1
|
Pan K, Li Q, Guo Z, Li Z. Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther 2025; 265:108760. [PMID: 39615600 DOI: 10.1016/j.pharmthera.2024.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Interleukin-4 (IL-4), which is traditionally associated with inflammation, has emerged as a key player in tissue regeneration. Produced primarily by T-helper 2 (Th2) and other immune cells, IL-4 activates endogenous lymphocytes and promotes M2 macrophage polarization, both of which are crucial for tissue repair. Moreover, IL-4 stimulates the proliferation and differentiation of various cell types, contributing to efficient tissue regeneration, and shows promise for promoting tissue regeneration after injury. This review explores the multifaceted roles of IL-4 in tissue repair, summarizing its mechanisms and potential for clinical application. This review delves into the multifaceted functions of IL-4, including its immunomodulatory effects, its involvement in tissue regeneration, and its potential therapeutic applications. We discuss the mechanisms underlying IL-4-induced M2 macrophage polarization, a crucial process for tissue repair. Additionally, we explore innovative strategies for delivering IL-4, including gene therapy, protein-based therapies, and cell-based therapies. By leveraging the regenerative properties of IL-4, we can potentially develop novel therapies for various diseases, including chronic inflammatory disorders, autoimmune diseases, and organ injuries. While early research has shown promise for the application of IL-4 in regenerative medicine, further studies are needed to fully elucidate its therapeutic potential and optimize its use.
Collapse
Affiliation(s)
- Kai Pan
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Zhao J, Zhang Q, Hao X. Syringin ameliorates dextran sulphate colitis via alteration oxidative stress, inflammation NF-κB signalling pathway and gut microbiota. Basic Clin Pharmacol Toxicol 2025; 136:e14105. [PMID: 39548740 DOI: 10.1111/bcpt.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND The objective of the current study was to investigate the potential effects of syringin against dextran sulphate colitis (DSS)-induced ulcerative colitis (UC) in mice. MATERIAL AND METHODS In vitro study was performed on the RAW 264.7 cells and cytokines and inflammatory level were estimated. The oxidative stress, inflammatory cytokines, apoptosis and inflammatory parameters were estimated. The mRNA expression and faecal samples were estimated in the colon tissue. RESULTS Syringin treatment enhanced the body weight, colon length and reduced the disease activity index (DAI), spleen index. Syringin treatment remarkably suppressed the level of nitric oxide (NO), myeloperoxidase (MPO), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) along with alteration of antioxidant parameters. Syringin treatment also altered level of cytokines in the serum and colon tissue; inflammatory parameters viz., platelet-activating factor (PAF), cyclooxygenase-2 (COX-2), prostaglandin (PGE2), inducible nitric oxide synthetase (iNOS), nuclear factor κ-B (NF-κB); matrix metalloproteinases (MMP) level. Syringin significantly (p < 0.001) enhanced the level of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1). Syringin remarkably altered the relative abundance of gut microbiota like Firmicutes, Bacteroidetes, F/B ratio, Verrucomicrobia and Actinobacteria. CONCLUSION Syringin exhibited the protective effect against DSS-induced UC in mice via alteration of NF-κB signalling pathway.
Collapse
Affiliation(s)
- Juhui Zhao
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Qingqing Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Xudong Hao
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
3
|
Lawrence ALE, Berger RP, Hill DR, Huang S, Yadagiri VK, Bons B, Fields C, Knight JS, Wobus CE, Spence JR, Young VB, Abuaita BH, O'Riordan MX. Neutrophil prime unique transcriptional responses in intestinal organoids during infection with nontyphoidal Salmonella enterica serovars. mSphere 2024; 9:e0069324. [PMID: 39565098 DOI: 10.1128/msphere.00693-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024] Open
Abstract
Nontyphoidal strains of Salmonella enterica are a major cause of foodborne illnesses, and infection with these bacteria results in inflammatory gastroenteritis. Polymorphonuclear leukocytes (PMNs), also known as neutrophils, are a dominant immune cell type found at the site of infection in Salmonella-infected individuals, but how they regulate infection outcome is not well understood. Here, we used a co-culture model of primary human PMNs and human intestinal organoids to probe the role of PMNs during infection with two of the most prevalent Salmonella serovars: Salmonella enterica serovar Enteritidis and Typhimurium. Using a transcriptomics approach, we identified a dominant role for PMNs in mounting differential immune responses including production of pro-inflammatory cytokines, chemokines, and antimicrobial peptides. We also identified specific gene sets that were induced by PMNs in response to Enteritidis or Typhimurium infection. By comparing host responses to these serovars, we uncovered differential regulation of host metabolic pathways particularly induction of cholesterol biosynthetic pathways during Typhimurium infection and suppression of RNA metabolism during Enteritidis infection. Together, these findings provide insight into the role of human PMNs in modulating different host responses to pathogens that cause similar disease in humans.IMPORTANCENontyphoidal serovars of Salmonella enterica are known to induce robust recruitment of polymorphonuclear leukocytes (PMNs) in the gut during early stages of infection, but the specific role of PMNs in regulating infection outcome of different serovars is poorly understood. Due to differences in human infection progression compared to small animal models, characterizing the role of PMNs during infection has been challenging. Here, we used a co-culture model of human intestinal organoids with human primary PMNs to study the role of PMNs during infection of human intestinal epithelium. Using a transcriptomics approach, we define PMN-dependent reprogramming of the host response to Salmonella, establishing a clear role in amplifying pro-inflammatory gene expression. Additionally, the host response driven by PMNs differed between two similar nontyphoidal Salmonella serovars. These findings highlight the importance of building more physiological infection models to replicate human infection conditions to study host responses specific to individual pathogens.
Collapse
Affiliation(s)
- Anna-Lisa E Lawrence
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ryan P Berger
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David R Hill
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Veda K Yadagiri
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brooke Bons
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Courtney Fields
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Campo-Grande GC, D'Agostin JB, de Santana Filho AP, da Silva Mello G, Benedetti PR, Dos Santos WF, Simas FF, Cipriani TR. Structural characterization of an arabinogalactan rich fraction from Bauhinia forficata Link leaves and evaluation of its effect on THP-1 macrophages. Int J Biol Macromol 2024; 283:137731. [PMID: 39551310 DOI: 10.1016/j.ijbiomac.2024.137731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Bauhinia forficata is a medicinal plant known as cow's paw, used for many purposes. Although there are studies that aimed to elucidate compounds from the plant leaves, there is no information about its polysaccharides. This study intended to obtain a polysaccharide rich fraction from its leaves, structurally characterize the water-soluble polysaccharides, as well as evaluate their effect on THP-1 cells. From the aqueous extract, followed by purification processes, a polysaccharide fraction (TCA-S) was obtained, constituted mainly of arabinose and galactose. Bidimensional NMR (13C/1H, HSQC) and methylation analyses identified type I and type II arabinogalactans, arabinan and starch as the major polysaccharides of the fraction. TCA-S was then submitted to starch removal process and renamed as TCA-Sα. TCA-Sα (2 to 500 μg/mL) was not cytotoxic to THP-1-cells and exhibited an immunostimulatory effect by increasing the secretion of nitric oxide and both pro-inflammatory cytokine IL-1β and anti-inflammatory cytokine IL-10. Immunomodulatory effect on IL-6 secretion was observed when macrophages were treated with TCA-Sα at 500 μg/mL. Additionally, the ratio between the concentrations of pro and anti-inflammatory cytokines produced by LPS-treated cells was higher than that produced by LPS plus TCA-Sα treated ones, suggesting that the polysaccharide fraction could modulate the LPS inflammation effects.
Collapse
Affiliation(s)
| | - Jessica Boschini D'Agostin
- Laboratory of Inflammatory and Neoplasic Cells, Cell Biology Department, Federal University of Paraná, CEP 81531-980 Curitiba, PR, Brazil
| | | | - Genilza da Silva Mello
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CEP 81531-980 Curitiba, PR, Brazil
| | | | | | - Fernanda Fogagnoli Simas
- Laboratory of Inflammatory and Neoplasic Cells, Cell Biology Department, Federal University of Paraná, CEP 81531-980 Curitiba, PR, Brazil
| | - Thales Ricardo Cipriani
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CEP 81531-980 Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Tshikudi DM, Hutchison H, Ghia JE. Pancreastatin Inhibition Alters the Colonic Epithelial Cells Profile in a Sex-Dependent Manner. Int J Mol Sci 2024; 25:12757. [PMID: 39684467 DOI: 10.3390/ijms252312757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The impaired mucosal barrier is a hallmark of ulcerative colitis (UC), an inflammatory colonic disorder with epidemiological and pathophysiology sex bias. UC Patients overexpress the colonic epithelial cells (CECs)-derived peptide pancreastatin (PST). Pancreastatin inhibitor 8 (PSTi8), an inhibitor of PST, has shown promising anti-inflammatory effects on UC. However, no data exist in the context of CEC barrier function and integrity. We investigated the impact of PSTi8 treatment on CECs in homeostatic and colitic conditions. PSTi8 (2.5 mg/mL/kg, i.r.) or PBS treatment started one day before colitis induction (5% dextran sodium sulfate for five days) in male and female C57BL/6 mice. The disease activity score was assessed daily. Epithelial-associated cytokines, markers specific to differentiation, proliferation, differentiated CECs, stem cells, CECs regulators, and the PSTi8 G-protein coupled receptor 78 (GPR78) signaling pathway, were evaluated using ELISA, immunofluorescence and qRT-PCR. PSTi8 treatment reduced the epithelial-associated cytokines and differentiated CECs while promoting CEC proliferation and self-renewal in females at a steady state through the GRP78 signaling pathway. PSTi8 treatment exacerbated colitis severity and increased CEC differentiation while reducing proliferation in colitic females. Conversely, PSTi8 treatment reduced males' susceptibility to colitis by preserving stem cells and differentiated CECs. PST regulated colonic mucosal maintenance in a sex- and disease-dependent manner.
Collapse
Affiliation(s)
- Diane M Tshikudi
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Hannah Hutchison
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jean-Eric Ghia
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| |
Collapse
|
6
|
Gao F, Zhang X, Xu Z, Zhang K, Quan F. Goat milk derived small extracellular vesicles ameliorate LPS-induced intestinal epithelial barrier dysfunction, oxidative stress, and apoptosis by inhibiting the MAPK signaling pathway. Food Funct 2024; 15:11590-11607. [PMID: 39508525 DOI: 10.1039/d4fo04067h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Intestinal injury is often accompanied by epithelial barrier dysfunction, oxidative stress, and apoptosis. Previous research studies have demonstrated that small extracellular vesicles (sEVs) from animal milk play a crucial role in regulating intestinal injury. Nonetheless, there has been limited research on the impact of goat milk sEVs on intestinal damage. This study aims to explore the functional differences between proteins in colostrum-derived sEVs (CME) and mature milk-derived sEVs (MME) from goat and elucidate their effects and mechanisms on lipopolysaccharide (LPS)-induced injury in IEC-6. Proteomic analysis revealed that both CME and MME are rich in various bioactive proteins that have regulatory effects on cell damage. CME and MME significantly improved LPS-induced IEC-6 barrier dysfunction and oxidative stress. Additionally, CME and MME alleviated LPS-induced IEC-6 proliferation inhibition and apoptosis. Notably, CME exhibited a more significant improvement effect. RNA-Seq analysis indicated that CME ameliorates IEC-6 injury by inhibiting multiple genes and signaling pathways associated with cell damage, particularly the MAPK signaling pathway. In summary, goat milk-derived sEVs improve LPS-induced IEC-6 injury by targeting the MAPK signaling pathway, significantly restoring the intestinal epithelial barrier function, reducing oxidative stress, and alleviating apoptosis. These findings offer scientific evidence supporting the potential application of goat milk-derived sEVs as protective agents against intestinal injury.
Collapse
Affiliation(s)
- Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
7
|
Hernandez J, Rodriguez JB, Trak-Fellermeier MA, Galvan R, Macchi A, Martinez-Motta P, Palacios C. Suboptimal vitamin D status and overweight/obesity are associated with gut integrity and inflammation in minority children and adolescents: A cross-sectional analysis from the MetA-bone trial. Nutr Res 2024; 133:13-21. [PMID: 39662375 DOI: 10.1016/j.nutres.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Preserving gut integrity is essential to preventing the development of chronic diseases. Several factors are associated with gut integrity and inflammation in adults. However, there is limited evidence in healthy children. This study evaluated the factors associated with gut integrity and inflammation in healthy children participating in the MetA-Bone trial. We hypothesized that age, sex, race/ethnicity, diet, vitamin D, and body composition will be associated with gut integrity and inflammation. Socio-demographic variables were collected with a questionnaire. Measures included markers of gut integrity (Intestinal Fatty Acid Binding Protein; I-FABP), and inflammation (IL-17 and calprotectin) determined by ELISA in 24-h urine and serum; serum 25(OH)D concentration (commercial lab), BMI percentile, and diet (24-h recalls). Analyses included descriptive statistics, chi-square, and adjusted logistic regressions. Participants (n=138) median age was 12.4 (11.1-13.3), 53.6% were male, 9.4% were Black/African American, and 71.1% were Hispanic/Latino. Children with suboptimal vitamin D were 3.35 times more likely to present gut integrity damage (elevated I-FABP) than those with optimal status (P = .005). Overweight/obesity and fructose intake were associated with inflammation (elevated calprotectin) (P < .05). Those with lower gut integrity damage had lower odds of having higher inflammation (P = .021). Other factors were not associated with inflammation. Suboptimal vitamin D status, overweight/obesity and inflammation may compromise the gut integrity in healthy children, suggesting an impairment on the intestinal barrier repair system. More research with a longitudinal design is needed to gain a deeper understanding of the role of additional factors linked to gut integrity and inflammation in healthy children.
Collapse
Affiliation(s)
- Jacqueline Hernandez
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA.
| | - Jose Bastida Rodriguez
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Maria Angelica Trak-Fellermeier
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Rodolfo Galvan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Alison Macchi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Preciosa Martinez-Motta
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Cristina Palacios
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
8
|
Guilliams TG, Weintraub JL, Spar M. Intestinal Permeability In Subjects With Rheumatoid Arthritis: A Critical Therapeutic Priority. Integr Med (Encinitas) 2024; 23:16-26. [PMID: 39534664 PMCID: PMC11552960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Rheumatoid arthritis is increasingly being recognized as the synovial manifestation of a group of systemic autoinflammatory conditions known as immune-mediated inflammatory diseases. While each of these conditions displays unique diagnostic signs and symptoms based on the tissue targeted by inflammation, most immune-mediated inflammatory diseases share common features, including their immune-signaling pathways. Owing to these similarities, great advances have emerged in the past few decades using therapies designed to block downstream inflammatory mediators (eg, cytokine-blocking biologics, Janus Kinase (JAK) inhibitors). Unfortunately, fewer advances have been made in therapies that have the potential to target the upstream antecedents and triggers of these complex inflammatory diseases, such as the immunologic chain of events triggered by intestinal hyperpermeability (ie, leaky gut) or gastrointestinal dysbiosis (ie, alterations in the gut microbiota). In the past few decades, intestinal hyperpermeability has emerged as an important antecedent for a wide range of chronic immunological and metabolic conditions, including celiac disease, obesity, cardiovascular disease, and a number of immune-mediated inflammatory diseases such as inflammatory bowel disease, psoriasis, and rheumatoid arthritis. In this narrative review, we discuss the growing awareness that biomarkers of intestinal permeability are frequently associated with non-gastrointestinal immune-mediated inflammatory diseases, particularly those associated with the gut-joint axis, such as rheumatoid arthritis. We suggest that measures of intestinal permeability, along with lifestyle and nutrient interventions that target gut-barrier function, may be important adjunctive clinical tools to help patients with rheumatoid arthritis achieve and maintain remission.
Collapse
Affiliation(s)
- Thomas G. Guilliams
- Scientific Director, AndHealth, Columbus, Ohio; Founder and Director of the Point Institute, Stevens Point, Wisconsin; Adjunct Associate Professor, School of Pharmacy, University of Wisconsin—Madison
| | - Jill L. Weintraub
- Rheumatology Advisor, AndHealth, Columbus, Ohio; Integrative Rheumatology Consultants, Westchester and New York, New York
| | - Myles Spar
- VP and National Director of Medical Services, AndHealth, Columbus, Ohio; Associate Professor, Andrew Weil Center for Integrative Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
9
|
Cai C, Shen J. The roles of migrasomes in immunity, barriers, and diseases. Acta Biomater 2024; 189:88-102. [PMID: 39284502 DOI: 10.1016/j.actbio.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Migrasomes are recently identified extracellular vesicles and organelles formed in conjunction with cell migration. They are situated at the rear of migrating cells, exhibit a circular or elliptical membrane-enclosed structure, and function as a new organelle. Migrasomes selectively sort intercellular components, mediating a cell migration-dependent release mechanism known as migracytosis and modulating cell-cell communication. Accumulated evidence clarifies migrasome formation processes and indicates their diverse functional roles. Migrasomes may also be potentially correlated with the occurrence, progression, and prognosis of certain diseases. Migrasomes' involvement in physiological and pathological processes highlights their potential for expanding our understanding of biological procedures and as a target in clinical therapy. However, the precise mechanisms and full extent of their involvement in immunity, barriers, and diseases remain unclear. This review aimed to provide a comprehensive overview of the roles of migrasomes in human immunity and barriers, in addition to providing insights into their impact on human diseases. STATEMENT OF SIGNIFICANCE: Migrasomes, newly identified extracellular vesicles and organelles, form during cell migration and are located at the rear of migrating cells. These circular or elliptical structures mediate migracytosis, selectively sorting intercellular components and modulating cell-cell communication. Evidence suggests diverse functional roles for migrasomes, including potential links to disease occurrence, progression, and prognosis. Their involvement in physiological and pathological processes highlights their significance in understanding biological procedures and potential clinical therapies. However, their exact mechanisms in immunity, barriers, and diseases remain unclear. This review provides an overview of migrasomes' roles in human immunity and barriers, and their impact on diseases.
Collapse
Affiliation(s)
- Changsheng Cai
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
10
|
Chung DJ, Wang CH, Liu PJ, Ng SK, Luo CK, Jwo SH, Li CT, Hsu DY, Fan CC, Wei TT. Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC. Cancer Gene Ther 2024; 31:1734-1748. [PMID: 39358564 DOI: 10.1038/s41417-024-00838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with an increasing annual incidence. Cancer stem cells (CSCs) play important roles in the occurrence, development, recurrence, and metastasis of CRC. The molecular mechanism regulating the development of colorectal CSCs remains unclear. The discovery of human induced pluripotent stem cells (hiPSCs) through somatic cell reprogramming has revolutionized the fields of stem cell biology and translational medicine. In the present study, we converted hiPSCs into cancer stem-like cells by culture with conditioned medium (CM) from CRC cells. These transformed cells, termed hiPSC-CSCs, displayed cancer stem-like properties, including a spheroid morphology and the expression of both pluripotency and CSC markers. HiPSC-CSCs showed tumorigenic and metastatic abilities in mouse models. The epithelial-mesenchymal transition phenotype was observed in hiPSC-CSCs, which promoted their migration and angiogenesis. Interestingly, upregulation of C-MYC was observed during the differentiation of hiPSC-CSCs. Mechanistically, CREB binding protein (CBP) bound to the C-MYC promoter, while histone deacetylase 1 and 3 (HDAC1/3) dissociated from the promoter, ultimately leading to an increase in histone acetylation and C-MYC transcriptional activation during the differentiation of hiPSC-CSCs. Pharmacological treatment with a CBP inhibitor or abrogation of CBP expression with a CRISPR/Cas9-based strategy reduced the stemness of hiPSC-CSCs. This study demonstrates for the first time that colorectal CSCs can be generated from hiPSCs. The upregulation of C-MYC via histone acetylation plays a crucial role during the conversion process. Inhibition of CBP is a potential strategy for attenuating the stemness of colorectal CSCs.
Collapse
Affiliation(s)
- Dai-Jung Chung
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chun-Hao Wang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Pin-Jung Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cong-Kai Luo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Si-Han Jwo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chin-Tzu Li
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Dai-Yi Hsu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chia-Chu Fan
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
11
|
Barreto-Duran E, Synowiec A, Szczepański A, Gałuszka-Bulaga A, Węglarczyk K, Baj-Krzyworzeka M, Siedlar M, Bochenek M, Dufva M, Dogan AA, Lenart M, Pyrc K. Development of an intestinal mucosa ex vivo co-culture model to study viral infections. J Virol 2024; 98:e0098724. [PMID: 39212448 PMCID: PMC11495016 DOI: 10.1128/jvi.00987-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Studying viral infections necessitates well-designed cell culture models to deepen our understanding of diseases and develop effective treatments. In this study, we present a readily available ex vivo 3D co-culture model replicating the human intestinal mucosa. The model combines fully differentiated human intestinal epithelium (HIE) with human monocyte-derived macrophages (hMDMs) and faithfully mirrors the in vivo structural and organizational properties of intestinal mucosal tissues. Specifically, it mimics the lamina propria, basement membrane, and the air-exposed epithelial layer, enabling the pioneering observation of macrophage migration through the tissue to the site of viral infection. In this study, we applied the HIE-hMDMs model for the first time in viral infection studies, infecting the model with two globally significant viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human norovirus GII.4. The results demonstrate the model's capability to support the replication of both viruses and show the antiviral role of macrophages, determined by their migration to the infection site and subsequent direct contact with infected epithelial cells. In addition, we evaluated the production of cytokines and chemokines in the intestinal niche, observing an increased interleukin-8 production during infection. A parallel comparison using a classical in vitro cell line model comprising Caco-2 and THP-1 cells for SARS-CoV-2 experiments confirmed the utility of the HIE-hMDMs model in viral infection studies. Our data show that the ex vivo tissue models hold important implications for advances in virology research.IMPORTANCEThe fabrication of intricate ex vivo tissue models holds important implications for advances in virology research. The co-culture model presented here provides distinct spatial and functional attributes not found in simplified models, enabling the evaluation of macrophage dynamics under severe acute respiratory syndrome coronavirus 2 and human norovirus (HuNoV) infections in the intestine. Moreover, these models, comprised solely of primary cells, facilitate the study of difficult-to-replicate viruses such as HuNoV, which cannot be studied in cell line models, and offer the opportunity for personalized treatment evaluations using patient cells. Similar co-cultures have been established for the study of bacterial infections and different characteristics of the intestinal tissue. However, to the best of our knowledge, a similar intestinal model for the study of viral infections has not been published before.
Collapse
Affiliation(s)
- Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Synowiec
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Bochenek
- Flow Cytometry Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Asli Aybike Dogan
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
Kalashnikova IG, Nekrasova AI, Korobeynikova AV, Bobrova MM, Ashniev GA, Bakoev SY, Zagainova AV, Lukashina MV, Tolkacheva LR, Petryaikina ES, Nekrasov AS, Mitrofanov SI, Shpakova TA, Frolova LV, Bulanova NV, Snigir EA, Mukhin VE, Yudin VS, Makarov VV, Keskinov AA, Yudin SM. The Association between Gut Microbiota and Serum Biomarkers in Children with Atopic Dermatitis. Biomedicines 2024; 12:2351. [PMID: 39457662 PMCID: PMC11505256 DOI: 10.3390/biomedicines12102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Currently, it is known that the gut microbiota plays an important role in the functioning of the immune system, and a rebalancing of the bacterial community can arouse complex immune reactions and lead to immune-mediated responses in an organism, in particular, the development of atopic dermatitis (AD). Cytokines and chemokines are regulators of the innate and adaptive immune response and represent the most important biomarkers of the immune system. It is known that changes in cytokine profiles are a hallmark of many diseases, including atopy. However, it remains unclear how the bacterial imbalance disrupts the function of the immune response in AD. Objectives. We attempted to determine the role of gut bacteria in modulating cytokine pathways and their role in atopic inflammation. Methods. We sequenced the 16S rRNA gene from 50 stool samples of children aged 3-12 years who had confirmed atopic dermatitis, and 50 samples from healthy children to serve as a control group. To evaluate the immune status, we conducted a multiplex immunofluorescence assay and measured the levels of 41 cytokines and chemokines in the serum of all participants. Results. To find out whether changes in the composition of the gut microbiota were significantly associated with changes in the level of inflammatory cytokines, a correlation was calculated between each pair of bacterial family and cytokine. In the AD group, 191 correlations were significant (Spearman's correlation coefficient, p ≤ 0.05), 85 of which were positive and 106 which were negative. Conclusions. It has been demonstrated that intestinal dysbiosis is associated with alterations in cytokine profiles, specifically an increase in proinflammatory cytokine concentrations. This may indicate a systemic impact of these conditions, leading to an imbalance in the immune system's response to the Th2 type. As a result, atopic conditions may develop. Additionally, a correlation between known AD biomarkers (IL-5, IL-8, IL-13, CCL22, IFN-γ, TNF-α) and alterations in the abundance of bacterial families (Pasteurellaceae, Barnesiellaceae, Eubacteriaceae) was observed.
Collapse
Affiliation(s)
- Irina G. Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.I.N.); (A.V.K.); (M.M.B.); (G.A.A.); (S.Y.B.); (A.V.Z.); (M.V.L.); (L.R.T.); (E.S.P.); (A.S.N.); (S.I.M.); (T.A.S.); (L.V.F.); (N.V.B.); (E.A.S.); (V.E.M.); (V.S.Y.); (V.V.M.); (A.A.K.); (S.M.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tonog G, Yu H, Moon SK, Lee S, Jeong H, Kim HS, Kim KB, Suh HJ, Kim H. Garlic Bioconverted by Bacillus subtilis Stimulates the Intestinal Immune System and Modulates Gut Microbiota Composition. Mol Nutr Food Res 2024; 68:e2400504. [PMID: 39358948 DOI: 10.1002/mnfr.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Indexed: 10/04/2024]
Abstract
SCOPE This study evaluates the potential of bioconverted garlic ferments (BGFs) to stimulate the intestinal immune system and modulate cecal microbiota composition. METHODS AND RESULTS In vitro, BGF significantly enhances Peyer's patch (PP)-mediated bone marrow cell proliferation and increases the production of interferon-gamma (IFN-γ), granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-6, and immunoglobulin A (IgA) but not IL-4, IL-5, and immunoglobulin E (IgE). Oral administration of BGF to C3H/HeN mice for 4 weeks significantly increases the GM-CSF (42.1-45.8 pg mL-1) and IFN-γ (6.5-12.1 pg mL-1) levels in PP cells. BGF also significantly elevates the levels of tumor necrosis factor-alpha (TNF-α, 165.0-236.3 pg mg-1), GM-CSF (2.4-3.0 ng mg-1), and IFN-γ (1.5-3.2 ng mg-1) in the small intestinal fluid, and TNF-α (2.2-3.1 pg mL-1) and IFN-γ (10.3-0.21.5 pg mL-1) in the mouse serum. Cecal microbial analysis reveals that BGF increases Bacteroidota and Verrucomicrobiota and decreases Actinobacteria and Bacillota at the phylum level in mice. At the genus level, BGF significantly increases the abundance of Fusimonas (250 mg kg-1 BW-1 day-1), Bacteroides (125 and 250 mg kg-1 BW-1 day-1), and Akkermansia (125 mg kg-1 BW-1 day-1) and decreases that of Bifidobacterium (62.5 and 250 mg kg-1 BW-1 day-1) and Limosilactobacillus (125 and 250 mg kg-1 BW-1 day-1). CONCLUSION This study provides the first evidence of BGF's ability to modulate the intestinal immune system and gut microbiota, supporting its potential as a novel functional material to enhance gut immunity.
Collapse
Affiliation(s)
- Genevieve Tonog
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, South Korea
| | - Hyeonjun Yu
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, South Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, South Korea
| | | | | | | | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, South Korea
| |
Collapse
|
14
|
Adams L, Li X, Burchmore R, Goodwin RJA, Wall DM. Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001504. [PMID: 39392674 PMCID: PMC11469068 DOI: 10.1099/mic.0.001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using in vitro models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen Escherichia coli, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of E. coli and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.
Collapse
Affiliation(s)
- Lauren Adams
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Xiang Li
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard Burchmore
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard J. A. Goodwin
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Daniel M. Wall
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
15
|
Chugh RM, Bhanja P, Zitter R, Gunewardena S, Badkul R, Saha S. Modulation of β-Catenin is important to promote WNT expression in macrophages and mitigate intestinal injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614209. [PMID: 39345507 PMCID: PMC11429945 DOI: 10.1101/2024.09.21.614209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Macrophages are the major source of WNT ligands. Macrophage-derived WNT is one of the most potent regenerative signals to mitigate intestinal injury. However, regulation of WNT expression in macrophages has not been studied. In the present study, we discovered that activation of canonical β-Catenin suppresses WNT expression in macrophages. Our CHIP-seq and validation study demonstrated the involvement of β-Catenin in the transcriptional regulation of WNT expression. Genetic and pharmacological approaches to de-stabilize/inactivate β-Catenin induce WNT expression in macrophages. Extracellular vesicles (EVs) are a major career of WNT ligands. Transfusion of EVs from pre-conditioned WNT-enriched macrophages demonstrated significant regenerative benefit over native macrophage-derived EVs to mitigate radiation-induced intestinal injury. Transfusion of WNT-enriched EVs also reduces DSS-induced colitis. Our study provides substantial evidence to consider that macrophage-targeted modulation of canonical WNT signaling to induce WNT expression followed by treatment with WNT-enriched EVs can be a lead therapy against intestinal injury.. SUMMARY Activation of β-Catenin suppresses WNT expression in macrophages. Macrophage-targeted pharmacological modulation of canonical WNT signaling followed by adoptive transfer mitigate radiation injury in intestine. EVs from these preconditioned macrophages mitigate chemical or radiation induced intestinal injury.
Collapse
|
16
|
Virtanen HT, Choopanian P, Porokuokka LL, Forsgård R, Garton DR, Olfat S, Korpela R, Mirzaie M, Andressoo JO. Interindividual Variation in Gut Nitrergic Neuron Density Is Regulated By GDNF Levels and ETV1. Cell Mol Gastroenterol Hepatol 2024; 18:101405. [PMID: 39299667 PMCID: PMC11547909 DOI: 10.1016/j.jcmgh.2024.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND & AIMS The size and function of the enteric nervous system (ENS) can vary substantially between individuals. Because ENS function is involved in the etiology of a growing number of common human diseases, understanding mechanisms that regulate ENS variation is important. METHODS We analyzed RNAseq data from 41 normal adult human colon biopsies and single-cell RNA-seq data from human and mouse developing gut. To establish cause-consequence relationship we used alleles in mice that allow levels change of the candidate effector molecule in the comparable range to human samples. We used siRNA and primary neuronal cultures to define downstream molecular events and characterized gut functional changes in mice where molecular phenotypes paralleled findings in humans. RESULTS We found that glial cell line-derived neurotrophic factor (GDNF) levels in the human colon vary about 5-fold and correlate strongly with nitrergic marker expression. In mice, we defined that GDNF levels are regulated via its 3' untranslated region (3' UTR) in the gastrointestinal tract and observed similar correlation between GDNF levels and nitrergic lineage development. We identified miR-9 and miR-133 as evolutionarily conserved candidates for negative regulation of GDNF expression in the gastrointestinal tract. Functionally, an increase in inhibitory nitrergic innervation results in an increase in gastrointestinal tract transit time, stool size, and water content accompanied with modestly reduced epithelial barrier function. Mechanistically, we found that GDNF levels regulate nitrergic lineage development via induction of transcription factor ETV1, corroborated by single-cell gene expression data in human and mouse developing enteric neurons. CONCLUSIONS Our results reveal how normal variation in GDNF levels influence ENS size, composition, and gut function, suggesting a mechanism for well-known interindividual variation among those parameters.
Collapse
Affiliation(s)
- Heikki T Virtanen
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Peyman Choopanian
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - L Lauriina Porokuokka
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Forsgård
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daniel R Garton
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Soophie Olfat
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Riitta Korpela
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mehdi Mirzaie
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
17
|
Singh D, Mehghini P, Rodriguez-Palacios A, Di Martino L, Cominelli F, Basson AR. Anti-Inflammatory Effect of Dietary Pentadecanoic Fatty Acid Supplementation on Inflammatory Bowel Disease in SAMP1/YitFc Mice. Nutrients 2024; 16:3031. [PMID: 39275347 PMCID: PMC11397537 DOI: 10.3390/nu16173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Dietary fats have been linked to the increasing incidence of chronic diseases, including inflammatory bowel diseases (IBD), namely, Crohn's disease (CD). METHODS This study investigated the impact of pentadecanoic acid (C15:0), a type of an odd-numbered chain saturated fatty acid, for its potential anti-inflammatory properties in different mouse models of experimental IBD using the SAMP1/YitFc (SAMP) mouse line (14- or 24-week-old), including chronic ileitis and DSS-induced colitis. To quantitively assess the effect of C:15, we tested two dosages of C:15 in selected experiments in comparison to control mice. Intestinal inflammation and intestinal permeability were used as primary outcomes. RESULTS In ileitis, C:15 supplementation showed an anti-inflammatory effect in SAMP mice (e.g., a reduction in ileitis severity vs. control p < 0.0043), which was reproducible when mice were tested in the DSS model of colitis (e.g., reduced permeability vs. control p < 0.0006). Of relevance, even the short-term C:15 therapy prevented colitis in mice by maintaining body weight, decreasing inflammation, preserving gut integrity, and alleviating colitis signs. CONCLUSIONS Collectively, the findings from both ileitis and colitis in SAMP mice indicate that C:15 may have therapeutic effects in the treatment of IBD (colitis in the short term). This promising effect has major translational potential for the alleviation of IBD in humans.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
| | - Paola Mehghini
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abigail Raffner Basson
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Weng MT, Hsiung CY, Wei SC, Chen Y. Nanotechnology for Targeted Inflammatory Bowel Disease Therapy: Challenges and Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1999. [PMID: 39439396 DOI: 10.1002/wnan.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex and recurring inflammatory disorder that affects the gastrointestinal tract and is influenced by genetic predisposition, immune dysregulation, the gut microbiota, and environmental factors. Advanced therapies, such as biologics and small molecules, target diverse immune pathways to manage IBD. Nanoparticle (NP)-based drugs have emerged as effective tools, offering controlled drug release and targeted delivery. This review highlights NP modifications for anti-inflammatory purposes, utilizing changes such as those in size, charge, redox reactions, and ligand-receptor interactions in drug delivery systems. By using pathological and microenvironmental cues to guide NP design, precise targeting can be achieved. In IBD, a crucial aspect of NP intervention is targeting specific types of cells, such as immune and epithelial cells, to address compromised intestinal barrier function and reduce overactive immune responses. This review also addresses current challenges and future prospects, with the goal of advancing the development of NP-mediated strategies for IBD treatment.
Collapse
Affiliation(s)
- Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chia-Yueh Hsiung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
19
|
Gonzalez E, Lee MD, Tierney BT, Lipieta N, Flores P, Mishra M, Beckett L, Finkelstein A, Mo A, Walton P, Karouia F, Barker R, Jansen RJ, Green SJ, Weging S, Kelliher J, Singh NK, Bezdan D, Galazska J, Brereton NJB. Spaceflight alters host-gut microbiota interactions. NPJ Biofilms Microbiomes 2024; 10:71. [PMID: 39209868 PMCID: PMC11362537 DOI: 10.1038/s41522-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The ISS rodent habitat has provided crucial insights into the impact of spaceflight on mammals, inducing symptoms characteristic of liver disease, insulin resistance, osteopenia, and myopathy. Although these physiological responses can involve the microbiome on Earth, host-microbiota interactions during spaceflight are still being elucidated. We explore murine gut microbiota and host gene expression in the colon and liver after 29 and 56 days of spaceflight using multiomics. Metagenomics revealed significant changes in 44 microbiome species, including relative reductions in bile acid and butyrate metabolising bacteria like Extibacter muris and Dysosmobacter welbionis. Functional prediction indicate over-representation of fatty acid and bile acid metabolism, extracellular matrix interactions, and antibiotic resistance genes. Host gene expression described corresponding changes to bile acid and energy metabolism, and immune suppression. These changes imply that interactions at the host-gut microbiome interface contribute to spaceflight pathology and that these interactions might critically influence human health and long-duration spaceflight feasibility.
Collapse
Affiliation(s)
- E Gonzalez
- Microbiome Unit, Canadian Centre for Computational Genomics, Department of Human Genetics, McGill University, Montréal, Canada
- Centre for Microbiome Research, McGill University, Montréal, Canada
| | - M D Lee
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - N Lipieta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - P Flores
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - M Mishra
- Grossman School of Medicine, New York University, New York, USA
| | - L Beckett
- University of Nottingham, Nottingham, NG7 2RD, UK
| | - A Finkelstein
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - A Mo
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - P Walton
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - F Karouia
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Centre for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - R Barker
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Yuri GmbH, Wiesentalstr. 40, 88074, Meckenbeuren, Germany
- University of Wisconsin-Madison, Madison, WI, USA
| | - R J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Centre, 1653 W. Congress Parkway, Chicago, IL, 60612, USA
| | - S Weging
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - J Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N K Singh
- Department of Industrial Relations, Division of Occupational Safety and Health, Oakland, USA
| | - D Bezdan
- University of Wisconsin-Madison, Madison, WI, USA
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - J Galazska
- Space Biosciences Research Branch, NASA Ames Research Centre, Moffett Field, CA, USA
| | - N J B Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Adumitrăchioaiei H, Săsăran MO, Mărginean CO. The Diagnostic and Prognostic Role of Interleukin 6 and Interleukin 8 in Childhood Acute Gastroenteritis-A Review of the Literature. Int J Mol Sci 2024; 25:7655. [PMID: 39062898 PMCID: PMC11277260 DOI: 10.3390/ijms25147655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Acute gastroenteritis in pediatric patients represents a major cause of morbidity and mortality in children. Interleukins 6 (IL-6) and 8 (IL-8) have been intensely studied in relation to various inflammatory conditions, including acute gastroenteritis, as they are activated in response to infection. This review aims to evaluate the ability of IL-6 and IL-8 to distinguish between bacterial and viral etiologies of acute gastroenteritis in children and to assess whether their levels correlate with the severity of this condition in light of currently available data. A scientific database search was performed to identify studies that investigated the role of IL-6 and IL-8 in acute gastroenteritis in the pediatric population. We identified nine studies that matched the review's objective. Both cytokines show increased values in acute gastroenteritis, but IL-6 levels are significantly higher in cases of bacterial infections. IL-8 levels do not present an increase to the same extent in cases of bacterial diarrhea in children but seem to be associated with the severity of the disease. The lack of sufficient research focusing on IL-6 and -8 as diagnostic, prognostic and severity biomarkers of acute gastroenteritis in children leaves room for further research on this topic, which must include larger cohort studies.
Collapse
Affiliation(s)
- Heidrun Adumitrăchioaiei
- Department of Pediatrics I, University of Medicine, Pharmacy, Sciences and Technology George Emil Palade from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania; (H.A.); (C.O.M.)
| | - Maria Oana Săsăran
- Department of Pediatrics III, University of Medicine, Pharmacy, Sciences and Technology George Emil Palade from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania
| | - Cristina Oana Mărginean
- Department of Pediatrics I, University of Medicine, Pharmacy, Sciences and Technology George Emil Palade from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania; (H.A.); (C.O.M.)
| |
Collapse
|
21
|
Hammad D, Muslim Alameedy FM. Circulating MicroRNAs and Cytokines Associated with Celiac Disease. Middle East J Dig Dis 2024; 16:185-192. [PMID: 39386332 PMCID: PMC11459281 DOI: 10.34172/mejdd.2024.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/19/2024] [Indexed: 10/12/2024] Open
Abstract
Background The current research examines the molecular terrain of celiac disease (CD) through microRNA (miRNA) and cytokines as potential new diagnostic and therapeutic markers. Gluten-appropriate immune response is a key feature of an autoimmune clinical entity known as CD that leads to inflammation and degeneration of small intestine mucosa. However, the mechanisms responsible for this remain unclear. Methods Quantitative reverse transcription polymerase chain reaction (RT-qPCR ) was carried out on serum samples obtained from patients with CD and control groups to unravel their pathogenesis. Assessing miR-155, miR-15b, interleukin (IL)-2, IL-7, IL-35and IL-37 levels in expression might be useful in diagnosing or treating the disorder. Results A significant dysregulation of these molecular players in patients with CD compared with healthy controls has been evidenced by results from this study. For instance, miR-155 was up-regulated, whereas miR-15b was significantly down-regulated in CD, illustrating their roles in immune responses and inflammation-mediated processes. Besides, there was an over-expression of IL-2 and an under-expression of IL-37 in patients with CD, indicating these biomolecules' role in immuno-dysregulation and inflammatory process underlying CD. In addition, a positive correlation between IL-2 and miRNA 155 expression levels was observed in patients with CD, suggesting that they could be involved together with other cytokines, showing the interplay between immune response pathways and inflammatory cascades during CD pathogenesis. Conclusion These molecular signature discoveries might result in new and revolutionary diagnostic modalities and molecular-targeted therapies for CD pathogenesis. When used with the scientific understanding of miRNAs and cytokines associated with CD pathophysiology, it creates a basis for personalized medicine based on the individualized molecular profile of all patients. This will undoubtedly increase the efficacy of CD treatment strategies. In brief, more research on molecular pathways' workings should be done to harness their potential in CD diagnosis and treatment.
Collapse
Affiliation(s)
- Dargham Hammad
- Department of Pathological Analysis, Faculty of Science, Kufa University, Najaf, Iraq
| | | |
Collapse
|
22
|
Dold CA, Bavaro SL, Chen Y, Callanan MJ, Kennedy D, Cassidy J, Tobin J, Sahin AW, Lawlor PG, Brodkorb A, Giblin L. Infant milk formula, produced by membrane filtration, promotes mucus production in the upper small intestine of young pigs. Food Res Int 2024; 187:114343. [PMID: 38763636 DOI: 10.1016/j.foodres.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.
Collapse
Affiliation(s)
- Cathal A Dold
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland.
| | - Simona L Bavaro
- ISPA-CNR, Institute of Sciences of Food Production of National Research Council of Italy, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Yihong Chen
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Michael J Callanan
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland.
| | - Deirdre Kennedy
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Joe Cassidy
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John Tobin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland.
| | - Peadar G Lawlor
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| |
Collapse
|
23
|
Ciaramellano F, Scipioni L, Belà B, Pignataro G, Giacovazzo G, Angelucci CB, Giacominelli-Stuffler R, Gramenzi A, Oddi S. Combination of Hydrolysable Tannins and Zinc Oxide on Enterocyte Functionality: In Vitro Insights. Biomolecules 2024; 14:666. [PMID: 38927069 PMCID: PMC11201419 DOI: 10.3390/biom14060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes' defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications.
Collapse
Affiliation(s)
- Francesca Ciaramellano
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Lucia Scipioni
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy
| | - Benedetta Belà
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | - Giulia Pignataro
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | - Giacomo Giacovazzo
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | | | | | - Alessandro Gramenzi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | - Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| |
Collapse
|
24
|
Wang J, Xue X, Zhao X, Luo L, Liu J, Dai S, Zhang F, Wu R, Liu Y, Peng C, Li Y. Forsythiaside A alleviates acute lung injury by inhibiting inflammation and epithelial barrier damages in lung and colon through PPAR-γ/RXR-α complex. J Adv Res 2024; 60:183-200. [PMID: 37579917 PMCID: PMC11156707 DOI: 10.1016/j.jare.2023.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
INTRODUCTION Acute lung injury (ALI) is a lung disease characterized by inflammation and still requires further drug development. Forsythiaside A as the active compound of Forsythiae Fructus has the therapeutic potential for ALI. OBJECTIVE To investigate the mechanism of forsythiaside A in treating ALI through PPAR-γ and its conjugate RXR-α based on gut-lung axis. METHODS This study constructed in vitro and in vivo injury models using LPS and TNF-α. Forsythiaside A was used for the drug treatment, and RXR-α inhibitor UVI3003 was used to interfere with PPAR-γ/RXR-α complexes in the cells. HE staining was used for histopathological examination. Serum endotoxin contents were determined using limulus lysate kit. IHC staining and Western blot were conducted to assess the protein expressions. ELISA was applied to examine the content of pro-inflammatory cytokines in the cell supernatants. The protein interactions were analyzed via CO-IP. RESULTS In vivo results showed that forsythiaside A regulated PPAR-γ/RXR-α and inhibited TLR4/MAPK/NF-κB and MLCK/MLC2 signal pathways, thus inhibiting inflammation and epithelial barrier damages of lung and colon in ALI mice induced by intratracheal LPS. PPAR-γ/RXR-α were promoted by forsythiaside A in lungs, whereas inhibited by forsythiaside A in colons. Additionally, in vitro results showed that forsythiaside A suppressed inflammation and epithelial barrier damages in macrophages and lung/colon epithelial cells, by manipulating PPAR-γ/RXR-α to suppress the LPS- and TNF-α-induced activation of TLR4/MAPK/NF-κB and NF-κB/MLCK/MLC2 signal pathways. Moreover, further mechanism study indicated that forsythiaside A showed a cell-specific regulatory effect on PPAR-γ/RXR-α complex. Specifically, the PPAR-γ/RXR-α protein interactions were promoted by forsythiaside A in LPS-induced macrophages RAW264.7 and TNF-α-induced lung epithelial cells A549, but inhibited by forsythiaside A in TNF-α-induced colon epithelial cells SW620. CONCLUSION In the treatment of ALI, Forsythiaside A inhibited inflammation and epithelial barrier damages of lung and colon through its regulation on PPAR-γ/RXR-α complex.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
25
|
Wang J, He M, Yang M, Ai X. Gut microbiota as a key regulator of intestinal mucosal immunity. Life Sci 2024; 345:122612. [PMID: 38588949 DOI: 10.1016/j.lfs.2024.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Gut microbiota is a complex microbial community with the ability of maintaining intestinal health. Intestinal homeostasis largely depends on the mucosal immune system to defense external pathogens and promote tissue repair. In recent years, growing evidence revealed the importance of gut microbiota in shaping intestinal mucosal immunity. Therefore, according to the existing findings, this review first provided an overview of intestinal mucosal immune system before summarizing the regulatory roles of gut microbiota in intestinal innate and adaptive immunity. Specifically, this review delved into the gut microbial interactions with the cells such as intestinal epithelial cells (IECs), macrophages, dendritic cells (DCs), neutrophils, and innate lymphoid cells (ILCs) in innate immunity, and T and B lymphocytes in adaptive immunity. Furthermore, this review discussed the main effects of gut microbiota dysbiosis in intestinal diseases and offered future research prospects. The review highlighted the key regulatory roles of gut microbiota in intestinal mucosal immunity via various host-microbe interactions, providing valuable references for the development of microbial therapy in intestinal diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaopeng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
26
|
Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol 2024; 153:1169-1180. [PMID: 38369030 PMCID: PMC11070312 DOI: 10.1016/j.jaci.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.
Collapse
Affiliation(s)
- Elizabeth Emanuel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Allen Discovery Center for Neuroimmune Interactions, New York, NY; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
27
|
Sampath C, Chukkapalli SS, Raju AV, Alluri LSC, Srisai D, Gangula PR. Cinnamaldehyde Protects against P. gingivalis Induced Intestinal Epithelial Barrier Dysfunction in IEC-6 Cells via the PI3K/Akt-Mediated NO/Nrf2 Signaling Pathway. Int J Mol Sci 2024; 25:4734. [PMID: 38731952 PMCID: PMC11083591 DOI: 10.3390/ijms25094734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.
Collapse
Affiliation(s)
- Chethan Sampath
- Department of Diabetes, Metabolism and Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA;
| | - Sasanka S. Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Abhinav V. Raju
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Dollada Srisai
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA;
| | - Pandu R. Gangula
- Department of ODS & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
28
|
Qu B, Zhang XE, Feng H, Yan B, Bai Y, Liu S, He Y. Microbial perspective on the skin-gut axis and atopic dermatitis. Open Life Sci 2024; 19:20220782. [PMID: 38623584 PMCID: PMC11017189 DOI: 10.1515/biol-2022-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 04/17/2024] Open
Abstract
Atopic dermatitis (AD) is a relapsing inflammatory skin condition that has become a global health issue with complex etiology and mounting prevalence. The association of AD with skin and gut microbiota has been revealed by virtue of the continuous development of sequencing technology and genomics analysis. Also, the gut-brain-skin axis and its mutual crosstalk mechanisms have been gradually verified. Accordingly, the microbiota-skin-gut axis also plays an important role in allergic skin inflammation. Herein, we reviewed the relationship between the microbiota-skin-gut axis and AD, explored the underlying signaling molecules and potential pathways, and focused on the potential mechanisms of probiotics, antimicrobial peptides (AMPs), coagulase-negative staphylococci transplantation, fecal microbiota transplantation, AMPs, and addition of essential fatty acids in alleviating AD, with the aim to provide a new perspective for targeting microbiota in the treatment of allergic skin inflammation.
Collapse
Affiliation(s)
- Bo Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Xue-er Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Haoyue Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Bonan Yan
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yingchun Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Shanlin Liu
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| | - Yuhua He
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, P.R. China
| |
Collapse
|
29
|
Fichant A, Lanceleur R, Hachfi S, Brun-Barale A, Blier AL, Firmesse O, Gallet A, Fessard V, Bonis M. New Approach Methods to Assess the Enteropathogenic Potential of Strains of the Bacillus cereus Group, including Bacillus thuringiensis. Foods 2024; 13:1140. [PMID: 38672813 PMCID: PMC11048917 DOI: 10.3390/foods13081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bacillus cereus (Bc) is a wide group of Gram-positive and spore-forming bacteria, known to be the etiological agents of various human infections, primarily food poisoning. The Bc group includes enteropathogenic strains able to germinate in the digestive tract and to produce enterotoxins such as Nhe, Hbl, and CytK. One species of the group, Bacillus thuringiensis (Bt), has the unique feature of producing insecticidal crystals during sporulation, making it an important alternative to chemical pesticides to protect crops from insect pest larvae. Nevertheless, several studies have suggested a link between the ingestion of pesticide strains and human cases of food poisoning, calling their safety into question. Consequently, reliable tools for virulence assessment are worth developing to aid decision making in pesticide regulation. Here, we propose complementary approaches based on two biological models, the human intestinal Caco-2 cell line and the insect Drosophila melanogaster, to assess and rank the enteric virulence potency of Bt strains in comparison with other Bc group members. Using a dataset of 48 Bacillus spp. strains, we showed that some Bc group strains, including Bt, were able to induce cytotoxicity in Caco-2 cells with concomitant release of IL-8 cytokine, a landmark of pro-inflammatory response. In the D. melanogaster model, we were able to sort a panel of 39 strains into four different classes of virulence, ranging from no virulence to strong virulence. Importantly, for the most virulent strains, mortality was associated with a loss of intestinal barrier integrity. Interestingly, although strains can share a common toxinotype, they display different degrees of virulence, suggesting the existence of specific mechanisms of virulence expression in vivo in the intestine.
Collapse
Affiliation(s)
- Arnaud Fichant
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France; (A.F.); (O.F.)
- Université Côte d’Azur, CNRS, INRAE, ISA, 06903 Sophia-Antipolis, France; (S.H.); (A.B.-B.); (A.G.)
| | - Rachelle Lanceleur
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères, France; (R.L.); (A.-L.B.); (V.F.)
| | - Salma Hachfi
- Université Côte d’Azur, CNRS, INRAE, ISA, 06903 Sophia-Antipolis, France; (S.H.); (A.B.-B.); (A.G.)
| | - Alexandra Brun-Barale
- Université Côte d’Azur, CNRS, INRAE, ISA, 06903 Sophia-Antipolis, France; (S.H.); (A.B.-B.); (A.G.)
| | - Anne-Louise Blier
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères, France; (R.L.); (A.-L.B.); (V.F.)
| | - Olivier Firmesse
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France; (A.F.); (O.F.)
| | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, 06903 Sophia-Antipolis, France; (S.H.); (A.B.-B.); (A.G.)
| | - Valérie Fessard
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères, France; (R.L.); (A.-L.B.); (V.F.)
| | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France; (A.F.); (O.F.)
| |
Collapse
|
30
|
Wang X, Zhang T, Li W, Wang H, Yan L, Zhang X, Zhao L, Wang N, Zhang B. Arginine alleviates Clostridium perfringens α toxin-induced intestinal injury in vivo and in vitro via the SLC38A9/mTORC1 pathway. Front Immunol 2024; 15:1357072. [PMID: 38638435 PMCID: PMC11024335 DOI: 10.3389/fimmu.2024.1357072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1β, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-β (TGF-β), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Tong Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Heliang Wang
- Qingdao Sino-science Gene Technology Co., Ltd, Qingdao, China
| | - Lei Yan
- Shandong New Hope Liuhe Group, Qingdao, China
| | - Xiaowen Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lianwen Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nianxue Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
31
|
Amormino C, Russo E, Tedeschi V, Fiorillo MT, Paiardini A, Spallotta F, Rosanò L, Tuosto L, Kunkl M. Targeting staphylococcal enterotoxin B binding to CD28 as a new strategy for dampening superantigen-mediated intestinal epithelial barrier dysfunctions. Front Immunol 2024; 15:1365074. [PMID: 38510259 PMCID: PMC10951378 DOI: 10.3389/fimmu.2024.1365074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Staphylococcus aureus is a gram-positive bacterium that may cause intestinal inflammation by secreting enterotoxins, which commonly cause food-poisoning and gastrointestinal injuries. Staphylococcal enterotoxin B (SEB) acts as a superantigen (SAg) by binding in a bivalent manner the T-cell receptor (TCR) and the costimulatory receptor CD28, thus stimulating T cells to produce large amounts of inflammatory cytokines, which may affect intestinal epithelial barrier integrity and functions. However, the role of T cell-mediated SEB inflammatory activity remains unknown. Here we show that inflammatory cytokines produced by T cells following SEB stimulation induce dysfunctions in Caco-2 intestinal epithelial cells by promoting actin cytoskeleton remodelling and epithelial cell-cell junction down-regulation. We also found that SEB-activated inflammatory T cells promote the up-regulation of epithelial-mesenchymal transition transcription factors (EMT-TFs) in a nuclear factor-κB (NF-κB)- and STAT3-dependent manner. Finally, by using a structure-based design approach, we identified a SEB mimetic peptide (pSEB116-132) that, by blocking the binding of SEB to CD28, dampens inflammatory-mediated dysregulation of intestinal epithelial barrier.
Collapse
Affiliation(s)
- Carola Amormino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Russo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Martina Kunkl
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
32
|
Peng Y, Huang Y, Li H, Li C, Wu Y, Wang X, Wang Q, He J, Miao C. Associations between rheumatoid arthritis and intestinal flora, with special emphasis on RA pathologic mechanisms to treatment strategies. Microb Pathog 2024; 188:106563. [PMID: 38331355 DOI: 10.1016/j.micpath.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that primarily affects the joints. Individuals at risk for RA and people with RA develop intestinal dysbiosis. The changes in intestinal flora composition in preclinical and confirmed RA patients suggest that intestinal flora imbalance may play an important role in the induction and persistence of RA. METHODS Based on the current research on the interaction between RA and intestinal microbiota, intestinal microbiota metabolites and intestinal barrier changes. This paper systematically summarized the changes in intestinal microbiota in RA patients, the metabolites of intestinal flora, and the influence mechanism of intestinal barrier on RA, and further discussed the influence of drugs for RA on intestinal flora and its mechanism of action. RESULTS Compared with healthy controls, α diversity analysis of intestinal flora showed no significant difference, β diversity analysis showed significant differences. The intestinal flora produces bioactive metabolites, such as short-chain fatty acids and aromatic amino acids, which have anti-inflammatory effects. Abnormal intestinal flora leads to impaired barrier function and mucosal immune dysfunction, promoting the development of inflammation. Traditional Chinese medicine (TCM) and chemical drugs can also alleviate RA by regulating intestinal flora, intestinal flora metabolites, and intestinal barrier. Intestinal flora is closely related to the pathogenesis of RA and may become potential biomarkers for the diagnosis and treatment of RA. CONCLUSIONS Intestinal flora and its metabolites play an important role in the pathogenesis of autoimmune diseases such as RA, and are expected to become a new target for clinical diagnosis and treatment, providing a new idea for targeted treatment of RA.
Collapse
Affiliation(s)
- Yanhui Peng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chen Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaomei Wang
- Department of Humanistic Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qiang Wang
- Department of Pharmaceutical Preparation, Anhui University of Science and Technology, Fengyang, Anhui, China
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
33
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
34
|
Ferreira B, Barros AS, Leite-Pereira C, Viegas J, das Neves J, Nunes R, Sarmento B. Trends in 3D models of inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167042. [PMID: 38296115 DOI: 10.1016/j.bbadis.2024.167042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a set of chronic inflammatory conditions, namely Crohn's disease and ulcerative colitis. Despite all advances in the management of IBD, a definitive cure is not available, largely due to a lack of a holistic understanding of its etiology and pathophysiology. Several in vitro, in vivo, and ex vivo models have been developed over the past few decades in order to abbreviate remaining gaps. The establishment of reliable and predictable in vitro intestinal inflammation models may indeed provide valuable tools to expedite and validate the development of therapies for IBD. Three-dimensional (3D) models provide a more accurate representation of the different layers of the intestine, contributing to a stronger impact on drug screening and research on intestinal inflammation, and bridging the gap between in vitro and in vivo research. This work provides a critical overview on the state-of-the-art on existing 3D models of intestinal inflammation and discusses the remaining challenges, providing insights on possible pathways towards achieving IBD mimetic models. We also address some of the main challenges faced by implementing cell culture models in IBD research while bearing in mind clinical translational aspects.
Collapse
Affiliation(s)
- Bárbara Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Andreia S Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Catarina Leite-Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Juliana Viegas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
35
|
Mobbs CL, Darling NJ, Przyborski S. An in vitro model to study immune activation, epithelial disruption and stromal remodelling in inflammatory bowel disease and fistulising Crohn's disease. Front Immunol 2024; 15:1357690. [PMID: 38410518 PMCID: PMC10894943 DOI: 10.3389/fimmu.2024.1357690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
At present, preclinical models of inflammatory bowel disease (IBD) are insufficient, limiting translation between research and new therapeutics. This is especially true for fistulising Crohn's disease (CD), as the severe lack of relevant models hinders research progression. To address this, we present in vitro human IBD mucosal models that recapitulate multiple pathological hallmarks of IBD simultaneously in one model system - immune cell infiltration, stromal remodelling and epithelial disruption. Stimulation of models induces epithelial aberrations common in IBD tissue including altered morphology, microvilli abnormalities, claudin gene expression changes and increased permeability. Inflammatory biomarkers are also significantly increased including cytokines and chemokines integral to IBD pathogenesis. Evidence of extracellular matrix remodelling, including upregulated matrix-metalloproteinases and altered basement membrane components, suggests the models simulate pathological stromal remodelling events that closely resemble fistulising CD. Importantly, MMP-9 is the most abundant MMP and mimics the unique localisation observed in IBD tissue. The inflamed models were subsequently used to elucidate the involvement of TNF-α and IFN- γ in intestinal stromal remodelling, in which TNF-α but not IFN- γ induced MMP upregulation, specifically of MMP-3 and MMP-9. Collectively, our results demonstrate the potential of the IBD models for use in preclinical research in IBD, particularly for fistulising CD.
Collapse
Affiliation(s)
- Claire L. Mobbs
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| | - Nicole J. Darling
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| |
Collapse
|
36
|
Zhan M, Yang X, Zhao C, Han Y, Xie P, Mo Z, Xiao J, Cao Y, Xiao H, Song M. Dietary nobiletin regulated cefuroxime- and levofloxacin-associated "gut microbiota-metabolism" imbalance and intestinal barrier dysfunction in mice. Food Funct 2024; 15:1265-1278. [PMID: 38196314 DOI: 10.1039/d3fo04378a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Nobiletin (NOB) exhibits significant biological activities and may be a potential dietary treatment for antibiotic-associated gut dysbiosis. In this study, mice were gavaged with 0.2 mL day-1 of 12.5 g L-1 cefuroxime (LFX) and 10 g L-1 levofloxacin (LVX) for a duration of 10 days, accompanied by 0.05% NOB to investigate the regulatory effect and potential mechanisms of NOB on antibiotic-induced intestinal microbiota disorder and intestinal barrier dysfunction. Our results indicated that dietary NOB improved the pathology of intestinal epithelial cells and the intestinal permeability by upregulating the expression of intestinal tight junction proteins (TJs) and the number of goblet cells. Furthermore, dietary NOB reduced the levels of serum lipopolysaccharide (LPS) and pro-inflammatory factors (TNF-α and IL-1β), thereby facilitating the restoration of the intestinal mucosal barrier. Additionally, dietary NOB increased the abundance of beneficial bacteria f_Lachnospiraceae and regulated the metabolic disorders of short-chain fatty acids (SCFAs) and bile acids (BAs). Notably, NOB supplementation resulted in elevated levels of butyric acid and lithocholic acid (LCA), which contributed to the repair of the intestinal mucosal barrier function and the maintenance of intestinal homeostasis. Collectively, our results propose a healthy dietary strategy for the prevention or mitigation of antibiotic-associated gut dysbiosis by dietary NOB.
Collapse
Affiliation(s)
- Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Chenxi Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanhui Han
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shanxi 710062, P.R. China
| | - Peichun Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Zheqi Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Hang Xiao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
37
|
Qiao Z, Liao M, Xiao M, Luo S, Wang K, Niu M, Jiang H, Sun S, Xu G, Xu N, Xu Q, Liu Y. Ephrin B3 exacerbates colitis and colitis-associated colorectal cancer. Biochem Pharmacol 2024; 220:116004. [PMID: 38142837 DOI: 10.1016/j.bcp.2023.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Liao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingyue Xiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Saiyan Luo
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kexin Wang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengxin Niu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - NanJie Xu
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiongming Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
38
|
Hutka B, Várallyay A, László SB, Tóth AS, Scheich B, Paku S, Vörös I, Pós Z, Varga ZV, Norman DD, Balogh A, Benyó Z, Tigyi G, Gyires K, Zádori ZS. A dual role of lysophosphatidic acid type 2 receptor (LPAR2) in nonsteroidal anti-inflammatory drug-induced mouse enteropathy. Acta Pharmacol Sin 2024; 45:339-353. [PMID: 37816857 PMCID: PMC10789874 DOI: 10.1038/s41401-023-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid mediator that has been found to ameliorate nonsteroidal anti-inflammatory drug (NSAID)-induced gastric injury by acting on lysophosphatidic acid type 2 receptor (LPAR2). In this study, we investigated whether LPAR2 signaling was implicated in the development of NSAID-induced small intestinal injury (enteropathy), another major complication of NSAID use. Wild-type (WT) and Lpar2 deficient (Lpar2-/-) mice were treated with a single, large dose (20 or 30 mg/kg, i.g.) of indomethacin (IND). The mice were euthanized at 6 or 24 h after IND treatment. We showed that IND-induced mucosal enteropathy and neutrophil recruitment occurred much earlier (at 6 h after IND treatment) in Lpar2-/- mice compared to WT mice, but the tissue levels of inflammatory mediators (IL-1β, TNF-α, inducible COX-2, CAMP) remained at much lower levels. Administration of a selective LPAR2 agonist DBIBB (1, 10 mg/kg, i.g., twice at 24 h and 30 min before IND treatment) dose-dependently reduced mucosal injury and neutrophil activation in enteropathy, but it also enhanced IND-induced elevation of several proinflammatory chemokines and cytokines. By assessing caspase-3 activation, we found significantly increased intestinal apoptosis in IND-treated Lpar2-/- mice, but it was attenuated after DBIBB administration, especially in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Finally, we showed that IND treatment reduced the plasma activity and expression of autotaxin (ATX), the main LPA-producing enzyme, and also reduced the intestinal expression of Lpar2 mRNA, which preceded the development of mucosal damage. We conclude that LPAR2 has a dual role in NSAID enteropathy, as it contributes to the maintenance of mucosal integrity after NSAID exposure, but also orchestrates the inflammatory responses associated with ulceration. Our study suggests that IND-induced inhibition of the ATX-LPAR2 axis is an early event in the pathogenesis of enteropathy.
Collapse
Affiliation(s)
- Barbara Hutka
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - Anett Várallyay
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szilvia B László
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András S Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Imre Vörös
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
- MTA-SE System Pharmacology Research Group, Budapest, Hungary
| | - Zoltán Pós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
39
|
Costigan D, Fenn J, Yen S, Ilott N, Bullers S, Hale J, Greenhalf W, Conibear E, Koycheva A, Madon K, Jahan I, Huang M, Badhan A, Parker E, Rosadas C, Jones K, McClure M, Tedder R, Taylor G, Baillie KJ, Semple MG, Openshaw PJM, Pearson C, Johnson J, Lalvani A, Thornton EE. A pro-inflammatory gut mucosal cytokine response is associated with mild COVID-19 disease and superior induction of serum antibodies. Mucosal Immunol 2024; 17:111-123. [PMID: 37995912 PMCID: PMC10884467 DOI: 10.1016/j.mucimm.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The relationship between gastrointestinal tract infection, the host immune response, and the clinical outcome of disease is not well understood in COVID-19. We sought to understand the effect of intestinal immune responses to SARS-CoV-2 on patient outcomes including the magnitude of systemic antibody induction. Combining two prospective cohort studies, International Severe Acute Respiratory and emerging Infections Consortium Comprehensive Clinical Characterisations Collaboration (ISARIC4C) and Integrated Network for Surveillance, Trials and Investigations into COVID-19 Transmission (INSTINCT), we acquired samples from 88 COVID-19 cases representing the full spectrum of disease severity and analysed viral RNA and host gut cytokine responses in the context of clinical and virological outcome measures. There was no correlation between the upper respiratory tract and faecal viral loads. Using hierarchical clustering, we identified a group of fecal cytokines including Interleukin-17A, Granulocyte macrophage colony-stimulating factor, Tumor necrosis factorα, Interleukin-23, and S100A8, that were transiently elevated in mild cases and also correlated with the magnitude of systemic anti-Spike-receptor-binding domain antibody induction. Receiver operating characteristic curve analysis showed that expression of these gut cytokines at study enrolment in hospitalised COVID-19 cases was associated negatively with overall clinical severity implicating a protective role in COVID-19. This suggests that a productive intestinal immune response may be beneficial in the response to a respiratory pathogen and a biomarker of a successful barrier response.
Collapse
Affiliation(s)
- Dana Costigan
- MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Joe Fenn
- NIHR HPRU in Respiratory Infections, Imperial College London, London, UK.
| | - Sandi Yen
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, UK
| | - Nicholas Ilott
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, UK
| | - Samuel Bullers
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, UK; Kennedy Institute of Rheumatology, University of Oxford, UK
| | - Jessica Hale
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - William Greenhalf
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Emily Conibear
- NIHR HPRU in Respiratory Infections, Imperial College London, London, UK
| | | | - Kieran Madon
- NIHR HPRU in Respiratory Infections, Imperial College London, London, UK
| | - Ishrat Jahan
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Ming Huang
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Anjna Badhan
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Eleanor Parker
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Carolina Rosadas
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Kelsey Jones
- Kennedy Institute of Rheumatology, University of Oxford, UK
| | - Myra McClure
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Richard Tedder
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Graham Taylor
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Kenneth J Baillie
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Peter J M Openshaw
- NIHR HPRU in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Claire Pearson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, UK; Kennedy Institute of Rheumatology, University of Oxford, UK
| | - Jethro Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, UK
| | - Ajit Lalvani
- NIHR HPRU in Respiratory Infections, Imperial College London, London, UK
| | - Emily E Thornton
- MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK; Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
40
|
Vu VTD, Mahmood R, Armstrong HK, Santer DM. Crosstalk Between Microbiota, Microbial Metabolites, and Interferons in the Inflammatory Bowel Disease Gut. J Can Assoc Gastroenterol 2024; 7:78-87. [PMID: 38314170 PMCID: PMC10836980 DOI: 10.1093/jcag/gwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
With the prevalence of inflammatory bowel diseases (IBD) continuing to rise in Canada and globally, developing improved therapeutics that successfully treat greater percentages of patients with reduced complications is paramount. A better understanding of pertinent immune pathways in IBD will improve our ability to both successfully dampen inflammation and promote gut healing, beyond just inhibiting specific immune proteins; success of combination therapies supports this approach. Interferons (IFNs) are key cytokines that protect mucosal barrier surfaces, and their roles in regulating gut homeostasis and inflammation differ between the three IFN families (type I, II, and III). Interestingly, the gut microbiota and microbial metabolites impact IFN-signaling, yet how this system is impacted in IBD remains unclear. In this review, we discuss the current knowledge of how gut microbiota directly or indirectly impact IFN levels/responses, and what is known about IFNs differentially regulating gut homeostasis and inflammation in animal models or patients with IBD.
Collapse
Affiliation(s)
- Vi To Diep Vu
- Department of Immunology, University of Manitoba, 429 Apotex Centre, Winnipeg, MB, R3E 0T5Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4Canada
- Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, 820 Sherbrook St, MB, R3A 1R9Canada
- Department of Internal Medicine, Manitoba Center for Proteomics and System Biology, University of Manitoba, 715 McDermot Ave, Winnipeg, MB, R3E 3P4Canada
| | - Ramsha Mahmood
- Department of Immunology, University of Manitoba, 429 Apotex Centre, Winnipeg, MB, R3E 0T5Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4Canada
- Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, 820 Sherbrook St, MB, R3A 1R9Canada
- Department of Internal Medicine, Manitoba Center for Proteomics and System Biology, University of Manitoba, 715 McDermot Ave, Winnipeg, MB, R3E 3P4Canada
| | - Heather K Armstrong
- Department of Immunology, University of Manitoba, 429 Apotex Centre, Winnipeg, MB, R3E 0T5Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4Canada
- Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, 820 Sherbrook St, MB, R3A 1R9Canada
- Department of Internal Medicine, Manitoba Center for Proteomics and System Biology, University of Manitoba, 715 McDermot Ave, Winnipeg, MB, R3E 3P4Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, 35 Chancellor's Circle, Winnipeg, MB, R3T 2N2Canada
| | - Deanna M Santer
- Department of Immunology, University of Manitoba, 429 Apotex Centre, Winnipeg, MB, R3E 0T5Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4Canada
- Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, 820 Sherbrook St, MB, R3A 1R9Canada
| |
Collapse
|
41
|
Sampath V, Cho S, Jeong J, Mun S, Lee CH, Hermes RG, Taechavasonyoo A, Smeets N, Kirwan S, Han K, Kim IH. Dietary Bacillus spp. supplementation to both sow and progenies improved post-weaning growth rate, gut function, and reduce the pro-inflammatory cytokine production in weaners challenged with Escherichia coli K88. Anim Microbiome 2024; 6:3. [PMID: 38268054 PMCID: PMC10809626 DOI: 10.1186/s42523-024-00290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The use of probiotics (PRO) in late gestation sow and their impact on progenies' performance during the post-weaning stage has received more attention from the researchers recently. This study aimed to analyze the effect of probiotic mixture (Bacillus subtilis and Bacillus licheniformis) on both sow and offspring's performance. METHODS First experiment (Exp.1) was conducted from the 100th day of gestation through to post-weaning. A total of twenty sows and their litters were assigned to one of two dietary treatments, Control (CON) based diet and PRO- CON+ 0.05% probiotic mixture. Dietary treatments were arranged in a split-plot pattern with sow and weaner treatment (CON and PRO diet) as the main and sub plot. Exp.2. E. coli challenge study was carried out two weeks after weaning with 40 piglets. Dietary treatments remained same while all pigs were orally administered with a 1.5 ml suspension of 1010 CFU of K88 strain of E. coli per ml. RESULT PRO group sow showed significantly decreased backfat thickness difference and body weight difference after farrowing and at the end of weaning d21. The nutrient digestibility of PRO group sows was significantly higher at the end of weaning. Moreover, piglets born from PRO group sow showed higher weaning weight and tend to increase average daily gain at the end of d21. The addition of mixed probiotic in sow and weaner diet had suppressed the production of TNF-α and interleukin-6 in E. coli challenged pigs. The phyla Firmicutes and Bacteroidetes in E. coli -challenged pigs were highly abundant while, the relative abundance of clostridium_sensu_stricto_1 at genus level was significantly reduced by the inclusion of probiotic in both the sow and weaner diet. Also, taxonomic distribution analysis showed significantly lower prevalence of Clostridium and Brachyspira and higher prevalence of Lactobacilli in E. coli-challenged pigs that were born from PRO group sow and fed CON and PRO weaner diet. CONCLUSION This study reveals that the inclusion of 0.05% mixed probiotics (Bacillus spp.) to both sow and their progenies diet would be more beneficial to enhance the post-weaning growth rate, gut health, and immune status of E. coli challenged pigs.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam, 330-714, South Korea
| | - Sungbo Cho
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam, 330-714, South Korea
| | - Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, 16890, Republic of Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Choon Han Lee
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317, USA
| | - Rafael Gustavo Hermes
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317, USA
| | | | - Natasja Smeets
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317, USA
| | - Susanne Kirwan
- Kemin Industries Inc Headquarters, 1900 Scott Ave Des Moines, Des Moines, IA, 50317, USA
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam, 330-714, South Korea.
| |
Collapse
|
42
|
Petrariu OA, Barbu IC, Niculescu AG, Constantin M, Grigore GA, Cristian RE, Mihaescu G, Vrancianu CO. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front Microbiol 2024; 14:1296447. [PMID: 38249451 PMCID: PMC10797027 DOI: 10.3389/fmicb.2023.1296447] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.
Collapse
Affiliation(s)
- Oana-Alina Petrariu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
43
|
Marzoog BA. Cytokines and Regulating Epithelial Cell Division. Curr Drug Targets 2024; 25:190-200. [PMID: 38213162 DOI: 10.2174/0113894501279979240101051345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Physiologically, cytokines play an extremely important role in maintaining cellular and subcellular homeostasis, as they interact almost with every cell in the organism. Therefore, cytokines play a significantly critical role in the field of pathogenic pharmacological therapy of different types of pathologies. Cytokine is a large family containing many subfamilies and can be evaluated into groups according to their action on epithelial cell proliferation; stimulatory include transforming growth factor-α (TGF-α), Interlukine-22 (IL-22), IL-13, IL-6, IL-1RA and IL-17 and inhibitory include IL-1α, interferon type I (IFN type I), and TGF-β. The balance between stimulatory and inhibitory cytokines is essential for maintaining normal epithelial cell turnover and tissue homeostasis. Dysregulation of cytokine production can contribute to various pathological conditions, including inflammatory disorders, tissue damage, and cancer. Several cytokines have shown the ability to affect programmed cell death (apoptosis) and the capability to suppress non-purpose cell proliferation. Clinically, understanding the role of cytokines' role in epithelial tissue is crucial for evaluating a novel therapeutic target that can be of use as a new tactic in the management of carcinomas and tissue healing capacity. The review provides a comprehensive and up-to-date synthesis of current knowledge regarding the multifaceted effects of cytokines on epithelial cell proliferation, with a particular emphasis on the intestinal epithelium. Also, the paper will highlight the diverse signaling pathways activated by cytokines and their downstream consequences on epithelial cell division. It will also explore the potential therapeutic implications of targeting cytokine- epithelial cell interactions in the context of various diseases.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
44
|
Ahmad R, Kumar B, Thapa I, Talmon GA, Salomon J, Ramer-Tait AE, Bastola DK, Dhawan P, Singh AB. Loss of claudin-3 expression increases colitis risk by promoting Gut Dysbiosis. Gut Microbes 2023; 15:2282789. [PMID: 38010872 PMCID: PMC10730149 DOI: 10.1080/19490976.2023.2282789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Dysregulation of both the gut barrier and microbiota (dysbiosis) promotes susceptibility to and severity of Inflammatory Bowel Diseases (IBD). Leaky gut and dysbiosis often coexist; however, potential interdependence and molecular regulation are not well understood. Robust expression of claudin-3 (CLDN3) characterizes the gut epithelium, and studies have demonstrated a positive association between CLDN3 expression and gut barrier maturity and integrity, including in response to probiotics. However, the exact status and causal role of CLDN3 in IBD and regulation of gut dysbiosis remain unknown. Analysis of mouse and human IBD cohorts helped examine CLDN3 expression in IBD. The causal role was determined by modeling CLDN3 loss of expression during experimental colitis. 16S sequencing and in silico analysis helped examine gut microbiota diversity between Cldn3KO and WT mice and potential host metabolic responses. Fecal microbiota transplant (FMT) studies were performed to assess the role of gut dysbiosis in the increased susceptibility of Cldn3KO mice to colitis. A significant decrease in CLDN3 expression characterized IBD and CLDN3 loss of expression promoted colitis. 16S sequencing analysis suggested gut microbiota changes in Cldn3KO mice that were capable of modulating fatty acid metabolism and oxidative stress response. FMT from naïve Cldn3KO mice promoted colitis susceptibility in recipient germ-free mice (GFM) compared with GFM-receiving microbiota from WT mice. Our data demonstrate a critical role of CLDN3 in maintaining normal gut microbiota and inflammatory responses, which can be harnessed to develop novel therapeutic opportunities for patients with IBD.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology and the Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Dhundy K. Bastola
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
45
|
Halász H, Szatmári Z, Kovács K, Koppán M, Papp S, Szabó-Meleg E, Szatmári D. Changes of Ex Vivo Cervical Epithelial Cells Due to Electroporation with JMY. Int J Mol Sci 2023; 24:16863. [PMID: 38069185 PMCID: PMC10706833 DOI: 10.3390/ijms242316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The ionic environment within the nucleoplasm might diverge from the conditions found in the cytoplasm, potentially playing a role in the cellular stress response. As a result, it is conceivable that interactions of nuclear actin and actin-binding proteins (ABPs) with apoptosis factors may differ in the nucleoplasm and cytoplasm. The primary intracellular stress response is Ca2+ influx. The junctional mediating and regulating Y protein (JMY) is an actin-binding protein and has the capability to interact with the apoptosis factor p53 in a Ca2+-dependent manner, forming complexes that play a regulatory role in cytoskeletal remodelling and motility. JMY's presence is observed in both the cytoplasm and nucleoplasm. Here, we show that ex vivo ectocervical squamous cells subjected to electroporation with JMY protein exhibited varying morphological alterations. Specifically, the highly differentiated superficial and intermediate cells displayed reduced nuclear size. In inflamed samples, nuclear enlargement and simultaneous cytoplasmic reduction were observable and showed signs of apoptotic processes. In contrast, the less differentiated parabasal and metaplastic cells showed increased cytoplasmic activity and the formation of membrane protrusions. Surprisingly, in severe inflammation, vaginosis or ASC-US (Atypical Squamous Cells of Undetermined Significance), JMY appears to influence only the nuclear and perinuclear irregularities of differentiated cells, and cytoplasmic abnormalities still existed after the electroporation. Our observations can provide an appropriate basis for the exploration of the relationship between cytopathologically relevant morphological changes of epithelial cells and the function of ABPs. This is particularly important since ABPs are considered potential diagnostic and therapeutic biomarkers for both cancers and chronic inflammation.
Collapse
Affiliation(s)
- Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | | | - Krisztina Kovács
- Department of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | | | - Szilárd Papp
- DaVinci Clinics, 7635 Pécs, Hungary; (M.K.); (S.P.)
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | - Dávid Szatmári
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| |
Collapse
|
46
|
Macedo MH, Dias Neto M, Pastrana L, Gonçalves C, Xavier M. Recent Advances in Cell-Based In Vitro Models to Recreate Human Intestinal Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301391. [PMID: 37736674 PMCID: PMC10625086 DOI: 10.1002/advs.202301391] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Indexed: 09/23/2023]
Abstract
Inflammatory bowel disease causes a major burden to patients and healthcare systems, raising the need to develop effective therapies. Technological advances in cell culture, allied with ethical issues, have propelled in vitro models as essential tools to study disease aetiology, its progression, and possible therapies. Several cell-based in vitro models of intestinal inflammation have been used, varying in their complexity and methodology to induce inflammation. Immortalized cell lines are extensively used due to their long-term survival, in contrast to primary cultures that are short-lived but patient-specific. Recently, organoids and organ-chips have demonstrated great potential by being physiologically more relevant. This review aims to shed light on the intricate nature of intestinal inflammation and cover recent works that report cell-based in vitro models of human intestinal inflammation, encompassing diverse approaches and outcomes.
Collapse
Affiliation(s)
- Maria Helena Macedo
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Mafalda Dias Neto
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Lorenzo Pastrana
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Catarina Gonçalves
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Miguel Xavier
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| |
Collapse
|
47
|
Raeisi H, Azimirad M, Abdemohamadi E, Pezzani R, Zali MR, Yadegar A. Pleiotropic effects of Mentha longifolia L. extract on the regulation of genes involved in inflammation and apoptosis induced by Clostridioides difficile ribotype 001. Front Microbiol 2023; 14:1273094. [PMID: 37965560 PMCID: PMC10641701 DOI: 10.3389/fmicb.2023.1273094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction The dramatic increase in multidrug-resistance of Clostridioides difficile isolates has led to the search for new complementary medicines against C. difficile infection (CDI). In this study, we aimed to examine the inhibitory effects of hydroethanolic extract of Mentha longifolia L. (ETOH-ML) on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S)-induced inflammation and apoptosis. Methods The active phytochemical components of ETOH-ML were detected using GC and HPLC. The antimicrobial properties of the extract were examined against C. difficile RT001. Furthermore, cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of ETOH-ML, Tox-S of C. difficile RT001, and their combination were assessed. Anti-inflammatory and anti-apoptotic activities of ETOH-ML were explored in Tox-S stimulated Caco-2 cells using RT-qPCR. Results Based on our results, rosmarinic acid was the main phytochemical component of ETOH-ML. The extract showed significant antimicrobial activity against C. difficile RT001 by agar dilution and broth microdilution methods. Moreover, ETOH-ML at concentrations of <25 μg/ml had no significant effect on cell viability compared to untreated cells. Treatment cells with the extract (10 or 25 μg/ml) significantly increased the cell viability and reduced the percentage of cell rounding in Caco-2 and Vero cells treated by Tox-S, respectively (P < 0.0001). Co-treatment of Tox-S stimulated Caco-2 cells with ETOH-ML showed significant anti-inflammatory and anti-apoptotic activities by downregulating the gene expression level of IL-8, IL-1β, TNF-α, iNOS, TGF-β, NF-κB, Bax, and caspase-3, while upregulating the expression level of Bcl-2. Discussion Our results demonstrated for the first time the antimicrobial, anti-inflammatory, and anti-apoptotic effects of M. longifolia extract on C. difficile RT001 and its Tox-S. However, further research is needed to evaluate the potential application of M. longifolia extract on CDI treatment in clinical setting.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Abdemohamadi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raffaele Pezzani
- Phytotherapy Lab, Department of Medicine (DIMED), University of Padova, Padua, Italy
- Accademia Italiana di Fitoterapia, Brescia, Italy
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Huang K, Yang B, Xu Z, Chen H, Wang J. The early life immune dynamics and cellular drivers at single-cell resolution in lamb forestomachs and abomasum. J Anim Sci Biotechnol 2023; 14:130. [PMID: 37821933 PMCID: PMC10568933 DOI: 10.1186/s40104-023-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Four-chambered stomach including the forestomachs (rumen, reticulum, and omasum) and abomasum allows ruminants convert plant fiber into high-quality animal products. The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants, especially the immune development. However, the dynamics of immune development are poorly understood. RESULTS We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep, at 5, 10, 15, and 25 days of age. We found that forestomachs share similar gene expression patterns, all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25, whereas the metabolic function were significantly downregulated with age. We constructed a cell landscape of the four-chambered stomach using single-cell sequencing. Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells, monocytes and macrophages, as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues. Moreover, the non-immune cells such as epithelial cells play key roles in immune maturation. Cell communication analysis predicted that in addition to immune cells, non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs. CONCLUSIONS Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life. We also identified the gene expression patterns and functional cells associated with immune development. Additionally, we identified some key receptors and signaling involved in immune regulation. These results help to understand the early life immune development at single-cell resolution, which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.
Collapse
Affiliation(s)
- Kailang Huang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Zebang Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Hongwei Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
49
|
Zogorean R, Wirtz S. The yin and yang of B cells in a constant state of battle: intestinal inflammation and inflammatory bowel disease. Front Immunol 2023; 14:1260266. [PMID: 37849749 PMCID: PMC10577428 DOI: 10.3389/fimmu.2023.1260266] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, defined by a clinical relapse-remitting course. Affecting people worldwide, the origin of IBD is still undefined, arising as a consequence of the interaction between genes, environment, and microbiota. Although the root cause is difficult to identify, data clearly indicate that dysbiosis and pathogenic microbial taxa are connected with the establishment and clinical course of IBD. The composition of the microbiota is shaped by plasma cell IgA secretion and binding, while cytokines such as IL10 or IFN-γ are important fine-tuners of the immune response in the gastrointestinal environment. B cells may also influence the course of inflammation by promoting either an anti-inflammatory or a pro-inflammatory milieu. Here, we discuss IgA-producing B regulatory cells as an anti-inflammatory factor in intestinal inflammation. Moreover, we specify the context of IgA and IgG as players that can potentially participate in mucosal inflammation. Finally, we discuss the role of B cells in mouse infection models where IL10, IgA, or IgG contribute to the outcome of the infection.
Collapse
Affiliation(s)
- Roxana Zogorean
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Bavaria, Germany
| |
Collapse
|
50
|
Bonetti A, Toschi A, Tugnoli B, Piva A, Grilli E. A blend of selected botanicals maintains intestinal epithelial integrity and reduces susceptibility to Escherichia coli F4 infection by modulating acute and chronic inflammation in vitro. Front Vet Sci 2023; 10:1275802. [PMID: 37841479 PMCID: PMC10570737 DOI: 10.3389/fvets.2023.1275802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
In the pig production cycle, the most delicate phase is weaning, a sudden and early change that requires a quick adaptation, at the cost of developing inflammation and oxidation, especially at the intestinal level. In this period, pathogens like enterotoxigenic Escherichia coli (ETEC) contribute to the establishment of diarrhea, with long-lasting detrimental effects. Botanicals and their single bioactive components represent sustainable well-recognized tools in animal nutrition thanks to their wide-ranging beneficial functions. The aim of this study was to investigate the in vitro mechanism of action of a blend of botanicals (BOT), composed of thymol, grapeseed extract, and capsicum oleoresin, in supporting intestinal cell health during inflammatory challenges and ETEC infections. To reach this, we performed inflammatory and ETEC challenges on Caco-2 cells treated with BOT, measuring epithelial integrity, cellular oxidative stress, bacterial translocation and adhesion, gene expression levels, and examining tight junction distribution. BOT protected enterocytes against acute inflammation: while the challenge reduced epithelial tightness by 40%, BOT significantly limited its drop to 30%, also allowing faster recovery rates. In the case of chronic inflammation, BOT systematically improved by an average of 25% the integrity of challenged cells (p < 0.05). Moreover, when cells were infected with ETEC, BOT maintained epithelial integrity at the same level as an effective antibiotic and significantly reduced bacterial translocation by 1 log average. The mode of action of BOT was strictly related to the modulation of the inflammatory response, protecting tight junctions' expression and structure. In addition, BOT influenced ETEC adhesion to intestinal cells (-4%, p < 0.05), also thanks to the reduction of enterocytes' susceptibility to pathogens. Finally, BOT effectively scavenged reactive oxygen species generated by inflammatory and H2O2 challenges, thus alleviating oxidative stress by 40% compared to challenge (p < 0.05). These results support the employment of BOT in piglets at weaning to help manage bacterial infections and relieve transient or prolonged stressful states thanks to the modulation of host-pathogen interaction and the fine-tuning activity on the inflammatory tone.
Collapse
Affiliation(s)
- Andrea Bonetti
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
| | | | | | - Andrea Piva
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
- Vetagro S.p.A., Reggio Emilia, Italy
| | - Ester Grilli
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
| |
Collapse
|