthe Netherlands
| | - Martin P. J. van Boxtel
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtthe Netherlands
| | - Sebastian Köhler
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtthe Netherlands
| | - David E. J. Linden
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtthe Netherlands
| | - Miranda T. Schram
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+ (MUMC+)Maastrichtthe Netherlands
- Heart and Vascular CenterMaastricht University Medical Center+ (MUMC+)Maastrichtthe Netherlands
- School for Cardiovascular Diseases (CARIM)Faculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
| | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Pilar Martinez‐Martinez
- School for Mental Health and NeuroscienceFaculty of HealthMedicine, and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtthe Netherlands
| |
Collapse
|
16
|
Zeleznik OA, Welling DB, Stankovic K, Frueh L, Balasubramanian R, Curhan GC, Curhan SG. Association of Plasma Metabolomic Biomarkers With Persistent Tinnitus: A Population-Based Case-Control Study. JAMA Otolaryngol Head Neck Surg 2023; 149:404-415. [PMID: 36928544 PMCID: PMC10020935 DOI: 10.1001/jamaoto.2023.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/17/2023] [Indexed: 03/18/2023]
Abstract
Importance Persistent tinnitus is common, disabling, and difficult to treat. Objective To evaluate the association between circulating metabolites and persistent tinnitus. Design, Setting, and Participants This was a population-based case-control study of 6477 women who were participants in the Nurses' Health Study (NHS) and NHS II with metabolomic profiles and tinnitus data. Information on tinnitus onset and frequency was collected on biennial questionnaires (2009-2017). For cases, metabolomic profiles were measured (2015-2021) in blood samples collected after the date of the participant's first report of persistent tinnitus (NHS, 1989-1999 and 2010-2012; NHS II, 1996-1999). Data analyses were performed from January 24, 2022, to January 14, 2023. Exposures In total, 466 plasma metabolites from 488 cases of persistent tinnitus and 5989 controls were profiled using 3 complementary liquid chromatography tandem mass spectrometry approaches. Main Outcomes and Measures Logistic regression was used to estimate odds ratios (ORs) of persistent tinnitus (per 1 SD increase in metabolite values) and 95% CIs for each individual metabolite. Metabolite set enrichment analysis was used to identify metabolite classes enriched for associations with tinnitus. Results Of the 6477 study participants (mean [SD] age, 52 [9] years; 6477 [100%] female; 6121 [95%] White individuals) who were registered nurses, 488 reported experiencing daily persistent (≥5 minutes) tinnitus. Compared with participants with no tinnitus (5989 controls), those with persistent tinnitus were slightly older (53.0 vs 51.8 years) and more likely to be postmenopausal, using oral postmenopausal hormone therapy, and have type 2 diabetes, hypertension, and/or hearing loss at baseline. Compared with controls, homocitrulline (OR, 1.32; (95% CI, 1.16-1.50); C38:6 phosphatidylethanolamine (PE; OR, 1.24; 95% CIs, 1.12-1.38), C52:6 triglyceride (TAG; OR, 1.22; 95% CIs, 1.10-1.36), C36:4 PE (OR, 1.22; 95% CIs, 1.10-1.35), C40:6 PE (OR, 1.22; 95% CIs, 1.09-1.35), and C56:7 TAG (OR, 1.21; 95% CIs, 1.09-1.34) were positively associated, whereas α-keto-β-methylvalerate (OR, 0.68; 95% CIs, 0.56-0.82) and levulinate (OR, 0.60; 95% CIs, 0.46-0.79) were inversely associated with persistent tinnitus. Among metabolite classes, TAGs (normalized enrichment score [NES], 2.68), PEs (NES, 2.48), and diglycerides (NES, 1.65) were positively associated, whereas phosphatidylcholine plasmalogens (NES, -1.91), lysophosphatidylcholines (NES, -2.23), and cholesteryl esters (NES,-2.31) were inversely associated with persistent tinnitus. Conclusions and Relevance This population-based case-control study of metabolomic profiles and tinnitus identified novel plasma metabolites and metabolite classes that were significantly associated with persistent tinnitus, suggesting that metabolomic studies may help improve understanding of tinnitus pathophysiology and identify therapeutic targets for this challenging disorder.
Collapse
Affiliation(s)
- Oana A. Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - D. Bradley Welling
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear, Boston
| | - Konstantina Stankovic
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Lisa Frueh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst
| | - Gary C. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sharon G. Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
St Sauver JL, LeBrasseur NK, Rocca WA, Olson JE, Bielinski SJ, Sohn S, Weston SA, McGree ME, Mielke MM. Cohort study examining associations between ceramide levels and risk of multimorbidity among persons participating in the Mayo Clinic Biobank. BMJ Open 2023; 13:e069375. [PMID: 37085302 PMCID: PMC10124265 DOI: 10.1136/bmjopen-2022-069375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE Ceramides have been associated with several ageing-related conditions but have not been studied as a general biomarker of multimorbidity (MM). Therefore, we determined whether ceramide levels are associated with the rapid development of MM. DESIGN Retrospective cohort study. SETTING Mayo Clinic Biobank. PARTICIPANTS 1809 persons in the Mayo Clinic Biobank ≥65 years without MM at the time of enrolment, and with ceramide levels assayed from stored plasma. PRIMARY OUTCOME MEASURE Persons were followed for a median of 5.7 years through their medical records to identify new diagnoses of 20 chronic conditions. The number of new conditions was divided by the person-years of follow-up to calculate the rate of accumulation of new chronic conditions. RESULTS Higher levels of C18:0 and C20:0 were associated with a more rapid rate of accumulation of chronic conditions (C18:0 z score RR: 1.30, 95% CI: 1.10 to 1.53; C20:0 z score RR: 1.26, 95% CI: 1.07 to 1.49). Higher C18:0 and C20:0 levels were also associated with an increased risk of hypertension and coronary artery disease. CONCLUSIONS C18:0 and C20:0 were associated with an increased risk of cardiometabolic conditions. When combined with biomarkers specific to other diseases of ageing, these ceramides may be a useful component of a biomarker panel for predicting accelerated ageing.
Collapse
Affiliation(s)
- Jennifer L St Sauver
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Walter A Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Janet E Olson
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Suzette J Bielinski
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Sunghwan Sohn
- Department of Artificial Intelligence & Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Susan A Weston
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Michaela E McGree
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle M Mielke
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
18
|
den Hoedt S, Dorst-Lagerwerf KY, de Vries HE, Rozemuller AJ, Scheltens P, Walter J, Sijbrands EJ, Martinez-Martinez P, Verhoeven AJ, Teunissen CE, Mulder MT. Sphingolipids in Cerebrospinal Fluid and Plasma Lipoproteins of APOE4 Homozygotes and Non-APOE4 Carriers with Mild Cognitive Impairment versus Subjective Cognitive Decline. J Alzheimers Dis Rep 2023; 7:339-354. [DOI: 10.3233/adr220072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Alzheimer’s disease (AD) patients display alterations in cerebrospinal fluid (CSF) and plasma sphingolipids. The APOE4 genotype increases the risk of developing AD. Objective: To test the hypothesis that the APOE4 genotype affects common sphingolipids in CSF and in plasma of patients with early stages of AD. Methods: Patients homozygous for APOE4 and non-APOE4 carriers with mild cognitive impairment (MCI; n = 20 versus 20) were compared to patients with subjective cognitive decline (SCD; n = 18 versus 20). Sphingolipids in CSF and plasma lipoproteins were determined by liquid-chromatography-tandem mass spectrometry. Aβ42 levels in CSF were determined by immunoassay. Results: APOE4 homozygotes displayed lower levels of sphingomyelin (SM; p = 0.042), SM(d18:1/18:0) (p = 0.026), and Aβ 42 (p < 0.001) in CSF than non-APOE4 carriers. CSF-Aβ 42 correlated with Cer(d18:1/18:0), SM(d18:1/18:0), and SM(d18:1/18:1) levels in APOE4 homozygotes (r > 0.49; p < 0.032) and with Cer(d18:1/24:1) in non-APOE4 carriers (r = 0.50; p = 0.025). CSF-Aβ 42 correlated positively with Cer(d18:1/24:0) in MCI (p = 0.028), but negatively in SCD patients (p = 0.019). Levels of Cer(d18:1/22:0) and long-chain SMs were inversely correlated with Mini-Mental State Examination score among MCI patients, independent of APOE4 genotype (r< –0.47; p < 0.039). Nevertheless, age and sex are stronger determinants of individual sphingolipid levels in CSF than either the APOE genotype or the cognitive state. In HDL, ratios of Cer(d18:1/18:0) and Cer(d18:1/22:0) to cholesterol were higher in APOE4 homozygotes than in non-APOE4 carriers (p = 0.048 and 0.047, respectively). Conclusion: The APOE4 genotype affects sphingolipid profiles of CSF and plasma lipoproteins already at early stages of AD. ApoE4 may contribute to the early development of AD through modulation of sphingolipid metabolism.
Collapse
Affiliation(s)
- Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, The Netherlands
| | - Annemieke J.M. Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Clinical Chemistry, The Alzheimer Center Amsterdam, and Neurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam University Medical Center, VrijeUniversiteit Amsterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Eric J.G. Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Adrie J.M. Verhoeven
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Charlotte E. Teunissen
- Department of Clinical Chemistry, The Alzheimer Center Amsterdam, and Neurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam University Medical Center, VrijeUniversiteit Amsterdam, The Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Green RE, Lord J, Scelsi MA, Xu J, Wong A, Naomi-James S, Handy A, Gilchrist L, Williams DM, Parker TD, Lane CA, Malone IB, Cash DM, Sudre CH, Coath W, Thomas DL, Keuss S, Dobson R, Legido-Quigley C, Fox NC, Schott JM, Richards M, Proitsi P. Investigating associations between blood metabolites, later life brain imaging measures, and genetic risk for Alzheimer's disease. Alzheimers Res Ther 2023; 15:38. [PMID: 36814324 PMCID: PMC9945600 DOI: 10.1186/s13195-023-01184-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Identifying blood-based signatures of brain health and preclinical pathology may offer insights into early disease mechanisms and highlight avenues for intervention. Here, we systematically profiled associations between blood metabolites and whole-brain volume, hippocampal volume, and amyloid-β status among participants of Insight 46-the neuroscience sub-study of the National Survey of Health and Development (NSHD). We additionally explored whether key metabolites were associated with polygenic risk for Alzheimer's disease (AD). METHODS Following quality control, levels of 1019 metabolites-detected with liquid chromatography-mass spectrometry-were available for 1740 participants at age 60-64. Metabolite data were subsequently clustered into modules of co-expressed metabolites using weighted coexpression network analysis. Accompanying MRI and amyloid-PET imaging data were present for 437 participants (age 69-71). Regression analyses tested relationships between metabolite measures-modules and hub metabolites-and imaging outcomes. Hub metabolites were defined as metabolites that were highly connected within significant (pFDR < 0.05) modules or were identified as a hub in a previous analysis on cognitive function in the same cohort. Regression models included adjustments for age, sex, APOE genotype, lipid medication use, childhood cognitive ability, and social factors. Finally, associations were tested between AD polygenic risk scores (PRS), including and excluding the APOE region, and metabolites and modules that significantly associated (pFDR < 0.05) with an imaging outcome (N = 1638). RESULTS In the fully adjusted model, three lipid modules were associated with a brain volume measure (pFDR < 0.05): one enriched in sphingolipids (hippocampal volume: ß = 0.14, 95% CI = [0.055,0.23]), one in several fatty acid pathways (whole-brain volume: ß = - 0.072, 95%CI = [- 0.12, - 0.026]), and another in diacylglycerols and phosphatidylethanolamines (whole-brain volume: ß = - 0.066, 95% CI = [- 0.11, - 0.020]). Twenty-two hub metabolites were associated (pFDR < 0.05) with an imaging outcome (whole-brain volume: 22; hippocampal volume: 4). Some nominal associations were reported for amyloid-β, and with an AD PRS in our genetic analysis, but none survived multiple testing correction. CONCLUSIONS Our findings highlight key metabolites, with functions in membrane integrity and cell signalling, that associated with structural brain measures in later life. Future research should focus on replicating this work and interrogating causality.
Collapse
Affiliation(s)
- Rebecca E Green
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.,UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley Trust, London, UK
| | - Jodie Lord
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK
| | - Marzia A Scelsi
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London (UCL), London, UK
| | - Jin Xu
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.,Institute of Pharmaceutical Science, King's College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK
| | - Sarah Naomi-James
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK.,Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Alex Handy
- University College London, Institute of Health Informatics, London, UK
| | - Lachlan Gilchrist
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK
| | - Dylan M Williams
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas D Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London, W12 0BZ, UK
| | - Christopher A Lane
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Carole H Sudre
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London (UCL), London, UK.,MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK.,Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - William Coath
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - David L Thomas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah Keuss
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Richard Dobson
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.,UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley Trust, London, UK.,University College London, Institute of Health Informatics, London, UK.,Health Data Research UK London, University College London, London, UK.,NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, UK
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, King's College London, London, UK.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.
| | - Marcus Richards
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK.
| | - Petroula Proitsi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.
| | | |
Collapse
|
20
|
Yulug B, Altay O, Li X, Hanoglu L, Cankaya S, Lam S, Velioglu HA, Yang H, Coskun E, Idil E, Nogaylar R, Ozsimsek A, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Hacimuftuoglu A, Yildirim S, Arif M, Shoaie S, Zhang C, Nielsen J, Turkez H, Borén J, Uhlén M, Mardinoglu A. Combined metabolic activators improve cognitive functions in Alzheimer's disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl Neurodegener 2023; 12:4. [PMID: 36703196 PMCID: PMC9879258 DOI: 10.1186/s40035-023-00336-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. METHODS Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. RESULTS We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. CONCLUSION Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Seyda Cankaya
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Simon Lam
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Halil Aziz Velioglu
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Functional Imaging and Cognitive-Affective Neuroscience Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Ebru Coskun
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ezgi Idil
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Rahim Nogaylar
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
21
|
Bengel P, Elkenani M, Beuthner BE, Pietzner M, Mohamed BA, Pollok-Kopp B, Krätzner R, Toischer K, Puls M, Fischer A, Binder L, Hasenfuß G, Schnelle M. Metabolomic Profiling in Patients with Different Hemodynamic Subtypes of Severe Aortic Valve Stenosis. Biomolecules 2023; 13:95. [PMID: 36671480 PMCID: PMC9855798 DOI: 10.3390/biom13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Severe aortic stenosis (AS) is a common pathological condition in an ageing population imposing significant morbidity and mortality. Based on distinct hemodynamic features, i.e., ejection fraction (EF), transvalvular gradient and stroke volume, four different AS subtypes can be distinguished: (i) normal EF and high gradient, (ii) reduced EF and high gradient, (iii) reduced EF and low gradient, and (iv) normal EF and low gradient. These subtypes differ with respect to pathophysiological mechanisms, cardiac remodeling, and prognosis. However, little is known about metabolic changes in these different hemodynamic conditions of AS. Thus, we carried out metabolomic analyses in serum samples of 40 AS patients (n = 10 per subtype) and 10 healthy blood donors (controls) using ultrahigh-performance liquid chromatography-tandem mass spectroscopy. A total of 1293 biochemicals could be identified. Principal component analysis revealed different metabolic profiles in all of the subgroups of AS (All-AS) vs. controls. Out of the determined biochemicals, 48% (n = 620) were altered in All-AS vs. controls (p < 0.05). In this regard, levels of various acylcarnitines (e.g., myristoylcarnitine, fold-change 1.85, p < 0.05), ketone bodies (e.g., 3-hydroxybutyrate, fold-change 11.14, p < 0.05) as well as sugar metabolites (e.g., glucose, fold-change 1.22, p < 0.05) were predominantly increased, whereas amino acids (e.g., leucine, fold-change 0.8, p < 0.05) were mainly reduced in All-AS. Interestingly, these changes appeared to be consistent amongst all AS subtypes. Distinct differences between AS subtypes were found for metabolites belonging to hemoglobin metabolism, diacylglycerols, and dihydrosphingomyelins. These findings indicate that relevant changes in substrate utilization appear to be consistent for different hemodynamic subtypes of AS and may therefore reflect common mechanisms during AS-induced heart failure. Additionally, distinct metabolites could be identified to significantly differ between certain AS subtypes. Future studies need to define their pathophysiological implications.
Collapse
Affiliation(s)
- Philipp Bengel
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Manar Elkenani
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Bo E. Beuthner
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Belal A. Mohamed
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Beatrix Pollok-Kopp
- Department of Transfusion Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ralph Krätzner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Karl Toischer
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Miriam Puls
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Andreas Fischer
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
- Division Vascular Signaling and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Lutz Binder
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gerd Hasenfuß
- Clinic for Cardiology & Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
22
|
Peña-Bautista C, Álvarez-Sánchez L, Roca M, García-Vallés L, Baquero M, Cháfer-Pericás C. Plasma Lipidomics Approach in Early and Specific Alzheimer’s Disease Diagnosis. J Clin Med 2022; 11:jcm11175030. [PMID: 36078960 PMCID: PMC9457360 DOI: 10.3390/jcm11175030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The brain is rich in lipid content, so a physiopathological pathway in Alzheimer’s disease (AD) could be related to lipid metabolism impairment. The study of lipid profiles in plasma samples could help in the identification of early AD changes and new potential biomarkers. Methods: An untargeted lipidomic analysis was carried out in plasma samples from preclinical AD (n = 11), mild cognitive impairment-AD (MCI-AD) (n = 31), and healthy (n = 20) participants. Variables were identified by means of two complementary methods, and lipid families’ profiles were studied. Then, a targeted analysis was carried out for some identified lipids. Results: Statistically significant differences were obtained for the diglycerol (DG), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC), monoglyceride (MG), and sphingomyelin (SM) families as well as for monounsaturated (MUFAs) lipids, among the participant groups. In addition, statistically significant differences in the levels of lipid families (ceramides (Cer), LPE, LPC, MG, and SM) were observed between the preclinical AD and healthy groups, while statistically significant differences in the levels of DG, MG, and PE were observed between the MCI-AD and healthy groups. In addition, 18:1 LPE showed statistically significant differences in the targeted analysis between early AD (preclinical and MCI) and healthy participants. Conclusion: The different plasma lipid profiles could be useful in the early and minimally invasive detection of AD. Among the lipid families, relevant results were obtained from DGs, LPEs, LPCs, MGs, and SMs. Specifically, MGs could be potentially useful in AD detection; while LPEs, LPCs, and SM seem to be more related to the preclinical stage, while DGs are more related to the MCI stage. Specifically, 18:1 LPE showed a potential utility as an AD biomarker.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Lourdes Álvarez-Sánchez
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Division of Neurology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | - Marta Roca
- Analytical Unit, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Lorena García-Vallés
- Division of Neurology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | - Miguel Baquero
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Division of Neurology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Correspondence:
| |
Collapse
|
23
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
24
|
Sun L, Guo D, Jia Y, Shi M, Yang P, Wang Y, Liu F, Chen GC, Zhang Y, Zhu Z. Association Between Human Blood Metabolome and the Risk of Alzheimer's Disease. Ann Neurol 2022; 92:756-767. [PMID: 35899678 DOI: 10.1002/ana.26464] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most common degenerative neurological disorder with limited therapeutic options. Therefore, it is particularly important to explore the potential biomarkers implicated in the occurrence and progression of AD prior to clinical testing. METHODS We selected 119 unique blood metabolites from 3 metabolome genome-wide association studies (GWASs) with 147,827 European participants. Summary data about AD were obtained from a GWAS meta-analysis with 63,926 European individuals from the International Genomics of Alzheimer's Project. MR analyses were performed to assess the associations of blood metabolites with AD, and a phenome-wide MR analysis was further applied to ascertain the potential on-target side effects of metabolite interventions. RESULTS Four metabolites were identified as causal mediators for AD, including epiandrosterone sulfate (odds ratio [OR] per SD increase: 0.60; 95% confidence interval [CI]: 0.51-0.71; P=6.14×10-9 ), 5alpha-androstan-3beta-17beta-diol disulfate (OR per SD increase: 0.69; 95% CI: 0.57-0.84; P=1.98×10-4 ), sphingomyelin (OR per SD increase: 2.53; 95% CI: 1.78-3.59; P=2.10×10-7 ), and glutamine (OR per SD increase: 0.83; 95% CI: 0.77-0.89; P=2.09×10-6 ). Phenome-wide MR analysis showed that epiandrosterone sulfate, 5alpha-androstan-3beta-17beta-diol disulfate and sphingomyelin mediated the risk of multiple diseases, and glutamine had beneficial effects on the risk of 4 diseases. INTERPRETATION Genetically predicted increased epiandrosterone sulfate, 5alpha-androstan-3beta-17beta-diol disulfate and glutamine might be associated with a decreased risk of AD, while sphingomyelin was associated with an increased risk. Side-effect profiles were characterized to help inform drug target prioritization, and glutamine might be a promising target for the prevention and treatment of AD with no predicted detrimental side effects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lulu Sun
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- School of Nursing, Medical College of Soochow University, Suzhou, China
| | - Yiming Jia
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yu Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Fanghua Liu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Custodia A, Romaus-Sanjurjo D, Aramburu-Núñez M, Álvarez-Rafael D, Vázquez-Vázquez L, Camino-Castiñeiras J, Leira Y, Pías-Peleteiro JM, Aldrey JM, Sobrino T, Ouro A. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2022; 23:8082. [PMID: 35897658 PMCID: PMC9331765 DOI: 10.3390/ijms23158082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer's disease (AD) is considered the most prevalent neurodegenerative disease and the leading cause of dementia worldwide. Sphingolipids, such as ceramide or sphingosine 1-phosphate, are bioactive molecules implicated in structural and signaling functions. Metabolic dysfunction in the highly conserved pathways to produce sphingolipids may lead to or be a consequence of an underlying disease. Recent studies on transcriptomics and sphingolipidomics have observed alterations in sphingolipid metabolism of both enzymes and metabolites involved in their synthesis in several neurodegenerative diseases, including AD. In this review, we highlight the most relevant findings related to ceramide and neurodegeneration, with a special focus on AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tomás Sobrino
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| | - Alberto Ouro
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| |
Collapse
|
26
|
Casas-Fernández E, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Lipids as Early and Minimally Invasive Biomarkers for Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1613-1631. [PMID: 34727857 PMCID: PMC9881089 DOI: 10.2174/1570159x19666211102150955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Specifically, typical late-onset AD is a sporadic form with a complex etiology that affects over 90% of patients. The current gold standard for AD diagnosis is based on the determination of amyloid status by analyzing cerebrospinal fluid samples or brain positron emission tomography. These procedures can be used widely as they have several disadvantages (expensive, invasive). As an alternative, blood metabolites have recently emerged as promising AD biomarkers. Small molecules that cross the compromised AD blood-brain barrier could be determined in plasma to improve clinical AD diagnosis at early stages through minimally invasive techniques. Specifically, lipids could play an important role in AD since the brain has a high lipid content, and they are present ubiquitously inside amyloid plaques. Therefore, a systematic review was performed with the aim of identifying blood lipid metabolites as potential early AD biomarkers. In conclusion, some lipid families (fatty acids, glycerolipids, glycerophospholipids, sphingolipids, lipid peroxidation compounds) have shown impaired levels at early AD stages. Ceramide levels were significantly higher in AD subjects, and polyunsaturated fatty acids levels were significantly lower in AD. Also, high arachidonic acid levels were found in AD patients in contrast to low sphingomyelin levels. Consequently, these lipid biomarkers could be used for minimally invasive and early AD clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Health Research Institute La Fe, Valencia, Spain;,Address correspondence to this author at the Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, Valencia E46026, Spain;, Tel: +34-96 1246721; E-mail:
| |
Collapse
|
27
|
Lind L, Salihovic S, Sundström J, Elmståhl S, Hammar U, Dekkers K, Ärnlöv J, Smith JG, Engström G, Fall T. Metabolic Profiling of Obesity With and Without the Metabolic Syndrome: A Multisample Evaluation. J Clin Endocrinol Metab 2022; 107:1337-1345. [PMID: 34984454 DOI: 10.1210/clinem/dgab922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/31/2022]
Abstract
CONTEXT There is a dispute whether obesity without major metabolic derangements may represent a benign condition or not. OBJECTIVE We aimed to compare the plasma metabolome in obese subjects without metabolic syndrome (MetS) with normal-weight subjects without MetS and with obese subjects with MetS. METHODS This was a cross-sectional study at 2 academic centers in Sweden. Individuals from 3 population-based samples (EpiHealth, n = 2342, SCAPIS-Uppsala, n = 4985, and SCAPIS-Malmö, n = 3978) were divided into groups according to their body mass index (BMI) and presence/absence of MetS (National Cholesterol Education Program [NCEP]/consensus criteria). In total, 791 annotated endogenous metabolites were measured by ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS We observed major differences in metabolite profiles (427 metabolites) between obese (BMI ≥ 30 kg/m2) and normal-weight (BMI < 25 kg/m2) subjects without MetS after adjustment for major lifestyle factors. Pathway enrichment analysis highlighted branch-chained and aromatic amino acid synthesis/metabolism, aminoacyl-tRNA biosynthesis, and sphingolipid metabolism. The same pathways, and similar metabolites, were also highlighted when obese subjects with and without MetS were compared despite adjustment for BMI and waist circumference, or when the metabolites were related to BMI and number of MetS components in a continuous fashion. Similar metabolites and pathways were also related to insulin sensitivity (Matsuda index) in a separate study (POEM, n = 501). CONCLUSION Our data suggest a graded derangement of the circulating metabolite profile from lean to obese to MetS, in particular for metabolites involved in amino acid synthesis/metabolism and sphingolipid metabolism. Insulin resistance is a plausible mediator of this gradual metabolic deterioration.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden
| | - Samira Salihovic
- Inflammatory Response and Infection Susceptibility Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - Sölve Elmståhl
- Department of Clinical Sciences, Division of Geriatric Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Ulf Hammar
- Department of Medical Sciences, Uppsala University, Sweden
| | - Koen Dekkers
- Department of Medical Sciences, Uppsala University, Sweden
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Huddinge, Sweden
- School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital , Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Tove Fall
- Department of Medical Sciences, Uppsala University, Sweden
| |
Collapse
|
28
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
29
|
Jia L, Yang J, Zhu M, Pang Y, Wang Q, Wei Q, Li Y, Li T, Li F, Wang Q, Li Y, Wei Y. A metabolite panel that differentiates Alzheimer's disease from other dementia types. Alzheimers Dement 2021; 18:1345-1356. [PMID: 34786838 PMCID: PMC9545206 DOI: 10.1002/alz.12484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022]
Abstract
Introduction Alzheimer's disease (AD) is associated with altered metabolites. This study aimed to determine the validity of using circulating metabolites to differentiate AD from other dementias. Methods Blood metabolites were measured in three data sets. Data set 1 (controls, 27; AD, 28) was used for analyzing differential metabolites. Data set 2 (controls, 93; AD, 92) was used to establish a diagnostic AD model with use of a metabolite panel. The model was applied to Data set 3 (controls, 76; AD, 76; other dementias, 205) to verify its capacity for differentiating AD from other dementias. Results Data set 1 revealed 7 upregulated and 77 downregulated metabolites. In Data set 2, a panel of 11 metabolites was included in a model that could distinguish AD from controls. In Data set 3, this panel was used to successfully differentiate AD from other dementias. Discussion This study revealed an AD‐specific panel of 11 metabolites that may be used for AD diagnosis.
Collapse
Affiliation(s)
- Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianwei Yang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yana Pang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qin Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - TingTing Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qigeng Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
30
|
den Hoedt S, Crivelli SM, Leijten FPJ, Losen M, Stevens JAA, Mané-Damas M, de Vries HE, Walter J, Mirzaian M, Sijbrands EJG, Aerts JMFG, Verhoeven AJM, Martinez-Martinez P, Mulder MT. Effects of Sex, Age, and Apolipoprotein E Genotype on Brain Ceramides and Sphingosine-1-Phosphate in Alzheimer's Disease and Control Mice. Front Aging Neurosci 2021; 13:765252. [PMID: 34776936 PMCID: PMC8579780 DOI: 10.3389/fnagi.2021.765252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022] Open
Abstract
Apolipoprotein ε4 (APOE)4 is a strong risk factor for the development of Alzheimer’s disease (AD) and aberrant sphingolipid levels have been implicated in AD. We tested the hypothesis that the APOE4 genotype affects brain sphingolipid levels in AD. Seven ceramides and sphingosine-1-phosphate (S1P) were quantified by LC-MSMS in hippocampus, cortex, cerebellum, and plasma of <3 months and >5 months old human APOE3 and APOE4-targeted replacement mice with or without the familial AD (FAD) background of both sexes (145 animals). APOE4 mice had higher Cer(d18:1/24:0) levels in the cortex (1.7-fold, p = 0.002) than APOE3 mice. Mice with AD background showed higher levels of Cer(d18:1/24:1) in the cortex than mice without (1.4-fold, p = 0.003). S1P levels were higher in all three brain regions of older mice than of young mice (1.7-1.8-fold, all p ≤ 0.001). In female mice, S1P levels in hippocampus (r = −0.54 [−0.70, −0.35], p < 0.001) and in cortex correlated with those in plasma (r = −0.53 [−0.71, −0.32], p < 0.001). Ceramide levels were lower in the hippocampus (3.7–10.7-fold, all p < 0.001), but higher in the cortex (2.3–12.8-fold, p < 0.001) of female than male mice. In cerebellum and plasma, sex effects on individual ceramides depended on acyl chain length (9.5-fold lower to 11.5-fold higher, p ≤ 0.001). In conclusion, sex is a stronger determinant of brain ceramide levels in mice than APOE genotype, AD background, or age. Whether these differences impact AD neuropathology in men and women remains to be investigated.
Collapse
Affiliation(s)
- Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Simone M Crivelli
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Frank P J Leijten
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jo A A Stevens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Marina Mané-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, VU Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, Venusberg Campus, Bonn, Germany
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Adrie J M Verhoeven
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
31
|
Akyol S, Ugur Z, Yilmaz A, Ustun I, Gorti SKK, Oh K, McGuinness B, Passmore P, Kehoe PG, Maddens ME, Green BD, Graham SF. Lipid Profiling of Alzheimer's Disease Brain Highlights Enrichment in Glycerol(phospho)lipid, and Sphingolipid Metabolism. Cells 2021; 10:2591. [PMID: 34685570 PMCID: PMC8534054 DOI: 10.3390/cells10102591] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is reported to be closely linked with abnormal lipid metabolism. To gain a more comprehensive understanding of what causes AD and its subsequent development, we profiled the lipidome of postmortem (PM) human brains (neocortex) of people with a range of AD pathology (Braak 0-6). Using high-resolution mass spectrometry, we employed a semi-targeted, fully quantitative lipidomics profiling method (Lipidyzer) to compare the biochemical profiles of brain tissues from persons with mild AD (n = 15) and severe AD (AD; n = 16), and compared them with age-matched, cognitively normal controls (n = 16). Univariate analysis revealed that the concentrations of 420 lipid metabolites significantly (p < 0.05; q < 0.05) differed between AD and controls. A total of 49 lipid metabolites differed between mild AD and controls, and 439 differed between severe AD and mild AD. Interestingly, 13 different subclasses of lipids were significantly perturbed, including neutral lipids, glycerolipids, glycerophospholipids, and sphingolipids. Diacylglycerol (DAG) (14:0/14:0), triacylglycerol (TAG) (58:10/FA20:5), and TAG (48:4/FA18:3) were the most notably altered lipids when AD and control brains were compared (p < 0.05). When we compare mild AD and control brains, phosphatidylethanolamine (PE) (p-18:0/18:1), phosphatidylserine (PS) (18:1/18:2), and PS (14:0/22:6) differed the most (p < 0.05). PE (p-18:0/18:1), DAG (14:0/14:0), and PS (18:1/20:4) were identified as the most significantly perturbed lipids when AD and mild AD brains were compared (p < 0.05). Our analysis provides the most extensive lipid profiling yet undertaken in AD brain tissue and reveals the cumulative perturbation of several lipid pathways with progressive disease pathology. Lipidomics has considerable potential for studying AD etiology and identifying early diagnostic biomarkers.
Collapse
Affiliation(s)
- Sumeyya Akyol
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI 48073, USA; (S.A.); (Z.U.); (A.Y.); (K.O.)
| | - Zafer Ugur
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI 48073, USA; (S.A.); (Z.U.); (A.Y.); (K.O.)
| | - Ali Yilmaz
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI 48073, USA; (S.A.); (Z.U.); (A.Y.); (K.O.)
- William Beaumont School of Medicine, Oakland University, Rochester, MI 48073, USA
| | - Ilyas Ustun
- College of Computing and Digital Media, DePaul University, Chicago, IL 60604, USA; (I.U.); (M.E.M.)
| | | | - Kyungjoon Oh
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI 48073, USA; (S.A.); (Z.U.); (A.Y.); (K.O.)
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si 13620, Gyeonggi-do, Korea
| | - Bernadette McGuinness
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT12 6BA, UK; (B.M.); (P.P.)
| | - Peter Passmore
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT12 6BA, UK; (B.M.); (P.P.)
| | - Patrick G. Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK;
| | - Michael E. Maddens
- College of Computing and Digital Media, DePaul University, Chicago, IL 60604, USA; (I.U.); (M.E.M.)
| | - Brian D. Green
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Stewart F. Graham
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI 48073, USA; (S.A.); (Z.U.); (A.Y.); (K.O.)
- College of Computing and Digital Media, DePaul University, Chicago, IL 60604, USA; (I.U.); (M.E.M.)
| |
Collapse
|
32
|
Philipsen MH, Ranjbari E, Gu C, Ewing AG. Mass Spectrometry Imaging Shows Modafinil, A Student Study Drug, Changes the Lipid Composition of the Fly Brain. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mai H. Philipsen
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Göteborg Sweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Göteborg Sweden
| | - Chaoyi Gu
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Göteborg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Göteborg Sweden
| |
Collapse
|
33
|
Philipsen MH, Ranjbari E, Gu C, Ewing AG. Mass Spectrometry Imaging Shows Modafinil, A Student Study Drug, Changes the Lipid Composition of the Fly Brain. Angew Chem Int Ed Engl 2021; 60:17378-17382. [PMID: 34041832 PMCID: PMC8361715 DOI: 10.1002/anie.202105004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 12/17/2022]
Abstract
Modafinil, a widely used psychoactive drug, has been shown to exert a positive impact on cognition and is used to treat sleep disorders and hyperactivity. Using time-of-flight secondary ion mass spectrometric imaging, we studied the changes of brain lipids of Drosophila melanogaster induced by modafinil to gain insight into the functional mechanism of modafinil in the brain. We found that upon modafinil treatment, the abundance of phosphatidylcholine and sphingomyelin species in the central brain of Drosophila is significantly decreased, whereas the levels of phosphatidylethanolamine and phosphatidylinositol in the brains show significant enhancement compared to the control flies. The alteration of brain lipids caused by modafinil is consistent with previous studies about cognition-related drugs and offers a plausible mechanism regarding the action of modafinil in the brain as well as a potential target for the treatment of certain disorders.
Collapse
Affiliation(s)
- Mai H. Philipsen
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GöteborgSweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GöteborgSweden
| | - Chaoyi Gu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GöteborgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GöteborgSweden
| |
Collapse
|
34
|
Avisar H, Guardia-Laguarta C, Area-Gomez E, Surface M, Chan AK, Alcalay RN, Lerner B. Lipidomics Prediction of Parkinson's Disease Severity: A Machine-Learning Analysis. JOURNAL OF PARKINSONS DISEASE 2021; 11:1141-1155. [PMID: 33814463 DOI: 10.3233/jpd-202476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The role of the lipidome as a biomarker for Parkinson's disease (PD) is a relatively new field that currently only focuses on PD diagnosis. OBJECTIVE To identify a relevant lipidome signature for PD severity markers. METHODS Disease severity of 149 PD patients was assessed by the Unified Parkinson's Disease Rating Scale (UPDRS) and the Montreal Cognitive Assessment (MoCA). The lipid composition of whole blood samples was analyzed, consisting of 517 lipid species from 37 classes; these included all major classes of glycerophospholipids, sphingolipids, glycerolipids, and sterols. To handle the high number of lipids, the selection of lipid species and classes was consolidated via analysis of interrelations between lipidomics and disease severity prediction using the random forest machine-learning algorithm aided by conventional statistical methods. RESULTS Specific lipid classes dihydrosphingomyelin (dhSM), plasmalogen phosphatidylethanolamine (PEp), glucosylceramide (GlcCer), dihydro globotriaosylceramide (dhGB3), and to a lesser degree dihydro GM3 ganglioside (dhGM3), as well as species dhSM(20:0), PEp(38:6), PEp(42:7), GlcCer(16:0), GlcCer(24:1), dhGM3(22:0), dhGM3(16:0), and dhGB3(16:0) contribute to PD severity prediction of UPDRS III score. These, together with age, age at onset, and disease duration, also contribute to prediction of UPDRS total score. We demonstrate that certain lipid classes and species interrelate differently with the degree of severity of motor symptoms between men and women, and that predicting intermediate disease stages is more accurate than predicting less or more severe stages. CONCLUSION Using machine-learning algorithms and methodologies, we identified lipid signatures that enable prediction of motor severity in PD. Future studies should focus on identifying the biological mechanisms linking GlcCer, dhGB3, dhSM, and PEp with PD severity.
Collapse
Affiliation(s)
- Hila Avisar
- Department of Industrial Engineering & Management, Ben-Gurion University of the Negev, Israel
| | | | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew Surface
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Amanda K Chan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Boaz Lerner
- Department of Industrial Engineering & Management, Ben-Gurion University of the Negev, Israel
| |
Collapse
|
35
|
Mohammadzadeh Honarvar N, Zarezadeh M, Molsberry SA, Ascherio A. Changes in plasma phospholipids and sphingomyelins with aging in men and women: A comprehensive systematic review of longitudinal cohort studies. Ageing Res Rev 2021; 68:101340. [PMID: 33839333 DOI: 10.1016/j.arr.2021.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Aging affects the serum levels of various metabolites which may be involved in the pathogenesis of chronic diseases. The aim of this review article is to summarize the relationship between aging and alterations in the plasma phospholipids and sphingomyelins. METHODS PRISMA guidelines were employed during all steps. MEDLINE (PubMed), Scopus, Embase and Web of Sciences databases and Google Scholar were searched up to October 2020. Cohort studies investigating the relationship between aging and within-person changes in sphingomyelin (SM), phosphatidyl choline (PC), lyso PC (LPC) and phosphatidyl ethanolamine (PE) were included. Newcastle-Ottawa scale was used to assess the quality of included studies. RESULTS A total of 1425 studies were identified. After removing 610 duplicates and 723 irrelevant studies, full texts of 92 articles were evaluated. Of these 92, 6 studies (including data from 7 independent cohorts) met the inclusion criteria and are included in this review. All study populations were healthy and included both men and women. Results by sex were reported in 3 cohorts for PC, 5 cohorts for LPC, 3 cohorts for SM, and only 1 cohort for PE. In men, PC, SM, PE and LPC decreased with aging, although results for LPC were inconsistent. In women, LPC, SM, and PE increased age, whereas changes in PC were inconsistent. CONCLUSION Within-person serum levels of phospholipids and sphingomyelins, decrease during aging in men and increase in women. Notably, however, there were some inconsistencies across studies of LPC in men and of PC in women.
Collapse
|
36
|
Ren H, Triebl A, Muralidharan S, Wenk MR, Xia Y, Torta F. Mapping the distribution of double bond location isomers in lipids across mouse tissues. Analyst 2021; 146:3899-3907. [PMID: 34009216 DOI: 10.1039/d1an00449b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipids are highly diverse and essential biomolecules in all living systems. As lipid homeostasis is often perturbed in metabolic diseases, these molecules can serve as both biomarkers and drug targets. The development of modern mass spectrometry (MS) provided the platform for large-scale lipidomic studies at the level of molecular species. Traditionally, more detailed structural information, such as the C[double bond, length as m-dash]C location, was mostly assumed instead of properly measured, though the specific isomers were indicated as potential biomarkers of cancers or cardiovascular diseases. Recent C[double bond, length as m-dash]C localization methods, including the Paternò-Büchi (PB) reaction, have shown the prevalent and heterogeneous distribution of C[double bond, length as m-dash]C location in lipids across tissues. Mapping the lipidome of model animals at the level of C[double bond, length as m-dash]C position would increase the understanding of the metabolism and function of lipid isomers, facilitating clinical research. In this study, we employed an online PB reaction on a liquid chromatography-high resolution MS platform to map C[double bond, length as m-dash]C location isomers in five different murine tissues. We analyzed phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins; we relatively quantified and mapped the distribution of ∼30 groups of co-existing isomers, characterized by different chain lengths and degrees of unsaturation. More specifically, we performed relative quantitation of four isomers of the C16:1 fatty acyl, which included rarely reported n-10 and n-5 species besides n-9 and n-7 isomers. We showed a small variation of the isomers' relative composition among individual animals (<20%) but significant differences across different lipid species and mouse tissues. Our results provided an initial database to map alternative lipid metabolic pathways at the tissue level.
Collapse
Affiliation(s)
- Hanlin Ren
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Alexander Triebl
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore. and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sneha Muralidharan
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore.
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore. and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore. and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
37
|
Muralidharan S, Shimobayashi M, Ji S, Burla B, Hall MN, Wenk MR, Torta F. A reference map of sphingolipids in murine tissues. Cell Rep 2021; 35:109250. [PMID: 34133933 DOI: 10.1016/j.celrep.2021.109250] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids (SPs) have both a structural role in the cell membranes and a signaling function that regulates many cellular processes. The enormous structural diversity and low abundance of many SPs pose a challenge for their identification and quantification. Recent advances in lipidomics, in particular liquid chromatography (LC) coupled with mass spectrometry (MS), provide methods to detect and quantify many low-abundant SP species reliably. Here we use LC-MS to compile a "murine sphingolipid atlas," containing the qualitative and quantitative distribution of 114 SPs in 21 tissues of a widely utilized wild-type laboratory mouse strain (C57BL/6). We report tissue-specific SP fingerprints, as well as sex-specific differences in the same tissue. This is a comprehensive, quantitative sphingolipidomic map of mammalian tissues collected in a systematic fashion. It will complement other tissue compendia for interrogation into the role of SP in mammalian health and disease.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Mitsugu Shimobayashi
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Michael N Hall
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
38
|
Su H, Rustam YH, Masters CL, Makalic E, McLean CA, Hill AF, Barnham KJ, Reid GE, Vella LJ. Characterization of brain-derived extracellular vesicle lipids in Alzheimer's disease. J Extracell Vesicles 2021; 10:e12089. [PMID: 34012516 PMCID: PMC8111496 DOI: 10.1002/jev2.12089] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid dyshomeostasis is associated with the most common form of dementia, Alzheimer's disease (AD). Substantial progress has been made in identifying positron emission tomography and cerebrospinal fluid biomarkers for AD, but they have limited use as front-line diagnostic tools. Extracellular vesicles (EVs) are released by all cells and contain a subset of their parental cell composition, including lipids. EVs are released from the brain into the periphery, providing a potential source of tissue and disease specific lipid biomarkers. However, the EV lipidome of the central nervous system is currently unknown and the potential of brain-derived EVs (BDEVs) to inform on lipid dyshomeostasis in AD remains unclear. The aim of this study was to reveal the lipid composition of BDEVs in human frontal cortex, and to determine whether BDEVs have an altered lipid profile in AD. Using semi-quantitative mass spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17 lipid classes and 692 lipid molecules. BDEVs were enriched in glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further report that BDEVs are enriched in ether-containing PS lipids, a finding that further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal cortex offered improved detection of dysregulated lipids in AD over global lipid profiling of this brain region. AD BDEVs had significantly altered glycerophospholipid and sphingolipid levels, specifically increased plasmalogen glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing lipids, and altered amide-linked acyl chain content in sphingomyelin and ceramide lipids relative to CTL. The most prominent alteration was a two-fold decrease in lipid species containing anti-inflammatory/pro-resolving docosahexaenoic acid. The in-depth lipidome analysis provided in this study highlights the advantage of EVs over more complex tissues for improved detection of dysregulated lipids that may serve as potential biomarkers in the periphery.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Yepy H. Rustam
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Catriona A. McLean
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVictoriaAustralia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Gavin E. Reid
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
- School of Chemistry, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
39
|
Tzou FY, Su TY, Lin WS, Kuo HC, Yu YL, Yeh YH, Liu CC, Kuo CH, Huang SY, Chan CC. Dihydroceramide desaturase regulates the compartmentalization of Rac1 for neuronal oxidative stress. Cell Rep 2021; 35:108972. [PMID: 33852856 DOI: 10.1016/j.celrep.2021.108972] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
Disruption of sphingolipid homeostasis is known to cause neurological disorders, but the mechanisms by which specific sphingolipid species modulate pathogenesis remain unclear. The last step of de novo sphingolipid synthesis is the conversion of dihydroceramide to ceramide by dihydroceramide desaturase (human DEGS1; Drosophila Ifc). Loss of ifc leads to dihydroceramide accumulation, oxidative stress, and photoreceptor degeneration, whereas human DEGS1 variants are associated with leukodystrophy and neuropathy. In this work, we demonstrate that DEGS1/ifc regulates Rac1 compartmentalization in neuronal cells and that dihydroceramide alters the association of active Rac1 with organelle-mimicking membranes. We further identify the Rac1-NADPH oxidase (NOX) complex as the major cause of reactive oxygen species (ROS) accumulation in ifc-knockout (ifc-KO) photoreceptors and in SH-SY5Y cells with the leukodystrophy-associated DEGS1H132R variant. Suppression of Rac1-NOX activity rescues degeneration of ifc-KO photoreceptors and ameliorates oxidative stress in DEGS1H132R-carrying cells. Therefore, we conclude that DEGS1/ifc deficiency causes dihydroceramide accumulation, resulting in Rac1 mislocalization and NOX-dependent neurodegeneration.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wan-Syuan Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Lian Yu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Yeh
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chung-Chih Liu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
40
|
Fote G, Wu J, Mapstone M, Macciardi F, Fiandaca MS, Federoff HJ. Plasma Sphingomyelins in Late-Onset Alzheimer's Disease. J Alzheimers Dis 2021; 83:1161-1171. [PMID: 34397408 PMCID: PMC9788856 DOI: 10.3233/jad-200871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Altered plasma levels of sphingolipids, including sphingomyelins (SM), have been found in mouse models of Alzheimer's disease (AD) and in AD patient plasma samples. OBJECTIVE This study assesses fourteen plasma SM species in a late-onset AD (LOAD) patient cohort (n = 138). METHODS Specimens from control, preclinical, and symptomatic subjects were analyzed using targeted mass-spectrometry-based metabolomic methods. RESULTS Total plasma SM levels were not significantly affected by age or cognitive status. However, one metabolite that has been elevated in manifest AD in several recent studies, SM OHC14:1, was reduced significantly in pre-clinical AD and MCI relative to normal controls. CONCLUSION We recommend additional comprehensive plasma lipidomics in experimental and clinical biospecimens related to LOAD that might advance the utility of plasma sphingomyelin levels in molecular phenotyping and interpretations of pathobiological mechanisms.
Collapse
Affiliation(s)
- Gianna Fote
- UC Irvine Department of Biological Chemistry, Irvine, CA, USA,Correspondence to: Gianna M. Fote, UC Irvine School of Medicine, 385 S. Manchester Ave, Unit 2096, Orange, CA 92686, USA. Tel.: +1 310 924 4415; . and Howard Federoff, MD, PhD, Distinguished Professor, Neurology, UC Irvine School of Medicine, Orange, CA 92686, USA. Tel.: +1 240 281 2598;
| | - Jie Wu
- UC Irvine Department of Biological Chemistry, Irvine, CA, USA,UC Irvine Center for Complex Biological Systems, Irvine, CA, USA
| | | | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Massimo S. Fiandaca
- Translational Laboratory and Biorepository, Department of Neurology, University of California Irvine School of Medicine, Irvine, CA, USA,Department of Neurological Surgery, University of California Irvine School of Medicine, Irvine, CA, USA,Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Howard J. Federoff
- UC Irvine Department of Neurology, Irvine, CA, USA,Correspondence to: Gianna M. Fote, UC Irvine School of Medicine, 385 S. Manchester Ave, Unit 2096, Orange, CA 92686, USA. Tel.: +1 310 924 4415; . and Howard Federoff, MD, PhD, Distinguished Professor, Neurology, UC Irvine School of Medicine, Orange, CA 92686, USA. Tel.: +1 240 281 2598;
| |
Collapse
|
41
|
Serum lipidomics study reveals protective effects of Rhodiola crenulata extract on Alzheimer's disease rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122346. [PMID: 32882532 DOI: 10.1016/j.jchromb.2020.122346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/17/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder. Rhodiola crenulata extract (RCE) has shown its protective effects on AD, however, the underlying mechanism is still unclear. In this work, serum lipidomics was conducted to reveal the action mechanism of RCE on AD by HPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The animal model of AD was reproduced by intrahippocampal injection of Aβ1-42 in rats. The novel object recognition test and passive avoidance test were performed to evaluate the protective effects of RCE on AD rats. The differences of lipid metabolism profiles in rats were evaluated by multivariate statistical analysis. Then, the potential lipid biomarkers were identified and the possible mechanism of RCE on AD was elucidated by metabolic pathways analysis. As a result, twenty-eight lipids with significant differences between the control group and the model group were screened out. With the treatment of RCE, 19 lipids in AD rats showed a trend of callback to the normal levels. The results of pathway analysis indicated that the protective effects of RCE on AD might be closely related to the regulation of linoleic acid metabolism, α-linoleic acid metabolism, sphingolipid metabolism and ether lipid metabolism. In conclusion, this study provides a new perspective on the potential intervention mechanism of RCE for AD treatment.
Collapse
|
42
|
Huo Z, Rana BK, Elman JA, Dong R, Engelman CD, Johnson SC, Lyons MJ, Franz CE, Kremen WS, Zhao J. Metabolic Profiling of Cognitive Aging in Midlife. Front Aging Neurosci 2020; 12:555850. [PMID: 33250761 PMCID: PMC7674168 DOI: 10.3389/fnagi.2020.555850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's dementia (AD) begins many years before its clinical symptoms. Metabolic dysfunction represents a core feature of AD and cognitive impairment, but few metabolomic studies have focused on cognitive aging in midlife. Using an untargeted metabolomics approach, we identified metabolic predictors of cognitive aging in midlife using fasting plasma sample from 30 middle-aged (mean age 57.2), male-male twin pairs enrolled in the Vietnam Era Twin Study of Aging (VETSA). For all twin pairs, one twin developed incident MCI, whereas his co-twin brother remained to be cognitively normal during an average 5.5-year follow-up. Linear mixed model was used to identify metabolites predictive of MCI conversion or cognitive change over time, adjusting for traditional risk factors. Results from twins were replicated in an independent cohort of middle-aged adults (mean age 59.1) in the Wisconsin Registry for Alzheimer's Prevention (WRAP). Results in twins showed that higher baseline levels of four plasma metabolites, including sphingomyelin (d18:1/20:1 and d18:2/20:0), sphingomyelin (d18:1/22:1, d18:2/22:0, and d16:1/24:1), DAG (18:2/20:4), and hydroxy-CMPF, were significantly associated with a slower decrease in one or more domains of cognitive function. The association of sphingomyelin (d18:1/20:1 and d18:2/20:0) was replicated in WRAP. Our results support that metabolic perturbation occurs many years before cognitive impairment and plasma metabolites may serve as early biomarkers for prediction or monitoring of cognitive aging and AD in midlife.
Collapse
Affiliation(s)
- Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Brinda K. Rana
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Jeremy A. Elman
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Ruocheng Dong
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Corinne D. Engelman
- Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Michael J. Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, United States
| | - Carol E. Franz
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Alessenko AV, Albi E. Exploring Sphingolipid Implications in Neurodegeneration. Front Neurol 2020; 11:437. [PMID: 32528400 PMCID: PMC7254877 DOI: 10.3389/fneur.2020.00437] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, it was found that relatively simple sphingolipids, such as ceramide, sphingosine, sphingosine-1-phosphate, and glucosylceramide play important roles in neuronal functions by regulating rates of neuronal growth and differentiation. Homeostasis of membrane sphingolipids in neurons and myelin is essential to prevent the loss of synaptic plasticity, cell death and neurodegeneration. In our review we summarize data about significant brain cell alterations of sphingolipids in different neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, Amyotrophic Lateral Sclerosis, Gaucher's, Farber's diseases, etc. We reported results obtained in brain tissue from both animals in which diseases were induced and humans in autopsy samples. Moreover, attention was paid on sphingolipids in biofluids, liquor and blood, from patients. In Alzheimer's disease sphingolipids are involved in the processing and aggregation of β-amyloid and in the transmission of the cytotoxic signal β-amyloid and TNFα-induced. Recently, the gangliosides metabolism in transgenic animals and the relationship between blood sphingolipids changes and cognitive impairment in Alzheimer's disease patients have been intensively studied. Numerous experiments have highlighted the involvement of ceramide and monohexosylceramide metabolism in the pathophysiology of the sporadic forms of Parkinson's disease. Moreover, gene mutations of the glucocerebrosidase enzyme were considered as responsible for Parkinson's disease via transition of the monomeric form of α-synuclein to an oligomeric, aggregated toxic form. Disturbances in the metabolism of ceramides were also associated with the appearance of Lewy's bodies. Changes in sphingolipid metabolism were found as a manifestation of Amyotrophic Lateral Sclerosis, both sporadic and family forms, and affected the rate of disease development. Currently, fingolimod (FTY720), a sphingosine-1-phosphate receptor modulator, is the only drug undergoing clinical trials of phase II safety for the treatment of Amyotrophic Lateral Sclerosis. The use of sphingolipids as new diagnostic markers and as targets for innovative therapeutic strategies in different neurodegenerative disorders has been included.
Collapse
Affiliation(s)
- Alice V. Alessenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| |
Collapse
|
44
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
45
|
van Kruining D, Luo Q, van Echten-Deckert G, Mielke MM, Bowman A, Ellis S, Oliveira TG, Martinez-Martinez P. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv Drug Deliv Rev 2020; 159:232-244. [PMID: 32360155 PMCID: PMC7665829 DOI: 10.1016/j.addr.2020.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in neurodegeneration, neuroinflammation, and psychiatric disorders and an imbalance in sphingolipid levels is associated with disease. Although early diagnosis and intervention of these disorders would clearly have favorable long-term outcomes, no diagnostic tests currently exist that can accurately identify people at risk. Reliable prognostic biomarkers that are easily accessible would be beneficial to determine therapy and treatment response in clinical trials. Recent advances in lipidomic investigation methods have greatly progressed the knowledge of sphingolipids in neurodegenerative and psychiatric disorders over the past decades although more longitudinal studies are needed to understand its exact role in these disorders to be used as potential tools in the clinic. In this review, we give an overview of the current knowledge of sphingolipids in neurodegenerative and psychiatric disorders and explore recent advances in investigation methods. Finally, the potential of sphingolipid metabolism products and signaling molecules as potential biomarkers for diagnosis, prognostic, or surrogate markers of treatment response is discussed.
Collapse
Affiliation(s)
- Daan van Kruining
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Qian Luo
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gerhild van Echten-Deckert
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, Bonn, Germany
| | - Michelle M Mielke
- Department of Health Sciences Research and Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Andrew Bowman
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Shane Ellis
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), ICVS/3B's, School of Medicine, University of Minho, Braga, Portugal
| | - Pilar Martinez-Martinez
- Division of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
46
|
López-Bascón MA, Calderón-Santiago M, Díaz-Lozano A, Camargo A, López-Miranda J, Priego-Capote F. Development of a qualitative/quantitative strategy for comprehensive determination of polar lipids by LC-MS/MS in human plasma. Anal Bioanal Chem 2019; 412:489-498. [PMID: 31760450 DOI: 10.1007/s00216-019-02261-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
Polar lipids, especially glycerophospholipids, constitute the main components of cell membranes and are precursors of signaling molecules in many cellular and physiological processes. For this reason, the development of methods with high capability for detection of polar lipids in biological samples is required. In this research, the objective was to develop a method for comprehensive qualitative/quantitative determination of polar lipids in plasma by a combination of acquisition methods with a triple quadrupole mass analyzer. The strategy was optimized in two steps: (a) a first step for detection of lipids by monitoring selective fragmentation patterns representative of each lipid family and (b) a second step for confirmation of lipid species by detection and identification of product ions associated with the conjugated fatty acids. The acquisition list was divided into two multiple reaction monitoring (MRM) methods to ensure the detection of all transitions with suited instrumental sensitivity according to chromatographic retention time and relative abundance in plasma. The combination of the two MRM methods allowed the detection of 398 polar lipids in plasma in 64 min. Precision, estimated as within-day variability, was below 6.8% for all determined lipid families, while between-day variability was below 24.0%. This strategy has been applied to a cohort formed by 384 individuals in order to obtain a qualitative and quantitative distribution of polar lipids in human plasma. The most concentrated lipid families in relative terms were lysophospholipids, plasmalogens, and phosphatydilcholines, with mean relative concentration of 58.0, 17.1, and 8.3%, respectively. Then, sphingomyelins and phosphatidylethanolamines reported a relative concentration of 2.0%, followed by phosphatidylserines, with 1.1%. Graphical abstract.
Collapse
Affiliation(s)
- M A López-Bascón
- Department of Analytical Chemistry, University of Córdoba, 14071, Córdoba, Spain.,Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, 14004, Córdoba, Spain.,CeiA3 Agroalimentary Excellence Campus, University of Córdoba, 14071, Córdoba, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - M Calderón-Santiago
- Department of Analytical Chemistry, University of Córdoba, 14071, Córdoba, Spain. .,Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, 14004, Córdoba, Spain. .,CeiA3 Agroalimentary Excellence Campus, University of Córdoba, 14071, Córdoba, Spain. .,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - A Díaz-Lozano
- Department of Analytical Chemistry, University of Córdoba, 14071, Córdoba, Spain.,Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, 14004, Córdoba, Spain.,CeiA3 Agroalimentary Excellence Campus, University of Córdoba, 14071, Córdoba, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - A Camargo
- Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - J López-Miranda
- Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - F Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, 14071, Córdoba, Spain. .,Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, 14004, Córdoba, Spain. .,CeiA3 Agroalimentary Excellence Campus, University of Córdoba, 14071, Córdoba, Spain. .,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| |
Collapse
|
47
|
Weng WC, Huang WY, Tang HY, Cheng ML, Chen KH. The Differences of Serum Metabolites Between Patients With Early-Stage Alzheimer's Disease and Mild Cognitive Impairment. Front Neurol 2019; 10:1223. [PMID: 31824405 PMCID: PMC6884031 DOI: 10.3389/fneur.2019.01223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023] Open
Abstract
Background: Mild cognitive impairment (MCI) is regarded as a transition phase between normal aging and Alzheimer's disease (AD). Identification of novel and non-invasive biomarkers that can distinguish AD at an early stage from MCI is warranted for therapeutic and support planning. The goal of this study was to identify the differences of serum metabolomic profiles between MCI and early-stage AD, which could be potential non-invasive biomarkers for early diagnosis of AD. Methods: The subjects enrolled in the study were classified into two diagnostic groups: MCI (n = 40) and early-stage AD (n = 40). Targeted metabolomics analysis of serum samples was performed using the Biocrates Absolute-IDQ P180 kit. Targeted metabolic data were analyzed by TargetLynx, and MetIDQ software was applied to integrate the metabolites by automated calculation of metabolite concentrations. Results: The datasets of targeted metabolite analysis were analyzed by the orthogonal-projection-to-latent-structure–discriminant-analysis (OPLS-DA) model. The OPLS-DA score plots demonstrated considerable separation between the MCI and early-stage AD patients. The levels of pimelylcarnitine, putrescine, SM (OH) C24:1, and SM C24:0 were significantly lower, whereas the levels of acetylornithine, methionine sulfoxide, and PC ae C44:3 were significantly higher in early-stage AD patients as compared with MCI patients. Receiver operating characteristic curve analysis of a combination of three lipid metabolites [SM (OH) C24:1, SM C24:0, and PC ae C44:3] showed an acceptable discrimination between the early-stage AD and MCI patients (area under the curve = 0.788). Conclusions: Our results characterized the differences of serum metabolic profiles between MCI and early-stage AD patients. The positive findings from this study indicate that the minimally invasive method of blood sampling may help to identify patients with AD at an early stage from those with MCI.
Collapse
Affiliation(s)
- Wei-Chieh Weng
- Department of Neurology, College of Medicine, Keelung Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan
| | - Wen-Yi Huang
- Department of Neurology, College of Medicine, Keelung Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan
| | - Hsiang-Yu Tang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Metabolomics Core Laboratory, Chang Gung University, Taoyuan, Taiwan.,Clinical Metabolomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Kidney Research Center, College of Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Metabolomics Core Laboratory, Chang Gung University, Taoyuan, Taiwan.,Clinical Metabolomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Kidney Research Center, College of Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Hsing Chen
- Kidney Research Center, College of Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
48
|
Granzotto A, Bomba M, Castelli V, Navarra R, Massetti N, d'Aurora M, Onofrj M, Cicalini I, Del Boccio P, Gatta V, Cimini A, Piomelli D, Sensi SL. Inhibition of de novo ceramide biosynthesis affects aging phenotype in an in vitro model of neuronal senescence. Aging (Albany NY) 2019; 11:6336-6357. [PMID: 31467258 PMCID: PMC6738398 DOI: 10.18632/aging.102191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
Although aging is considered to be an unavoidable event, recent experimental evidence suggests that the process can be counteracted. Intracellular calcium (Ca2+i) dyshomeostasis, mitochondrial dysfunction, oxidative stress, and lipid dysregulation are critical factors that contribute to senescence-related processes. Ceramides, a pleiotropic class of sphingolipids, are important mediators of cellular senescence, but their role in neuronal aging is still largely unexplored. In this study, we investigated the effects of L-cycloserine (L-CS), an inhibitor of thede novoceramide biosynthesis, on the aging phenotype of cortical neurons cultured for 22 days, a setting employed as anin vitromodel of senescence. Our findings indicate that, compared to control cultures, ‘aged’ neurons display dysregulation of [Ca2+]ilevels, mitochondrial dysfunction, increased generation of reactive oxygen species (ROS), altered synaptic activity as well as the activation of neuronal death-related molecules. Treatment with L-CS positively affected the senescent phenotype, a result associated with recovery of neuronal [Ca2+]isignaling and reduction of mitochondrial dysfunction and ROS generation. The results suggest that thede novoceramide biosynthesis represents a critical intermediate in the molecular and functional cascade leading to neuronal senescence and identify ceramide biosynthesis inhibitors as promising pharmacological tools to decrease age-related neuronal dysfunctions.
Collapse
Affiliation(s)
- Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Manuela Bomba
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Riccardo Navarra
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Noemi Massetti
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marco d'Aurora
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychological, Health and Territorial Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Piero Del Boccio
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Valentina Gatta
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychological, Health and Territorial Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Biochemistry and Pharmacology, University of California Irvine, Irvine, CA 92697, USA
| | - Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders (iMIND), University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
49
|
Chan P, Saleem M, Herrmann N, Mielke MM, Haughey NJ, Oh PI, Kiss A, Lanctôt KL. Ceramide Accumulation Is Associated with Declining Verbal Memory in Coronary Artery Disease Patients: An Observational Study. J Alzheimers Dis 2019; 64:1235-1246. [PMID: 30010121 PMCID: PMC6087453 DOI: 10.3233/jad-180030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Biomarkers in cognitively vulnerable populations, like those with coronary artery disease (CAD), may inform earlier intervention in vascular neurodegeneration. Circulating ceramide C18:0 (CerC18:0) is associated with changes in verbal memory in early neurodegeneration and CAD progression. Objective: To investigate whether plasma CerC18:0 accumulation is associated with longitudinal declines in verbal memory performance in CAD. Methods: In addition to total CerC18:0, we assessed its relative abundance to its precursors as ratios: CerC18:0 to monohexosylceramide C18:0 (MHxCer18:0), CerC18:0 to sphingomyelin C18:0 (SM18:0), and CerC18:0 to sphingosine-1-phosphate (S1P). Verbal memory was assessed using the California Verbal Learning Test 2nd Ed. Using mixed models in 60 CAD participants, we evaluated associations between baseline CerC18:0 ratios and changes in verbal memory performance, adjusting for age, body mass index, and education. Given that cognitive decline is more rapid following onset of deficits, these associations were compared between those with possible mild vascular neurocognitive disorder (MVND). Results: Increased baseline CerC18:0 concentrations correlated with worse verbal memory performance over time (b[SE] = – 0.91[0.30], p = 0.003). Increased baseline CerC18:0/SM18:0 (b[SE] = – 1.11[`], p = 0.03) were associated with worse verbal memory performance over time. These associations were not mediated by whether or not patients had possible MVND at baseline. Conclusion: These findings support aberrant CerC18:0 metabolism as an early neurobiological change in vascular neurodegeneration. Future studies should measure enzymes responsible for conversion of sphingolipid precursors into CerC18:0 to assess enzymatic activity.
Collapse
Affiliation(s)
- Parco Chan
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Nathan Herrmann
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michelle M Mielke
- Departments of Neurology and Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Norman J Haughey
- Departments of Neurology and Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul I Oh
- Sunnybrook Research Institute, Toronto, ON, Canada.,University Health Network at Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Alexander Kiss
- Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Krista L Lanctôt
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,University Health Network at Toronto Rehabilitation Institute, Toronto, ON, Canada
| |
Collapse
|
50
|
Ahmad NA, Raizman M, Weizmann N, Wasek B, Arning E, Bottiglieri T, Tirosh O, Troen AM. Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine‐choline–deficient rats. FASEB J 2019; 33:9334-9349. [DOI: 10.1096/fj.201802683r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nur Abu Ahmad
- The Institute of Biochemistry Food and Nutrition Science The Robert H. Smith Faculty of Agriculture Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Merav Raizman
- The Institute of Biochemistry Food and Nutrition Science The Robert H. Smith Faculty of Agriculture Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Nathalie Weizmann
- The Institute of Biochemistry Food and Nutrition Science The Robert H. Smith Faculty of Agriculture Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Brandi Wasek
- Institute of Metabolic Disease Baylor Scott and White Research Institute Dallas Texas USA
| | - Erland Arning
- Institute of Metabolic Disease Baylor Scott and White Research Institute Dallas Texas USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease Baylor Scott and White Research Institute Dallas Texas USA
| | - Oren Tirosh
- The Institute of Biochemistry Food and Nutrition Science The Robert H. Smith Faculty of Agriculture Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Aron M. Troen
- The Institute of Biochemistry Food and Nutrition Science The Robert H. Smith Faculty of Agriculture Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| |
Collapse
|